rx.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2011 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/socket.h>
  11. #include <linux/in.h>
  12. #include <linux/slab.h>
  13. #include <linux/ip.h>
  14. #include <linux/tcp.h>
  15. #include <linux/udp.h>
  16. #include <linux/prefetch.h>
  17. #include <linux/moduleparam.h>
  18. #include <linux/iommu.h>
  19. #include <net/ip.h>
  20. #include <net/checksum.h>
  21. #include "net_driver.h"
  22. #include "efx.h"
  23. #include "nic.h"
  24. #include "selftest.h"
  25. #include "workarounds.h"
  26. /* Preferred number of descriptors to fill at once */
  27. #define EFX_RX_PREFERRED_BATCH 8U
  28. /* Number of RX buffers to recycle pages for. When creating the RX page recycle
  29. * ring, this number is divided by the number of buffers per page to calculate
  30. * the number of pages to store in the RX page recycle ring.
  31. */
  32. #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
  33. #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
  34. /* Size of buffer allocated for skb header area. */
  35. #define EFX_SKB_HEADERS 64u
  36. /* This is the percentage fill level below which new RX descriptors
  37. * will be added to the RX descriptor ring.
  38. */
  39. static unsigned int rx_refill_threshold;
  40. /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
  41. #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
  42. EFX_RX_USR_BUF_SIZE)
  43. /*
  44. * RX maximum head room required.
  45. *
  46. * This must be at least 1 to prevent overflow, plus one packet-worth
  47. * to allow pipelined receives.
  48. */
  49. #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
  50. static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
  51. {
  52. return page_address(buf->page) + buf->page_offset;
  53. }
  54. static inline u32 efx_rx_buf_hash(const u8 *eh)
  55. {
  56. /* The ethernet header is always directly after any hash. */
  57. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
  58. return __le32_to_cpup((const __le32 *)(eh - 4));
  59. #else
  60. const u8 *data = eh - 4;
  61. return (u32)data[0] |
  62. (u32)data[1] << 8 |
  63. (u32)data[2] << 16 |
  64. (u32)data[3] << 24;
  65. #endif
  66. }
  67. static inline struct efx_rx_buffer *
  68. efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
  69. {
  70. if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
  71. return efx_rx_buffer(rx_queue, 0);
  72. else
  73. return rx_buf + 1;
  74. }
  75. static inline void efx_sync_rx_buffer(struct efx_nic *efx,
  76. struct efx_rx_buffer *rx_buf,
  77. unsigned int len)
  78. {
  79. dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
  80. DMA_FROM_DEVICE);
  81. }
  82. void efx_rx_config_page_split(struct efx_nic *efx)
  83. {
  84. efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + NET_IP_ALIGN,
  85. EFX_RX_BUF_ALIGNMENT);
  86. efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
  87. ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
  88. efx->rx_page_buf_step);
  89. efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
  90. efx->rx_bufs_per_page;
  91. efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
  92. efx->rx_bufs_per_page);
  93. }
  94. /* Check the RX page recycle ring for a page that can be reused. */
  95. static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
  96. {
  97. struct efx_nic *efx = rx_queue->efx;
  98. struct page *page;
  99. struct efx_rx_page_state *state;
  100. unsigned index;
  101. index = rx_queue->page_remove & rx_queue->page_ptr_mask;
  102. page = rx_queue->page_ring[index];
  103. if (page == NULL)
  104. return NULL;
  105. rx_queue->page_ring[index] = NULL;
  106. /* page_remove cannot exceed page_add. */
  107. if (rx_queue->page_remove != rx_queue->page_add)
  108. ++rx_queue->page_remove;
  109. /* If page_count is 1 then we hold the only reference to this page. */
  110. if (page_count(page) == 1) {
  111. ++rx_queue->page_recycle_count;
  112. return page;
  113. } else {
  114. state = page_address(page);
  115. dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
  116. PAGE_SIZE << efx->rx_buffer_order,
  117. DMA_FROM_DEVICE);
  118. put_page(page);
  119. ++rx_queue->page_recycle_failed;
  120. }
  121. return NULL;
  122. }
  123. /**
  124. * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
  125. *
  126. * @rx_queue: Efx RX queue
  127. *
  128. * This allocates a batch of pages, maps them for DMA, and populates
  129. * struct efx_rx_buffers for each one. Return a negative error code or
  130. * 0 on success. If a single page can be used for multiple buffers,
  131. * then the page will either be inserted fully, or not at all.
