niu.c 229 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/module.h>
  7. #include <linux/init.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/pci.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/netdevice.h>
  12. #include <linux/ethtool.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/delay.h>
  16. #include <linux/bitops.h>
  17. #include <linux/mii.h>
  18. #include <linux/if.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/if_vlan.h>
  21. #include <linux/ip.h>
  22. #include <linux/in.h>
  23. #include <linux/ipv6.h>
  24. #include <linux/log2.h>
  25. #include <linux/jiffies.h>
  26. #include <linux/crc32.h>
  27. #include <linux/list.h>
  28. #include <linux/slab.h>
  29. #include <linux/io.h>
  30. #include <linux/of_device.h>
  31. #include "niu.h"
  32. #define DRV_MODULE_NAME "niu"
  33. #define DRV_MODULE_VERSION "1.1"
  34. #define DRV_MODULE_RELDATE "Apr 22, 2010"
  35. static char version[] =
  36. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  37. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  38. MODULE_DESCRIPTION("NIU ethernet driver");
  39. MODULE_LICENSE("GPL");
  40. MODULE_VERSION(DRV_MODULE_VERSION);
  41. #ifndef readq
  42. static u64 readq(void __iomem *reg)
  43. {
  44. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  45. }
  46. static void writeq(u64 val, void __iomem *reg)
  47. {
  48. writel(val & 0xffffffff, reg);
  49. writel(val >> 32, reg + 0x4UL);
  50. }
  51. #endif
  52. static DEFINE_PCI_DEVICE_TABLE(niu_pci_tbl) = {
  53. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  54. {}
  55. };
  56. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  57. #define NIU_TX_TIMEOUT (5 * HZ)
  58. #define nr64(reg) readq(np->regs + (reg))
  59. #define nw64(reg, val) writeq((val), np->regs + (reg))
  60. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  61. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  62. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  63. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  64. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  65. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  66. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  67. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  68. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  69. static int niu_debug;
  70. static int debug = -1;
  71. module_param(debug, int, 0);
  72. MODULE_PARM_DESC(debug, "NIU debug level");
  73. #define niu_lock_parent(np, flags) \
  74. spin_lock_irqsave(&np->parent->lock, flags)
  75. #define niu_unlock_parent(np, flags) \
  76. spin_unlock_irqrestore(&np->parent->lock, flags)
  77. static int serdes_init_10g_serdes(struct niu *np);
  78. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  79. u64 bits, int limit, int delay)
  80. {
  81. while (--limit >= 0) {
  82. u64 val = nr64_mac(reg);
  83. if (!(val & bits))
  84. break;
  85. udelay(delay);
  86. }
  87. if (limit < 0)
  88. return -ENODEV;
  89. return 0;
  90. }
  91. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay,
  93. const char *reg_name)
  94. {
  95. int err;
  96. nw64_mac(reg, bits);
  97. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  98. if (err)
  99. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  100. (unsigned long long)bits, reg_name,
  101. (unsigned long long)nr64_mac(reg));
  102. return err;
  103. }
  104. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  105. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  106. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  107. })
  108. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  109. u64 bits, int limit, int delay)
  110. {
  111. while (--limit >= 0) {
  112. u64 val = nr64_ipp(reg);
  113. if (!(val & bits))
  114. break;
  115. udelay(delay);
  116. }
  117. if (limit < 0)
  118. return -ENODEV;
  119. return 0;
  120. }
  121. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  122. u64 bits, int limit, int delay,
  123. const char *reg_name)
  124. {
  125. int err;
  126. u64 val;
  127. val = nr64_ipp(reg);
  128. val |= bits;
  129. nw64_ipp(reg, val);
  130. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  131. if (err)
  132. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  133. (unsigned long long)bits, reg_name,
  134. (unsigned long long)nr64_ipp(reg));
  135. return err;
  136. }
  137. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  138. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  139. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  140. })
  141. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  142. u64 bits, int limit, int delay)
  143. {
  144. while (--limit >= 0) {
  145. u64 val = nr64(reg);
  146. if (!(val & bits))
  147. break;
  148. udelay(delay);
  149. }
  150. if (limit < 0)
  151. return -ENODEV;
  152. return 0;
  153. }
  154. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  155. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  156. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  157. })
  158. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  159. u64 bits, int limit, int delay,
  160. const char *reg_name)
  161. {
  162. int err;
  163. nw64(reg, bits);
  164. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  165. if (err)
  166. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  167. (unsigned long long)bits, reg_name,
  168. (unsigned long long)nr64(reg));
  169. return err;
  170. }
  171. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  172. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  173. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  174. })
  175. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  176. {
  177. u64 val = (u64) lp->timer;
  178. if (on)
  179. val |= LDG_IMGMT_ARM;
  180. nw64(LDG_IMGMT(lp->ldg_num), val);
  181. }
  182. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  183. {
  184. unsigned long mask_reg, bits;
  185. u64 val;
  186. if (ldn < 0 || ldn > LDN_MAX)
  187. return -EINVAL;
  188. if (ldn < 64) {
  189. mask_reg = LD_IM0(ldn);
  190. bits = LD_IM0_MASK;
  191. } else {
  192. mask_reg = LD_IM1(ldn - 64);
  193. bits = LD_IM1_MASK;
  194. }
  195. val = nr64(mask_reg);
  196. if (on)
  197. val &= ~bits;
  198. else
  199. val |= bits;
  200. nw64(mask_reg, val);
  201. return 0;
  202. }
  203. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  204. {
  205. struct niu_parent *parent = np->parent;
  206. int i;
  207. for (i = 0; i <= LDN_MAX; i++) {
  208. int err;
  209. if (parent->ldg_map[i] != lp->ldg_num)
  210. continue;
  211. err = niu_ldn_irq_enable(np, i, on);
  212. if (err)
  213. return err;
  214. }
  215. return 0;
  216. }
  217. static int niu_enable_interrupts(struct niu *np, int on)
  218. {
  219. int i;
  220. for (i = 0; i < np->num_ldg; i++) {
  221. struct niu_ldg *lp = &np->ldg[i];
  222. int err;
  223. err = niu_enable_ldn_in_ldg(np, lp, on);
  224. if (err)
  225. return err;
  226. }
  227. for (i = 0; i < np->num_ldg; i++)
  228. niu_ldg_rearm(np, &np->ldg[i], on);
  229. return 0;
  230. }
  231. static u32 phy_encode(u32 type, int port)
  232. {
  233. return type << (port * 2);
  234. }
  235. static u32 phy_decode(u32 val, int port)
  236. {
  237. return (val >> (port * 2)) & PORT_TYPE_MASK;
  238. }
  239. static int mdio_wait(struct niu *np)
  240. {
  241. int limit = 1000;
  242. u64 val;
  243. while (--limit > 0) {
  244. val = nr64(MIF_FRAME_OUTPUT);
  245. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  246. return val & MIF_FRAME_OUTPUT_DATA;
  247. udelay(10);
  248. }
  249. return -ENODEV;
  250. }
  251. static int mdio_read(struct niu *np, int port, int dev, int reg)
  252. {
  253. int err;
  254. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  255. err = mdio_wait(np);
  256. if (err < 0)
  257. return err;
  258. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  259. return mdio_wait(np);
  260. }
  261. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  262. {
  263. int err;
  264. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  265. err = mdio_wait(np);
  266. if (err < 0)
  267. return err;
  268. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  269. err = mdio_wait(np);
  270. if (err < 0)
  271. return err;
  272. return 0;
  273. }
  274. static int mii_read(struct niu *np, int port, int reg)
  275. {
  276. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  277. return mdio_wait(np);
  278. }
  279. static int mii_write(struct niu *np, int port, int reg, int data)
  280. {
  281. int err;
  282. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  283. err = mdio_wait(np);
  284. if (err < 0)
  285. return err;
  286. return 0;
  287. }
  288. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  289. {
  290. int err;
  291. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  292. ESR2_TI_PLL_TX_CFG_L(channel),
  293. val & 0xffff);
  294. if (!err)
  295. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  296. ESR2_TI_PLL_TX_CFG_H(channel),
  297. val >> 16);
  298. return err;
  299. }
  300. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  301. {
  302. int err;
  303. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  304. ESR2_TI_PLL_RX_CFG_L(channel),
  305. val & 0xffff);
  306. if (!err)
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_RX_CFG_H(channel),
  309. val >> 16);
  310. return err;
  311. }
  312. /* Mode is always 10G fiber. */
  313. static int serdes_init_niu_10g_fiber(struct niu *np)
  314. {
  315. struct niu_link_config *lp = &np->link_config;
  316. u32 tx_cfg, rx_cfg;
  317. unsigned long i;
  318. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  319. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  320. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  321. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  322. if (lp->loopback_mode == LOOPBACK_PHY) {
  323. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  324. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  325. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  326. tx_cfg |= PLL_TX_CFG_ENTEST;
  327. rx_cfg |= PLL_RX_CFG_ENTEST;
  328. }
  329. /* Initialize all 4 lanes of the SERDES. */
  330. for (i = 0; i < 4; i++) {
  331. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  332. if (err)
  333. return err;
  334. }
  335. for (i = 0; i < 4; i++) {
  336. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  337. if (err)
  338. return err;
  339. }
  340. return 0;
  341. }
  342. static int serdes_init_niu_1g_serdes(struct niu *np)
  343. {
  344. struct niu_link_config *lp = &np->link_config;
  345. u16 pll_cfg, pll_sts;
  346. int max_retry = 100;
  347. u64 uninitialized_var(sig), mask, val;
  348. u32 tx_cfg, rx_cfg;
  349. unsigned long i;
  350. int err;
  351. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  352. PLL_TX_CFG_RATE_HALF);
  353. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  354. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  355. PLL_RX_CFG_RATE_HALF);
  356. if (np->port == 0)
  357. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  358. if (lp->loopback_mode == LOOPBACK_PHY) {
  359. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  360. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  361. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  362. tx_cfg |= PLL_TX_CFG_ENTEST;
  363. rx_cfg |= PLL_RX_CFG_ENTEST;
  364. }
  365. /* Initialize PLL for 1G */
  366. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  367. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  368. ESR2_TI_PLL_CFG_L, pll_cfg);
  369. if (err) {
  370. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  371. np->port, __func__);
  372. return err;
  373. }
  374. pll_sts = PLL_CFG_ENPLL;
  375. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  376. ESR2_TI_PLL_STS_L, pll_sts);
  377. if (err) {
  378. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  379. np->port, __func__);
  380. return err;
  381. }
  382. udelay(200);
  383. /* Initialize all 4 lanes of the SERDES. */
  384. for (i = 0; i < 4; i++) {
  385. err = esr2_set_tx_cfg(np, i, tx_cfg);
  386. if (err)
  387. return err;
  388. }
  389. for (i = 0; i < 4; i++) {
  390. err = esr2_set_rx_cfg(np, i, rx_cfg);
  391. if (err)
  392. return err;
  393. }
  394. switch (np->port) {
  395. case 0:
  396. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  397. mask = val;
  398. break;
  399. case 1:
  400. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  401. mask = val;
  402. break;
  403. default:
  404. return -EINVAL;
  405. }
  406. while (max_retry--) {
  407. sig = nr64(ESR_INT_SIGNALS);
  408. if ((sig & mask) == val)
  409. break;
  410. mdelay(500);
  411. }
  412. if ((sig & mask) != val) {
  413. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  414. np->port, (int)(sig & mask), (int)val);
  415. return -ENODEV;
  416. }
  417. return 0;
  418. }
  419. static int serdes_init_niu_10g_serdes(struct niu *np)
  420. {
  421. struct niu_link_config *lp = &np->link_config;
  422. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  423. int max_retry = 100;
  424. u64 uninitialized_var(sig), mask, val;
  425. unsigned long i;
  426. int err;
  427. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  428. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  429. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  430. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  431. if (lp->loopback_mode == LOOPBACK_PHY) {
  432. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  433. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  434. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  435. tx_cfg |= PLL_TX_CFG_ENTEST;
  436. rx_cfg |= PLL_RX_CFG_ENTEST;
  437. }
  438. /* Initialize PLL for 10G */
  439. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  440. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  441. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  442. if (err) {
  443. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  444. np->port, __func__);
  445. return err;
  446. }
  447. pll_sts = PLL_CFG_ENPLL;
  448. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  449. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  450. if (err) {
  451. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  452. np->port, __func__);
  453. return err;
  454. }
  455. udelay(200);
  456. /* Initialize all 4 lanes of the SERDES. */
  457. for (i = 0; i < 4; i++) {
  458. err = esr2_set_tx_cfg(np, i, tx_cfg);
  459. if (err)
  460. return err;
  461. }
  462. for (i = 0; i < 4; i++) {
  463. err = esr2_set_rx_cfg(np, i, rx_cfg);
  464. if (err)
  465. return err;
  466. }
  467. /* check if serdes is ready */
  468. switch (np->port) {
  469. case 0:
  470. mask = ESR_INT_SIGNALS_P0_BITS;
  471. val = (ESR_INT_SRDY0_P0 |
  472. ESR_INT_DET0_P0 |
  473. ESR_INT_XSRDY_P0 |
  474. ESR_INT_XDP_P0_CH3 |
  475. ESR_INT_XDP_P0_CH2 |
  476. ESR_INT_XDP_P0_CH1 |
  477. ESR_INT_XDP_P0_CH0);
  478. break;
  479. case 1:
  480. mask = ESR_INT_SIGNALS_P1_BITS;
  481. val = (ESR_INT_SRDY0_P1 |
  482. ESR_INT_DET0_P1 |
  483. ESR_INT_XSRDY_P1 |
  484. ESR_INT_XDP_P1_CH3 |
  485. ESR_INT_XDP_P1_CH2 |
  486. ESR_INT_XDP_P1_CH1 |
  487. ESR_INT_XDP_P1_CH0);
  488. break;
  489. default:
  490. return -EINVAL;
  491. }
  492. while (max_retry--) {
  493. sig = nr64(ESR_INT_SIGNALS);
  494. if ((sig & mask) == val)
  495. break;
  496. mdelay(500);
  497. }
  498. if ((sig & mask) != val) {
  499. pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n",
  500. np->port, (int)(sig & mask), (int)val);
  501. /* 10G failed, try initializing at 1G */
  502. err = serdes_init_niu_1g_serdes(np);
  503. if (!err) {
  504. np->flags &= ~NIU_FLAGS_10G;
  505. np->mac_xcvr = MAC_XCVR_PCS;
  506. } else {
  507. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  508. np->port);
  509. return -ENODEV;
  510. }
  511. }
  512. return 0;
  513. }
  514. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  515. {
  516. int err;
  517. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  518. if (err >= 0) {
  519. *val = (err & 0xffff);
  520. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  521. ESR_RXTX_CTRL_H(chan));
  522. if (err >= 0)
  523. *val |= ((err & 0xffff) << 16);
  524. err = 0;
  525. }
  526. return err;
  527. }
  528. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  529. {
  530. int err;
  531. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  532. ESR_GLUE_CTRL0_L(chan));
  533. if (err >= 0) {
  534. *val = (err & 0xffff);
  535. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  536. ESR_GLUE_CTRL0_H(chan));
  537. if (err >= 0) {
  538. *val |= ((err & 0xffff) << 16);
  539. err = 0;
  540. }
  541. }
  542. return err;
  543. }
  544. static int esr_read_reset(struct niu *np, u32 *val)
  545. {
  546. int err;
  547. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  548. ESR_RXTX_RESET_CTRL_L);
  549. if (err >= 0) {
  550. *val = (err & 0xffff);
  551. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  552. ESR_RXTX_RESET_CTRL_H);
  553. if (err >= 0) {
  554. *val |= ((err & 0xffff) << 16);
  555. err = 0;
  556. }
  557. }
  558. return err;
  559. }
  560. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  561. {
  562. int err;
  563. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  564. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  565. if (!err)
  566. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  567. ESR_RXTX_CTRL_H(chan), (val >> 16));
  568. return err;
  569. }
  570. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  571. {
  572. int err;
  573. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  574. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  575. if (!err)
  576. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  577. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  578. return err;
  579. }
  580. static int esr_reset(struct niu *np)
  581. {
  582. u32 uninitialized_var(reset);
  583. int err;
  584. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  585. ESR_RXTX_RESET_CTRL_L, 0x0000);
  586. if (err)
  587. return err;
  588. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  589. ESR_RXTX_RESET_CTRL_H, 0xffff);
  590. if (err)
  591. return err;
  592. udelay(200);
  593. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  594. ESR_RXTX_RESET_CTRL_L, 0xffff);
  595. if (err)
  596. return err;
  597. udelay(200);
  598. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  599. ESR_RXTX_RESET_CTRL_H, 0x0000);
  600. if (err)
  601. return err;
  602. udelay(200);
  603. err = esr_read_reset(np, &reset);
  604. if (err)
  605. return err;
  606. if (reset != 0) {
  607. netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n",
  608. np->port, reset);
  609. return -ENODEV;
  610. }
  611. return 0;
  612. }
  613. static int serdes_init_10g(struct niu *np)
  614. {
  615. struct niu_link_config *lp = &np->link_config;
  616. unsigned long ctrl_reg, test_cfg_reg, i;
  617. u64 ctrl_val, test_cfg_val, sig, mask, val;
  618. int err;
  619. switch (np->port) {
  620. case 0:
  621. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  622. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  623. break;
  624. case 1:
  625. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  626. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  627. break;
  628. default:
  629. return -EINVAL;
  630. }
  631. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  632. ENET_SERDES_CTRL_SDET_1 |
  633. ENET_SERDES_CTRL_SDET_2 |
  634. ENET_SERDES_CTRL_SDET_3 |
  635. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  636. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  637. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  638. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  639. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  640. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  641. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  642. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  643. test_cfg_val = 0;
  644. if (lp->loopback_mode == LOOPBACK_PHY) {
  645. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  646. ENET_SERDES_TEST_MD_0_SHIFT) |
  647. (ENET_TEST_MD_PAD_LOOPBACK <<
  648. ENET_SERDES_TEST_MD_1_SHIFT) |
  649. (ENET_TEST_MD_PAD_LOOPBACK <<
  650. ENET_SERDES_TEST_MD_2_SHIFT) |
  651. (ENET_TEST_MD_PAD_LOOPBACK <<
  652. ENET_SERDES_TEST_MD_3_SHIFT));
  653. }
  654. nw64(ctrl_reg, ctrl_val);
  655. nw64(test_cfg_reg, test_cfg_val);
  656. /* Initialize all 4 lanes of the SERDES. */
  657. for (i = 0; i < 4; i++) {
  658. u32 rxtx_ctrl, glue0;
  659. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  660. if (err)
  661. return err;
  662. err = esr_read_glue0(np, i, &glue0);
  663. if (err)
  664. return err;
  665. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  666. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  667. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  668. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  669. ESR_GLUE_CTRL0_THCNT |
  670. ESR_GLUE_CTRL0_BLTIME);
  671. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  672. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  673. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  674. (BLTIME_300_CYCLES <<
  675. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  676. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  677. if (err)
  678. return err;
  679. err = esr_write_glue0(np, i, glue0);
  680. if (err)
  681. return err;
  682. }
  683. err = esr_reset(np);
  684. if (err)
  685. return err;
  686. sig = nr64(ESR_INT_SIGNALS);
  687. switch (np->port) {
  688. case 0:
  689. mask = ESR_INT_SIGNALS_P0_BITS;
  690. val = (ESR_INT_SRDY0_P0 |
  691. ESR_INT_DET0_P0 |
  692. ESR_INT_XSRDY_P0 |
  693. ESR_INT_XDP_P0_CH3 |
  694. ESR_INT_XDP_P0_CH2 |
  695. ESR_INT_XDP_P0_CH1 |
  696. ESR_INT_XDP_P0_CH0);
  697. break;
  698. case 1:
  699. mask = ESR_INT_SIGNALS_P1_BITS;
  700. val = (ESR_INT_SRDY0_P1 |
  701. ESR_INT_DET0_P1 |
  702. ESR_INT_XSRDY_P1 |
  703. ESR_INT_XDP_P1_CH3 |
  704. ESR_INT_XDP_P1_CH2 |
  705. ESR_INT_XDP_P1_CH1 |
  706. ESR_INT_XDP_P1_CH0);
  707. break;
  708. default:
  709. return -EINVAL;
  710. }
  711. if ((sig & mask) != val) {
  712. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  713. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  714. return 0;
  715. }
  716. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  717. np->port, (int)(sig & mask), (int)val);
  718. return -ENODEV;
  719. }
  720. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  721. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  722. return 0;
  723. }
  724. static int serdes_init_1g(struct niu *np)
  725. {
  726. u64 val;
  727. val = nr64(ENET_SERDES_1_PLL_CFG);
  728. val &= ~ENET_SERDES_PLL_FBDIV2;
  729. switch (np->port) {
  730. case 0:
  731. val |= ENET_SERDES_PLL_HRATE0;
  732. break;
  733. case 1:
  734. val |= ENET_SERDES_PLL_HRATE1;
  735. break;
  736. case 2:
  737. val |= ENET_SERDES_PLL_HRATE2;
  738. break;
  739. case 3:
  740. val |= ENET_SERDES_PLL_HRATE3;
  741. break;
  742. default:
  743. return -EINVAL;
  744. }
  745. nw64(ENET_SERDES_1_PLL_CFG, val);
  746. return 0;
  747. }
  748. static int serdes_init_1g_serdes(struct niu *np)
  749. {
  750. struct niu_link_config *lp = &np->link_config;
  751. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  752. u64 ctrl_val, test_cfg_val, sig, mask, val;
  753. int err;
  754. u64 reset_val, val_rd;
  755. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  756. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  757. ENET_SERDES_PLL_FBDIV0;
  758. switch (np->port) {
  759. case 0:
  760. reset_val = ENET_SERDES_RESET_0;
  761. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  762. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  763. pll_cfg = ENET_SERDES_0_PLL_CFG;
  764. break;
  765. case 1:
  766. reset_val = ENET_SERDES_RESET_1;
  767. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  768. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  769. pll_cfg = ENET_SERDES_1_PLL_CFG;
  770. break;
  771. default:
  772. return -EINVAL;
  773. }
  774. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  775. ENET_SERDES_CTRL_SDET_1 |
  776. ENET_SERDES_CTRL_SDET_2 |
  777. ENET_SERDES_CTRL_SDET_3 |
  778. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  779. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  780. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  781. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  782. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  783. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  784. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  785. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  786. test_cfg_val = 0;
  787. if (lp->loopback_mode == LOOPBACK_PHY) {
  788. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  789. ENET_SERDES_TEST_MD_0_SHIFT) |
  790. (ENET_TEST_MD_PAD_LOOPBACK <<
  791. ENET_SERDES_TEST_MD_1_SHIFT) |
  792. (ENET_TEST_MD_PAD_LOOPBACK <<
  793. ENET_SERDES_TEST_MD_2_SHIFT) |
  794. (ENET_TEST_MD_PAD_LOOPBACK <<
  795. ENET_SERDES_TEST_MD_3_SHIFT));
  796. }
  797. nw64(ENET_SERDES_RESET, reset_val);
  798. mdelay(20);
  799. val_rd = nr64(ENET_SERDES_RESET);
  800. val_rd &= ~reset_val;
  801. nw64(pll_cfg, val);
  802. nw64(ctrl_reg, ctrl_val);
  803. nw64(test_cfg_reg, test_cfg_val);
  804. nw64(ENET_SERDES_RESET, val_rd);
  805. mdelay(2000);
  806. /* Initialize all 4 lanes of the SERDES. */
  807. for (i = 0; i < 4; i++) {
  808. u32 rxtx_ctrl, glue0;
  809. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  810. if (err)
  811. return err;
  812. err = esr_read_glue0(np, i, &glue0);
  813. if (err)
  814. return err;
  815. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  816. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  817. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  818. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  819. ESR_GLUE_CTRL0_THCNT |
  820. ESR_GLUE_CTRL0_BLTIME);
  821. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  822. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  823. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  824. (BLTIME_300_CYCLES <<
  825. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  826. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  827. if (err)
  828. return err;
  829. err = esr_write_glue0(np, i, glue0);
  830. if (err)
  831. return err;
  832. }
  833. sig = nr64(ESR_INT_SIGNALS);
  834. switch (np->port) {
  835. case 0:
  836. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  837. mask = val;
  838. break;
  839. case 1:
  840. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  841. mask = val;
  842. break;
  843. default:
  844. return -EINVAL;
  845. }
  846. if ((sig & mask) != val) {
  847. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  848. np->port, (int)(sig & mask), (int)val);
  849. return -ENODEV;
  850. }
  851. return 0;
  852. }
  853. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  854. {
  855. struct niu_link_config *lp = &np->link_config;
  856. int link_up;
  857. u64 val;
  858. u16 current_speed;
  859. unsigned long flags;
  860. u8 current_duplex;
  861. link_up = 0;
  862. current_speed = SPEED_INVALID;
  863. current_duplex = DUPLEX_INVALID;
  864. spin_lock_irqsave(&np->lock, flags);
  865. val = nr64_pcs(PCS_MII_STAT);
  866. if (val & PCS_MII_STAT_LINK_STATUS) {
  867. link_up = 1;
  868. current_speed = SPEED_1000;
  869. current_duplex = DUPLEX_FULL;
  870. }
  871. lp->active_speed = current_speed;
  872. lp->active_duplex = current_duplex;
  873. spin_unlock_irqrestore(&np->lock, flags);
  874. *link_up_p = link_up;
  875. return 0;
  876. }
  877. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  878. {
  879. unsigned long flags;
  880. struct niu_link_config *lp = &np->link_config;
  881. int link_up = 0;
  882. int link_ok = 1;
  883. u64 val, val2;
  884. u16 current_speed;
  885. u8 current_duplex;
  886. if (!(np->flags & NIU_FLAGS_10G))
  887. return link_status_1g_serdes(np, link_up_p);
  888. current_speed = SPEED_INVALID;
  889. current_duplex = DUPLEX_INVALID;
  890. spin_lock_irqsave(&np->lock, flags);
  891. val = nr64_xpcs(XPCS_STATUS(0));
  892. val2 = nr64_mac(XMAC_INTER2);
  893. if (val2 & 0x01000000)
  894. link_ok = 0;
  895. if ((val & 0x1000ULL) && link_ok) {
  896. link_up = 1;
  897. current_speed = SPEED_10000;
  898. current_duplex = DUPLEX_FULL;
  899. }
  900. lp->active_speed = current_speed;
  901. lp->active_duplex = current_duplex;
  902. spin_unlock_irqrestore(&np->lock, flags);
  903. *link_up_p = link_up;
  904. return 0;
  905. }
  906. static int link_status_mii(struct niu *np, int *link_up_p)
  907. {
  908. struct niu_link_config *lp = &np->link_config;
  909. int err;
  910. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  911. int supported, advertising, active_speed, active_duplex;
  912. err = mii_read(np, np->phy_addr, MII_BMCR);
  913. if (unlikely(err < 0))
  914. return err;
  915. bmcr = err;
  916. err = mii_read(np, np->phy_addr, MII_BMSR);
  917. if (unlikely(err < 0))
  918. return err;
  919. bmsr = err;
  920. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  921. if (unlikely(err < 0))
  922. return err;
  923. advert = err;
  924. err = mii_read(np, np->phy_addr, MII_LPA);
  925. if (unlikely(err < 0))
  926. return err;
  927. lpa = err;
  928. if (likely(bmsr & BMSR_ESTATEN)) {
  929. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  930. if (unlikely(err < 0))
  931. return err;
  932. estatus = err;
  933. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  934. if (unlikely(err < 0))
  935. return err;
  936. ctrl1000 = err;
  937. err = mii_read(np, np->phy_addr, MII_STAT1000);
  938. if (unlikely(err < 0))
  939. return err;
  940. stat1000 = err;
  941. } else
  942. estatus = ctrl1000 = stat1000 = 0;
  943. supported = 0;
  944. if (bmsr & BMSR_ANEGCAPABLE)
  945. supported |= SUPPORTED_Autoneg;
  946. if (bmsr & BMSR_10HALF)
  947. supported |= SUPPORTED_10baseT_Half;
  948. if (bmsr & BMSR_10FULL)
  949. supported |= SUPPORTED_10baseT_Full;
  950. if (bmsr & BMSR_100HALF)
  951. supported |= SUPPORTED_100baseT_Half;
  952. if (bmsr & BMSR_100FULL)
  953. supported |= SUPPORTED_100baseT_Full;
  954. if (estatus & ESTATUS_1000_THALF)
  955. supported |= SUPPORTED_1000baseT_Half;
  956. if (estatus & ESTATUS_1000_TFULL)
  957. supported |= SUPPORTED_1000baseT_Full;
  958. lp->supported = supported;
  959. advertising = mii_adv_to_ethtool_adv_t(advert);
  960. advertising |= mii_ctrl1000_to_ethtool_adv_t(ctrl1000);
  961. if (bmcr & BMCR_ANENABLE) {
  962. int neg, neg1000;
  963. lp->active_autoneg = 1;
  964. advertising |= ADVERTISED_Autoneg;
  965. neg = advert & lpa;
  966. neg1000 = (ctrl1000 << 2) & stat1000;
  967. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  968. active_speed = SPEED_1000;
  969. else if (neg & LPA_100)
  970. active_speed = SPEED_100;
  971. else if (neg & (LPA_10HALF | LPA_10FULL))
  972. active_speed = SPEED_10;
  973. else
  974. active_speed = SPEED_INVALID;
  975. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  976. active_duplex = DUPLEX_FULL;
  977. else if (active_speed != SPEED_INVALID)
  978. active_duplex = DUPLEX_HALF;
  979. else
  980. active_duplex = DUPLEX_INVALID;
  981. } else {
  982. lp->active_autoneg = 0;
  983. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  984. active_speed = SPEED_1000;
  985. else if (bmcr & BMCR_SPEED100)
  986. active_speed = SPEED_100;
  987. else
  988. active_speed = SPEED_10;
  989. if (bmcr & BMCR_FULLDPLX)
  990. active_duplex = DUPLEX_FULL;
  991. else
  992. active_duplex = DUPLEX_HALF;
  993. }
  994. lp->active_advertising = advertising;
  995. lp->active_speed = active_speed;
  996. lp->active_duplex = active_duplex;
  997. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  998. return 0;
  999. }
  1000. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1001. {
  1002. struct niu_link_config *lp = &np->link_config;
  1003. u16 current_speed, bmsr;
  1004. unsigned long flags;
  1005. u8 current_duplex;
  1006. int err, link_up;
  1007. link_up = 0;
  1008. current_speed = SPEED_INVALID;
  1009. current_duplex = DUPLEX_INVALID;
  1010. spin_lock_irqsave(&np->lock, flags);
  1011. err = -EINVAL;
  1012. err = mii_read(np, np->phy_addr, MII_BMSR);
  1013. if (err < 0)
  1014. goto out;
  1015. bmsr = err;
  1016. if (bmsr & BMSR_LSTATUS) {
  1017. u16 adv, lpa;
  1018. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1019. if (err < 0)
  1020. goto out;
  1021. adv = err;
  1022. err = mii_read(np, np->phy_addr, MII_LPA);
  1023. if (err < 0)
  1024. goto out;
  1025. lpa = err;
  1026. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1027. if (err < 0)
  1028. goto out;
  1029. link_up = 1;
  1030. current_speed = SPEED_1000;
  1031. current_duplex = DUPLEX_FULL;
  1032. }
  1033. lp->active_speed = current_speed;
  1034. lp->active_duplex = current_duplex;
  1035. err = 0;
  1036. out:
  1037. spin_unlock_irqrestore(&np->lock, flags);
  1038. *link_up_p = link_up;
  1039. return err;
  1040. }
  1041. static int link_status_1g(struct niu *np, int *link_up_p)
  1042. {
  1043. struct niu_link_config *lp = &np->link_config;
  1044. unsigned long flags;
  1045. int err;
  1046. spin_lock_irqsave(&np->lock, flags);
  1047. err = link_status_mii(np, link_up_p);
  1048. lp->supported |= SUPPORTED_TP;
  1049. lp->active_advertising |= ADVERTISED_TP;
  1050. spin_unlock_irqrestore(&np->lock, flags);
  1051. return err;
  1052. }
  1053. static int bcm8704_reset(struct niu *np)
  1054. {
  1055. int err, limit;
  1056. err = mdio_read(np, np->phy_addr,
  1057. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1058. if (err < 0 || err == 0xffff)
  1059. return err;
  1060. err |= BMCR_RESET;
  1061. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1062. MII_BMCR, err);
  1063. if (err)
  1064. return err;
  1065. limit = 1000;
  1066. while (--limit >= 0) {
  1067. err = mdio_read(np, np->phy_addr,
  1068. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1069. if (err < 0)
  1070. return err;
  1071. if (!(err & BMCR_RESET))
  1072. break;
  1073. }
  1074. if (limit < 0) {
  1075. netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n",
  1076. np->port, (err & 0xffff));
  1077. return -ENODEV;
  1078. }
  1079. return 0;
  1080. }
  1081. /* When written, certain PHY registers need to be read back twice
  1082. * in order for the bits to settle properly.
