intel_cacheinfo.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018
  1. /*
  2. * Routines to indentify caches on Intel CPU.
  3. *
  4. * Changes:
  5. * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
  6. * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
  7. * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
  8. */
  9. #include <linux/init.h>
  10. #include <linux/slab.h>
  11. #include <linux/device.h>
  12. #include <linux/compiler.h>
  13. #include <linux/cpu.h>
  14. #include <linux/sched.h>
  15. #include <linux/pci.h>
  16. #include <asm/processor.h>
  17. #include <linux/smp.h>
  18. #include <asm/k8.h>
  19. #include <asm/smp.h>
  20. #define LVL_1_INST 1
  21. #define LVL_1_DATA 2
  22. #define LVL_2 3
  23. #define LVL_3 4
  24. #define LVL_TRACE 5
  25. struct _cache_table {
  26. unsigned char descriptor;
  27. char cache_type;
  28. short size;
  29. };
  30. /* All the cache descriptor types we care about (no TLB or
  31. trace cache entries) */
  32. static const struct _cache_table __cpuinitconst cache_table[] =
  33. {
  34. { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
  35. { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
  36. { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */
  37. { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
  38. { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
  39. { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */
  40. { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */
  41. { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  42. { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  43. { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  44. { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  45. { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
  46. { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
  47. { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  48. { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
  49. { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
  50. { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  51. { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
  52. { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  53. { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */
  54. { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
  55. { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
  56. { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
  57. { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
  58. { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
  59. { 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */
  60. { 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */
  61. { 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
  62. { 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */
  63. { 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
  64. { 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */
  65. { 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */
  66. { 0x4e, LVL_2, 6144 }, /* 24-way set assoc, 64 byte line size */
  67. { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  68. { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  69. { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  70. { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  71. { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
  72. { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
  73. { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
  74. { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */
  75. { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
  76. { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  77. { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  78. { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  79. { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  80. { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
  81. { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
  82. { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
  83. { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
  84. { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
  85. { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
  86. { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
  87. { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
  88. { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */
  89. { 0xd1, LVL_3, 1024 }, /* 4-way set assoc, 64 byte line size */
  90. { 0xd2, LVL_3, 2048 }, /* 4-way set assoc, 64 byte line size */
  91. { 0xd6, LVL_3, 1024 }, /* 8-way set assoc, 64 byte line size */
  92. { 0xd7, LVL_3, 2048 }, /* 8-way set assoc, 64 byte line size */
  93. { 0xd8, LVL_3, 4096 }, /* 12-way set assoc, 64 byte line size */
  94. { 0xdc, LVL_3, 2048 }, /* 12-way set assoc, 64 byte line size */
  95. { 0xdd, LVL_3, 4096 }, /* 12-way set assoc, 64 byte line size */
  96. { 0xde, LVL_3, 8192 }, /* 12-way set assoc, 64 byte line size */
  97. { 0xe2, LVL_3, 2048 }, /* 16-way set assoc, 64 byte line size */
  98. { 0xe3, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */
  99. { 0xe4, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */
  100. { 0xea, LVL_3, 12288 }, /* 24-way set assoc, 64 byte line size */
  101. { 0xeb, LVL_3, 18432 }, /* 24-way set assoc, 64 byte line size */
  102. { 0xec, LVL_3, 24576 }, /* 24-way set assoc, 64 byte line size */
  103. { 0x00, 0, 0}
  104. };
  105. enum _cache_type {
  106. CACHE_TYPE_NULL = 0,
  107. CACHE_TYPE_DATA = 1,
  108. CACHE_TYPE_INST = 2,
  109. CACHE_TYPE_UNIFIED = 3
  110. };
  111. union _cpuid4_leaf_eax {
  112. struct {
  113. enum _cache_type type:5;
  114. unsigned int level:3;
  115. unsigned int is_self_initializing:1;
  116. unsigned int is_fully_associative:1;
  117. unsigned int reserved:4;
  118. unsigned int num_threads_sharing:12;
  119. unsigned int num_cores_on_die:6;
  120. } split;
  121. u32 full;
  122. };
  123. union _cpuid4_leaf_ebx {
  124. struct {
  125. unsigned int coherency_line_size:12;
  126. unsigned int physical_line_partition:10;
  127. unsigned int ways_of_associativity:10;
  128. } split;
  129. u32 full;
  130. };
  131. union _cpuid4_leaf_ecx {
  132. struct {
  133. unsigned int number_of_sets:32;
  134. } split;
  135. u32 full;
  136. };
  137. struct _cpuid4_info {
  138. union _cpuid4_leaf_eax eax;
  139. union _cpuid4_leaf_ebx ebx;
  140. union _cpuid4_leaf_ecx ecx;
  141. unsigned long size;
  142. unsigned long can_disable;
  143. DECLARE_BITMAP(shared_cpu_map, NR_CPUS);
  144. };
  145. /* subset of above _cpuid4_info w/o shared_cpu_map */
  146. struct _cpuid4_info_regs {
  147. union _cpuid4_leaf_eax eax;
  148. union _cpuid4_leaf_ebx ebx;
  149. union _cpuid4_leaf_ecx ecx;
  150. unsigned long size;
  151. unsigned long can_disable;
  152. };
  153. unsigned short num_cache_leaves;
  154. /* AMD doesn't have CPUID4. Emulate it here to report the same
  155. information to the user. This makes some assumptions about the machine:
