forcedeth.c 190 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  43. #define FORCEDETH_VERSION "0.64"
  44. #define DRV_NAME "forcedeth"
  45. #include <linux/module.h>
  46. #include <linux/types.h>
  47. #include <linux/pci.h>
  48. #include <linux/interrupt.h>
  49. #include <linux/netdevice.h>
  50. #include <linux/etherdevice.h>
  51. #include <linux/delay.h>
  52. #include <linux/sched.h>
  53. #include <linux/spinlock.h>
  54. #include <linux/ethtool.h>
  55. #include <linux/timer.h>
  56. #include <linux/skbuff.h>
  57. #include <linux/mii.h>
  58. #include <linux/random.h>
  59. #include <linux/init.h>
  60. #include <linux/if_vlan.h>
  61. #include <linux/dma-mapping.h>
  62. #include <linux/slab.h>
  63. #include <linux/uaccess.h>
  64. #include <linux/prefetch.h>
  65. #include <linux/u64_stats_sync.h>
  66. #include <linux/io.h>
  67. #include <asm/irq.h>
  68. #define TX_WORK_PER_LOOP 64
  69. #define RX_WORK_PER_LOOP 64
  70. /*
  71. * Hardware access:
  72. */
  73. #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
  74. #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
  75. #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
  76. #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
  77. #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
  78. #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
  79. #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
  80. #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
  81. #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
  82. #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
  83. #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */
  84. #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */
  85. #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */
  86. #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */
  87. #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
  88. #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
  89. #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
  90. #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
  91. #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
  93. #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
  94. #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
  95. #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
  96. #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
  97. #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
  98. #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
  99. #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
  100. enum {
  101. NvRegIrqStatus = 0x000,
  102. #define NVREG_IRQSTAT_MIIEVENT 0x040
  103. #define NVREG_IRQSTAT_MASK 0x83ff
  104. NvRegIrqMask = 0x004,
  105. #define NVREG_IRQ_RX_ERROR 0x0001
  106. #define NVREG_IRQ_RX 0x0002
  107. #define NVREG_IRQ_RX_NOBUF 0x0004
  108. #define NVREG_IRQ_TX_ERR 0x0008
  109. #define NVREG_IRQ_TX_OK 0x0010
  110. #define NVREG_IRQ_TIMER 0x0020
  111. #define NVREG_IRQ_LINK 0x0040
  112. #define NVREG_IRQ_RX_FORCED 0x0080
  113. #define NVREG_IRQ_TX_FORCED 0x0100
  114. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  115. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  116. #define NVREG_IRQMASK_CPU 0x0060
  117. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  118. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  119. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  120. NvRegUnknownSetupReg6 = 0x008,
  121. #define NVREG_UNKSETUP6_VAL 3
  122. /*
  123. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  124. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  125. */
  126. NvRegPollingInterval = 0x00c,
  127. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  128. #define NVREG_POLL_DEFAULT_CPU 13
  129. NvRegMSIMap0 = 0x020,
  130. NvRegMSIMap1 = 0x024,
  131. NvRegMSIIrqMask = 0x030,
  132. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  133. NvRegMisc1 = 0x080,
  134. #define NVREG_MISC1_PAUSE_TX 0x01
  135. #define NVREG_MISC1_HD 0x02
  136. #define NVREG_MISC1_FORCE 0x3b0f3c
  137. NvRegMacReset = 0x34,
  138. #define NVREG_MAC_RESET_ASSERT 0x0F3
  139. NvRegTransmitterControl = 0x084,
  140. #define NVREG_XMITCTL_START 0x01
  141. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  142. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  143. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  144. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  145. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  146. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  147. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  148. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  149. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  150. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  151. #define NVREG_XMITCTL_DATA_START 0x00100000
  152. #define NVREG_XMITCTL_DATA_READY 0x00010000
  153. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  154. NvRegTransmitterStatus = 0x088,
  155. #define NVREG_XMITSTAT_BUSY 0x01
  156. NvRegPacketFilterFlags = 0x8c,
  157. #define NVREG_PFF_PAUSE_RX 0x08
  158. #define NVREG_PFF_ALWAYS 0x7F0000
  159. #define NVREG_PFF_PROMISC 0x80
  160. #define NVREG_PFF_MYADDR 0x20
  161. #define NVREG_PFF_LOOPBACK 0x10
  162. NvRegOffloadConfig = 0x90,
  163. #define NVREG_OFFLOAD_HOMEPHY 0x601
  164. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  165. NvRegReceiverControl = 0x094,
  166. #define NVREG_RCVCTL_START 0x01
  167. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  168. NvRegReceiverStatus = 0x98,
  169. #define NVREG_RCVSTAT_BUSY 0x01
  170. NvRegSlotTime = 0x9c,
  171. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  172. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  173. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  174. #define NVREG_SLOTTIME_HALF 0x0000ff00
  175. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  176. #define NVREG_SLOTTIME_MASK 0x000000ff
  177. NvRegTxDeferral = 0xA0,
  178. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  179. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  180. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  181. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  182. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  183. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  184. NvRegRxDeferral = 0xA4,
  185. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  186. NvRegMacAddrA = 0xA8,
  187. NvRegMacAddrB = 0xAC,
  188. NvRegMulticastAddrA = 0xB0,
  189. #define NVREG_MCASTADDRA_FORCE 0x01
  190. NvRegMulticastAddrB = 0xB4,
  191. NvRegMulticastMaskA = 0xB8,
  192. #define NVREG_MCASTMASKA_NONE 0xffffffff
  193. NvRegMulticastMaskB = 0xBC,
  194. #define NVREG_MCASTMASKB_NONE 0xffff
  195. NvRegPhyInterface = 0xC0,
  196. #define PHY_RGMII 0x10000000
  197. NvRegBackOffControl = 0xC4,
  198. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  199. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  200. #define NVREG_BKOFFCTRL_SELECT 24
  201. #define NVREG_BKOFFCTRL_GEAR 12
  202. NvRegTxRingPhysAddr = 0x100,
  203. NvRegRxRingPhysAddr = 0x104,
  204. NvRegRingSizes = 0x108,
  205. #define NVREG_RINGSZ_TXSHIFT 0
  206. #define NVREG_RINGSZ_RXSHIFT 16
  207. NvRegTransmitPoll = 0x10c,
  208. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  209. NvRegLinkSpeed = 0x110,
  210. #define NVREG_LINKSPEED_FORCE 0x10000
  211. #define NVREG_LINKSPEED_10 1000
  212. #define NVREG_LINKSPEED_100 100
  213. #define NVREG_LINKSPEED_1000 50
  214. #define NVREG_LINKSPEED_MASK (0xFFF)
  215. NvRegUnknownSetupReg5 = 0x130,
  216. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  217. NvRegTxWatermark = 0x13c,
  218. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  219. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  220. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  221. NvRegTxRxControl = 0x144,
  222. #define NVREG_TXRXCTL_KICK 0x0001
  223. #define NVREG_TXRXCTL_BIT1 0x0002
  224. #define NVREG_TXRXCTL_BIT2 0x0004
  225. #define NVREG_TXRXCTL_IDLE 0x0008
  226. #define NVREG_TXRXCTL_RESET 0x0010
  227. #define NVREG_TXRXCTL_RXCHECK 0x0400
  228. #define NVREG_TXRXCTL_DESC_1 0
  229. #define NVREG_TXRXCTL_DESC_2 0x002100
  230. #define NVREG_TXRXCTL_DESC_3 0xc02200
  231. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  232. #define NVREG_TXRXCTL_VLANINS 0x00080
  233. NvRegTxRingPhysAddrHigh = 0x148,
  234. NvRegRxRingPhysAddrHigh = 0x14C,
  235. NvRegTxPauseFrame = 0x170,
  236. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  237. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  238. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  239. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  240. NvRegTxPauseFrameLimit = 0x174,
  241. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  242. NvRegMIIStatus = 0x180,
  243. #define NVREG_MIISTAT_ERROR 0x0001
  244. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  245. #define NVREG_MIISTAT_MASK_RW 0x0007
  246. #define NVREG_MIISTAT_MASK_ALL 0x000f
  247. NvRegMIIMask = 0x184,
  248. #define NVREG_MII_LINKCHANGE 0x0008
  249. NvRegAdapterControl = 0x188,
  250. #define NVREG_ADAPTCTL_START 0x02
  251. #define NVREG_ADAPTCTL_LINKUP 0x04
  252. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  253. #define NVREG_ADAPTCTL_RUNNING 0x100000
  254. #define NVREG_ADAPTCTL_PHYSHIFT 24
  255. NvRegMIISpeed = 0x18c,
  256. #define NVREG_MIISPEED_BIT8 (1<<8)
  257. #define NVREG_MIIDELAY 5
  258. NvRegMIIControl = 0x190,
  259. #define NVREG_MIICTL_INUSE 0x08000
  260. #define NVREG_MIICTL_WRITE 0x00400
  261. #define NVREG_MIICTL_ADDRSHIFT 5
  262. NvRegMIIData = 0x194,
  263. NvRegTxUnicast = 0x1a0,
  264. NvRegTxMulticast = 0x1a4,
  265. NvRegTxBroadcast = 0x1a8,
  266. NvRegWakeUpFlags = 0x200,
  267. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  268. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  269. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  270. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  271. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  272. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  273. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  274. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  275. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  276. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  277. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  278. NvRegMgmtUnitGetVersion = 0x204,
  279. #define NVREG_MGMTUNITGETVERSION 0x01
  280. NvRegMgmtUnitVersion = 0x208,
  281. #define NVREG_MGMTUNITVERSION 0x08
  282. NvRegPowerCap = 0x268,
  283. #define NVREG_POWERCAP_D3SUPP (1<<30)
  284. #define NVREG_POWERCAP_D2SUPP (1<<26)
  285. #define NVREG_POWERCAP_D1SUPP (1<<25)
  286. NvRegPowerState = 0x26c,
  287. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  288. #define NVREG_POWERSTATE_VALID 0x0100
  289. #define NVREG_POWERSTATE_MASK 0x0003
  290. #define NVREG_POWERSTATE_D0 0x0000
  291. #define NVREG_POWERSTATE_D1 0x0001
  292. #define NVREG_POWERSTATE_D2 0x0002
  293. #define NVREG_POWERSTATE_D3 0x0003
  294. NvRegMgmtUnitControl = 0x278,
  295. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  296. NvRegTxCnt = 0x280,
  297. NvRegTxZeroReXmt = 0x284,
  298. NvRegTxOneReXmt = 0x288,
  299. NvRegTxManyReXmt = 0x28c,
  300. NvRegTxLateCol = 0x290,
  301. NvRegTxUnderflow = 0x294,
  302. NvRegTxLossCarrier = 0x298,
  303. NvRegTxExcessDef = 0x29c,
  304. NvRegTxRetryErr = 0x2a0,
  305. NvRegRxFrameErr = 0x2a4,
  306. NvRegRxExtraByte = 0x2a8,
  307. NvRegRxLateCol = 0x2ac,
  308. NvRegRxRunt = 0x2b0,
  309. NvRegRxFrameTooLong = 0x2b4,
  310. NvRegRxOverflow = 0x2b8,
  311. NvRegRxFCSErr = 0x2bc,
  312. NvRegRxFrameAlignErr = 0x2c0,
  313. NvRegRxLenErr = 0x2c4,
  314. NvRegRxUnicast = 0x2c8,
  315. NvRegRxMulticast = 0x2cc,
  316. NvRegRxBroadcast = 0x2d0,
  317. NvRegTxDef = 0x2d4,
  318. NvRegTxFrame = 0x2d8,
  319. NvRegRxCnt = 0x2dc,
  320. NvRegTxPause = 0x2e0,
  321. NvRegRxPause = 0x2e4,
  322. NvRegRxDropFrame = 0x2e8,
  323. NvRegVlanControl = 0x300,
  324. #define NVREG_VLANCONTROL_ENABLE 0x2000
  325. NvRegMSIXMap0 = 0x3e0,
  326. NvRegMSIXMap1 = 0x3e4,
  327. NvRegMSIXIrqStatus = 0x3f0,
  328. NvRegPowerState2 = 0x600,
  329. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  330. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  331. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  332. #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
  333. };
  334. /* Big endian: should work, but is untested */
  335. struct ring_desc {
  336. __le32 buf;
  337. __le32 flaglen;
  338. };
  339. struct ring_desc_ex {
  340. __le32 bufhigh;
  341. __le32 buflow;
  342. __le32 txvlan;
  343. __le32 flaglen;
  344. };
  345. union ring_type {
  346. struct ring_desc *orig;
  347. struct ring_desc_ex *ex;
  348. };
  349. #define FLAG_MASK_V1 0xffff0000
  350. #define FLAG_MASK_V2 0xffffc000
  351. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  352. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  353. #define NV_TX_LASTPACKET (1<<16)
  354. #define NV_TX_RETRYERROR (1<<19)
  355. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  356. #define NV_TX_FORCED_INTERRUPT (1<<24)
  357. #define NV_TX_DEFERRED (1<<26)
  358. #define NV_TX_CARRIERLOST (1<<27)
  359. #define NV_TX_LATECOLLISION (1<<28)
  360. #define NV_TX_UNDERFLOW (1<<29)
  361. #define NV_TX_ERROR (1<<30)
  362. #define NV_TX_VALID (1<<31)
  363. #define NV_TX2_LASTPACKET (1<<29)
  364. #define NV_TX2_RETRYERROR (1<<18)
  365. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  366. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  367. #define NV_TX2_DEFERRED (1<<25)
  368. #define NV_TX2_CARRIERLOST (1<<26)
  369. #define NV_TX2_LATECOLLISION (1<<27)
  370. #define NV_TX2_UNDERFLOW (1<<28)
  371. /* error and valid are the same for both */
  372. #define NV_TX2_ERROR (1<<30)
  373. #define NV_TX2_VALID (1<<31)
  374. #define NV_TX2_TSO (1<<28)
  375. #define NV_TX2_TSO_SHIFT 14
  376. #define NV_TX2_TSO_MAX_SHIFT 14
  377. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  378. #define NV_TX2_CHECKSUM_L3 (1<<27)
  379. #define NV_TX2_CHECKSUM_L4 (1<<26)
  380. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  381. #define NV_RX_DESCRIPTORVALID (1<<16)
  382. #define NV_RX_MISSEDFRAME (1<<17)
  383. #define NV_RX_SUBSTRACT1 (1<<18)
  384. #define NV_RX_ERROR1 (1<<23)
  385. #define NV_RX_ERROR2 (1<<24)
  386. #define NV_RX_ERROR3 (1<<25)
  387. #define NV_RX_ERROR4 (1<<26)
  388. #define NV_RX_CRCERR (1<<27)
  389. #define NV_RX_OVERFLOW (1<<28)
  390. #define NV_RX_FRAMINGERR (1<<29)
  391. #define NV_RX_ERROR (1<<30)
  392. #define NV_RX_AVAIL (1<<31)
  393. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  394. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  395. #define NV_RX2_CHECKSUM_IP (0x10000000)
  396. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  397. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  398. #define NV_RX2_DESCRIPTORVALID (1<<29)
  399. #define NV_RX2_SUBSTRACT1 (1<<25)
  400. #define NV_RX2_ERROR1 (1<<18)
  401. #define NV_RX2_ERROR2 (1<<19)
  402. #define NV_RX2_ERROR3 (1<<20)
  403. #define NV_RX2_ERROR4 (1<<21)
  404. #define NV_RX2_CRCERR (1<<22)
  405. #define NV_RX2_OVERFLOW (1<<23)
  406. #define NV_RX2_FRAMINGERR (1<<24)
  407. /* error and avail are the same for both */
  408. #define NV_RX2_ERROR (1<<30)
  409. #define NV_RX2_AVAIL (1<<31)
  410. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  411. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  412. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  413. /* Miscellaneous hardware related defines: */
  414. #define NV_PCI_REGSZ_VER1 0x270
  415. #define NV_PCI_REGSZ_VER2 0x2d4
  416. #define NV_PCI_REGSZ_VER3 0x604
  417. #define NV_PCI_REGSZ_MAX 0x604
  418. /* various timeout delays: all in usec */
  419. #define NV_TXRX_RESET_DELAY 4
  420. #define NV_TXSTOP_DELAY1 10
  421. #define NV_TXSTOP_DELAY1MAX 500000
  422. #define NV_TXSTOP_DELAY2 100
  423. #define NV_RXSTOP_DELAY1 10
  424. #define NV_RXSTOP_DELAY1MAX 500000
  425. #define NV_RXSTOP_DELAY2 100
  426. #define NV_SETUP5_DELAY 5
  427. #define NV_SETUP5_DELAYMAX 50000
  428. #define NV_POWERUP_DELAY 5
  429. #define NV_POWERUP_DELAYMAX 5000
  430. #define NV_MIIBUSY_DELAY 50
  431. #define NV_MIIPHY_DELAY 10
  432. #define NV_MIIPHY_DELAYMAX 10000
  433. #define NV_MAC_RESET_DELAY 64
  434. #define NV_WAKEUPPATTERNS 5
  435. #define NV_WAKEUPMASKENTRIES 4
  436. /* General driver defaults */
  437. #define NV_WATCHDOG_TIMEO (5*HZ)
  438. #define RX_RING_DEFAULT 512
  439. #define TX_RING_DEFAULT 256
  440. #define RX_RING_MIN 128
  441. #define TX_RING_MIN 64
  442. #define RING_MAX_DESC_VER_1 1024
  443. #define RING_MAX_DESC_VER_2_3 16384
  444. /* rx/tx mac addr + type + vlan + align + slack*/
  445. #define NV_RX_HEADERS (64)
  446. /* even more slack. */
  447. #define NV_RX_ALLOC_PAD (64)
  448. /* maximum mtu size */
  449. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  450. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  451. #define OOM_REFILL (1+HZ/20)
  452. #define POLL_WAIT (1+HZ/100)
  453. #define LINK_TIMEOUT (3*HZ)
  454. #define STATS_INTERVAL (10*HZ)
  455. /*
  456. * desc_ver values:
  457. * The nic supports three different descriptor types:
  458. * - DESC_VER_1: Original
  459. * - DESC_VER_2: support for jumbo frames.
  460. * - DESC_VER_3: 64-bit format.
  461. */
  462. #define DESC_VER_1 1
  463. #define DESC_VER_2 2
  464. #define DESC_VER_3 3
  465. /* PHY defines */
  466. #define PHY_OUI_MARVELL 0x5043
  467. #define PHY_OUI_CICADA 0x03f1
  468. #define PHY_OUI_VITESSE 0x01c1
  469. #define PHY_OUI_REALTEK 0x0732
  470. #define PHY_OUI_REALTEK2 0x0020
  471. #define PHYID1_OUI_MASK 0x03ff
  472. #define PHYID1_OUI_SHFT 6
  473. #define PHYID2_OUI_MASK 0xfc00
  474. #define PHYID2_OUI_SHFT 10
  475. #define PHYID2_MODEL_MASK 0x03f0
  476. #define PHY_MODEL_REALTEK_8211 0x0110
  477. #define PHY_REV_MASK 0x0001
  478. #define PHY_REV_REALTEK_8211B 0x0000
  479. #define PHY_REV_REALTEK_8211C 0x0001
  480. #define PHY_MODEL_REALTEK_8201 0x0200
  481. #define PHY_MODEL_MARVELL_E3016 0x0220
  482. #define PHY_MARVELL_E3016_INITMASK 0x0300
  483. #define PHY_CICADA_INIT1 0x0f000
  484. #define PHY_CICADA_INIT2 0x0e00
  485. #define PHY_CICADA_INIT3 0x01000
  486. #define PHY_CICADA_INIT4 0x0200
  487. #define PHY_CICADA_INIT5 0x0004
  488. #define PHY_CICADA_INIT6 0x02000
  489. #define PHY_VITESSE_INIT_REG1 0x1f
  490. #define PHY_VITESSE_INIT_REG2 0x10
  491. #define PHY_VITESSE_INIT_REG3 0x11
  492. #define PHY_VITESSE_INIT_REG4 0x12
  493. #define PHY_VITESSE_INIT_MSK1 0xc
  494. #define PHY_VITESSE_INIT_MSK2 0x0180
  495. #define PHY_VITESSE_INIT1 0x52b5
  496. #define PHY_VITESSE_INIT2 0xaf8a
  497. #define PHY_VITESSE_INIT3 0x8
  498. #define PHY_VITESSE_INIT4 0x8f8a
  499. #define PHY_VITESSE_INIT5 0xaf86
  500. #define PHY_VITESSE_INIT6 0x8f86
  501. #define PHY_VITESSE_INIT7 0xaf82
  502. #define PHY_VITESSE_INIT8 0x0100
  503. #define PHY_VITESSE_INIT9 0x8f82
  504. #define PHY_VITESSE_INIT10 0x0
  505. #define PHY_REALTEK_INIT_REG1 0x1f
  506. #define PHY_REALTEK_INIT_REG2 0x19
  507. #define PHY_REALTEK_INIT_REG3 0x13
  508. #define PHY_REALTEK_INIT_REG4 0x14
  509. #define PHY_REALTEK_INIT_REG5 0x18
  510. #define PHY_REALTEK_INIT_REG6 0x11
  511. #define PHY_REALTEK_INIT_REG7 0x01
  512. #define PHY_REALTEK_INIT1 0x0000
  513. #define PHY_REALTEK_INIT2 0x8e00
  514. #define PHY_REALTEK_INIT3 0x0001
  515. #define PHY_REALTEK_INIT4 0xad17
  516. #define PHY_REALTEK_INIT5 0xfb54
  517. #define PHY_REALTEK_INIT6 0xf5c7
  518. #define PHY_REALTEK_INIT7 0x1000
  519. #define PHY_REALTEK_INIT8 0x0003
  520. #define PHY_REALTEK_INIT9 0x0008
  521. #define PHY_REALTEK_INIT10 0x0005
  522. #define PHY_REALTEK_INIT11 0x0200
  523. #define PHY_REALTEK_INIT_MSK1 0x0003
  524. #define PHY_GIGABIT 0x0100
  525. #define PHY_TIMEOUT 0x1
  526. #define PHY_ERROR 0x2
  527. #define PHY_100 0x1
  528. #define PHY_1000 0x2
  529. #define PHY_HALF 0x100
  530. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  531. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  532. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  533. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  534. #define NV_PAUSEFRAME_RX_REQ 0x0010
  535. #define NV_PAUSEFRAME_TX_REQ 0x0020
  536. #define NV_PAUSEFRAME_AUTONEG 0x0040
  537. /* MSI/MSI-X defines */
  538. #define NV_MSI_X_MAX_VECTORS 8
  539. #define NV_MSI_X_VECTORS_MASK 0x000f
  540. #define NV_MSI_CAPABLE 0x0010
  541. #define NV_MSI_X_CAPABLE 0x0020
  542. #define NV_MSI_ENABLED 0x0040
  543. #define NV_MSI_X_ENABLED 0x0080
  544. #define NV_MSI_X_VECTOR_ALL 0x0
  545. #define NV_MSI_X_VECTOR_RX 0x0
  546. #define NV_MSI_X_VECTOR_TX 0x1
  547. #define NV_MSI_X_VECTOR_OTHER 0x2
  548. #define NV_MSI_PRIV_OFFSET 0x68
  549. #define NV_MSI_PRIV_VALUE 0xffffffff
  550. #define NV_RESTART_TX 0x1
  551. #define NV_RESTART_RX 0x2
  552. #define NV_TX_LIMIT_COUNT 16
  553. #define NV_DYNAMIC_THRESHOLD 4
  554. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  555. /* statistics */
  556. struct nv_ethtool_str {
  557. char name[ETH_GSTRING_LEN];
  558. };
  559. static const struct nv_ethtool_str nv_estats_str[] = {
  560. { "tx_bytes" }, /* includes Ethernet FCS CRC */
  561. { "tx_zero_rexmt" },
  562. { "tx_one_rexmt" },
  563. { "tx_many_rexmt" },
  564. { "tx_late_collision" },
  565. { "tx_fifo_errors" },
  566. { "tx_carrier_errors" },
  567. { "tx_excess_deferral" },
  568. { "tx_retry_error" },
  569. { "rx_frame_error" },
  570. { "rx_extra_byte" },
  571. { "rx_late_collision" },
  572. { "rx_runt" },
  573. { "rx_frame_too_long" },
  574. { "rx_over_errors" },
  575. { "rx_crc_errors" },
  576. { "rx_frame_align_error" },
  577. { "rx_length_error" },
  578. { "rx_unicast" },
  579. { "rx_multicast" },
  580. { "rx_broadcast" },
  581. { "rx_packets" },
  582. { "rx_errors_total" },
  583. { "tx_errors_total" },
  584. /* version 2 stats */
  585. { "tx_deferral" },
  586. { "tx_packets" },
  587. { "rx_bytes" }, /* includes Ethernet FCS CRC */
  588. { "tx_pause" },
  589. { "rx_pause" },
  590. { "rx_drop_frame" },
  591. /* version 3 stats */
  592. { "tx_unicast" },
  593. { "tx_multicast" },
  594. { "tx_broadcast" }
  595. };
  596. struct nv_ethtool_stats {
  597. u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */
  598. u64 tx_zero_rexmt;
  599. u64 tx_one_rexmt;
  600. u64 tx_many_rexmt;
  601. u64 tx_late_collision;
  602. u64 tx_fifo_errors;
  603. u64 tx_carrier_errors;
  604. u64 tx_excess_deferral;
  605. u64 tx_retry_error;
  606. u64 rx_frame_error;
  607. u64 rx_extra_byte;
  608. u64 rx_late_collision;
  609. u64 rx_runt;
  610. u64 rx_frame_too_long;
  611. u64 rx_over_errors;
  612. u64 rx_crc_errors;
  613. u64 rx_frame_align_error;
  614. u64 rx_length_error;
  615. u64 rx_unicast;
  616. u64 rx_multicast;
  617. u64 rx_broadcast;
  618. u64 rx_packets; /* should be ifconfig->rx_packets */
  619. u64 rx_errors_total;
  620. u64 tx_errors_total;
  621. /* version 2 stats */
  622. u64 tx_deferral;
  623. u64 tx_packets; /* should be ifconfig->tx_packets */
  624. u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */
  625. u64 tx_pause;
  626. u64 rx_pause;
  627. u64 rx_drop_frame;
  628. /* version 3 stats */
  629. u64 tx_unicast;
  630. u64 tx_multicast;
  631. u64 tx_broadcast;
  632. };
  633. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  634. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  635. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  636. /* diagnostics */
  637. #define NV_TEST_COUNT_BASE 3
  638. #define NV_TEST_COUNT_EXTENDED 4
  639. static const struct nv_ethtool_str nv_etests_str[] = {
  640. { "link (online/offline)" },
  641. { "register (offline) " },
  642. { "interrupt (offline) " },
  643. { "loopback (offline) " }
  644. };
  645. struct register_test {
  646. __u32 reg;
  647. __u32 mask;
  648. };
  649. static const struct register_test nv_registers_test[] = {
  650. { NvRegUnknownSetupReg6, 0x01 },
  651. { NvRegMisc1, 0x03c },
  652. { NvRegOffloadConfig, 0x03ff },
  653. { NvRegMulticastAddrA, 0xffffffff },
  654. { NvRegTxWatermark, 0x0ff },
  655. { NvRegWakeUpFlags, 0x07777 },
  656. { 0, 0 }
  657. };
  658. struct nv_skb_map {
  659. struct sk_buff *skb;
  660. dma_addr_t dma;
  661. unsigned int dma_len:31;
  662. unsigned int dma_single:1;
  663. struct ring_desc_ex *first_tx_desc;
  664. struct nv_skb_map *next_tx_ctx;
  665. };
  666. /*
  667. * SMP locking:
  668. * All hardware access under netdev_priv(dev)->lock, except the performance
  669. * critical parts:
  670. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  671. * by the arch code for interrupts.
