macmace.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788
  1. /*
  2. * Driver for the Macintosh 68K onboard MACE controller with PSC
  3. * driven DMA. The MACE driver code is derived from mace.c. The
  4. * Mac68k theory of operation is courtesy of the MacBSD wizards.
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. *
  11. * Copyright (C) 1996 Paul Mackerras.
  12. * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
  13. *
  14. * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
  15. *
  16. * Copyright (C) 2007 Finn Thain
  17. *
  18. * Converted to DMA API, converted to unified driver model,
  19. * sync'd some routines with mace.c and fixed various bugs.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/string.h>
  27. #include <linux/crc32.h>
  28. #include <linux/bitrev.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/gfp.h>
  32. #include <linux/interrupt.h>
  33. #include <asm/io.h>
  34. #include <asm/macints.h>
  35. #include <asm/mac_psc.h>
  36. #include <asm/page.h>
  37. #include "mace.h"
  38. static char mac_mace_string[] = "macmace";
  39. #define N_TX_BUFF_ORDER 0
  40. #define N_TX_RING (1 << N_TX_BUFF_ORDER)
  41. #define N_RX_BUFF_ORDER 3
  42. #define N_RX_RING (1 << N_RX_BUFF_ORDER)
  43. #define TX_TIMEOUT HZ
  44. #define MACE_BUFF_SIZE 0x800
  45. /* Chip rev needs workaround on HW & multicast addr change */
  46. #define BROKEN_ADDRCHG_REV 0x0941
  47. /* The MACE is simply wired down on a Mac68K box */
  48. #define MACE_BASE (void *)(0x50F1C000)
  49. #define MACE_PROM (void *)(0x50F08001)
  50. struct mace_data {
  51. volatile struct mace *mace;
  52. unsigned char *tx_ring;
  53. dma_addr_t tx_ring_phys;
  54. unsigned char *rx_ring;
  55. dma_addr_t rx_ring_phys;
  56. int dma_intr;
  57. int rx_slot, rx_tail;
  58. int tx_slot, tx_sloti, tx_count;
  59. int chipid;
  60. struct device *device;
  61. };
  62. struct mace_frame {
  63. u8 rcvcnt;
  64. u8 pad1;
  65. u8 rcvsts;
  66. u8 pad2;
  67. u8 rntpc;
  68. u8 pad3;
  69. u8 rcvcc;
  70. u8 pad4;
  71. u32 pad5;
  72. u32 pad6;
  73. u8 data[1];
  74. /* And frame continues.. */
  75. };
  76. #define PRIV_BYTES sizeof(struct mace_data)
  77. static int mace_open(struct net_device *dev);
  78. static int mace_close(struct net_device *dev);
  79. static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
  80. static void mace_set_multicast(struct net_device *dev);
  81. static int mace_set_address(struct net_device *dev, void *addr);
  82. static void mace_reset(struct net_device *dev);
  83. static irqreturn_t mace_interrupt(int irq, void *dev_id);
  84. static irqreturn_t mace_dma_intr(int irq, void *dev_id);
  85. static void mace_tx_timeout(struct net_device *dev);
  86. static void __mace_set_address(struct net_device *dev, void *addr);
  87. /*
  88. * Load a receive DMA channel with a base address and ring length
  89. */
  90. static void mace_load_rxdma_base(struct net_device *dev, int set)
  91. {
  92. struct mace_data *mp = netdev_priv(dev);
  93. psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
  94. psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
  95. psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
  96. psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
  97. mp->rx_tail = 0;
  98. }
  99. /*
  100. * Reset the receive DMA subsystem
  101. */
  102. static void mace_rxdma_reset(struct net_device *dev)
  103. {
  104. struct mace_data *mp = netdev_priv(dev);
  105. volatile struct mace *mace = mp->mace;
  106. u8 maccc = mace->maccc;
  107. mace->maccc = maccc & ~ENRCV;