  1083. */
  1084. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1085. {
  1086. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1087. if (err < 0)
  1088. return err;
  1089. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1090. if (err < 0)
  1091. return err;
  1092. return 0;
  1093. }
  1094. static int bcm8706_init_user_dev3(struct niu *np)
  1095. {
  1096. int err;
  1097. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1098. BCM8704_USER_OPT_DIGITAL_CTRL);
  1099. if (err < 0)
  1100. return err;
  1101. err &= ~USER_ODIG_CTRL_GPIOS;
  1102. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1103. err |= USER_ODIG_CTRL_RESV2;
  1104. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1105. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1106. if (err)
  1107. return err;
  1108. mdelay(1000);
  1109. return 0;
  1110. }
  1111. static int bcm8704_init_user_dev3(struct niu *np)
  1112. {
  1113. int err;
  1114. err = mdio_write(np, np->phy_addr,
  1115. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1116. (USER_CONTROL_OPTXRST_LVL |
  1117. USER_CONTROL_OPBIASFLT_LVL |
  1118. USER_CONTROL_OBTMPFLT_LVL |
  1119. USER_CONTROL_OPPRFLT_LVL |
  1120. USER_CONTROL_OPTXFLT_LVL |
  1121. USER_CONTROL_OPRXLOS_LVL |
  1122. USER_CONTROL_OPRXFLT_LVL |
  1123. USER_CONTROL_OPTXON_LVL |
  1124. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1125. if (err)
  1126. return err;
  1127. err = mdio_write(np, np->phy_addr,
  1128. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1129. (USER_PMD_TX_CTL_XFP_CLKEN |
  1130. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1131. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1132. USER_PMD_TX_CTL_TSCK_LPWREN));
  1133. if (err)
  1134. return err;
  1135. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1136. if (err)
  1137. return err;
  1138. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1139. if (err)
  1140. return err;
  1141. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1142. BCM8704_USER_OPT_DIGITAL_CTRL);
  1143. if (err < 0)
  1144. return err;
  1145. err &= ~USER_ODIG_CTRL_GPIOS;
  1146. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1147. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1148. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1149. if (err)
  1150. return err;
  1151. mdelay(1000);
  1152. return 0;
  1153. }
  1154. static int mrvl88x2011_act_led(struct niu *np, int val)
  1155. {
  1156. int err;
  1157. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1158. MRVL88X2011_LED_8_TO_11_CTL);
  1159. if (err < 0)
  1160. return err;
  1161. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1162. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1163. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1164. MRVL88X2011_LED_8_TO_11_CTL, err);
  1165. }
  1166. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1167. {
  1168. int err;
  1169. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1170. MRVL88X2011_LED_BLINK_CTL);
  1171. if (err >= 0) {
  1172. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1173. err |= (rate << 4);
  1174. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1175. MRVL88X2011_LED_BLINK_CTL, err);
  1176. }
  1177. return err;
  1178. }
  1179. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1180. {
  1181. int err;
  1182. /* Set LED functions */
  1183. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1184. if (err)
  1185. return err;
  1186. /* led activity */
  1187. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1188. if (err)
  1189. return err;
  1190. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1191. MRVL88X2011_GENERAL_CTL);
  1192. if (err < 0)
  1193. return err;
  1194. err |= MRVL88X2011_ENA_XFPREFCLK;
  1195. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1196. MRVL88X2011_GENERAL_CTL, err);
  1197. if (err < 0)
  1198. return err;
  1199. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1200. MRVL88X2011_PMA_PMD_CTL_1);
  1201. if (err < 0)
  1202. return err;
  1203. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1204. err |= MRVL88X2011_LOOPBACK;
  1205. else
  1206. err &= ~MRVL88X2011_LOOPBACK;
  1207. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1208. MRVL88X2011_PMA_PMD_CTL_1, err);
  1209. if (err < 0)
  1210. return err;
  1211. /* Enable PMD */
  1212. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1213. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1214. }
  1215. static int xcvr_diag_bcm870x(struct niu *np)
  1216. {
  1217. u16 analog_stat0, tx_alarm_status;
  1218. int err = 0;
  1219. #if 1
  1220. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1221. MII_STAT1000);
  1222. if (err < 0)
  1223. return err;
  1224. pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err);
  1225. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1226. if (err < 0)
  1227. return err;
  1228. pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err);
  1229. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1230. MII_NWAYTEST);
  1231. if (err < 0)
  1232. return err;
  1233. pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err);
  1234. #endif
  1235. /* XXX dig this out it might not be so useful XXX */
  1236. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1237. BCM8704_USER_ANALOG_STATUS0);
  1238. if (err < 0)
  1239. return err;
  1240. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1241. BCM8704_USER_ANALOG_STATUS0);
  1242. if (err < 0)
  1243. return err;
  1244. analog_stat0 = err;
  1245. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1246. BCM8704_USER_TX_ALARM_STATUS);
  1247. if (err < 0)
  1248. return err;
  1249. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1250. BCM8704_USER_TX_ALARM_STATUS);
  1251. if (err < 0)
  1252. return err;
  1253. tx_alarm_status = err;
  1254. if (analog_stat0 != 0x03fc) {
  1255. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1256. pr_info("Port %u cable not connected or bad cable\n",
  1257. np->port);
  1258. } else if (analog_stat0 == 0x639c) {
  1259. pr_info("Port %u optical module is bad or missing\n",
  1260. np->port);
  1261. }
  1262. }
  1263. return 0;
  1264. }
  1265. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1266. {
  1267. struct niu_link_config *lp = &np->link_config;
  1268. int err;
  1269. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1270. MII_BMCR);
  1271. if (err < 0)
  1272. return err;
  1273. err &= ~BMCR_LOOPBACK;
  1274. if (lp->loopback_mode == LOOPBACK_MAC)
  1275. err |= BMCR_LOOPBACK;
  1276. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1277. MII_BMCR, err);
  1278. if (err)
  1279. return err;
  1280. return 0;
  1281. }
  1282. static int xcvr_init_10g_bcm8706(struct niu *np)
  1283. {
  1284. int err = 0;
  1285. u64 val;
  1286. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1287. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1288. return err;
  1289. val = nr64_mac(XMAC_CONFIG);
  1290. val &= ~XMAC_CONFIG_LED_POLARITY;
  1291. val |= XMAC_CONFIG_FORCE_LED_ON;
  1292. nw64_mac(XMAC_CONFIG, val);
  1293. val = nr64(MIF_CONFIG);
  1294. val |= MIF_CONFIG_INDIRECT_MODE;
  1295. nw64(MIF_CONFIG, val);
  1296. err = bcm8704_reset(np);
  1297. if (err)
  1298. return err;
  1299. err = xcvr_10g_set_lb_bcm870x(np);
  1300. if (err)
  1301. return err;
  1302. err = bcm8706_init_user_dev3(np);
  1303. if (err)
  1304. return err;
  1305. err = xcvr_diag_bcm870x(np);
  1306. if (err)
  1307. return err;
  1308. return 0;
  1309. }
  1310. static int xcvr_init_10g_bcm8704(struct niu *np)
  1311. {
  1312. int err;
  1313. err = bcm8704_reset(np);
  1314. if (err)
  1315. return err;
  1316. err = bcm8704_init_user_dev3(np);
  1317. if (err)
  1318. return err;
  1319. err = xcvr_10g_set_lb_bcm870x(np);
  1320. if (err)
  1321. return err;
  1322. err = xcvr_diag_bcm870x(np);
  1323. if (err)
  1324. return err;
  1325. return 0;
  1326. }
  1327. static int xcvr_init_10g(struct niu *np)
  1328. {
  1329. int phy_id, err;
  1330. u64 val;
  1331. val = nr64_mac(XMAC_CONFIG);
  1332. val &= ~XMAC_CONFIG_LED_POLARITY;
  1333. val |= XMAC_CONFIG_FORCE_LED_ON;
  1334. nw64_mac(XMAC_CONFIG, val);
  1335. /* XXX shared resource, lock parent XXX */
  1336. val = nr64(MIF_CONFIG);
  1337. val |= MIF_CONFIG_INDIRECT_MODE;
  1338. nw64(MIF_CONFIG, val);
  1339. phy_id = phy_decode(np->parent->port_phy, np->port);
  1340. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1341. /* handle different phy types */
  1342. switch (phy_id & NIU_PHY_ID_MASK) {
  1343. case NIU_PHY_ID_MRVL88X2011:
  1344. err = xcvr_init_10g_mrvl88x2011(np);
  1345. break;
  1346. default: /* bcom 8704 */
  1347. err = xcvr_init_10g_bcm8704(np);
  1348. break;
  1349. }
  1350. return err;
  1351. }
  1352. static int mii_reset(struct niu *np)
  1353. {
  1354. int limit, err;
  1355. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1356. if (err)
  1357. return err;
  1358. limit = 1000;
  1359. while (--limit >= 0) {
  1360. udelay(500);
  1361. err = mii_read(np, np->phy_addr, MII_BMCR);
  1362. if (err < 0)
  1363. return err;
  1364. if (!(err & BMCR_RESET))
  1365. break;
  1366. }
  1367. if (limit < 0) {
  1368. netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n",
  1369. np->port, err);
  1370. return -ENODEV;
  1371. }
  1372. return 0;
  1373. }
  1374. static int xcvr_init_1g_rgmii(struct niu *np)
  1375. {
  1376. int err;
  1377. u64 val;
  1378. u16 bmcr, bmsr, estat;
  1379. val = nr64(MIF_CONFIG);
  1380. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1381. nw64(MIF_CONFIG, val);
  1382. err = mii_reset(np);
  1383. if (err)
  1384. return err;
  1385. err = mii_read(np, np->phy_addr, MII_BMSR);
  1386. if (err < 0)
  1387. return err;
  1388. bmsr = err;
  1389. estat = 0;
  1390. if (bmsr & BMSR_ESTATEN) {
  1391. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1392. if (err < 0)
  1393. return err;
  1394. estat = err;
  1395. }
  1396. bmcr = 0;
  1397. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1398. if (err)
  1399. return err;
  1400. if (bmsr & BMSR_ESTATEN) {
  1401. u16 ctrl1000 = 0;
  1402. if (estat & ESTATUS_1000_TFULL)
  1403. ctrl1000 |= ADVERTISE_1000FULL;
  1404. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1405. if (err)
  1406. return err;
  1407. }
  1408. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1409. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1410. if (err)
  1411. return err;
  1412. err = mii_read(np, np->phy_addr, MII_BMCR);
  1413. if (err < 0)
  1414. return err;
  1415. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1416. err = mii_read(np, np->phy_addr, MII_BMSR);
  1417. if (err < 0)
  1418. return err;
  1419. return 0;
  1420. }
  1421. static int mii_init_common(struct niu *np)
  1422. {
  1423. struct niu_link_config *lp = &np->link_config;
  1424. u16 bmcr, bmsr, adv, estat;
  1425. int err;
  1426. err = mii_reset(np);
  1427. if (err)
  1428. return err;
  1429. err = mii_read(np, np->phy_addr, MII_BMSR);
  1430. if (err < 0)
  1431. return err;
  1432. bmsr = err;
  1433. estat = 0;
  1434. if (bmsr & BMSR_ESTATEN) {
  1435. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1436. if (err < 0)
  1437. return err;
  1438. estat = err;
  1439. }
  1440. bmcr = 0;
  1441. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1442. if (err)
  1443. return err;
  1444. if (lp->loopback_mode == LOOPBACK_MAC) {
  1445. bmcr |= BMCR_LOOPBACK;
  1446. if (lp->active_speed == SPEED_1000)
  1447. bmcr |= BMCR_SPEED1000;
  1448. if (lp->active_duplex == DUPLEX_FULL)
  1449. bmcr |= BMCR_FULLDPLX;
  1450. }
  1451. if (lp->loopback_mode == LOOPBACK_PHY) {
  1452. u16 aux;
  1453. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1454. BCM5464R_AUX_CTL_WRITE_1);
  1455. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1456. if (err)
  1457. return err;
  1458. }
  1459. if (lp->autoneg) {
  1460. u16 ctrl1000;
  1461. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1462. if ((bmsr & BMSR_10HALF) &&
  1463. (lp->advertising & ADVERTISED_10baseT_Half))
  1464. adv |= ADVERTISE_10HALF;
  1465. if ((bmsr & BMSR_10FULL) &&
  1466. (lp->advertising & ADVERTISED_10baseT_Full))
  1467. adv |= ADVERTISE_10FULL;
  1468. if ((bmsr & BMSR_100HALF) &&
  1469. (lp->advertising & ADVERTISED_100baseT_Half))
  1470. adv |= ADVERTISE_100HALF;
  1471. if ((bmsr & BMSR_100FULL) &&
  1472. (lp->advertising & ADVERTISED_100baseT_Full))
  1473. adv |= ADVERTISE_100FULL;
  1474. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1475. if (err)
  1476. return err;
  1477. if (likely(bmsr & BMSR_ESTATEN)) {
  1478. ctrl1000 = 0;
  1479. if ((estat & ESTATUS_1000_THALF) &&
  1480. (lp->advertising & ADVERTISED_1000baseT_Half))
  1481. ctrl1000 |= ADVERTISE_1000HALF;
  1482. if ((estat & ESTATUS_1000_TFULL) &&
  1483. (lp->advertising & ADVERTISED_1000baseT_Full))
  1484. ctrl1000 |= ADVERTISE_1000FULL;
  1485. err = mii_write(np, np->phy_addr,
  1486. MII_CTRL1000, ctrl1000);
  1487. if (err)
  1488. return err;
  1489. }
  1490. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1491. } else {
  1492. /* !lp->autoneg */
  1493. int fulldpx;
  1494. if (lp->duplex == DUPLEX_FULL) {
  1495. bmcr |= BMCR_FULLDPLX;
  1496. fulldpx = 1;
  1497. } else if (lp->duplex == DUPLEX_HALF)
  1498. fulldpx = 0;
  1499. else
  1500. return -EINVAL;
  1501. if (lp->speed == SPEED_1000) {
  1502. /* if X-full requested while not supported, or
  1503. X-half requested while not supported... */
  1504. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1505. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1506. return -EINVAL;
  1507. bmcr |= BMCR_SPEED1000;
  1508. } else if (lp->speed == SPEED_100) {
  1509. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1510. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1511. return -EINVAL;
  1512. bmcr |= BMCR_SPEED100;
  1513. } else if (lp->speed == SPEED_10) {
  1514. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1515. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1516. return -EINVAL;
  1517. } else
  1518. return -EINVAL;
  1519. }
  1520. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1521. if (err)
  1522. return err;
  1523. #if 0
  1524. err = mii_read(np, np->phy_addr, MII_BMCR);
  1525. if (err < 0)
  1526. return err;
  1527. bmcr = err;
  1528. err = mii_read(np, np->phy_addr, MII_BMSR);
  1529. if (err < 0)
  1530. return err;
  1531. bmsr = err;
  1532. pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1533. np->port, bmcr, bmsr);
  1534. #endif
  1535. return 0;
  1536. }
  1537. static int xcvr_init_1g(struct niu *np)
  1538. {
  1539. u64 val;
  1540. /* XXX shared resource, lock parent XXX */
  1541. val = nr64(MIF_CONFIG);
  1542. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1543. nw64(MIF_CONFIG, val);
  1544. return mii_init_common(np);
  1545. }
  1546. static int niu_xcvr_init(struct niu *np)
  1547. {
  1548. const struct niu_phy_ops *ops = np->phy_ops;
  1549. int err;
  1550. err = 0;
  1551. if (ops->xcvr_init)
  1552. err = ops->xcvr_init(np);
  1553. return err;
  1554. }
  1555. static int niu_serdes_init(struct niu *np)
  1556. {
  1557. const struct niu_phy_ops *ops = np->phy_ops;
  1558. int err;
  1559. err = 0;
  1560. if (ops->serdes_init)
  1561. err = ops->serdes_init(np);
  1562. return err;
  1563. }
  1564. static void niu_init_xif(struct niu *);
  1565. static void niu_handle_led(struct niu *, int status);
  1566. static int niu_link_status_common(struct niu *np, int link_up)
  1567. {
  1568. struct niu_link_config *lp = &np->link_config;
  1569. struct net_device *dev = np->dev;
  1570. unsigned long flags;
  1571. if (!netif_carrier_ok(dev) && link_up) {
  1572. netif_info(np, link, dev, "Link is up at %s, %s duplex\n",
  1573. lp->active_speed == SPEED_10000 ? "10Gb/sec" :
  1574. lp->active_speed == SPEED_1000 ? "1Gb/sec" :
  1575. lp->active_speed == SPEED_100 ? "100Mbit/sec" :
  1576. "10Mbit/sec",
  1577. lp->active_duplex == DUPLEX_FULL ? "full" : "half");
  1578. spin_lock_irqsave(&np->lock, flags);
  1579. niu_init_xif(np);
  1580. niu_handle_led(np, 1);
  1581. spin_unlock_irqrestore(&np->lock, flags);
  1582. netif_carrier_on(dev);
  1583. } else if (netif_carrier_ok(dev) && !link_up) {
  1584. netif_warn(np, link, dev, "Link is down\n");
  1585. spin_lock_irqsave(&np->lock, flags);
  1586. niu_handle_led(np, 0);
  1587. spin_unlock_irqrestore(&np->lock, flags);
  1588. netif_carrier_off(dev);
  1589. }
  1590. return 0;
  1591. }
  1592. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1593. {
  1594. int err, link_up, pma_status, pcs_status;
  1595. link_up = 0;
  1596. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1597. MRVL88X2011_10G_PMD_STATUS_2);
  1598. if (err < 0)
  1599. goto out;
  1600. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1601. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1602. MRVL88X2011_PMA_PMD_STATUS_1);
  1603. if (err < 0)
  1604. goto out;
  1605. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1606. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1607. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1608. MRVL88X2011_PMA_PMD_STATUS_1);
  1609. if (err < 0)
  1610. goto out;
  1611. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1612. MRVL88X2011_PMA_PMD_STATUS_1);
  1613. if (err < 0)
  1614. goto out;
  1615. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1616. /* Check XGXS Register : 4.0018.[0-3,12] */
  1617. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1618. MRVL88X2011_10G_XGXS_LANE_STAT);
  1619. if (err < 0)
  1620. goto out;
  1621. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1622. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1623. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1624. 0x800))
  1625. link_up = (pma_status && pcs_status) ? 1 : 0;
  1626. np->link_config.active_speed = SPEED_10000;
  1627. np->link_config.active_duplex = DUPLEX_FULL;
  1628. err = 0;
  1629. out:
  1630. mrvl88x2011_act_led(np, (link_up ?
  1631. MRVL88X2011_LED_CTL_PCS_ACT :
  1632. MRVL88X2011_LED_CTL_OFF));
  1633. *link_up_p = link_up;
  1634. return err;
  1635. }
  1636. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1637. {
  1638. int err, link_up;
  1639. link_up = 0;
  1640. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1641. BCM8704_PMD_RCV_SIGDET);
  1642. if (err < 0 || err == 0xffff)
  1643. goto out;
  1644. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1645. err = 0;
  1646. goto out;
  1647. }
  1648. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1649. BCM8704_PCS_10G_R_STATUS);
  1650. if (err < 0)
  1651. goto out;
  1652. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1653. err = 0;
  1654. goto out;
  1655. }
  1656. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1657. BCM8704_PHYXS_XGXS_LANE_STAT);
  1658. if (err < 0)
  1659. goto out;
  1660. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1661. PHYXS_XGXS_LANE_STAT_MAGIC |
  1662. PHYXS_XGXS_LANE_STAT_PATTEST |
  1663. PHYXS_XGXS_LANE_STAT_LANE3 |
  1664. PHYXS_XGXS_LANE_STAT_LANE2 |
  1665. PHYXS_XGXS_LANE_STAT_LANE1 |
  1666. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1667. err = 0;
  1668. np->link_config.active_speed = SPEED_INVALID;
  1669. np->link_config.active_duplex = DUPLEX_INVALID;
  1670. goto out;
  1671. }
  1672. link_up = 1;
  1673. np->link_config.active_speed = SPEED_10000;
  1674. np->link_config.active_duplex = DUPLEX_FULL;
  1675. err = 0;
  1676. out:
  1677. *link_up_p = link_up;
  1678. return err;
  1679. }
  1680. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1681. {
  1682. int err, link_up;
  1683. link_up = 0;
  1684. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1685. BCM8704_PMD_RCV_SIGDET);
  1686. if (err < 0)
  1687. goto out;
  1688. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1689. err = 0;
  1690. goto out;
  1691. }
  1692. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1693. BCM8704_PCS_10G_R_STATUS);
  1694. if (err < 0)
  1695. goto out;
  1696. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1697. err = 0;
  1698. goto out;
  1699. }
  1700. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1701. BCM8704_PHYXS_XGXS_LANE_STAT);
  1702. if (err < 0)
  1703. goto out;
  1704. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1705. PHYXS_XGXS_LANE_STAT_MAGIC |
  1706. PHYXS_XGXS_LANE_STAT_LANE3 |
  1707. PHYXS_XGXS_LANE_STAT_LANE2 |
  1708. PHYXS_XGXS_LANE_STAT_LANE1 |
  1709. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1710. err = 0;
  1711. goto out;
  1712. }
  1713. link_up = 1;
  1714. np->link_config.active_speed = SPEED_10000;
  1715. np->link_config.active_duplex = DUPLEX_FULL;
  1716. err = 0;
  1717. out:
  1718. *link_up_p = link_up;
  1719. return err;
  1720. }
  1721. static int link_status_10g(struct niu *np, int *link_up_p)
  1722. {
  1723. unsigned long flags;
  1724. int err = -EINVAL;
  1725. spin_lock_irqsave(&np->lock, flags);
  1726. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1727. int phy_id;
  1728. phy_id = phy_decode(np->parent->port_phy, np->port);
  1729. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1730. /* handle different phy types */
  1731. switch (phy_id & NIU_PHY_ID_MASK) {
  1732. case NIU_PHY_ID_MRVL88X2011:
  1733. err = link_status_10g_mrvl(np, link_up_p);
  1734. break;
  1735. default: /* bcom 8704 */
  1736. err = link_status_10g_bcom(np, link_up_p);
  1737. break;
  1738. }
  1739. }
  1740. spin_unlock_irqrestore(&np->lock, flags);
  1741. return err;
  1742. }
  1743. static int niu_10g_phy_present(struct niu *np)
  1744. {
  1745. u64 sig, mask, val;
  1746. sig = nr64(ESR_INT_SIGNALS);
  1747. switch (np->port) {
  1748. case 0:
  1749. mask = ESR_INT_SIGNALS_P0_BITS;
  1750. val = (ESR_INT_SRDY0_P0 |
  1751. ESR_INT_DET0_P0 |
  1752. ESR_INT_XSRDY_P0 |
  1753. ESR_INT_XDP_P0_CH3 |
  1754. ESR_INT_XDP_P0_CH2 |
  1755. ESR_INT_XDP_P0_CH1 |
  1756. ESR_INT_XDP_P0_CH0);
  1757. break;
  1758. case 1:
  1759. mask = ESR_INT_SIGNALS_P1_BITS;
  1760. val = (ESR_INT_SRDY0_P1 |
  1761. ESR_INT_DET0_P1 |
  1762. ESR_INT_XSRDY_P1 |
  1763. ESR_INT_XDP_P1_CH3 |
  1764. ESR_INT_XDP_P1_CH2 |
  1765. ESR_INT_XDP_P1_CH1 |
  1766. ESR_INT_XDP_P1_CH0);
  1767. break;
  1768. default:
  1769. return 0;
  1770. }
  1771. if ((sig & mask) != val)
  1772. return 0;
  1773. return 1;
  1774. }
  1775. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1776. {
  1777. unsigned long flags;
  1778. int err = 0;
  1779. int phy_present;
  1780. int phy_present_prev;
  1781. spin_lock_irqsave(&np->lock, flags);
  1782. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1783. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1784. 1 : 0;
  1785. phy_present = niu_10g_phy_present(np);
  1786. if (phy_present != phy_present_prev) {
  1787. /* state change */
  1788. if (phy_present) {
  1789. /* A NEM was just plugged in */
  1790. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1791. if (np->phy_ops->xcvr_init)
  1792. err = np->phy_ops->xcvr_init(np);
  1793. if (err) {
  1794. err = mdio_read(np, np->phy_addr,
  1795. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1796. if (err == 0xffff) {
  1797. /* No mdio, back-to-back XAUI */
  1798. goto out;
  1799. }
  1800. /* debounce */
  1801. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1802. }
  1803. } else {
  1804. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1805. *link_up_p = 0;
  1806. netif_warn(np, link, np->dev,
  1807. "Hotplug PHY Removed\n");
  1808. }
  1809. }
  1810. out:
  1811. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1812. err = link_status_10g_bcm8706(np, link_up_p);
  1813. if (err == 0xffff) {
  1814. /* No mdio, back-to-back XAUI: it is C10NEM */
  1815. *link_up_p = 1;
  1816. np->link_config.active_speed = SPEED_10000;
  1817. np->link_config.active_duplex = DUPLEX_FULL;
  1818. }
  1819. }
  1820. }
  1821. spin_unlock_irqrestore(&np->lock, flags);
  1822. return 0;
  1823. }
  1824. static int niu_link_status(struct niu *np, int *link_up_p)
  1825. {
  1826. const struct niu_phy_ops *ops = np->phy_ops;
  1827. int err;
  1828. err = 0;
  1829. if (ops->link_status)
  1830. err = ops->link_status(np, link_up_p);
  1831. return err;
  1832. }
  1833. static void niu_timer(unsigned long __opaque)
  1834. {
  1835. struct niu *np = (struct niu *) __opaque;
  1836. unsigned long off;
  1837. int err, link_up;
  1838. err = niu_link_status(np, &link_up);
  1839. if (!err)
  1840. niu_link_status_common(np, link_up);
  1841. if (netif_carrier_ok(np->dev))
  1842. off = 5 * HZ;
  1843. else
  1844. off = 1 * HZ;
  1845. np->timer.expires = jiffies + off;
  1846. add_timer(&np->timer);
  1847. }
  1848. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1849. .serdes_init = serdes_init_10g_serdes,
  1850. .link_status = link_status_10g_serdes,
  1851. };
  1852. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1853. .serdes_init = serdes_init_niu_10g_serdes,
  1854. .link_status = link_status_10g_serdes,
  1855. };
  1856. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1857. .serdes_init = serdes_init_niu_1g_serdes,
  1858. .link_status = link_status_1g_serdes,
  1859. };
  1860. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1861. .xcvr_init = xcvr_init_1g_rgmii,
  1862. .link_status = link_status_1g_rgmii,
  1863. };
  1864. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1865. .serdes_init = serdes_init_niu_10g_fiber,
  1866. .xcvr_init = xcvr_init_10g,
  1867. .link_status = link_status_10g,
  1868. };
  1869. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1870. .serdes_init = serdes_init_10g,
  1871. .xcvr_init = xcvr_init_10g,
  1872. .link_status = link_status_10g,
  1873. };
  1874. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1875. .serdes_init = serdes_init_10g,
  1876. .xcvr_init = xcvr_init_10g_bcm8706,
  1877. .link_status = link_status_10g_hotplug,
  1878. };
  1879. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1880. .serdes_init = serdes_init_niu_10g_fiber,
  1881. .xcvr_init = xcvr_init_10g_bcm8706,
  1882. .link_status = link_status_10g_hotplug,
  1883. };
  1884. static const struct niu_phy_ops phy_ops_10g_copper = {
  1885. .serdes_init = serdes_init_10g,
  1886. .link_status = link_status_10g, /* XXX */
  1887. };
  1888. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1889. .serdes_init = serdes_init_1g,
  1890. .xcvr_init = xcvr_init_1g,
  1891. .link_status = link_status_1g,
  1892. };
  1893. static const struct niu_phy_ops phy_ops_1g_copper = {
  1894. .xcvr_init = xcvr_init_1g,
  1895. .link_status = link_status_1g,
  1896. };
  1897. struct niu_phy_template {
  1898. const struct niu_phy_ops *ops;
  1899. u32 phy_addr_base;
  1900. };
  1901. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1902. .ops = &phy_ops_10g_fiber_niu,
  1903. .phy_addr_base = 16,
  1904. };
  1905. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1906. .ops = &phy_ops_10g_serdes_niu,
  1907. .phy_addr_base = 0,
  1908. };
  1909. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1910. .ops = &phy_ops_1g_serdes_niu,
  1911. .phy_addr_base = 0,
  1912. };
  1913. static const struct niu_phy_template phy_template_10g_fiber = {
  1914. .ops = &phy_ops_10g_fiber,
  1915. .phy_addr_base = 8,
  1916. };
  1917. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1918. .ops = &phy_ops_10g_fiber_hotplug,
  1919. .phy_addr_base = 8,
  1920. };
  1921. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1922. .ops = &phy_ops_niu_10g_hotplug,
  1923. .phy_addr_base = 8,
  1924. };
  1925. static const struct niu_phy_template phy_template_10g_copper = {
  1926. .ops = &phy_ops_10g_copper,
  1927. .phy_addr_base = 10,
  1928. };
  1929. static const struct niu_phy_template phy_template_1g_fiber = {
  1930. .ops = &phy_ops_1g_fiber,
  1931. .phy_addr_base = 0,
  1932. };
  1933. static const struct niu_phy_template phy_template_1g_copper = {
  1934. .ops = &phy_ops_1g_copper,
  1935. .phy_addr_base = 0,
  1936. };
  1937. static const struct niu_phy_template phy_template_1g_rgmii = {
  1938. .ops = &phy_ops_1g_rgmii,
  1939. .phy_addr_base = 0,
  1940. };
  1941. static const struct niu_phy_template phy_template_10g_serdes = {
  1942. .ops = &phy_ops_10g_serdes,
  1943. .phy_addr_base = 0,
  1944. };
  1945. static int niu_atca_port_num[4] = {
  1946. 0, 0, 11, 10
  1947. };
  1948. static int serdes_init_10g_serdes(struct niu *np)
  1949. {
  1950. struct niu_link_config *lp = &np->link_config;
  1951. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1952. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1953. switch (np->port) {
  1954. case 0:
  1955. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1956. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1957. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1958. break;
  1959. case 1:
  1960. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1961. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1962. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1963. break;
  1964. default:
  1965. return -EINVAL;
  1966. }
  1967. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1968. ENET_SERDES_CTRL_SDET_1 |
  1969. ENET_SERDES_CTRL_SDET_2 |
  1970. ENET_SERDES_CTRL_SDET_3 |
  1971. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1972. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1973. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1974. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1975. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1976. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1977. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1978. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1979. test_cfg_val = 0;
  1980. if (lp->loopback_mode == LOOPBACK_PHY) {
  1981. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1982. ENET_SERDES_TEST_MD_0_SHIFT) |
  1983. (ENET_TEST_MD_PAD_LOOPBACK <<
  1984. ENET_SERDES_TEST_MD_1_SHIFT) |
  1985. (ENET_TEST_MD_PAD_LOOPBACK <<
  1986. ENET_SERDES_TEST_MD_2_SHIFT) |
  1987. (ENET_TEST_MD_PAD_LOOPBACK <<
  1988. ENET_SERDES_TEST_MD_3_SHIFT));
  1989. }
  1990. esr_reset(np);
  1991. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  1992. nw64(ctrl_reg, ctrl_val);
  1993. nw64(test_cfg_reg, test_cfg_val);
  1994. /* Initialize all 4 lanes of the SERDES. */
  1995. for (i = 0; i < 4; i++) {
  1996. u32 rxtx_ctrl, glue0;
  1997. int err;
  1998. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  1999. if (err)
  2000. return err;
  2001. err = esr_read_glue0(np, i, &glue0);
  2002. if (err)
  2003. return err;
  2004. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2005. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2006. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2007. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2008. ESR_GLUE_CTRL0_THCNT |
  2009. ESR_GLUE_CTRL0_BLTIME);
  2010. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2011. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2012. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2013. (BLTIME_300_CYCLES <<
  2014. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2015. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2016. if (err)
  2017. return err;
  2018. err = esr_write_glue0(np, i, glue0);
  2019. if (err)
  2020. return err;
  2021. }
  2022. sig = nr64(ESR_INT_SIGNALS);
  2023. switch (np->port) {
  2024. case 0:
  2025. mask = ESR_INT_SIGNALS_P0_BITS;
  2026. val = (ESR_INT_SRDY0_P0 |
  2027. ESR_INT_DET0_P0 |
  2028. ESR_INT_XSRDY_P0 |
  2029. ESR_INT_XDP_P0_CH3 |
  2030. ESR_INT_XDP_P0_CH2 |
  2031. ESR_INT_XDP_P0_CH1 |
  2032. ESR_INT_XDP_P0_CH0);
  2033. break;
  2034. case 1:
  2035. mask = ESR_INT_SIGNALS_P1_BITS;
  2036. val = (ESR_INT_SRDY0_P1 |
  2037. ESR_INT_DET0_P1 |
  2038. ESR_INT_XSRDY_P1 |
  2039. ESR_INT_XDP_P1_CH3 |
  2040. ESR_INT_XDP_P1_CH2 |
  2041. ESR_INT_XDP_P1_CH1 |
  2042. ESR_INT_XDP_P1_CH0);
  2043. break;