  672. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  673. * needs netdev_priv(dev)->lock :-(
  674. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  675. *
  676. * Hardware stats updates are protected by hwstats_lock:
  677. * - updated by nv_do_stats_poll (timer). This is meant to avoid
  678. * integer wraparound in the NIC stats registers, at low frequency
  679. * (0.1 Hz)
  680. * - updated by nv_get_ethtool_stats + nv_get_stats64
  681. *
  682. * Software stats are accessed only through 64b synchronization points
  683. * and are not subject to other synchronization techniques (single
  684. * update thread on the TX or RX paths).
  685. */
  686. /* in dev: base, irq */
  687. struct fe_priv {
  688. spinlock_t lock;
  689. struct net_device *dev;
  690. struct napi_struct napi;
  691. /* hardware stats are updated in syscall and timer */
  692. spinlock_t hwstats_lock;
  693. struct nv_ethtool_stats estats;
  694. int in_shutdown;
  695. u32 linkspeed;
  696. int duplex;
  697. int autoneg;
  698. int fixed_mode;
  699. int phyaddr;
  700. int wolenabled;
  701. unsigned int phy_oui;
  702. unsigned int phy_model;
  703. unsigned int phy_rev;
  704. u16 gigabit;
  705. int intr_test;
  706. int recover_error;
  707. int quiet_count;
  708. /* General data: RO fields */
  709. dma_addr_t ring_addr;
  710. struct pci_dev *pci_dev;
  711. u32 orig_mac[2];
  712. u32 events;
  713. u32 irqmask;
  714. u32 desc_ver;
  715. u32 txrxctl_bits;
  716. u32 vlanctl_bits;
  717. u32 driver_data;
  718. u32 device_id;
  719. u32 register_size;
  720. u32 mac_in_use;
  721. int mgmt_version;
  722. int mgmt_sema;
  723. void __iomem *base;
  724. /* rx specific fields.
  725. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  726. */
  727. union ring_type get_rx, put_rx, first_rx, last_rx;
  728. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  729. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  730. struct nv_skb_map *rx_skb;
  731. union ring_type rx_ring;
  732. unsigned int rx_buf_sz;
  733. unsigned int pkt_limit;
  734. struct timer_list oom_kick;
  735. struct timer_list nic_poll;
  736. struct timer_list stats_poll;
  737. u32 nic_poll_irq;
  738. int rx_ring_size;
  739. /* RX software stats */
  740. struct u64_stats_sync swstats_rx_syncp;
  741. u64 stat_rx_packets;
  742. u64 stat_rx_bytes; /* not always available in HW */
  743. u64 stat_rx_missed_errors;
  744. u64 stat_rx_dropped;
  745. /* media detection workaround.
  746. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  747. */
  748. int need_linktimer;
  749. unsigned long link_timeout;
  750. /*
  751. * tx specific fields.
  752. */
  753. union ring_type get_tx, put_tx, first_tx, last_tx;
  754. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  755. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  756. struct nv_skb_map *tx_skb;
  757. union ring_type tx_ring;
  758. u32 tx_flags;
  759. int tx_ring_size;
  760. int tx_limit;
  761. u32 tx_pkts_in_progress;
  762. struct nv_skb_map *tx_change_owner;
  763. struct nv_skb_map *tx_end_flip;
  764. int tx_stop;
  765. /* TX software stats */
  766. struct u64_stats_sync swstats_tx_syncp;
  767. u64 stat_tx_packets; /* not always available in HW */
  768. u64 stat_tx_bytes;
  769. u64 stat_tx_dropped;
  770. /* msi/msi-x fields */
  771. u32 msi_flags;
  772. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  773. /* flow control */
  774. u32 pause_flags;
  775. /* power saved state */
  776. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  777. /* for different msi-x irq type */
  778. char name_rx[IFNAMSIZ + 3]; /* -rx */
  779. char name_tx[IFNAMSIZ + 3]; /* -tx */
  780. char name_other[IFNAMSIZ + 6]; /* -other */
  781. };
  782. /*
  783. * Maximum number of loops until we assume that a bit in the irq mask
  784. * is stuck. Overridable with module param.
  785. */
  786. static int max_interrupt_work = 4;
  787. /*
  788. * Optimization can be either throuput mode or cpu mode
  789. *
  790. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  791. * CPU Mode: Interrupts are controlled by a timer.
  792. */
  793. enum {
  794. NV_OPTIMIZATION_MODE_THROUGHPUT,
  795. NV_OPTIMIZATION_MODE_CPU,
  796. NV_OPTIMIZATION_MODE_DYNAMIC
  797. };
  798. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  799. /*
  800. * Poll interval for timer irq
  801. *
  802. * This interval determines how frequent an interrupt is generated.
  803. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  804. * Min = 0, and Max = 65535
  805. */
  806. static int poll_interval = -1;
  807. /*
  808. * MSI interrupts
  809. */
  810. enum {
  811. NV_MSI_INT_DISABLED,
  812. NV_MSI_INT_ENABLED
  813. };
  814. static int msi = NV_MSI_INT_ENABLED;
  815. /*
  816. * MSIX interrupts
  817. */
  818. enum {
  819. NV_MSIX_INT_DISABLED,
  820. NV_MSIX_INT_ENABLED
  821. };
  822. static int msix = NV_MSIX_INT_ENABLED;
  823. /*
  824. * DMA 64bit
  825. */
  826. enum {
  827. NV_DMA_64BIT_DISABLED,
  828. NV_DMA_64BIT_ENABLED
  829. };
  830. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  831. /*
  832. * Debug output control for tx_timeout
  833. */
  834. static bool debug_tx_timeout = false;
  835. /*
  836. * Crossover Detection
  837. * Realtek 8201 phy + some OEM boards do not work properly.
  838. */
  839. enum {
  840. NV_CROSSOVER_DETECTION_DISABLED,
  841. NV_CROSSOVER_DETECTION_ENABLED
  842. };
  843. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  844. /*
  845. * Power down phy when interface is down (persists through reboot;
  846. * older Linux and other OSes may not power it up again)
  847. */
  848. static int phy_power_down;
  849. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  850. {
  851. return netdev_priv(dev);
  852. }
  853. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  854. {
  855. return ((struct fe_priv *)netdev_priv(dev))->base;
  856. }
  857. static inline void pci_push(u8 __iomem *base)
  858. {
  859. /* force out pending posted writes */
  860. readl(base);
  861. }
  862. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  863. {
  864. return le32_to_cpu(prd->flaglen)
  865. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  866. }
  867. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  868. {
  869. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  870. }
  871. static bool nv_optimized(struct fe_priv *np)
  872. {
  873. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  874. return false;
  875. return true;
  876. }
  877. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  878. int delay, int delaymax)
  879. {
  880. u8 __iomem *base = get_hwbase(dev);
  881. pci_push(base);
  882. do {
  883. udelay(delay);
  884. delaymax -= delay;
  885. if (delaymax < 0)
  886. return 1;
  887. } while ((readl(base + offset) & mask) != target);
  888. return 0;
  889. }
  890. #define NV_SETUP_RX_RING 0x01
  891. #define NV_SETUP_TX_RING 0x02
  892. static inline u32 dma_low(dma_addr_t addr)
  893. {
  894. return addr;
  895. }
  896. static inline u32 dma_high(dma_addr_t addr)
  897. {
  898. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  899. }
  900. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  901. {
  902. struct fe_priv *np = get_nvpriv(dev);
  903. u8 __iomem *base = get_hwbase(dev);
  904. if (!nv_optimized(np)) {
  905. if (rxtx_flags & NV_SETUP_RX_RING)
  906. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  907. if (rxtx_flags & NV_SETUP_TX_RING)
  908. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  909. } else {
  910. if (rxtx_flags & NV_SETUP_RX_RING) {
  911. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  912. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  913. }
  914. if (rxtx_flags & NV_SETUP_TX_RING) {
  915. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  916. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  917. }
  918. }
  919. }
  920. static void free_rings(struct net_device *dev)
  921. {
  922. struct fe_priv *np = get_nvpriv(dev);
  923. if (!nv_optimized(np)) {
  924. if (np->rx_ring.orig)
  925. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  926. np->rx_ring.orig, np->ring_addr);
  927. } else {
  928. if (np->rx_ring.ex)
  929. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  930. np->rx_ring.ex, np->ring_addr);
  931. }
  932. kfree(np->rx_skb);
  933. kfree(np->tx_skb);
  934. }
  935. static int using_multi_irqs(struct net_device *dev)
  936. {
  937. struct fe_priv *np = get_nvpriv(dev);
  938. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  939. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  940. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  941. return 0;
  942. else
  943. return 1;
  944. }
  945. static void nv_txrx_gate(struct net_device *dev, bool gate)
  946. {
  947. struct fe_priv *np = get_nvpriv(dev);
  948. u8 __iomem *base = get_hwbase(dev);
  949. u32 powerstate;
  950. if (!np->mac_in_use &&
  951. (np->driver_data & DEV_HAS_POWER_CNTRL)) {
  952. powerstate = readl(base + NvRegPowerState2);
  953. if (gate)
  954. powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
  955. else
  956. powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
  957. writel(powerstate, base + NvRegPowerState2);
  958. }
  959. }
  960. static void nv_enable_irq(struct net_device *dev)
  961. {
  962. struct fe_priv *np = get_nvpriv(dev);
  963. if (!using_multi_irqs(dev)) {
  964. if (np->msi_flags & NV_MSI_X_ENABLED)
  965. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  966. else
  967. enable_irq(np->pci_dev->irq);
  968. } else {
  969. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  970. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  971. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  972. }
  973. }
  974. static void nv_disable_irq(struct net_device *dev)
  975. {
  976. struct fe_priv *np = get_nvpriv(dev);
  977. if (!using_multi_irqs(dev)) {
  978. if (np->msi_flags & NV_MSI_X_ENABLED)
  979. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  980. else
  981. disable_irq(np->pci_dev->irq);
  982. } else {
  983. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  984. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  985. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  986. }
  987. }
  988. /* In MSIX mode, a write to irqmask behaves as XOR */
  989. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  990. {
  991. u8 __iomem *base = get_hwbase(dev);
  992. writel(mask, base + NvRegIrqMask);
  993. }
  994. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  995. {
  996. struct fe_priv *np = get_nvpriv(dev);
  997. u8 __iomem *base = get_hwbase(dev);
  998. if (np->msi_flags & NV_MSI_X_ENABLED) {
  999. writel(mask, base + NvRegIrqMask);
  1000. } else {
  1001. if (np->msi_flags & NV_MSI_ENABLED)
  1002. writel(0, base + NvRegMSIIrqMask);
  1003. writel(0, base + NvRegIrqMask);
  1004. }
  1005. }
  1006. static void nv_napi_enable(struct net_device *dev)
  1007. {
  1008. struct fe_priv *np = get_nvpriv(dev);
  1009. napi_enable(&np->napi);
  1010. }
  1011. static void nv_napi_disable(struct net_device *dev)
  1012. {
  1013. struct fe_priv *np = get_nvpriv(dev);
  1014. napi_disable(&np->napi);
  1015. }
  1016. #define MII_READ (-1)
  1017. /* mii_rw: read/write a register on the PHY.
  1018. *
  1019. * Caller must guarantee serialization
  1020. */
  1021. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  1022. {
  1023. u8 __iomem *base = get_hwbase(dev);
  1024. u32 reg;
  1025. int retval;
  1026. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  1027. reg = readl(base + NvRegMIIControl);
  1028. if (reg & NVREG_MIICTL_INUSE) {
  1029. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  1030. udelay(NV_MIIBUSY_DELAY);
  1031. }
  1032. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  1033. if (value != MII_READ) {
  1034. writel(value, base + NvRegMIIData);
  1035. reg |= NVREG_MIICTL_WRITE;
  1036. }
  1037. writel(reg, base + NvRegMIIControl);
  1038. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1039. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) {
  1040. retval = -1;
  1041. } else if (value != MII_READ) {
  1042. /* it was a write operation - fewer failures are detectable */
  1043. retval = 0;
  1044. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1045. retval = -1;
  1046. } else {
  1047. retval = readl(base + NvRegMIIData);
  1048. }
  1049. return retval;
  1050. }
  1051. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1052. {
  1053. struct fe_priv *np = netdev_priv(dev);
  1054. u32 miicontrol;
  1055. unsigned int tries = 0;
  1056. miicontrol = BMCR_RESET | bmcr_setup;
  1057. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol))
  1058. return -1;
  1059. /* wait for 500ms */
  1060. msleep(500);
  1061. /* must wait till reset is deasserted */
  1062. while (miicontrol & BMCR_RESET) {
  1063. usleep_range(10000, 20000);
  1064. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1065. /* FIXME: 100 tries seem excessive */
  1066. if (tries++ > 100)
  1067. return -1;
  1068. }
  1069. return 0;
  1070. }
  1071. static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np)
  1072. {
  1073. static const struct {
  1074. int reg;
  1075. int init;
  1076. } ri[] = {
  1077. { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
  1078. { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 },
  1079. { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 },
  1080. { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 },
  1081. { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 },
  1082. { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 },
  1083. { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
  1084. };
  1085. int i;
  1086. for (i = 0; i < ARRAY_SIZE(ri); i++) {
  1087. if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init))
  1088. return PHY_ERROR;
  1089. }
  1090. return 0;
  1091. }
  1092. static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np)
  1093. {
  1094. u32 reg;
  1095. u8 __iomem *base = get_hwbase(dev);
  1096. u32 powerstate = readl(base + NvRegPowerState2);
  1097. /* need to perform hw phy reset */
  1098. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1099. writel(powerstate, base + NvRegPowerState2);
  1100. msleep(25);
  1101. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1102. writel(powerstate, base + NvRegPowerState2);
  1103. msleep(25);
  1104. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1105. reg |= PHY_REALTEK_INIT9;
  1106. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg))
  1107. return PHY_ERROR;
  1108. if (mii_rw(dev, np->phyaddr,
  1109. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10))
  1110. return PHY_ERROR;
  1111. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1112. if (!(reg & PHY_REALTEK_INIT11)) {
  1113. reg |= PHY_REALTEK_INIT11;
  1114. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg))
  1115. return PHY_ERROR;
  1116. }
  1117. if (mii_rw(dev, np->phyaddr,
  1118. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
  1119. return PHY_ERROR;
  1120. return 0;
  1121. }
  1122. static int init_realtek_8201(struct net_device *dev, struct fe_priv *np)
  1123. {
  1124. u32 phy_reserved;
  1125. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1126. phy_reserved = mii_rw(dev, np->phyaddr,
  1127. PHY_REALTEK_INIT_REG6, MII_READ);
  1128. phy_reserved |= PHY_REALTEK_INIT7;
  1129. if (mii_rw(dev, np->phyaddr,
  1130. PHY_REALTEK_INIT_REG6, phy_reserved))
  1131. return PHY_ERROR;
  1132. }
  1133. return 0;
  1134. }
  1135. static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np)
  1136. {
  1137. u32 phy_reserved;
  1138. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1139. if (mii_rw(dev, np->phyaddr,
  1140. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3))
  1141. return PHY_ERROR;
  1142. phy_reserved = mii_rw(dev, np->phyaddr,
  1143. PHY_REALTEK_INIT_REG2, MII_READ);
  1144. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1145. phy_reserved |= PHY_REALTEK_INIT3;
  1146. if (mii_rw(dev, np->phyaddr,
  1147. PHY_REALTEK_INIT_REG2, phy_reserved))
  1148. return PHY_ERROR;
  1149. if (mii_rw(dev, np->phyaddr,
  1150. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
  1151. return PHY_ERROR;
  1152. }
  1153. return 0;
  1154. }
  1155. static int init_cicada(struct net_device *dev, struct fe_priv *np,
  1156. u32 phyinterface)
  1157. {
  1158. u32 phy_reserved;
  1159. if (phyinterface & PHY_RGMII) {
  1160. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1161. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1162. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1163. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved))
  1164. return PHY_ERROR;
  1165. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1166. phy_reserved |= PHY_CICADA_INIT5;
  1167. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved))
  1168. return PHY_ERROR;
  1169. }
  1170. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1171. phy_reserved |= PHY_CICADA_INIT6;
  1172. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved))
  1173. return PHY_ERROR;
  1174. return 0;
  1175. }
  1176. static int init_vitesse(struct net_device *dev, struct fe_priv *np)
  1177. {
  1178. u32 phy_reserved;
  1179. if (mii_rw(dev, np->phyaddr,
  1180. PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1))
  1181. return PHY_ERROR;
  1182. if (mii_rw(dev, np->phyaddr,
  1183. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2))
  1184. return PHY_ERROR;
  1185. phy_reserved = mii_rw(dev, np->phyaddr,
  1186. PHY_VITESSE_INIT_REG4, MII_READ);
  1187. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
  1188. return PHY_ERROR;
  1189. phy_reserved = mii_rw(dev, np->phyaddr,
  1190. PHY_VITESSE_INIT_REG3, MII_READ);
  1191. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1192. phy_reserved |= PHY_VITESSE_INIT3;
  1193. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
  1194. return PHY_ERROR;
  1195. if (mii_rw(dev, np->phyaddr,
  1196. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4))
  1197. return PHY_ERROR;
  1198. if (mii_rw(dev, np->phyaddr,
  1199. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5))
  1200. return PHY_ERROR;
  1201. phy_reserved = mii_rw(dev, np->phyaddr,
  1202. PHY_VITESSE_INIT_REG4, MII_READ);
  1203. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1204. phy_reserved |= PHY_VITESSE_INIT3;
  1205. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
  1206. return PHY_ERROR;
  1207. phy_reserved = mii_rw(dev, np->phyaddr,
  1208. PHY_VITESSE_INIT_REG3, MII_READ);
  1209. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
  1210. return PHY_ERROR;
  1211. if (mii_rw(dev, np->phyaddr,
  1212. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6))
  1213. return PHY_ERROR;
  1214. if (mii_rw(dev, np->phyaddr,
  1215. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7))
  1216. return PHY_ERROR;
  1217. phy_reserved = mii_rw(dev, np->phyaddr,
  1218. PHY_VITESSE_INIT_REG4, MII_READ);
  1219. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
  1220. return PHY_ERROR;
  1221. phy_reserved = mii_rw(dev, np->phyaddr,
  1222. PHY_VITESSE_INIT_REG3, MII_READ);
  1223. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1224. phy_reserved |= PHY_VITESSE_INIT8;
  1225. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
  1226. return PHY_ERROR;
  1227. if (mii_rw(dev, np->phyaddr,
  1228. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9))
  1229. return PHY_ERROR;
  1230. if (mii_rw(dev, np->phyaddr,
  1231. PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10))
  1232. return PHY_ERROR;
  1233. return 0;
  1234. }
  1235. static int phy_init(struct net_device *dev)
  1236. {
  1237. struct fe_priv *np = get_nvpriv(dev);
  1238. u8 __iomem *base = get_hwbase(dev);
  1239. u32 phyinterface;
  1240. u32 mii_status, mii_control, mii_control_1000, reg;
  1241. /* phy errata for E3016 phy */
  1242. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1243. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1244. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1245. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1246. netdev_info(dev, "%s: phy write to errata reg failed\n",
  1247. pci_name(np->pci_dev));
  1248. return PHY_ERROR;
  1249. }
  1250. }
  1251. if (np->phy_oui == PHY_OUI_REALTEK) {
  1252. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1253. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1254. if (init_realtek_8211b(dev, np)) {
  1255. netdev_info(dev, "%s: phy init failed\n",
  1256. pci_name(np->pci_dev));
  1257. return PHY_ERROR;
  1258. }
  1259. } else if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1260. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1261. if (init_realtek_8211c(dev, np)) {
  1262. netdev_info(dev, "%s: phy init failed\n",
  1263. pci_name(np->pci_dev));
  1264. return PHY_ERROR;
  1265. }
  1266. } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1267. if (init_realtek_8201(dev, np)) {
  1268. netdev_info(dev, "%s: phy init failed\n",
  1269. pci_name(np->pci_dev));
  1270. return PHY_ERROR;
  1271. }
  1272. }
  1273. }
  1274. /* set advertise register */
  1275. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1276. reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
  1277. ADVERTISE_100HALF | ADVERTISE_100FULL |
  1278. ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
  1279. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1280. netdev_info(dev, "%s: phy write to advertise failed\n",
  1281. pci_name(np->pci_dev));
  1282. return PHY_ERROR;
  1283. }
  1284. /* get phy interface type */
  1285. phyinterface = readl(base + NvRegPhyInterface);
  1286. /* see if gigabit phy */
  1287. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1288. if (mii_status & PHY_GIGABIT) {
  1289. np->gigabit = PHY_GIGABIT;
  1290. mii_control_1000 = mii_rw(dev, np->phyaddr,
  1291. MII_CTRL1000, MII_READ);
  1292. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1293. if (phyinterface & PHY_RGMII)
  1294. mii_control_1000 |= ADVERTISE_1000FULL;
  1295. else
  1296. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1297. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1298. netdev_info(dev, "%s: phy init failed\n",
  1299. pci_name(np->pci_dev));
  1300. return PHY_ERROR;
  1301. }
  1302. } else
  1303. np->gigabit = 0;
  1304. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1305. mii_control |= BMCR_ANENABLE;
  1306. if (np->phy_oui == PHY_OUI_REALTEK &&
  1307. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1308. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1309. /* start autoneg since we already performed hw reset above */
  1310. mii_control |= BMCR_ANRESTART;
  1311. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1312. netdev_info(dev, "%s: phy init failed\n",
  1313. pci_name(np->pci_dev));
  1314. return PHY_ERROR;
  1315. }
  1316. } else {
  1317. /* reset the phy
  1318. * (certain phys need bmcr to be setup with reset)
  1319. */
  1320. if (phy_reset(dev, mii_control)) {
  1321. netdev_info(dev, "%s: phy reset failed\n",
  1322. pci_name(np->pci_dev));
  1323. return PHY_ERROR;
  1324. }
  1325. }
  1326. /* phy vendor specific configuration */
  1327. if ((np->phy_oui == PHY_OUI_CICADA)) {
  1328. if (init_cicada(dev, np, phyinterface)) {
  1329. netdev_info(dev, "%s: phy init failed\n",
  1330. pci_name(np->pci_dev));
  1331. return PHY_ERROR;
  1332. }
  1333. } else if (np->phy_oui == PHY_OUI_VITESSE) {
  1334. if (init_vitesse(dev, np)) {
  1335. netdev_info(dev, "%s: phy init failed\n",
  1336. pci_name(np->pci_dev));
  1337. return PHY_ERROR;
  1338. }
  1339. } else if (np->phy_oui == PHY_OUI_REALTEK) {
  1340. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1341. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1342. /* reset could have cleared these out, set them back */
  1343. if (init_realtek_8211b(dev, np)) {
  1344. netdev_info(dev, "%s: phy init failed\n",
  1345. pci_name(np->pci_dev));
  1346. return PHY_ERROR;
  1347. }
  1348. } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1349. if (init_realtek_8201(dev, np) ||
  1350. init_realtek_8201_cross(dev, np)) {
  1351. netdev_info(dev, "%s: phy init failed\n",
  1352. pci_name(np->pci_dev));
  1353. return PHY_ERROR;
  1354. }
  1355. }
  1356. }
  1357. /* some phys clear out pause advertisement on reset, set it back */
  1358. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1359. /* restart auto negotiation, power down phy */
  1360. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1361. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1362. if (phy_power_down)
  1363. mii_control |= BMCR_PDOWN;
  1364. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control))
  1365. return PHY_ERROR;
  1366. return 0;
  1367. }
  1368. static void nv_start_rx(struct net_device *dev)
  1369. {
  1370. struct fe_priv *np = netdev_priv(dev);
  1371. u8 __iomem *base = get_hwbase(dev);
  1372. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1373. /* Already running? Stop it. */
  1374. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1375. rx_ctrl &= ~NVREG_RCVCTL_START;
  1376. writel(rx_ctrl, base + NvRegReceiverControl);
  1377. pci_push(base);
  1378. }
  1379. writel(np->linkspeed, base + NvRegLinkSpeed);
  1380. pci_push(base);
  1381. rx_ctrl |= NVREG_RCVCTL_START;
  1382. if (np->mac_in_use)
  1383. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1384. writel(rx_ctrl, base + NvRegReceiverControl);
  1385. pci_push(base);
  1386. }
  1387. static void nv_stop_rx(struct net_device *dev)
  1388. {
  1389. struct fe_priv *np = netdev_priv(dev);
  1390. u8 __iomem *base = get_hwbase(dev);
  1391. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1392. if (!np->mac_in_use)
  1393. rx_ctrl &= ~NVREG_RCVCTL_START;
  1394. else
  1395. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1396. writel(rx_ctrl, base + NvRegReceiverControl);
  1397. if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1398. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX))
  1399. netdev_info(dev, "%s: ReceiverStatus remained busy\n",
  1400. __func__);
  1401. udelay(NV_RXSTOP_DELAY2);
  1402. if (!np->mac_in_use)
  1403. writel(0, base + NvRegLinkSpeed);
  1404. }
  1405. static void nv_start_tx(struct net_device *dev)
  1406. {
  1407. struct fe_priv *np = netdev_priv(dev);
  1408. u8 __iomem *base = get_hwbase(dev);
  1409. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1410. tx_ctrl |= NVREG_XMITCTL_START;
  1411. if (np->mac_in_use)
  1412. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1413. writel(tx_ctrl, base + NvRegTransmitterControl);
  1414. pci_push(base);
  1415. }
  1416. static void nv_stop_tx(struct net_device *dev)
  1417. {
  1418. struct fe_priv *np = netdev_priv(dev);
  1419. u8 __iomem *base = get_hwbase(dev);
  1420. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1421. if (!np->mac_in_use)
  1422. tx_ctrl &= ~NVREG_XMITCTL_START;
  1423. else
  1424. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1425. writel(tx_ctrl, base + NvRegTransmitterControl);
  1426. if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1427. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX))
  1428. netdev_info(dev, "%s: TransmitterStatus remained busy\n",
  1429. __func__);
  1430. udelay(NV_TXSTOP_DELAY2);
  1431. if (!np->mac_in_use)
  1432. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1433. base + NvRegTransmitPoll);
  1434. }
  1435. static void nv_start_rxtx(struct net_device *dev)
  1436. {
  1437. nv_start_rx(dev);
  1438. nv_start_tx(dev);
  1439. }
  1440. static void nv_stop_rxtx(struct net_device *dev)
  1441. {
  1442. nv_stop_rx(dev);
  1443. nv_stop_tx(dev);
  1444. }
  1445. static void nv_txrx_reset(struct net_device *dev)
  1446. {
  1447. struct fe_priv *np = netdev_priv(dev);
  1448. u8 __iomem *base = get_hwbase(dev);
  1449. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1450. pci_push(base);
  1451. udelay(NV_TXRX_RESET_DELAY);
  1452. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1453. pci_push(base);
  1454. }
  1455. static void nv_mac_reset(struct net_device *dev)
  1456. {
  1457. struct fe_priv *np = netdev_priv(dev);
  1458. u8 __iomem *base = get_hwbase(dev);
  1459. u32 temp1, temp2, temp3;
  1460. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1461. pci_push(base);
  1462. /* save registers since they will be cleared on reset */
  1463. temp1 = readl(base + NvRegMacAddrA);
  1464. temp2 = readl(base + NvRegMacAddrB);
  1465. temp3 = readl(base + NvRegTransmitPoll);
  1466. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1467. pci_push(base);
  1468. udelay(NV_MAC_RESET_DELAY);
  1469. writel(0, base + NvRegMacReset);
  1470. pci_push(base);
  1471. udelay(NV_MAC_RESET_DELAY);
  1472. /* restore saved registers */
  1473. writel(temp1, base + NvRegMacAddrA);
  1474. writel(temp2, base + NvRegMacAddrB);
  1475. writel(temp3, base + NvRegTransmitPoll);
  1476. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1477. pci_push(base);
  1478. }
  1479. /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */
  1480. static void nv_update_stats(struct net_device *dev)
  1481. {
  1482. struct fe_priv *np = netdev_priv(dev);
  1483. u8 __iomem *base = get_hwbase(dev);
  1484. /* If it happens that this is run in top-half context, then
  1485. * replace the spin_lock of hwstats_lock with
  1486. * spin_lock_irqsave() in calling functions. */
  1487. WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half");
  1488. assert_spin_locked(&np->hwstats_lock);
  1489. /* query hardware */
  1490. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1491. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1492. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1493. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1494. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1495. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1496. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1497. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1498. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1499. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1500. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1501. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1502. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1503. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1504. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1505. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1506. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1507. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1508. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1509. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1510. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1511. np->estats.rx_packets =
  1512. np->estats.rx_unicast +
  1513. np->estats.rx_multicast +
  1514. np->estats.rx_broadcast;
  1515. np->estats.rx_errors_total =
  1516. np->estats.rx_crc_errors +
  1517. np->estats.rx_over_errors +
  1518. np->estats.rx_frame_error +
  1519. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1520. np->estats.rx_late_collision +
  1521. np->estats.rx_runt +
  1522. np->estats.rx_frame_too_long;
  1523. np->estats.tx_errors_total =
  1524. np->estats.tx_late_collision +
  1525. np->estats.tx_fifo_errors +
  1526. np->estats.tx_carrier_errors +
  1527. np->estats.tx_excess_deferral +
  1528. np->estats.tx_retry_error;
  1529. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1530. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1531. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1532. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1533. np->estats.tx_pause += readl(base + NvRegTxPause);
  1534. np->estats.rx_pause += readl(base + NvRegRxPause);
  1535. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1536. np->estats.rx_errors_total += np->estats.rx_drop_frame;
  1537. }
  1538. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1539. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1540. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1541. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1542. }
  1543. }
  1544. /*
  1545. * nv_get_stats64: dev->ndo_get_stats64 function
  1546. * Get latest stats value from the nic.