  108. psc_write_word(PSC_ENETRD_CTL, 0x8800);
  109. mace_load_rxdma_base(dev, 0x00);
  110. psc_write_word(PSC_ENETRD_CTL, 0x0400);
  111. psc_write_word(PSC_ENETRD_CTL, 0x8800);
  112. mace_load_rxdma_base(dev, 0x10);
  113. psc_write_word(PSC_ENETRD_CTL, 0x0400);
  114. mace->maccc = maccc;
  115. mp->rx_slot = 0;
  116. psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
  117. psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
  118. }
  119. /*
  120. * Reset the transmit DMA subsystem
  121. */
  122. static void mace_txdma_reset(struct net_device *dev)
  123. {
  124. struct mace_data *mp = netdev_priv(dev);
  125. volatile struct mace *mace = mp->mace;
  126. u8 maccc;
  127. psc_write_word(PSC_ENETWR_CTL, 0x8800);
  128. maccc = mace->maccc;
  129. mace->maccc = maccc & ~ENXMT;
  130. mp->tx_slot = mp->tx_sloti = 0;
  131. mp->tx_count = N_TX_RING;
  132. psc_write_word(PSC_ENETWR_CTL, 0x0400);
  133. mace->maccc = maccc;
  134. }
  135. /*
  136. * Disable DMA
  137. */
  138. static void mace_dma_off(struct net_device *dev)
  139. {
  140. psc_write_word(PSC_ENETRD_CTL, 0x8800);
  141. psc_write_word(PSC_ENETRD_CTL, 0x1000);
  142. psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
  143. psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
  144. psc_write_word(PSC_ENETWR_CTL, 0x8800);
  145. psc_write_word(PSC_ENETWR_CTL, 0x1000);
  146. psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
  147. psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
  148. }
  149. static const struct net_device_ops mace_netdev_ops = {
  150. .ndo_open = mace_open,
  151. .ndo_stop = mace_close,
  152. .ndo_start_xmit = mace_xmit_start,
  153. .ndo_tx_timeout = mace_tx_timeout,
  154. .ndo_set_rx_mode = mace_set_multicast,
  155. .ndo_set_mac_address = mace_set_address,
  156. .ndo_change_mtu = eth_change_mtu,
  157. .ndo_validate_addr = eth_validate_addr,
  158. };
  159. /*
  160. * Not really much of a probe. The hardware table tells us if this
  161. * model of Macintrash has a MACE (AV macintoshes)
  162. */
  163. static int mace_probe(struct platform_device *pdev)
  164. {
  165. int j;
  166. struct mace_data *mp;
  167. unsigned char *addr;
  168. struct net_device *dev;
  169. unsigned char checksum = 0;
  170. int err;
  171. dev = alloc_etherdev(PRIV_BYTES);
  172. if (!dev)
  173. return -ENOMEM;
  174. mp = netdev_priv(dev);
  175. mp->device = &pdev->dev;
  176. SET_NETDEV_DEV(dev, &pdev->dev);
  177. dev->base_addr = (u32)MACE_BASE;
  178. mp->mace = MACE_BASE;
  179. dev->irq = IRQ_MAC_MACE;
  180. mp->dma_intr = IRQ_MAC_MACE_DMA;
  181. mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
  182. /*
  183. * The PROM contains 8 bytes which total 0xFF when XOR'd
  184. * together. Due to the usual peculiar apple brain damage
  185. * the bytes are spaced out in a strange boundary and the
  186. * bits are reversed.
  187. */
  188. addr = MACE_PROM;
  189. for (j = 0; j < 6; ++j) {
  190. u8 v = bitrev8(addr[j<<4]);
  191. checksum ^= v;
  192. dev->dev_addr[j] = v;
  193. }
  194. for (; j < 8; ++j) {
  195. checksum ^= bitrev8(addr[j<<4]);
  196. }
  197. if (checksum != 0xFF) {
  198. free_netdev(dev);
  199. return -ENODEV;
  200. }
  201. dev->netdev_ops = &mace_netdev_ops;
  202. dev->watchdog_timeo = TX_TIMEOUT;
  203. printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n",
  204. dev->name, dev->dev_addr);
  205. err = register_netdev(dev);
  206. if (!err)
  207. return 0;
  208. free_netdev(dev);
  209. return err;
  210. }
  211. /*
  212. * Reset the chip.