  156. L2 not shared, no SMT etc. that is currently true on AMD CPUs.
  157. In theory the TLBs could be reported as fake type (they are in "dummy").
  158. Maybe later */
  159. union l1_cache {
  160. struct {
  161. unsigned line_size:8;
  162. unsigned lines_per_tag:8;
  163. unsigned assoc:8;
  164. unsigned size_in_kb:8;
  165. };
  166. unsigned val;
  167. };
  168. union l2_cache {
  169. struct {
  170. unsigned line_size:8;
  171. unsigned lines_per_tag:4;
  172. unsigned assoc:4;
  173. unsigned size_in_kb:16;
  174. };
  175. unsigned val;
  176. };
  177. union l3_cache {
  178. struct {
  179. unsigned line_size:8;
  180. unsigned lines_per_tag:4;
  181. unsigned assoc:4;
  182. unsigned res:2;
  183. unsigned size_encoded:14;
  184. };
  185. unsigned val;
  186. };
  187. static const unsigned short __cpuinitconst assocs[] = {
  188. [1] = 1,
  189. [2] = 2,
  190. [4] = 4,
  191. [6] = 8,
  192. [8] = 16,
  193. [0xa] = 32,
  194. [0xb] = 48,
  195. [0xc] = 64,
  196. [0xd] = 96,
  197. [0xe] = 128,
  198. [0xf] = 0xffff /* fully associative - no way to show this currently */
  199. };
  200. static const unsigned char __cpuinitconst levels[] = { 1, 1, 2, 3 };
  201. static const unsigned char __cpuinitconst types[] = { 1, 2, 3, 3 };
  202. static void __cpuinit
  203. amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
  204. union _cpuid4_leaf_ebx *ebx,
  205. union _cpuid4_leaf_ecx *ecx)
  206. {
  207. unsigned dummy;
  208. unsigned line_size, lines_per_tag, assoc, size_in_kb;
  209. union l1_cache l1i, l1d;
  210. union l2_cache l2;
  211. union l3_cache l3;
  212. union l1_cache *l1 = &l1d;
  213. eax->full = 0;
  214. ebx->full = 0;
  215. ecx->full = 0;
  216. cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
  217. cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
  218. switch (leaf) {
  219. case 1:
  220. l1 = &l1i;
  221. case 0:
  222. if (!l1->val)
  223. return;
  224. assoc = assocs[l1->assoc];
  225. line_size = l1->line_size;
  226. lines_per_tag = l1->lines_per_tag;
  227. size_in_kb = l1->size_in_kb;
  228. break;
  229. case 2:
  230. if (!l2.val)
  231. return;
  232. assoc = assocs[l2.assoc];
  233. line_size = l2.line_size;
  234. lines_per_tag = l2.lines_per_tag;
  235. /* cpu_data has errata corrections for K7 applied */
  236. size_in_kb = current_cpu_data.x86_cache_size;
  237. break;
  238. case 3:
  239. if (!l3.val)
  240. return;
  241. assoc = assocs[l3.assoc];
  242. line_size = l3.line_size;
  243. lines_per_tag = l3.lines_per_tag;
  244. size_in_kb = l3.size_encoded * 512;
  245. if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
  246. size_in_kb = size_in_kb >> 1;
  247. assoc = assoc >> 1;
  248. }
  249. break;
  250. default:
  251. return;
  252. }
  253. eax->split.is_self_initializing = 1;
  254. eax->split.type = types[leaf];
  255. eax->split.level = levels[leaf];
  256. eax->split.num_threads_sharing = 0;
  257. eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;
  258. if (assoc == 0xffff)
  259. eax->split.is_fully_associative = 1;
  260. ebx->split.coherency_line_size = line_size - 1;
  261. ebx->split.ways_of_associativity = assoc - 1;
  262. ebx->split.physical_line_partition = lines_per_tag - 1;
  263. ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
  264. (ebx->split.ways_of_associativity + 1) - 1;
  265. }
  266. static void __cpuinit
  267. amd_check_l3_disable(int index, struct _cpuid4_info_regs *this_leaf)