  132. */
  133. static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
  134. {
  135. struct efx_nic *efx = rx_queue->efx;
  136. struct efx_rx_buffer *rx_buf;
  137. struct page *page;
  138. unsigned int page_offset;
  139. struct efx_rx_page_state *state;
  140. dma_addr_t dma_addr;
  141. unsigned index, count;
  142. count = 0;
  143. do {
  144. page = efx_reuse_page(rx_queue);
  145. if (page == NULL) {
  146. page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
  147. efx->rx_buffer_order);
  148. if (unlikely(page == NULL))
  149. return -ENOMEM;
  150. dma_addr =
  151. dma_map_page(&efx->pci_dev->dev, page, 0,
  152. PAGE_SIZE << efx->rx_buffer_order,
  153. DMA_FROM_DEVICE);
  154. if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
  155. dma_addr))) {
  156. __free_pages(page, efx->rx_buffer_order);
  157. return -EIO;
  158. }
  159. state = page_address(page);
  160. state->dma_addr = dma_addr;
  161. } else {
  162. state = page_address(page);
  163. dma_addr = state->dma_addr;
  164. }
  165. dma_addr += sizeof(struct efx_rx_page_state);
  166. page_offset = sizeof(struct efx_rx_page_state);
  167. do {
  168. index = rx_queue->added_count & rx_queue->ptr_mask;
  169. rx_buf = efx_rx_buffer(rx_queue, index);
  170. rx_buf->dma_addr = dma_addr + NET_IP_ALIGN;
  171. rx_buf->page = page;
  172. rx_buf->page_offset = page_offset + NET_IP_ALIGN;
  173. rx_buf->len = efx->rx_dma_len;
  174. rx_buf->flags = 0;
  175. ++rx_queue->added_count;
  176. get_page(page);
  177. dma_addr += efx->rx_page_buf_step;
  178. page_offset += efx->rx_page_buf_step;
  179. } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
  180. rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
  181. } while (++count < efx->rx_pages_per_batch);
  182. return 0;
  183. }
  184. /* Unmap a DMA-mapped page. This function is only called for the final RX
  185. * buffer in a page.
  186. */
  187. static void efx_unmap_rx_buffer(struct efx_nic *efx,
  188. struct efx_rx_buffer *rx_buf)
  189. {
  190. struct page *page = rx_buf->page;
  191. if (page) {
  192. struct efx_rx_page_state *state = page_address(page);
  193. dma_unmap_page(&efx->pci_dev->dev,
  194. state->dma_addr,
  195. PAGE_SIZE << efx->rx_buffer_order,
  196. DMA_FROM_DEVICE);
  197. }
  198. }
  199. static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
  200. {
  201. if (rx_buf->page) {
  202. put_page(rx_buf->page);
  203. rx_buf->page = NULL;
  204. }
  205. }
  206. /* Attempt to recycle the page if there is an RX recycle ring; the page can
  207. * only be added if this is the final RX buffer, to prevent pages being used in
  208. * the descriptor ring and appearing in the recycle ring simultaneously.
  209. */
  210. static void efx_recycle_rx_page(struct efx_channel *channel,
  211. struct efx_rx_buffer *rx_buf)
  212. {
  213. struct page *page = rx_buf->page;
  214. struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
  215. struct efx_nic *efx = rx_queue->efx;
  216. unsigned index;
  217. /* Only recycle the page after processing the final buffer. */
  218. if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
  219. return;
  220. index = rx_queue->page_add & rx_queue->page_ptr_mask;
  221. if (rx_queue->page_ring[index] == NULL) {
  222. unsigned read_index = rx_queue->page_remove &
  223. rx_queue->page_ptr_mask;
  224. /* The next slot in the recycle ring is available, but
  225. * increment page_remove if the read pointer currently
  226. * points here.