  213. */
  214. static void mace_reset(struct net_device *dev)
  215. {
  216. struct mace_data *mp = netdev_priv(dev);
  217. volatile struct mace *mb = mp->mace;
  218. int i;
  219. /* soft-reset the chip */
  220. i = 200;
  221. while (--i) {
  222. mb->biucc = SWRST;
  223. if (mb->biucc & SWRST) {
  224. udelay(10);
  225. continue;
  226. }
  227. break;
  228. }
  229. if (!i) {
  230. printk(KERN_ERR "macmace: cannot reset chip!\n");
  231. return;
  232. }
  233. mb->maccc = 0; /* turn off tx, rx */
  234. mb->imr = 0xFF; /* disable all intrs for now */
  235. i = mb->ir;
  236. mb->biucc = XMTSP_64;
  237. mb->utr = RTRD;
  238. mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
  239. mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
  240. mb->rcvfc = 0;
  241. /* load up the hardware address */
  242. __mace_set_address(dev, dev->dev_addr);
  243. /* clear the multicast filter */
  244. if (mp->chipid == BROKEN_ADDRCHG_REV)
  245. mb->iac = LOGADDR;
  246. else {
  247. mb->iac = ADDRCHG | LOGADDR;
  248. while ((mb->iac & ADDRCHG) != 0)
  249. ;
  250. }
  251. for (i = 0; i < 8; ++i)
  252. mb->ladrf = 0;
  253. /* done changing address */
  254. if (mp->chipid != BROKEN_ADDRCHG_REV)
  255. mb->iac = 0;
  256. mb->plscc = PORTSEL_AUI;
  257. }
  258. /*
  259. * Load the address on a mace controller.
  260. */
  261. static void __mace_set_address(struct net_device *dev, void *addr)
  262. {
  263. struct mace_data *mp = netdev_priv(dev);
  264. volatile struct mace *mb = mp->mace;
  265. unsigned char *p = addr;
  266. int i;
  267. /* load up the hardware address */
  268. if (mp->chipid == BROKEN_ADDRCHG_REV)
  269. mb->iac = PHYADDR;
  270. else {
  271. mb->iac = ADDRCHG | PHYADDR;
  272. while ((mb->iac & ADDRCHG) != 0)
  273. ;
  274. }
  275. for (i = 0; i < 6; ++i)
  276. mb->padr = dev->dev_addr[i] = p[i];
  277. if (mp->chipid != BROKEN_ADDRCHG_REV)
  278. mb->iac = 0;
  279. }
  280. static int mace_set_address(struct net_device *dev, void *addr)
  281. {
  282. struct mace_data *mp = netdev_priv(dev);
  283. volatile struct mace *mb = mp->mace;
  284. unsigned long flags;
  285. u8 maccc;
  286. local_irq_save(flags);
  287. maccc = mb->maccc;
  288. __mace_set_address(dev, addr);
  289. mb->maccc = maccc;
  290. local_irq_restore(flags);
  291. return 0;
  292. }
  293. /*
  294. * Open the Macintosh MACE. Most of this is playing with the DMA
  295. * engine. The ethernet chip is quite friendly.