  1547. * Called with read_lock(&dev_base_lock) held for read -
  1548. * only synchronized against unregister_netdevice.
  1549. */
  1550. static struct rtnl_link_stats64*
  1551. nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage)
  1552. __acquires(&netdev_priv(dev)->hwstats_lock)
  1553. __releases(&netdev_priv(dev)->hwstats_lock)
  1554. {
  1555. struct fe_priv *np = netdev_priv(dev);
  1556. unsigned int syncp_start;
  1557. /*
  1558. * Note: because HW stats are not always available and for
  1559. * consistency reasons, the following ifconfig stats are
  1560. * managed by software: rx_bytes, tx_bytes, rx_packets and
  1561. * tx_packets. The related hardware stats reported by ethtool
  1562. * should be equivalent to these ifconfig stats, with 4
  1563. * additional bytes per packet (Ethernet FCS CRC), except for
  1564. * tx_packets when TSO kicks in.
  1565. */
  1566. /* software stats */
  1567. do {
  1568. syncp_start = u64_stats_fetch_begin_bh(&np->swstats_rx_syncp);
  1569. storage->rx_packets = np->stat_rx_packets;
  1570. storage->rx_bytes = np->stat_rx_bytes;
  1571. storage->rx_dropped = np->stat_rx_dropped;
  1572. storage->rx_missed_errors = np->stat_rx_missed_errors;
  1573. } while (u64_stats_fetch_retry_bh(&np->swstats_rx_syncp, syncp_start));
  1574. do {
  1575. syncp_start = u64_stats_fetch_begin_bh(&np->swstats_tx_syncp);
  1576. storage->tx_packets = np->stat_tx_packets;
  1577. storage->tx_bytes = np->stat_tx_bytes;
  1578. storage->tx_dropped = np->stat_tx_dropped;
  1579. } while (u64_stats_fetch_retry_bh(&np->swstats_tx_syncp, syncp_start));
  1580. /* If the nic supports hw counters then retrieve latest values */
  1581. if (np->driver_data & DEV_HAS_STATISTICS_V123) {
  1582. spin_lock_bh(&np->hwstats_lock);
  1583. nv_update_stats(dev);
  1584. /* generic stats */
  1585. storage->rx_errors = np->estats.rx_errors_total;
  1586. storage->tx_errors = np->estats.tx_errors_total;
  1587. /* meaningful only when NIC supports stats v3 */
  1588. storage->multicast = np->estats.rx_multicast;
  1589. /* detailed rx_errors */
  1590. storage->rx_length_errors = np->estats.rx_length_error;
  1591. storage->rx_over_errors = np->estats.rx_over_errors;
  1592. storage->rx_crc_errors = np->estats.rx_crc_errors;
  1593. storage->rx_frame_errors = np->estats.rx_frame_align_error;
  1594. storage->rx_fifo_errors = np->estats.rx_drop_frame;
  1595. /* detailed tx_errors */
  1596. storage->tx_carrier_errors = np->estats.tx_carrier_errors;
  1597. storage->tx_fifo_errors = np->estats.tx_fifo_errors;
  1598. spin_unlock_bh(&np->hwstats_lock);
  1599. }
  1600. return storage;
  1601. }
  1602. /*
  1603. * nv_alloc_rx: fill rx ring entries.
  1604. * Return 1 if the allocations for the skbs failed and the
  1605. * rx engine is without Available descriptors
  1606. */
  1607. static int nv_alloc_rx(struct net_device *dev)
  1608. {
  1609. struct fe_priv *np = netdev_priv(dev);
  1610. struct ring_desc *less_rx;
  1611. less_rx = np->get_rx.orig;
  1612. if (less_rx-- == np->first_rx.orig)
  1613. less_rx = np->last_rx.orig;
  1614. while (np->put_rx.orig != less_rx) {
  1615. struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1616. if (skb) {
  1617. np->put_rx_ctx->skb = skb;
  1618. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1619. skb->data,
  1620. skb_tailroom(skb),
  1621. PCI_DMA_FROMDEVICE);
  1622. if (pci_dma_mapping_error(np->pci_dev,
  1623. np->put_rx_ctx->dma)) {
  1624. kfree_skb(skb);
  1625. goto packet_dropped;
  1626. }
  1627. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1628. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1629. wmb();
  1630. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1631. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1632. np->put_rx.orig = np->first_rx.orig;
  1633. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1634. np->put_rx_ctx = np->first_rx_ctx;
  1635. } else {
  1636. packet_dropped:
  1637. u64_stats_update_begin(&np->swstats_rx_syncp);
  1638. np->stat_rx_dropped++;
  1639. u64_stats_update_end(&np->swstats_rx_syncp);
  1640. return 1;
  1641. }
  1642. }
  1643. return 0;
  1644. }
  1645. static int nv_alloc_rx_optimized(struct net_device *dev)
  1646. {
  1647. struct fe_priv *np = netdev_priv(dev);
  1648. struct ring_desc_ex *less_rx;
  1649. less_rx = np->get_rx.ex;
  1650. if (less_rx-- == np->first_rx.ex)
  1651. less_rx = np->last_rx.ex;
  1652. while (np->put_rx.ex != less_rx) {
  1653. struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1654. if (skb) {
  1655. np->put_rx_ctx->skb = skb;
  1656. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1657. skb->data,
  1658. skb_tailroom(skb),
  1659. PCI_DMA_FROMDEVICE);
  1660. if (pci_dma_mapping_error(np->pci_dev,
  1661. np->put_rx_ctx->dma)) {
  1662. kfree_skb(skb);
  1663. goto packet_dropped;
  1664. }
  1665. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1666. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1667. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1668. wmb();
  1669. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1670. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1671. np->put_rx.ex = np->first_rx.ex;
  1672. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1673. np->put_rx_ctx = np->first_rx_ctx;
  1674. } else {
  1675. packet_dropped:
  1676. u64_stats_update_begin(&np->swstats_rx_syncp);
  1677. np->stat_rx_dropped++;
  1678. u64_stats_update_end(&np->swstats_rx_syncp);
  1679. return 1;
  1680. }
  1681. }
  1682. return 0;
  1683. }
  1684. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1685. static void nv_do_rx_refill(unsigned long data)
  1686. {
  1687. struct net_device *dev = (struct net_device *) data;
  1688. struct fe_priv *np = netdev_priv(dev);
  1689. /* Just reschedule NAPI rx processing */
  1690. napi_schedule(&np->napi);
  1691. }
  1692. static void nv_init_rx(struct net_device *dev)
  1693. {
  1694. struct fe_priv *np = netdev_priv(dev);
  1695. int i;
  1696. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1697. if (!nv_optimized(np))
  1698. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1699. else
  1700. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1701. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1702. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1703. for (i = 0; i < np->rx_ring_size; i++) {
  1704. if (!nv_optimized(np)) {
  1705. np->rx_ring.orig[i].flaglen = 0;
  1706. np->rx_ring.orig[i].buf = 0;
  1707. } else {
  1708. np->rx_ring.ex[i].flaglen = 0;
  1709. np->rx_ring.ex[i].txvlan = 0;
  1710. np->rx_ring.ex[i].bufhigh = 0;
  1711. np->rx_ring.ex[i].buflow = 0;
  1712. }
  1713. np->rx_skb[i].skb = NULL;
  1714. np->rx_skb[i].dma = 0;
  1715. }
  1716. }
  1717. static void nv_init_tx(struct net_device *dev)
  1718. {
  1719. struct fe_priv *np = netdev_priv(dev);
  1720. int i;
  1721. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1722. if (!nv_optimized(np))
  1723. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1724. else
  1725. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1726. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1727. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1728. netdev_reset_queue(np->dev);
  1729. np->tx_pkts_in_progress = 0;
  1730. np->tx_change_owner = NULL;
  1731. np->tx_end_flip = NULL;
  1732. np->tx_stop = 0;
  1733. for (i = 0; i < np->tx_ring_size; i++) {
  1734. if (!nv_optimized(np)) {
  1735. np->tx_ring.orig[i].flaglen = 0;
  1736. np->tx_ring.orig[i].buf = 0;
  1737. } else {
  1738. np->tx_ring.ex[i].flaglen = 0;
  1739. np->tx_ring.ex[i].txvlan = 0;
  1740. np->tx_ring.ex[i].bufhigh = 0;
  1741. np->tx_ring.ex[i].buflow = 0;
  1742. }
  1743. np->tx_skb[i].skb = NULL;
  1744. np->tx_skb[i].dma = 0;
  1745. np->tx_skb[i].dma_len = 0;
  1746. np->tx_skb[i].dma_single = 0;
  1747. np->tx_skb[i].first_tx_desc = NULL;
  1748. np->tx_skb[i].next_tx_ctx = NULL;
  1749. }
  1750. }
  1751. static int nv_init_ring(struct net_device *dev)
  1752. {
  1753. struct fe_priv *np = netdev_priv(dev);
  1754. nv_init_tx(dev);
  1755. nv_init_rx(dev);
  1756. if (!nv_optimized(np))
  1757. return nv_alloc_rx(dev);
  1758. else
  1759. return nv_alloc_rx_optimized(dev);
  1760. }
  1761. static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1762. {
  1763. if (tx_skb->dma) {
  1764. if (tx_skb->dma_single)
  1765. pci_unmap_single(np->pci_dev, tx_skb->dma,
  1766. tx_skb->dma_len,
  1767. PCI_DMA_TODEVICE);
  1768. else
  1769. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1770. tx_skb->dma_len,
  1771. PCI_DMA_TODEVICE);
  1772. tx_skb->dma = 0;
  1773. }
  1774. }
  1775. static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1776. {
  1777. nv_unmap_txskb(np, tx_skb);
  1778. if (tx_skb->skb) {
  1779. dev_kfree_skb_any(tx_skb->skb);
  1780. tx_skb->skb = NULL;
  1781. return 1;
  1782. }
  1783. return 0;
  1784. }
  1785. static void nv_drain_tx(struct net_device *dev)
  1786. {
  1787. struct fe_priv *np = netdev_priv(dev);
  1788. unsigned int i;
  1789. for (i = 0; i < np->tx_ring_size; i++) {
  1790. if (!nv_optimized(np)) {
  1791. np->tx_ring.orig[i].flaglen = 0;
  1792. np->tx_ring.orig[i].buf = 0;
  1793. } else {
  1794. np->tx_ring.ex[i].flaglen = 0;
  1795. np->tx_ring.ex[i].txvlan = 0;
  1796. np->tx_ring.ex[i].bufhigh = 0;
  1797. np->tx_ring.ex[i].buflow = 0;
  1798. }
  1799. if (nv_release_txskb(np, &np->tx_skb[i])) {
  1800. u64_stats_update_begin(&np->swstats_tx_syncp);
  1801. np->stat_tx_dropped++;
  1802. u64_stats_update_end(&np->swstats_tx_syncp);
  1803. }
  1804. np->tx_skb[i].dma = 0;
  1805. np->tx_skb[i].dma_len = 0;
  1806. np->tx_skb[i].dma_single = 0;
  1807. np->tx_skb[i].first_tx_desc = NULL;
  1808. np->tx_skb[i].next_tx_ctx = NULL;
  1809. }
  1810. np->tx_pkts_in_progress = 0;
  1811. np->tx_change_owner = NULL;
  1812. np->tx_end_flip = NULL;
  1813. }
  1814. static void nv_drain_rx(struct net_device *dev)
  1815. {
  1816. struct fe_priv *np = netdev_priv(dev);
  1817. int i;
  1818. for (i = 0; i < np->rx_ring_size; i++) {
  1819. if (!nv_optimized(np)) {
  1820. np->rx_ring.orig[i].flaglen = 0;
  1821. np->rx_ring.orig[i].buf = 0;
  1822. } else {
  1823. np->rx_ring.ex[i].flaglen = 0;
  1824. np->rx_ring.ex[i].txvlan = 0;
  1825. np->rx_ring.ex[i].bufhigh = 0;
  1826. np->rx_ring.ex[i].buflow = 0;
  1827. }
  1828. wmb();
  1829. if (np->rx_skb[i].skb) {
  1830. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1831. (skb_end_pointer(np->rx_skb[i].skb) -
  1832. np->rx_skb[i].skb->data),
  1833. PCI_DMA_FROMDEVICE);
  1834. dev_kfree_skb(np->rx_skb[i].skb);
  1835. np->rx_skb[i].skb = NULL;
  1836. }
  1837. }
  1838. }
  1839. static void nv_drain_rxtx(struct net_device *dev)
  1840. {
  1841. nv_drain_tx(dev);
  1842. nv_drain_rx(dev);
  1843. }
  1844. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1845. {
  1846. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1847. }
  1848. static void nv_legacybackoff_reseed(struct net_device *dev)
  1849. {
  1850. u8 __iomem *base = get_hwbase(dev);
  1851. u32 reg;
  1852. u32 low;
  1853. int tx_status = 0;
  1854. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1855. get_random_bytes(&low, sizeof(low));
  1856. reg |= low & NVREG_SLOTTIME_MASK;
  1857. /* Need to stop tx before change takes effect.
  1858. * Caller has already gained np->lock.
  1859. */
  1860. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1861. if (tx_status)
  1862. nv_stop_tx(dev);
  1863. nv_stop_rx(dev);
  1864. writel(reg, base + NvRegSlotTime);
  1865. if (tx_status)
  1866. nv_start_tx(dev);
  1867. nv_start_rx(dev);
  1868. }
  1869. /* Gear Backoff Seeds */
  1870. #define BACKOFF_SEEDSET_ROWS 8
  1871. #define BACKOFF_SEEDSET_LFSRS 15
  1872. /* Known Good seed sets */
  1873. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1874. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1875. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1876. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1877. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1878. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1879. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1880. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1881. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} };
  1882. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1883. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1884. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1885. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1886. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1887. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1888. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1889. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1890. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} };
  1891. static void nv_gear_backoff_reseed(struct net_device *dev)
  1892. {
  1893. u8 __iomem *base = get_hwbase(dev);
  1894. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1895. u32 temp, seedset, combinedSeed;
  1896. int i;
  1897. /* Setup seed for free running LFSR */
  1898. /* We are going to read the time stamp counter 3 times
  1899. and swizzle bits around to increase randomness */
  1900. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1901. miniseed1 &= 0x0fff;
  1902. if (miniseed1 == 0)
  1903. miniseed1 = 0xabc;
  1904. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1905. miniseed2 &= 0x0fff;
  1906. if (miniseed2 == 0)
  1907. miniseed2 = 0xabc;
  1908. miniseed2_reversed =
  1909. ((miniseed2 & 0xF00) >> 8) |
  1910. (miniseed2 & 0x0F0) |
  1911. ((miniseed2 & 0x00F) << 8);
  1912. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1913. miniseed3 &= 0x0fff;
  1914. if (miniseed3 == 0)
  1915. miniseed3 = 0xabc;
  1916. miniseed3_reversed =
  1917. ((miniseed3 & 0xF00) >> 8) |
  1918. (miniseed3 & 0x0F0) |
  1919. ((miniseed3 & 0x00F) << 8);
  1920. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1921. (miniseed2 ^ miniseed3_reversed);
  1922. /* Seeds can not be zero */
  1923. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1924. combinedSeed |= 0x08;
  1925. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1926. combinedSeed |= 0x8000;
  1927. /* No need to disable tx here */
  1928. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1929. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1930. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1931. writel(temp, base + NvRegBackOffControl);
  1932. /* Setup seeds for all gear LFSRs. */
  1933. get_random_bytes(&seedset, sizeof(seedset));
  1934. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1935. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) {
  1936. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1937. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1938. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1939. writel(temp, base + NvRegBackOffControl);
  1940. }
  1941. }
  1942. /*
  1943. * nv_start_xmit: dev->hard_start_xmit function
  1944. * Called with netif_tx_lock held.