  2044. default:
  2045. return -EINVAL;
  2046. }
  2047. if ((sig & mask) != val) {
  2048. int err;
  2049. err = serdes_init_1g_serdes(np);
  2050. if (!err) {
  2051. np->flags &= ~NIU_FLAGS_10G;
  2052. np->mac_xcvr = MAC_XCVR_PCS;
  2053. } else {
  2054. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  2055. np->port);
  2056. return -ENODEV;
  2057. }
  2058. }
  2059. return 0;
  2060. }
  2061. static int niu_determine_phy_disposition(struct niu *np)
  2062. {
  2063. struct niu_parent *parent = np->parent;
  2064. u8 plat_type = parent->plat_type;
  2065. const struct niu_phy_template *tp;
  2066. u32 phy_addr_off = 0;
  2067. if (plat_type == PLAT_TYPE_NIU) {
  2068. switch (np->flags &
  2069. (NIU_FLAGS_10G |
  2070. NIU_FLAGS_FIBER |
  2071. NIU_FLAGS_XCVR_SERDES)) {
  2072. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2073. /* 10G Serdes */
  2074. tp = &phy_template_niu_10g_serdes;
  2075. break;
  2076. case NIU_FLAGS_XCVR_SERDES:
  2077. /* 1G Serdes */
  2078. tp = &phy_template_niu_1g_serdes;
  2079. break;
  2080. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2081. /* 10G Fiber */
  2082. default:
  2083. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2084. tp = &phy_template_niu_10g_hotplug;
  2085. if (np->port == 0)
  2086. phy_addr_off = 8;
  2087. if (np->port == 1)
  2088. phy_addr_off = 12;
  2089. } else {
  2090. tp = &phy_template_niu_10g_fiber;
  2091. phy_addr_off += np->port;
  2092. }
  2093. break;
  2094. }
  2095. } else {
  2096. switch (np->flags &
  2097. (NIU_FLAGS_10G |
  2098. NIU_FLAGS_FIBER |
  2099. NIU_FLAGS_XCVR_SERDES)) {
  2100. case 0:
  2101. /* 1G copper */
  2102. tp = &phy_template_1g_copper;
  2103. if (plat_type == PLAT_TYPE_VF_P0)
  2104. phy_addr_off = 10;
  2105. else if (plat_type == PLAT_TYPE_VF_P1)
  2106. phy_addr_off = 26;
  2107. phy_addr_off += (np->port ^ 0x3);
  2108. break;
  2109. case NIU_FLAGS_10G:
  2110. /* 10G copper */
  2111. tp = &phy_template_10g_copper;
  2112. break;
  2113. case NIU_FLAGS_FIBER:
  2114. /* 1G fiber */
  2115. tp = &phy_template_1g_fiber;
  2116. break;
  2117. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2118. /* 10G fiber */
  2119. tp = &phy_template_10g_fiber;
  2120. if (plat_type == PLAT_TYPE_VF_P0 ||
  2121. plat_type == PLAT_TYPE_VF_P1)
  2122. phy_addr_off = 8;
  2123. phy_addr_off += np->port;
  2124. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2125. tp = &phy_template_10g_fiber_hotplug;
  2126. if (np->port == 0)
  2127. phy_addr_off = 8;
  2128. if (np->port == 1)
  2129. phy_addr_off = 12;
  2130. }
  2131. break;
  2132. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2133. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2134. case NIU_FLAGS_XCVR_SERDES:
  2135. switch(np->port) {
  2136. case 0:
  2137. case 1:
  2138. tp = &phy_template_10g_serdes;
  2139. break;
  2140. case 2:
  2141. case 3:
  2142. tp = &phy_template_1g_rgmii;
  2143. break;
  2144. default:
  2145. return -EINVAL;
  2146. break;
  2147. }
  2148. phy_addr_off = niu_atca_port_num[np->port];
  2149. break;
  2150. default:
  2151. return -EINVAL;
  2152. }
  2153. }
  2154. np->phy_ops = tp->ops;
  2155. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2156. return 0;
  2157. }
  2158. static int niu_init_link(struct niu *np)
  2159. {
  2160. struct niu_parent *parent = np->parent;
  2161. int err, ignore;
  2162. if (parent->plat_type == PLAT_TYPE_NIU) {
  2163. err = niu_xcvr_init(np);
  2164. if (err)
  2165. return err;
  2166. msleep(200);
  2167. }
  2168. err = niu_serdes_init(np);
  2169. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2170. return err;
  2171. msleep(200);
  2172. err = niu_xcvr_init(np);
  2173. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2174. niu_link_status(np, &ignore);
  2175. return 0;
  2176. }
  2177. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2178. {
  2179. u16 reg0 = addr[4] << 8 | addr[5];
  2180. u16 reg1 = addr[2] << 8 | addr[3];
  2181. u16 reg2 = addr[0] << 8 | addr[1];
  2182. if (np->flags & NIU_FLAGS_XMAC) {
  2183. nw64_mac(XMAC_ADDR0, reg0);
  2184. nw64_mac(XMAC_ADDR1, reg1);
  2185. nw64_mac(XMAC_ADDR2, reg2);
  2186. } else {
  2187. nw64_mac(BMAC_ADDR0, reg0);
  2188. nw64_mac(BMAC_ADDR1, reg1);
  2189. nw64_mac(BMAC_ADDR2, reg2);
  2190. }
  2191. }
  2192. static int niu_num_alt_addr(struct niu *np)
  2193. {
  2194. if (np->flags & NIU_FLAGS_XMAC)
  2195. return XMAC_NUM_ALT_ADDR;
  2196. else
  2197. return BMAC_NUM_ALT_ADDR;
  2198. }
  2199. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2200. {
  2201. u16 reg0 = addr[4] << 8 | addr[5];
  2202. u16 reg1 = addr[2] << 8 | addr[3];
  2203. u16 reg2 = addr[0] << 8 | addr[1];
  2204. if (index >= niu_num_alt_addr(np))
  2205. return -EINVAL;
  2206. if (np->flags & NIU_FLAGS_XMAC) {
  2207. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2208. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2209. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2210. } else {
  2211. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2212. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2213. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2214. }
  2215. return 0;
  2216. }
  2217. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2218. {
  2219. unsigned long reg;
  2220. u64 val, mask;
  2221. if (index >= niu_num_alt_addr(np))
  2222. return -EINVAL;
  2223. if (np->flags & NIU_FLAGS_XMAC) {
  2224. reg = XMAC_ADDR_CMPEN;
  2225. mask = 1 << index;
  2226. } else {
  2227. reg = BMAC_ADDR_CMPEN;
  2228. mask = 1 << (index + 1);
  2229. }
  2230. val = nr64_mac(reg);
  2231. if (on)
  2232. val |= mask;
  2233. else
  2234. val &= ~mask;
  2235. nw64_mac(reg, val);
  2236. return 0;
  2237. }
  2238. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2239. int num, int mac_pref)
  2240. {
  2241. u64 val = nr64_mac(reg);
  2242. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2243. val |= num;
  2244. if (mac_pref)
  2245. val |= HOST_INFO_MPR;
  2246. nw64_mac(reg, val);
  2247. }
  2248. static int __set_rdc_table_num(struct niu *np,
  2249. int xmac_index, int bmac_index,
  2250. int rdc_table_num, int mac_pref)
  2251. {
  2252. unsigned long reg;
  2253. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2254. return -EINVAL;
  2255. if (np->flags & NIU_FLAGS_XMAC)
  2256. reg = XMAC_HOST_INFO(xmac_index);
  2257. else
  2258. reg = BMAC_HOST_INFO(bmac_index);
  2259. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2260. return 0;
  2261. }
  2262. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2263. int mac_pref)
  2264. {
  2265. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2266. }
  2267. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2268. int mac_pref)
  2269. {
  2270. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2271. }
  2272. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2273. int table_num, int mac_pref)
  2274. {
  2275. if (idx >= niu_num_alt_addr(np))
  2276. return -EINVAL;
  2277. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2278. }
  2279. static u64 vlan_entry_set_parity(u64 reg_val)
  2280. {
  2281. u64 port01_mask;
  2282. u64 port23_mask;
  2283. port01_mask = 0x00ff;
  2284. port23_mask = 0xff00;
  2285. if (hweight64(reg_val & port01_mask) & 1)
  2286. reg_val |= ENET_VLAN_TBL_PARITY0;
  2287. else
  2288. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2289. if (hweight64(reg_val & port23_mask) & 1)
  2290. reg_val |= ENET_VLAN_TBL_PARITY1;
  2291. else
  2292. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2293. return reg_val;
  2294. }
  2295. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2296. int port, int vpr, int rdc_table)
  2297. {
  2298. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2299. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2300. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2301. ENET_VLAN_TBL_SHIFT(port));
  2302. if (vpr)
  2303. reg_val |= (ENET_VLAN_TBL_VPR <<
  2304. ENET_VLAN_TBL_SHIFT(port));
  2305. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2306. reg_val = vlan_entry_set_parity(reg_val);
  2307. nw64(ENET_VLAN_TBL(index), reg_val);
  2308. }
  2309. static void vlan_tbl_clear(struct niu *np)
  2310. {
  2311. int i;
  2312. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2313. nw64(ENET_VLAN_TBL(i), 0);
  2314. }
  2315. static int tcam_wait_bit(struct niu *np, u64 bit)
  2316. {
  2317. int limit = 1000;
  2318. while (--limit > 0) {
  2319. if (nr64(TCAM_CTL) & bit)
  2320. break;
  2321. udelay(1);
  2322. }
  2323. if (limit <= 0)
  2324. return -ENODEV;
  2325. return 0;
  2326. }
  2327. static int tcam_flush(struct niu *np, int index)
  2328. {
  2329. nw64(TCAM_KEY_0, 0x00);
  2330. nw64(TCAM_KEY_MASK_0, 0xff);
  2331. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2332. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2333. }
  2334. #if 0
  2335. static int tcam_read(struct niu *np, int index,
  2336. u64 *key, u64 *mask)
  2337. {
  2338. int err;
  2339. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2340. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2341. if (!err) {
  2342. key[0] = nr64(TCAM_KEY_0);
  2343. key[1] = nr64(TCAM_KEY_1);
  2344. key[2] = nr64(TCAM_KEY_2);
  2345. key[3] = nr64(TCAM_KEY_3);
  2346. mask[0] = nr64(TCAM_KEY_MASK_0);
  2347. mask[1] = nr64(TCAM_KEY_MASK_1);
  2348. mask[2] = nr64(TCAM_KEY_MASK_2);
  2349. mask[3] = nr64(TCAM_KEY_MASK_3);
  2350. }
  2351. return err;
  2352. }
  2353. #endif
  2354. static int tcam_write(struct niu *np, int index,
  2355. u64 *key, u64 *mask)
  2356. {
  2357. nw64(TCAM_KEY_0, key[0]);
  2358. nw64(TCAM_KEY_1, key[1]);
  2359. nw64(TCAM_KEY_2, key[2]);
  2360. nw64(TCAM_KEY_3, key[3]);
  2361. nw64(TCAM_KEY_MASK_0, mask[0]);
  2362. nw64(TCAM_KEY_MASK_1, mask[1]);
  2363. nw64(TCAM_KEY_MASK_2, mask[2]);
  2364. nw64(TCAM_KEY_MASK_3, mask[3]);
  2365. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2366. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2367. }
  2368. #if 0
  2369. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2370. {
  2371. int err;
  2372. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2373. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2374. if (!err)
  2375. *data = nr64(TCAM_KEY_1);
  2376. return err;
  2377. }
  2378. #endif
  2379. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2380. {
  2381. nw64(TCAM_KEY_1, assoc_data);
  2382. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2383. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2384. }
  2385. static void tcam_enable(struct niu *np, int on)
  2386. {
  2387. u64 val = nr64(FFLP_CFG_1);
  2388. if (on)
  2389. val &= ~FFLP_CFG_1_TCAM_DIS;
  2390. else
  2391. val |= FFLP_CFG_1_TCAM_DIS;
  2392. nw64(FFLP_CFG_1, val);
  2393. }
  2394. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2395. {
  2396. u64 val = nr64(FFLP_CFG_1);
  2397. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2398. FFLP_CFG_1_CAMLAT |
  2399. FFLP_CFG_1_CAMRATIO);
  2400. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2401. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2402. nw64(FFLP_CFG_1, val);
  2403. val = nr64(FFLP_CFG_1);
  2404. val |= FFLP_CFG_1_FFLPINITDONE;
  2405. nw64(FFLP_CFG_1, val);
  2406. }
  2407. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2408. int on)
  2409. {
  2410. unsigned long reg;
  2411. u64 val;
  2412. if (class < CLASS_CODE_ETHERTYPE1 ||
  2413. class > CLASS_CODE_ETHERTYPE2)
  2414. return -EINVAL;
  2415. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2416. val = nr64(reg);
  2417. if (on)
  2418. val |= L2_CLS_VLD;
  2419. else
  2420. val &= ~L2_CLS_VLD;
  2421. nw64(reg, val);
  2422. return 0;
  2423. }
  2424. #if 0
  2425. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2426. u64 ether_type)
  2427. {
  2428. unsigned long reg;
  2429. u64 val;
  2430. if (class < CLASS_CODE_ETHERTYPE1 ||
  2431. class > CLASS_CODE_ETHERTYPE2 ||
  2432. (ether_type & ~(u64)0xffff) != 0)
  2433. return -EINVAL;
  2434. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2435. val = nr64(reg);
  2436. val &= ~L2_CLS_ETYPE;
  2437. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2438. nw64(reg, val);
  2439. return 0;
  2440. }
  2441. #endif
  2442. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2443. int on)
  2444. {
  2445. unsigned long reg;
  2446. u64 val;
  2447. if (class < CLASS_CODE_USER_PROG1 ||
  2448. class > CLASS_CODE_USER_PROG4)
  2449. return -EINVAL;
  2450. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2451. val = nr64(reg);
  2452. if (on)
  2453. val |= L3_CLS_VALID;
  2454. else
  2455. val &= ~L3_CLS_VALID;
  2456. nw64(reg, val);
  2457. return 0;
  2458. }
  2459. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2460. int ipv6, u64 protocol_id,
  2461. u64 tos_mask, u64 tos_val)
  2462. {
  2463. unsigned long reg;
  2464. u64 val;
  2465. if (class < CLASS_CODE_USER_PROG1 ||
  2466. class > CLASS_CODE_USER_PROG4 ||
  2467. (protocol_id & ~(u64)0xff) != 0 ||
  2468. (tos_mask & ~(u64)0xff) != 0 ||
  2469. (tos_val & ~(u64)0xff) != 0)
  2470. return -EINVAL;
  2471. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2472. val = nr64(reg);
  2473. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2474. L3_CLS_TOSMASK | L3_CLS_TOS);
  2475. if (ipv6)
  2476. val |= L3_CLS_IPVER;
  2477. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2478. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2479. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2480. nw64(reg, val);
  2481. return 0;
  2482. }
  2483. static int tcam_early_init(struct niu *np)
  2484. {
  2485. unsigned long i;
  2486. int err;
  2487. tcam_enable(np, 0);
  2488. tcam_set_lat_and_ratio(np,
  2489. DEFAULT_TCAM_LATENCY,
  2490. DEFAULT_TCAM_ACCESS_RATIO);
  2491. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2492. err = tcam_user_eth_class_enable(np, i, 0);
  2493. if (err)
  2494. return err;
  2495. }
  2496. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2497. err = tcam_user_ip_class_enable(np, i, 0);
  2498. if (err)
  2499. return err;
  2500. }
  2501. return 0;
  2502. }
  2503. static int tcam_flush_all(struct niu *np)
  2504. {
  2505. unsigned long i;
  2506. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2507. int err = tcam_flush(np, i);
  2508. if (err)
  2509. return err;
  2510. }
  2511. return 0;
  2512. }
  2513. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2514. {
  2515. return (u64)index | (num_entries == 1 ? HASH_TBL_ADDR_AUTOINC : 0);
  2516. }
  2517. #if 0
  2518. static int hash_read(struct niu *np, unsigned long partition,
  2519. unsigned long index, unsigned long num_entries,
  2520. u64 *data)
  2521. {
  2522. u64 val = hash_addr_regval(index, num_entries);
  2523. unsigned long i;
  2524. if (partition >= FCRAM_NUM_PARTITIONS ||
  2525. index + num_entries > FCRAM_SIZE)
  2526. return -EINVAL;
  2527. nw64(HASH_TBL_ADDR(partition), val);
  2528. for (i = 0; i < num_entries; i++)
  2529. data[i] = nr64(HASH_TBL_DATA(partition));
  2530. return 0;
  2531. }
  2532. #endif
  2533. static int hash_write(struct niu *np, unsigned long partition,
  2534. unsigned long index, unsigned long num_entries,
  2535. u64 *data)
  2536. {
  2537. u64 val = hash_addr_regval(index, num_entries);
  2538. unsigned long i;
  2539. if (partition >= FCRAM_NUM_PARTITIONS ||
  2540. index + (num_entries * 8) > FCRAM_SIZE)
  2541. return -EINVAL;
  2542. nw64(HASH_TBL_ADDR(partition), val);
  2543. for (i = 0; i < num_entries; i++)
  2544. nw64(HASH_TBL_DATA(partition), data[i]);
  2545. return 0;
  2546. }
  2547. static void fflp_reset(struct niu *np)
  2548. {
  2549. u64 val;
  2550. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2551. udelay(10);
  2552. nw64(FFLP_CFG_1, 0);
  2553. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2554. nw64(FFLP_CFG_1, val);
  2555. }
  2556. static void fflp_set_timings(struct niu *np)
  2557. {
  2558. u64 val = nr64(FFLP_CFG_1);
  2559. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2560. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2561. nw64(FFLP_CFG_1, val);
  2562. val = nr64(FFLP_CFG_1);
  2563. val |= FFLP_CFG_1_FFLPINITDONE;
  2564. nw64(FFLP_CFG_1, val);
  2565. val = nr64(FCRAM_REF_TMR);
  2566. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2567. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2568. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2569. nw64(FCRAM_REF_TMR, val);
  2570. }
  2571. static int fflp_set_partition(struct niu *np, u64 partition,
  2572. u64 mask, u64 base, int enable)
  2573. {
  2574. unsigned long reg;
  2575. u64 val;
  2576. if (partition >= FCRAM_NUM_PARTITIONS ||
  2577. (mask & ~(u64)0x1f) != 0 ||
  2578. (base & ~(u64)0x1f) != 0)
  2579. return -EINVAL;
  2580. reg = FLW_PRT_SEL(partition);
  2581. val = nr64(reg);
  2582. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2583. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2584. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2585. if (enable)
  2586. val |= FLW_PRT_SEL_EXT;
  2587. nw64(reg, val);
  2588. return 0;
  2589. }
  2590. static int fflp_disable_all_partitions(struct niu *np)
  2591. {
  2592. unsigned long i;
  2593. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2594. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2595. if (err)
  2596. return err;
  2597. }
  2598. return 0;
  2599. }
  2600. static void fflp_llcsnap_enable(struct niu *np, int on)
  2601. {
  2602. u64 val = nr64(FFLP_CFG_1);
  2603. if (on)
  2604. val |= FFLP_CFG_1_LLCSNAP;
  2605. else
  2606. val &= ~FFLP_CFG_1_LLCSNAP;
  2607. nw64(FFLP_CFG_1, val);
  2608. }
  2609. static void fflp_errors_enable(struct niu *np, int on)
  2610. {
  2611. u64 val = nr64(FFLP_CFG_1);
  2612. if (on)
  2613. val &= ~FFLP_CFG_1_ERRORDIS;
  2614. else
  2615. val |= FFLP_CFG_1_ERRORDIS;
  2616. nw64(FFLP_CFG_1, val);
  2617. }
  2618. static int fflp_hash_clear(struct niu *np)
  2619. {
  2620. struct fcram_hash_ipv4 ent;
  2621. unsigned long i;
  2622. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2623. memset(&ent, 0, sizeof(ent));
  2624. ent.header = HASH_HEADER_EXT;
  2625. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2626. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2627. if (err)
  2628. return err;
  2629. }
  2630. return 0;
  2631. }
  2632. static int fflp_early_init(struct niu *np)
  2633. {
  2634. struct niu_parent *parent;
  2635. unsigned long flags;
  2636. int err;
  2637. niu_lock_parent(np, flags);
  2638. parent = np->parent;
  2639. err = 0;
  2640. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2641. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2642. fflp_reset(np);
  2643. fflp_set_timings(np);
  2644. err = fflp_disable_all_partitions(np);
  2645. if (err) {
  2646. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2647. "fflp_disable_all_partitions failed, err=%d\n",
  2648. err);
  2649. goto out;
  2650. }
  2651. }
  2652. err = tcam_early_init(np);
  2653. if (err) {
  2654. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2655. "tcam_early_init failed, err=%d\n", err);
  2656. goto out;
  2657. }
  2658. fflp_llcsnap_enable(np, 1);
  2659. fflp_errors_enable(np, 0);
  2660. nw64(H1POLY, 0);
  2661. nw64(H2POLY, 0);
  2662. err = tcam_flush_all(np);
  2663. if (err) {
  2664. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2665. "tcam_flush_all failed, err=%d\n", err);
  2666. goto out;
  2667. }
  2668. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2669. err = fflp_hash_clear(np);
  2670. if (err) {
  2671. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2672. "fflp_hash_clear failed, err=%d\n",
  2673. err);
  2674. goto out;
  2675. }
  2676. }
  2677. vlan_tbl_clear(np);
  2678. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2679. }
  2680. out:
  2681. niu_unlock_parent(np, flags);
  2682. return err;
  2683. }
  2684. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2685. {
  2686. if (class_code < CLASS_CODE_USER_PROG1 ||
  2687. class_code > CLASS_CODE_SCTP_IPV6)
  2688. return -EINVAL;
  2689. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2690. return 0;
  2691. }
  2692. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2693. {
  2694. if (class_code < CLASS_CODE_USER_PROG1 ||
  2695. class_code > CLASS_CODE_SCTP_IPV6)
  2696. return -EINVAL;
  2697. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2698. return 0;
  2699. }
  2700. /* Entries for the ports are interleaved in the TCAM */
  2701. static u16 tcam_get_index(struct niu *np, u16 idx)
  2702. {
  2703. /* One entry reserved for IP fragment rule */
  2704. if (idx >= (np->clas.tcam_sz - 1))
  2705. idx = 0;
  2706. return np->clas.tcam_top + ((idx+1) * np->parent->num_ports);
  2707. }
  2708. static u16 tcam_get_size(struct niu *np)
  2709. {
  2710. /* One entry reserved for IP fragment rule */
  2711. return np->clas.tcam_sz - 1;
  2712. }
  2713. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2714. {
  2715. /* One entry reserved for IP fragment rule */
  2716. return np->clas.tcam_valid_entries - 1;
  2717. }
  2718. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2719. u32 offset, u32 size, u32 truesize)
  2720. {
  2721. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, page, offset, size);
  2722. skb->len += size;
  2723. skb->data_len += size;
  2724. skb->truesize += truesize;
  2725. }
  2726. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2727. {
  2728. a >>= PAGE_SHIFT;
  2729. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2730. return a & (MAX_RBR_RING_SIZE - 1);
  2731. }
  2732. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2733. struct page ***link)
  2734. {
  2735. unsigned int h = niu_hash_rxaddr(rp, addr);
  2736. struct page *p, **pp;
  2737. addr &= PAGE_MASK;
  2738. pp = &rp->rxhash[h];
  2739. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2740. if (p->index == addr) {
  2741. *link = pp;
  2742. goto found;
  2743. }
  2744. }
  2745. BUG();
  2746. found:
  2747. return p;
  2748. }
  2749. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2750. {
  2751. unsigned int h = niu_hash_rxaddr(rp, base);
  2752. page->index = base;
  2753. page->mapping = (struct address_space *) rp->rxhash[h];
  2754. rp->rxhash[h] = page;
  2755. }
  2756. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2757. gfp_t mask, int start_index)
  2758. {
  2759. struct page *page;
  2760. u64 addr;
  2761. int i;
  2762. page = alloc_page(mask);
  2763. if (!page)
  2764. return -ENOMEM;
  2765. addr = np->ops->map_page(np->device, page, 0,
  2766. PAGE_SIZE, DMA_FROM_DEVICE);
  2767. if (!addr) {
  2768. __free_page(page);
  2769. return -ENOMEM;
  2770. }
  2771. niu_hash_page(rp, page, addr);
  2772. if (rp->rbr_blocks_per_page > 1)
  2773. atomic_add(rp->rbr_blocks_per_page - 1,
  2774. &compound_head(page)->_count);
  2775. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2776. __le32 *rbr = &rp->rbr[start_index + i];
  2777. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2778. addr += rp->rbr_block_size;
  2779. }
  2780. return 0;
  2781. }
  2782. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2783. {
  2784. int index = rp->rbr_index;
  2785. rp->rbr_pending++;
  2786. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2787. int err = niu_rbr_add_page(np, rp, mask, index);
  2788. if (unlikely(err)) {
  2789. rp->rbr_pending--;
  2790. return;
  2791. }
  2792. rp->rbr_index += rp->rbr_blocks_per_page;
  2793. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2794. if (rp->rbr_index == rp->rbr_table_size)
  2795. rp->rbr_index = 0;
  2796. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2797. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2798. rp->rbr_pending = 0;
  2799. }
  2800. }
  2801. }
  2802. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2803. {
  2804. unsigned int index = rp->rcr_index;
  2805. int num_rcr = 0;
  2806. rp->rx_dropped++;
  2807. while (1) {
  2808. struct page *page, **link;
  2809. u64 addr, val;
  2810. u32 rcr_size;
  2811. num_rcr++;
  2812. val = le64_to_cpup(&rp->rcr[index]);
  2813. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2814. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2815. page = niu_find_rxpage(rp, addr, &link);
  2816. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2817. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2818. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2819. *link = (struct page *) page->mapping;
  2820. np->ops->unmap_page(np->device, page->index,
  2821. PAGE_SIZE, DMA_FROM_DEVICE);
  2822. page->index = 0;
  2823. page->mapping = NULL;
  2824. __free_page(page);
  2825. rp->rbr_refill_pending++;
  2826. }
  2827. index = NEXT_RCR(rp, index);
  2828. if (!(val & RCR_ENTRY_MULTI))
  2829. break;
  2830. }
  2831. rp->rcr_index = index;
  2832. return num_rcr;
  2833. }
  2834. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2835. struct rx_ring_info *rp)
  2836. {
  2837. unsigned int index = rp->rcr_index;
  2838. struct rx_pkt_hdr1 *rh;
  2839. struct sk_buff *skb;
  2840. int len, num_rcr;
  2841. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2842. if (unlikely(!skb))
  2843. return niu_rx_pkt_ignore(np, rp);
  2844. num_rcr = 0;
  2845. while (1) {
  2846. struct page *page, **link;
  2847. u32 rcr_size, append_size;
  2848. u64 addr, val, off;
  2849. num_rcr++;
  2850. val = le64_to_cpup(&rp->rcr[index]);
  2851. len = (val & RCR_ENTRY_L2_LEN) >>
  2852. RCR_ENTRY_L2_LEN_SHIFT;
  2853. len -= ETH_FCS_LEN;
  2854. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2855. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2856. page = niu_find_rxpage(rp, addr, &link);
  2857. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2858. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2859. off = addr & ~PAGE_MASK;
  2860. append_size = rcr_size;
  2861. if (num_rcr == 1) {
  2862. int ptype;
  2863. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2864. if ((ptype == RCR_PKT_TYPE_TCP ||
  2865. ptype == RCR_PKT_TYPE_UDP) &&
  2866. !(val & (RCR_ENTRY_NOPORT |
  2867. RCR_ENTRY_ERROR)))
  2868. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2869. else
  2870. skb_checksum_none_assert(skb);
  2871. } else if (!(val & RCR_ENTRY_MULTI))
  2872. append_size = len - skb->len;
  2873. niu_rx_skb_append(skb, page, off, append_size, rcr_size);
  2874. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2875. *link = (struct page *) page->mapping;
  2876. np->ops->unmap_page(np->device, page->index,
  2877. PAGE_SIZE, DMA_FROM_DEVICE);
  2878. page->index = 0;
  2879. page->mapping = NULL;
  2880. rp->rbr_refill_pending++;
  2881. } else
  2882. get_page(page);
  2883. index = NEXT_RCR(rp, index);
  2884. if (!(val & RCR_ENTRY_MULTI))
  2885. break;
  2886. }
  2887. rp->rcr_index = index;
  2888. len += sizeof(*rh);
  2889. len = min_t(int, len, sizeof(*rh) + VLAN_ETH_HLEN);
  2890. __pskb_pull_tail(skb, len);
  2891. rh = (struct rx_pkt_hdr1 *) skb->data;
  2892. if (np->dev->features & NETIF_F_RXHASH)
  2893. skb->rxhash = ((u32)rh->hashval2_0 << 24 |
  2894. (u32)rh->hashval2_1 << 16 |
  2895. (u32)rh->hashval1_1 << 8 |
  2896. (u32)rh->hashval1_2 << 0);
  2897. skb_pull(skb, sizeof(*rh));
  2898. rp->rx_packets++;
  2899. rp->rx_bytes += skb->len;
  2900. skb->protocol = eth_type_trans(skb, np->dev);
  2901. skb_record_rx_queue(skb, rp->rx_channel);
  2902. napi_gro_receive(napi, skb);
  2903. return num_rcr;
  2904. }
  2905. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2906. {
  2907. int blocks_per_page = rp->rbr_blocks_per_page;
  2908. int err, index = rp->rbr_index;
  2909. err = 0;
  2910. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2911. err = niu_rbr_add_page(np, rp, mask, index);
  2912. if (unlikely(err))
  2913. break;
  2914. index += blocks_per_page;
  2915. }
  2916. rp->rbr_index = index;
  2917. return err;
  2918. }
  2919. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2920. {
  2921. int i;
  2922. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2923. struct page *page;
  2924. page = rp->rxhash[i];
  2925. while (page) {
  2926. struct page *next = (struct page *) page->mapping;
  2927. u64 base = page->index;
  2928. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2929. DMA_FROM_DEVICE);
  2930. page->index = 0;
  2931. page->mapping = NULL;
  2932. __free_page(page);
  2933. page = next;
  2934. }
  2935. }
  2936. for (i = 0; i < rp->rbr_table_size; i++)
  2937. rp->rbr[i] = cpu_to_le32(0);
  2938. rp->rbr_index = 0;
  2939. }
  2940. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2941. {
  2942. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2943. struct sk_buff *skb = tb->skb;
  2944. struct tx_pkt_hdr *tp;
  2945. u64 tx_flags;
  2946. int i, len;
  2947. tp = (struct tx_pkt_hdr *) skb->data;
  2948. tx_flags = le64_to_cpup(&tp->flags);
  2949. rp->tx_packets++;
  2950. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2951. ((tx_flags & TXHDR_PAD) / 2));
  2952. len = skb_headlen(skb);
  2953. np->ops->unmap_single(np->device, tb->mapping,
  2954. len, DMA_TO_DEVICE);
  2955. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2956. rp->mark_pending--;
  2957. tb->skb = NULL;
  2958. do {
  2959. idx = NEXT_TX(rp, idx);
  2960. len -= MAX_TX_DESC_LEN;
  2961. } while (len > 0);
  2962. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2963. tb = &rp->tx_buffs[idx];
  2964. BUG_ON(tb->skb != NULL);
  2965. np->ops->unmap_page(np->device, tb->mapping,
  2966. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2967. DMA_TO_DEVICE);
  2968. idx = NEXT_TX(rp, idx);
  2969. }
  2970. dev_kfree_skb(skb);
  2971. return idx;
  2972. }
  2973. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2974. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2975. {
  2976. struct netdev_queue *txq;
  2977. u16 pkt_cnt, tmp;
  2978. int cons, index;
  2979. u64 cs;
  2980. index = (rp - np->tx_rings);
  2981. txq = netdev_get_tx_queue(np->dev, index);
  2982. cs = rp->tx_cs;
  2983. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2984. goto out;
  2985. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2986. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2987. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2988. rp->last_pkt_cnt = tmp;
  2989. cons = rp->cons;
  2990. netif_printk(np, tx_done, KERN_DEBUG, np->dev,
  2991. "%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons);
  2992. while (pkt_cnt--)
  2993. cons = release_tx_packet(np, rp, cons);
  2994. rp->cons = cons;
  2995. smp_mb();
  2996. out:
  2997. if (unlikely(netif_tx_queue_stopped(txq) &&
  2998. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  2999. __netif_tx_lock(txq, smp_processor_id());
  3000. if (netif_tx_queue_stopped(txq) &&
  3001. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3002. netif_tx_wake_queue(txq);
  3003. __netif_tx_unlock(txq);
  3004. }
  3005. }
  3006. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3007. struct rx_ring_info *rp,
  3008. const int limit)
  3009. {
  3010. /* This elaborate scheme is needed for reading the RX discard
  3011. * counters, as they are only 16-bit and can overflow quickly,
  3012. * and because the overflow indication bit is not usable as
  3013. * the counter value does not wrap, but remains at max value
  3014. * 0xFFFF.
  3015. *
  3016. * In theory and in practice counters can be lost in between
  3017. * reading nr64() and clearing the counter nw64(). For this
  3018. * reason, the number of counter clearings nw64() is
  3019. * limited/reduced though the limit parameter.
  3020. */
  3021. int rx_channel = rp->rx_channel;
  3022. u32 misc, wred;
  3023. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3024. * following discard events: IPP (Input Port Process),
  3025. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3026. * Block Ring) prefetch buffer is empty.