  296. */
  297. static int mace_open(struct net_device *dev)
  298. {
  299. struct mace_data *mp = netdev_priv(dev);
  300. volatile struct mace *mb = mp->mace;
  301. /* reset the chip */
  302. mace_reset(dev);
  303. if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
  304. printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
  305. return -EAGAIN;
  306. }
  307. if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
  308. printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
  309. free_irq(dev->irq, dev);
  310. return -EAGAIN;
  311. }
  312. /* Allocate the DMA ring buffers */
  313. mp->tx_ring = dma_alloc_coherent(mp->device,
  314. N_TX_RING * MACE_BUFF_SIZE,
  315. &mp->tx_ring_phys, GFP_KERNEL);
  316. if (mp->tx_ring == NULL)
  317. goto out1;
  318. mp->rx_ring = dma_alloc_coherent(mp->device,
  319. N_RX_RING * MACE_BUFF_SIZE,
  320. &mp->rx_ring_phys, GFP_KERNEL);
  321. if (mp->rx_ring == NULL)
  322. goto out2;
  323. mace_dma_off(dev);
  324. /* Not sure what these do */
  325. psc_write_word(PSC_ENETWR_CTL, 0x9000);
  326. psc_write_word(PSC_ENETRD_CTL, 0x9000);
  327. psc_write_word(PSC_ENETWR_CTL, 0x0400);
  328. psc_write_word(PSC_ENETRD_CTL, 0x0400);
  329. mace_rxdma_reset(dev);
  330. mace_txdma_reset(dev);
  331. /* turn it on! */
  332. mb->maccc = ENXMT | ENRCV;
  333. /* enable all interrupts except receive interrupts */
  334. mb->imr = RCVINT;
  335. return 0;
  336. out2:
  337. dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
  338. mp->tx_ring, mp->tx_ring_phys);
  339. out1:
  340. free_irq(dev->irq, dev);
  341. free_irq(mp->dma_intr, dev);
  342. return -ENOMEM;
  343. }
  344. /*
  345. * Shut down the mace and its interrupt channel
  346. */
  347. static int mace_close(struct net_device *dev)
  348. {
  349. struct mace_data *mp = netdev_priv(dev);
  350. volatile struct mace *mb = mp->mace;
  351. mb->maccc = 0; /* disable rx and tx */
  352. mb->imr = 0xFF; /* disable all irqs */
  353. mace_dma_off(dev); /* disable rx and tx dma */
  354. return 0;
  355. }
  356. /*
  357. * Transmit a frame
  358. */
  359. static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
  360. {
  361. struct mace_data *mp = netdev_priv(dev);
  362. unsigned long flags;
  363. /* Stop the queue since there's only the one buffer */
  364. local_irq_save(flags);
  365. netif_stop_queue(dev);
  366. if (!mp->tx_count) {
  367. printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
  368. local_irq_restore(flags);
  369. return NETDEV_TX_BUSY;
  370. }
  371. mp->tx_count--;
  372. local_irq_restore(flags);
  373. dev->stats.tx_packets++;
  374. dev->stats.tx_bytes += skb->len;
  375. /* We need to copy into our xmit buffer to take care of alignment and caching issues */
  376. skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
  377. /* load the Tx DMA and fire it off */
  378. psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
  379. psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
  380. psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
  381. mp->tx_slot ^= 0x10;
  382. dev_kfree_skb(skb);
  383. return NETDEV_TX_OK;
  384. }
  385. static void mace_set_multicast(struct net_device *dev)
  386. {
  387. struct mace_data *mp = netdev_priv(dev);
  388. volatile struct mace *mb = mp->mace;
  389. int i;
  390. u32 crc;
  391. u8 maccc;
  392. unsigned long flags;
  393. local_irq_save(flags);
  394. maccc = mb->maccc;
  395. mb->maccc &= ~PROM;
  396. if (dev->flags & IFF_PROMISC) {
  397. mb->maccc |= PROM;
  398. } else {
  399. unsigned char multicast_filter[8];
  400. struct netdev_hw_addr *ha;
  401. if (dev->flags & IFF_ALLMULTI) {
  402. for (i = 0; i < 8; i++) {
  403. multicast_filter[i] = 0xFF;
  404. }
  405. } else {
  406. for (i = 0; i < 8; i++)
  407. multicast_filter[i] = 0;
  408. netdev_for_each_mc_addr(ha, dev) {
  409. crc = ether_crc_le(6, ha->addr);
  410. /* bit number in multicast_filter */
  411. i = crc >> 26;
  412. multicast_filter[i >> 3] |= 1 << (i & 7);
  413. }
  414. }
  415. if (mp->chipid == BROKEN_ADDRCHG_REV)
  416. mb->iac = LOGADDR;
  417. else {
  418. mb->iac = ADDRCHG | LOGADDR;
  419. while ((mb->iac & ADDRCHG) != 0)
  420. ;
  421. }
  422. for (i = 0; i < 8; ++i)
  423. mb->ladrf = multicast_filter[i];