  227. */
  228. if (read_index == index)
  229. ++rx_queue->page_remove;
  230. rx_queue->page_ring[index] = page;
  231. ++rx_queue->page_add;
  232. return;
  233. }
  234. ++rx_queue->page_recycle_full;
  235. efx_unmap_rx_buffer(efx, rx_buf);
  236. put_page(rx_buf->page);
  237. }
  238. static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
  239. struct efx_rx_buffer *rx_buf)
  240. {
  241. /* Release the page reference we hold for the buffer. */
  242. if (rx_buf->page)
  243. put_page(rx_buf->page);
  244. /* If this is the last buffer in a page, unmap and free it. */
  245. if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
  246. efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
  247. efx_free_rx_buffer(rx_buf);
  248. }
  249. rx_buf->page = NULL;
  250. }
  251. /* Recycle the pages that are used by buffers that have just been received. */
  252. static void efx_recycle_rx_buffers(struct efx_channel *channel,
  253. struct efx_rx_buffer *rx_buf,
  254. unsigned int n_frags)
  255. {
  256. struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
  257. do {
  258. efx_recycle_rx_page(channel, rx_buf);
  259. rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
  260. } while (--n_frags);
  261. }
  262. /**
  263. * efx_fast_push_rx_descriptors - push new RX descriptors quickly
  264. * @rx_queue: RX descriptor queue
  265. *
  266. * This will aim to fill the RX descriptor queue up to
  267. * @rx_queue->@max_fill. If there is insufficient atomic
  268. * memory to do so, a slow fill will be scheduled.
  269. *
  270. * The caller must provide serialisation (none is used here). In practise,
  271. * this means this function must run from the NAPI handler, or be called
  272. * when NAPI is disabled.
  273. */
  274. void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
  275. {
  276. struct efx_nic *efx = rx_queue->efx;
  277. unsigned int fill_level, batch_size;
  278. int space, rc = 0;
  279. /* Calculate current fill level, and exit if we don't need to fill */
  280. fill_level = (rx_queue->added_count - rx_queue->removed_count);
  281. EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
  282. if (fill_level >= rx_queue->fast_fill_trigger)
  283. goto out;
  284. /* Record minimum fill level */
  285. if (unlikely(fill_level < rx_queue->min_fill)) {
  286. if (fill_level)
  287. rx_queue->min_fill = fill_level;
  288. }
  289. batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
  290. space = rx_queue->max_fill - fill_level;
  291. EFX_BUG_ON_PARANOID(space < batch_size);
  292. netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
  293. "RX queue %d fast-filling descriptor ring from"
  294. " level %d to level %d\n",
  295. efx_rx_queue_index(rx_queue), fill_level,
  296. rx_queue->max_fill);
  297. do {
  298. rc = efx_init_rx_buffers(rx_queue);
  299. if (unlikely(rc)) {
  300. /* Ensure that we don't leave the rx queue empty */
  301. if (rx_queue->added_count == rx_queue->removed_count)
  302. efx_schedule_slow_fill(rx_queue);
  303. goto out;
  304. }
  305. } while ((space -= batch_size) >= batch_size);
  306. netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
  307. "RX queue %d fast-filled descriptor ring "
  308. "to level %d\n", efx_rx_queue_index(rx_queue),
  309. rx_queue->added_count - rx_queue->removed_count);
  310. out:
  311. if (rx_queue->notified_count != rx_queue->added_count)
  312. efx_nic_notify_rx_desc(rx_queue);
  313. }
  314. void efx_rx_slow_fill(unsigned long context)
  315. {
  316. struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
  317. /* Post an event to cause NAPI to run and refill the queue */
  318. efx_nic_generate_fill_event(rx_queue);
  319. ++rx_queue->slow_fill_count;
  320. }
  321. static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
  322. struct efx_rx_buffer *rx_buf,
  323. int len)
  324. {
  325. struct efx_nic *efx = rx_queue->efx;
  326. unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
  327. if (likely(len <= max_len))
  328. return;
  329. /* The packet must be discarded, but this is only a fatal error
  330. * if the caller indicated it was
  331. */
  332. rx_buf->flags |= EFX_RX_PKT_DISCARD;
  333. if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
  334. if (net_ratelimit())
  335. netif_err(efx, rx_err, efx->net_dev,
  336. " RX queue %d seriously overlength "
  337. "RX event (0x%x > 0x%x+0x%x). Leaking\n",
  338. efx_rx_queue_index(rx_queue), len, max_len,
  339. efx->type->rx_buffer_padding);
  340. efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
  341. } else {
  342. if (net_ratelimit())
  343. netif_err(efx, rx_err, efx->net_dev,
  344. " RX queue %d overlength RX event "
  345. "(0x%x > 0x%x)\n",
  346. efx_rx_queue_index(rx_queue), len, max_len);
  347. }
  348. efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
  349. }
  350. /* Pass a received packet up through GRO. GRO can handle pages
  351. * regardless of checksum state and skbs with a good checksum.