  3027. */
  3028. misc = nr64(RXMISC(rx_channel));
  3029. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3030. nw64(RXMISC(rx_channel), 0);
  3031. rp->rx_errors += misc & RXMISC_COUNT;
  3032. if (unlikely(misc & RXMISC_OFLOW))
  3033. dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n",
  3034. rx_channel);
  3035. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3036. "rx-%d: MISC drop=%u over=%u\n",
  3037. rx_channel, misc, misc-limit);
  3038. }
  3039. /* WRED (Weighted Random Early Discard) by hardware */
  3040. wred = nr64(RED_DIS_CNT(rx_channel));
  3041. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3042. nw64(RED_DIS_CNT(rx_channel), 0);
  3043. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3044. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3045. dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel);
  3046. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3047. "rx-%d: WRED drop=%u over=%u\n",
  3048. rx_channel, wred, wred-limit);
  3049. }
  3050. }
  3051. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3052. struct rx_ring_info *rp, int budget)
  3053. {
  3054. int qlen, rcr_done = 0, work_done = 0;
  3055. struct rxdma_mailbox *mbox = rp->mbox;
  3056. u64 stat;
  3057. #if 1
  3058. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3059. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3060. #else
  3061. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3062. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3063. #endif
  3064. mbox->rx_dma_ctl_stat = 0;
  3065. mbox->rcrstat_a = 0;
  3066. netif_printk(np, rx_status, KERN_DEBUG, np->dev,
  3067. "%s(chan[%d]), stat[%llx] qlen=%d\n",
  3068. __func__, rp->rx_channel, (unsigned long long)stat, qlen);
  3069. rcr_done = work_done = 0;
  3070. qlen = min(qlen, budget);
  3071. while (work_done < qlen) {
  3072. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3073. work_done++;
  3074. }
  3075. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3076. unsigned int i;
  3077. for (i = 0; i < rp->rbr_refill_pending; i++)
  3078. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3079. rp->rbr_refill_pending = 0;
  3080. }
  3081. stat = (RX_DMA_CTL_STAT_MEX |
  3082. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3083. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3084. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3085. /* Only sync discards stats when qlen indicate potential for drops */
  3086. if (qlen > 10)
  3087. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3088. return work_done;
  3089. }
  3090. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3091. {
  3092. u64 v0 = lp->v0;
  3093. u32 tx_vec = (v0 >> 32);
  3094. u32 rx_vec = (v0 & 0xffffffff);
  3095. int i, work_done = 0;
  3096. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3097. "%s() v0[%016llx]\n", __func__, (unsigned long long)v0);
  3098. for (i = 0; i < np->num_tx_rings; i++) {
  3099. struct tx_ring_info *rp = &np->tx_rings[i];
  3100. if (tx_vec & (1 << rp->tx_channel))
  3101. niu_tx_work(np, rp);
  3102. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3103. }
  3104. for (i = 0; i < np->num_rx_rings; i++) {
  3105. struct rx_ring_info *rp = &np->rx_rings[i];
  3106. if (rx_vec & (1 << rp->rx_channel)) {
  3107. int this_work_done;
  3108. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3109. budget);
  3110. budget -= this_work_done;
  3111. work_done += this_work_done;
  3112. }
  3113. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3114. }
  3115. return work_done;
  3116. }
  3117. static int niu_poll(struct napi_struct *napi, int budget)
  3118. {
  3119. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3120. struct niu *np = lp->np;
  3121. int work_done;
  3122. work_done = niu_poll_core(np, lp, budget);
  3123. if (work_done < budget) {
  3124. napi_complete(napi);
  3125. niu_ldg_rearm(np, lp, 1);
  3126. }
  3127. return work_done;
  3128. }
  3129. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3130. u64 stat)
  3131. {
  3132. netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel);
  3133. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3134. pr_cont("RBR_TMOUT ");
  3135. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3136. pr_cont("RSP_CNT ");
  3137. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3138. pr_cont("BYTE_EN_BUS ");
  3139. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3140. pr_cont("RSP_DAT ");
  3141. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3142. pr_cont("RCR_ACK ");
  3143. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3144. pr_cont("RCR_SHA_PAR ");
  3145. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3146. pr_cont("RBR_PRE_PAR ");
  3147. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3148. pr_cont("CONFIG ");
  3149. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3150. pr_cont("RCRINCON ");
  3151. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3152. pr_cont("RCRFULL ");
  3153. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3154. pr_cont("RBRFULL ");
  3155. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3156. pr_cont("RBRLOGPAGE ");
  3157. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3158. pr_cont("CFIGLOGPAGE ");
  3159. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3160. pr_cont("DC_FIDO ");
  3161. pr_cont(")\n");
  3162. }
  3163. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3164. {
  3165. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3166. int err = 0;
  3167. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3168. RX_DMA_CTL_STAT_PORT_FATAL))
  3169. err = -EINVAL;
  3170. if (err) {
  3171. netdev_err(np->dev, "RX channel %u error, stat[%llx]\n",
  3172. rp->rx_channel,
  3173. (unsigned long long) stat);
  3174. niu_log_rxchan_errors(np, rp, stat);
  3175. }
  3176. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3177. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3178. return err;
  3179. }
  3180. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3181. u64 cs)
  3182. {
  3183. netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel);
  3184. if (cs & TX_CS_MBOX_ERR)
  3185. pr_cont("MBOX ");
  3186. if (cs & TX_CS_PKT_SIZE_ERR)
  3187. pr_cont("PKT_SIZE ");
  3188. if (cs & TX_CS_TX_RING_OFLOW)
  3189. pr_cont("TX_RING_OFLOW ");
  3190. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3191. pr_cont("PREF_BUF_PAR ");
  3192. if (cs & TX_CS_NACK_PREF)
  3193. pr_cont("NACK_PREF ");
  3194. if (cs & TX_CS_NACK_PKT_RD)
  3195. pr_cont("NACK_PKT_RD ");
  3196. if (cs & TX_CS_CONF_PART_ERR)
  3197. pr_cont("CONF_PART ");
  3198. if (cs & TX_CS_PKT_PRT_ERR)
  3199. pr_cont("PKT_PTR ");
  3200. pr_cont(")\n");
  3201. }
  3202. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3203. {
  3204. u64 cs, logh, logl;
  3205. cs = nr64(TX_CS(rp->tx_channel));
  3206. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3207. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3208. netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n",
  3209. rp->tx_channel,
  3210. (unsigned long long)cs,
  3211. (unsigned long long)logh,
  3212. (unsigned long long)logl);
  3213. niu_log_txchan_errors(np, rp, cs);
  3214. return -ENODEV;
  3215. }
  3216. static int niu_mif_interrupt(struct niu *np)
  3217. {
  3218. u64 mif_status = nr64(MIF_STATUS);
  3219. int phy_mdint = 0;
  3220. if (np->flags & NIU_FLAGS_XMAC) {
  3221. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3222. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3223. phy_mdint = 1;
  3224. }
  3225. netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n",
  3226. (unsigned long long)mif_status, phy_mdint);
  3227. return -ENODEV;
  3228. }
  3229. static void niu_xmac_interrupt(struct niu *np)
  3230. {
  3231. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3232. u64 val;
  3233. val = nr64_mac(XTXMAC_STATUS);
  3234. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3235. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3236. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3237. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3238. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3239. mp->tx_fifo_errors++;
  3240. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3241. mp->tx_overflow_errors++;
  3242. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3243. mp->tx_max_pkt_size_errors++;
  3244. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3245. mp->tx_underflow_errors++;
  3246. val = nr64_mac(XRXMAC_STATUS);
  3247. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3248. mp->rx_local_faults++;
  3249. if (val & XRXMAC_STATUS_RFLT_DET)
  3250. mp->rx_remote_faults++;
  3251. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3252. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3253. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3254. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3255. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3256. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3257. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3258. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3259. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3260. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3261. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3262. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3263. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3264. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3265. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3266. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3267. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3268. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3269. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3270. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3271. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3272. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3273. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3274. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3275. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3276. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3277. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3278. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3279. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3280. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3281. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3282. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3283. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3284. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3285. if (val & XRXMAC_STATUS_RXUFLOW)
  3286. mp->rx_underflows++;
  3287. if (val & XRXMAC_STATUS_RXOFLOW)
  3288. mp->rx_overflows++;
  3289. val = nr64_mac(XMAC_FC_STAT);
  3290. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3291. mp->pause_off_state++;
  3292. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3293. mp->pause_on_state++;
  3294. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3295. mp->pause_received++;
  3296. }
  3297. static void niu_bmac_interrupt(struct niu *np)
  3298. {
  3299. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3300. u64 val;
  3301. val = nr64_mac(BTXMAC_STATUS);
  3302. if (val & BTXMAC_STATUS_UNDERRUN)
  3303. mp->tx_underflow_errors++;
  3304. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3305. mp->tx_max_pkt_size_errors++;
  3306. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3307. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3308. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3309. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3310. val = nr64_mac(BRXMAC_STATUS);
  3311. if (val & BRXMAC_STATUS_OVERFLOW)
  3312. mp->rx_overflows++;
  3313. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3314. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3315. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3316. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3317. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3318. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3319. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3320. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3321. val = nr64_mac(BMAC_CTRL_STATUS);
  3322. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3323. mp->pause_off_state++;
  3324. if (val & BMAC_CTRL_STATUS_PAUSE)
  3325. mp->pause_on_state++;
  3326. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3327. mp->pause_received++;
  3328. }
  3329. static int niu_mac_interrupt(struct niu *np)
  3330. {
  3331. if (np->flags & NIU_FLAGS_XMAC)
  3332. niu_xmac_interrupt(np);
  3333. else
  3334. niu_bmac_interrupt(np);
  3335. return 0;
  3336. }
  3337. static void niu_log_device_error(struct niu *np, u64 stat)
  3338. {
  3339. netdev_err(np->dev, "Core device errors ( ");
  3340. if (stat & SYS_ERR_MASK_META2)
  3341. pr_cont("META2 ");
  3342. if (stat & SYS_ERR_MASK_META1)
  3343. pr_cont("META1 ");
  3344. if (stat & SYS_ERR_MASK_PEU)
  3345. pr_cont("PEU ");
  3346. if (stat & SYS_ERR_MASK_TXC)
  3347. pr_cont("TXC ");
  3348. if (stat & SYS_ERR_MASK_RDMC)
  3349. pr_cont("RDMC ");
  3350. if (stat & SYS_ERR_MASK_TDMC)
  3351. pr_cont("TDMC ");
  3352. if (stat & SYS_ERR_MASK_ZCP)
  3353. pr_cont("ZCP ");
  3354. if (stat & SYS_ERR_MASK_FFLP)
  3355. pr_cont("FFLP ");
  3356. if (stat & SYS_ERR_MASK_IPP)
  3357. pr_cont("IPP ");
  3358. if (stat & SYS_ERR_MASK_MAC)
  3359. pr_cont("MAC ");
  3360. if (stat & SYS_ERR_MASK_SMX)
  3361. pr_cont("SMX ");
  3362. pr_cont(")\n");
  3363. }
  3364. static int niu_device_error(struct niu *np)
  3365. {
  3366. u64 stat = nr64(SYS_ERR_STAT);
  3367. netdev_err(np->dev, "Core device error, stat[%llx]\n",
  3368. (unsigned long long)stat);
  3369. niu_log_device_error(np, stat);
  3370. return -ENODEV;
  3371. }
  3372. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3373. u64 v0, u64 v1, u64 v2)
  3374. {
  3375. int i, err = 0;
  3376. lp->v0 = v0;
  3377. lp->v1 = v1;
  3378. lp->v2 = v2;
  3379. if (v1 & 0x00000000ffffffffULL) {
  3380. u32 rx_vec = (v1 & 0xffffffff);
  3381. for (i = 0; i < np->num_rx_rings; i++) {
  3382. struct rx_ring_info *rp = &np->rx_rings[i];
  3383. if (rx_vec & (1 << rp->rx_channel)) {
  3384. int r = niu_rx_error(np, rp);
  3385. if (r) {
  3386. err = r;
  3387. } else {
  3388. if (!v0)
  3389. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3390. RX_DMA_CTL_STAT_MEX);
  3391. }
  3392. }
  3393. }
  3394. }
  3395. if (v1 & 0x7fffffff00000000ULL) {
  3396. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3397. for (i = 0; i < np->num_tx_rings; i++) {
  3398. struct tx_ring_info *rp = &np->tx_rings[i];
  3399. if (tx_vec & (1 << rp->tx_channel)) {
  3400. int r = niu_tx_error(np, rp);
  3401. if (r)
  3402. err = r;
  3403. }
  3404. }
  3405. }
  3406. if ((v0 | v1) & 0x8000000000000000ULL) {
  3407. int r = niu_mif_interrupt(np);
  3408. if (r)
  3409. err = r;
  3410. }
  3411. if (v2) {
  3412. if (v2 & 0x01ef) {
  3413. int r = niu_mac_interrupt(np);
  3414. if (r)
  3415. err = r;
  3416. }
  3417. if (v2 & 0x0210) {
  3418. int r = niu_device_error(np);
  3419. if (r)
  3420. err = r;
  3421. }
  3422. }
  3423. if (err)
  3424. niu_enable_interrupts(np, 0);
  3425. return err;
  3426. }
  3427. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3428. int ldn)
  3429. {
  3430. struct rxdma_mailbox *mbox = rp->mbox;
  3431. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3432. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3433. RX_DMA_CTL_STAT_RCRTO);
  3434. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3435. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3436. "%s() stat[%llx]\n", __func__, (unsigned long long)stat);
  3437. }
  3438. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3439. int ldn)
  3440. {
  3441. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3442. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3443. "%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs);
  3444. }
  3445. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3446. {
  3447. struct niu_parent *parent = np->parent;
  3448. u32 rx_vec, tx_vec;
  3449. int i;
  3450. tx_vec = (v0 >> 32);
  3451. rx_vec = (v0 & 0xffffffff);
  3452. for (i = 0; i < np->num_rx_rings; i++) {
  3453. struct rx_ring_info *rp = &np->rx_rings[i];
  3454. int ldn = LDN_RXDMA(rp->rx_channel);
  3455. if (parent->ldg_map[ldn] != ldg)
  3456. continue;
  3457. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3458. if (rx_vec & (1 << rp->rx_channel))
  3459. niu_rxchan_intr(np, rp, ldn);
  3460. }
  3461. for (i = 0; i < np->num_tx_rings; i++) {
  3462. struct tx_ring_info *rp = &np->tx_rings[i];
  3463. int ldn = LDN_TXDMA(rp->tx_channel);
  3464. if (parent->ldg_map[ldn] != ldg)
  3465. continue;
  3466. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3467. if (tx_vec & (1 << rp->tx_channel))
  3468. niu_txchan_intr(np, rp, ldn);
  3469. }
  3470. }
  3471. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3472. u64 v0, u64 v1, u64 v2)
  3473. {
  3474. if (likely(napi_schedule_prep(&lp->napi))) {
  3475. lp->v0 = v0;
  3476. lp->v1 = v1;
  3477. lp->v2 = v2;
  3478. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3479. __napi_schedule(&lp->napi);
  3480. }
  3481. }
  3482. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3483. {
  3484. struct niu_ldg *lp = dev_id;
  3485. struct niu *np = lp->np;
  3486. int ldg = lp->ldg_num;
  3487. unsigned long flags;
  3488. u64 v0, v1, v2;
  3489. if (netif_msg_intr(np))
  3490. printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)",
  3491. __func__, lp, ldg);
  3492. spin_lock_irqsave(&np->lock, flags);
  3493. v0 = nr64(LDSV0(ldg));
  3494. v1 = nr64(LDSV1(ldg));
  3495. v2 = nr64(LDSV2(ldg));
  3496. if (netif_msg_intr(np))
  3497. pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n",
  3498. (unsigned long long) v0,
  3499. (unsigned long long) v1,
  3500. (unsigned long long) v2);
  3501. if (unlikely(!v0 && !v1 && !v2)) {
  3502. spin_unlock_irqrestore(&np->lock, flags);
  3503. return IRQ_NONE;
  3504. }
  3505. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3506. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3507. if (err)
  3508. goto out;
  3509. }
  3510. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3511. niu_schedule_napi(np, lp, v0, v1, v2);
  3512. else
  3513. niu_ldg_rearm(np, lp, 1);
  3514. out:
  3515. spin_unlock_irqrestore(&np->lock, flags);
  3516. return IRQ_HANDLED;
  3517. }
  3518. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3519. {
  3520. if (rp->mbox) {
  3521. np->ops->free_coherent(np->device,
  3522. sizeof(struct rxdma_mailbox),
  3523. rp->mbox, rp->mbox_dma);
  3524. rp->mbox = NULL;
  3525. }
  3526. if (rp->rcr) {
  3527. np->ops->free_coherent(np->device,
  3528. MAX_RCR_RING_SIZE * sizeof(__le64),
  3529. rp->rcr, rp->rcr_dma);
  3530. rp->rcr = NULL;
  3531. rp->rcr_table_size = 0;
  3532. rp->rcr_index = 0;
  3533. }
  3534. if (rp->rbr) {
  3535. niu_rbr_free(np, rp);
  3536. np->ops->free_coherent(np->device,
  3537. MAX_RBR_RING_SIZE * sizeof(__le32),
  3538. rp->rbr, rp->rbr_dma);
  3539. rp->rbr = NULL;
  3540. rp->rbr_table_size = 0;
  3541. rp->rbr_index = 0;
  3542. }
  3543. kfree(rp->rxhash);
  3544. rp->rxhash = NULL;
  3545. }
  3546. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3547. {
  3548. if (rp->mbox) {
  3549. np->ops->free_coherent(np->device,
  3550. sizeof(struct txdma_mailbox),
  3551. rp->mbox, rp->mbox_dma);
  3552. rp->mbox = NULL;
  3553. }
  3554. if (rp->descr) {
  3555. int i;
  3556. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3557. if (rp->tx_buffs[i].skb)
  3558. (void) release_tx_packet(np, rp, i);
  3559. }
  3560. np->ops->free_coherent(np->device,
  3561. MAX_TX_RING_SIZE * sizeof(__le64),
  3562. rp->descr, rp->descr_dma);
  3563. rp->descr = NULL;
  3564. rp->pending = 0;
  3565. rp->prod = 0;
  3566. rp->cons = 0;
  3567. rp->wrap_bit = 0;
  3568. }
  3569. }
  3570. static void niu_free_channels(struct niu *np)
  3571. {
  3572. int i;
  3573. if (np->rx_rings) {
  3574. for (i = 0; i < np->num_rx_rings; i++) {
  3575. struct rx_ring_info *rp = &np->rx_rings[i];
  3576. niu_free_rx_ring_info(np, rp);
  3577. }
  3578. kfree(np->rx_rings);
  3579. np->rx_rings = NULL;
  3580. np->num_rx_rings = 0;
  3581. }
  3582. if (np->tx_rings) {
  3583. for (i = 0; i < np->num_tx_rings; i++) {
  3584. struct tx_ring_info *rp = &np->tx_rings[i];
  3585. niu_free_tx_ring_info(np, rp);
  3586. }
  3587. kfree(np->tx_rings);
  3588. np->tx_rings = NULL;
  3589. np->num_tx_rings = 0;
  3590. }
  3591. }
  3592. static int niu_alloc_rx_ring_info(struct niu *np,
  3593. struct rx_ring_info *rp)
  3594. {
  3595. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3596. rp->rxhash = kcalloc(MAX_RBR_RING_SIZE, sizeof(struct page *),
  3597. GFP_KERNEL);
  3598. if (!rp->rxhash)
  3599. return -ENOMEM;
  3600. rp->mbox = np->ops->alloc_coherent(np->device,
  3601. sizeof(struct rxdma_mailbox),
  3602. &rp->mbox_dma, GFP_KERNEL);
  3603. if (!rp->mbox)
  3604. return -ENOMEM;
  3605. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3606. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n",
  3607. rp->mbox);
  3608. return -EINVAL;
  3609. }
  3610. rp->rcr = np->ops->alloc_coherent(np->device,
  3611. MAX_RCR_RING_SIZE * sizeof(__le64),
  3612. &rp->rcr_dma, GFP_KERNEL);
  3613. if (!rp->rcr)
  3614. return -ENOMEM;
  3615. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3616. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n",
  3617. rp->rcr);
  3618. return -EINVAL;
  3619. }
  3620. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3621. rp->rcr_index = 0;
  3622. rp->rbr = np->ops->alloc_coherent(np->device,
  3623. MAX_RBR_RING_SIZE * sizeof(__le32),
  3624. &rp->rbr_dma, GFP_KERNEL);
  3625. if (!rp->rbr)
  3626. return -ENOMEM;
  3627. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3628. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n",
  3629. rp->rbr);
  3630. return -EINVAL;
  3631. }
  3632. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3633. rp->rbr_index = 0;
  3634. rp->rbr_pending = 0;
  3635. return 0;
  3636. }
  3637. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3638. {
  3639. int mtu = np->dev->mtu;
  3640. /* These values are recommended by the HW designers for fair
  3641. * utilization of DRR amongst the rings.
  3642. */
  3643. rp->max_burst = mtu + 32;
  3644. if (rp->max_burst > 4096)
  3645. rp->max_burst = 4096;
  3646. }
  3647. static int niu_alloc_tx_ring_info(struct niu *np,
  3648. struct tx_ring_info *rp)
  3649. {
  3650. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3651. rp->mbox = np->ops->alloc_coherent(np->device,
  3652. sizeof(struct txdma_mailbox),
  3653. &rp->mbox_dma, GFP_KERNEL);
  3654. if (!rp->mbox)
  3655. return -ENOMEM;
  3656. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3657. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n",
  3658. rp->mbox);
  3659. return -EINVAL;
  3660. }
  3661. rp->descr = np->ops->alloc_coherent(np->device,
  3662. MAX_TX_RING_SIZE * sizeof(__le64),
  3663. &rp->descr_dma, GFP_KERNEL);
  3664. if (!rp->descr)
  3665. return -ENOMEM;
  3666. if ((unsigned long)rp->descr & (64UL - 1)) {
  3667. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n",
  3668. rp->descr);
  3669. return -EINVAL;
  3670. }
  3671. rp->pending = MAX_TX_RING_SIZE;
  3672. rp->prod = 0;
  3673. rp->cons = 0;
  3674. rp->wrap_bit = 0;
  3675. /* XXX make these configurable... XXX */
  3676. rp->mark_freq = rp->pending / 4;
  3677. niu_set_max_burst(np, rp);
  3678. return 0;
  3679. }
  3680. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3681. {
  3682. u16 bss;
  3683. bss = min(PAGE_SHIFT, 15);
  3684. rp->rbr_block_size = 1 << bss;
  3685. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3686. rp->rbr_sizes[0] = 256;
  3687. rp->rbr_sizes[1] = 1024;
  3688. if (np->dev->mtu > ETH_DATA_LEN) {
  3689. switch (PAGE_SIZE) {
  3690. case 4 * 1024:
  3691. rp->rbr_sizes[2] = 4096;
  3692. break;
  3693. default:
  3694. rp->rbr_sizes[2] = 8192;
  3695. break;
  3696. }
  3697. } else {
  3698. rp->rbr_sizes[2] = 2048;
  3699. }
  3700. rp->rbr_sizes[3] = rp->rbr_block_size;
  3701. }
  3702. static int niu_alloc_channels(struct niu *np)
  3703. {
  3704. struct niu_parent *parent = np->parent;
  3705. int first_rx_channel, first_tx_channel;
  3706. int num_rx_rings, num_tx_rings;
  3707. struct rx_ring_info *rx_rings;
  3708. struct tx_ring_info *tx_rings;
  3709. int i, port, err;
  3710. port = np->port;
  3711. first_rx_channel = first_tx_channel = 0;
  3712. for (i = 0; i < port; i++) {
  3713. first_rx_channel += parent->rxchan_per_port[i];
  3714. first_tx_channel += parent->txchan_per_port[i];
  3715. }
  3716. num_rx_rings = parent->rxchan_per_port[port];
  3717. num_tx_rings = parent->txchan_per_port[port];
  3718. rx_rings = kcalloc(num_rx_rings, sizeof(struct rx_ring_info),
  3719. GFP_KERNEL);
  3720. err = -ENOMEM;
  3721. if (!rx_rings)
  3722. goto out_err;
  3723. np->num_rx_rings = num_rx_rings;
  3724. smp_wmb();
  3725. np->rx_rings = rx_rings;
  3726. netif_set_real_num_rx_queues(np->dev, num_rx_rings);
  3727. for (i = 0; i < np->num_rx_rings; i++) {
  3728. struct rx_ring_info *rp = &np->rx_rings[i];
  3729. rp->np = np;
  3730. rp->rx_channel = first_rx_channel + i;
  3731. err = niu_alloc_rx_ring_info(np, rp);
  3732. if (err)
  3733. goto out_err;
  3734. niu_size_rbr(np, rp);
  3735. /* XXX better defaults, configurable, etc... XXX */
  3736. rp->nonsyn_window = 64;
  3737. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3738. rp->syn_window = 64;
  3739. rp->syn_threshold = rp->rcr_table_size - 64;
  3740. rp->rcr_pkt_threshold = 16;
  3741. rp->rcr_timeout = 8;
  3742. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3743. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3744. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3745. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3746. if (err)
  3747. return err;
  3748. }
  3749. tx_rings = kcalloc(num_tx_rings, sizeof(struct tx_ring_info),
  3750. GFP_KERNEL);
  3751. err = -ENOMEM;
  3752. if (!tx_rings)
  3753. goto out_err;
  3754. np->num_tx_rings = num_tx_rings;
  3755. smp_wmb();
  3756. np->tx_rings = tx_rings;
  3757. netif_set_real_num_tx_queues(np->dev, num_tx_rings);
  3758. for (i = 0; i < np->num_tx_rings; i++) {
  3759. struct tx_ring_info *rp = &np->tx_rings[i];
  3760. rp->np = np;
  3761. rp->tx_channel = first_tx_channel + i;
  3762. err = niu_alloc_tx_ring_info(np, rp);
  3763. if (err)
  3764. goto out_err;
  3765. }
  3766. return 0;
  3767. out_err:
  3768. niu_free_channels(np);
  3769. return err;
  3770. }
  3771. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3772. {
  3773. int limit = 1000;
  3774. while (--limit > 0) {
  3775. u64 val = nr64(TX_CS(channel));
  3776. if (val & TX_CS_SNG_STATE)
  3777. return 0;
  3778. }
  3779. return -ENODEV;
  3780. }
  3781. static int niu_tx_channel_stop(struct niu *np, int channel)
  3782. {
  3783. u64 val = nr64(TX_CS(channel));
  3784. val |= TX_CS_STOP_N_GO;
  3785. nw64(TX_CS(channel), val);
  3786. return niu_tx_cs_sng_poll(np, channel);
  3787. }
  3788. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3789. {
  3790. int limit = 1000;
  3791. while (--limit > 0) {
  3792. u64 val = nr64(TX_CS(channel));
  3793. if (!(val & TX_CS_RST))
  3794. return 0;
  3795. }
  3796. return -ENODEV;
  3797. }
  3798. static int niu_tx_channel_reset(struct niu *np, int channel)
  3799. {
  3800. u64 val = nr64(TX_CS(channel));
  3801. int err;
  3802. val |= TX_CS_RST;
  3803. nw64(TX_CS(channel), val);
  3804. err = niu_tx_cs_reset_poll(np, channel);
  3805. if (!err)
  3806. nw64(TX_RING_KICK(channel), 0);
  3807. return err;
  3808. }
  3809. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3810. {
  3811. u64 val;
  3812. nw64(TX_LOG_MASK1(channel), 0);
  3813. nw64(TX_LOG_VAL1(channel), 0);
  3814. nw64(TX_LOG_MASK2(channel), 0);
  3815. nw64(TX_LOG_VAL2(channel), 0);
  3816. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3817. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3818. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3819. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3820. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3821. nw64(TX_LOG_PAGE_VLD(channel), val);
  3822. /* XXX TXDMA 32bit mode? XXX */
  3823. return 0;
  3824. }
  3825. static void niu_txc_enable_port(struct niu *np, int on)
  3826. {
  3827. unsigned long flags;
  3828. u64 val, mask;
  3829. niu_lock_parent(np, flags);
  3830. val = nr64(TXC_CONTROL);
  3831. mask = (u64)1 << np->port;
  3832. if (on) {
  3833. val |= TXC_CONTROL_ENABLE | mask;
  3834. } else {
  3835. val &= ~mask;
  3836. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3837. val &= ~TXC_CONTROL_ENABLE;
  3838. }
  3839. nw64(TXC_CONTROL, val);
  3840. niu_unlock_parent(np, flags);
  3841. }
  3842. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3843. {
  3844. unsigned long flags;
  3845. u64 val;
  3846. niu_lock_parent(np, flags);
  3847. val = nr64(TXC_INT_MASK);
  3848. val &= ~TXC_INT_MASK_VAL(np->port);
  3849. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3850. niu_unlock_parent(np, flags);
  3851. }
  3852. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3853. {
  3854. u64 val = 0;
  3855. if (on) {
  3856. int i;
  3857. for (i = 0; i < np->num_tx_rings; i++)
  3858. val |= (1 << np->tx_rings[i].tx_channel);
  3859. }
  3860. nw64(TXC_PORT_DMA(np->port), val);
  3861. }
  3862. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3863. {
  3864. int err, channel = rp->tx_channel;
  3865. u64 val, ring_len;
  3866. err = niu_tx_channel_stop(np, channel);
  3867. if (err)
  3868. return err;
  3869. err = niu_tx_channel_reset(np, channel);
  3870. if (err)
  3871. return err;
  3872. err = niu_tx_channel_lpage_init(np, channel);
  3873. if (err)
  3874. return err;
  3875. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3876. nw64(TX_ENT_MSK(channel), 0);
  3877. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3878. TX_RNG_CFIG_STADDR)) {
  3879. netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n",
  3880. channel, (unsigned long long)rp->descr_dma);
  3881. return -EINVAL;
  3882. }
  3883. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3884. * blocks. rp->pending is the number of TX descriptors in
  3885. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3886. * to get the proper value the chip wants.
  3887. */
  3888. ring_len = (rp->pending / 8);
  3889. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3890. rp->descr_dma);
  3891. nw64(TX_RNG_CFIG(channel), val);
  3892. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3893. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3894. netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n",
  3895. channel, (unsigned long long)rp->mbox_dma);
  3896. return -EINVAL;
  3897. }
  3898. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3899. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3900. nw64(TX_CS(channel), 0);
  3901. rp->last_pkt_cnt = 0;
  3902. return 0;
  3903. }
  3904. static void niu_init_rdc_groups(struct niu *np)
  3905. {
  3906. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3907. int i, first_table_num = tp->first_table_num;
  3908. for (i = 0; i < tp->num_tables; i++) {
  3909. struct rdc_table *tbl = &tp->tables[i];
  3910. int this_table = first_table_num + i;
  3911. int slot;
  3912. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3913. nw64(RDC_TBL(this_table, slot),
  3914. tbl->rxdma_channel[slot]);
  3915. }
  3916. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3917. }
  3918. static void niu_init_drr_weight(struct niu *np)
  3919. {
  3920. int type = phy_decode(np->parent->port_phy, np->port);
  3921. u64 val;
  3922. switch (type) {
  3923. case PORT_TYPE_10G:
  3924. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3925. break;
  3926. case PORT_TYPE_1G:
  3927. default:
  3928. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3929. break;
  3930. }
  3931. nw64(PT_DRR_WT(np->port), val);
  3932. }
  3933. static int niu_init_hostinfo(struct niu *np)
  3934. {
  3935. struct niu_parent *parent = np->parent;
  3936. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3937. int i, err, num_alt = niu_num_alt_addr(np);
  3938. int first_rdc_table = tp->first_table_num;
  3939. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3940. if (err)
  3941. return err;
  3942. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3943. if (err)
  3944. return err;
  3945. for (i = 0; i < num_alt; i++) {
  3946. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3947. if (err)
  3948. return err;
  3949. }
  3950. return 0;
  3951. }
  3952. static int niu_rx_channel_reset(struct niu *np, int channel)
  3953. {
  3954. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3955. RXDMA_CFIG1_RST, 1000, 10,
  3956. "RXDMA_CFIG1");
  3957. }
  3958. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3959. {
  3960. u64 val;
  3961. nw64(RX_LOG_MASK1(channel), 0);
  3962. nw64(RX_LOG_VAL1(channel), 0);
  3963. nw64(RX_LOG_MASK2(channel), 0);
  3964. nw64(RX_LOG_VAL2(channel), 0);
  3965. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3966. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3967. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3968. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3969. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3970. nw64(RX_LOG_PAGE_VLD(channel), val);
  3971. return 0;
  3972. }
  3973. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3974. {
  3975. u64 val;
  3976. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3977. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3978. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3979. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3980. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3981. }
  3982. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3983. {
  3984. u64 val = 0;
  3985. *ret = 0;
  3986. switch (rp->rbr_block_size) {
  3987. case 4 * 1024:
  3988. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3989. break;
  3990. case 8 * 1024:
  3991. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3992. break;
  3993. case 16 * 1024:
  3994. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3995. break;
  3996. case 32 * 1024:
  3997. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3998. break;
  3999. default:
  4000. return -EINVAL;
  4001. }
  4002. val |= RBR_CFIG_B_VLD2;
  4003. switch (rp->rbr_sizes[2]) {
  4004. case 2 * 1024:
  4005. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4006. break;
  4007. case 4 * 1024:
  4008. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4009. break;
  4010. case 8 * 1024:
  4011. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4012. break;
  4013. case 16 * 1024:
  4014. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4015. break;
  4016. default:
  4017. return -EINVAL;
  4018. }
  4019. val |= RBR_CFIG_B_VLD1;
  4020. switch (rp->rbr_sizes[1]) {
  4021. case 1 * 1024:
  4022. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4023. break;
  4024. case 2 * 1024:
  4025. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4026. break;
  4027. case 4 * 1024:
  4028. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4029. break;
  4030. case 8 * 1024:
  4031. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4032. break;
  4033. default:
  4034. return -EINVAL;
  4035. }
  4036. val |= RBR_CFIG_B_VLD0;
  4037. switch (rp->rbr_sizes[0]) {
  4038. case 256:
  4039. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4040. break;
  4041. case 512:
  4042. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4043. break;
  4044. case 1 * 1024:
  4045. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4046. break;
  4047. case 2 * 1024:
  4048. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4049. break;
  4050. default:
  4051. return -EINVAL;
  4052. }
  4053. *ret = val;
  4054. return 0;
  4055. }
  4056. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4057. {
  4058. u64 val = nr64(RXDMA_CFIG1(channel));
  4059. int limit;
  4060. if (on)
  4061. val |= RXDMA_CFIG1_EN;
  4062. else
  4063. val &= ~RXDMA_CFIG1_EN;
  4064. nw64(RXDMA_CFIG1(channel), val);
  4065. limit = 1000;
  4066. while (--limit > 0) {
  4067. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4068. break;
  4069. udelay(10);
  4070. }
  4071. if (limit <= 0)
  4072. return -ENODEV;
  4073. return 0;
  4074. }
  4075. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4076. {
  4077. int err, channel = rp->rx_channel;
  4078. u64 val;
  4079. err = niu_rx_channel_reset(np, channel);
  4080. if (err)
  4081. return err;
  4082. err = niu_rx_channel_lpage_init(np, channel);
  4083. if (err)
  4084. return err;
  4085. niu_rx_channel_wred_init(np, rp);
  4086. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4087. nw64(RX_DMA_CTL_STAT(channel),
  4088. (RX_DMA_CTL_STAT_MEX |
  4089. RX_DMA_CTL_STAT_RCRTHRES |
  4090. RX_DMA_CTL_STAT_RCRTO |
  4091. RX_DMA_CTL_STAT_RBR_EMPTY));
  4092. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4093. nw64(RXDMA_CFIG2(channel),
  4094. ((rp->mbox_dma & RXDMA_CFIG2_MBADDR_L) |
  4095. RXDMA_CFIG2_FULL_HDR));
  4096. nw64(RBR_CFIG_A(channel),
  4097. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4098. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4099. err = niu_compute_rbr_cfig_b(rp, &val);
  4100. if (err)
  4101. return err;
  4102. nw64(RBR_CFIG_B(channel), val);
  4103. nw64(RCRCFIG_A(channel),
  4104. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4105. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4106. nw64(RCRCFIG_B(channel),
  4107. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4108. RCRCFIG_B_ENTOUT |
  4109. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4110. err = niu_enable_rx_channel(np, channel, 1);
  4111. if (err)
  4112. return err;
  4113. nw64(RBR_KICK(channel), rp->rbr_index);
  4114. val = nr64(RX_DMA_CTL_STAT(channel));
  4115. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4116. nw64(RX_DMA_CTL_STAT(channel), val);
  4117. return 0;
  4118. }
  4119. static int niu_init_rx_channels(struct niu *np)
  4120. {
  4121. unsigned long flags;
  4122. u64 seed = jiffies_64;
  4123. int err, i;
  4124. niu_lock_parent(np, flags);
  4125. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4126. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4127. niu_unlock_parent(np, flags);
  4128. /* XXX RXDMA 32bit mode? XXX */
  4129. niu_init_rdc_groups(np);
  4130. niu_init_drr_weight(np);
  4131. err = niu_init_hostinfo(np);
  4132. if (err)
  4133. return err;
  4134. for (i = 0; i < np->num_rx_rings; i++) {
  4135. struct rx_ring_info *rp = &np->rx_rings[i];
  4136. err = niu_init_one_rx_channel(np, rp);
  4137. if (err)
  4138. return err;
  4139. }
  4140. return 0;
  4141. }
  4142. static int niu_set_ip_frag_rule(struct niu *np)
  4143. {
  4144. struct niu_parent *parent = np->parent;
  4145. struct niu_classifier *cp = &np->clas;
  4146. struct niu_tcam_entry *tp;
  4147. int index, err;
  4148. index = cp->tcam_top;
  4149. tp = &parent->tcam[index];
  4150. /* Note that the noport bit is the same in both ipv4 and
  4151. * ipv6 format TCAM entries.
  4152. */
  4153. memset(tp, 0, sizeof(*tp));
  4154. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4155. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4156. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4157. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4158. err = tcam_write(np, index, tp->key, tp->key_mask);
  4159. if (err)
  4160. return err;
  4161. err = tcam_assoc_write(np, index, tp->assoc_data);
  4162. if (err)
  4163. return err;
  4164. tp->valid = 1;
  4165. cp->tcam_valid_entries++;
  4166. return 0;
  4167. }
  4168. static int niu_init_classifier_hw(struct niu *np)
  4169. {
  4170. struct niu_parent *parent = np->parent;
  4171. struct niu_classifier *cp = &np->clas;
  4172. int i, err;
  4173. nw64(H1POLY, cp->h1_init);
  4174. nw64(H2POLY, cp->h2_init);
  4175. err = niu_init_hostinfo(np);
  4176. if (err)
  4177. return err;
  4178. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4179. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4180. vlan_tbl_write(np, i, np->port,
  4181. vp->vlan_pref, vp->rdc_num);
  4182. }
  4183. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4184. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4185. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4186. ap->rdc_num, ap->mac_pref);
  4187. if (err)
  4188. return err;
  4189. }
  4190. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4191. int index = i - CLASS_CODE_USER_PROG1;
  4192. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4193. if (err)
  4194. return err;
  4195. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4196. if (err)
  4197. return err;
  4198. }
  4199. err = niu_set_ip_frag_rule(np);
  4200. if (err)
  4201. return err;
  4202. tcam_enable(np, 1);
  4203. return 0;
  4204. }
  4205. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4206. {
  4207. nw64(ZCP_RAM_DATA0, data[0]);
  4208. nw64(ZCP_RAM_DATA1, data[1]);
  4209. nw64(ZCP_RAM_DATA2, data[2]);
  4210. nw64(ZCP_RAM_DATA3, data[3]);
  4211. nw64(ZCP_RAM_DATA4, data[4]);
  4212. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4213. nw64(ZCP_RAM_ACC,
  4214. (ZCP_RAM_ACC_WRITE |
  4215. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4216. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4217. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4218. 1000, 100);
  4219. }
  4220. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4221. {
  4222. int err;
  4223. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4224. 1000, 100);
  4225. if (err) {
  4226. netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n",
  4227. (unsigned long long)nr64(ZCP_RAM_ACC));
  4228. return err;
  4229. }
  4230. nw64(ZCP_RAM_ACC,
  4231. (ZCP_RAM_ACC_READ |
  4232. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4233. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4234. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4235. 1000, 100);
  4236. if (err) {
  4237. netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n",
  4238. (unsigned long long)nr64(ZCP_RAM_ACC));
  4239. return err;
  4240. }
  4241. data[0] = nr64(ZCP_RAM_DATA0);
  4242. data[1] = nr64(ZCP_RAM_DATA1);
  4243. data[2] = nr64(ZCP_RAM_DATA2);
  4244. data[3] = nr64(ZCP_RAM_DATA3);
  4245. data[4] = nr64(ZCP_RAM_DATA4);
  4246. return 0;
  4247. }
  4248. static void niu_zcp_cfifo_reset(struct niu *np)
  4249. {
  4250. u64 val = nr64(RESET_CFIFO);
  4251. val |= RESET_CFIFO_RST(np->port);
  4252. nw64(RESET_CFIFO, val);
  4253. udelay(10);
  4254. val &= ~RESET_CFIFO_RST(np->port);
  4255. nw64(RESET_CFIFO, val);
  4256. }
  4257. static int niu_init_zcp(struct niu *np)
  4258. {
  4259. u64 data[5], rbuf[5];
  4260. int i, max, err;
  4261. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4262. if (np->port == 0 || np->port == 1)
  4263. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4264. else
  4265. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4266. } else
  4267. max = NIU_CFIFO_ENTRIES;
  4268. data[0] = 0;
  4269. data[1] = 0;
  4270. data[2] = 0;
  4271. data[3] = 0;
  4272. data[4] = 0;
  4273. for (i = 0; i < max; i++) {
  4274. err = niu_zcp_write(np, i, data);
  4275. if (err)
  4276. return err;
  4277. err = niu_zcp_read(np, i, rbuf);
  4278. if (err)
  4279. return err;
  4280. }
  4281. niu_zcp_cfifo_reset(np);
  4282. nw64(CFIFO_ECC(np->port), 0);
  4283. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4284. (void) nr64(ZCP_INT_STAT);
  4285. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4286. return 0;
  4287. }
  4288. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4289. {
  4290. u64 val = nr64_ipp(IPP_CFIG);
  4291. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4292. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4293. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4294. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4295. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4296. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4297. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4298. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4299. }
  4300. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4301. {
  4302. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4303. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4304. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4305. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4306. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4307. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4308. }
  4309. static int niu_ipp_reset(struct niu *np)
  4310. {
  4311. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4312. 1000, 100, "IPP_CFIG");
  4313. }
  4314. static int niu_init_ipp(struct niu *np)
  4315. {
  4316. u64 data[5], rbuf[5], val;
  4317. int i, max, err;
  4318. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4319. if (np->port == 0 || np->port == 1)
  4320. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4321. else
  4322. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4323. } else
  4324. max = NIU_DFIFO_ENTRIES;
  4325. data[0] = 0;
  4326. data[1] = 0;
  4327. data[2] = 0;
  4328. data[3] = 0;
  4329. data[4] = 0;
  4330. for (i = 0; i < max; i++) {
  4331. niu_ipp_write(np, i, data);
  4332. niu_ipp_read(np, i, rbuf);
  4333. }
  4334. (void) nr64_ipp(IPP_INT_STAT);
  4335. (void) nr64_ipp(IPP_INT_STAT);
  4336. err = niu_ipp_reset(np);
  4337. if (err)
  4338. return err;
  4339. (void) nr64_ipp(IPP_PKT_DIS);
  4340. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4341. (void) nr64_ipp(IPP_ECC);
  4342. (void) nr64_ipp(IPP_INT_STAT);
  4343. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4344. val = nr64_ipp(IPP_CFIG);
  4345. val &= ~IPP_CFIG_IP_MAX_PKT;
  4346. val |= (IPP_CFIG_IPP_ENABLE |
  4347. IPP_CFIG_DFIFO_ECC_EN |
  4348. IPP_CFIG_DROP_BAD_CRC |
  4349. IPP_CFIG_CKSUM_EN |
  4350. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4351. nw64_ipp(IPP_CFIG, val);
  4352. return 0;
  4353. }
  4354. static void niu_handle_led(struct niu *np, int status)
  4355. {
  4356. u64 val;
  4357. val = nr64_mac(XMAC_CONFIG);
  4358. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4359. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4360. if (status) {
  4361. val |= XMAC_CONFIG_LED_POLARITY;
  4362. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4363. } else {
  4364. val |= XMAC_CONFIG_FORCE_LED_ON;
  4365. val &= ~XMAC_CONFIG_LED_POLARITY;
  4366. }
  4367. }
  4368. nw64_mac(XMAC_CONFIG, val);
  4369. }
  4370. static void niu_init_xif_xmac(struct niu *np)
  4371. {
  4372. struct niu_link_config *lp = &np->link_config;
  4373. u64 val;
  4374. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4375. val = nr64(MIF_CONFIG);
  4376. val |= MIF_CONFIG_ATCA_GE;
  4377. nw64(MIF_CONFIG, val);
  4378. }
  4379. val = nr64_mac(XMAC_CONFIG);
  4380. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4381. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4382. if (lp->loopback_mode == LOOPBACK_MAC) {
  4383. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4384. val |= XMAC_CONFIG_LOOPBACK;
  4385. } else {
  4386. val &= ~XMAC_CONFIG_LOOPBACK;
  4387. }
  4388. if (np->flags & NIU_FLAGS_10G) {
  4389. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4390. } else {
  4391. val |= XMAC_CONFIG_LFS_DISABLE;
  4392. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4393. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4394. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4395. else
  4396. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4397. }
  4398. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4399. if (lp->active_speed == SPEED_100)
  4400. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4401. else
  4402. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4403. nw64_mac(XMAC_CONFIG, val);
  4404. val = nr64_mac(XMAC_CONFIG);
  4405. val &= ~XMAC_CONFIG_MODE_MASK;
  4406. if (np->flags & NIU_FLAGS_10G) {
  4407. val |= XMAC_CONFIG_MODE_XGMII;
  4408. } else {
  4409. if (lp->active_speed == SPEED_1000)
  4410. val |= XMAC_CONFIG_MODE_GMII;
  4411. else
  4412. val |= XMAC_CONFIG_MODE_MII;
  4413. }
  4414. nw64_mac(XMAC_CONFIG, val);
  4415. }
  4416. static void niu_init_xif_bmac(struct niu *np)
  4417. {
  4418. struct niu_link_config *lp = &np->link_config;
  4419. u64 val;
  4420. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4421. if (lp->loopback_mode == LOOPBACK_MAC)
  4422. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4423. else
  4424. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4425. if (lp->active_speed == SPEED_1000)
  4426. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4427. else
  4428. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4429. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4430. BMAC_XIF_CONFIG_LED_POLARITY);
  4431. if (!(np->flags & NIU_FLAGS_10G) &&
  4432. !(np->flags & NIU_FLAGS_FIBER) &&
  4433. lp->active_speed == SPEED_100)
  4434. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4435. else
  4436. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4437. nw64_mac(BMAC_XIF_CONFIG, val);
  4438. }
  4439. static void niu_init_xif(struct niu *np)
  4440. {
  4441. if (np->flags & NIU_FLAGS_XMAC)
  4442. niu_init_xif_xmac(np);
  4443. else
  4444. niu_init_xif_bmac(np);
  4445. }
  4446. static void niu_pcs_mii_reset(struct niu *np)
  4447. {
  4448. int limit = 1000;
  4449. u64 val = nr64_pcs(PCS_MII_CTL);
  4450. val |= PCS_MII_CTL_RST;
  4451. nw64_pcs(PCS_MII_CTL, val);
  4452. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4453. udelay(100);
  4454. val = nr64_pcs(PCS_MII_CTL);
  4455. }
  4456. }
  4457. static void niu_xpcs_reset(struct niu *np)
  4458. {
  4459. int limit = 1000;
  4460. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4461. val |= XPCS_CONTROL1_RESET;
  4462. nw64_xpcs(XPCS_CONTROL1, val);
  4463. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4464. udelay(100);
  4465. val = nr64_xpcs(XPCS_CONTROL1);
  4466. }
  4467. }
  4468. static int niu_init_pcs(struct niu *np)
  4469. {
  4470. struct niu_link_config *lp = &np->link_config;
  4471. u64 val;
  4472. switch (np->flags & (NIU_FLAGS_10G |
  4473. NIU_FLAGS_FIBER |
  4474. NIU_FLAGS_XCVR_SERDES)) {
  4475. case NIU_FLAGS_FIBER:
  4476. /* 1G fiber */
  4477. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4478. nw64_pcs(PCS_DPATH_MODE, 0);
  4479. niu_pcs_mii_reset(np);
  4480. break;
  4481. case NIU_FLAGS_10G:
  4482. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4483. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4484. /* 10G SERDES */
  4485. if (!(np->flags & NIU_FLAGS_XMAC))
  4486. return -EINVAL;
  4487. /* 10G copper or fiber */
  4488. val = nr64_mac(XMAC_CONFIG);
  4489. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4490. nw64_mac(XMAC_CONFIG, val);
  4491. niu_xpcs_reset(np);
  4492. val = nr64_xpcs(XPCS_CONTROL1);
  4493. if (lp->loopback_mode == LOOPBACK_PHY)
  4494. val |= XPCS_CONTROL1_LOOPBACK;
  4495. else
  4496. val &= ~XPCS_CONTROL1_LOOPBACK;
  4497. nw64_xpcs(XPCS_CONTROL1, val);
  4498. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4499. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4500. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4501. break;
  4502. case NIU_FLAGS_XCVR_SERDES:
  4503. /* 1G SERDES */
  4504. niu_pcs_mii_reset(np);
  4505. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4506. nw64_pcs(PCS_DPATH_MODE, 0);
  4507. break;
  4508. case 0:
  4509. /* 1G copper */
  4510. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4511. /* 1G RGMII FIBER */
  4512. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4513. niu_pcs_mii_reset(np);
  4514. break;
  4515. default:
  4516. return -EINVAL;
  4517. }
  4518. return 0;
  4519. }
  4520. static int niu_reset_tx_xmac(struct niu *np)
  4521. {
  4522. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4523. (XTXMAC_SW_RST_REG_RS |
  4524. XTXMAC_SW_RST_SOFT_RST),
  4525. 1000, 100, "XTXMAC_SW_RST");
  4526. }
  4527. static int niu_reset_tx_bmac(struct niu *np)
  4528. {
  4529. int limit;
  4530. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4531. limit = 1000;
  4532. while (--limit >= 0) {
  4533. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4534. break;
  4535. udelay(100);
  4536. }
  4537. if (limit < 0) {
  4538. dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n",
  4539. np->port,
  4540. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4541. return -ENODEV;
  4542. }
  4543. return 0;
  4544. }
  4545. static int niu_reset_tx_mac(struct niu *np)
  4546. {
  4547. if (np->flags & NIU_FLAGS_XMAC)
  4548. return niu_reset_tx_xmac(np);
  4549. else
  4550. return niu_reset_tx_bmac(np);
  4551. }
  4552. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4553. {
  4554. u64 val;
  4555. val = nr64_mac(XMAC_MIN);
  4556. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4557. XMAC_MIN_RX_MIN_PKT_SIZE);
  4558. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4559. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4560. nw64_mac(XMAC_MIN, val);
  4561. nw64_mac(XMAC_MAX, max);
  4562. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4563. val = nr64_mac(XMAC_IPG);
  4564. if (np->flags & NIU_FLAGS_10G) {
  4565. val &= ~XMAC_IPG_IPG_XGMII;
  4566. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4567. } else {
  4568. val &= ~XMAC_IPG_IPG_MII_GMII;
  4569. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4570. }
  4571. nw64_mac(XMAC_IPG, val);
  4572. val = nr64_mac(XMAC_CONFIG);
  4573. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4574. XMAC_CONFIG_STRETCH_MODE |
  4575. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4576. XMAC_CONFIG_TX_ENABLE);
  4577. nw64_mac(XMAC_CONFIG, val);
  4578. nw64_mac(TXMAC_FRM_CNT, 0);
  4579. nw64_mac(TXMAC_BYTE_CNT, 0);
  4580. }
  4581. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4582. {
  4583. u64 val;
  4584. nw64_mac(BMAC_MIN_FRAME, min);
  4585. nw64_mac(BMAC_MAX_FRAME, max);
  4586. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4587. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4588. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4589. val = nr64_mac(BTXMAC_CONFIG);
  4590. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4591. BTXMAC_CONFIG_ENABLE);
  4592. nw64_mac(BTXMAC_CONFIG, val);
  4593. }
  4594. static void niu_init_tx_mac(struct niu *np)
  4595. {
  4596. u64 min, max;
  4597. min = 64;
  4598. if (np->dev->mtu > ETH_DATA_LEN)
  4599. max = 9216;
  4600. else
  4601. max = 1522;
  4602. /* The XMAC_MIN register only accepts values for TX min which
  4603. * have the low 3 bits cleared.