  1945. */
  1946. static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1947. {
  1948. struct fe_priv *np = netdev_priv(dev);
  1949. u32 tx_flags = 0;
  1950. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1951. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1952. unsigned int i;
  1953. u32 offset = 0;
  1954. u32 bcnt;
  1955. u32 size = skb_headlen(skb);
  1956. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1957. u32 empty_slots;
  1958. struct ring_desc *put_tx;
  1959. struct ring_desc *start_tx;
  1960. struct ring_desc *prev_tx;
  1961. struct nv_skb_map *prev_tx_ctx;
  1962. struct nv_skb_map *tmp_tx_ctx = NULL, *start_tx_ctx = NULL;
  1963. unsigned long flags;
  1964. /* add fragments to entries count */
  1965. for (i = 0; i < fragments; i++) {
  1966. u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1967. entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
  1968. ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1969. }
  1970. spin_lock_irqsave(&np->lock, flags);
  1971. empty_slots = nv_get_empty_tx_slots(np);
  1972. if (unlikely(empty_slots <= entries)) {
  1973. netif_stop_queue(dev);
  1974. np->tx_stop = 1;
  1975. spin_unlock_irqrestore(&np->lock, flags);
  1976. return NETDEV_TX_BUSY;
  1977. }
  1978. spin_unlock_irqrestore(&np->lock, flags);
  1979. start_tx = put_tx = np->put_tx.orig;
  1980. /* setup the header buffer */
  1981. do {
  1982. prev_tx = put_tx;
  1983. prev_tx_ctx = np->put_tx_ctx;
  1984. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1985. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1986. PCI_DMA_TODEVICE);
  1987. if (pci_dma_mapping_error(np->pci_dev,
  1988. np->put_tx_ctx->dma)) {
  1989. /* on DMA mapping error - drop the packet */
  1990. kfree_skb(skb);
  1991. u64_stats_update_begin(&np->swstats_tx_syncp);
  1992. np->stat_tx_dropped++;
  1993. u64_stats_update_end(&np->swstats_tx_syncp);
  1994. return NETDEV_TX_OK;
  1995. }
  1996. np->put_tx_ctx->dma_len = bcnt;
  1997. np->put_tx_ctx->dma_single = 1;
  1998. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1999. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2000. tx_flags = np->tx_flags;
  2001. offset += bcnt;
  2002. size -= bcnt;
  2003. if (unlikely(put_tx++ == np->last_tx.orig))
  2004. put_tx = np->first_tx.orig;
  2005. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2006. np->put_tx_ctx = np->first_tx_ctx;
  2007. } while (size);
  2008. /* setup the fragments */
  2009. for (i = 0; i < fragments; i++) {
  2010. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2011. u32 frag_size = skb_frag_size(frag);
  2012. offset = 0;
  2013. do {
  2014. prev_tx = put_tx;
  2015. prev_tx_ctx = np->put_tx_ctx;
  2016. if (!start_tx_ctx)
  2017. start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx;
  2018. bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
  2019. np->put_tx_ctx->dma = skb_frag_dma_map(
  2020. &np->pci_dev->dev,
  2021. frag, offset,
  2022. bcnt,
  2023. DMA_TO_DEVICE);
  2024. if (dma_mapping_error(&np->pci_dev->dev, np->put_tx_ctx->dma)) {
  2025. /* Unwind the mapped fragments */
  2026. do {
  2027. nv_unmap_txskb(np, start_tx_ctx);
  2028. if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx))
  2029. tmp_tx_ctx = np->first_tx_ctx;
  2030. } while (tmp_tx_ctx != np->put_tx_ctx);
  2031. kfree_skb(skb);
  2032. np->put_tx_ctx = start_tx_ctx;
  2033. u64_stats_update_begin(&np->swstats_tx_syncp);
  2034. np->stat_tx_dropped++;
  2035. u64_stats_update_end(&np->swstats_tx_syncp);
  2036. return NETDEV_TX_OK;
  2037. }
  2038. np->put_tx_ctx->dma_len = bcnt;
  2039. np->put_tx_ctx->dma_single = 0;
  2040. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  2041. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2042. offset += bcnt;
  2043. frag_size -= bcnt;
  2044. if (unlikely(put_tx++ == np->last_tx.orig))
  2045. put_tx = np->first_tx.orig;
  2046. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2047. np->put_tx_ctx = np->first_tx_ctx;
  2048. } while (frag_size);
  2049. }
  2050. /* set last fragment flag */
  2051. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  2052. /* save skb in this slot's context area */
  2053. prev_tx_ctx->skb = skb;
  2054. if (skb_is_gso(skb))
  2055. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2056. else
  2057. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2058. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2059. spin_lock_irqsave(&np->lock, flags);
  2060. /* set tx flags */
  2061. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2062. netdev_sent_queue(np->dev, skb->len);
  2063. skb_tx_timestamp(skb);
  2064. np->put_tx.orig = put_tx;
  2065. spin_unlock_irqrestore(&np->lock, flags);
  2066. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2067. return NETDEV_TX_OK;
  2068. }
  2069. static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
  2070. struct net_device *dev)
  2071. {
  2072. struct fe_priv *np = netdev_priv(dev);
  2073. u32 tx_flags = 0;
  2074. u32 tx_flags_extra;
  2075. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2076. unsigned int i;
  2077. u32 offset = 0;
  2078. u32 bcnt;
  2079. u32 size = skb_headlen(skb);
  2080. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2081. u32 empty_slots;
  2082. struct ring_desc_ex *put_tx;
  2083. struct ring_desc_ex *start_tx;
  2084. struct ring_desc_ex *prev_tx;
  2085. struct nv_skb_map *prev_tx_ctx;
  2086. struct nv_skb_map *start_tx_ctx = NULL;
  2087. struct nv_skb_map *tmp_tx_ctx = NULL;
  2088. unsigned long flags;
  2089. /* add fragments to entries count */
  2090. for (i = 0; i < fragments; i++) {
  2091. u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
  2092. entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
  2093. ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2094. }
  2095. spin_lock_irqsave(&np->lock, flags);
  2096. empty_slots = nv_get_empty_tx_slots(np);
  2097. if (unlikely(empty_slots <= entries)) {
  2098. netif_stop_queue(dev);
  2099. np->tx_stop = 1;
  2100. spin_unlock_irqrestore(&np->lock, flags);
  2101. return NETDEV_TX_BUSY;
  2102. }
  2103. spin_unlock_irqrestore(&np->lock, flags);
  2104. start_tx = put_tx = np->put_tx.ex;
  2105. start_tx_ctx = np->put_tx_ctx;
  2106. /* setup the header buffer */
  2107. do {
  2108. prev_tx = put_tx;
  2109. prev_tx_ctx = np->put_tx_ctx;
  2110. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2111. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2112. PCI_DMA_TODEVICE);
  2113. if (pci_dma_mapping_error(np->pci_dev,
  2114. np->put_tx_ctx->dma)) {
  2115. /* on DMA mapping error - drop the packet */
  2116. kfree_skb(skb);
  2117. u64_stats_update_begin(&np->swstats_tx_syncp);
  2118. np->stat_tx_dropped++;
  2119. u64_stats_update_end(&np->swstats_tx_syncp);
  2120. return NETDEV_TX_OK;
  2121. }
  2122. np->put_tx_ctx->dma_len = bcnt;
  2123. np->put_tx_ctx->dma_single = 1;
  2124. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2125. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2126. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2127. tx_flags = NV_TX2_VALID;
  2128. offset += bcnt;
  2129. size -= bcnt;
  2130. if (unlikely(put_tx++ == np->last_tx.ex))
  2131. put_tx = np->first_tx.ex;
  2132. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2133. np->put_tx_ctx = np->first_tx_ctx;
  2134. } while (size);
  2135. /* setup the fragments */
  2136. for (i = 0; i < fragments; i++) {
  2137. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2138. u32 frag_size = skb_frag_size(frag);
  2139. offset = 0;
  2140. do {
  2141. prev_tx = put_tx;
  2142. prev_tx_ctx = np->put_tx_ctx;
  2143. bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
  2144. if (!start_tx_ctx)
  2145. start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx;
  2146. np->put_tx_ctx->dma = skb_frag_dma_map(
  2147. &np->pci_dev->dev,
  2148. frag, offset,
  2149. bcnt,
  2150. DMA_TO_DEVICE);
  2151. if (dma_mapping_error(&np->pci_dev->dev, np->put_tx_ctx->dma)) {
  2152. /* Unwind the mapped fragments */
  2153. do {
  2154. nv_unmap_txskb(np, start_tx_ctx);
  2155. if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx))
  2156. tmp_tx_ctx = np->first_tx_ctx;
  2157. } while (tmp_tx_ctx != np->put_tx_ctx);
  2158. kfree_skb(skb);
  2159. np->put_tx_ctx = start_tx_ctx;
  2160. u64_stats_update_begin(&np->swstats_tx_syncp);
  2161. np->stat_tx_dropped++;
  2162. u64_stats_update_end(&np->swstats_tx_syncp);
  2163. return NETDEV_TX_OK;
  2164. }
  2165. np->put_tx_ctx->dma_len = bcnt;
  2166. np->put_tx_ctx->dma_single = 0;
  2167. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2168. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2169. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2170. offset += bcnt;
  2171. frag_size -= bcnt;
  2172. if (unlikely(put_tx++ == np->last_tx.ex))
  2173. put_tx = np->first_tx.ex;
  2174. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2175. np->put_tx_ctx = np->first_tx_ctx;
  2176. } while (frag_size);
  2177. }
  2178. /* set last fragment flag */
  2179. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2180. /* save skb in this slot's context area */
  2181. prev_tx_ctx->skb = skb;
  2182. if (skb_is_gso(skb))
  2183. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2184. else
  2185. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2186. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2187. /* vlan tag */
  2188. if (vlan_tx_tag_present(skb))
  2189. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT |
  2190. vlan_tx_tag_get(skb));
  2191. else
  2192. start_tx->txvlan = 0;
  2193. spin_lock_irqsave(&np->lock, flags);
  2194. if (np->tx_limit) {
  2195. /* Limit the number of outstanding tx. Setup all fragments, but
  2196. * do not set the VALID bit on the first descriptor. Save a pointer
  2197. * to that descriptor and also for next skb_map element.
  2198. */
  2199. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2200. if (!np->tx_change_owner)
  2201. np->tx_change_owner = start_tx_ctx;
  2202. /* remove VALID bit */
  2203. tx_flags &= ~NV_TX2_VALID;
  2204. start_tx_ctx->first_tx_desc = start_tx;
  2205. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2206. np->tx_end_flip = np->put_tx_ctx;
  2207. } else {
  2208. np->tx_pkts_in_progress++;
  2209. }
  2210. }
  2211. /* set tx flags */
  2212. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2213. netdev_sent_queue(np->dev, skb->len);
  2214. skb_tx_timestamp(skb);
  2215. np->put_tx.ex = put_tx;
  2216. spin_unlock_irqrestore(&np->lock, flags);
  2217. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2218. return NETDEV_TX_OK;
  2219. }
  2220. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2221. {
  2222. struct fe_priv *np = netdev_priv(dev);
  2223. np->tx_pkts_in_progress--;
  2224. if (np->tx_change_owner) {
  2225. np->tx_change_owner->first_tx_desc->flaglen |=
  2226. cpu_to_le32(NV_TX2_VALID);
  2227. np->tx_pkts_in_progress++;
  2228. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2229. if (np->tx_change_owner == np->tx_end_flip)
  2230. np->tx_change_owner = NULL;
  2231. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2232. }
  2233. }
  2234. /*
  2235. * nv_tx_done: check for completed packets, release the skbs.
  2236. *
  2237. * Caller must own np->lock.
  2238. */
  2239. static int nv_tx_done(struct net_device *dev, int limit)
  2240. {
  2241. struct fe_priv *np = netdev_priv(dev);
  2242. u32 flags;
  2243. int tx_work = 0;
  2244. struct ring_desc *orig_get_tx = np->get_tx.orig;
  2245. unsigned int bytes_compl = 0;
  2246. while ((np->get_tx.orig != np->put_tx.orig) &&
  2247. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2248. (tx_work < limit)) {
  2249. nv_unmap_txskb(np, np->get_tx_ctx);
  2250. if (np->desc_ver == DESC_VER_1) {
  2251. if (flags & NV_TX_LASTPACKET) {
  2252. if (flags & NV_TX_ERROR) {
  2253. if ((flags & NV_TX_RETRYERROR)
  2254. && !(flags & NV_TX_RETRYCOUNT_MASK))
  2255. nv_legacybackoff_reseed(dev);
  2256. } else {
  2257. u64_stats_update_begin(&np->swstats_tx_syncp);
  2258. np->stat_tx_packets++;
  2259. np->stat_tx_bytes += np->get_tx_ctx->skb->len;
  2260. u64_stats_update_end(&np->swstats_tx_syncp);
  2261. }
  2262. bytes_compl += np->get_tx_ctx->skb->len;
  2263. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2264. np->get_tx_ctx->skb = NULL;
  2265. tx_work++;
  2266. }
  2267. } else {
  2268. if (flags & NV_TX2_LASTPACKET) {
  2269. if (flags & NV_TX2_ERROR) {
  2270. if ((flags & NV_TX2_RETRYERROR)
  2271. && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2272. nv_legacybackoff_reseed(dev);
  2273. } else {
  2274. u64_stats_update_begin(&np->swstats_tx_syncp);
  2275. np->stat_tx_packets++;
  2276. np->stat_tx_bytes += np->get_tx_ctx->skb->len;
  2277. u64_stats_update_end(&np->swstats_tx_syncp);
  2278. }
  2279. bytes_compl += np->get_tx_ctx->skb->len;
  2280. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2281. np->get_tx_ctx->skb = NULL;
  2282. tx_work++;
  2283. }
  2284. }
  2285. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2286. np->get_tx.orig = np->first_tx.orig;
  2287. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2288. np->get_tx_ctx = np->first_tx_ctx;
  2289. }
  2290. netdev_completed_queue(np->dev, tx_work, bytes_compl);
  2291. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2292. np->tx_stop = 0;
  2293. netif_wake_queue(dev);
  2294. }
  2295. return tx_work;
  2296. }
  2297. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2298. {
  2299. struct fe_priv *np = netdev_priv(dev);
  2300. u32 flags;
  2301. int tx_work = 0;
  2302. struct ring_desc_ex *orig_get_tx = np->get_tx.ex;
  2303. unsigned long bytes_cleaned = 0;
  2304. while ((np->get_tx.ex != np->put_tx.ex) &&
  2305. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
  2306. (tx_work < limit)) {
  2307. nv_unmap_txskb(np, np->get_tx_ctx);
  2308. if (flags & NV_TX2_LASTPACKET) {
  2309. if (flags & NV_TX2_ERROR) {
  2310. if ((flags & NV_TX2_RETRYERROR)
  2311. && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2312. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2313. nv_gear_backoff_reseed(dev);
  2314. else
  2315. nv_legacybackoff_reseed(dev);
  2316. }
  2317. } else {
  2318. u64_stats_update_begin(&np->swstats_tx_syncp);
  2319. np->stat_tx_packets++;
  2320. np->stat_tx_bytes += np->get_tx_ctx->skb->len;
  2321. u64_stats_update_end(&np->swstats_tx_syncp);
  2322. }
  2323. bytes_cleaned += np->get_tx_ctx->skb->len;
  2324. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2325. np->get_tx_ctx->skb = NULL;
  2326. tx_work++;
  2327. if (np->tx_limit)
  2328. nv_tx_flip_ownership(dev);
  2329. }
  2330. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2331. np->get_tx.ex = np->first_tx.ex;
  2332. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2333. np->get_tx_ctx = np->first_tx_ctx;
  2334. }
  2335. netdev_completed_queue(np->dev, tx_work, bytes_cleaned);
  2336. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2337. np->tx_stop = 0;
  2338. netif_wake_queue(dev);
  2339. }
  2340. return tx_work;
  2341. }
  2342. /*
  2343. * nv_tx_timeout: dev->tx_timeout function
  2344. * Called with netif_tx_lock held.
  2345. */
  2346. static void nv_tx_timeout(struct net_device *dev)
  2347. {
  2348. struct fe_priv *np = netdev_priv(dev);
  2349. u8 __iomem *base = get_hwbase(dev);
  2350. u32 status;
  2351. union ring_type put_tx;
  2352. int saved_tx_limit;
  2353. if (np->msi_flags & NV_MSI_X_ENABLED)
  2354. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2355. else
  2356. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2357. netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status);
  2358. if (unlikely(debug_tx_timeout)) {
  2359. int i;
  2360. netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr);
  2361. netdev_info(dev, "Dumping tx registers\n");
  2362. for (i = 0; i <= np->register_size; i += 32) {
  2363. netdev_info(dev,
  2364. "%3x: %08x %08x %08x %08x "
  2365. "%08x %08x %08x %08x\n",
  2366. i,
  2367. readl(base + i + 0), readl(base + i + 4),
  2368. readl(base + i + 8), readl(base + i + 12),
  2369. readl(base + i + 16), readl(base + i + 20),
  2370. readl(base + i + 24), readl(base + i + 28));
  2371. }
  2372. netdev_info(dev, "Dumping tx ring\n");
  2373. for (i = 0; i < np->tx_ring_size; i += 4) {
  2374. if (!nv_optimized(np)) {
  2375. netdev_info(dev,
  2376. "%03x: %08x %08x // %08x %08x "
  2377. "// %08x %08x // %08x %08x\n",
  2378. i,
  2379. le32_to_cpu(np->tx_ring.orig[i].buf),
  2380. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2381. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2382. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2383. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2384. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2385. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2386. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2387. } else {
  2388. netdev_info(dev,
  2389. "%03x: %08x %08x %08x "
  2390. "// %08x %08x %08x "
  2391. "// %08x %08x %08x "
  2392. "// %08x %08x %08x\n",
  2393. i,
  2394. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2395. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2396. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2397. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2398. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2399. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2400. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2401. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2402. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2403. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2404. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2405. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2406. }
  2407. }
  2408. }
  2409. spin_lock_irq(&np->lock);
  2410. /* 1) stop tx engine */
  2411. nv_stop_tx(dev);
  2412. /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
  2413. saved_tx_limit = np->tx_limit;
  2414. np->tx_limit = 0; /* prevent giving HW any limited pkts */
  2415. np->tx_stop = 0; /* prevent waking tx queue */
  2416. if (!nv_optimized(np))
  2417. nv_tx_done(dev, np->tx_ring_size);
  2418. else
  2419. nv_tx_done_optimized(dev, np->tx_ring_size);
  2420. /* save current HW position */
  2421. if (np->tx_change_owner)
  2422. put_tx.ex = np->tx_change_owner->first_tx_desc;
  2423. else
  2424. put_tx = np->put_tx;
  2425. /* 3) clear all tx state */
  2426. nv_drain_tx(dev);
  2427. nv_init_tx(dev);
  2428. /* 4) restore state to current HW position */
  2429. np->get_tx = np->put_tx = put_tx;
  2430. np->tx_limit = saved_tx_limit;
  2431. /* 5) restart tx engine */
  2432. nv_start_tx(dev);
  2433. netif_wake_queue(dev);
  2434. spin_unlock_irq(&np->lock);
  2435. }
  2436. /*
  2437. * Called when the nic notices a mismatch between the actual data len on the
  2438. * wire and the len indicated in the 802 header
  2439. */
  2440. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2441. {
  2442. int hdrlen; /* length of the 802 header */
  2443. int protolen; /* length as stored in the proto field */
  2444. /* 1) calculate len according to header */
  2445. if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2446. protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto);
  2447. hdrlen = VLAN_HLEN;
  2448. } else {
  2449. protolen = ntohs(((struct ethhdr *)packet)->h_proto);
  2450. hdrlen = ETH_HLEN;
  2451. }
  2452. if (protolen > ETH_DATA_LEN)
  2453. return datalen; /* Value in proto field not a len, no checks possible */
  2454. protolen += hdrlen;
  2455. /* consistency checks: */
  2456. if (datalen > ETH_ZLEN) {
  2457. if (datalen >= protolen) {
  2458. /* more data on wire than in 802 header, trim of
  2459. * additional data.
  2460. */
  2461. return protolen;
  2462. } else {
  2463. /* less data on wire than mentioned in header.
  2464. * Discard the packet.
  2465. */
  2466. return -1;
  2467. }
  2468. } else {
  2469. /* short packet. Accept only if 802 values are also short */
  2470. if (protolen > ETH_ZLEN) {
  2471. return -1;
  2472. }
  2473. return datalen;
  2474. }
  2475. }
  2476. static int nv_rx_process(struct net_device *dev, int limit)
  2477. {
  2478. struct fe_priv *np = netdev_priv(dev);
  2479. u32 flags;
  2480. int rx_work = 0;
  2481. struct sk_buff *skb;
  2482. int len;
  2483. while ((np->get_rx.orig != np->put_rx.orig) &&
  2484. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2485. (rx_work < limit)) {
  2486. /*
  2487. * the packet is for us - immediately tear down the pci mapping.
  2488. * TODO: check if a prefetch of the first cacheline improves
  2489. * the performance.
  2490. */
  2491. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2492. np->get_rx_ctx->dma_len,
  2493. PCI_DMA_FROMDEVICE);
  2494. skb = np->get_rx_ctx->skb;
  2495. np->get_rx_ctx->skb = NULL;
  2496. /* look at what we actually got: */
  2497. if (np->desc_ver == DESC_VER_1) {
  2498. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2499. len = flags & LEN_MASK_V1;
  2500. if (unlikely(flags & NV_RX_ERROR)) {
  2501. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2502. len = nv_getlen(dev, skb->data, len);
  2503. if (len < 0) {
  2504. dev_kfree_skb(skb);
  2505. goto next_pkt;
  2506. }
  2507. }
  2508. /* framing errors are soft errors */
  2509. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2510. if (flags & NV_RX_SUBSTRACT1)
  2511. len--;
  2512. }
  2513. /* the rest are hard errors */
  2514. else {
  2515. if (flags & NV_RX_MISSEDFRAME) {
  2516. u64_stats_update_begin(&np->swstats_rx_syncp);
  2517. np->stat_rx_missed_errors++;
  2518. u64_stats_update_end(&np->swstats_rx_syncp);
  2519. }
  2520. dev_kfree_skb(skb);
  2521. goto next_pkt;
  2522. }
  2523. }
  2524. } else {
  2525. dev_kfree_skb(skb);
  2526. goto next_pkt;
  2527. }
  2528. } else {
  2529. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2530. len = flags & LEN_MASK_V2;
  2531. if (unlikely(flags & NV_RX2_ERROR)) {
  2532. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2533. len = nv_getlen(dev, skb->data, len);
  2534. if (len < 0) {
  2535. dev_kfree_skb(skb);
  2536. goto next_pkt;
  2537. }
  2538. }
  2539. /* framing errors are soft errors */
  2540. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2541. if (flags & NV_RX2_SUBSTRACT1)
  2542. len--;
  2543. }
  2544. /* the rest are hard errors */
  2545. else {
  2546. dev_kfree_skb(skb);
  2547. goto next_pkt;
  2548. }
  2549. }
  2550. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2551. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2552. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2553. } else {
  2554. dev_kfree_skb(skb);
  2555. goto next_pkt;
  2556. }
  2557. }
  2558. /* got a valid packet - forward it to the network core */
  2559. skb_put(skb, len);
  2560. skb->protocol = eth_type_trans(skb, dev);
  2561. napi_gro_receive(&np->napi, skb);
  2562. u64_stats_update_begin(&np->swstats_rx_syncp);
  2563. np->stat_rx_packets++;
  2564. np->stat_rx_bytes += len;
  2565. u64_stats_update_end(&np->swstats_rx_syncp);
  2566. next_pkt:
  2567. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2568. np->get_rx.orig = np->first_rx.orig;
  2569. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2570. np->get_rx_ctx = np->first_rx_ctx;
  2571. rx_work++;
  2572. }
  2573. return rx_work;
  2574. }
  2575. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2576. {
  2577. struct fe_priv *np = netdev_priv(dev);
  2578. u32 flags;
  2579. u32 vlanflags = 0;
  2580. int rx_work = 0;
  2581. struct sk_buff *skb;
  2582. int len;
  2583. while ((np->get_rx.ex != np->put_rx.ex) &&
  2584. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2585. (rx_work < limit)) {
  2586. /*
  2587. * the packet is for us - immediately tear down the pci mapping.
  2588. * TODO: check if a prefetch of the first cacheline improves
  2589. * the performance.
  2590. */
  2591. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2592. np->get_rx_ctx->dma_len,
  2593. PCI_DMA_FROMDEVICE);
  2594. skb = np->get_rx_ctx->skb;
  2595. np->get_rx_ctx->skb = NULL;
  2596. /* look at what we actually got: */
  2597. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2598. len = flags & LEN_MASK_V2;
  2599. if (unlikely(flags & NV_RX2_ERROR)) {
  2600. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2601. len = nv_getlen(dev, skb->data, len);
  2602. if (len < 0) {
  2603. dev_kfree_skb(skb);
  2604. goto next_pkt;
  2605. }
  2606. }
  2607. /* framing errors are soft errors */
  2608. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2609. if (flags & NV_RX2_SUBSTRACT1)
  2610. len--;
  2611. }
  2612. /* the rest are hard errors */
  2613. else {
  2614. dev_kfree_skb(skb);
  2615. goto next_pkt;
  2616. }
  2617. }
  2618. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2619. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2620. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2621. /* got a valid packet - forward it to the network core */
  2622. skb_put(skb, len);
  2623. skb->protocol = eth_type_trans(skb, dev);
  2624. prefetch(skb->data);
  2625. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2626. /*
  2627. * There's need to check for NETIF_F_HW_VLAN_CTAG_RX
  2628. * here. Even if vlan rx accel is disabled,
  2629. * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set.
  2630. */
  2631. if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
  2632. vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2633. u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK;
  2634. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
  2635. }
  2636. napi_gro_receive(&np->napi, skb);
  2637. u64_stats_update_begin(&np->swstats_rx_syncp);
  2638. np->stat_rx_packets++;
  2639. np->stat_rx_bytes += len;
  2640. u64_stats_update_end(&np->swstats_rx_syncp);
  2641. } else {
  2642. dev_kfree_skb(skb);
  2643. }
  2644. next_pkt:
  2645. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2646. np->get_rx.ex = np->first_rx.ex;
  2647. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2648. np->get_rx_ctx = np->first_rx_ctx;
  2649. rx_work++;
  2650. }
  2651. return rx_work;
  2652. }
  2653. static void set_bufsize(struct net_device *dev)
  2654. {
  2655. struct fe_priv *np = netdev_priv(dev);
  2656. if (dev->mtu <= ETH_DATA_LEN)
  2657. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2658. else
  2659. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2660. }
  2661. /*
  2662. * nv_change_mtu: dev->change_mtu function
  2663. * Called with dev_base_lock held for read.
  2664. */
  2665. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2666. {
  2667. struct fe_priv *np = netdev_priv(dev);
  2668. int old_mtu;
  2669. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2670. return -EINVAL;
  2671. old_mtu = dev->mtu;
  2672. dev->mtu = new_mtu;
  2673. /* return early if the buffer sizes will not change */
  2674. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2675. return 0;
  2676. if (old_mtu == new_mtu)
  2677. return 0;
  2678. /* synchronized against open : rtnl_lock() held by caller */
  2679. if (netif_running(dev)) {
  2680. u8 __iomem *base = get_hwbase(dev);
  2681. /*
  2682. * It seems that the nic preloads valid ring entries into an
  2683. * internal buffer. The procedure for flushing everything is
  2684. * guessed, there is probably a simpler approach.
  2685. * Changing the MTU is a rare event, it shouldn't matter.