  352. */
  353. static void
  354. efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
  355. unsigned int n_frags, u8 *eh)
  356. {
  357. struct napi_struct *napi = &channel->napi_str;
  358. gro_result_t gro_result;
  359. struct efx_nic *efx = channel->efx;
  360. struct sk_buff *skb;
  361. skb = napi_get_frags(napi);
  362. if (unlikely(!skb)) {
  363. while (n_frags--) {
  364. put_page(rx_buf->page);
  365. rx_buf->page = NULL;
  366. rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
  367. }
  368. return;
  369. }
  370. if (efx->net_dev->features & NETIF_F_RXHASH)
  371. skb->rxhash = efx_rx_buf_hash(eh);
  372. skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
  373. CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
  374. for (;;) {
  375. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  376. rx_buf->page, rx_buf->page_offset,
  377. rx_buf->len);
  378. rx_buf->page = NULL;
  379. skb->len += rx_buf->len;
  380. if (skb_shinfo(skb)->nr_frags == n_frags)
  381. break;
  382. rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
  383. }
  384. skb->data_len = skb->len;
  385. skb->truesize += n_frags * efx->rx_buffer_truesize;
  386. skb_record_rx_queue(skb, channel->rx_queue.core_index);
  387. gro_result = napi_gro_frags(napi);
  388. if (gro_result != GRO_DROP)
  389. channel->irq_mod_score += 2;
  390. }
  391. /* Allocate and construct an SKB around page fragments */
  392. static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
  393. struct efx_rx_buffer *rx_buf,
  394. unsigned int n_frags,
  395. u8 *eh, int hdr_len)
  396. {
  397. struct efx_nic *efx = channel->efx;
  398. struct sk_buff *skb;
  399. /* Allocate an SKB to store the headers */
  400. skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
  401. if (unlikely(skb == NULL))
  402. return NULL;
  403. EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
  404. skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
  405. memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
  406. /* Append the remaining page(s) onto the frag list */
  407. if (rx_buf->len > hdr_len) {
  408. rx_buf->page_offset += hdr_len;
  409. rx_buf->len -= hdr_len;
  410. for (;;) {
  411. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  412. rx_buf->page, rx_buf->page_offset,
  413. rx_buf->len);
  414. rx_buf->page = NULL;
  415. skb->len += rx_buf->len;
  416. skb->data_len += rx_buf->len;
  417. if (skb_shinfo(skb)->nr_frags == n_frags)
  418. break;
  419. rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
  420. }
  421. } else {
  422. __free_pages(rx_buf->page, efx->rx_buffer_order);
  423. rx_buf->page = NULL;
  424. n_frags = 0;
  425. }
  426. skb->truesize += n_frags * efx->rx_buffer_truesize;
  427. /* Move past the ethernet header */
  428. skb->protocol = eth_type_trans(skb, efx->net_dev);
  429. return skb;
  430. }
  431. void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
  432. unsigned int n_frags, unsigned int len, u16 flags)
  433. {
  434. struct efx_nic *efx = rx_queue->efx;
  435. struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
  436. struct efx_rx_buffer *rx_buf;
  437. rx_buf = efx_rx_buffer(rx_queue, index);
  438. rx_buf->flags |= flags;
  439. /* Validate the number of fragments and completed length */
  440. if (n_frags == 1) {
  441. efx_rx_packet__check_len(rx_queue, rx_buf, len);
  442. } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
  443. unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) ||
  444. unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) ||
  445. unlikely(!efx->rx_scatter)) {
  446. /* If this isn't an explicit discard request, either
  447. * the hardware or the driver is broken.