  4604. */
  4605. BUG_ON(min & 0x7);
  4606. if (np->flags & NIU_FLAGS_XMAC)
  4607. niu_init_tx_xmac(np, min, max);
  4608. else
  4609. niu_init_tx_bmac(np, min, max);
  4610. }
  4611. static int niu_reset_rx_xmac(struct niu *np)
  4612. {
  4613. int limit;
  4614. nw64_mac(XRXMAC_SW_RST,
  4615. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4616. limit = 1000;
  4617. while (--limit >= 0) {
  4618. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4619. XRXMAC_SW_RST_SOFT_RST)))
  4620. break;
  4621. udelay(100);
  4622. }
  4623. if (limit < 0) {
  4624. dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n",
  4625. np->port,
  4626. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4627. return -ENODEV;
  4628. }
  4629. return 0;
  4630. }
  4631. static int niu_reset_rx_bmac(struct niu *np)
  4632. {
  4633. int limit;
  4634. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4635. limit = 1000;
  4636. while (--limit >= 0) {
  4637. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4638. break;
  4639. udelay(100);
  4640. }
  4641. if (limit < 0) {
  4642. dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n",
  4643. np->port,
  4644. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4645. return -ENODEV;
  4646. }
  4647. return 0;
  4648. }
  4649. static int niu_reset_rx_mac(struct niu *np)
  4650. {
  4651. if (np->flags & NIU_FLAGS_XMAC)
  4652. return niu_reset_rx_xmac(np);
  4653. else
  4654. return niu_reset_rx_bmac(np);
  4655. }
  4656. static void niu_init_rx_xmac(struct niu *np)
  4657. {
  4658. struct niu_parent *parent = np->parent;
  4659. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4660. int first_rdc_table = tp->first_table_num;
  4661. unsigned long i;
  4662. u64 val;
  4663. nw64_mac(XMAC_ADD_FILT0, 0);
  4664. nw64_mac(XMAC_ADD_FILT1, 0);
  4665. nw64_mac(XMAC_ADD_FILT2, 0);
  4666. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4667. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4668. for (i = 0; i < MAC_NUM_HASH; i++)
  4669. nw64_mac(XMAC_HASH_TBL(i), 0);
  4670. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4671. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4672. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4673. val = nr64_mac(XMAC_CONFIG);
  4674. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4675. XMAC_CONFIG_PROMISCUOUS |
  4676. XMAC_CONFIG_PROMISC_GROUP |
  4677. XMAC_CONFIG_ERR_CHK_DIS |
  4678. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4679. XMAC_CONFIG_RESERVED_MULTICAST |
  4680. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4681. XMAC_CONFIG_ADDR_FILTER_EN |
  4682. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4683. XMAC_CONFIG_STRIP_CRC |
  4684. XMAC_CONFIG_PASS_FLOW_CTRL |
  4685. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4686. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4687. nw64_mac(XMAC_CONFIG, val);
  4688. nw64_mac(RXMAC_BT_CNT, 0);
  4689. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4690. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4691. nw64_mac(RXMAC_FRAG_CNT, 0);
  4692. nw64_mac(RXMAC_HIST_CNT1, 0);
  4693. nw64_mac(RXMAC_HIST_CNT2, 0);
  4694. nw64_mac(RXMAC_HIST_CNT3, 0);
  4695. nw64_mac(RXMAC_HIST_CNT4, 0);
  4696. nw64_mac(RXMAC_HIST_CNT5, 0);
  4697. nw64_mac(RXMAC_HIST_CNT6, 0);
  4698. nw64_mac(RXMAC_HIST_CNT7, 0);
  4699. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4700. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4701. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4702. nw64_mac(LINK_FAULT_CNT, 0);
  4703. }
  4704. static void niu_init_rx_bmac(struct niu *np)
  4705. {
  4706. struct niu_parent *parent = np->parent;
  4707. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4708. int first_rdc_table = tp->first_table_num;
  4709. unsigned long i;
  4710. u64 val;
  4711. nw64_mac(BMAC_ADD_FILT0, 0);
  4712. nw64_mac(BMAC_ADD_FILT1, 0);
  4713. nw64_mac(BMAC_ADD_FILT2, 0);
  4714. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4715. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4716. for (i = 0; i < MAC_NUM_HASH; i++)
  4717. nw64_mac(BMAC_HASH_TBL(i), 0);
  4718. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4719. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4720. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4721. val = nr64_mac(BRXMAC_CONFIG);
  4722. val &= ~(BRXMAC_CONFIG_ENABLE |
  4723. BRXMAC_CONFIG_STRIP_PAD |
  4724. BRXMAC_CONFIG_STRIP_FCS |
  4725. BRXMAC_CONFIG_PROMISC |
  4726. BRXMAC_CONFIG_PROMISC_GRP |
  4727. BRXMAC_CONFIG_ADDR_FILT_EN |
  4728. BRXMAC_CONFIG_DISCARD_DIS);
  4729. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4730. nw64_mac(BRXMAC_CONFIG, val);
  4731. val = nr64_mac(BMAC_ADDR_CMPEN);
  4732. val |= BMAC_ADDR_CMPEN_EN0;
  4733. nw64_mac(BMAC_ADDR_CMPEN, val);
  4734. }
  4735. static void niu_init_rx_mac(struct niu *np)
  4736. {
  4737. niu_set_primary_mac(np, np->dev->dev_addr);
  4738. if (np->flags & NIU_FLAGS_XMAC)
  4739. niu_init_rx_xmac(np);
  4740. else
  4741. niu_init_rx_bmac(np);
  4742. }
  4743. static void niu_enable_tx_xmac(struct niu *np, int on)
  4744. {
  4745. u64 val = nr64_mac(XMAC_CONFIG);
  4746. if (on)
  4747. val |= XMAC_CONFIG_TX_ENABLE;
  4748. else
  4749. val &= ~XMAC_CONFIG_TX_ENABLE;
  4750. nw64_mac(XMAC_CONFIG, val);
  4751. }
  4752. static void niu_enable_tx_bmac(struct niu *np, int on)
  4753. {
  4754. u64 val = nr64_mac(BTXMAC_CONFIG);
  4755. if (on)
  4756. val |= BTXMAC_CONFIG_ENABLE;
  4757. else
  4758. val &= ~BTXMAC_CONFIG_ENABLE;
  4759. nw64_mac(BTXMAC_CONFIG, val);
  4760. }
  4761. static void niu_enable_tx_mac(struct niu *np, int on)
  4762. {
  4763. if (np->flags & NIU_FLAGS_XMAC)
  4764. niu_enable_tx_xmac(np, on);
  4765. else
  4766. niu_enable_tx_bmac(np, on);
  4767. }
  4768. static void niu_enable_rx_xmac(struct niu *np, int on)
  4769. {
  4770. u64 val = nr64_mac(XMAC_CONFIG);
  4771. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4772. XMAC_CONFIG_PROMISCUOUS);
  4773. if (np->flags & NIU_FLAGS_MCAST)
  4774. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4775. if (np->flags & NIU_FLAGS_PROMISC)
  4776. val |= XMAC_CONFIG_PROMISCUOUS;
  4777. if (on)
  4778. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4779. else
  4780. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4781. nw64_mac(XMAC_CONFIG, val);
  4782. }
  4783. static void niu_enable_rx_bmac(struct niu *np, int on)
  4784. {
  4785. u64 val = nr64_mac(BRXMAC_CONFIG);
  4786. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4787. BRXMAC_CONFIG_PROMISC);
  4788. if (np->flags & NIU_FLAGS_MCAST)
  4789. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4790. if (np->flags & NIU_FLAGS_PROMISC)
  4791. val |= BRXMAC_CONFIG_PROMISC;
  4792. if (on)
  4793. val |= BRXMAC_CONFIG_ENABLE;
  4794. else
  4795. val &= ~BRXMAC_CONFIG_ENABLE;
  4796. nw64_mac(BRXMAC_CONFIG, val);
  4797. }
  4798. static void niu_enable_rx_mac(struct niu *np, int on)
  4799. {
  4800. if (np->flags & NIU_FLAGS_XMAC)
  4801. niu_enable_rx_xmac(np, on);
  4802. else
  4803. niu_enable_rx_bmac(np, on);
  4804. }
  4805. static int niu_init_mac(struct niu *np)
  4806. {
  4807. int err;
  4808. niu_init_xif(np);
  4809. err = niu_init_pcs(np);
  4810. if (err)
  4811. return err;
  4812. err = niu_reset_tx_mac(np);
  4813. if (err)
  4814. return err;
  4815. niu_init_tx_mac(np);
  4816. err = niu_reset_rx_mac(np);
  4817. if (err)
  4818. return err;
  4819. niu_init_rx_mac(np);
  4820. /* This looks hookey but the RX MAC reset we just did will
  4821. * undo some of the state we setup in niu_init_tx_mac() so we
  4822. * have to call it again. In particular, the RX MAC reset will
  4823. * set the XMAC_MAX register back to it's default value.
  4824. */
  4825. niu_init_tx_mac(np);
  4826. niu_enable_tx_mac(np, 1);
  4827. niu_enable_rx_mac(np, 1);
  4828. return 0;
  4829. }
  4830. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4831. {
  4832. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4833. }
  4834. static void niu_stop_tx_channels(struct niu *np)
  4835. {
  4836. int i;
  4837. for (i = 0; i < np->num_tx_rings; i++) {
  4838. struct tx_ring_info *rp = &np->tx_rings[i];
  4839. niu_stop_one_tx_channel(np, rp);
  4840. }
  4841. }
  4842. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4843. {
  4844. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4845. }
  4846. static void niu_reset_tx_channels(struct niu *np)
  4847. {
  4848. int i;
  4849. for (i = 0; i < np->num_tx_rings; i++) {
  4850. struct tx_ring_info *rp = &np->tx_rings[i];
  4851. niu_reset_one_tx_channel(np, rp);
  4852. }
  4853. }
  4854. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4855. {
  4856. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4857. }
  4858. static void niu_stop_rx_channels(struct niu *np)
  4859. {
  4860. int i;
  4861. for (i = 0; i < np->num_rx_rings; i++) {
  4862. struct rx_ring_info *rp = &np->rx_rings[i];
  4863. niu_stop_one_rx_channel(np, rp);
  4864. }
  4865. }
  4866. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4867. {
  4868. int channel = rp->rx_channel;
  4869. (void) niu_rx_channel_reset(np, channel);
  4870. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4871. nw64(RX_DMA_CTL_STAT(channel), 0);
  4872. (void) niu_enable_rx_channel(np, channel, 0);
  4873. }
  4874. static void niu_reset_rx_channels(struct niu *np)
  4875. {
  4876. int i;
  4877. for (i = 0; i < np->num_rx_rings; i++) {
  4878. struct rx_ring_info *rp = &np->rx_rings[i];
  4879. niu_reset_one_rx_channel(np, rp);
  4880. }
  4881. }
  4882. static void niu_disable_ipp(struct niu *np)
  4883. {
  4884. u64 rd, wr, val;
  4885. int limit;
  4886. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4887. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4888. limit = 100;
  4889. while (--limit >= 0 && (rd != wr)) {
  4890. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4891. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4892. }
  4893. if (limit < 0 &&
  4894. (rd != 0 && wr != 1)) {
  4895. netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n",
  4896. (unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR),
  4897. (unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR));
  4898. }
  4899. val = nr64_ipp(IPP_CFIG);
  4900. val &= ~(IPP_CFIG_IPP_ENABLE |
  4901. IPP_CFIG_DFIFO_ECC_EN |
  4902. IPP_CFIG_DROP_BAD_CRC |
  4903. IPP_CFIG_CKSUM_EN);
  4904. nw64_ipp(IPP_CFIG, val);
  4905. (void) niu_ipp_reset(np);
  4906. }
  4907. static int niu_init_hw(struct niu *np)
  4908. {
  4909. int i, err;
  4910. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n");
  4911. niu_txc_enable_port(np, 1);
  4912. niu_txc_port_dma_enable(np, 1);
  4913. niu_txc_set_imask(np, 0);
  4914. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n");
  4915. for (i = 0; i < np->num_tx_rings; i++) {
  4916. struct tx_ring_info *rp = &np->tx_rings[i];
  4917. err = niu_init_one_tx_channel(np, rp);
  4918. if (err)
  4919. return err;
  4920. }
  4921. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n");
  4922. err = niu_init_rx_channels(np);
  4923. if (err)
  4924. goto out_uninit_tx_channels;
  4925. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n");
  4926. err = niu_init_classifier_hw(np);
  4927. if (err)
  4928. goto out_uninit_rx_channels;
  4929. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n");
  4930. err = niu_init_zcp(np);
  4931. if (err)
  4932. goto out_uninit_rx_channels;
  4933. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n");
  4934. err = niu_init_ipp(np);
  4935. if (err)
  4936. goto out_uninit_rx_channels;
  4937. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n");
  4938. err = niu_init_mac(np);
  4939. if (err)
  4940. goto out_uninit_ipp;
  4941. return 0;
  4942. out_uninit_ipp:
  4943. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n");
  4944. niu_disable_ipp(np);
  4945. out_uninit_rx_channels:
  4946. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n");
  4947. niu_stop_rx_channels(np);
  4948. niu_reset_rx_channels(np);
  4949. out_uninit_tx_channels:
  4950. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n");
  4951. niu_stop_tx_channels(np);
  4952. niu_reset_tx_channels(np);
  4953. return err;
  4954. }
  4955. static void niu_stop_hw(struct niu *np)
  4956. {
  4957. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n");
  4958. niu_enable_interrupts(np, 0);
  4959. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n");
  4960. niu_enable_rx_mac(np, 0);
  4961. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n");
  4962. niu_disable_ipp(np);
  4963. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n");
  4964. niu_stop_tx_channels(np);
  4965. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n");
  4966. niu_stop_rx_channels(np);
  4967. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n");
  4968. niu_reset_tx_channels(np);
  4969. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n");
  4970. niu_reset_rx_channels(np);
  4971. }
  4972. static void niu_set_irq_name(struct niu *np)
  4973. {
  4974. int port = np->port;
  4975. int i, j = 1;
  4976. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4977. if (port == 0) {
  4978. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4979. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4980. j = 3;
  4981. }
  4982. for (i = 0; i < np->num_ldg - j; i++) {
  4983. if (i < np->num_rx_rings)
  4984. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4985. np->dev->name, i);
  4986. else if (i < np->num_tx_rings + np->num_rx_rings)
  4987. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4988. i - np->num_rx_rings);
  4989. }
  4990. }
  4991. static int niu_request_irq(struct niu *np)
  4992. {
  4993. int i, j, err;
  4994. niu_set_irq_name(np);
  4995. err = 0;
  4996. for (i = 0; i < np->num_ldg; i++) {
  4997. struct niu_ldg *lp = &np->ldg[i];
  4998. err = request_irq(lp->irq, niu_interrupt, IRQF_SHARED,
  4999. np->irq_name[i], lp);
  5000. if (err)
  5001. goto out_free_irqs;
  5002. }
  5003. return 0;
  5004. out_free_irqs:
  5005. for (j = 0; j < i; j++) {
  5006. struct niu_ldg *lp = &np->ldg[j];
  5007. free_irq(lp->irq, lp);
  5008. }
  5009. return err;
  5010. }
  5011. static void niu_free_irq(struct niu *np)
  5012. {
  5013. int i;
  5014. for (i = 0; i < np->num_ldg; i++) {
  5015. struct niu_ldg *lp = &np->ldg[i];
  5016. free_irq(lp->irq, lp);
  5017. }
  5018. }
  5019. static void niu_enable_napi(struct niu *np)
  5020. {
  5021. int i;
  5022. for (i = 0; i < np->num_ldg; i++)
  5023. napi_enable(&np->ldg[i].napi);
  5024. }
  5025. static void niu_disable_napi(struct niu *np)
  5026. {
  5027. int i;
  5028. for (i = 0; i < np->num_ldg; i++)
  5029. napi_disable(&np->ldg[i].napi);
  5030. }
  5031. static int niu_open(struct net_device *dev)
  5032. {
  5033. struct niu *np = netdev_priv(dev);
  5034. int err;
  5035. netif_carrier_off(dev);
  5036. err = niu_alloc_channels(np);
  5037. if (err)
  5038. goto out_err;
  5039. err = niu_enable_interrupts(np, 0);
  5040. if (err)
  5041. goto out_free_channels;
  5042. err = niu_request_irq(np);
  5043. if (err)
  5044. goto out_free_channels;
  5045. niu_enable_napi(np);
  5046. spin_lock_irq(&np->lock);
  5047. err = niu_init_hw(np);
  5048. if (!err) {
  5049. init_timer(&np->timer);
  5050. np->timer.expires = jiffies + HZ;
  5051. np->timer.data = (unsigned long) np;
  5052. np->timer.function = niu_timer;
  5053. err = niu_enable_interrupts(np, 1);
  5054. if (err)
  5055. niu_stop_hw(np);
  5056. }
  5057. spin_unlock_irq(&np->lock);
  5058. if (err) {
  5059. niu_disable_napi(np);
  5060. goto out_free_irq;
  5061. }
  5062. netif_tx_start_all_queues(dev);
  5063. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5064. netif_carrier_on(dev);
  5065. add_timer(&np->timer);
  5066. return 0;
  5067. out_free_irq:
  5068. niu_free_irq(np);
  5069. out_free_channels:
  5070. niu_free_channels(np);
  5071. out_err:
  5072. return err;
  5073. }
  5074. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5075. {
  5076. cancel_work_sync(&np->reset_task);
  5077. niu_disable_napi(np);
  5078. netif_tx_stop_all_queues(dev);
  5079. del_timer_sync(&np->timer);
  5080. spin_lock_irq(&np->lock);
  5081. niu_stop_hw(np);
  5082. spin_unlock_irq(&np->lock);
  5083. }
  5084. static int niu_close(struct net_device *dev)
  5085. {
  5086. struct niu *np = netdev_priv(dev);
  5087. niu_full_shutdown(np, dev);
  5088. niu_free_irq(np);
  5089. niu_free_channels(np);
  5090. niu_handle_led(np, 0);
  5091. return 0;
  5092. }
  5093. static void niu_sync_xmac_stats(struct niu *np)
  5094. {
  5095. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5096. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5097. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5098. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5099. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5100. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5101. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5102. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5103. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5104. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5105. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5106. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5107. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5108. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5109. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5110. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5111. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5112. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5113. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5114. }
  5115. static void niu_sync_bmac_stats(struct niu *np)
  5116. {
  5117. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5118. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5119. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5120. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5121. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5122. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5123. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5124. }
  5125. static void niu_sync_mac_stats(struct niu *np)
  5126. {
  5127. if (np->flags & NIU_FLAGS_XMAC)
  5128. niu_sync_xmac_stats(np);
  5129. else
  5130. niu_sync_bmac_stats(np);
  5131. }
  5132. static void niu_get_rx_stats(struct niu *np,
  5133. struct rtnl_link_stats64 *stats)
  5134. {
  5135. u64 pkts, dropped, errors, bytes;
  5136. struct rx_ring_info *rx_rings;
  5137. int i;
  5138. pkts = dropped = errors = bytes = 0;
  5139. rx_rings = ACCESS_ONCE(np->rx_rings);
  5140. if (!rx_rings)
  5141. goto no_rings;
  5142. for (i = 0; i < np->num_rx_rings; i++) {
  5143. struct rx_ring_info *rp = &rx_rings[i];
  5144. niu_sync_rx_discard_stats(np, rp, 0);
  5145. pkts += rp->rx_packets;
  5146. bytes += rp->rx_bytes;
  5147. dropped += rp->rx_dropped;
  5148. errors += rp->rx_errors;
  5149. }
  5150. no_rings:
  5151. stats->rx_packets = pkts;
  5152. stats->rx_bytes = bytes;
  5153. stats->rx_dropped = dropped;
  5154. stats->rx_errors = errors;
  5155. }
  5156. static void niu_get_tx_stats(struct niu *np,
  5157. struct rtnl_link_stats64 *stats)
  5158. {
  5159. u64 pkts, errors, bytes;
  5160. struct tx_ring_info *tx_rings;
  5161. int i;
  5162. pkts = errors = bytes = 0;
  5163. tx_rings = ACCESS_ONCE(np->tx_rings);
  5164. if (!tx_rings)
  5165. goto no_rings;
  5166. for (i = 0; i < np->num_tx_rings; i++) {
  5167. struct tx_ring_info *rp = &tx_rings[i];
  5168. pkts += rp->tx_packets;
  5169. bytes += rp->tx_bytes;
  5170. errors += rp->tx_errors;
  5171. }
  5172. no_rings:
  5173. stats->tx_packets = pkts;
  5174. stats->tx_bytes = bytes;
  5175. stats->tx_errors = errors;
  5176. }
  5177. static struct rtnl_link_stats64 *niu_get_stats(struct net_device *dev,
  5178. struct rtnl_link_stats64 *stats)
  5179. {
  5180. struct niu *np = netdev_priv(dev);
  5181. if (netif_running(dev)) {
  5182. niu_get_rx_stats(np, stats);
  5183. niu_get_tx_stats(np, stats);
  5184. }
  5185. return stats;
  5186. }
  5187. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5188. {
  5189. int i;
  5190. for (i = 0; i < 16; i++)
  5191. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5192. }
  5193. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5194. {
  5195. int i;
  5196. for (i = 0; i < 16; i++)
  5197. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5198. }
  5199. static void niu_load_hash(struct niu *np, u16 *hash)
  5200. {
  5201. if (np->flags & NIU_FLAGS_XMAC)
  5202. niu_load_hash_xmac(np, hash);
  5203. else
  5204. niu_load_hash_bmac(np, hash);
  5205. }
  5206. static void niu_set_rx_mode(struct net_device *dev)
  5207. {
  5208. struct niu *np = netdev_priv(dev);
  5209. int i, alt_cnt, err;
  5210. struct netdev_hw_addr *ha;
  5211. unsigned long flags;
  5212. u16 hash[16] = { 0, };
  5213. spin_lock_irqsave(&np->lock, flags);
  5214. niu_enable_rx_mac(np, 0);
  5215. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5216. if (dev->flags & IFF_PROMISC)
  5217. np->flags |= NIU_FLAGS_PROMISC;
  5218. if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev)))
  5219. np->flags |= NIU_FLAGS_MCAST;
  5220. alt_cnt = netdev_uc_count(dev);
  5221. if (alt_cnt > niu_num_alt_addr(np)) {
  5222. alt_cnt = 0;
  5223. np->flags |= NIU_FLAGS_PROMISC;
  5224. }
  5225. if (alt_cnt) {
  5226. int index = 0;
  5227. netdev_for_each_uc_addr(ha, dev) {
  5228. err = niu_set_alt_mac(np, index, ha->addr);
  5229. if (err)
  5230. netdev_warn(dev, "Error %d adding alt mac %d\n",
  5231. err, index);
  5232. err = niu_enable_alt_mac(np, index, 1);
  5233. if (err)
  5234. netdev_warn(dev, "Error %d enabling alt mac %d\n",
  5235. err, index);
  5236. index++;
  5237. }
  5238. } else {
  5239. int alt_start;
  5240. if (np->flags & NIU_FLAGS_XMAC)
  5241. alt_start = 0;
  5242. else
  5243. alt_start = 1;
  5244. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5245. err = niu_enable_alt_mac(np, i, 0);
  5246. if (err)
  5247. netdev_warn(dev, "Error %d disabling alt mac %d\n",
  5248. err, i);
  5249. }
  5250. }
  5251. if (dev->flags & IFF_ALLMULTI) {
  5252. for (i = 0; i < 16; i++)
  5253. hash[i] = 0xffff;
  5254. } else if (!netdev_mc_empty(dev)) {
  5255. netdev_for_each_mc_addr(ha, dev) {
  5256. u32 crc = ether_crc_le(ETH_ALEN, ha->addr);
  5257. crc >>= 24;
  5258. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5259. }
  5260. }
  5261. if (np->flags & NIU_FLAGS_MCAST)
  5262. niu_load_hash(np, hash);
  5263. niu_enable_rx_mac(np, 1);
  5264. spin_unlock_irqrestore(&np->lock, flags);
  5265. }
  5266. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5267. {
  5268. struct niu *np = netdev_priv(dev);
  5269. struct sockaddr *addr = p;
  5270. unsigned long flags;
  5271. if (!is_valid_ether_addr(addr->sa_data))
  5272. return -EADDRNOTAVAIL;
  5273. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5274. if (!netif_running(dev))
  5275. return 0;
  5276. spin_lock_irqsave(&np->lock, flags);
  5277. niu_enable_rx_mac(np, 0);
  5278. niu_set_primary_mac(np, dev->dev_addr);
  5279. niu_enable_rx_mac(np, 1);
  5280. spin_unlock_irqrestore(&np->lock, flags);
  5281. return 0;
  5282. }
  5283. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5284. {
  5285. return -EOPNOTSUPP;
  5286. }
  5287. static void niu_netif_stop(struct niu *np)
  5288. {
  5289. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5290. niu_disable_napi(np);
  5291. netif_tx_disable(np->dev);
  5292. }
  5293. static void niu_netif_start(struct niu *np)
  5294. {
  5295. /* NOTE: unconditional netif_wake_queue is only appropriate
  5296. * so long as all callers are assured to have free tx slots
  5297. * (such as after niu_init_hw).
  5298. */
  5299. netif_tx_wake_all_queues(np->dev);
  5300. niu_enable_napi(np);
  5301. niu_enable_interrupts(np, 1);
  5302. }
  5303. static void niu_reset_buffers(struct niu *np)
  5304. {
  5305. int i, j, k, err;
  5306. if (np->rx_rings) {
  5307. for (i = 0; i < np->num_rx_rings; i++) {
  5308. struct rx_ring_info *rp = &np->rx_rings[i];
  5309. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5310. struct page *page;
  5311. page = rp->rxhash[j];
  5312. while (page) {
  5313. struct page *next =
  5314. (struct page *) page->mapping;
  5315. u64 base = page->index;
  5316. base = base >> RBR_DESCR_ADDR_SHIFT;
  5317. rp->rbr[k++] = cpu_to_le32(base);
  5318. page = next;
  5319. }
  5320. }
  5321. for (; k < MAX_RBR_RING_SIZE; k++) {
  5322. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5323. if (unlikely(err))
  5324. break;
  5325. }
  5326. rp->rbr_index = rp->rbr_table_size - 1;
  5327. rp->rcr_index = 0;
  5328. rp->rbr_pending = 0;
  5329. rp->rbr_refill_pending = 0;
  5330. }
  5331. }
  5332. if (np->tx_rings) {
  5333. for (i = 0; i < np->num_tx_rings; i++) {
  5334. struct tx_ring_info *rp = &np->tx_rings[i];
  5335. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5336. if (rp->tx_buffs[j].skb)
  5337. (void) release_tx_packet(np, rp, j);
  5338. }
  5339. rp->pending = MAX_TX_RING_SIZE;
  5340. rp->prod = 0;
  5341. rp->cons = 0;
  5342. rp->wrap_bit = 0;
  5343. }
  5344. }
  5345. }
  5346. static void niu_reset_task(struct work_struct *work)
  5347. {
  5348. struct niu *np = container_of(work, struct niu, reset_task);
  5349. unsigned long flags;
  5350. int err;
  5351. spin_lock_irqsave(&np->lock, flags);
  5352. if (!netif_running(np->dev)) {
  5353. spin_unlock_irqrestore(&np->lock, flags);
  5354. return;
  5355. }
  5356. spin_unlock_irqrestore(&np->lock, flags);
  5357. del_timer_sync(&np->timer);
  5358. niu_netif_stop(np);
  5359. spin_lock_irqsave(&np->lock, flags);
  5360. niu_stop_hw(np);
  5361. spin_unlock_irqrestore(&np->lock, flags);
  5362. niu_reset_buffers(np);
  5363. spin_lock_irqsave(&np->lock, flags);
  5364. err = niu_init_hw(np);
  5365. if (!err) {
  5366. np->timer.expires = jiffies + HZ;
  5367. add_timer(&np->timer);
  5368. niu_netif_start(np);
  5369. }
  5370. spin_unlock_irqrestore(&np->lock, flags);
  5371. }
  5372. static void niu_tx_timeout(struct net_device *dev)
  5373. {
  5374. struct niu *np = netdev_priv(dev);
  5375. dev_err(np->device, "%s: Transmit timed out, resetting\n",
  5376. dev->name);
  5377. schedule_work(&np->reset_task);
  5378. }
  5379. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5380. u64 mapping, u64 len, u64 mark,
  5381. u64 n_frags)
  5382. {
  5383. __le64 *desc = &rp->descr[index];
  5384. *desc = cpu_to_le64(mark |
  5385. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5386. (len << TX_DESC_TR_LEN_SHIFT) |
  5387. (mapping & TX_DESC_SAD));
  5388. }
  5389. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5390. u64 pad_bytes, u64 len)
  5391. {
  5392. u16 eth_proto, eth_proto_inner;
  5393. u64 csum_bits, l3off, ihl, ret;
  5394. u8 ip_proto;
  5395. int ipv6;
  5396. eth_proto = be16_to_cpu(ehdr->h_proto);
  5397. eth_proto_inner = eth_proto;
  5398. if (eth_proto == ETH_P_8021Q) {
  5399. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5400. __be16 val = vp->h_vlan_encapsulated_proto;
  5401. eth_proto_inner = be16_to_cpu(val);
  5402. }
  5403. ipv6 = ihl = 0;
  5404. switch (skb->protocol) {
  5405. case cpu_to_be16(ETH_P_IP):
  5406. ip_proto = ip_hdr(skb)->protocol;
  5407. ihl = ip_hdr(skb)->ihl;
  5408. break;
  5409. case cpu_to_be16(ETH_P_IPV6):
  5410. ip_proto = ipv6_hdr(skb)->nexthdr;
  5411. ihl = (40 >> 2);
  5412. ipv6 = 1;
  5413. break;
  5414. default:
  5415. ip_proto = ihl = 0;
  5416. break;
  5417. }
  5418. csum_bits = TXHDR_CSUM_NONE;
  5419. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5420. u64 start, stuff;
  5421. csum_bits = (ip_proto == IPPROTO_TCP ?