  424. if (mp->chipid != BROKEN_ADDRCHG_REV)
  425. mb->iac = 0;
  426. }
  427. mb->maccc = maccc;
  428. local_irq_restore(flags);
  429. }
  430. static void mace_handle_misc_intrs(struct net_device *dev, int intr)
  431. {
  432. struct mace_data *mp = netdev_priv(dev);
  433. volatile struct mace *mb = mp->mace;
  434. static int mace_babbles, mace_jabbers;
  435. if (intr & MPCO)
  436. dev->stats.rx_missed_errors += 256;
  437. dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */
  438. if (intr & RNTPCO)
  439. dev->stats.rx_length_errors += 256;
  440. dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
  441. if (intr & CERR)
  442. ++dev->stats.tx_heartbeat_errors;
  443. if (intr & BABBLE)
  444. if (mace_babbles++ < 4)
  445. printk(KERN_DEBUG "macmace: babbling transmitter\n");
  446. if (intr & JABBER)
  447. if (mace_jabbers++ < 4)
  448. printk(KERN_DEBUG "macmace: jabbering transceiver\n");
  449. }
  450. static irqreturn_t mace_interrupt(int irq, void *dev_id)
  451. {
  452. struct net_device *dev = (struct net_device *) dev_id;
  453. struct mace_data *mp = netdev_priv(dev);
  454. volatile struct mace *mb = mp->mace;
  455. int intr, fs;
  456. unsigned long flags;
  457. /* don't want the dma interrupt handler to fire */
  458. local_irq_save(flags);
  459. intr = mb->ir; /* read interrupt register */
  460. mace_handle_misc_intrs(dev, intr);
  461. if (intr & XMTINT) {
  462. fs = mb->xmtfs;
  463. if ((fs & XMTSV) == 0) {
  464. printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
  465. mace_reset(dev);
  466. /*
  467. * XXX mace likes to hang the machine after a xmtfs error.
  468. * This is hard to reproduce, reseting *may* help
  469. */
  470. }
  471. /* dma should have finished */
  472. if (!mp->tx_count) {
  473. printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
  474. }
  475. /* Update stats */
  476. if (fs & (UFLO|LCOL|LCAR|RTRY)) {
  477. ++dev->stats.tx_errors;
  478. if (fs & LCAR)
  479. ++dev->stats.tx_carrier_errors;
  480. else if (fs & (UFLO|LCOL|RTRY)) {
  481. ++dev->stats.tx_aborted_errors;
  482. if (mb->xmtfs & UFLO) {
  483. printk(KERN_ERR "%s: DMA underrun.\n", dev->name);
  484. dev->stats.tx_fifo_errors++;
  485. mace_txdma_reset(dev);
  486. }
  487. }
  488. }
  489. }
  490. if (mp->tx_count)
  491. netif_wake_queue(dev);
  492. local_irq_restore(flags);
  493. return IRQ_HANDLED;
  494. }
  495. static void mace_tx_timeout(struct net_device *dev)
  496. {
  497. struct mace_data *mp = netdev_priv(dev);
  498. volatile struct mace *mb = mp->mace;
  499. unsigned long flags;
  500. local_irq_save(flags);
  501. /* turn off both tx and rx and reset the chip */
  502. mb->maccc = 0;
  503. printk(KERN_ERR "macmace: transmit timeout - resetting\n");
  504. mace_txdma_reset(dev);
  505. mace_reset(dev);
  506. /* restart rx dma */
  507. mace_rxdma_reset(dev);
  508. mp->tx_count = N_TX_RING;
  509. netif_wake_queue(dev);
  510. /* turn it on! */
  511. mb->maccc = ENXMT | ENRCV;
  512. /* enable all interrupts except receive interrupts */
  513. mb->imr = RCVINT;
  514. local_irq_restore(flags);
  515. }
  516. /*
  517. * Handle a newly arrived frame
  518. */
  519. static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
  520. {
  521. struct sk_buff *skb;
  522. unsigned int frame_status = mf->rcvsts;
  523. if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
  524. dev->stats.rx_errors++;
  525. if (frame_status & RS_OFLO) {
  526. printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name);
  527. dev->stats.rx_fifo_errors++;
  528. }
  529. if (frame_status & RS_CLSN)
  530. dev->stats.collisions++;
  531. if (frame_status & RS_FRAMERR)
  532. dev->stats.rx_frame_errors++;
  533. if (frame_status & RS_FCSERR)
  534. dev->stats.rx_crc_errors++;
  535. } else {
  536. unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
  537. skb = netdev_alloc_skb(dev, frame_length + 2);
  538. if (!skb) {
  539. dev->stats.rx_dropped++;
  540. return;
  541. }
  542. skb_reserve(skb, 2);
  543. memcpy(skb_put(skb, frame_length), mf->data, frame_length);
  544. skb->protocol = eth_type_trans(skb, dev);
  545. netif_rx(skb);
  546. dev->stats.rx_packets++;
  547. dev->stats.rx_bytes += frame_length;
  548. }
  549. }
  550. /*
  551. * The PSC has passed us a DMA interrupt event.