  448. */
  449. WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
  450. rx_buf->flags |= EFX_RX_PKT_DISCARD;
  451. }
  452. netif_vdbg(efx, rx_status, efx->net_dev,
  453. "RX queue %d received ids %x-%x len %d %s%s\n",
  454. efx_rx_queue_index(rx_queue), index,
  455. (index + n_frags - 1) & rx_queue->ptr_mask, len,
  456. (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
  457. (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
  458. /* Discard packet, if instructed to do so. Process the
  459. * previous receive first.
  460. */
  461. if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
  462. efx_rx_flush_packet(channel);
  463. put_page(rx_buf->page);
  464. efx_recycle_rx_buffers(channel, rx_buf, n_frags);
  465. return;
  466. }
  467. if (n_frags == 1)
  468. rx_buf->len = len;
  469. /* Release and/or sync the DMA mapping - assumes all RX buffers
  470. * consumed in-order per RX queue.
  471. */
  472. efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
  473. /* Prefetch nice and early so data will (hopefully) be in cache by
  474. * the time we look at it.
  475. */
  476. prefetch(efx_rx_buf_va(rx_buf));
  477. rx_buf->page_offset += efx->type->rx_buffer_hash_size;
  478. rx_buf->len -= efx->type->rx_buffer_hash_size;
  479. if (n_frags > 1) {
  480. /* Release/sync DMA mapping for additional fragments.
  481. * Fix length for last fragment.
  482. */
  483. unsigned int tail_frags = n_frags - 1;
  484. for (;;) {
  485. rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
  486. if (--tail_frags == 0)
  487. break;
  488. efx_sync_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE);
  489. }
  490. rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE;
  491. efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
  492. }
  493. /* All fragments have been DMA-synced, so recycle buffers and pages. */
  494. rx_buf = efx_rx_buffer(rx_queue, index);
  495. efx_recycle_rx_buffers(channel, rx_buf, n_frags);
  496. /* Pipeline receives so that we give time for packet headers to be
  497. * prefetched into cache.
  498. */
  499. efx_rx_flush_packet(channel);
  500. channel->rx_pkt_n_frags = n_frags;
  501. channel->rx_pkt_index = index;
  502. }
  503. static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
  504. struct efx_rx_buffer *rx_buf,
  505. unsigned int n_frags)
  506. {
  507. struct sk_buff *skb;
  508. u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
  509. skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
  510. if (unlikely(skb == NULL)) {
  511. efx_free_rx_buffer(rx_buf);
  512. return;
  513. }
  514. skb_record_rx_queue(skb, channel->rx_queue.core_index);
  515. /* Set the SKB flags */
  516. skb_checksum_none_assert(skb);
  517. if (channel->type->receive_skb)
  518. if (channel->type->receive_skb(channel, skb))
  519. return;
  520. /* Pass the packet up */
  521. netif_receive_skb(skb);
  522. }
  523. /* Handle a received packet. Second half: Touches packet payload. */
  524. void __efx_rx_packet(struct efx_channel *channel)
  525. {
  526. struct efx_nic *efx = channel->efx;
  527. struct efx_rx_buffer *rx_buf =
  528. efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
  529. u8 *eh = efx_rx_buf_va(rx_buf);
  530. /* If we're in loopback test, then pass the packet directly to the
  531. * loopback layer, and free the rx_buf here
  532. */
  533. if (unlikely(efx->loopback_selftest)) {
  534. efx_loopback_rx_packet(efx, eh, rx_buf->len);
  535. efx_free_rx_buffer(rx_buf);
  536. goto out;
  537. }
  538. if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
  539. rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
  540. if (!channel->type->receive_skb)
  541. efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
  542. else
  543. efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
  544. out:
  545. channel->rx_pkt_n_frags = 0;
  546. }
  547. int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
  548. {
  549. struct efx_nic *efx = rx_queue->efx;
  550. unsigned int entries;
  551. int rc;
  552. /* Create the smallest power-of-two aligned ring */
  553. entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
  554. EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
  555. rx_queue->ptr_mask = entries - 1;
  556. netif_dbg(efx, probe, efx->net_dev,
  557. "creating RX queue %d size %#x mask %#x\n",