  5422. TXHDR_CSUM_TCP :
  5423. (ip_proto == IPPROTO_UDP ?
  5424. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5425. start = skb_checksum_start_offset(skb) -
  5426. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5427. stuff = start + skb->csum_offset;
  5428. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5429. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5430. }
  5431. l3off = skb_network_offset(skb) -
  5432. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5433. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5434. (len << TXHDR_LEN_SHIFT) |
  5435. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5436. (ihl << TXHDR_IHL_SHIFT) |
  5437. ((eth_proto_inner < ETH_P_802_3_MIN) ? TXHDR_LLC : 0) |
  5438. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5439. (ipv6 ? TXHDR_IP_VER : 0) |
  5440. csum_bits);
  5441. return ret;
  5442. }
  5443. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5444. struct net_device *dev)
  5445. {
  5446. struct niu *np = netdev_priv(dev);
  5447. unsigned long align, headroom;
  5448. struct netdev_queue *txq;
  5449. struct tx_ring_info *rp;
  5450. struct tx_pkt_hdr *tp;
  5451. unsigned int len, nfg;
  5452. struct ethhdr *ehdr;
  5453. int prod, i, tlen;
  5454. u64 mapping, mrk;
  5455. i = skb_get_queue_mapping(skb);
  5456. rp = &np->tx_rings[i];
  5457. txq = netdev_get_tx_queue(dev, i);
  5458. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5459. netif_tx_stop_queue(txq);
  5460. dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name);
  5461. rp->tx_errors++;
  5462. return NETDEV_TX_BUSY;
  5463. }
  5464. if (skb->len < ETH_ZLEN) {
  5465. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5466. if (skb_pad(skb, pad_bytes))
  5467. goto out;
  5468. skb_put(skb, pad_bytes);
  5469. }
  5470. len = sizeof(struct tx_pkt_hdr) + 15;
  5471. if (skb_headroom(skb) < len) {
  5472. struct sk_buff *skb_new;
  5473. skb_new = skb_realloc_headroom(skb, len);
  5474. if (!skb_new) {
  5475. rp->tx_errors++;
  5476. goto out_drop;
  5477. }
  5478. kfree_skb(skb);
  5479. skb = skb_new;
  5480. } else
  5481. skb_orphan(skb);
  5482. align = ((unsigned long) skb->data & (16 - 1));
  5483. headroom = align + sizeof(struct tx_pkt_hdr);
  5484. ehdr = (struct ethhdr *) skb->data;
  5485. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5486. len = skb->len - sizeof(struct tx_pkt_hdr);
  5487. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5488. tp->resv = 0;
  5489. len = skb_headlen(skb);
  5490. mapping = np->ops->map_single(np->device, skb->data,
  5491. len, DMA_TO_DEVICE);
  5492. prod = rp->prod;
  5493. rp->tx_buffs[prod].skb = skb;
  5494. rp->tx_buffs[prod].mapping = mapping;
  5495. mrk = TX_DESC_SOP;
  5496. if (++rp->mark_counter == rp->mark_freq) {
  5497. rp->mark_counter = 0;
  5498. mrk |= TX_DESC_MARK;
  5499. rp->mark_pending++;
  5500. }
  5501. tlen = len;
  5502. nfg = skb_shinfo(skb)->nr_frags;
  5503. while (tlen > 0) {
  5504. tlen -= MAX_TX_DESC_LEN;
  5505. nfg++;
  5506. }
  5507. while (len > 0) {
  5508. unsigned int this_len = len;
  5509. if (this_len > MAX_TX_DESC_LEN)
  5510. this_len = MAX_TX_DESC_LEN;
  5511. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5512. mrk = nfg = 0;
  5513. prod = NEXT_TX(rp, prod);
  5514. mapping += this_len;
  5515. len -= this_len;
  5516. }
  5517. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5518. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5519. len = skb_frag_size(frag);
  5520. mapping = np->ops->map_page(np->device, skb_frag_page(frag),
  5521. frag->page_offset, len,
  5522. DMA_TO_DEVICE);
  5523. rp->tx_buffs[prod].skb = NULL;
  5524. rp->tx_buffs[prod].mapping = mapping;
  5525. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5526. prod = NEXT_TX(rp, prod);
  5527. }
  5528. if (prod < rp->prod)
  5529. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5530. rp->prod = prod;
  5531. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5532. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5533. netif_tx_stop_queue(txq);
  5534. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5535. netif_tx_wake_queue(txq);
  5536. }
  5537. out:
  5538. return NETDEV_TX_OK;
  5539. out_drop:
  5540. rp->tx_errors++;
  5541. kfree_skb(skb);
  5542. goto out;
  5543. }
  5544. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5545. {
  5546. struct niu *np = netdev_priv(dev);
  5547. int err, orig_jumbo, new_jumbo;
  5548. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5549. return -EINVAL;
  5550. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5551. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5552. dev->mtu = new_mtu;
  5553. if (!netif_running(dev) ||
  5554. (orig_jumbo == new_jumbo))
  5555. return 0;
  5556. niu_full_shutdown(np, dev);
  5557. niu_free_channels(np);
  5558. niu_enable_napi(np);
  5559. err = niu_alloc_channels(np);
  5560. if (err)
  5561. return err;
  5562. spin_lock_irq(&np->lock);
  5563. err = niu_init_hw(np);
  5564. if (!err) {
  5565. init_timer(&np->timer);
  5566. np->timer.expires = jiffies + HZ;
  5567. np->timer.data = (unsigned long) np;
  5568. np->timer.function = niu_timer;
  5569. err = niu_enable_interrupts(np, 1);
  5570. if (err)
  5571. niu_stop_hw(np);
  5572. }
  5573. spin_unlock_irq(&np->lock);
  5574. if (!err) {
  5575. netif_tx_start_all_queues(dev);
  5576. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5577. netif_carrier_on(dev);
  5578. add_timer(&np->timer);
  5579. }
  5580. return err;
  5581. }
  5582. static void niu_get_drvinfo(struct net_device *dev,
  5583. struct ethtool_drvinfo *info)
  5584. {
  5585. struct niu *np = netdev_priv(dev);
  5586. struct niu_vpd *vpd = &np->vpd;
  5587. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5588. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5589. snprintf(info->fw_version, sizeof(info->fw_version), "%d.%d",
  5590. vpd->fcode_major, vpd->fcode_minor);
  5591. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5592. strlcpy(info->bus_info, pci_name(np->pdev),
  5593. sizeof(info->bus_info));
  5594. }
  5595. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5596. {
  5597. struct niu *np = netdev_priv(dev);
  5598. struct niu_link_config *lp;
  5599. lp = &np->link_config;
  5600. memset(cmd, 0, sizeof(*cmd));
  5601. cmd->phy_address = np->phy_addr;
  5602. cmd->supported = lp->supported;
  5603. cmd->advertising = lp->active_advertising;
  5604. cmd->autoneg = lp->active_autoneg;
  5605. ethtool_cmd_speed_set(cmd, lp->active_speed);
  5606. cmd->duplex = lp->active_duplex;
  5607. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5608. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5609. XCVR_EXTERNAL : XCVR_INTERNAL;
  5610. return 0;
  5611. }
  5612. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5613. {
  5614. struct niu *np = netdev_priv(dev);
  5615. struct niu_link_config *lp = &np->link_config;
  5616. lp->advertising = cmd->advertising;
  5617. lp->speed = ethtool_cmd_speed(cmd);
  5618. lp->duplex = cmd->duplex;
  5619. lp->autoneg = cmd->autoneg;
  5620. return niu_init_link(np);
  5621. }
  5622. static u32 niu_get_msglevel(struct net_device *dev)
  5623. {
  5624. struct niu *np = netdev_priv(dev);
  5625. return np->msg_enable;
  5626. }
  5627. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5628. {
  5629. struct niu *np = netdev_priv(dev);
  5630. np->msg_enable = value;
  5631. }
  5632. static int niu_nway_reset(struct net_device *dev)
  5633. {
  5634. struct niu *np = netdev_priv(dev);
  5635. if (np->link_config.autoneg)
  5636. return niu_init_link(np);
  5637. return 0;
  5638. }
  5639. static int niu_get_eeprom_len(struct net_device *dev)
  5640. {
  5641. struct niu *np = netdev_priv(dev);
  5642. return np->eeprom_len;
  5643. }
  5644. static int niu_get_eeprom(struct net_device *dev,
  5645. struct ethtool_eeprom *eeprom, u8 *data)
  5646. {
  5647. struct niu *np = netdev_priv(dev);
  5648. u32 offset, len, val;
  5649. offset = eeprom->offset;
  5650. len = eeprom->len;
  5651. if (offset + len < offset)
  5652. return -EINVAL;
  5653. if (offset >= np->eeprom_len)
  5654. return -EINVAL;
  5655. if (offset + len > np->eeprom_len)
  5656. len = eeprom->len = np->eeprom_len - offset;
  5657. if (offset & 3) {
  5658. u32 b_offset, b_count;
  5659. b_offset = offset & 3;
  5660. b_count = 4 - b_offset;
  5661. if (b_count > len)
  5662. b_count = len;
  5663. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5664. memcpy(data, ((char *)&val) + b_offset, b_count);
  5665. data += b_count;
  5666. len -= b_count;
  5667. offset += b_count;
  5668. }
  5669. while (len >= 4) {
  5670. val = nr64(ESPC_NCR(offset / 4));
  5671. memcpy(data, &val, 4);
  5672. data += 4;
  5673. len -= 4;
  5674. offset += 4;
  5675. }
  5676. if (len) {
  5677. val = nr64(ESPC_NCR(offset / 4));
  5678. memcpy(data, &val, len);
  5679. }
  5680. return 0;
  5681. }
  5682. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5683. {
  5684. switch (flow_type) {
  5685. case TCP_V4_FLOW:
  5686. case TCP_V6_FLOW:
  5687. *pid = IPPROTO_TCP;
  5688. break;
  5689. case UDP_V4_FLOW:
  5690. case UDP_V6_FLOW:
  5691. *pid = IPPROTO_UDP;
  5692. break;
  5693. case SCTP_V4_FLOW:
  5694. case SCTP_V6_FLOW:
  5695. *pid = IPPROTO_SCTP;
  5696. break;
  5697. case AH_V4_FLOW:
  5698. case AH_V6_FLOW:
  5699. *pid = IPPROTO_AH;
  5700. break;
  5701. case ESP_V4_FLOW:
  5702. case ESP_V6_FLOW:
  5703. *pid = IPPROTO_ESP;
  5704. break;
  5705. default:
  5706. *pid = 0;
  5707. break;
  5708. }
  5709. }
  5710. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5711. {
  5712. switch (class) {
  5713. case CLASS_CODE_TCP_IPV4:
  5714. *flow_type = TCP_V4_FLOW;
  5715. break;
  5716. case CLASS_CODE_UDP_IPV4:
  5717. *flow_type = UDP_V4_FLOW;
  5718. break;
  5719. case CLASS_CODE_AH_ESP_IPV4:
  5720. *flow_type = AH_V4_FLOW;
  5721. break;
  5722. case CLASS_CODE_SCTP_IPV4:
  5723. *flow_type = SCTP_V4_FLOW;
  5724. break;
  5725. case CLASS_CODE_TCP_IPV6:
  5726. *flow_type = TCP_V6_FLOW;
  5727. break;
  5728. case CLASS_CODE_UDP_IPV6:
  5729. *flow_type = UDP_V6_FLOW;
  5730. break;
  5731. case CLASS_CODE_AH_ESP_IPV6:
  5732. *flow_type = AH_V6_FLOW;
  5733. break;
  5734. case CLASS_CODE_SCTP_IPV6:
  5735. *flow_type = SCTP_V6_FLOW;
  5736. break;
  5737. case CLASS_CODE_USER_PROG1:
  5738. case CLASS_CODE_USER_PROG2:
  5739. case CLASS_CODE_USER_PROG3:
  5740. case CLASS_CODE_USER_PROG4:
  5741. *flow_type = IP_USER_FLOW;
  5742. break;
  5743. default:
  5744. return 0;
  5745. }
  5746. return 1;
  5747. }
  5748. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5749. {
  5750. switch (flow_type) {
  5751. case TCP_V4_FLOW:
  5752. *class = CLASS_CODE_TCP_IPV4;
  5753. break;
  5754. case UDP_V4_FLOW:
  5755. *class = CLASS_CODE_UDP_IPV4;
  5756. break;
  5757. case AH_ESP_V4_FLOW:
  5758. case AH_V4_FLOW:
  5759. case ESP_V4_FLOW:
  5760. *class = CLASS_CODE_AH_ESP_IPV4;
  5761. break;
  5762. case SCTP_V4_FLOW:
  5763. *class = CLASS_CODE_SCTP_IPV4;
  5764. break;
  5765. case TCP_V6_FLOW:
  5766. *class = CLASS_CODE_TCP_IPV6;
  5767. break;
  5768. case UDP_V6_FLOW:
  5769. *class = CLASS_CODE_UDP_IPV6;
  5770. break;
  5771. case AH_ESP_V6_FLOW:
  5772. case AH_V6_FLOW:
  5773. case ESP_V6_FLOW:
  5774. *class = CLASS_CODE_AH_ESP_IPV6;
  5775. break;
  5776. case SCTP_V6_FLOW:
  5777. *class = CLASS_CODE_SCTP_IPV6;
  5778. break;
  5779. default:
  5780. return 0;
  5781. }
  5782. return 1;
  5783. }
  5784. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5785. {
  5786. u64 ethflow = 0;
  5787. if (flow_key & FLOW_KEY_L2DA)
  5788. ethflow |= RXH_L2DA;
  5789. if (flow_key & FLOW_KEY_VLAN)
  5790. ethflow |= RXH_VLAN;
  5791. if (flow_key & FLOW_KEY_IPSA)
  5792. ethflow |= RXH_IP_SRC;
  5793. if (flow_key & FLOW_KEY_IPDA)
  5794. ethflow |= RXH_IP_DST;
  5795. if (flow_key & FLOW_KEY_PROTO)
  5796. ethflow |= RXH_L3_PROTO;
  5797. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5798. ethflow |= RXH_L4_B_0_1;
  5799. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5800. ethflow |= RXH_L4_B_2_3;
  5801. return ethflow;
  5802. }
  5803. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5804. {
  5805. u64 key = 0;
  5806. if (ethflow & RXH_L2DA)
  5807. key |= FLOW_KEY_L2DA;
  5808. if (ethflow & RXH_VLAN)
  5809. key |= FLOW_KEY_VLAN;
  5810. if (ethflow & RXH_IP_SRC)
  5811. key |= FLOW_KEY_IPSA;
  5812. if (ethflow & RXH_IP_DST)
  5813. key |= FLOW_KEY_IPDA;
  5814. if (ethflow & RXH_L3_PROTO)
  5815. key |= FLOW_KEY_PROTO;
  5816. if (ethflow & RXH_L4_B_0_1)
  5817. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5818. if (ethflow & RXH_L4_B_2_3)
  5819. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5820. *flow_key = key;
  5821. return 1;
  5822. }
  5823. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5824. {
  5825. u64 class;
  5826. nfc->data = 0;
  5827. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5828. return -EINVAL;
  5829. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5830. TCAM_KEY_DISC)
  5831. nfc->data = RXH_DISCARD;
  5832. else
  5833. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5834. CLASS_CODE_USER_PROG1]);
  5835. return 0;
  5836. }
  5837. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5838. struct ethtool_rx_flow_spec *fsp)
  5839. {
  5840. u32 tmp;
  5841. u16 prt;
  5842. tmp = (tp->key[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5843. fsp->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5844. tmp = (tp->key[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5845. fsp->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5846. tmp = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5847. fsp->m_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5848. tmp = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5849. fsp->m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5850. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5851. TCAM_V4KEY2_TOS_SHIFT;
  5852. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5853. TCAM_V4KEY2_TOS_SHIFT;
  5854. switch (fsp->flow_type) {
  5855. case TCP_V4_FLOW:
  5856. case UDP_V4_FLOW:
  5857. case SCTP_V4_FLOW:
  5858. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5859. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5860. fsp->h_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5861. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5862. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5863. fsp->h_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5864. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5865. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5866. fsp->m_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5867. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5868. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5869. fsp->m_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5870. break;
  5871. case AH_V4_FLOW:
  5872. case ESP_V4_FLOW:
  5873. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5874. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5875. fsp->h_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5876. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5877. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5878. fsp->m_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5879. break;
  5880. case IP_USER_FLOW:
  5881. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5882. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5883. fsp->h_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5884. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5885. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5886. fsp->m_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5887. fsp->h_u.usr_ip4_spec.proto =
  5888. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5889. TCAM_V4KEY2_PROTO_SHIFT;
  5890. fsp->m_u.usr_ip4_spec.proto =
  5891. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5892. TCAM_V4KEY2_PROTO_SHIFT;
  5893. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5894. break;
  5895. default:
  5896. break;
  5897. }
  5898. }
  5899. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5900. struct ethtool_rxnfc *nfc)
  5901. {
  5902. struct niu_parent *parent = np->parent;
  5903. struct niu_tcam_entry *tp;
  5904. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5905. u16 idx;
  5906. u64 class;
  5907. int ret = 0;
  5908. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5909. tp = &parent->tcam[idx];
  5910. if (!tp->valid) {
  5911. netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n",
  5912. parent->index, (u16)nfc->fs.location, idx);
  5913. return -EINVAL;
  5914. }
  5915. /* fill the flow spec entry */
  5916. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5917. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5918. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5919. if (ret < 0) {
  5920. netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n",
  5921. parent->index);
  5922. ret = -EINVAL;
  5923. goto out;
  5924. }
  5925. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5926. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5927. TCAM_V4KEY2_PROTO_SHIFT;
  5928. if (proto == IPPROTO_ESP) {
  5929. if (fsp->flow_type == AH_V4_FLOW)
  5930. fsp->flow_type = ESP_V4_FLOW;
  5931. else
  5932. fsp->flow_type = ESP_V6_FLOW;
  5933. }
  5934. }
  5935. switch (fsp->flow_type) {
  5936. case TCP_V4_FLOW:
  5937. case UDP_V4_FLOW:
  5938. case SCTP_V4_FLOW:
  5939. case AH_V4_FLOW:
  5940. case ESP_V4_FLOW:
  5941. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5942. break;
  5943. case TCP_V6_FLOW:
  5944. case UDP_V6_FLOW:
  5945. case SCTP_V6_FLOW:
  5946. case AH_V6_FLOW:
  5947. case ESP_V6_FLOW:
  5948. /* Not yet implemented */
  5949. ret = -EINVAL;
  5950. break;
  5951. case IP_USER_FLOW:
  5952. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5953. break;
  5954. default:
  5955. ret = -EINVAL;
  5956. break;
  5957. }
  5958. if (ret < 0)
  5959. goto out;
  5960. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5961. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5962. else
  5963. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5964. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5965. /* put the tcam size here */
  5966. nfc->data = tcam_get_size(np);
  5967. out:
  5968. return ret;
  5969. }
  5970. static int niu_get_ethtool_tcam_all(struct niu *np,
  5971. struct ethtool_rxnfc *nfc,
  5972. u32 *rule_locs)
  5973. {
  5974. struct niu_parent *parent = np->parent;
  5975. struct niu_tcam_entry *tp;
  5976. int i, idx, cnt;
  5977. unsigned long flags;
  5978. int ret = 0;
  5979. /* put the tcam size here */
  5980. nfc->data = tcam_get_size(np);
  5981. niu_lock_parent(np, flags);
  5982. for (cnt = 0, i = 0; i < nfc->data; i++) {
  5983. idx = tcam_get_index(np, i);
  5984. tp = &parent->tcam[idx];
  5985. if (!tp->valid)
  5986. continue;
  5987. if (cnt == nfc->rule_cnt) {
  5988. ret = -EMSGSIZE;
  5989. break;
  5990. }
  5991. rule_locs[cnt] = i;
  5992. cnt++;
  5993. }
  5994. niu_unlock_parent(np, flags);
  5995. nfc->rule_cnt = cnt;
  5996. return ret;
  5997. }
  5998. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  5999. u32 *rule_locs)
  6000. {
  6001. struct niu *np = netdev_priv(dev);
  6002. int ret = 0;
  6003. switch (cmd->cmd) {
  6004. case ETHTOOL_GRXFH:
  6005. ret = niu_get_hash_opts(np, cmd);
  6006. break;
  6007. case ETHTOOL_GRXRINGS:
  6008. cmd->data = np->num_rx_rings;
  6009. break;
  6010. case ETHTOOL_GRXCLSRLCNT:
  6011. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6012. break;
  6013. case ETHTOOL_GRXCLSRULE:
  6014. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6015. break;
  6016. case ETHTOOL_GRXCLSRLALL:
  6017. ret = niu_get_ethtool_tcam_all(np, cmd, rule_locs);
  6018. break;
  6019. default:
  6020. ret = -EINVAL;
  6021. break;
  6022. }
  6023. return ret;
  6024. }
  6025. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6026. {
  6027. u64 class;
  6028. u64 flow_key = 0;
  6029. unsigned long flags;
  6030. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6031. return -EINVAL;
  6032. if (class < CLASS_CODE_USER_PROG1 ||
  6033. class > CLASS_CODE_SCTP_IPV6)
  6034. return -EINVAL;
  6035. if (nfc->data & RXH_DISCARD) {
  6036. niu_lock_parent(np, flags);
  6037. flow_key = np->parent->tcam_key[class -
  6038. CLASS_CODE_USER_PROG1];
  6039. flow_key |= TCAM_KEY_DISC;
  6040. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6041. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6042. niu_unlock_parent(np, flags);
  6043. return 0;
  6044. } else {
  6045. /* Discard was set before, but is not set now */
  6046. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6047. TCAM_KEY_DISC) {
  6048. niu_lock_parent(np, flags);
  6049. flow_key = np->parent->tcam_key[class -
  6050. CLASS_CODE_USER_PROG1];
  6051. flow_key &= ~TCAM_KEY_DISC;
  6052. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6053. flow_key);
  6054. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6055. flow_key;
  6056. niu_unlock_parent(np, flags);
  6057. }
  6058. }
  6059. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6060. return -EINVAL;
  6061. niu_lock_parent(np, flags);
  6062. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6063. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6064. niu_unlock_parent(np, flags);
  6065. return 0;
  6066. }
  6067. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6068. struct niu_tcam_entry *tp,
  6069. int l2_rdc_tab, u64 class)
  6070. {
  6071. u8 pid = 0;
  6072. u32 sip, dip, sipm, dipm, spi, spim;
  6073. u16 sport, dport, spm, dpm;
  6074. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6075. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6076. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6077. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6078. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6079. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6080. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6081. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6082. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6083. tp->key[3] |= dip;
  6084. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6085. tp->key_mask[3] |= dipm;
  6086. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6087. TCAM_V4KEY2_TOS_SHIFT);
  6088. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6089. TCAM_V4KEY2_TOS_SHIFT);
  6090. switch (fsp->flow_type) {
  6091. case TCP_V4_FLOW:
  6092. case UDP_V4_FLOW:
  6093. case SCTP_V4_FLOW:
  6094. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6095. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6096. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6097. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6098. tp->key[2] |= (((u64)sport << 16) | dport);
  6099. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6100. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6101. break;
  6102. case AH_V4_FLOW:
  6103. case ESP_V4_FLOW:
  6104. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6105. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6106. tp->key[2] |= spi;
  6107. tp->key_mask[2] |= spim;
  6108. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6109. break;
  6110. case IP_USER_FLOW:
  6111. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6112. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6113. tp->key[2] |= spi;
  6114. tp->key_mask[2] |= spim;
  6115. pid = fsp->h_u.usr_ip4_spec.proto;
  6116. break;
  6117. default:
  6118. break;
  6119. }
  6120. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6121. if (pid) {
  6122. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6123. }
  6124. }
  6125. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6126. struct ethtool_rxnfc *nfc)
  6127. {
  6128. struct niu_parent *parent = np->parent;
  6129. struct niu_tcam_entry *tp;
  6130. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6131. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6132. int l2_rdc_table = rdc_table->first_table_num;
  6133. u16 idx;
  6134. u64 class;
  6135. unsigned long flags;
  6136. int err, ret;
  6137. ret = 0;
  6138. idx = nfc->fs.location;
  6139. if (idx >= tcam_get_size(np))
  6140. return -EINVAL;
  6141. if (fsp->flow_type == IP_USER_FLOW) {
  6142. int i;
  6143. int add_usr_cls = 0;
  6144. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6145. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6146. if (uspec->ip_ver != ETH_RX_NFC_IP4)
  6147. return -EINVAL;
  6148. niu_lock_parent(np, flags);
  6149. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6150. if (parent->l3_cls[i]) {
  6151. if (uspec->proto == parent->l3_cls_pid[i]) {
  6152. class = parent->l3_cls[i];
  6153. parent->l3_cls_refcnt[i]++;
  6154. add_usr_cls = 1;
  6155. break;
  6156. }
  6157. } else {
  6158. /* Program new user IP class */
  6159. switch (i) {
  6160. case 0:
  6161. class = CLASS_CODE_USER_PROG1;
  6162. break;
  6163. case 1:
  6164. class = CLASS_CODE_USER_PROG2;
  6165. break;
  6166. case 2:
  6167. class = CLASS_CODE_USER_PROG3;
  6168. break;
  6169. case 3:
  6170. class = CLASS_CODE_USER_PROG4;
  6171. break;
  6172. default:
  6173. break;
  6174. }
  6175. ret = tcam_user_ip_class_set(np, class, 0,
  6176. uspec->proto,
  6177. uspec->tos,
  6178. umask->tos);
  6179. if (ret)
  6180. goto out;
  6181. ret = tcam_user_ip_class_enable(np, class, 1);
  6182. if (ret)
  6183. goto out;
  6184. parent->l3_cls[i] = class;
  6185. parent->l3_cls_pid[i] = uspec->proto;
  6186. parent->l3_cls_refcnt[i]++;
  6187. add_usr_cls = 1;
  6188. break;
  6189. }
  6190. }
  6191. if (!add_usr_cls) {
  6192. netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n",
  6193. parent->index, __func__, uspec->proto);
  6194. ret = -EINVAL;
  6195. goto out;
  6196. }
  6197. niu_unlock_parent(np, flags);
  6198. } else {
  6199. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6200. return -EINVAL;
  6201. }
  6202. }
  6203. niu_lock_parent(np, flags);
  6204. idx = tcam_get_index(np, idx);
  6205. tp = &parent->tcam[idx];
  6206. memset(tp, 0, sizeof(*tp));
  6207. /* fill in the tcam key and mask */
  6208. switch (fsp->flow_type) {
  6209. case TCP_V4_FLOW:
  6210. case UDP_V4_FLOW:
  6211. case SCTP_V4_FLOW:
  6212. case AH_V4_FLOW:
  6213. case ESP_V4_FLOW:
  6214. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6215. break;
  6216. case TCP_V6_FLOW:
  6217. case UDP_V6_FLOW:
  6218. case SCTP_V6_FLOW:
  6219. case AH_V6_FLOW:
  6220. case ESP_V6_FLOW:
  6221. /* Not yet implemented */
  6222. netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n",
  6223. parent->index, __func__, fsp->flow_type);
  6224. ret = -EINVAL;
  6225. goto out;
  6226. case IP_USER_FLOW:
  6227. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6228. break;
  6229. default:
  6230. netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n",
  6231. parent->index, __func__, fsp->flow_type);
  6232. ret = -EINVAL;
  6233. goto out;
  6234. }
  6235. /* fill in the assoc data */
  6236. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6237. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6238. } else {
  6239. if (fsp->ring_cookie >= np->num_rx_rings) {
  6240. netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n",
  6241. parent->index, __func__,
  6242. (long long)fsp->ring_cookie);
  6243. ret = -EINVAL;
  6244. goto out;
  6245. }
  6246. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6247. (fsp->ring_cookie <<
  6248. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6249. }
  6250. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6251. if (err) {
  6252. ret = -EINVAL;
  6253. goto out;
  6254. }
  6255. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6256. if (err) {
  6257. ret = -EINVAL;
  6258. goto out;
  6259. }
  6260. /* validate the entry */
  6261. tp->valid = 1;
  6262. np->clas.tcam_valid_entries++;
  6263. out:
  6264. niu_unlock_parent(np, flags);
  6265. return ret;
  6266. }
  6267. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6268. {
  6269. struct niu_parent *parent = np->parent;
  6270. struct niu_tcam_entry *tp;
  6271. u16 idx;
  6272. unsigned long flags;
  6273. u64 class;
  6274. int ret = 0;
  6275. if (loc >= tcam_get_size(np))
  6276. return -EINVAL;
  6277. niu_lock_parent(np, flags);
  6278. idx = tcam_get_index(np, loc);
  6279. tp = &parent->tcam[idx];
  6280. /* if the entry is of a user defined class, then update*/
  6281. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6282. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6283. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6284. int i;
  6285. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6286. if (parent->l3_cls[i] == class) {
  6287. parent->l3_cls_refcnt[i]--;
  6288. if (!parent->l3_cls_refcnt[i]) {
  6289. /* disable class */
  6290. ret = tcam_user_ip_class_enable(np,
  6291. class,
  6292. 0);
  6293. if (ret)
  6294. goto out;
  6295. parent->l3_cls[i] = 0;
  6296. parent->l3_cls_pid[i] = 0;
  6297. }
  6298. break;
  6299. }
  6300. }
  6301. if (i == NIU_L3_PROG_CLS) {
  6302. netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n",
  6303. parent->index, __func__,
  6304. (unsigned long long)class);
  6305. ret = -EINVAL;
  6306. goto out;
  6307. }
  6308. }
  6309. ret = tcam_flush(np, idx);
  6310. if (ret)
  6311. goto out;
  6312. /* invalidate the entry */
  6313. tp->valid = 0;
  6314. np->clas.tcam_valid_entries--;
  6315. out:
  6316. niu_unlock_parent(np, flags);
  6317. return ret;
  6318. }
  6319. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6320. {
  6321. struct niu *np = netdev_priv(dev);
  6322. int ret = 0;
  6323. switch (cmd->cmd) {
  6324. case ETHTOOL_SRXFH:
  6325. ret = niu_set_hash_opts(np, cmd);
  6326. break;
  6327. case ETHTOOL_SRXCLSRLINS:
  6328. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6329. break;
  6330. case ETHTOOL_SRXCLSRLDEL:
  6331. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6332. break;
  6333. default:
  6334. ret = -EINVAL;
  6335. break;
  6336. }
  6337. return ret;
  6338. }
  6339. static const struct {
  6340. const char string[ETH_GSTRING_LEN];
  6341. } niu_xmac_stat_keys[] = {
  6342. { "tx_frames" },
  6343. { "tx_bytes" },
  6344. { "tx_fifo_errors" },
  6345. { "tx_overflow_errors" },
  6346. { "tx_max_pkt_size_errors" },
  6347. { "tx_underflow_errors" },
  6348. { "rx_local_faults" },
  6349. { "rx_remote_faults" },
  6350. { "rx_link_faults" },
  6351. { "rx_align_errors" },
  6352. { "rx_frags" },
  6353. { "rx_mcasts" },
  6354. { "rx_bcasts" },
  6355. { "rx_hist_cnt1" },
  6356. { "rx_hist_cnt2" },
  6357. { "rx_hist_cnt3" },
  6358. { "rx_hist_cnt4" },
  6359. { "rx_hist_cnt5" },
  6360. { "rx_hist_cnt6" },
  6361. { "rx_hist_cnt7" },
  6362. { "rx_octets" },
  6363. { "rx_code_violations" },
  6364. { "rx_len_errors" },
  6365. { "rx_crc_errors" },
  6366. { "rx_underflows" },
  6367. { "rx_overflows" },
  6368. { "pause_off_state" },
  6369. { "pause_on_state" },
  6370. { "pause_received" },
  6371. };
  6372. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6373. static const struct {
  6374. const char string[ETH_GSTRING_LEN];
  6375. } niu_bmac_stat_keys[] = {
  6376. { "tx_underflow_errors" },
  6377. { "tx_max_pkt_size_errors" },
  6378. { "tx_bytes" },
  6379. { "tx_frames" },
  6380. { "rx_overflows" },
  6381. { "rx_frames" },
  6382. { "rx_align_errors" },
  6383. { "rx_crc_errors" },
  6384. { "rx_len_errors" },
  6385. { "pause_off_state" },
  6386. { "pause_on_state" },
  6387. { "pause_received" },
  6388. };
  6389. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6390. static const struct {
  6391. const char string[ETH_GSTRING_LEN];
  6392. } niu_rxchan_stat_keys[] = {
  6393. { "rx_channel" },
  6394. { "rx_packets" },
  6395. { "rx_bytes" },
  6396. { "rx_dropped" },
  6397. { "rx_errors" },
  6398. };
  6399. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6400. static const struct {
  6401. const char string[ETH_GSTRING_LEN];
  6402. } niu_txchan_stat_keys[] = {
  6403. { "tx_channel" },
  6404. { "tx_packets" },
  6405. { "tx_bytes" },
  6406. { "tx_errors" },
  6407. };
  6408. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6409. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6410. {
  6411. struct niu *np = netdev_priv(dev);
  6412. int i;
  6413. if (stringset != ETH_SS_STATS)
  6414. return;
  6415. if (np->flags & NIU_FLAGS_XMAC) {
  6416. memcpy(data, niu_xmac_stat_keys,
  6417. sizeof(niu_xmac_stat_keys));
  6418. data += sizeof(niu_xmac_stat_keys);
  6419. } else {
  6420. memcpy(data, niu_bmac_stat_keys,
  6421. sizeof(niu_bmac_stat_keys));
  6422. data += sizeof(niu_bmac_stat_keys);
  6423. }
  6424. for (i = 0; i < np->num_rx_rings; i++) {
  6425. memcpy(data, niu_rxchan_stat_keys,
  6426. sizeof(niu_rxchan_stat_keys));
  6427. data += sizeof(niu_rxchan_stat_keys);
  6428. }
  6429. for (i = 0; i < np->num_tx_rings; i++) {
  6430. memcpy(data, niu_txchan_stat_keys,
  6431. sizeof(niu_txchan_stat_keys));
  6432. data += sizeof(niu_txchan_stat_keys);
  6433. }
  6434. }
  6435. static int niu_get_sset_count(struct net_device *dev, int stringset)
  6436. {
  6437. struct niu *np = netdev_priv(dev);
  6438. if (stringset != ETH_SS_STATS)
  6439. return -EINVAL;
  6440. return (np->flags & NIU_FLAGS_XMAC ?