  552. */
  553. static irqreturn_t mace_dma_intr(int irq, void *dev_id)
  554. {
  555. struct net_device *dev = (struct net_device *) dev_id;
  556. struct mace_data *mp = netdev_priv(dev);
  557. int left, head;
  558. u16 status;
  559. u32 baka;
  560. /* Not sure what this does */
  561. while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
  562. if (!(baka & 0x60000000)) return IRQ_NONE;
  563. /*
  564. * Process the read queue
  565. */
  566. status = psc_read_word(PSC_ENETRD_CTL);
  567. if (status & 0x2000) {
  568. mace_rxdma_reset(dev);
  569. } else if (status & 0x0100) {
  570. psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
  571. left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
  572. head = N_RX_RING - left;
  573. /* Loop through the ring buffer and process new packages */
  574. while (mp->rx_tail < head) {
  575. mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
  576. + (mp->rx_tail * MACE_BUFF_SIZE)));
  577. mp->rx_tail++;
  578. }
  579. /* If we're out of buffers in this ring then switch to */
  580. /* the other set, otherwise just reactivate this one. */
  581. if (!left) {
  582. mace_load_rxdma_base(dev, mp->rx_slot);
  583. mp->rx_slot ^= 0x10;
  584. } else {
  585. psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
  586. }
  587. }
  588. /*
  589. * Process the write queue
  590. */
  591. status = psc_read_word(PSC_ENETWR_CTL);
  592. if (status & 0x2000) {
  593. mace_txdma_reset(dev);
  594. } else if (status & 0x0100) {
  595. psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
  596. mp->tx_sloti ^= 0x10;
  597. mp->tx_count++;
  598. }
  599. return IRQ_HANDLED;
  600. }
  601. MODULE_LICENSE("GPL");
  602. MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
  603. MODULE_ALIAS("platform:macmace");
  604. static int mac_mace_device_remove(struct platform_device *pdev)
  605. {
  606. struct net_device *dev = platform_get_drvdata(pdev);
  607. struct mace_data *mp = netdev_priv(dev);
  608. unregister_netdev(dev);
  609. free_irq(dev->irq, dev);
  610. free_irq(IRQ_MAC_MACE_DMA, dev);
  611. dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
  612. mp->rx_ring, mp->rx_ring_phys);
  613. dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
  614. mp->tx_ring, mp->tx_ring_phys);
  615. free_netdev(dev);
  616. return 0;
  617. }
  618. static struct platform_driver mac_mace_driver = {
  619. .probe = mace_probe,
  620. .remove = mac_mace_device_remove,
  621. .driver = {
  622. .name = mac_mace_string,
  623. .owner = THIS_MODULE,
  624. },
  625. };
  626. static int __init mac_mace_init_module(void)
  627. {
  628. if (!MACH_IS_MAC)
  629. return -ENODEV;
  630. return platform_driver_register(&mac_mace_driver);
  631. }
  632. static void __exit mac_mace_cleanup_module(void)
  633. {
  634. platform_driver_unregister(&mac_mace_driver);
  635. }
  636. module_init(mac_mace_init_module);
  637. module_exit(mac_mace_cleanup_module);