  558. efx_rx_queue_index(rx_queue), efx->rxq_entries,
  559. rx_queue->ptr_mask);
  560. /* Allocate RX buffers */
  561. rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
  562. GFP_KERNEL);
  563. if (!rx_queue->buffer)
  564. return -ENOMEM;
  565. rc = efx_nic_probe_rx(rx_queue);
  566. if (rc) {
  567. kfree(rx_queue->buffer);
  568. rx_queue->buffer = NULL;
  569. }
  570. return rc;
  571. }
  572. static void efx_init_rx_recycle_ring(struct efx_nic *efx,
  573. struct efx_rx_queue *rx_queue)
  574. {
  575. unsigned int bufs_in_recycle_ring, page_ring_size;
  576. /* Set the RX recycle ring size */
  577. #ifdef CONFIG_PPC64
  578. bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
  579. #else
  580. if (efx->pci_dev->dev.iommu_group)
  581. bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
  582. else
  583. bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
  584. #endif /* CONFIG_PPC64 */
  585. page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
  586. efx->rx_bufs_per_page);
  587. rx_queue->page_ring = kcalloc(page_ring_size,
  588. sizeof(*rx_queue->page_ring), GFP_KERNEL);
  589. rx_queue->page_ptr_mask = page_ring_size - 1;
  590. }
  591. void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
  592. {
  593. struct efx_nic *efx = rx_queue->efx;
  594. unsigned int max_fill, trigger, max_trigger;
  595. netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
  596. "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
  597. /* Initialise ptr fields */
  598. rx_queue->added_count = 0;
  599. rx_queue->notified_count = 0;
  600. rx_queue->removed_count = 0;
  601. rx_queue->min_fill = -1U;
  602. efx_init_rx_recycle_ring(efx, rx_queue);
  603. rx_queue->page_remove = 0;
  604. rx_queue->page_add = rx_queue->page_ptr_mask + 1;
  605. rx_queue->page_recycle_count = 0;
  606. rx_queue->page_recycle_failed = 0;
  607. rx_queue->page_recycle_full = 0;
  608. /* Initialise limit fields */
  609. max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
  610. max_trigger =
  611. max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
  612. if (rx_refill_threshold != 0) {
  613. trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
  614. if (trigger > max_trigger)
  615. trigger = max_trigger;
  616. } else {
  617. trigger = max_trigger;
  618. }
  619. rx_queue->max_fill = max_fill;
  620. rx_queue->fast_fill_trigger = trigger;
  621. /* Set up RX descriptor ring */
  622. rx_queue->enabled = true;
  623. efx_nic_init_rx(rx_queue);
  624. }
  625. void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
  626. {
  627. int i;
  628. struct efx_nic *efx = rx_queue->efx;
  629. struct efx_rx_buffer *rx_buf;
  630. netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
  631. "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
  632. /* A flush failure might have left rx_queue->enabled */
  633. rx_queue->enabled = false;
  634. del_timer_sync(&rx_queue->slow_fill);
  635. efx_nic_fini_rx(rx_queue);
  636. /* Release RX buffers from the current read ptr to the write ptr */
  637. if (rx_queue->buffer) {
  638. for (i = rx_queue->removed_count; i < rx_queue->added_count;
  639. i++) {
  640. unsigned index = i & rx_queue->ptr_mask;
  641. rx_buf = efx_rx_buffer(rx_queue, index);
  642. efx_fini_rx_buffer(rx_queue, rx_buf);
  643. }
  644. }
  645. /* Unmap and release the pages in the recycle ring. Remove the ring. */
  646. for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
  647. struct page *page = rx_queue->page_ring[i];
  648. struct efx_rx_page_state *state;
  649. if (page == NULL)
  650. continue;
  651. state = page_address(page);
  652. dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
  653. PAGE_SIZE << efx->rx_buffer_order,
  654. DMA_FROM_DEVICE);
  655. put_page(page);
  656. }
  657. kfree(rx_queue->page_ring);
  658. rx_queue->page_ring = NULL;
  659. }
  660. void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
  661. {
  662. netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
  663. "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
  664. efx_nic_remove_rx(rx_queue);
  665. kfree(rx_queue->buffer);
  666. rx_queue->buffer = NULL;
  667. }
  668. module_param(rx_refill_threshold, uint, 0444);
  669. MODULE_PARM_DESC(rx_refill_threshold,
  670. "RX descriptor ring refill threshold (%)");