  6441. NUM_XMAC_STAT_KEYS :
  6442. NUM_BMAC_STAT_KEYS) +
  6443. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6444. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS);
  6445. }
  6446. static void niu_get_ethtool_stats(struct net_device *dev,
  6447. struct ethtool_stats *stats, u64 *data)
  6448. {
  6449. struct niu *np = netdev_priv(dev);
  6450. int i;
  6451. niu_sync_mac_stats(np);
  6452. if (np->flags & NIU_FLAGS_XMAC) {
  6453. memcpy(data, &np->mac_stats.xmac,
  6454. sizeof(struct niu_xmac_stats));
  6455. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6456. } else {
  6457. memcpy(data, &np->mac_stats.bmac,
  6458. sizeof(struct niu_bmac_stats));
  6459. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6460. }
  6461. for (i = 0; i < np->num_rx_rings; i++) {
  6462. struct rx_ring_info *rp = &np->rx_rings[i];
  6463. niu_sync_rx_discard_stats(np, rp, 0);
  6464. data[0] = rp->rx_channel;
  6465. data[1] = rp->rx_packets;
  6466. data[2] = rp->rx_bytes;
  6467. data[3] = rp->rx_dropped;
  6468. data[4] = rp->rx_errors;
  6469. data += 5;
  6470. }
  6471. for (i = 0; i < np->num_tx_rings; i++) {
  6472. struct tx_ring_info *rp = &np->tx_rings[i];
  6473. data[0] = rp->tx_channel;
  6474. data[1] = rp->tx_packets;
  6475. data[2] = rp->tx_bytes;
  6476. data[3] = rp->tx_errors;
  6477. data += 4;
  6478. }
  6479. }
  6480. static u64 niu_led_state_save(struct niu *np)
  6481. {
  6482. if (np->flags & NIU_FLAGS_XMAC)
  6483. return nr64_mac(XMAC_CONFIG);
  6484. else
  6485. return nr64_mac(BMAC_XIF_CONFIG);
  6486. }
  6487. static void niu_led_state_restore(struct niu *np, u64 val)
  6488. {
  6489. if (np->flags & NIU_FLAGS_XMAC)
  6490. nw64_mac(XMAC_CONFIG, val);
  6491. else
  6492. nw64_mac(BMAC_XIF_CONFIG, val);
  6493. }
  6494. static void niu_force_led(struct niu *np, int on)
  6495. {
  6496. u64 val, reg, bit;
  6497. if (np->flags & NIU_FLAGS_XMAC) {
  6498. reg = XMAC_CONFIG;
  6499. bit = XMAC_CONFIG_FORCE_LED_ON;
  6500. } else {
  6501. reg = BMAC_XIF_CONFIG;
  6502. bit = BMAC_XIF_CONFIG_LINK_LED;
  6503. }
  6504. val = nr64_mac(reg);
  6505. if (on)
  6506. val |= bit;
  6507. else
  6508. val &= ~bit;
  6509. nw64_mac(reg, val);
  6510. }
  6511. static int niu_set_phys_id(struct net_device *dev,
  6512. enum ethtool_phys_id_state state)
  6513. {
  6514. struct niu *np = netdev_priv(dev);
  6515. if (!netif_running(dev))
  6516. return -EAGAIN;
  6517. switch (state) {
  6518. case ETHTOOL_ID_ACTIVE:
  6519. np->orig_led_state = niu_led_state_save(np);
  6520. return 1; /* cycle on/off once per second */
  6521. case ETHTOOL_ID_ON:
  6522. niu_force_led(np, 1);
  6523. break;
  6524. case ETHTOOL_ID_OFF:
  6525. niu_force_led(np, 0);
  6526. break;
  6527. case ETHTOOL_ID_INACTIVE:
  6528. niu_led_state_restore(np, np->orig_led_state);
  6529. }
  6530. return 0;
  6531. }
  6532. static const struct ethtool_ops niu_ethtool_ops = {
  6533. .get_drvinfo = niu_get_drvinfo,
  6534. .get_link = ethtool_op_get_link,
  6535. .get_msglevel = niu_get_msglevel,
  6536. .set_msglevel = niu_set_msglevel,
  6537. .nway_reset = niu_nway_reset,
  6538. .get_eeprom_len = niu_get_eeprom_len,
  6539. .get_eeprom = niu_get_eeprom,
  6540. .get_settings = niu_get_settings,
  6541. .set_settings = niu_set_settings,
  6542. .get_strings = niu_get_strings,
  6543. .get_sset_count = niu_get_sset_count,
  6544. .get_ethtool_stats = niu_get_ethtool_stats,
  6545. .set_phys_id = niu_set_phys_id,
  6546. .get_rxnfc = niu_get_nfc,
  6547. .set_rxnfc = niu_set_nfc,
  6548. };
  6549. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6550. int ldg, int ldn)
  6551. {
  6552. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6553. return -EINVAL;
  6554. if (ldn < 0 || ldn > LDN_MAX)
  6555. return -EINVAL;
  6556. parent->ldg_map[ldn] = ldg;
  6557. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6558. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6559. * the firmware, and we're not supposed to change them.
  6560. * Validate the mapping, because if it's wrong we probably
  6561. * won't get any interrupts and that's painful to debug.
  6562. */
  6563. if (nr64(LDG_NUM(ldn)) != ldg) {
  6564. dev_err(np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n",
  6565. np->port, ldn, ldg,
  6566. (unsigned long long) nr64(LDG_NUM(ldn)));
  6567. return -EINVAL;
  6568. }
  6569. } else
  6570. nw64(LDG_NUM(ldn), ldg);
  6571. return 0;
  6572. }
  6573. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6574. {
  6575. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6576. return -EINVAL;
  6577. nw64(LDG_TIMER_RES, res);
  6578. return 0;
  6579. }
  6580. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6581. {
  6582. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6583. (func < 0 || func > 3) ||
  6584. (vector < 0 || vector > 0x1f))
  6585. return -EINVAL;
  6586. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6587. return 0;
  6588. }
  6589. static int niu_pci_eeprom_read(struct niu *np, u32 addr)
  6590. {
  6591. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6592. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6593. int limit;
  6594. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6595. return -EINVAL;
  6596. frame = frame_base;
  6597. nw64(ESPC_PIO_STAT, frame);
  6598. limit = 64;
  6599. do {
  6600. udelay(5);
  6601. frame = nr64(ESPC_PIO_STAT);
  6602. if (frame & ESPC_PIO_STAT_READ_END)
  6603. break;
  6604. } while (limit--);
  6605. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6606. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6607. (unsigned long long) frame);
  6608. return -ENODEV;
  6609. }
  6610. frame = frame_base;
  6611. nw64(ESPC_PIO_STAT, frame);
  6612. limit = 64;
  6613. do {
  6614. udelay(5);
  6615. frame = nr64(ESPC_PIO_STAT);
  6616. if (frame & ESPC_PIO_STAT_READ_END)
  6617. break;
  6618. } while (limit--);
  6619. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6620. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6621. (unsigned long long) frame);
  6622. return -ENODEV;
  6623. }
  6624. frame = nr64(ESPC_PIO_STAT);
  6625. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6626. }
  6627. static int niu_pci_eeprom_read16(struct niu *np, u32 off)
  6628. {
  6629. int err = niu_pci_eeprom_read(np, off);
  6630. u16 val;
  6631. if (err < 0)
  6632. return err;
  6633. val = (err << 8);
  6634. err = niu_pci_eeprom_read(np, off + 1);
  6635. if (err < 0)
  6636. return err;
  6637. val |= (err & 0xff);
  6638. return val;
  6639. }
  6640. static int niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6641. {
  6642. int err = niu_pci_eeprom_read(np, off);
  6643. u16 val;
  6644. if (err < 0)
  6645. return err;
  6646. val = (err & 0xff);
  6647. err = niu_pci_eeprom_read(np, off + 1);
  6648. if (err < 0)
  6649. return err;
  6650. val |= (err & 0xff) << 8;
  6651. return val;
  6652. }
  6653. static int niu_pci_vpd_get_propname(struct niu *np, u32 off, char *namebuf,
  6654. int namebuf_len)
  6655. {
  6656. int i;
  6657. for (i = 0; i < namebuf_len; i++) {
  6658. int err = niu_pci_eeprom_read(np, off + i);
  6659. if (err < 0)
  6660. return err;
  6661. *namebuf++ = err;
  6662. if (!err)
  6663. break;
  6664. }
  6665. if (i >= namebuf_len)
  6666. return -EINVAL;
  6667. return i + 1;
  6668. }
  6669. static void niu_vpd_parse_version(struct niu *np)
  6670. {
  6671. struct niu_vpd *vpd = &np->vpd;
  6672. int len = strlen(vpd->version) + 1;
  6673. const char *s = vpd->version;
  6674. int i;
  6675. for (i = 0; i < len - 5; i++) {
  6676. if (!strncmp(s + i, "FCode ", 6))
  6677. break;
  6678. }
  6679. if (i >= len - 5)
  6680. return;
  6681. s += i + 5;
  6682. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6683. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6684. "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6685. vpd->fcode_major, vpd->fcode_minor);
  6686. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6687. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6688. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6689. np->flags |= NIU_FLAGS_VPD_VALID;
  6690. }
  6691. /* ESPC_PIO_EN_ENABLE must be set */
  6692. static int niu_pci_vpd_scan_props(struct niu *np, u32 start, u32 end)
  6693. {
  6694. unsigned int found_mask = 0;
  6695. #define FOUND_MASK_MODEL 0x00000001
  6696. #define FOUND_MASK_BMODEL 0x00000002
  6697. #define FOUND_MASK_VERS 0x00000004
  6698. #define FOUND_MASK_MAC 0x00000008
  6699. #define FOUND_MASK_NMAC 0x00000010
  6700. #define FOUND_MASK_PHY 0x00000020
  6701. #define FOUND_MASK_ALL 0x0000003f
  6702. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6703. "VPD_SCAN: start[%x] end[%x]\n", start, end);
  6704. while (start < end) {
  6705. int len, err, prop_len;
  6706. char namebuf[64];
  6707. u8 *prop_buf;
  6708. int max_len;
  6709. if (found_mask == FOUND_MASK_ALL) {
  6710. niu_vpd_parse_version(np);
  6711. return 1;
  6712. }
  6713. err = niu_pci_eeprom_read(np, start + 2);
  6714. if (err < 0)
  6715. return err;
  6716. len = err;
  6717. start += 3;
  6718. prop_len = niu_pci_eeprom_read(np, start + 4);
  6719. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6720. if (err < 0)
  6721. return err;
  6722. prop_buf = NULL;
  6723. max_len = 0;
  6724. if (!strcmp(namebuf, "model")) {
  6725. prop_buf = np->vpd.model;
  6726. max_len = NIU_VPD_MODEL_MAX;
  6727. found_mask |= FOUND_MASK_MODEL;
  6728. } else if (!strcmp(namebuf, "board-model")) {
  6729. prop_buf = np->vpd.board_model;
  6730. max_len = NIU_VPD_BD_MODEL_MAX;
  6731. found_mask |= FOUND_MASK_BMODEL;
  6732. } else if (!strcmp(namebuf, "version")) {
  6733. prop_buf = np->vpd.version;
  6734. max_len = NIU_VPD_VERSION_MAX;
  6735. found_mask |= FOUND_MASK_VERS;
  6736. } else if (!strcmp(namebuf, "local-mac-address")) {
  6737. prop_buf = np->vpd.local_mac;
  6738. max_len = ETH_ALEN;
  6739. found_mask |= FOUND_MASK_MAC;
  6740. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6741. prop_buf = &np->vpd.mac_num;
  6742. max_len = 1;
  6743. found_mask |= FOUND_MASK_NMAC;
  6744. } else if (!strcmp(namebuf, "phy-type")) {
  6745. prop_buf = np->vpd.phy_type;
  6746. max_len = NIU_VPD_PHY_TYPE_MAX;
  6747. found_mask |= FOUND_MASK_PHY;
  6748. }
  6749. if (max_len && prop_len > max_len) {
  6750. dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len);
  6751. return -EINVAL;
  6752. }
  6753. if (prop_buf) {
  6754. u32 off = start + 5 + err;
  6755. int i;
  6756. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6757. "VPD_SCAN: Reading in property [%s] len[%d]\n",
  6758. namebuf, prop_len);
  6759. for (i = 0; i < prop_len; i++)
  6760. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6761. }
  6762. start += len;
  6763. }
  6764. return 0;
  6765. }
  6766. /* ESPC_PIO_EN_ENABLE must be set */
  6767. static void niu_pci_vpd_fetch(struct niu *np, u32 start)
  6768. {
  6769. u32 offset;
  6770. int err;
  6771. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6772. if (err < 0)
  6773. return;
  6774. offset = err + 3;
  6775. while (start + offset < ESPC_EEPROM_SIZE) {
  6776. u32 here = start + offset;
  6777. u32 end;
  6778. err = niu_pci_eeprom_read(np, here);
  6779. if (err != 0x90)
  6780. return;
  6781. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6782. if (err < 0)
  6783. return;
  6784. here = start + offset + 3;
  6785. end = start + offset + err;
  6786. offset += err;
  6787. err = niu_pci_vpd_scan_props(np, here, end);
  6788. if (err < 0 || err == 1)
  6789. return;
  6790. }
  6791. }
  6792. /* ESPC_PIO_EN_ENABLE must be set */
  6793. static u32 niu_pci_vpd_offset(struct niu *np)
  6794. {
  6795. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6796. int err;
  6797. while (start < end) {
  6798. ret = start;
  6799. /* ROM header signature? */
  6800. err = niu_pci_eeprom_read16(np, start + 0);
  6801. if (err != 0x55aa)
  6802. return 0;
  6803. /* Apply offset to PCI data structure. */
  6804. err = niu_pci_eeprom_read16(np, start + 23);
  6805. if (err < 0)
  6806. return 0;
  6807. start += err;
  6808. /* Check for "PCIR" signature. */
  6809. err = niu_pci_eeprom_read16(np, start + 0);
  6810. if (err != 0x5043)
  6811. return 0;
  6812. err = niu_pci_eeprom_read16(np, start + 2);
  6813. if (err != 0x4952)
  6814. return 0;
  6815. /* Check for OBP image type. */
  6816. err = niu_pci_eeprom_read(np, start + 20);
  6817. if (err < 0)
  6818. return 0;
  6819. if (err != 0x01) {
  6820. err = niu_pci_eeprom_read(np, ret + 2);
  6821. if (err < 0)
  6822. return 0;
  6823. start = ret + (err * 512);
  6824. continue;
  6825. }
  6826. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6827. if (err < 0)
  6828. return err;
  6829. ret += err;
  6830. err = niu_pci_eeprom_read(np, ret + 0);
  6831. if (err != 0x82)
  6832. return 0;
  6833. return ret;
  6834. }
  6835. return 0;
  6836. }
  6837. static int niu_phy_type_prop_decode(struct niu *np, const char *phy_prop)
  6838. {
  6839. if (!strcmp(phy_prop, "mif")) {
  6840. /* 1G copper, MII */
  6841. np->flags &= ~(NIU_FLAGS_FIBER |
  6842. NIU_FLAGS_10G);
  6843. np->mac_xcvr = MAC_XCVR_MII;
  6844. } else if (!strcmp(phy_prop, "xgf")) {
  6845. /* 10G fiber, XPCS */
  6846. np->flags |= (NIU_FLAGS_10G |
  6847. NIU_FLAGS_FIBER);
  6848. np->mac_xcvr = MAC_XCVR_XPCS;
  6849. } else if (!strcmp(phy_prop, "pcs")) {
  6850. /* 1G fiber, PCS */
  6851. np->flags &= ~NIU_FLAGS_10G;
  6852. np->flags |= NIU_FLAGS_FIBER;
  6853. np->mac_xcvr = MAC_XCVR_PCS;
  6854. } else if (!strcmp(phy_prop, "xgc")) {
  6855. /* 10G copper, XPCS */
  6856. np->flags |= NIU_FLAGS_10G;
  6857. np->flags &= ~NIU_FLAGS_FIBER;
  6858. np->mac_xcvr = MAC_XCVR_XPCS;
  6859. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6860. /* 10G Serdes or 1G Serdes, default to 10G */
  6861. np->flags |= NIU_FLAGS_10G;
  6862. np->flags &= ~NIU_FLAGS_FIBER;
  6863. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6864. np->mac_xcvr = MAC_XCVR_XPCS;
  6865. } else {
  6866. return -EINVAL;
  6867. }
  6868. return 0;
  6869. }
  6870. static int niu_pci_vpd_get_nports(struct niu *np)
  6871. {
  6872. int ports = 0;
  6873. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6874. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6875. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6876. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6877. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6878. ports = 4;
  6879. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6880. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6881. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6882. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6883. ports = 2;
  6884. }
  6885. return ports;
  6886. }
  6887. static void niu_pci_vpd_validate(struct niu *np)
  6888. {
  6889. struct net_device *dev = np->dev;
  6890. struct niu_vpd *vpd = &np->vpd;
  6891. u8 val8;
  6892. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6893. dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n");
  6894. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6895. return;
  6896. }
  6897. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6898. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6899. np->flags |= NIU_FLAGS_10G;
  6900. np->flags &= ~NIU_FLAGS_FIBER;
  6901. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6902. np->mac_xcvr = MAC_XCVR_PCS;
  6903. if (np->port > 1) {
  6904. np->flags |= NIU_FLAGS_FIBER;
  6905. np->flags &= ~NIU_FLAGS_10G;
  6906. }
  6907. if (np->flags & NIU_FLAGS_10G)
  6908. np->mac_xcvr = MAC_XCVR_XPCS;
  6909. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6910. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6911. NIU_FLAGS_HOTPLUG_PHY);
  6912. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6913. dev_err(np->device, "Illegal phy string [%s]\n",
  6914. np->vpd.phy_type);
  6915. dev_err(np->device, "Falling back to SPROM\n");
  6916. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6917. return;
  6918. }
  6919. memcpy(dev->dev_addr, vpd->local_mac, ETH_ALEN);
  6920. val8 = dev->dev_addr[5];
  6921. dev->dev_addr[5] += np->port;
  6922. if (dev->dev_addr[5] < val8)
  6923. dev->dev_addr[4]++;
  6924. }
  6925. static int niu_pci_probe_sprom(struct niu *np)
  6926. {
  6927. struct net_device *dev = np->dev;
  6928. int len, i;
  6929. u64 val, sum;
  6930. u8 val8;
  6931. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6932. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6933. len = val / 4;
  6934. np->eeprom_len = len;
  6935. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6936. "SPROM: Image size %llu\n", (unsigned long long)val);
  6937. sum = 0;
  6938. for (i = 0; i < len; i++) {
  6939. val = nr64(ESPC_NCR(i));
  6940. sum += (val >> 0) & 0xff;
  6941. sum += (val >> 8) & 0xff;
  6942. sum += (val >> 16) & 0xff;
  6943. sum += (val >> 24) & 0xff;
  6944. }
  6945. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6946. "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6947. if ((sum & 0xff) != 0xab) {
  6948. dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff));
  6949. return -EINVAL;
  6950. }
  6951. val = nr64(ESPC_PHY_TYPE);
  6952. switch (np->port) {
  6953. case 0:
  6954. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6955. ESPC_PHY_TYPE_PORT0_SHIFT;
  6956. break;
  6957. case 1:
  6958. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6959. ESPC_PHY_TYPE_PORT1_SHIFT;
  6960. break;
  6961. case 2:
  6962. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6963. ESPC_PHY_TYPE_PORT2_SHIFT;
  6964. break;
  6965. case 3:
  6966. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6967. ESPC_PHY_TYPE_PORT3_SHIFT;
  6968. break;
  6969. default:
  6970. dev_err(np->device, "Bogus port number %u\n",
  6971. np->port);
  6972. return -EINVAL;
  6973. }
  6974. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6975. "SPROM: PHY type %x\n", val8);
  6976. switch (val8) {
  6977. case ESPC_PHY_TYPE_1G_COPPER:
  6978. /* 1G copper, MII */
  6979. np->flags &= ~(NIU_FLAGS_FIBER |
  6980. NIU_FLAGS_10G);
  6981. np->mac_xcvr = MAC_XCVR_MII;
  6982. break;
  6983. case ESPC_PHY_TYPE_1G_FIBER:
  6984. /* 1G fiber, PCS */
  6985. np->flags &= ~NIU_FLAGS_10G;
  6986. np->flags |= NIU_FLAGS_FIBER;
  6987. np->mac_xcvr = MAC_XCVR_PCS;
  6988. break;
  6989. case ESPC_PHY_TYPE_10G_COPPER:
  6990. /* 10G copper, XPCS */
  6991. np->flags |= NIU_FLAGS_10G;
  6992. np->flags &= ~NIU_FLAGS_FIBER;
  6993. np->mac_xcvr = MAC_XCVR_XPCS;
  6994. break;
  6995. case ESPC_PHY_TYPE_10G_FIBER:
  6996. /* 10G fiber, XPCS */
  6997. np->flags |= (NIU_FLAGS_10G |
  6998. NIU_FLAGS_FIBER);
  6999. np->mac_xcvr = MAC_XCVR_XPCS;
  7000. break;
  7001. default:
  7002. dev_err(np->device, "Bogus SPROM phy type %u\n", val8);
  7003. return -EINVAL;
  7004. }
  7005. val = nr64(ESPC_MAC_ADDR0);
  7006. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7007. "SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val);
  7008. dev->dev_addr[0] = (val >> 0) & 0xff;
  7009. dev->dev_addr[1] = (val >> 8) & 0xff;
  7010. dev->dev_addr[2] = (val >> 16) & 0xff;
  7011. dev->dev_addr[3] = (val >> 24) & 0xff;
  7012. val = nr64(ESPC_MAC_ADDR1);
  7013. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7014. "SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val);
  7015. dev->dev_addr[4] = (val >> 0) & 0xff;
  7016. dev->dev_addr[5] = (val >> 8) & 0xff;
  7017. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7018. dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n",
  7019. dev->dev_addr);
  7020. return -EINVAL;
  7021. }
  7022. val8 = dev->dev_addr[5];
  7023. dev->dev_addr[5] += np->port;
  7024. if (dev->dev_addr[5] < val8)
  7025. dev->dev_addr[4]++;
  7026. val = nr64(ESPC_MOD_STR_LEN);
  7027. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7028. "SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7029. if (val >= 8 * 4)
  7030. return -EINVAL;
  7031. for (i = 0; i < val; i += 4) {
  7032. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7033. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7034. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7035. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7036. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7037. }
  7038. np->vpd.model[val] = '\0';
  7039. val = nr64(ESPC_BD_MOD_STR_LEN);
  7040. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7041. "SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7042. if (val >= 4 * 4)
  7043. return -EINVAL;
  7044. for (i = 0; i < val; i += 4) {
  7045. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7046. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7047. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7048. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7049. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7050. }
  7051. np->vpd.board_model[val] = '\0';
  7052. np->vpd.mac_num =
  7053. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7054. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7055. "SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num);
  7056. return 0;
  7057. }
  7058. static int niu_get_and_validate_port(struct niu *np)
  7059. {
  7060. struct niu_parent *parent = np->parent;
  7061. if (np->port <= 1)
  7062. np->flags |= NIU_FLAGS_XMAC;
  7063. if (!parent->num_ports) {
  7064. if (parent->plat_type == PLAT_TYPE_NIU) {
  7065. parent->num_ports = 2;
  7066. } else {
  7067. parent->num_ports = niu_pci_vpd_get_nports(np);
  7068. if (!parent->num_ports) {
  7069. /* Fall back to SPROM as last resort.
  7070. * This will fail on most cards.
  7071. */
  7072. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7073. ESPC_NUM_PORTS_MACS_VAL;
  7074. /* All of the current probing methods fail on
  7075. * Maramba on-board parts.
  7076. */
  7077. if (!parent->num_ports)
  7078. parent->num_ports = 4;
  7079. }
  7080. }
  7081. }
  7082. if (np->port >= parent->num_ports)
  7083. return -ENODEV;
  7084. return 0;
  7085. }
  7086. static int phy_record(struct niu_parent *parent, struct phy_probe_info *p,
  7087. int dev_id_1, int dev_id_2, u8 phy_port, int type)
  7088. {
  7089. u32 id = (dev_id_1 << 16) | dev_id_2;
  7090. u8 idx;
  7091. if (dev_id_1 < 0 || dev_id_2 < 0)
  7092. return 0;
  7093. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7094. /* Because of the NIU_PHY_ID_MASK being applied, the 8704
  7095. * test covers the 8706 as well.
  7096. */
  7097. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7098. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011))
  7099. return 0;
  7100. } else {
  7101. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7102. return 0;
  7103. }
  7104. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7105. parent->index, id,
  7106. type == PHY_TYPE_PMA_PMD ? "PMA/PMD" :
  7107. type == PHY_TYPE_PCS ? "PCS" : "MII",
  7108. phy_port);
  7109. if (p->cur[type] >= NIU_MAX_PORTS) {
  7110. pr_err("Too many PHY ports\n");
  7111. return -EINVAL;
  7112. }
  7113. idx = p->cur[type];
  7114. p->phy_id[type][idx] = id;
  7115. p->phy_port[type][idx] = phy_port;
  7116. p->cur[type] = idx + 1;
  7117. return 0;
  7118. }
  7119. static int port_has_10g(struct phy_probe_info *p, int port)
  7120. {
  7121. int i;
  7122. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7123. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7124. return 1;
  7125. }
  7126. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7127. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7128. return 1;
  7129. }
  7130. return 0;
  7131. }
  7132. static int count_10g_ports(struct phy_probe_info *p, int *lowest)
  7133. {
  7134. int port, cnt;
  7135. cnt = 0;
  7136. *lowest = 32;
  7137. for (port = 8; port < 32; port++) {
  7138. if (port_has_10g(p, port)) {
  7139. if (!cnt)
  7140. *lowest = port;
  7141. cnt++;
  7142. }
  7143. }
  7144. return cnt;
  7145. }
  7146. static int count_1g_ports(struct phy_probe_info *p, int *lowest)
  7147. {
  7148. *lowest = 32;
  7149. if (p->cur[PHY_TYPE_MII])
  7150. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7151. return p->cur[PHY_TYPE_MII];
  7152. }
  7153. static void niu_n2_divide_channels(struct niu_parent *parent)
  7154. {
  7155. int num_ports = parent->num_ports;
  7156. int i;
  7157. for (i = 0; i < num_ports; i++) {
  7158. parent->rxchan_per_port[i] = (16 / num_ports);
  7159. parent->txchan_per_port[i] = (16 / num_ports);
  7160. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7161. parent->index, i,
  7162. parent->rxchan_per_port[i],
  7163. parent->txchan_per_port[i]);
  7164. }
  7165. }
  7166. static void niu_divide_channels(struct niu_parent *parent,
  7167. int num_10g, int num_1g)
  7168. {
  7169. int num_ports = parent->num_ports;
  7170. int rx_chans_per_10g, rx_chans_per_1g;
  7171. int tx_chans_per_10g, tx_chans_per_1g;
  7172. int i, tot_rx, tot_tx;
  7173. if (!num_10g || !num_1g) {
  7174. rx_chans_per_10g = rx_chans_per_1g =
  7175. (NIU_NUM_RXCHAN / num_ports);
  7176. tx_chans_per_10g = tx_chans_per_1g =
  7177. (NIU_NUM_TXCHAN / num_ports);
  7178. } else {
  7179. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7180. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7181. (rx_chans_per_1g * num_1g)) /
  7182. num_10g;
  7183. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7184. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7185. (tx_chans_per_1g * num_1g)) /
  7186. num_10g;
  7187. }
  7188. tot_rx = tot_tx = 0;
  7189. for (i = 0; i < num_ports; i++) {
  7190. int type = phy_decode(parent->port_phy, i);
  7191. if (type == PORT_TYPE_10G) {
  7192. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7193. parent->txchan_per_port[i] = tx_chans_per_10g;
  7194. } else {
  7195. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7196. parent->txchan_per_port[i] = tx_chans_per_1g;
  7197. }
  7198. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7199. parent->index, i,
  7200. parent->rxchan_per_port[i],
  7201. parent->txchan_per_port[i]);
  7202. tot_rx += parent->rxchan_per_port[i];
  7203. tot_tx += parent->txchan_per_port[i];
  7204. }
  7205. if (tot_rx > NIU_NUM_RXCHAN) {
  7206. pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n",
  7207. parent->index, tot_rx);
  7208. for (i = 0; i < num_ports; i++)
  7209. parent->rxchan_per_port[i] = 1;
  7210. }
  7211. if (tot_tx > NIU_NUM_TXCHAN) {
  7212. pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n",
  7213. parent->index, tot_tx);
  7214. for (i = 0; i < num_ports; i++)
  7215. parent->txchan_per_port[i] = 1;
  7216. }
  7217. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7218. pr_warning("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n",
  7219. parent->index, tot_rx, tot_tx);
  7220. }
  7221. }
  7222. static void niu_divide_rdc_groups(struct niu_parent *parent,
  7223. int num_10g, int num_1g)
  7224. {
  7225. int i, num_ports = parent->num_ports;
  7226. int rdc_group, rdc_groups_per_port;
  7227. int rdc_channel_base;
  7228. rdc_group = 0;
  7229. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7230. rdc_channel_base = 0;
  7231. for (i = 0; i < num_ports; i++) {
  7232. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7233. int grp, num_channels = parent->rxchan_per_port[i];
  7234. int this_channel_offset;
  7235. tp->first_table_num = rdc_group;
  7236. tp->num_tables = rdc_groups_per_port;
  7237. this_channel_offset = 0;
  7238. for (grp = 0; grp < tp->num_tables; grp++) {
  7239. struct rdc_table *rt = &tp->tables[grp];
  7240. int slot;
  7241. pr_info("niu%d: Port %d RDC tbl(%d) [ ",
  7242. parent->index, i, tp->first_table_num + grp);
  7243. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7244. rt->rxdma_channel[slot] =
  7245. rdc_channel_base + this_channel_offset;
  7246. pr_cont("%d ", rt->rxdma_channel[slot]);
  7247. if (++this_channel_offset == num_channels)
  7248. this_channel_offset = 0;
  7249. }
  7250. pr_cont("]\n");
  7251. }
  7252. parent->rdc_default[i] = rdc_channel_base;
  7253. rdc_channel_base += num_channels;
  7254. rdc_group += rdc_groups_per_port;
  7255. }
  7256. }
  7257. static int fill_phy_probe_info(struct niu *np, struct niu_parent *parent,
  7258. struct phy_probe_info *info)
  7259. {
  7260. unsigned long flags;
  7261. int port, err;
  7262. memset(info, 0, sizeof(*info));
  7263. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7264. niu_lock_parent(np, flags);
  7265. err = 0;
  7266. for (port = 8; port < 32; port++) {
  7267. int dev_id_1, dev_id_2;
  7268. dev_id_1 = mdio_read(np, port,
  7269. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7270. dev_id_2 = mdio_read(np, port,
  7271. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7272. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7273. PHY_TYPE_PMA_PMD);
  7274. if (err)
  7275. break;
  7276. dev_id_1 = mdio_read(np, port,
  7277. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7278. dev_id_2 = mdio_read(np, port,
  7279. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7280. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7281. PHY_TYPE_PCS);
  7282. if (err)
  7283. break;
  7284. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7285. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7286. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7287. PHY_TYPE_MII);
  7288. if (err)
  7289. break;
  7290. }
  7291. niu_unlock_parent(np, flags);
  7292. return err;
  7293. }
  7294. static int walk_phys(struct niu *np, struct niu_parent *parent)
  7295. {
  7296. struct phy_probe_info *info = &parent->phy_probe_info;
  7297. int lowest_10g, lowest_1g;
  7298. int num_10g, num_1g;
  7299. u32 val;
  7300. int err;
  7301. num_10g = num_1g = 0;
  7302. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7303. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7304. num_10g = 0;
  7305. num_1g = 2;
  7306. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7307. parent->num_ports = 4;
  7308. val = (phy_encode(PORT_TYPE_1G, 0) |
  7309. phy_encode(PORT_TYPE_1G, 1) |
  7310. phy_encode(PORT_TYPE_1G, 2) |
  7311. phy_encode(PORT_TYPE_1G, 3));
  7312. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7313. num_10g = 2;
  7314. num_1g = 0;
  7315. parent->num_ports = 2;
  7316. val = (phy_encode(PORT_TYPE_10G, 0) |
  7317. phy_encode(PORT_TYPE_10G, 1));
  7318. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7319. (parent->plat_type == PLAT_TYPE_NIU)) {
  7320. /* this is the Monza case */
  7321. if (np->flags & NIU_FLAGS_10G) {
  7322. val = (phy_encode(PORT_TYPE_10G, 0) |
  7323. phy_encode(PORT_TYPE_10G, 1));
  7324. } else {
  7325. val = (phy_encode(PORT_TYPE_1G, 0) |
  7326. phy_encode(PORT_TYPE_1G, 1));
  7327. }
  7328. } else {
  7329. err = fill_phy_probe_info(np, parent, info);
  7330. if (err)
  7331. return err;
  7332. num_10g = count_10g_ports(info, &lowest_10g);
  7333. num_1g = count_1g_ports(info, &lowest_1g);
  7334. switch ((num_10g << 4) | num_1g) {
  7335. case 0x24:
  7336. if (lowest_1g == 10)
  7337. parent->plat_type = PLAT_TYPE_VF_P0;
  7338. else if (lowest_1g == 26)
  7339. parent->plat_type = PLAT_TYPE_VF_P1;
  7340. else
  7341. goto unknown_vg_1g_port;
  7342. /* fallthru */
  7343. case 0x22:
  7344. val = (phy_encode(PORT_TYPE_10G, 0) |
  7345. phy_encode(PORT_TYPE_10G, 1) |
  7346. phy_encode(PORT_TYPE_1G, 2) |
  7347. phy_encode(PORT_TYPE_1G, 3));
  7348. break;
  7349. case 0x20:
  7350. val = (phy_encode(PORT_TYPE_10G, 0) |
  7351. phy_encode(PORT_TYPE_10G, 1));
  7352. break;
  7353. case 0x10:
  7354. val = phy_encode(PORT_TYPE_10G, np->port);
  7355. break;
  7356. case 0x14:
  7357. if (lowest_1g == 10)
  7358. parent->plat_type = PLAT_TYPE_VF_P0;
  7359. else if (lowest_1g == 26)
  7360. parent->plat_type = PLAT_TYPE_VF_P1;
  7361. else
  7362. goto unknown_vg_1g_port;
  7363. /* fallthru */
  7364. case 0x13:
  7365. if ((lowest_10g & 0x7) == 0)
  7366. val = (phy_encode(PORT_TYPE_10G, 0) |
  7367. phy_encode(PORT_TYPE_1G, 1) |
  7368. phy_encode(PORT_TYPE_1G, 2) |
  7369. phy_encode(PORT_TYPE_1G, 3));
  7370. else
  7371. val = (phy_encode(PORT_TYPE_1G, 0) |
  7372. phy_encode(PORT_TYPE_10G, 1) |
  7373. phy_encode(PORT_TYPE_1G, 2) |
  7374. phy_encode(PORT_TYPE_1G, 3));
  7375. break;
  7376. case 0x04:
  7377. if (lowest_1g == 10)
  7378. parent->plat_type = PLAT_TYPE_VF_P0;
  7379. else if (lowest_1g == 26)
  7380. parent->plat_type = PLAT_TYPE_VF_P1;
  7381. else
  7382. goto unknown_vg_1g_port;
  7383. val = (phy_encode(PORT_TYPE_1G, 0) |
  7384. phy_encode(PORT_TYPE_1G, 1) |
  7385. phy_encode(PORT_TYPE_1G, 2) |
  7386. phy_encode(PORT_TYPE_1G, 3));
  7387. break;
  7388. default:
  7389. pr_err("Unsupported port config 10G[%d] 1G[%d]\n",
  7390. num_10g, num_1g);
  7391. return -EINVAL;
  7392. }
  7393. }
  7394. parent->port_phy = val;
  7395. if (parent->plat_type == PLAT_TYPE_NIU)
  7396. niu_n2_divide_channels(parent);
  7397. else
  7398. niu_divide_channels(parent, num_10g, num_1g);
  7399. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7400. return 0;
  7401. unknown_vg_1g_port:
  7402. pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g);
  7403. return -EINVAL;
  7404. }
  7405. static int niu_probe_ports(struct niu *np)
  7406. {
  7407. struct niu_parent *parent = np->parent;
  7408. int err, i;
  7409. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7410. err = walk_phys(np, parent);
  7411. if (err)
  7412. return err;
  7413. niu_set_ldg_timer_res(np, 2);
  7414. for (i = 0; i <= LDN_MAX; i++)
  7415. niu_ldn_irq_enable(np, i, 0);
  7416. }
  7417. if (parent->port_phy == PORT_PHY_INVALID)
  7418. return -EINVAL;
  7419. return 0;
  7420. }
  7421. static int niu_classifier_swstate_init(struct niu *np)
  7422. {
  7423. struct niu_classifier *cp = &np->clas;
  7424. cp->tcam_top = (u16) np->port;
  7425. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7426. cp->h1_init = 0xffffffff;
  7427. cp->h2_init = 0xffff;
  7428. return fflp_early_init(np);
  7429. }
  7430. static void niu_link_config_init(struct niu *np)
  7431. {
  7432. struct niu_link_config *lp = &np->link_config;
  7433. lp->advertising = (ADVERTISED_10baseT_Half |
  7434. ADVERTISED_10baseT_Full |
  7435. ADVERTISED_100baseT_Half |
  7436. ADVERTISED_100baseT_Full |
  7437. ADVERTISED_1000baseT_Half |
  7438. ADVERTISED_1000baseT_Full |
  7439. ADVERTISED_10000baseT_Full |
  7440. ADVERTISED_Autoneg);
  7441. lp->speed = lp->active_speed = SPEED_INVALID;
  7442. lp->duplex = DUPLEX_FULL;
  7443. lp->active_duplex = DUPLEX_INVALID;
  7444. lp->autoneg = 1;
  7445. #if 0
  7446. lp->loopback_mode = LOOPBACK_MAC;
  7447. lp->active_speed = SPEED_10000;
  7448. lp->active_duplex = DUPLEX_FULL;
  7449. #else
  7450. lp->loopback_mode = LOOPBACK_DISABLED;
  7451. #endif
  7452. }
  7453. static int niu_init_mac_ipp_pcs_base(struct niu *np)
  7454. {
  7455. switch (np->port) {
  7456. case 0:
  7457. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7458. np->ipp_off = 0x00000;
  7459. np->pcs_off = 0x04000;
  7460. np->xpcs_off = 0x02000;
  7461. break;
  7462. case 1:
  7463. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7464. np->ipp_off = 0x08000;
  7465. np->pcs_off = 0x0a000;
  7466. np->xpcs_off = 0x08000;
  7467. break;
  7468. case 2:
  7469. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7470. np->ipp_off = 0x04000;
  7471. np->pcs_off = 0x0e000;
  7472. np->xpcs_off = ~0UL;
  7473. break;
  7474. case 3:
  7475. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7476. np->ipp_off = 0x0c000;
  7477. np->pcs_off = 0x12000;
  7478. np->xpcs_off = ~0UL;
  7479. break;
  7480. default:
  7481. dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port);
  7482. return -EINVAL;
  7483. }
  7484. return 0;
  7485. }
  7486. static void niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7487. {
  7488. struct msix_entry msi_vec[NIU_NUM_LDG];
  7489. struct niu_parent *parent = np->parent;
  7490. struct pci_dev *pdev = np->pdev;
  7491. int i, num_irqs, err;
  7492. u8 first_ldg;
  7493. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7494. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7495. ldg_num_map[i] = first_ldg + i;
  7496. num_irqs = (parent->rxchan_per_port[np->port] +
  7497. parent->txchan_per_port[np->port] +
  7498. (np->port == 0 ? 3 : 1));
  7499. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7500. retry:
  7501. for (i = 0; i < num_irqs; i++) {
  7502. msi_vec[i].vector = 0;
  7503. msi_vec[i].entry = i;
  7504. }
  7505. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  7506. if (err < 0) {
  7507. np->flags &= ~NIU_FLAGS_MSIX;
  7508. return;
  7509. }
  7510. if (err > 0) {
  7511. num_irqs = err;
  7512. goto retry;
  7513. }
  7514. np->flags |= NIU_FLAGS_MSIX;
  7515. for (i = 0; i < num_irqs; i++)
  7516. np->ldg[i].irq = msi_vec[i].vector;
  7517. np->num_ldg = num_irqs;
  7518. }
  7519. static int niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7520. {
  7521. #ifdef CONFIG_SPARC64
  7522. struct platform_device *op = np->op;
  7523. const u32 *int_prop;
  7524. int i;
  7525. int_prop = of_get_property(op->dev.of_node, "interrupts", NULL);
  7526. if (!int_prop)
  7527. return -ENODEV;
  7528. for (i = 0; i < op->archdata.num_irqs; i++) {
  7529. ldg_num_map[i] = int_prop[i];
  7530. np->ldg[i].irq = op->archdata.irqs[i];
  7531. }
  7532. np->num_ldg = op->archdata.num_irqs;
  7533. return 0;
  7534. #else
  7535. return -EINVAL;
  7536. #endif
  7537. }
  7538. static int niu_ldg_init(struct niu *np)
  7539. {
  7540. struct niu_parent *parent = np->parent;
  7541. u8 ldg_num_map[NIU_NUM_LDG];
  7542. int first_chan, num_chan;
  7543. int i, err, ldg_rotor;
  7544. u8 port;
  7545. np->num_ldg = 1;
  7546. np->ldg[0].irq = np->dev->irq;
  7547. if (parent->plat_type == PLAT_TYPE_NIU) {
  7548. err = niu_n2_irq_init(np, ldg_num_map);
  7549. if (err)
  7550. return err;
  7551. } else
  7552. niu_try_msix(np, ldg_num_map);
  7553. port = np->port;
  7554. for (i = 0; i < np->num_ldg; i++) {
  7555. struct niu_ldg *lp = &np->ldg[i];
  7556. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7557. lp->np = np;
  7558. lp->ldg_num = ldg_num_map[i];
  7559. lp->timer = 2; /* XXX */
  7560. /* On N2 NIU the firmware has setup the SID mappings so they go
  7561. * to the correct values that will route the LDG to the proper
  7562. * interrupt in the NCU interrupt table.