  2686. */
  2687. nv_disable_irq(dev);
  2688. nv_napi_disable(dev);
  2689. netif_tx_lock_bh(dev);
  2690. netif_addr_lock(dev);
  2691. spin_lock(&np->lock);
  2692. /* stop engines */
  2693. nv_stop_rxtx(dev);
  2694. nv_txrx_reset(dev);
  2695. /* drain rx queue */
  2696. nv_drain_rxtx(dev);
  2697. /* reinit driver view of the rx queue */
  2698. set_bufsize(dev);
  2699. if (nv_init_ring(dev)) {
  2700. if (!np->in_shutdown)
  2701. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2702. }
  2703. /* reinit nic view of the rx queue */
  2704. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2705. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2706. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2707. base + NvRegRingSizes);
  2708. pci_push(base);
  2709. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2710. pci_push(base);
  2711. /* restart rx engine */
  2712. nv_start_rxtx(dev);
  2713. spin_unlock(&np->lock);
  2714. netif_addr_unlock(dev);
  2715. netif_tx_unlock_bh(dev);
  2716. nv_napi_enable(dev);
  2717. nv_enable_irq(dev);
  2718. }
  2719. return 0;
  2720. }
  2721. static void nv_copy_mac_to_hw(struct net_device *dev)
  2722. {
  2723. u8 __iomem *base = get_hwbase(dev);
  2724. u32 mac[2];
  2725. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2726. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2727. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2728. writel(mac[0], base + NvRegMacAddrA);
  2729. writel(mac[1], base + NvRegMacAddrB);
  2730. }
  2731. /*
  2732. * nv_set_mac_address: dev->set_mac_address function
  2733. * Called with rtnl_lock() held.
  2734. */
  2735. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2736. {
  2737. struct fe_priv *np = netdev_priv(dev);
  2738. struct sockaddr *macaddr = (struct sockaddr *)addr;
  2739. if (!is_valid_ether_addr(macaddr->sa_data))
  2740. return -EADDRNOTAVAIL;
  2741. /* synchronized against open : rtnl_lock() held by caller */
  2742. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2743. if (netif_running(dev)) {
  2744. netif_tx_lock_bh(dev);
  2745. netif_addr_lock(dev);
  2746. spin_lock_irq(&np->lock);
  2747. /* stop rx engine */
  2748. nv_stop_rx(dev);
  2749. /* set mac address */
  2750. nv_copy_mac_to_hw(dev);
  2751. /* restart rx engine */
  2752. nv_start_rx(dev);
  2753. spin_unlock_irq(&np->lock);
  2754. netif_addr_unlock(dev);
  2755. netif_tx_unlock_bh(dev);
  2756. } else {
  2757. nv_copy_mac_to_hw(dev);
  2758. }
  2759. return 0;
  2760. }
  2761. /*
  2762. * nv_set_multicast: dev->set_multicast function
  2763. * Called with netif_tx_lock held.
  2764. */
  2765. static void nv_set_multicast(struct net_device *dev)
  2766. {
  2767. struct fe_priv *np = netdev_priv(dev);
  2768. u8 __iomem *base = get_hwbase(dev);
  2769. u32 addr[2];
  2770. u32 mask[2];
  2771. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2772. memset(addr, 0, sizeof(addr));
  2773. memset(mask, 0, sizeof(mask));
  2774. if (dev->flags & IFF_PROMISC) {
  2775. pff |= NVREG_PFF_PROMISC;
  2776. } else {
  2777. pff |= NVREG_PFF_MYADDR;
  2778. if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
  2779. u32 alwaysOff[2];
  2780. u32 alwaysOn[2];
  2781. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2782. if (dev->flags & IFF_ALLMULTI) {
  2783. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2784. } else {
  2785. struct netdev_hw_addr *ha;
  2786. netdev_for_each_mc_addr(ha, dev) {
  2787. unsigned char *hw_addr = ha->addr;
  2788. u32 a, b;
  2789. a = le32_to_cpu(*(__le32 *) hw_addr);
  2790. b = le16_to_cpu(*(__le16 *) (&hw_addr[4]));
  2791. alwaysOn[0] &= a;
  2792. alwaysOff[0] &= ~a;
  2793. alwaysOn[1] &= b;
  2794. alwaysOff[1] &= ~b;
  2795. }
  2796. }
  2797. addr[0] = alwaysOn[0];
  2798. addr[1] = alwaysOn[1];
  2799. mask[0] = alwaysOn[0] | alwaysOff[0];
  2800. mask[1] = alwaysOn[1] | alwaysOff[1];
  2801. } else {
  2802. mask[0] = NVREG_MCASTMASKA_NONE;
  2803. mask[1] = NVREG_MCASTMASKB_NONE;
  2804. }
  2805. }
  2806. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2807. pff |= NVREG_PFF_ALWAYS;
  2808. spin_lock_irq(&np->lock);
  2809. nv_stop_rx(dev);
  2810. writel(addr[0], base + NvRegMulticastAddrA);
  2811. writel(addr[1], base + NvRegMulticastAddrB);
  2812. writel(mask[0], base + NvRegMulticastMaskA);
  2813. writel(mask[1], base + NvRegMulticastMaskB);
  2814. writel(pff, base + NvRegPacketFilterFlags);
  2815. nv_start_rx(dev);
  2816. spin_unlock_irq(&np->lock);
  2817. }
  2818. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2819. {
  2820. struct fe_priv *np = netdev_priv(dev);
  2821. u8 __iomem *base = get_hwbase(dev);
  2822. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2823. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2824. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2825. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2826. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2827. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2828. } else {
  2829. writel(pff, base + NvRegPacketFilterFlags);
  2830. }
  2831. }
  2832. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2833. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2834. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2835. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2836. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2837. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2838. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2839. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2840. /* limit the number of tx pause frames to a default of 8 */
  2841. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2842. }
  2843. writel(pause_enable, base + NvRegTxPauseFrame);
  2844. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2845. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2846. } else {
  2847. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2848. writel(regmisc, base + NvRegMisc1);
  2849. }
  2850. }
  2851. }
  2852. static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex)
  2853. {
  2854. struct fe_priv *np = netdev_priv(dev);
  2855. u8 __iomem *base = get_hwbase(dev);
  2856. u32 phyreg, txreg;
  2857. int mii_status;
  2858. np->linkspeed = NVREG_LINKSPEED_FORCE|speed;
  2859. np->duplex = duplex;
  2860. /* see if gigabit phy */
  2861. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2862. if (mii_status & PHY_GIGABIT) {
  2863. np->gigabit = PHY_GIGABIT;
  2864. phyreg = readl(base + NvRegSlotTime);
  2865. phyreg &= ~(0x3FF00);
  2866. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2867. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2868. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2869. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2870. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2871. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2872. writel(phyreg, base + NvRegSlotTime);
  2873. }
  2874. phyreg = readl(base + NvRegPhyInterface);
  2875. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2876. if (np->duplex == 0)
  2877. phyreg |= PHY_HALF;
  2878. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2879. phyreg |= PHY_100;
  2880. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
  2881. NVREG_LINKSPEED_1000)
  2882. phyreg |= PHY_1000;
  2883. writel(phyreg, base + NvRegPhyInterface);
  2884. if (phyreg & PHY_RGMII) {
  2885. if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
  2886. NVREG_LINKSPEED_1000)
  2887. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2888. else
  2889. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2890. } else {
  2891. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2892. }
  2893. writel(txreg, base + NvRegTxDeferral);
  2894. if (np->desc_ver == DESC_VER_1) {
  2895. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2896. } else {
  2897. if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
  2898. NVREG_LINKSPEED_1000)
  2899. txreg = NVREG_TX_WM_DESC2_3_1000;
  2900. else
  2901. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2902. }
  2903. writel(txreg, base + NvRegTxWatermark);
  2904. writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
  2905. base + NvRegMisc1);
  2906. pci_push(base);
  2907. writel(np->linkspeed, base + NvRegLinkSpeed);
  2908. pci_push(base);
  2909. return;
  2910. }
  2911. /**
  2912. * nv_update_linkspeed - Setup the MAC according to the link partner
  2913. * @dev: Network device to be configured
  2914. *
  2915. * The function queries the PHY and checks if there is a link partner.
  2916. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2917. * set to 10 MBit HD.
  2918. *
  2919. * The function returns 0 if there is no link partner and 1 if there is
  2920. * a good link partner.
  2921. */
  2922. static int nv_update_linkspeed(struct net_device *dev)
  2923. {
  2924. struct fe_priv *np = netdev_priv(dev);
  2925. u8 __iomem *base = get_hwbase(dev);
  2926. int adv = 0;
  2927. int lpa = 0;
  2928. int adv_lpa, adv_pause, lpa_pause;
  2929. int newls = np->linkspeed;
  2930. int newdup = np->duplex;
  2931. int mii_status;
  2932. u32 bmcr;
  2933. int retval = 0;
  2934. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2935. u32 txrxFlags = 0;
  2936. u32 phy_exp;
  2937. /* If device loopback is enabled, set carrier on and enable max link
  2938. * speed.
  2939. */
  2940. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2941. if (bmcr & BMCR_LOOPBACK) {
  2942. if (netif_running(dev)) {
  2943. nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1);
  2944. if (!netif_carrier_ok(dev))
  2945. netif_carrier_on(dev);
  2946. }
  2947. return 1;
  2948. }
  2949. /* BMSR_LSTATUS is latched, read it twice:
  2950. * we want the current value.
  2951. */
  2952. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2953. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2954. if (!(mii_status & BMSR_LSTATUS)) {
  2955. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2956. newdup = 0;
  2957. retval = 0;
  2958. goto set_speed;
  2959. }
  2960. if (np->autoneg == 0) {
  2961. if (np->fixed_mode & LPA_100FULL) {
  2962. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2963. newdup = 1;
  2964. } else if (np->fixed_mode & LPA_100HALF) {
  2965. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2966. newdup = 0;
  2967. } else if (np->fixed_mode & LPA_10FULL) {
  2968. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2969. newdup = 1;
  2970. } else {
  2971. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2972. newdup = 0;
  2973. }
  2974. retval = 1;
  2975. goto set_speed;
  2976. }
  2977. /* check auto negotiation is complete */
  2978. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2979. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2980. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2981. newdup = 0;
  2982. retval = 0;
  2983. goto set_speed;
  2984. }
  2985. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2986. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2987. retval = 1;
  2988. if (np->gigabit == PHY_GIGABIT) {
  2989. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2990. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2991. if ((control_1000 & ADVERTISE_1000FULL) &&
  2992. (status_1000 & LPA_1000FULL)) {
  2993. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2994. newdup = 1;
  2995. goto set_speed;
  2996. }
  2997. }
  2998. /* FIXME: handle parallel detection properly */
  2999. adv_lpa = lpa & adv;
  3000. if (adv_lpa & LPA_100FULL) {
  3001. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  3002. newdup = 1;
  3003. } else if (adv_lpa & LPA_100HALF) {
  3004. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  3005. newdup = 0;
  3006. } else if (adv_lpa & LPA_10FULL) {
  3007. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3008. newdup = 1;
  3009. } else if (adv_lpa & LPA_10HALF) {
  3010. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3011. newdup = 0;
  3012. } else {
  3013. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3014. newdup = 0;
  3015. }
  3016. set_speed:
  3017. if (np->duplex == newdup && np->linkspeed == newls)
  3018. return retval;
  3019. np->duplex = newdup;
  3020. np->linkspeed = newls;
  3021. /* The transmitter and receiver must be restarted for safe update */
  3022. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  3023. txrxFlags |= NV_RESTART_TX;
  3024. nv_stop_tx(dev);
  3025. }
  3026. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  3027. txrxFlags |= NV_RESTART_RX;
  3028. nv_stop_rx(dev);
  3029. }
  3030. if (np->gigabit == PHY_GIGABIT) {
  3031. phyreg = readl(base + NvRegSlotTime);
  3032. phyreg &= ~(0x3FF00);
  3033. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  3034. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  3035. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  3036. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  3037. phyreg |= NVREG_SLOTTIME_1000_FULL;
  3038. writel(phyreg, base + NvRegSlotTime);
  3039. }
  3040. phyreg = readl(base + NvRegPhyInterface);
  3041. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  3042. if (np->duplex == 0)
  3043. phyreg |= PHY_HALF;
  3044. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  3045. phyreg |= PHY_100;
  3046. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  3047. phyreg |= PHY_1000;
  3048. writel(phyreg, base + NvRegPhyInterface);
  3049. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  3050. if (phyreg & PHY_RGMII) {
  3051. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  3052. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  3053. } else {
  3054. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  3055. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  3056. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  3057. else
  3058. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  3059. } else {
  3060. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  3061. }
  3062. }
  3063. } else {
  3064. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  3065. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  3066. else
  3067. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  3068. }
  3069. writel(txreg, base + NvRegTxDeferral);
  3070. if (np->desc_ver == DESC_VER_1) {
  3071. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  3072. } else {
  3073. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  3074. txreg = NVREG_TX_WM_DESC2_3_1000;
  3075. else
  3076. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  3077. }
  3078. writel(txreg, base + NvRegTxWatermark);
  3079. writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
  3080. base + NvRegMisc1);
  3081. pci_push(base);
  3082. writel(np->linkspeed, base + NvRegLinkSpeed);
  3083. pci_push(base);
  3084. pause_flags = 0;
  3085. /* setup pause frame */
  3086. if (netif_running(dev) && (np->duplex != 0)) {
  3087. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  3088. adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3089. lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM);
  3090. switch (adv_pause) {
  3091. case ADVERTISE_PAUSE_CAP:
  3092. if (lpa_pause & LPA_PAUSE_CAP) {
  3093. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3094. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3095. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3096. }
  3097. break;
  3098. case ADVERTISE_PAUSE_ASYM:
  3099. if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM))
  3100. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3101. break;
  3102. case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM:
  3103. if (lpa_pause & LPA_PAUSE_CAP) {
  3104. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3105. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3106. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3107. }
  3108. if (lpa_pause == LPA_PAUSE_ASYM)
  3109. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3110. break;
  3111. }
  3112. } else {
  3113. pause_flags = np->pause_flags;
  3114. }
  3115. }
  3116. nv_update_pause(dev, pause_flags);
  3117. if (txrxFlags & NV_RESTART_TX)
  3118. nv_start_tx(dev);
  3119. if (txrxFlags & NV_RESTART_RX)
  3120. nv_start_rx(dev);
  3121. return retval;
  3122. }
  3123. static void nv_linkchange(struct net_device *dev)
  3124. {
  3125. if (nv_update_linkspeed(dev)) {
  3126. if (!netif_carrier_ok(dev)) {
  3127. netif_carrier_on(dev);
  3128. netdev_info(dev, "link up\n");
  3129. nv_txrx_gate(dev, false);
  3130. nv_start_rx(dev);
  3131. }
  3132. } else {
  3133. if (netif_carrier_ok(dev)) {
  3134. netif_carrier_off(dev);
  3135. netdev_info(dev, "link down\n");
  3136. nv_txrx_gate(dev, true);
  3137. nv_stop_rx(dev);
  3138. }
  3139. }
  3140. }
  3141. static void nv_link_irq(struct net_device *dev)
  3142. {
  3143. u8 __iomem *base = get_hwbase(dev);
  3144. u32 miistat;
  3145. miistat = readl(base + NvRegMIIStatus);
  3146. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3147. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3148. nv_linkchange(dev);
  3149. }
  3150. static void nv_msi_workaround(struct fe_priv *np)
  3151. {
  3152. /* Need to toggle the msi irq mask within the ethernet device,
  3153. * otherwise, future interrupts will not be detected.
  3154. */
  3155. if (np->msi_flags & NV_MSI_ENABLED) {
  3156. u8 __iomem *base = np->base;
  3157. writel(0, base + NvRegMSIIrqMask);
  3158. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3159. }
  3160. }
  3161. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  3162. {
  3163. struct fe_priv *np = netdev_priv(dev);
  3164. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3165. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3166. /* transition to poll based interrupts */
  3167. np->quiet_count = 0;
  3168. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3169. np->irqmask = NVREG_IRQMASK_CPU;
  3170. return 1;
  3171. }
  3172. } else {
  3173. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3174. np->quiet_count++;
  3175. } else {
  3176. /* reached a period of low activity, switch
  3177. to per tx/rx packet interrupts */
  3178. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3179. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3180. return 1;
  3181. }
  3182. }
  3183. }
  3184. }
  3185. return 0;
  3186. }
  3187. static irqreturn_t nv_nic_irq(int foo, void *data)
  3188. {
  3189. struct net_device *dev = (struct net_device *) data;
  3190. struct fe_priv *np = netdev_priv(dev);
  3191. u8 __iomem *base = get_hwbase(dev);
  3192. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3193. np->events = readl(base + NvRegIrqStatus);
  3194. writel(np->events, base + NvRegIrqStatus);
  3195. } else {
  3196. np->events = readl(base + NvRegMSIXIrqStatus);
  3197. writel(np->events, base + NvRegMSIXIrqStatus);
  3198. }
  3199. if (!(np->events & np->irqmask))
  3200. return IRQ_NONE;
  3201. nv_msi_workaround(np);
  3202. if (napi_schedule_prep(&np->napi)) {
  3203. /*
  3204. * Disable further irq's (msix not enabled with napi)
  3205. */
  3206. writel(0, base + NvRegIrqMask);
  3207. __napi_schedule(&np->napi);
  3208. }
  3209. return IRQ_HANDLED;
  3210. }
  3211. /* All _optimized functions are used to help increase performance
  3212. * (reduce CPU and increase throughput). They use descripter version 3,
  3213. * compiler directives, and reduce memory accesses.
  3214. */
  3215. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3216. {
  3217. struct net_device *dev = (struct net_device *) data;
  3218. struct fe_priv *np = netdev_priv(dev);
  3219. u8 __iomem *base = get_hwbase(dev);
  3220. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3221. np->events = readl(base + NvRegIrqStatus);
  3222. writel(np->events, base + NvRegIrqStatus);
  3223. } else {
  3224. np->events = readl(base + NvRegMSIXIrqStatus);
  3225. writel(np->events, base + NvRegMSIXIrqStatus);
  3226. }
  3227. if (!(np->events & np->irqmask))
  3228. return IRQ_NONE;
  3229. nv_msi_workaround(np);
  3230. if (napi_schedule_prep(&np->napi)) {
  3231. /*
  3232. * Disable further irq's (msix not enabled with napi)
  3233. */
  3234. writel(0, base + NvRegIrqMask);
  3235. __napi_schedule(&np->napi);
  3236. }
  3237. return IRQ_HANDLED;
  3238. }
  3239. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3240. {
  3241. struct net_device *dev = (struct net_device *) data;
  3242. struct fe_priv *np = netdev_priv(dev);
  3243. u8 __iomem *base = get_hwbase(dev);
  3244. u32 events;
  3245. int i;
  3246. unsigned long flags;
  3247. for (i = 0;; i++) {
  3248. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3249. writel(events, base + NvRegMSIXIrqStatus);
  3250. netdev_dbg(dev, "tx irq events: %08x\n", events);
  3251. if (!(events & np->irqmask))
  3252. break;
  3253. spin_lock_irqsave(&np->lock, flags);
  3254. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3255. spin_unlock_irqrestore(&np->lock, flags);
  3256. if (unlikely(i > max_interrupt_work)) {
  3257. spin_lock_irqsave(&np->lock, flags);
  3258. /* disable interrupts on the nic */
  3259. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3260. pci_push(base);
  3261. if (!np->in_shutdown) {
  3262. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3263. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3264. }
  3265. spin_unlock_irqrestore(&np->lock, flags);
  3266. netdev_dbg(dev, "%s: too many iterations (%d)\n",
  3267. __func__, i);
  3268. break;
  3269. }
  3270. }
  3271. return IRQ_RETVAL(i);
  3272. }
  3273. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3274. {
  3275. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3276. struct net_device *dev = np->dev;
  3277. u8 __iomem *base = get_hwbase(dev);
  3278. unsigned long flags;
  3279. int retcode;
  3280. int rx_count, tx_work = 0, rx_work = 0;
  3281. do {
  3282. if (!nv_optimized(np)) {
  3283. spin_lock_irqsave(&np->lock, flags);
  3284. tx_work += nv_tx_done(dev, np->tx_ring_size);
  3285. spin_unlock_irqrestore(&np->lock, flags);
  3286. rx_count = nv_rx_process(dev, budget - rx_work);
  3287. retcode = nv_alloc_rx(dev);
  3288. } else {
  3289. spin_lock_irqsave(&np->lock, flags);
  3290. tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
  3291. spin_unlock_irqrestore(&np->lock, flags);
  3292. rx_count = nv_rx_process_optimized(dev,
  3293. budget - rx_work);
  3294. retcode = nv_alloc_rx_optimized(dev);
  3295. }
  3296. } while (retcode == 0 &&
  3297. rx_count > 0 && (rx_work += rx_count) < budget);
  3298. if (retcode) {
  3299. spin_lock_irqsave(&np->lock, flags);
  3300. if (!np->in_shutdown)
  3301. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3302. spin_unlock_irqrestore(&np->lock, flags);
  3303. }
  3304. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3305. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3306. spin_lock_irqsave(&np->lock, flags);
  3307. nv_link_irq(dev);
  3308. spin_unlock_irqrestore(&np->lock, flags);
  3309. }
  3310. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3311. spin_lock_irqsave(&np->lock, flags);
  3312. nv_linkchange(dev);
  3313. spin_unlock_irqrestore(&np->lock, flags);
  3314. np->link_timeout = jiffies + LINK_TIMEOUT;
  3315. }
  3316. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3317. spin_lock_irqsave(&np->lock, flags);
  3318. if (!np->in_shutdown) {
  3319. np->nic_poll_irq = np->irqmask;
  3320. np->recover_error = 1;
  3321. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3322. }
  3323. spin_unlock_irqrestore(&np->lock, flags);
  3324. napi_complete(napi);
  3325. return rx_work;
  3326. }
  3327. if (rx_work < budget) {
  3328. /* re-enable interrupts
  3329. (msix not enabled in napi) */
  3330. napi_complete(napi);
  3331. writel(np->irqmask, base + NvRegIrqMask);
  3332. }
  3333. return rx_work;
  3334. }
  3335. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3336. {
  3337. struct net_device *dev = (struct net_device *) data;
  3338. struct fe_priv *np = netdev_priv(dev);
  3339. u8 __iomem *base = get_hwbase(dev);
  3340. u32 events;
  3341. int i;
  3342. unsigned long flags;
  3343. for (i = 0;; i++) {
  3344. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3345. writel(events, base + NvRegMSIXIrqStatus);
  3346. netdev_dbg(dev, "rx irq events: %08x\n", events);
  3347. if (!(events & np->irqmask))
  3348. break;
  3349. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3350. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3351. spin_lock_irqsave(&np->lock, flags);
  3352. if (!np->in_shutdown)
  3353. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3354. spin_unlock_irqrestore(&np->lock, flags);
  3355. }
  3356. }
  3357. if (unlikely(i > max_interrupt_work)) {
  3358. spin_lock_irqsave(&np->lock, flags);
  3359. /* disable interrupts on the nic */
  3360. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3361. pci_push(base);
  3362. if (!np->in_shutdown) {
  3363. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3364. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3365. }
  3366. spin_unlock_irqrestore(&np->lock, flags);
  3367. netdev_dbg(dev, "%s: too many iterations (%d)\n",
  3368. __func__, i);
  3369. break;
  3370. }
  3371. }
  3372. return IRQ_RETVAL(i);
  3373. }
  3374. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3375. {
  3376. struct net_device *dev = (struct net_device *) data;
  3377. struct fe_priv *np = netdev_priv(dev);
  3378. u8 __iomem *base = get_hwbase(dev);
  3379. u32 events;
  3380. int i;
  3381. unsigned long flags;
  3382. for (i = 0;; i++) {
  3383. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3384. writel(events, base + NvRegMSIXIrqStatus);
  3385. netdev_dbg(dev, "irq events: %08x\n", events);
  3386. if (!(events & np->irqmask))
  3387. break;
  3388. /* check tx in case we reached max loop limit in tx isr */
  3389. spin_lock_irqsave(&np->lock, flags);
  3390. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3391. spin_unlock_irqrestore(&np->lock, flags);
  3392. if (events & NVREG_IRQ_LINK) {
  3393. spin_lock_irqsave(&np->lock, flags);
  3394. nv_link_irq(dev);
  3395. spin_unlock_irqrestore(&np->lock, flags);
  3396. }
  3397. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3398. spin_lock_irqsave(&np->lock, flags);
  3399. nv_linkchange(dev);
  3400. spin_unlock_irqrestore(&np->lock, flags);
  3401. np->link_timeout = jiffies + LINK_TIMEOUT;
  3402. }
  3403. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3404. spin_lock_irqsave(&np->lock, flags);
  3405. /* disable interrupts on the nic */
  3406. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3407. pci_push(base);
  3408. if (!np->in_shutdown) {
  3409. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3410. np->recover_error = 1;
  3411. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3412. }
  3413. spin_unlock_irqrestore(&np->lock, flags);
  3414. break;
  3415. }
  3416. if (unlikely(i > max_interrupt_work)) {
  3417. spin_lock_irqsave(&np->lock, flags);
  3418. /* disable interrupts on the nic */
  3419. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3420. pci_push(base);
  3421. if (!np->in_shutdown) {
  3422. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3423. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3424. }
  3425. spin_unlock_irqrestore(&np->lock, flags);
  3426. netdev_dbg(dev, "%s: too many iterations (%d)\n",
  3427. __func__, i);
  3428. break;
  3429. }
  3430. }
  3431. return IRQ_RETVAL(i);
  3432. }
  3433. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3434. {
  3435. struct net_device *dev = (struct net_device *) data;
  3436. struct fe_priv *np = netdev_priv(dev);
  3437. u8 __iomem *base = get_hwbase(dev);
  3438. u32 events;
  3439. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3440. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3441. writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3442. } else {
  3443. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3444. writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3445. }
  3446. pci_push(base);
  3447. if (!(events & NVREG_IRQ_TIMER))
  3448. return IRQ_RETVAL(0);
  3449. nv_msi_workaround(np);
  3450. spin_lock(&np->lock);
  3451. np->intr_test = 1;
  3452. spin_unlock(&np->lock);
  3453. return IRQ_RETVAL(1);
  3454. }
  3455. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3456. {
  3457. u8 __iomem *base = get_hwbase(dev);
  3458. int i;
  3459. u32 msixmap = 0;
  3460. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3461. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3462. * the remaining 8 interrupts.