  7563. */
  7564. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7565. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7566. if (err)
  7567. return err;
  7568. }
  7569. }
  7570. /* We adopt the LDG assignment ordering used by the N2 NIU
  7571. * 'interrupt' properties because that simplifies a lot of
  7572. * things. This ordering is:
  7573. *
  7574. * MAC
  7575. * MIF (if port zero)
  7576. * SYSERR (if port zero)
  7577. * RX channels
  7578. * TX channels
  7579. */
  7580. ldg_rotor = 0;
  7581. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7582. LDN_MAC(port));
  7583. if (err)
  7584. return err;
  7585. ldg_rotor++;
  7586. if (ldg_rotor == np->num_ldg)
  7587. ldg_rotor = 0;
  7588. if (port == 0) {
  7589. err = niu_ldg_assign_ldn(np, parent,
  7590. ldg_num_map[ldg_rotor],
  7591. LDN_MIF);
  7592. if (err)
  7593. return err;
  7594. ldg_rotor++;
  7595. if (ldg_rotor == np->num_ldg)
  7596. ldg_rotor = 0;
  7597. err = niu_ldg_assign_ldn(np, parent,
  7598. ldg_num_map[ldg_rotor],
  7599. LDN_DEVICE_ERROR);
  7600. if (err)
  7601. return err;
  7602. ldg_rotor++;
  7603. if (ldg_rotor == np->num_ldg)
  7604. ldg_rotor = 0;
  7605. }
  7606. first_chan = 0;
  7607. for (i = 0; i < port; i++)
  7608. first_chan += parent->rxchan_per_port[i];
  7609. num_chan = parent->rxchan_per_port[port];
  7610. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7611. err = niu_ldg_assign_ldn(np, parent,
  7612. ldg_num_map[ldg_rotor],
  7613. LDN_RXDMA(i));
  7614. if (err)
  7615. return err;
  7616. ldg_rotor++;
  7617. if (ldg_rotor == np->num_ldg)
  7618. ldg_rotor = 0;
  7619. }
  7620. first_chan = 0;
  7621. for (i = 0; i < port; i++)
  7622. first_chan += parent->txchan_per_port[i];
  7623. num_chan = parent->txchan_per_port[port];
  7624. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7625. err = niu_ldg_assign_ldn(np, parent,
  7626. ldg_num_map[ldg_rotor],
  7627. LDN_TXDMA(i));
  7628. if (err)
  7629. return err;
  7630. ldg_rotor++;
  7631. if (ldg_rotor == np->num_ldg)
  7632. ldg_rotor = 0;
  7633. }
  7634. return 0;
  7635. }
  7636. static void niu_ldg_free(struct niu *np)
  7637. {
  7638. if (np->flags & NIU_FLAGS_MSIX)
  7639. pci_disable_msix(np->pdev);
  7640. }
  7641. static int niu_get_of_props(struct niu *np)
  7642. {
  7643. #ifdef CONFIG_SPARC64
  7644. struct net_device *dev = np->dev;
  7645. struct device_node *dp;
  7646. const char *phy_type;
  7647. const u8 *mac_addr;
  7648. const char *model;
  7649. int prop_len;
  7650. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7651. dp = np->op->dev.of_node;
  7652. else
  7653. dp = pci_device_to_OF_node(np->pdev);
  7654. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7655. if (!phy_type) {
  7656. netdev_err(dev, "%s: OF node lacks phy-type property\n",
  7657. dp->full_name);
  7658. return -EINVAL;
  7659. }
  7660. if (!strcmp(phy_type, "none"))
  7661. return -ENODEV;
  7662. strcpy(np->vpd.phy_type, phy_type);
  7663. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7664. netdev_err(dev, "%s: Illegal phy string [%s]\n",
  7665. dp->full_name, np->vpd.phy_type);
  7666. return -EINVAL;
  7667. }
  7668. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7669. if (!mac_addr) {
  7670. netdev_err(dev, "%s: OF node lacks local-mac-address property\n",
  7671. dp->full_name);
  7672. return -EINVAL;
  7673. }
  7674. if (prop_len != dev->addr_len) {
  7675. netdev_err(dev, "%s: OF MAC address prop len (%d) is wrong\n",
  7676. dp->full_name, prop_len);
  7677. }
  7678. memcpy(dev->dev_addr, mac_addr, dev->addr_len);
  7679. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7680. netdev_err(dev, "%s: OF MAC address is invalid\n",
  7681. dp->full_name);
  7682. netdev_err(dev, "%s: [ %pM ]\n", dp->full_name, dev->dev_addr);
  7683. return -EINVAL;
  7684. }
  7685. model = of_get_property(dp, "model", &prop_len);
  7686. if (model)
  7687. strcpy(np->vpd.model, model);
  7688. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7689. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7690. NIU_FLAGS_HOTPLUG_PHY);
  7691. }
  7692. return 0;
  7693. #else
  7694. return -EINVAL;
  7695. #endif
  7696. }
  7697. static int niu_get_invariants(struct niu *np)
  7698. {
  7699. int err, have_props;
  7700. u32 offset;
  7701. err = niu_get_of_props(np);
  7702. if (err == -ENODEV)
  7703. return err;
  7704. have_props = !err;
  7705. err = niu_init_mac_ipp_pcs_base(np);
  7706. if (err)
  7707. return err;
  7708. if (have_props) {
  7709. err = niu_get_and_validate_port(np);
  7710. if (err)
  7711. return err;
  7712. } else {
  7713. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7714. return -EINVAL;
  7715. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7716. offset = niu_pci_vpd_offset(np);
  7717. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7718. "%s() VPD offset [%08x]\n", __func__, offset);
  7719. if (offset)
  7720. niu_pci_vpd_fetch(np, offset);
  7721. nw64(ESPC_PIO_EN, 0);
  7722. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7723. niu_pci_vpd_validate(np);
  7724. err = niu_get_and_validate_port(np);
  7725. if (err)
  7726. return err;
  7727. }
  7728. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7729. err = niu_get_and_validate_port(np);
  7730. if (err)
  7731. return err;
  7732. err = niu_pci_probe_sprom(np);
  7733. if (err)
  7734. return err;
  7735. }
  7736. }
  7737. err = niu_probe_ports(np);
  7738. if (err)
  7739. return err;
  7740. niu_ldg_init(np);
  7741. niu_classifier_swstate_init(np);
  7742. niu_link_config_init(np);
  7743. err = niu_determine_phy_disposition(np);
  7744. if (!err)
  7745. err = niu_init_link(np);
  7746. return err;
  7747. }
  7748. static LIST_HEAD(niu_parent_list);
  7749. static DEFINE_MUTEX(niu_parent_lock);
  7750. static int niu_parent_index;
  7751. static ssize_t show_port_phy(struct device *dev,
  7752. struct device_attribute *attr, char *buf)
  7753. {
  7754. struct platform_device *plat_dev = to_platform_device(dev);
  7755. struct niu_parent *p = plat_dev->dev.platform_data;
  7756. u32 port_phy = p->port_phy;
  7757. char *orig_buf = buf;
  7758. int i;
  7759. if (port_phy == PORT_PHY_UNKNOWN ||
  7760. port_phy == PORT_PHY_INVALID)
  7761. return 0;
  7762. for (i = 0; i < p->num_ports; i++) {
  7763. const char *type_str;
  7764. int type;
  7765. type = phy_decode(port_phy, i);
  7766. if (type == PORT_TYPE_10G)
  7767. type_str = "10G";
  7768. else
  7769. type_str = "1G";
  7770. buf += sprintf(buf,
  7771. (i == 0) ? "%s" : " %s",
  7772. type_str);
  7773. }
  7774. buf += sprintf(buf, "\n");
  7775. return buf - orig_buf;
  7776. }
  7777. static ssize_t show_plat_type(struct device *dev,
  7778. struct device_attribute *attr, char *buf)
  7779. {
  7780. struct platform_device *plat_dev = to_platform_device(dev);
  7781. struct niu_parent *p = plat_dev->dev.platform_data;
  7782. const char *type_str;
  7783. switch (p->plat_type) {
  7784. case PLAT_TYPE_ATLAS:
  7785. type_str = "atlas";
  7786. break;
  7787. case PLAT_TYPE_NIU:
  7788. type_str = "niu";
  7789. break;
  7790. case PLAT_TYPE_VF_P0:
  7791. type_str = "vf_p0";
  7792. break;
  7793. case PLAT_TYPE_VF_P1:
  7794. type_str = "vf_p1";
  7795. break;
  7796. default:
  7797. type_str = "unknown";
  7798. break;
  7799. }
  7800. return sprintf(buf, "%s\n", type_str);
  7801. }
  7802. static ssize_t __show_chan_per_port(struct device *dev,
  7803. struct device_attribute *attr, char *buf,
  7804. int rx)
  7805. {
  7806. struct platform_device *plat_dev = to_platform_device(dev);
  7807. struct niu_parent *p = plat_dev->dev.platform_data;
  7808. char *orig_buf = buf;
  7809. u8 *arr;
  7810. int i;
  7811. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7812. for (i = 0; i < p->num_ports; i++) {
  7813. buf += sprintf(buf,
  7814. (i == 0) ? "%d" : " %d",
  7815. arr[i]);
  7816. }
  7817. buf += sprintf(buf, "\n");
  7818. return buf - orig_buf;
  7819. }
  7820. static ssize_t show_rxchan_per_port(struct device *dev,
  7821. struct device_attribute *attr, char *buf)
  7822. {
  7823. return __show_chan_per_port(dev, attr, buf, 1);
  7824. }
  7825. static ssize_t show_txchan_per_port(struct device *dev,
  7826. struct device_attribute *attr, char *buf)
  7827. {
  7828. return __show_chan_per_port(dev, attr, buf, 1);
  7829. }
  7830. static ssize_t show_num_ports(struct device *dev,
  7831. struct device_attribute *attr, char *buf)
  7832. {
  7833. struct platform_device *plat_dev = to_platform_device(dev);
  7834. struct niu_parent *p = plat_dev->dev.platform_data;
  7835. return sprintf(buf, "%d\n", p->num_ports);
  7836. }
  7837. static struct device_attribute niu_parent_attributes[] = {
  7838. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7839. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7840. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7841. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7842. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7843. {}
  7844. };
  7845. static struct niu_parent *niu_new_parent(struct niu *np,
  7846. union niu_parent_id *id, u8 ptype)
  7847. {
  7848. struct platform_device *plat_dev;
  7849. struct niu_parent *p;
  7850. int i;
  7851. plat_dev = platform_device_register_simple("niu-board", niu_parent_index,
  7852. NULL, 0);
  7853. if (IS_ERR(plat_dev))
  7854. return NULL;
  7855. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7856. int err = device_create_file(&plat_dev->dev,
  7857. &niu_parent_attributes[i]);
  7858. if (err)
  7859. goto fail_unregister;
  7860. }
  7861. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7862. if (!p)
  7863. goto fail_unregister;
  7864. p->index = niu_parent_index++;
  7865. plat_dev->dev.platform_data = p;
  7866. p->plat_dev = plat_dev;
  7867. memcpy(&p->id, id, sizeof(*id));
  7868. p->plat_type = ptype;
  7869. INIT_LIST_HEAD(&p->list);
  7870. atomic_set(&p->refcnt, 0);
  7871. list_add(&p->list, &niu_parent_list);
  7872. spin_lock_init(&p->lock);
  7873. p->rxdma_clock_divider = 7500;
  7874. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7875. if (p->plat_type == PLAT_TYPE_NIU)
  7876. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7877. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7878. int index = i - CLASS_CODE_USER_PROG1;
  7879. p->tcam_key[index] = TCAM_KEY_TSEL;
  7880. p->flow_key[index] = (FLOW_KEY_IPSA |
  7881. FLOW_KEY_IPDA |
  7882. FLOW_KEY_PROTO |
  7883. (FLOW_KEY_L4_BYTE12 <<
  7884. FLOW_KEY_L4_0_SHIFT) |
  7885. (FLOW_KEY_L4_BYTE12 <<
  7886. FLOW_KEY_L4_1_SHIFT));
  7887. }
  7888. for (i = 0; i < LDN_MAX + 1; i++)
  7889. p->ldg_map[i] = LDG_INVALID;
  7890. return p;
  7891. fail_unregister:
  7892. platform_device_unregister(plat_dev);
  7893. return NULL;
  7894. }
  7895. static struct niu_parent *niu_get_parent(struct niu *np,
  7896. union niu_parent_id *id, u8 ptype)
  7897. {
  7898. struct niu_parent *p, *tmp;
  7899. int port = np->port;
  7900. mutex_lock(&niu_parent_lock);
  7901. p = NULL;
  7902. list_for_each_entry(tmp, &niu_parent_list, list) {
  7903. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7904. p = tmp;
  7905. break;
  7906. }
  7907. }
  7908. if (!p)
  7909. p = niu_new_parent(np, id, ptype);
  7910. if (p) {
  7911. char port_name[6];
  7912. int err;
  7913. sprintf(port_name, "port%d", port);
  7914. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7915. &np->device->kobj,
  7916. port_name);
  7917. if (!err) {
  7918. p->ports[port] = np;
  7919. atomic_inc(&p->refcnt);
  7920. }
  7921. }
  7922. mutex_unlock(&niu_parent_lock);
  7923. return p;
  7924. }
  7925. static void niu_put_parent(struct niu *np)
  7926. {
  7927. struct niu_parent *p = np->parent;
  7928. u8 port = np->port;
  7929. char port_name[6];
  7930. BUG_ON(!p || p->ports[port] != np);
  7931. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7932. "%s() port[%u]\n", __func__, port);
  7933. sprintf(port_name, "port%d", port);
  7934. mutex_lock(&niu_parent_lock);
  7935. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7936. p->ports[port] = NULL;
  7937. np->parent = NULL;
  7938. if (atomic_dec_and_test(&p->refcnt)) {
  7939. list_del(&p->list);
  7940. platform_device_unregister(p->plat_dev);
  7941. }
  7942. mutex_unlock(&niu_parent_lock);
  7943. }
  7944. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7945. u64 *handle, gfp_t flag)
  7946. {
  7947. dma_addr_t dh;
  7948. void *ret;
  7949. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7950. if (ret)
  7951. *handle = dh;
  7952. return ret;
  7953. }
  7954. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7955. void *cpu_addr, u64 handle)
  7956. {
  7957. dma_free_coherent(dev, size, cpu_addr, handle);
  7958. }
  7959. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7960. unsigned long offset, size_t size,
  7961. enum dma_data_direction direction)
  7962. {
  7963. return dma_map_page(dev, page, offset, size, direction);
  7964. }
  7965. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7966. size_t size, enum dma_data_direction direction)
  7967. {
  7968. dma_unmap_page(dev, dma_address, size, direction);
  7969. }
  7970. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7971. size_t size,
  7972. enum dma_data_direction direction)
  7973. {
  7974. return dma_map_single(dev, cpu_addr, size, direction);
  7975. }
  7976. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  7977. size_t size,
  7978. enum dma_data_direction direction)
  7979. {
  7980. dma_unmap_single(dev, dma_address, size, direction);
  7981. }
  7982. static const struct niu_ops niu_pci_ops = {
  7983. .alloc_coherent = niu_pci_alloc_coherent,
  7984. .free_coherent = niu_pci_free_coherent,
  7985. .map_page = niu_pci_map_page,
  7986. .unmap_page = niu_pci_unmap_page,
  7987. .map_single = niu_pci_map_single,
  7988. .unmap_single = niu_pci_unmap_single,
  7989. };
  7990. static void niu_driver_version(void)
  7991. {
  7992. static int niu_version_printed;
  7993. if (niu_version_printed++ == 0)
  7994. pr_info("%s", version);
  7995. }
  7996. static struct net_device *niu_alloc_and_init(struct device *gen_dev,
  7997. struct pci_dev *pdev,
  7998. struct platform_device *op,
  7999. const struct niu_ops *ops, u8 port)
  8000. {
  8001. struct net_device *dev;
  8002. struct niu *np;
  8003. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8004. if (!dev)
  8005. return NULL;
  8006. SET_NETDEV_DEV(dev, gen_dev);
  8007. np = netdev_priv(dev);
  8008. np->dev = dev;
  8009. np->pdev = pdev;
  8010. np->op = op;
  8011. np->device = gen_dev;
  8012. np->ops = ops;
  8013. np->msg_enable = niu_debug;
  8014. spin_lock_init(&np->lock);
  8015. INIT_WORK(&np->reset_task, niu_reset_task);
  8016. np->port = port;
  8017. return dev;
  8018. }
  8019. static const struct net_device_ops niu_netdev_ops = {
  8020. .ndo_open = niu_open,
  8021. .ndo_stop = niu_close,
  8022. .ndo_start_xmit = niu_start_xmit,
  8023. .ndo_get_stats64 = niu_get_stats,
  8024. .ndo_set_rx_mode = niu_set_rx_mode,
  8025. .ndo_validate_addr = eth_validate_addr,
  8026. .ndo_set_mac_address = niu_set_mac_addr,
  8027. .ndo_do_ioctl = niu_ioctl,
  8028. .ndo_tx_timeout = niu_tx_timeout,
  8029. .ndo_change_mtu = niu_change_mtu,
  8030. };
  8031. static void niu_assign_netdev_ops(struct net_device *dev)
  8032. {
  8033. dev->netdev_ops = &niu_netdev_ops;
  8034. dev->ethtool_ops = &niu_ethtool_ops;
  8035. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8036. }
  8037. static void niu_device_announce(struct niu *np)
  8038. {
  8039. struct net_device *dev = np->dev;
  8040. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8041. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8042. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8043. dev->name,
  8044. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8045. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8046. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8047. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8048. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8049. np->vpd.phy_type);
  8050. } else {
  8051. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8052. dev->name,
  8053. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8054. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8055. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8056. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8057. "COPPER")),
  8058. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8059. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8060. np->vpd.phy_type);
  8061. }
  8062. }
  8063. static void niu_set_basic_features(struct net_device *dev)
  8064. {
  8065. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXHASH;
  8066. dev->features |= dev->hw_features | NETIF_F_RXCSUM;
  8067. }
  8068. static int niu_pci_init_one(struct pci_dev *pdev,
  8069. const struct pci_device_id *ent)
  8070. {
  8071. union niu_parent_id parent_id;
  8072. struct net_device *dev;
  8073. struct niu *np;
  8074. int err;
  8075. u64 dma_mask;
  8076. niu_driver_version();
  8077. err = pci_enable_device(pdev);
  8078. if (err) {
  8079. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  8080. return err;
  8081. }
  8082. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8083. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8084. dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n");
  8085. err = -ENODEV;
  8086. goto err_out_disable_pdev;
  8087. }
  8088. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8089. if (err) {
  8090. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  8091. goto err_out_disable_pdev;
  8092. }
  8093. if (!pci_is_pcie(pdev)) {
  8094. dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n");
  8095. err = -ENODEV;
  8096. goto err_out_free_res;
  8097. }
  8098. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8099. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8100. if (!dev) {
  8101. err = -ENOMEM;
  8102. goto err_out_free_res;
  8103. }
  8104. np = netdev_priv(dev);
  8105. memset(&parent_id, 0, sizeof(parent_id));
  8106. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8107. parent_id.pci.bus = pdev->bus->number;
  8108. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8109. np->parent = niu_get_parent(np, &parent_id,
  8110. PLAT_TYPE_ATLAS);
  8111. if (!np->parent) {
  8112. err = -ENOMEM;
  8113. goto err_out_free_dev;
  8114. }
  8115. pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL,
  8116. PCI_EXP_DEVCTL_NOSNOOP_EN,
  8117. PCI_EXP_DEVCTL_CERE | PCI_EXP_DEVCTL_NFERE |
  8118. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE |
  8119. PCI_EXP_DEVCTL_RELAX_EN);
  8120. dma_mask = DMA_BIT_MASK(44);
  8121. err = pci_set_dma_mask(pdev, dma_mask);
  8122. if (!err) {
  8123. dev->features |= NETIF_F_HIGHDMA;
  8124. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8125. if (err) {
  8126. dev_err(&pdev->dev, "Unable to obtain 44 bit DMA for consistent allocations, aborting\n");
  8127. goto err_out_release_parent;
  8128. }
  8129. }
  8130. if (err) {
  8131. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8132. if (err) {
  8133. dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
  8134. goto err_out_release_parent;
  8135. }
  8136. }
  8137. niu_set_basic_features(dev);
  8138. dev->priv_flags |= IFF_UNICAST_FLT;
  8139. np->regs = pci_ioremap_bar(pdev, 0);
  8140. if (!np->regs) {
  8141. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  8142. err = -ENOMEM;
  8143. goto err_out_release_parent;
  8144. }
  8145. pci_set_master(pdev);
  8146. pci_save_state(pdev);
  8147. dev->irq = pdev->irq;
  8148. niu_assign_netdev_ops(dev);
  8149. err = niu_get_invariants(np);
  8150. if (err) {
  8151. if (err != -ENODEV)
  8152. dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n");
  8153. goto err_out_iounmap;
  8154. }
  8155. err = register_netdev(dev);
  8156. if (err) {
  8157. dev_err(&pdev->dev, "Cannot register net device, aborting\n");
  8158. goto err_out_iounmap;
  8159. }
  8160. pci_set_drvdata(pdev, dev);
  8161. niu_device_announce(np);
  8162. return 0;
  8163. err_out_iounmap:
  8164. if (np->regs) {
  8165. iounmap(np->regs);
  8166. np->regs = NULL;
  8167. }
  8168. err_out_release_parent:
  8169. niu_put_parent(np);
  8170. err_out_free_dev:
  8171. free_netdev(dev);
  8172. err_out_free_res:
  8173. pci_release_regions(pdev);
  8174. err_out_disable_pdev:
  8175. pci_disable_device(pdev);
  8176. pci_set_drvdata(pdev, NULL);
  8177. return err;
  8178. }
  8179. static void niu_pci_remove_one(struct pci_dev *pdev)
  8180. {
  8181. struct net_device *dev = pci_get_drvdata(pdev);
  8182. if (dev) {
  8183. struct niu *np = netdev_priv(dev);
  8184. unregister_netdev(dev);
  8185. if (np->regs) {
  8186. iounmap(np->regs);
  8187. np->regs = NULL;
  8188. }
  8189. niu_ldg_free(np);
  8190. niu_put_parent(np);
  8191. free_netdev(dev);
  8192. pci_release_regions(pdev);
  8193. pci_disable_device(pdev);
  8194. pci_set_drvdata(pdev, NULL);
  8195. }
  8196. }
  8197. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8198. {
  8199. struct net_device *dev = pci_get_drvdata(pdev);
  8200. struct niu *np = netdev_priv(dev);
  8201. unsigned long flags;
  8202. if (!netif_running(dev))
  8203. return 0;
  8204. flush_work(&np->reset_task);
  8205. niu_netif_stop(np);
  8206. del_timer_sync(&np->timer);
  8207. spin_lock_irqsave(&np->lock, flags);
  8208. niu_enable_interrupts(np, 0);
  8209. spin_unlock_irqrestore(&np->lock, flags);
  8210. netif_device_detach(dev);
  8211. spin_lock_irqsave(&np->lock, flags);
  8212. niu_stop_hw(np);
  8213. spin_unlock_irqrestore(&np->lock, flags);
  8214. pci_save_state(pdev);
  8215. return 0;
  8216. }
  8217. static int niu_resume(struct pci_dev *pdev)
  8218. {
  8219. struct net_device *dev = pci_get_drvdata(pdev);
  8220. struct niu *np = netdev_priv(dev);
  8221. unsigned long flags;
  8222. int err;
  8223. if (!netif_running(dev))
  8224. return 0;
  8225. pci_restore_state(pdev);
  8226. netif_device_attach(dev);
  8227. spin_lock_irqsave(&np->lock, flags);
  8228. err = niu_init_hw(np);
  8229. if (!err) {
  8230. np->timer.expires = jiffies + HZ;
  8231. add_timer(&np->timer);
  8232. niu_netif_start(np);
  8233. }
  8234. spin_unlock_irqrestore(&np->lock, flags);
  8235. return err;
  8236. }
  8237. static struct pci_driver niu_pci_driver = {
  8238. .name = DRV_MODULE_NAME,
  8239. .id_table = niu_pci_tbl,
  8240. .probe = niu_pci_init_one,
  8241. .remove = niu_pci_remove_one,
  8242. .suspend = niu_suspend,
  8243. .resume = niu_resume,
  8244. };
  8245. #ifdef CONFIG_SPARC64
  8246. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8247. u64 *dma_addr, gfp_t flag)
  8248. {
  8249. unsigned long order = get_order(size);
  8250. unsigned long page = __get_free_pages(flag, order);
  8251. if (page == 0UL)
  8252. return NULL;
  8253. memset((char *)page, 0, PAGE_SIZE << order);
  8254. *dma_addr = __pa(page);
  8255. return (void *) page;
  8256. }
  8257. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8258. void *cpu_addr, u64 handle)
  8259. {
  8260. unsigned long order = get_order(size);
  8261. free_pages((unsigned long) cpu_addr, order);
  8262. }
  8263. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8264. unsigned long offset, size_t size,
  8265. enum dma_data_direction direction)
  8266. {
  8267. return page_to_phys(page) + offset;
  8268. }
  8269. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8270. size_t size, enum dma_data_direction direction)
  8271. {
  8272. /* Nothing to do. */
  8273. }
  8274. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8275. size_t size,
  8276. enum dma_data_direction direction)
  8277. {
  8278. return __pa(cpu_addr);
  8279. }
  8280. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8281. size_t size,
  8282. enum dma_data_direction direction)
  8283. {
  8284. /* Nothing to do. */
  8285. }
  8286. static const struct niu_ops niu_phys_ops = {
  8287. .alloc_coherent = niu_phys_alloc_coherent,
  8288. .free_coherent = niu_phys_free_coherent,
  8289. .map_page = niu_phys_map_page,
  8290. .unmap_page = niu_phys_unmap_page,
  8291. .map_single = niu_phys_map_single,
  8292. .unmap_single = niu_phys_unmap_single,
  8293. };
  8294. static int niu_of_probe(struct platform_device *op)
  8295. {
  8296. union niu_parent_id parent_id;
  8297. struct net_device *dev;
  8298. struct niu *np;
  8299. const u32 *reg;
  8300. int err;
  8301. niu_driver_version();
  8302. reg = of_get_property(op->dev.of_node, "reg", NULL);
  8303. if (!reg) {
  8304. dev_err(&op->dev, "%s: No 'reg' property, aborting\n",
  8305. op->dev.of_node->full_name);
  8306. return -ENODEV;
  8307. }
  8308. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8309. &niu_phys_ops, reg[0] & 0x1);
  8310. if (!dev) {
  8311. err = -ENOMEM;
  8312. goto err_out;
  8313. }
  8314. np = netdev_priv(dev);
  8315. memset(&parent_id, 0, sizeof(parent_id));
  8316. parent_id.of = of_get_parent(op->dev.of_node);
  8317. np->parent = niu_get_parent(np, &parent_id,
  8318. PLAT_TYPE_NIU);
  8319. if (!np->parent) {
  8320. err = -ENOMEM;
  8321. goto err_out_free_dev;
  8322. }
  8323. niu_set_basic_features(dev);
  8324. np->regs = of_ioremap(&op->resource[1], 0,
  8325. resource_size(&op->resource[1]),
  8326. "niu regs");
  8327. if (!np->regs) {
  8328. dev_err(&op->dev, "Cannot map device registers, aborting\n");
  8329. err = -ENOMEM;
  8330. goto err_out_release_parent;
  8331. }
  8332. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8333. resource_size(&op->resource[2]),
  8334. "niu vregs-1");
  8335. if (!np->vir_regs_1) {
  8336. dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n");
  8337. err = -ENOMEM;
  8338. goto err_out_iounmap;
  8339. }
  8340. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8341. resource_size(&op->resource[3]),
  8342. "niu vregs-2");
  8343. if (!np->vir_regs_2) {
  8344. dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n");
  8345. err = -ENOMEM;
  8346. goto err_out_iounmap;
  8347. }
  8348. niu_assign_netdev_ops(dev);
  8349. err = niu_get_invariants(np);
  8350. if (err) {
  8351. if (err != -ENODEV)
  8352. dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n");
  8353. goto err_out_iounmap;
  8354. }
  8355. err = register_netdev(dev);
  8356. if (err) {
  8357. dev_err(&op->dev, "Cannot register net device, aborting\n");
  8358. goto err_out_iounmap;
  8359. }
  8360. dev_set_drvdata(&op->dev, dev);
  8361. niu_device_announce(np);
  8362. return 0;
  8363. err_out_iounmap:
  8364. if (np->vir_regs_1) {
  8365. of_iounmap(&op->resource[2], np->vir_regs_1,
  8366. resource_size(&op->resource[2]));
  8367. np->vir_regs_1 = NULL;
  8368. }
  8369. if (np->vir_regs_2) {
  8370. of_iounmap(&op->resource[3], np->vir_regs_2,
  8371. resource_size(&op->resource[3]));
  8372. np->vir_regs_2 = NULL;
  8373. }
  8374. if (np->regs) {
  8375. of_iounmap(&op->resource[1], np->regs,
  8376. resource_size(&op->resource[1]));
  8377. np->regs = NULL;
  8378. }
  8379. err_out_release_parent:
  8380. niu_put_parent(np);
  8381. err_out_free_dev:
  8382. free_netdev(dev);
  8383. err_out:
  8384. return err;
  8385. }
  8386. static int niu_of_remove(struct platform_device *op)
  8387. {
  8388. struct net_device *dev = dev_get_drvdata(&op->dev);
  8389. if (dev) {
  8390. struct niu *np = netdev_priv(dev);
  8391. unregister_netdev(dev);
  8392. if (np->vir_regs_1) {
  8393. of_iounmap(&op->resource[2], np->vir_regs_1,
  8394. resource_size(&op->resource[2]));
  8395. np->vir_regs_1 = NULL;
  8396. }
  8397. if (np->vir_regs_2) {
  8398. of_iounmap(&op->resource[3], np->vir_regs_2,
  8399. resource_size(&op->resource[3]));
  8400. np->vir_regs_2 = NULL;
  8401. }
  8402. if (np->regs) {
  8403. of_iounmap(&op->resource[1], np->regs,
  8404. resource_size(&op->resource[1]));
  8405. np->regs = NULL;
  8406. }
  8407. niu_ldg_free(np);
  8408. niu_put_parent(np);
  8409. free_netdev(dev);
  8410. dev_set_drvdata(&op->dev, NULL);
  8411. }
  8412. return 0;
  8413. }
  8414. static const struct of_device_id niu_match[] = {
  8415. {
  8416. .name = "network",
  8417. .compatible = "SUNW,niusl",
  8418. },
  8419. {},
  8420. };
  8421. MODULE_DEVICE_TABLE(of, niu_match);
  8422. static struct platform_driver niu_of_driver = {
  8423. .driver = {
  8424. .name = "niu",
  8425. .owner = THIS_MODULE,
  8426. .of_match_table = niu_match,
  8427. },
  8428. .probe = niu_of_probe,
  8429. .remove = niu_of_remove,
  8430. };
  8431. #endif /* CONFIG_SPARC64 */
  8432. static int __init niu_init(void)
  8433. {
  8434. int err = 0;
  8435. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8436. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8437. #ifdef CONFIG_SPARC64
  8438. err = platform_driver_register(&niu_of_driver);
  8439. #endif
  8440. if (!err) {
  8441. err = pci_register_driver(&niu_pci_driver);
  8442. #ifdef CONFIG_SPARC64
  8443. if (err)
  8444. platform_driver_unregister(&niu_of_driver);
  8445. #endif
  8446. }
  8447. return err;
  8448. }
  8449. static void __exit niu_exit(void)
  8450. {
  8451. pci_unregister_driver(&niu_pci_driver);
  8452. #ifdef CONFIG_SPARC64
  8453. platform_driver_unregister(&niu_of_driver);
  8454. #endif
  8455. }
  8456. module_init(niu_init);
  8457. module_exit(niu_exit);