  3463. */
  3464. for (i = 0; i < 8; i++) {
  3465. if ((irqmask >> i) & 0x1)
  3466. msixmap |= vector << (i << 2);
  3467. }
  3468. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3469. msixmap = 0;
  3470. for (i = 0; i < 8; i++) {
  3471. if ((irqmask >> (i + 8)) & 0x1)
  3472. msixmap |= vector << (i << 2);
  3473. }
  3474. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3475. }
  3476. static int nv_request_irq(struct net_device *dev, int intr_test)
  3477. {
  3478. struct fe_priv *np = get_nvpriv(dev);
  3479. u8 __iomem *base = get_hwbase(dev);
  3480. int ret = 1;
  3481. int i;
  3482. irqreturn_t (*handler)(int foo, void *data);
  3483. if (intr_test) {
  3484. handler = nv_nic_irq_test;
  3485. } else {
  3486. if (nv_optimized(np))
  3487. handler = nv_nic_irq_optimized;
  3488. else
  3489. handler = nv_nic_irq;
  3490. }
  3491. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3492. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
  3493. np->msi_x_entry[i].entry = i;
  3494. ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK));
  3495. if (ret == 0) {
  3496. np->msi_flags |= NV_MSI_X_ENABLED;
  3497. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3498. /* Request irq for rx handling */
  3499. sprintf(np->name_rx, "%s-rx", dev->name);
  3500. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3501. nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3502. netdev_info(dev,
  3503. "request_irq failed for rx %d\n",
  3504. ret);
  3505. pci_disable_msix(np->pci_dev);
  3506. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3507. goto out_err;
  3508. }
  3509. /* Request irq for tx handling */
  3510. sprintf(np->name_tx, "%s-tx", dev->name);
  3511. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3512. nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3513. netdev_info(dev,
  3514. "request_irq failed for tx %d\n",
  3515. ret);
  3516. pci_disable_msix(np->pci_dev);
  3517. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3518. goto out_free_rx;
  3519. }
  3520. /* Request irq for link and timer handling */
  3521. sprintf(np->name_other, "%s-other", dev->name);
  3522. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3523. nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3524. netdev_info(dev,
  3525. "request_irq failed for link %d\n",
  3526. ret);
  3527. pci_disable_msix(np->pci_dev);
  3528. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3529. goto out_free_tx;
  3530. }
  3531. /* map interrupts to their respective vector */
  3532. writel(0, base + NvRegMSIXMap0);
  3533. writel(0, base + NvRegMSIXMap1);
  3534. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3535. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3536. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3537. } else {
  3538. /* Request irq for all interrupts */
  3539. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3540. netdev_info(dev,
  3541. "request_irq failed %d\n",
  3542. ret);
  3543. pci_disable_msix(np->pci_dev);
  3544. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3545. goto out_err;
  3546. }
  3547. /* map interrupts to vector 0 */
  3548. writel(0, base + NvRegMSIXMap0);
  3549. writel(0, base + NvRegMSIXMap1);
  3550. }
  3551. netdev_info(dev, "MSI-X enabled\n");
  3552. }
  3553. }
  3554. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3555. ret = pci_enable_msi(np->pci_dev);
  3556. if (ret == 0) {
  3557. np->msi_flags |= NV_MSI_ENABLED;
  3558. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3559. netdev_info(dev, "request_irq failed %d\n",
  3560. ret);
  3561. pci_disable_msi(np->pci_dev);
  3562. np->msi_flags &= ~NV_MSI_ENABLED;
  3563. goto out_err;
  3564. }
  3565. /* map interrupts to vector 0 */
  3566. writel(0, base + NvRegMSIMap0);
  3567. writel(0, base + NvRegMSIMap1);
  3568. /* enable msi vector 0 */
  3569. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3570. netdev_info(dev, "MSI enabled\n");
  3571. }
  3572. }
  3573. if (ret != 0) {
  3574. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3575. goto out_err;
  3576. }
  3577. return 0;
  3578. out_free_tx:
  3579. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3580. out_free_rx:
  3581. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3582. out_err:
  3583. return 1;
  3584. }
  3585. static void nv_free_irq(struct net_device *dev)
  3586. {
  3587. struct fe_priv *np = get_nvpriv(dev);
  3588. int i;
  3589. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3590. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
  3591. free_irq(np->msi_x_entry[i].vector, dev);
  3592. pci_disable_msix(np->pci_dev);
  3593. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3594. } else {
  3595. free_irq(np->pci_dev->irq, dev);
  3596. if (np->msi_flags & NV_MSI_ENABLED) {
  3597. pci_disable_msi(np->pci_dev);
  3598. np->msi_flags &= ~NV_MSI_ENABLED;
  3599. }
  3600. }
  3601. }
  3602. static void nv_do_nic_poll(unsigned long data)
  3603. {
  3604. struct net_device *dev = (struct net_device *) data;
  3605. struct fe_priv *np = netdev_priv(dev);
  3606. u8 __iomem *base = get_hwbase(dev);
  3607. u32 mask = 0;
  3608. /*
  3609. * First disable irq(s) and then
  3610. * reenable interrupts on the nic, we have to do this before calling
  3611. * nv_nic_irq because that may decide to do otherwise
  3612. */
  3613. if (!using_multi_irqs(dev)) {
  3614. if (np->msi_flags & NV_MSI_X_ENABLED)
  3615. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3616. else
  3617. disable_irq_lockdep(np->pci_dev->irq);
  3618. mask = np->irqmask;
  3619. } else {
  3620. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3621. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3622. mask |= NVREG_IRQ_RX_ALL;
  3623. }
  3624. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3625. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3626. mask |= NVREG_IRQ_TX_ALL;
  3627. }
  3628. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3629. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3630. mask |= NVREG_IRQ_OTHER;
  3631. }
  3632. }
  3633. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3634. if (np->recover_error) {
  3635. np->recover_error = 0;
  3636. netdev_info(dev, "MAC in recoverable error state\n");
  3637. if (netif_running(dev)) {
  3638. netif_tx_lock_bh(dev);
  3639. netif_addr_lock(dev);
  3640. spin_lock(&np->lock);
  3641. /* stop engines */
  3642. nv_stop_rxtx(dev);
  3643. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3644. nv_mac_reset(dev);
  3645. nv_txrx_reset(dev);
  3646. /* drain rx queue */
  3647. nv_drain_rxtx(dev);
  3648. /* reinit driver view of the rx queue */
  3649. set_bufsize(dev);
  3650. if (nv_init_ring(dev)) {
  3651. if (!np->in_shutdown)
  3652. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3653. }
  3654. /* reinit nic view of the rx queue */
  3655. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3656. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3657. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3658. base + NvRegRingSizes);
  3659. pci_push(base);
  3660. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3661. pci_push(base);
  3662. /* clear interrupts */
  3663. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3664. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3665. else
  3666. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3667. /* restart rx engine */
  3668. nv_start_rxtx(dev);
  3669. spin_unlock(&np->lock);
  3670. netif_addr_unlock(dev);
  3671. netif_tx_unlock_bh(dev);
  3672. }
  3673. }
  3674. writel(mask, base + NvRegIrqMask);
  3675. pci_push(base);
  3676. if (!using_multi_irqs(dev)) {
  3677. np->nic_poll_irq = 0;
  3678. if (nv_optimized(np))
  3679. nv_nic_irq_optimized(0, dev);
  3680. else
  3681. nv_nic_irq(0, dev);
  3682. if (np->msi_flags & NV_MSI_X_ENABLED)
  3683. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3684. else
  3685. enable_irq_lockdep(np->pci_dev->irq);
  3686. } else {
  3687. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3688. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3689. nv_nic_irq_rx(0, dev);
  3690. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3691. }
  3692. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3693. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3694. nv_nic_irq_tx(0, dev);
  3695. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3696. }
  3697. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3698. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3699. nv_nic_irq_other(0, dev);
  3700. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3701. }
  3702. }
  3703. }
  3704. #ifdef CONFIG_NET_POLL_CONTROLLER
  3705. static void nv_poll_controller(struct net_device *dev)
  3706. {
  3707. nv_do_nic_poll((unsigned long) dev);
  3708. }
  3709. #endif
  3710. static void nv_do_stats_poll(unsigned long data)
  3711. __acquires(&netdev_priv(dev)->hwstats_lock)
  3712. __releases(&netdev_priv(dev)->hwstats_lock)
  3713. {
  3714. struct net_device *dev = (struct net_device *) data;
  3715. struct fe_priv *np = netdev_priv(dev);
  3716. /* If lock is currently taken, the stats are being refreshed
  3717. * and hence fresh enough */
  3718. if (spin_trylock(&np->hwstats_lock)) {
  3719. nv_update_stats(dev);
  3720. spin_unlock(&np->hwstats_lock);
  3721. }
  3722. if (!np->in_shutdown)
  3723. mod_timer(&np->stats_poll,
  3724. round_jiffies(jiffies + STATS_INTERVAL));
  3725. }
  3726. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3727. {
  3728. struct fe_priv *np = netdev_priv(dev);
  3729. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  3730. strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version));
  3731. strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
  3732. }
  3733. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3734. {
  3735. struct fe_priv *np = netdev_priv(dev);
  3736. wolinfo->supported = WAKE_MAGIC;
  3737. spin_lock_irq(&np->lock);
  3738. if (np->wolenabled)
  3739. wolinfo->wolopts = WAKE_MAGIC;
  3740. spin_unlock_irq(&np->lock);
  3741. }
  3742. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3743. {
  3744. struct fe_priv *np = netdev_priv(dev);
  3745. u8 __iomem *base = get_hwbase(dev);
  3746. u32 flags = 0;
  3747. if (wolinfo->wolopts == 0) {
  3748. np->wolenabled = 0;
  3749. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3750. np->wolenabled = 1;
  3751. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3752. }
  3753. if (netif_running(dev)) {
  3754. spin_lock_irq(&np->lock);
  3755. writel(flags, base + NvRegWakeUpFlags);
  3756. spin_unlock_irq(&np->lock);
  3757. }
  3758. device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled);
  3759. return 0;
  3760. }
  3761. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3762. {
  3763. struct fe_priv *np = netdev_priv(dev);
  3764. u32 speed;
  3765. int adv;
  3766. spin_lock_irq(&np->lock);
  3767. ecmd->port = PORT_MII;
  3768. if (!netif_running(dev)) {
  3769. /* We do not track link speed / duplex setting if the
  3770. * interface is disabled. Force a link check */
  3771. if (nv_update_linkspeed(dev)) {
  3772. if (!netif_carrier_ok(dev))
  3773. netif_carrier_on(dev);
  3774. } else {
  3775. if (netif_carrier_ok(dev))
  3776. netif_carrier_off(dev);
  3777. }
  3778. }
  3779. if (netif_carrier_ok(dev)) {
  3780. switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3781. case NVREG_LINKSPEED_10:
  3782. speed = SPEED_10;
  3783. break;
  3784. case NVREG_LINKSPEED_100:
  3785. speed = SPEED_100;
  3786. break;
  3787. case NVREG_LINKSPEED_1000:
  3788. speed = SPEED_1000;
  3789. break;
  3790. default:
  3791. speed = -1;
  3792. break;
  3793. }
  3794. ecmd->duplex = DUPLEX_HALF;
  3795. if (np->duplex)
  3796. ecmd->duplex = DUPLEX_FULL;
  3797. } else {
  3798. speed = -1;
  3799. ecmd->duplex = -1;
  3800. }
  3801. ethtool_cmd_speed_set(ecmd, speed);
  3802. ecmd->autoneg = np->autoneg;
  3803. ecmd->advertising = ADVERTISED_MII;
  3804. if (np->autoneg) {
  3805. ecmd->advertising |= ADVERTISED_Autoneg;
  3806. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3807. if (adv & ADVERTISE_10HALF)
  3808. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3809. if (adv & ADVERTISE_10FULL)
  3810. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3811. if (adv & ADVERTISE_100HALF)
  3812. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3813. if (adv & ADVERTISE_100FULL)
  3814. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3815. if (np->gigabit == PHY_GIGABIT) {
  3816. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3817. if (adv & ADVERTISE_1000FULL)
  3818. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3819. }
  3820. }
  3821. ecmd->supported = (SUPPORTED_Autoneg |
  3822. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3823. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3824. SUPPORTED_MII);
  3825. if (np->gigabit == PHY_GIGABIT)
  3826. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3827. ecmd->phy_address = np->phyaddr;
  3828. ecmd->transceiver = XCVR_EXTERNAL;
  3829. /* ignore maxtxpkt, maxrxpkt for now */
  3830. spin_unlock_irq(&np->lock);
  3831. return 0;
  3832. }
  3833. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3834. {
  3835. struct fe_priv *np = netdev_priv(dev);
  3836. u32 speed = ethtool_cmd_speed(ecmd);
  3837. if (ecmd->port != PORT_MII)
  3838. return -EINVAL;
  3839. if (ecmd->transceiver != XCVR_EXTERNAL)
  3840. return -EINVAL;
  3841. if (ecmd->phy_address != np->phyaddr) {
  3842. /* TODO: support switching between multiple phys. Should be
  3843. * trivial, but not enabled due to lack of test hardware. */
  3844. return -EINVAL;
  3845. }
  3846. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3847. u32 mask;
  3848. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3849. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3850. if (np->gigabit == PHY_GIGABIT)
  3851. mask |= ADVERTISED_1000baseT_Full;
  3852. if ((ecmd->advertising & mask) == 0)
  3853. return -EINVAL;
  3854. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3855. /* Note: autonegotiation disable, speed 1000 intentionally
  3856. * forbidden - no one should need that. */
  3857. if (speed != SPEED_10 && speed != SPEED_100)
  3858. return -EINVAL;
  3859. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3860. return -EINVAL;
  3861. } else {
  3862. return -EINVAL;
  3863. }
  3864. netif_carrier_off(dev);
  3865. if (netif_running(dev)) {
  3866. unsigned long flags;
  3867. nv_disable_irq(dev);
  3868. netif_tx_lock_bh(dev);
  3869. netif_addr_lock(dev);
  3870. /* with plain spinlock lockdep complains */
  3871. spin_lock_irqsave(&np->lock, flags);
  3872. /* stop engines */
  3873. /* FIXME:
  3874. * this can take some time, and interrupts are disabled
  3875. * due to spin_lock_irqsave, but let's hope no daemon
  3876. * is going to change the settings very often...
  3877. * Worst case:
  3878. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3879. * + some minor delays, which is up to a second approximately
  3880. */
  3881. nv_stop_rxtx(dev);
  3882. spin_unlock_irqrestore(&np->lock, flags);
  3883. netif_addr_unlock(dev);
  3884. netif_tx_unlock_bh(dev);
  3885. }
  3886. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3887. int adv, bmcr;
  3888. np->autoneg = 1;
  3889. /* advertise only what has been requested */
  3890. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3891. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3892. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3893. adv |= ADVERTISE_10HALF;
  3894. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3895. adv |= ADVERTISE_10FULL;
  3896. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3897. adv |= ADVERTISE_100HALF;
  3898. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3899. adv |= ADVERTISE_100FULL;
  3900. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
  3901. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3902. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3903. adv |= ADVERTISE_PAUSE_ASYM;
  3904. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3905. if (np->gigabit == PHY_GIGABIT) {
  3906. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3907. adv &= ~ADVERTISE_1000FULL;
  3908. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3909. adv |= ADVERTISE_1000FULL;
  3910. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3911. }
  3912. if (netif_running(dev))
  3913. netdev_info(dev, "link down\n");
  3914. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3915. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3916. bmcr |= BMCR_ANENABLE;
  3917. /* reset the phy in order for settings to stick,
  3918. * and cause autoneg to start */
  3919. if (phy_reset(dev, bmcr)) {
  3920. netdev_info(dev, "phy reset failed\n");
  3921. return -EINVAL;
  3922. }
  3923. } else {
  3924. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3925. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3926. }
  3927. } else {
  3928. int adv, bmcr;
  3929. np->autoneg = 0;
  3930. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3931. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3932. if (speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3933. adv |= ADVERTISE_10HALF;
  3934. if (speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3935. adv |= ADVERTISE_10FULL;
  3936. if (speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3937. adv |= ADVERTISE_100HALF;
  3938. if (speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3939. adv |= ADVERTISE_100FULL;
  3940. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3941. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */
  3942. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3943. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3944. }
  3945. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3946. adv |= ADVERTISE_PAUSE_ASYM;
  3947. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3948. }
  3949. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3950. np->fixed_mode = adv;
  3951. if (np->gigabit == PHY_GIGABIT) {
  3952. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3953. adv &= ~ADVERTISE_1000FULL;
  3954. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3955. }
  3956. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3957. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3958. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3959. bmcr |= BMCR_FULLDPLX;
  3960. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3961. bmcr |= BMCR_SPEED100;
  3962. if (np->phy_oui == PHY_OUI_MARVELL) {
  3963. /* reset the phy in order for forced mode settings to stick */
  3964. if (phy_reset(dev, bmcr)) {
  3965. netdev_info(dev, "phy reset failed\n");
  3966. return -EINVAL;
  3967. }
  3968. } else {
  3969. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3970. if (netif_running(dev)) {
  3971. /* Wait a bit and then reconfigure the nic. */
  3972. udelay(10);
  3973. nv_linkchange(dev);
  3974. }
  3975. }
  3976. }
  3977. if (netif_running(dev)) {
  3978. nv_start_rxtx(dev);
  3979. nv_enable_irq(dev);
  3980. }
  3981. return 0;
  3982. }
  3983. #define FORCEDETH_REGS_VER 1
  3984. static int nv_get_regs_len(struct net_device *dev)
  3985. {
  3986. struct fe_priv *np = netdev_priv(dev);
  3987. return np->register_size;
  3988. }
  3989. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3990. {
  3991. struct fe_priv *np = netdev_priv(dev);
  3992. u8 __iomem *base = get_hwbase(dev);
  3993. u32 *rbuf = buf;
  3994. int i;
  3995. regs->version = FORCEDETH_REGS_VER;
  3996. spin_lock_irq(&np->lock);
  3997. for (i = 0; i < np->register_size/sizeof(u32); i++)
  3998. rbuf[i] = readl(base + i*sizeof(u32));
  3999. spin_unlock_irq(&np->lock);
  4000. }
  4001. static int nv_nway_reset(struct net_device *dev)
  4002. {
  4003. struct fe_priv *np = netdev_priv(dev);
  4004. int ret;
  4005. if (np->autoneg) {
  4006. int bmcr;
  4007. netif_carrier_off(dev);
  4008. if (netif_running(dev)) {
  4009. nv_disable_irq(dev);
  4010. netif_tx_lock_bh(dev);
  4011. netif_addr_lock(dev);
  4012. spin_lock(&np->lock);
  4013. /* stop engines */
  4014. nv_stop_rxtx(dev);
  4015. spin_unlock(&np->lock);
  4016. netif_addr_unlock(dev);
  4017. netif_tx_unlock_bh(dev);
  4018. netdev_info(dev, "link down\n");
  4019. }
  4020. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4021. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  4022. bmcr |= BMCR_ANENABLE;
  4023. /* reset the phy in order for settings to stick*/
  4024. if (phy_reset(dev, bmcr)) {
  4025. netdev_info(dev, "phy reset failed\n");
  4026. return -EINVAL;
  4027. }
  4028. } else {
  4029. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4030. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4031. }
  4032. if (netif_running(dev)) {
  4033. nv_start_rxtx(dev);
  4034. nv_enable_irq(dev);
  4035. }
  4036. ret = 0;
  4037. } else {
  4038. ret = -EINVAL;
  4039. }
  4040. return ret;
  4041. }
  4042. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4043. {
  4044. struct fe_priv *np = netdev_priv(dev);
  4045. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4046. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4047. ring->rx_pending = np->rx_ring_size;
  4048. ring->tx_pending = np->tx_ring_size;
  4049. }
  4050. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4051. {
  4052. struct fe_priv *np = netdev_priv(dev);
  4053. u8 __iomem *base = get_hwbase(dev);
  4054. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4055. dma_addr_t ring_addr;
  4056. if (ring->rx_pending < RX_RING_MIN ||
  4057. ring->tx_pending < TX_RING_MIN ||
  4058. ring->rx_mini_pending != 0 ||
  4059. ring->rx_jumbo_pending != 0 ||
  4060. (np->desc_ver == DESC_VER_1 &&
  4061. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4062. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4063. (np->desc_ver != DESC_VER_1 &&
  4064. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4065. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4066. return -EINVAL;
  4067. }
  4068. /* allocate new rings */
  4069. if (!nv_optimized(np)) {
  4070. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4071. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4072. &ring_addr);
  4073. } else {
  4074. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4075. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4076. &ring_addr);
  4077. }
  4078. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4079. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4080. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4081. /* fall back to old rings */
  4082. if (!nv_optimized(np)) {
  4083. if (rxtx_ring)
  4084. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4085. rxtx_ring, ring_addr);
  4086. } else {
  4087. if (rxtx_ring)
  4088. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4089. rxtx_ring, ring_addr);
  4090. }
  4091. kfree(rx_skbuff);
  4092. kfree(tx_skbuff);
  4093. goto exit;
  4094. }
  4095. if (netif_running(dev)) {
  4096. nv_disable_irq(dev);
  4097. nv_napi_disable(dev);
  4098. netif_tx_lock_bh(dev);
  4099. netif_addr_lock(dev);
  4100. spin_lock(&np->lock);
  4101. /* stop engines */
  4102. nv_stop_rxtx(dev);
  4103. nv_txrx_reset(dev);
  4104. /* drain queues */
  4105. nv_drain_rxtx(dev);
  4106. /* delete queues */
  4107. free_rings(dev);
  4108. }
  4109. /* set new values */
  4110. np->rx_ring_size = ring->rx_pending;
  4111. np->tx_ring_size = ring->tx_pending;
  4112. if (!nv_optimized(np)) {
  4113. np->rx_ring.orig = (struct ring_desc *)rxtx_ring;
  4114. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4115. } else {
  4116. np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring;
  4117. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4118. }
  4119. np->rx_skb = (struct nv_skb_map *)rx_skbuff;
  4120. np->tx_skb = (struct nv_skb_map *)tx_skbuff;
  4121. np->ring_addr = ring_addr;
  4122. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4123. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4124. if (netif_running(dev)) {
  4125. /* reinit driver view of the queues */
  4126. set_bufsize(dev);
  4127. if (nv_init_ring(dev)) {
  4128. if (!np->in_shutdown)
  4129. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4130. }
  4131. /* reinit nic view of the queues */
  4132. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4133. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4134. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4135. base + NvRegRingSizes);
  4136. pci_push(base);
  4137. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4138. pci_push(base);
  4139. /* restart engines */
  4140. nv_start_rxtx(dev);
  4141. spin_unlock(&np->lock);
  4142. netif_addr_unlock(dev);
  4143. netif_tx_unlock_bh(dev);
  4144. nv_napi_enable(dev);
  4145. nv_enable_irq(dev);
  4146. }
  4147. return 0;
  4148. exit:
  4149. return -ENOMEM;
  4150. }
  4151. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4152. {
  4153. struct fe_priv *np = netdev_priv(dev);
  4154. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4155. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4156. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4157. }
  4158. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4159. {
  4160. struct fe_priv *np = netdev_priv(dev);
  4161. int adv, bmcr;
  4162. if ((!np->autoneg && np->duplex == 0) ||
  4163. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4164. netdev_info(dev, "can not set pause settings when forced link is in half duplex\n");
  4165. return -EINVAL;
  4166. }
  4167. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4168. netdev_info(dev, "hardware does not support tx pause frames\n");
  4169. return -EINVAL;
  4170. }
  4171. netif_carrier_off(dev);
  4172. if (netif_running(dev)) {
  4173. nv_disable_irq(dev);
  4174. netif_tx_lock_bh(dev);
  4175. netif_addr_lock(dev);
  4176. spin_lock(&np->lock);
  4177. /* stop engines */
  4178. nv_stop_rxtx(dev);
  4179. spin_unlock(&np->lock);
  4180. netif_addr_unlock(dev);
  4181. netif_tx_unlock_bh(dev);
  4182. }
  4183. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4184. if (pause->rx_pause)
  4185. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4186. if (pause->tx_pause)
  4187. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4188. if (np->autoneg && pause->autoneg) {
  4189. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4190. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4191. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4192. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
  4193. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4194. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4195. adv |= ADVERTISE_PAUSE_ASYM;
  4196. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4197. if (netif_running(dev))
  4198. netdev_info(dev, "link down\n");
  4199. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4200. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4201. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4202. } else {
  4203. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4204. if (pause->rx_pause)
  4205. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4206. if (pause->tx_pause)
  4207. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4208. if (!netif_running(dev))
  4209. nv_update_linkspeed(dev);
  4210. else
  4211. nv_update_pause(dev, np->pause_flags);
  4212. }
  4213. if (netif_running(dev)) {
  4214. nv_start_rxtx(dev);
  4215. nv_enable_irq(dev);
  4216. }
  4217. return 0;
  4218. }
  4219. static int nv_set_loopback(struct net_device *dev, netdev_features_t features)
  4220. {
  4221. struct fe_priv *np = netdev_priv(dev);
  4222. unsigned long flags;
  4223. u32 miicontrol;
  4224. int err, retval = 0;
  4225. spin_lock_irqsave(&np->lock, flags);
  4226. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4227. if (features & NETIF_F_LOOPBACK) {
  4228. if (miicontrol & BMCR_LOOPBACK) {
  4229. spin_unlock_irqrestore(&np->lock, flags);
  4230. netdev_info(dev, "Loopback already enabled\n");
  4231. return 0;
  4232. }
  4233. nv_disable_irq(dev);
  4234. /* Turn on loopback mode */
  4235. miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000;
  4236. err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol);
  4237. if (err) {
  4238. retval = PHY_ERROR;
  4239. spin_unlock_irqrestore(&np->lock, flags);
  4240. phy_init(dev);
  4241. } else {
  4242. if (netif_running(dev)) {
  4243. /* Force 1000 Mbps full-duplex */
  4244. nv_force_linkspeed(dev, NVREG_LINKSPEED_1000,
  4245. 1);
  4246. /* Force link up */
  4247. netif_carrier_on(dev);
  4248. }
  4249. spin_unlock_irqrestore(&np->lock, flags);
  4250. netdev_info(dev,
  4251. "Internal PHY loopback mode enabled.\n");
  4252. }
  4253. } else {
  4254. if (!(miicontrol & BMCR_LOOPBACK)) {
  4255. spin_unlock_irqrestore(&np->lock, flags);
  4256. netdev_info(dev, "Loopback already disabled\n");
  4257. return 0;
  4258. }
  4259. nv_disable_irq(dev);
  4260. /* Turn off loopback */
  4261. spin_unlock_irqrestore(&np->lock, flags);
  4262. netdev_info(dev, "Internal PHY loopback mode disabled.\n");
  4263. phy_init(dev);
  4264. }
  4265. msleep(500);
  4266. spin_lock_irqsave(&np->lock, flags);
  4267. nv_enable_irq(dev);
  4268. spin_unlock_irqrestore(&np->lock, flags);
  4269. return retval;
  4270. }
  4271. static netdev_features_t nv_fix_features(struct net_device *dev,
  4272. netdev_features_t features)
  4273. {
  4274. /* vlan is dependent on rx checksum offload */
  4275. if (features & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX))
  4276. features |= NETIF_F_RXCSUM;
  4277. return features;
  4278. }
  4279. static void nv_vlan_mode(struct net_device *dev, netdev_features_t features)
  4280. {
  4281. struct fe_priv *np = get_nvpriv(dev);
  4282. spin_lock_irq(&np->lock);
  4283. if (features & NETIF_F_HW_VLAN_CTAG_RX)
  4284. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP;
  4285. else
  4286. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4287. if (features & NETIF_F_HW_VLAN_CTAG_TX)
  4288. np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS;
  4289. else
  4290. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4291. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4292. spin_unlock_irq(&np->lock);
  4293. }
  4294. static int nv_set_features(struct net_device *dev, netdev_features_t features)
  4295. {
  4296. struct fe_priv *np = netdev_priv(dev);
  4297. u8 __iomem *base = get_hwbase(dev);
  4298. netdev_features_t changed = dev->features ^ features;
  4299. int retval;
  4300. if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) {
  4301. retval = nv_set_loopback(dev, features);
  4302. if (retval != 0)
  4303. return retval;
  4304. }
  4305. if (changed & NETIF_F_RXCSUM) {
  4306. spin_lock_irq(&np->lock);
  4307. if (features & NETIF_F_RXCSUM)
  4308. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4309. else
  4310. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4311. if (netif_running(dev))
  4312. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4313. spin_unlock_irq(&np->lock);
  4314. }
  4315. if (changed & (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX))
  4316. nv_vlan_mode(dev, features);
  4317. return 0;
  4318. }
  4319. static int nv_get_sset_count(struct net_device *dev, int sset)
  4320. {
  4321. struct fe_priv *np = netdev_priv(dev);
  4322. switch (sset) {
  4323. case ETH_SS_TEST:
  4324. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4325. return NV_TEST_COUNT_EXTENDED;
  4326. else
  4327. return NV_TEST_COUNT_BASE;
  4328. case ETH_SS_STATS:
  4329. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4330. return NV_DEV_STATISTICS_V3_COUNT;
  4331. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4332. return NV_DEV_STATISTICS_V2_COUNT;
  4333. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4334. return NV_DEV_STATISTICS_V1_COUNT;
  4335. else
  4336. return 0;
  4337. default:
  4338. return -EOPNOTSUPP;
  4339. }
  4340. }
  4341. static void nv_get_ethtool_stats(struct net_device *dev,
  4342. struct ethtool_stats *estats, u64 *buffer)
  4343. __acquires(&netdev_priv(dev)->hwstats_lock)
  4344. __releases(&netdev_priv(dev)->hwstats_lock)
  4345. {
  4346. struct fe_priv *np = netdev_priv(dev);
  4347. spin_lock_bh(&np->hwstats_lock);
  4348. nv_update_stats(dev);
  4349. memcpy(buffer, &np->estats,
  4350. nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4351. spin_unlock_bh(&np->hwstats_lock);
  4352. }
  4353. static int nv_link_test(struct net_device *dev)
  4354. {
  4355. struct fe_priv *np = netdev_priv(dev);
  4356. int mii_status;
  4357. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4358. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4359. /* check phy link status */
  4360. if (!(mii_status & BMSR_LSTATUS))
  4361. return 0;
  4362. else
  4363. return 1;
  4364. }
  4365. static int nv_register_test(struct net_device *dev)
  4366. {
  4367. u8 __iomem *base = get_hwbase(dev);
  4368. int i = 0;
  4369. u32 orig_read, new_read;
  4370. do {
  4371. orig_read = readl(base + nv_registers_test[i].reg);
  4372. /* xor with mask to toggle bits */
  4373. orig_read ^= nv_registers_test[i].mask;
  4374. writel(orig_read, base + nv_registers_test[i].reg);
  4375. new_read = readl(base + nv_registers_test[i].reg);
  4376. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4377. return 0;
  4378. /* restore original value */
  4379. orig_read ^= nv_registers_test[i].mask;
  4380. writel(orig_read, base + nv_registers_test[i].reg);
  4381. } while (nv_registers_test[++i].reg != 0);
  4382. return 1;
  4383. }
  4384. static int nv_interrupt_test(struct net_device *dev)
  4385. {
  4386. struct fe_priv *np = netdev_priv(dev);
  4387. u8 __iomem *base = get_hwbase(dev);
  4388. int ret = 1;
  4389. int testcnt;
  4390. u32 save_msi_flags, save_poll_interval = 0;
  4391. if (netif_running(dev)) {
  4392. /* free current irq */
  4393. nv_free_irq(dev);
  4394. save_poll_interval = readl(base+NvRegPollingInterval);
  4395. }
  4396. /* flag to test interrupt handler */
  4397. np->intr_test = 0;
  4398. /* setup test irq */
  4399. save_msi_flags = np->msi_flags;
  4400. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4401. np->msi_flags |= 0x001; /* setup 1 vector */
  4402. if (nv_request_irq(dev, 1))
  4403. return 0;
  4404. /* setup timer interrupt */
  4405. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4406. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4407. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4408. /* wait for at least one interrupt */
  4409. msleep(100);
  4410. spin_lock_irq(&np->lock);
  4411. /* flag should be set within ISR */
  4412. testcnt = np->intr_test;
  4413. if (!testcnt)
  4414. ret = 2;
  4415. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4416. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4417. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4418. else
  4419. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4420. spin_unlock_irq(&np->lock);
  4421. nv_free_irq(dev);
  4422. np->msi_flags = save_msi_flags;
  4423. if (netif_running(dev)) {
  4424. writel(save_poll_interval, base + NvRegPollingInterval);
  4425. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4426. /* restore original irq */
  4427. if (nv_request_irq(dev, 0))
  4428. return 0;
  4429. }
  4430. return ret;
  4431. }
  4432. static int nv_loopback_test(struct net_device *dev)
  4433. {
  4434. struct fe_priv *np = netdev_priv(dev);
  4435. u8 __iomem *base = get_hwbase(dev);
  4436. struct sk_buff *tx_skb, *rx_skb;
  4437. dma_addr_t test_dma_addr;
  4438. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4439. u32 flags;
  4440. int len, i, pkt_len;
  4441. u8 *pkt_data;
  4442. u32 filter_flags = 0;
  4443. u32 misc1_flags = 0;
  4444. int ret = 1;
  4445. if (netif_running(dev)) {
  4446. nv_disable_irq(dev);
  4447. filter_flags = readl(base + NvRegPacketFilterFlags);
  4448. misc1_flags = readl(base + NvRegMisc1);
  4449. } else {
  4450. nv_txrx_reset(dev);
  4451. }
  4452. /* reinit driver view of the rx queue */
  4453. set_bufsize(dev);
  4454. nv_init_ring(dev);
  4455. /* setup hardware for loopback */
  4456. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4457. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4458. /* reinit nic view of the rx queue */
  4459. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4460. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4461. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4462. base + NvRegRingSizes);
  4463. pci_push(base);
  4464. /* restart rx engine */
  4465. nv_start_rxtx(dev);
  4466. /* setup packet for tx */
  4467. pkt_len = ETH_DATA_LEN;
  4468. tx_skb = netdev_alloc_skb(dev, pkt_len);
  4469. if (!tx_skb) {
  4470. ret = 0;
  4471. goto out;
  4472. }
  4473. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4474. skb_tailroom(tx_skb),
  4475. PCI_DMA_FROMDEVICE);
  4476. if (pci_dma_mapping_error(np->pci_dev,
  4477. test_dma_addr)) {
  4478. dev_kfree_skb_any(tx_skb);
  4479. goto out;
  4480. }
  4481. pkt_data = skb_put(tx_skb, pkt_len);
  4482. for (i = 0; i < pkt_len; i++)
  4483. pkt_data[i] = (u8)(i & 0xff);
  4484. if (!nv_optimized(np)) {
  4485. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4486. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4487. } else {
  4488. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4489. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4490. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4491. }
  4492. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4493. pci_push(get_hwbase(dev));
  4494. msleep(500);
  4495. /* check for rx of the packet */
  4496. if (!nv_optimized(np)) {
  4497. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4498. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4499. } else {
  4500. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4501. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4502. }
  4503. if (flags & NV_RX_AVAIL) {
  4504. ret = 0;
  4505. } else if (np->desc_ver == DESC_VER_1) {
  4506. if (flags & NV_RX_ERROR)
  4507. ret = 0;
  4508. } else {
  4509. if (flags & NV_RX2_ERROR)
  4510. ret = 0;
  4511. }
  4512. if (ret) {
  4513. if (len != pkt_len) {
  4514. ret = 0;
  4515. } else {
  4516. rx_skb = np->rx_skb[0].skb;
  4517. for (i = 0; i < pkt_len; i++) {
  4518. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4519. ret = 0;
  4520. break;
  4521. }
  4522. }
  4523. }
  4524. }
  4525. pci_unmap_single(np->pci_dev, test_dma_addr,
  4526. (skb_end_pointer(tx_skb) - tx_skb->data),
  4527. PCI_DMA_TODEVICE);
  4528. dev_kfree_skb_any(tx_skb);
  4529. out:
  4530. /* stop engines */
  4531. nv_stop_rxtx(dev);
  4532. nv_txrx_reset(dev);
  4533. /* drain rx queue */
  4534. nv_drain_rxtx(dev);
  4535. if (netif_running(dev)) {
  4536. writel(misc1_flags, base + NvRegMisc1);
  4537. writel(filter_flags, base + NvRegPacketFilterFlags);
  4538. nv_enable_irq(dev);
  4539. }
  4540. return ret;
  4541. }
  4542. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4543. {
  4544. struct fe_priv *np = netdev_priv(dev);
  4545. u8 __iomem *base = get_hwbase(dev);
  4546. int result;
  4547. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4548. if (!nv_link_test(dev)) {
  4549. test->flags |= ETH_TEST_FL_FAILED;
  4550. buffer[0] = 1;
  4551. }
  4552. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4553. if (netif_running(dev)) {
  4554. netif_stop_queue(dev);
  4555. nv_napi_disable(dev);
  4556. netif_tx_lock_bh(dev);
  4557. netif_addr_lock(dev);
  4558. spin_lock_irq(&np->lock);
  4559. nv_disable_hw_interrupts(dev, np->irqmask);
  4560. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4561. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4562. else
  4563. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4564. /* stop engines */
  4565. nv_stop_rxtx(dev);
  4566. nv_txrx_reset(dev);
  4567. /* drain rx queue */
  4568. nv_drain_rxtx(dev);
  4569. spin_unlock_irq(&np->lock);
  4570. netif_addr_unlock(dev);
  4571. netif_tx_unlock_bh(dev);
  4572. }
  4573. if (!nv_register_test(dev)) {
  4574. test->flags |= ETH_TEST_FL_FAILED;
  4575. buffer[1] = 1;
  4576. }
  4577. result = nv_interrupt_test(dev);
  4578. if (result != 1) {
  4579. test->flags |= ETH_TEST_FL_FAILED;
  4580. buffer[2] = 1;
  4581. }
  4582. if (result == 0) {
  4583. /* bail out */
  4584. return;
  4585. }
  4586. if (!nv_loopback_test(dev)) {
  4587. test->flags |= ETH_TEST_FL_FAILED;
  4588. buffer[3] = 1;
  4589. }
  4590. if (netif_running(dev)) {
  4591. /* reinit driver view of the rx queue */
  4592. set_bufsize(dev);
  4593. if (nv_init_ring(dev)) {
  4594. if (!np->in_shutdown)
  4595. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4596. }
  4597. /* reinit nic view of the rx queue */
  4598. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4599. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4600. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4601. base + NvRegRingSizes);
  4602. pci_push(base);
  4603. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4604. pci_push(base);
  4605. /* restart rx engine */
  4606. nv_start_rxtx(dev);
  4607. netif_start_queue(dev);
  4608. nv_napi_enable(dev);
  4609. nv_enable_hw_interrupts(dev, np->irqmask);
  4610. }
  4611. }
  4612. }
  4613. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4614. {
  4615. switch (stringset) {
  4616. case ETH_SS_STATS:
  4617. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4618. break;
  4619. case ETH_SS_TEST:
  4620. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4621. break;
  4622. }
  4623. }
  4624. static const struct ethtool_ops ops = {
  4625. .get_drvinfo = nv_get_drvinfo,
  4626. .get_link = ethtool_op_get_link,
  4627. .get_wol = nv_get_wol,
  4628. .set_wol = nv_set_wol,
  4629. .get_settings = nv_get_settings,
  4630. .set_settings = nv_set_settings,
  4631. .get_regs_len = nv_get_regs_len,
  4632. .get_regs = nv_get_regs,
  4633. .nway_reset = nv_nway_reset,
  4634. .get_ringparam = nv_get_ringparam,
  4635. .set_ringparam = nv_set_ringparam,
  4636. .get_pauseparam = nv_get_pauseparam,
  4637. .set_pauseparam = nv_set_pauseparam,
  4638. .get_strings = nv_get_strings,
  4639. .get_ethtool_stats = nv_get_ethtool_stats,
  4640. .get_sset_count = nv_get_sset_count,
  4641. .self_test = nv_self_test,
  4642. .get_ts_info = ethtool_op_get_ts_info,
  4643. };
  4644. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4645. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4646. {
  4647. struct fe_priv *np = netdev_priv(dev);
  4648. u8 __iomem *base = get_hwbase(dev);
  4649. int i;
  4650. u32 tx_ctrl, mgmt_sema;
  4651. for (i = 0; i < 10; i++) {
  4652. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4653. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4654. break;
  4655. msleep(500);
  4656. }
  4657. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4658. return 0;
  4659. for (i = 0; i < 2; i++) {
  4660. tx_ctrl = readl(base + NvRegTransmitterControl);
  4661. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4662. writel(tx_ctrl, base + NvRegTransmitterControl);
  4663. /* verify that semaphore was acquired */
  4664. tx_ctrl = readl(base + NvRegTransmitterControl);
  4665. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4666. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4667. np->mgmt_sema = 1;
  4668. return 1;
  4669. } else
  4670. udelay(50);
  4671. }
  4672. return 0;
  4673. }
  4674. static void nv_mgmt_release_sema(struct net_device *dev)
  4675. {
  4676. struct fe_priv *np = netdev_priv(dev);
  4677. u8 __iomem *base = get_hwbase(dev);
  4678. u32 tx_ctrl;
  4679. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4680. if (np->mgmt_sema) {
  4681. tx_ctrl = readl(base + NvRegTransmitterControl);
  4682. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4683. writel(tx_ctrl, base + NvRegTransmitterControl);
  4684. }
  4685. }
  4686. }
  4687. static int nv_mgmt_get_version(struct net_device *dev)
  4688. {
  4689. struct fe_priv *np = netdev_priv(dev);
  4690. u8 __iomem *base = get_hwbase(dev);
  4691. u32 data_ready = readl(base + NvRegTransmitterControl);
  4692. u32 data_ready2 = 0;
  4693. unsigned long start;
  4694. int ready = 0;
  4695. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4696. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4697. start = jiffies;
  4698. while (time_before(jiffies, start + 5*HZ)) {
  4699. data_ready2 = readl(base + NvRegTransmitterControl);
  4700. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4701. ready = 1;
  4702. break;
  4703. }
  4704. schedule_timeout_uninterruptible(1);
  4705. }
  4706. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4707. return 0;
  4708. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4709. return 1;
  4710. }
  4711. static int nv_open(struct net_device *dev)
  4712. {
  4713. struct fe_priv *np = netdev_priv(dev);
  4714. u8 __iomem *base = get_hwbase(dev);
  4715. int ret = 1;
  4716. int oom, i;
  4717. u32 low;
  4718. /* power up phy */
  4719. mii_rw(dev, np->phyaddr, MII_BMCR,
  4720. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4721. nv_txrx_gate(dev, false);
  4722. /* erase previous misconfiguration */
  4723. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4724. nv_mac_reset(dev);
  4725. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4726. writel(0, base + NvRegMulticastAddrB);
  4727. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4728. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4729. writel(0, base + NvRegPacketFilterFlags);
  4730. writel(0, base + NvRegTransmitterControl);
  4731. writel(0, base + NvRegReceiverControl);
  4732. writel(0, base + NvRegAdapterControl);
  4733. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4734. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4735. /* initialize descriptor rings */
  4736. set_bufsize(dev);
  4737. oom = nv_init_ring(dev);
  4738. writel(0, base + NvRegLinkSpeed);
  4739. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4740. nv_txrx_reset(dev);
  4741. writel(0, base + NvRegUnknownSetupReg6);
  4742. np->in_shutdown = 0;
  4743. /* give hw rings */
  4744. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4745. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4746. base + NvRegRingSizes);
  4747. writel(np->linkspeed, base + NvRegLinkSpeed);
  4748. if (np->desc_ver == DESC_VER_1)
  4749. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4750. else
  4751. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4752. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4753. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4754. pci_push(base);
  4755. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4756. if (reg_delay(dev, NvRegUnknownSetupReg5,
  4757. NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4758. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX))
  4759. netdev_info(dev,
  4760. "%s: SetupReg5, Bit 31 remained off\n", __func__);
  4761. writel(0, base + NvRegMIIMask);
  4762. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4763. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4764. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4765. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4766. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4767. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4768. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4769. get_random_bytes(&low, sizeof(low));
  4770. low &= NVREG_SLOTTIME_MASK;
  4771. if (np->desc_ver == DESC_VER_1) {
  4772. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4773. } else {
  4774. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4775. /* setup legacy backoff */
  4776. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4777. } else {
  4778. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4779. nv_gear_backoff_reseed(dev);
  4780. }
  4781. }
  4782. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4783. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4784. if (poll_interval == -1) {
  4785. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4786. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4787. else
  4788. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4789. } else
  4790. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4791. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4792. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4793. base + NvRegAdapterControl);
  4794. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4795. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4796. if (np->wolenabled)
  4797. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4798. i = readl(base + NvRegPowerState);
  4799. if ((i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4800. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4801. pci_push(base);
  4802. udelay(10);
  4803. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4804. nv_disable_hw_interrupts(dev, np->irqmask);
  4805. pci_push(base);
  4806. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4807. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4808. pci_push(base);
  4809. if (nv_request_irq(dev, 0))
  4810. goto out_drain;
  4811. /* ask for interrupts */
  4812. nv_enable_hw_interrupts(dev, np->irqmask);
  4813. spin_lock_irq(&np->lock);
  4814. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4815. writel(0, base + NvRegMulticastAddrB);
  4816. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4817. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4818. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4819. /* One manual link speed update: Interrupts are enabled, future link
  4820. * speed changes cause interrupts and are handled by nv_link_irq().
  4821. */
  4822. {
  4823. u32 miistat;
  4824. miistat = readl(base + NvRegMIIStatus);
  4825. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4826. }
  4827. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4828. * to init hw */
  4829. np->linkspeed = 0;
  4830. ret = nv_update_linkspeed(dev);
  4831. nv_start_rxtx(dev);
  4832. netif_start_queue(dev);
  4833. nv_napi_enable(dev);
  4834. if (ret) {
  4835. netif_carrier_on(dev);
  4836. } else {
  4837. netdev_info(dev, "no link during initialization\n");
  4838. netif_carrier_off(dev);
  4839. }
  4840. if (oom)
  4841. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4842. /* start statistics timer */
  4843. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4844. mod_timer(&np->stats_poll,
  4845. round_jiffies(jiffies + STATS_INTERVAL));
  4846. spin_unlock_irq(&np->lock);
  4847. /* If the loopback feature was set while the device was down, make sure
  4848. * that it's set correctly now.
  4849. */
  4850. if (dev->features & NETIF_F_LOOPBACK)
  4851. nv_set_loopback(dev, dev->features);
  4852. return 0;
  4853. out_drain:
  4854. nv_drain_rxtx(dev);
  4855. return ret;
  4856. }
  4857. static int nv_close(struct net_device *dev)
  4858. {
  4859. struct fe_priv *np = netdev_priv(dev);
  4860. u8 __iomem *base;
  4861. spin_lock_irq(&np->lock);
  4862. np->in_shutdown = 1;
  4863. spin_unlock_irq(&np->lock);
  4864. nv_napi_disable(dev);
  4865. synchronize_irq(np->pci_dev->irq);
  4866. del_timer_sync(&np->oom_kick);
  4867. del_timer_sync(&np->nic_poll);
  4868. del_timer_sync(&np->stats_poll);
  4869. netif_stop_queue(dev);
  4870. spin_lock_irq(&np->lock);
  4871. nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */
  4872. nv_stop_rxtx(dev);
  4873. nv_txrx_reset(dev);
  4874. /* disable interrupts on the nic or we will lock up */
  4875. base = get_hwbase(dev);
  4876. nv_disable_hw_interrupts(dev, np->irqmask);
  4877. pci_push(base);
  4878. spin_unlock_irq(&np->lock);
  4879. nv_free_irq(dev);
  4880. nv_drain_rxtx(dev);
  4881. if (np->wolenabled || !phy_power_down) {
  4882. nv_txrx_gate(dev, false);
  4883. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4884. nv_start_rx(dev);
  4885. } else {
  4886. /* power down phy */
  4887. mii_rw(dev, np->phyaddr, MII_BMCR,
  4888. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4889. nv_txrx_gate(dev, true);
  4890. }
  4891. /* FIXME: power down nic */
  4892. return 0;
  4893. }
  4894. static const struct net_device_ops nv_netdev_ops = {
  4895. .ndo_open = nv_open,
  4896. .ndo_stop = nv_close,
  4897. .ndo_get_stats64 = nv_get_stats64,
  4898. .ndo_start_xmit = nv_start_xmit,
  4899. .ndo_tx_timeout = nv_tx_timeout,
  4900. .ndo_change_mtu = nv_change_mtu,
  4901. .ndo_fix_features = nv_fix_features,
  4902. .ndo_set_features = nv_set_features,
  4903. .ndo_validate_addr = eth_validate_addr,
  4904. .ndo_set_mac_address = nv_set_mac_address,
  4905. .ndo_set_rx_mode = nv_set_multicast,
  4906. #ifdef CONFIG_NET_POLL_CONTROLLER
  4907. .ndo_poll_controller = nv_poll_controller,
  4908. #endif
  4909. };
  4910. static const struct net_device_ops nv_netdev_ops_optimized = {
  4911. .ndo_open = nv_open,
  4912. .ndo_stop = nv_close,
  4913. .ndo_get_stats64 = nv_get_stats64,
  4914. .ndo_start_xmit = nv_start_xmit_optimized,
  4915. .ndo_tx_timeout = nv_tx_timeout,
  4916. .ndo_change_mtu = nv_change_mtu,
  4917. .ndo_fix_features = nv_fix_features,
  4918. .ndo_set_features = nv_set_features,
  4919. .ndo_validate_addr = eth_validate_addr,
  4920. .ndo_set_mac_address = nv_set_mac_address,
  4921. .ndo_set_rx_mode = nv_set_multicast,
  4922. #ifdef CONFIG_NET_POLL_CONTROLLER
  4923. .ndo_poll_controller = nv_poll_controller,
  4924. #endif
  4925. };
  4926. static int nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4927. {
  4928. struct net_device *dev;
  4929. struct fe_priv *np;
  4930. unsigned long addr;
  4931. u8 __iomem *base;
  4932. int err, i;
  4933. u32 powerstate, txreg;
  4934. u32 phystate_orig = 0, phystate;
  4935. int phyinitialized = 0;
  4936. static int printed_version;
  4937. if (!printed_version++)
  4938. pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n",
  4939. FORCEDETH_VERSION);
  4940. dev = alloc_etherdev(sizeof(struct fe_priv));
  4941. err = -ENOMEM;
  4942. if (!dev)
  4943. goto out;
  4944. np = netdev_priv(dev);
  4945. np->dev = dev;
  4946. np->pci_dev = pci_dev;
  4947. spin_lock_init(&np->lock);
  4948. spin_lock_init(&np->hwstats_lock);
  4949. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4950. init_timer(&np->oom_kick);
  4951. np->oom_kick.data = (unsigned long) dev;
  4952. np->oom_kick.function = nv_do_rx_refill; /* timer handler */
  4953. init_timer(&np->nic_poll);
  4954. np->nic_poll.data = (unsigned long) dev;
  4955. np->nic_poll.function = nv_do_nic_poll; /* timer handler */
  4956. init_timer_deferrable(&np->stats_poll);
  4957. np->stats_poll.data = (unsigned long) dev;
  4958. np->stats_poll.function = nv_do_stats_poll; /* timer handler */
  4959. err = pci_enable_device(pci_dev);
  4960. if (err)
  4961. goto out_free;
  4962. pci_set_master(pci_dev);
  4963. err = pci_request_regions(pci_dev, DRV_NAME);
  4964. if (err < 0)
  4965. goto out_disable;
  4966. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4967. np->register_size = NV_PCI_REGSZ_VER3;
  4968. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4969. np->register_size = NV_PCI_REGSZ_VER2;
  4970. else
  4971. np->register_size = NV_PCI_REGSZ_VER1;
  4972. err = -EINVAL;
  4973. addr = 0;
  4974. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4975. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4976. pci_resource_len(pci_dev, i) >= np->register_size) {
  4977. addr = pci_resource_start(pci_dev, i);
  4978. break;
  4979. }
  4980. }
  4981. if (i == DEVICE_COUNT_RESOURCE) {
  4982. dev_info(&pci_dev->dev, "Couldn't find register window\n");
  4983. goto out_relreg;
  4984. }
  4985. /* copy of driver data */
  4986. np->driver_data = id->driver_data;
  4987. /* copy of device id */
  4988. np->device_id = id->device;
  4989. /* handle different descriptor versions */
  4990. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4991. /* packet format 3: supports 40-bit addressing */
  4992. np->desc_ver = DESC_VER_3;
  4993. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4994. if (dma_64bit) {
  4995. if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
  4996. dev_info(&pci_dev->dev,
  4997. "64-bit DMA failed, using 32-bit addressing\n");
  4998. else
  4999. dev->features |= NETIF_F_HIGHDMA;
  5000. if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
  5001. dev_info(&pci_dev->dev,
  5002. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  5003. }
  5004. }
  5005. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  5006. /* packet format 2: supports jumbo frames */
  5007. np->desc_ver = DESC_VER_2;
  5008. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  5009. } else {
  5010. /* original packet format */
  5011. np->desc_ver = DESC_VER_1;
  5012. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  5013. }
  5014. np->pkt_limit = NV_PKTLIMIT_1;
  5015. if (id->driver_data & DEV_HAS_LARGEDESC)
  5016. np->pkt_limit = NV_PKTLIMIT_2;
  5017. if (id->driver_data & DEV_HAS_CHECKSUM) {
  5018. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  5019. dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG |
  5020. NETIF_F_TSO | NETIF_F_RXCSUM;
  5021. }
  5022. np->vlanctl_bits = 0;
  5023. if (id->driver_data & DEV_HAS_VLAN) {
  5024. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  5025. dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX |
  5026. NETIF_F_HW_VLAN_CTAG_TX;
  5027. }
  5028. dev->features |= dev->hw_features;
  5029. /* Add loopback capability to the device. */
  5030. dev->hw_features |= NETIF_F_LOOPBACK;
  5031. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  5032. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  5033. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  5034. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  5035. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  5036. }
  5037. err = -ENOMEM;
  5038. np->base = ioremap(addr, np->register_size);
  5039. if (!np->base)
  5040. goto out_relreg;
  5041. np->rx_ring_size = RX_RING_DEFAULT;
  5042. np->tx_ring_size = TX_RING_DEFAULT;
  5043. if (!nv_optimized(np)) {
  5044. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  5045. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  5046. &np->ring_addr);
  5047. if (!np->rx_ring.orig)
  5048. goto out_unmap;
  5049. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5050. } else {
  5051. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  5052. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  5053. &np->ring_addr);
  5054. if (!np->rx_ring.ex)
  5055. goto out_unmap;
  5056. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5057. }
  5058. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5059. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5060. if (!np->rx_skb || !np->tx_skb)
  5061. goto out_freering;
  5062. if (!nv_optimized(np))
  5063. dev->netdev_ops = &nv_netdev_ops;
  5064. else
  5065. dev->netdev_ops = &nv_netdev_ops_optimized;
  5066. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5067. SET_ETHTOOL_OPS(dev, &ops);
  5068. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5069. pci_set_drvdata(pci_dev, dev);
  5070. /* read the mac address */
  5071. base = get_hwbase(dev);
  5072. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5073. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5074. /* check the workaround bit for correct mac address order */
  5075. txreg = readl(base + NvRegTransmitPoll);
  5076. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5077. /* mac address is already in correct order */
  5078. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5079. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5080. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5081. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5082. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5083. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5084. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5085. /* mac address is already in correct order */
  5086. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5087. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5088. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5089. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5090. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5091. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5092. /*
  5093. * Set orig mac address back to the reversed version.
  5094. * This flag will be cleared during low power transition.
  5095. * Therefore, we should always put back the reversed address.
  5096. */
  5097. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5098. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5099. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5100. } else {
  5101. /* need to reverse mac address to correct order */
  5102. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5103. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5104. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5105. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5106. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5107. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5108. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5109. dev_dbg(&pci_dev->dev,
  5110. "%s: set workaround bit for reversed mac addr\n",
  5111. __func__);
  5112. }
  5113. if (!is_valid_ether_addr(dev->dev_addr)) {
  5114. /*
  5115. * Bad mac address. At least one bios sets the mac address
  5116. * to 01:23:45:67:89:ab
  5117. */
  5118. dev_err(&pci_dev->dev,
  5119. "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n",
  5120. dev->dev_addr);
  5121. eth_hw_addr_random(dev);
  5122. dev_err(&pci_dev->dev,
  5123. "Using random MAC address: %pM\n", dev->dev_addr);
  5124. }
  5125. /* set mac address */
  5126. nv_copy_mac_to_hw(dev);
  5127. /* disable WOL */
  5128. writel(0, base + NvRegWakeUpFlags);
  5129. np->wolenabled = 0;
  5130. device_set_wakeup_enable(&pci_dev->dev, false);
  5131. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5132. /* take phy and nic out of low power mode */
  5133. powerstate = readl(base + NvRegPowerState2);
  5134. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5135. if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
  5136. pci_dev->revision >= 0xA3)
  5137. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5138. writel(powerstate, base + NvRegPowerState2);
  5139. }
  5140. if (np->desc_ver == DESC_VER_1)
  5141. np->tx_flags = NV_TX_VALID;
  5142. else
  5143. np->tx_flags = NV_TX2_VALID;
  5144. np->msi_flags = 0;
  5145. if ((id->driver_data & DEV_HAS_MSI) && msi)
  5146. np->msi_flags |= NV_MSI_CAPABLE;
  5147. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5148. /* msix has had reported issues when modifying irqmask
  5149. as in the case of napi, therefore, disable for now
  5150. */
  5151. #if 0
  5152. np->msi_flags |= NV_MSI_X_CAPABLE;
  5153. #endif
  5154. }
  5155. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  5156. np->irqmask = NVREG_IRQMASK_CPU;
  5157. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5158. np->msi_flags |= 0x0001;
  5159. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  5160. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  5161. /* start off in throughput mode */
  5162. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5163. /* remove support for msix mode */
  5164. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  5165. } else {
  5166. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  5167. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5168. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5169. np->msi_flags |= 0x0003;
  5170. }
  5171. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5172. np->irqmask |= NVREG_IRQ_TIMER;
  5173. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5174. np->need_linktimer = 1;
  5175. np->link_timeout = jiffies + LINK_TIMEOUT;
  5176. } else {
  5177. np->need_linktimer = 0;
  5178. }
  5179. /* Limit the number of tx's outstanding for hw bug */
  5180. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5181. np->tx_limit = 1;
  5182. if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) &&
  5183. pci_dev->revision >= 0xA2)
  5184. np->tx_limit = 0;
  5185. }
  5186. /* clear phy state and temporarily halt phy interrupts */
  5187. writel(0, base + NvRegMIIMask);
  5188. phystate = readl(base + NvRegAdapterControl);
  5189. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5190. phystate_orig = 1;
  5191. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5192. writel(phystate, base + NvRegAdapterControl);
  5193. }
  5194. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5195. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5196. /* management unit running on the mac? */
  5197. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5198. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5199. nv_mgmt_acquire_sema(dev) &&
  5200. nv_mgmt_get_version(dev)) {
  5201. np->mac_in_use = 1;
  5202. if (np->mgmt_version > 0)
  5203. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5204. /* management unit setup the phy already? */
  5205. if (np->mac_in_use &&
  5206. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5207. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5208. /* phy is inited by mgmt unit */
  5209. phyinitialized = 1;
  5210. } else {
  5211. /* we need to init the phy */
  5212. }
  5213. }
  5214. }
  5215. /* find a suitable phy */
  5216. for (i = 1; i <= 32; i++) {
  5217. int id1, id2;
  5218. int phyaddr = i & 0x1F;
  5219. spin_lock_irq(&np->lock);
  5220. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5221. spin_unlock_irq(&np->lock);
  5222. if (id1 < 0 || id1 == 0xffff)
  5223. continue;
  5224. spin_lock_irq(&np->lock);
  5225. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5226. spin_unlock_irq(&np->lock);
  5227. if (id2 < 0 || id2 == 0xffff)
  5228. continue;
  5229. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5230. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5231. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5232. np->phyaddr = phyaddr;
  5233. np->phy_oui = id1 | id2;
  5234. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5235. if (np->phy_oui == PHY_OUI_REALTEK2)
  5236. np->phy_oui = PHY_OUI_REALTEK;
  5237. /* Setup phy revision for Realtek */
  5238. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5239. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5240. break;
  5241. }
  5242. if (i == 33) {
  5243. dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n");
  5244. goto out_error;
  5245. }
  5246. if (!phyinitialized) {
  5247. /* reset it */
  5248. phy_init(dev);
  5249. } else {
  5250. /* see if it is a gigabit phy */
  5251. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5252. if (mii_status & PHY_GIGABIT)
  5253. np->gigabit = PHY_GIGABIT;
  5254. }
  5255. /* set default link speed settings */
  5256. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5257. np->duplex = 0;
  5258. np->autoneg = 1;
  5259. err = register_netdev(dev);
  5260. if (err) {
  5261. dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err);
  5262. goto out_error;
  5263. }
  5264. netif_carrier_off(dev);
  5265. /* Some NICs freeze when TX pause is enabled while NIC is
  5266. * down, and this stays across warm reboots. The sequence
  5267. * below should be enough to recover from that state.
  5268. */
  5269. nv_update_pause(dev, 0);
  5270. nv_start_tx(dev);
  5271. nv_stop_tx(dev);
  5272. if (id->driver_data & DEV_HAS_VLAN)
  5273. nv_vlan_mode(dev, dev->features);
  5274. dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n",
  5275. dev->name, np->phy_oui, np->phyaddr, dev->dev_addr);
  5276. dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5277. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5278. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5279. "csum " : "",
  5280. dev->features & (NETIF_F_HW_VLAN_CTAG_RX |
  5281. NETIF_F_HW_VLAN_CTAG_TX) ?
  5282. "vlan " : "",
  5283. dev->features & (NETIF_F_LOOPBACK) ?
  5284. "loopback " : "",
  5285. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5286. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5287. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5288. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5289. np->need_linktimer ? "lnktim " : "",
  5290. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5291. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5292. np->desc_ver);
  5293. return 0;
  5294. out_error:
  5295. if (phystate_orig)
  5296. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5297. pci_set_drvdata(pci_dev, NULL);
  5298. out_freering:
  5299. free_rings(dev);
  5300. out_unmap:
  5301. iounmap(get_hwbase(dev));
  5302. out_relreg:
  5303. pci_release_regions(pci_dev);
  5304. out_disable:
  5305. pci_disable_device(pci_dev);
  5306. out_free:
  5307. free_netdev(dev);
  5308. out:
  5309. return err;
  5310. }
  5311. static void nv_restore_phy(struct net_device *dev)
  5312. {
  5313. struct fe_priv *np = netdev_priv(dev);
  5314. u16 phy_reserved, mii_control;
  5315. if (np->phy_oui == PHY_OUI_REALTEK &&
  5316. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5317. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5318. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5319. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5320. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5321. phy_reserved |= PHY_REALTEK_INIT8;
  5322. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5323. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5324. /* restart auto negotiation */
  5325. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5326. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5327. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5328. }
  5329. }
  5330. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5331. {
  5332. struct net_device *dev = pci_get_drvdata(pci_dev);
  5333. struct fe_priv *np = netdev_priv(dev);
  5334. u8 __iomem *base = get_hwbase(dev);
  5335. /* special op: write back the misordered MAC address - otherwise
  5336. * the next nv_probe would see a wrong address.
  5337. */
  5338. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5339. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5340. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5341. base + NvRegTransmitPoll);
  5342. }
  5343. static void nv_remove(struct pci_dev *pci_dev)
  5344. {
  5345. struct net_device *dev = pci_get_drvdata(pci_dev);
  5346. unregister_netdev(dev);
  5347. nv_restore_mac_addr(pci_dev);
  5348. /* restore any phy related changes */
  5349. nv_restore_phy(dev);
  5350. nv_mgmt_release_sema(dev);
  5351. /* free all structures */
  5352. free_rings(dev);
  5353. iounmap(get_hwbase(dev));
  5354. pci_release_regions(pci_dev);
  5355. pci_disable_device(pci_dev);
  5356. free_netdev(dev);
  5357. pci_set_drvdata(pci_dev, NULL);
  5358. }
  5359. #ifdef CONFIG_PM_SLEEP
  5360. static int nv_suspend(struct device *device)
  5361. {
  5362. struct pci_dev *pdev = to_pci_dev(device);
  5363. struct net_device *dev = pci_get_drvdata(pdev);
  5364. struct fe_priv *np = netdev_priv(dev);
  5365. u8 __iomem *base = get_hwbase(dev);
  5366. int i;
  5367. if (netif_running(dev)) {
  5368. /* Gross. */
  5369. nv_close(dev);
  5370. }
  5371. netif_device_detach(dev);
  5372. /* save non-pci configuration space */
  5373. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  5374. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5375. return 0;
  5376. }
  5377. static int nv_resume(struct device *device)
  5378. {
  5379. struct pci_dev *pdev = to_pci_dev(device);
  5380. struct net_device *dev = pci_get_drvdata(pdev);
  5381. struct fe_priv *np = netdev_priv(dev);
  5382. u8 __iomem *base = get_hwbase(dev);
  5383. int i, rc = 0;
  5384. /* restore non-pci configuration space */
  5385. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  5386. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5387. if (np->driver_data & DEV_NEED_MSI_FIX)
  5388. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5389. /* restore phy state, including autoneg */
  5390. phy_init(dev);
  5391. netif_device_attach(dev);
  5392. if (netif_running(dev)) {
  5393. rc = nv_open(dev);
  5394. nv_set_multicast(dev);
  5395. }
  5396. return rc;
  5397. }
  5398. static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume);
  5399. #define NV_PM_OPS (&nv_pm_ops)
  5400. #else
  5401. #define NV_PM_OPS NULL
  5402. #endif /* CONFIG_PM_SLEEP */
  5403. #ifdef CONFIG_PM
  5404. static void nv_shutdown(struct pci_dev *pdev)
  5405. {
  5406. struct net_device *dev = pci_get_drvdata(pdev);
  5407. struct fe_priv *np = netdev_priv(dev);
  5408. if (netif_running(dev))
  5409. nv_close(dev);
  5410. /*
  5411. * Restore the MAC so a kernel started by kexec won't get confused.
  5412. * If we really go for poweroff, we must not restore the MAC,
  5413. * otherwise the MAC for WOL will be reversed at least on some boards.
  5414. */
  5415. if (system_state != SYSTEM_POWER_OFF)
  5416. nv_restore_mac_addr(pdev);
  5417. pci_disable_device(pdev);
  5418. /*
  5419. * Apparently it is not possible to reinitialise from D3 hot,
  5420. * only put the device into D3 if we really go for poweroff.
  5421. */
  5422. if (system_state == SYSTEM_POWER_OFF) {
  5423. pci_wake_from_d3(pdev, np->wolenabled);
  5424. pci_set_power_state(pdev, PCI_D3hot);
  5425. }
  5426. }
  5427. #else
  5428. #define nv_shutdown NULL
  5429. #endif /* CONFIG_PM */
  5430. static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = {
  5431. { /* nForce Ethernet Controller */
  5432. PCI_DEVICE(0x10DE, 0x01C3),
  5433. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5434. },
  5435. { /* nForce2 Ethernet Controller */
  5436. PCI_DEVICE(0x10DE, 0x0066),
  5437. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5438. },
  5439. { /* nForce3 Ethernet Controller */
  5440. PCI_DEVICE(0x10DE, 0x00D6),
  5441. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5442. },
  5443. { /* nForce3 Ethernet Controller */
  5444. PCI_DEVICE(0x10DE, 0x0086),
  5445. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5446. },
  5447. { /* nForce3 Ethernet Controller */
  5448. PCI_DEVICE(0x10DE, 0x008C),
  5449. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5450. },
  5451. { /* nForce3 Ethernet Controller */
  5452. PCI_DEVICE(0x10DE, 0x00E6),
  5453. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5454. },
  5455. { /* nForce3 Ethernet Controller */
  5456. PCI_DEVICE(0x10DE, 0x00DF),
  5457. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5458. },
  5459. { /* CK804 Ethernet Controller */
  5460. PCI_DEVICE(0x10DE, 0x0056),
  5461. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5462. },
  5463. { /* CK804 Ethernet Controller */
  5464. PCI_DEVICE(0x10DE, 0x0057),
  5465. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5466. },
  5467. { /* MCP04 Ethernet Controller */
  5468. PCI_DEVICE(0x10DE, 0x0037),
  5469. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5470. },
  5471. { /* MCP04 Ethernet Controller */
  5472. PCI_DEVICE(0x10DE, 0x0038),
  5473. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5474. },
  5475. { /* MCP51 Ethernet Controller */
  5476. PCI_DEVICE(0x10DE, 0x0268),
  5477. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5478. },
  5479. { /* MCP51 Ethernet Controller */
  5480. PCI_DEVICE(0x10DE, 0x0269),
  5481. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5482. },
  5483. { /* MCP55 Ethernet Controller */
  5484. PCI_DEVICE(0x10DE, 0x0372),
  5485. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5486. },
  5487. { /* MCP55 Ethernet Controller */
  5488. PCI_DEVICE(0x10DE, 0x0373),
  5489. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5490. },
  5491. { /* MCP61 Ethernet Controller */
  5492. PCI_DEVICE(0x10DE, 0x03E5),
  5493. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5494. },
  5495. { /* MCP61 Ethernet Controller */
  5496. PCI_DEVICE(0x10DE, 0x03E6),
  5497. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5498. },
  5499. { /* MCP61 Ethernet Controller */
  5500. PCI_DEVICE(0x10DE, 0x03EE),
  5501. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5502. },
  5503. { /* MCP61 Ethernet Controller */
  5504. PCI_DEVICE(0x10DE, 0x03EF),
  5505. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5506. },
  5507. { /* MCP65 Ethernet Controller */
  5508. PCI_DEVICE(0x10DE, 0x0450),
  5509. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5510. },
  5511. { /* MCP65 Ethernet Controller */
  5512. PCI_DEVICE(0x10DE, 0x0451),
  5513. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5514. },
  5515. { /* MCP65 Ethernet Controller */
  5516. PCI_DEVICE(0x10DE, 0x0452),
  5517. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5518. },
  5519. { /* MCP65 Ethernet Controller */
  5520. PCI_DEVICE(0x10DE, 0x0453),
  5521. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5522. },
  5523. { /* MCP67 Ethernet Controller */
  5524. PCI_DEVICE(0x10DE, 0x054C),
  5525. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5526. },
  5527. { /* MCP67 Ethernet Controller */
  5528. PCI_DEVICE(0x10DE, 0x054D),
  5529. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5530. },
  5531. { /* MCP67 Ethernet Controller */
  5532. PCI_DEVICE(0x10DE, 0x054E),
  5533. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5534. },
  5535. { /* MCP67 Ethernet Controller */
  5536. PCI_DEVICE(0x10DE, 0x054F),
  5537. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5538. },
  5539. { /* MCP73 Ethernet Controller */
  5540. PCI_DEVICE(0x10DE, 0x07DC),
  5541. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5542. },
  5543. { /* MCP73 Ethernet Controller */
  5544. PCI_DEVICE(0x10DE, 0x07DD),
  5545. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5546. },
  5547. { /* MCP73 Ethernet Controller */
  5548. PCI_DEVICE(0x10DE, 0x07DE),
  5549. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5550. },
  5551. { /* MCP73 Ethernet Controller */
  5552. PCI_DEVICE(0x10DE, 0x07DF),
  5553. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5554. },
  5555. { /* MCP77 Ethernet Controller */
  5556. PCI_DEVICE(0x10DE, 0x0760),
  5557. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5558. },
  5559. { /* MCP77 Ethernet Controller */
  5560. PCI_DEVICE(0x10DE, 0x0761),
  5561. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5562. },
  5563. { /* MCP77 Ethernet Controller */
  5564. PCI_DEVICE(0x10DE, 0x0762),
  5565. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5566. },
  5567. { /* MCP77 Ethernet Controller */
  5568. PCI_DEVICE(0x10DE, 0x0763),
  5569. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5570. },
  5571. { /* MCP79 Ethernet Controller */
  5572. PCI_DEVICE(0x10DE, 0x0AB0),
  5573. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5574. },
  5575. { /* MCP79 Ethernet Controller */
  5576. PCI_DEVICE(0x10DE, 0x0AB1),
  5577. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5578. },
  5579. { /* MCP79 Ethernet Controller */
  5580. PCI_DEVICE(0x10DE, 0x0AB2),
  5581. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5582. },
  5583. { /* MCP79 Ethernet Controller */
  5584. PCI_DEVICE(0x10DE, 0x0AB3),
  5585. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5586. },
  5587. { /* MCP89 Ethernet Controller */
  5588. PCI_DEVICE(0x10DE, 0x0D7D),
  5589. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
  5590. },
  5591. {0,},
  5592. };
  5593. static struct pci_driver driver = {
  5594. .name = DRV_NAME,
  5595. .id_table = pci_tbl,
  5596. .probe = nv_probe,
  5597. .remove = nv_remove,
  5598. .shutdown = nv_shutdown,
  5599. .driver.pm = NV_PM_OPS,
  5600. };
  5601. static int __init init_nic(void)
  5602. {
  5603. return pci_register_driver(&driver);
  5604. }
  5605. static void __exit exit_nic(void)
  5606. {
  5607. pci_unregister_driver(&driver);
  5608. }
  5609. module_param(max_interrupt_work, int, 0);
  5610. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5611. module_param(optimization_mode, int, 0);
  5612. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5613. module_param(poll_interval, int, 0);
  5614. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5615. module_param(msi, int, 0);
  5616. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5617. module_param(msix, int, 0);
  5618. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5619. module_param(dma_64bit, int, 0);
  5620. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5621. module_param(phy_cross, int, 0);
  5622. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5623. module_param(phy_power_down, int, 0);
  5624. MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
  5625. module_param(debug_tx_timeout, bool, 0);
  5626. MODULE_PARM_DESC(debug_tx_timeout,
  5627. "Dump tx related registers and ring when tx_timeout happens");
  5628. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5629. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5630. MODULE_LICENSE("GPL");
  5631. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5632. module_init(init_nic);
  5633. module_exit(exit_nic);