  268. {
  269. if (index < 3)
  270. return;
  271. if (boot_cpu_data.x86 == 0x11)
  272. return;
  273. /* see errata #382 and #388 */
  274. if ((boot_cpu_data.x86 == 0x10) &&
  275. ((boot_cpu_data.x86_model < 0x9) ||
  276. (boot_cpu_data.x86_mask < 0x1)))
  277. return;
  278. this_leaf->can_disable = 1;
  279. }
  280. static int
  281. __cpuinit cpuid4_cache_lookup_regs(int index,
  282. struct _cpuid4_info_regs *this_leaf)
  283. {
  284. union _cpuid4_leaf_eax eax;
  285. union _cpuid4_leaf_ebx ebx;
  286. union _cpuid4_leaf_ecx ecx;
  287. unsigned edx;
  288. if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
  289. amd_cpuid4(index, &eax, &ebx, &ecx);
  290. if (boot_cpu_data.x86 >= 0x10)
  291. amd_check_l3_disable(index, this_leaf);
  292. } else {
  293. cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
  294. }
  295. if (eax.split.type == CACHE_TYPE_NULL)
  296. return -EIO; /* better error ? */
  297. this_leaf->eax = eax;
  298. this_leaf->ebx = ebx;
  299. this_leaf->ecx = ecx;
  300. this_leaf->size = (ecx.split.number_of_sets + 1) *
  301. (ebx.split.coherency_line_size + 1) *
  302. (ebx.split.physical_line_partition + 1) *
  303. (ebx.split.ways_of_associativity + 1);
  304. return 0;
  305. }
  306. static int __cpuinit find_num_cache_leaves(void)
  307. {
  308. unsigned int eax, ebx, ecx, edx;
  309. union _cpuid4_leaf_eax cache_eax;
  310. int i = -1;
  311. do {
  312. ++i;
  313. /* Do cpuid(4) loop to find out num_cache_leaves */
  314. cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
  315. cache_eax.full = eax;
  316. } while (cache_eax.split.type != CACHE_TYPE_NULL);
  317. return i;
  318. }
  319. unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
  320. {
  321. /* Cache sizes */
  322. unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0;
  323. unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
  324. unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
  325. unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
  326. #ifdef CONFIG_X86_HT
  327. unsigned int cpu = c->cpu_index;
  328. #endif
  329. if (c->cpuid_level > 3) {
  330. static int is_initialized;
  331. if (is_initialized == 0) {
  332. /* Init num_cache_leaves from boot CPU */
  333. num_cache_leaves = find_num_cache_leaves();
  334. is_initialized++;
  335. }
  336. /*
  337. * Whenever possible use cpuid(4), deterministic cache
  338. * parameters cpuid leaf to find the cache details
  339. */
  340. for (i = 0; i < num_cache_leaves; i++) {
  341. struct _cpuid4_info_regs this_leaf;
  342. int retval;
  343. retval = cpuid4_cache_lookup_regs(i, &this_leaf);
  344. if (retval >= 0) {
  345. switch (this_leaf.eax.split.level) {
  346. case 1:
  347. if (this_leaf.eax.split.type ==
  348. CACHE_TYPE_DATA)
  349. new_l1d = this_leaf.size/1024;
  350. else if (this_leaf.eax.split.type ==
  351. CACHE_TYPE_INST)
  352. new_l1i = this_leaf.size/1024;
  353. break;
  354. case 2:
  355. new_l2 = this_leaf.size/1024;
  356. num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
  357. index_msb = get_count_order(num_threads_sharing);
  358. l2_id = c->apicid >> index_msb;
  359. break;
  360. case 3:
  361. new_l3 = this_leaf.size/1024;
  362. num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
  363. index_msb = get_count_order(
  364. num_threads_sharing);
  365. l3_id = c->apicid >> index_msb;
  366. break;
  367. default:
  368. break;
  369. }
  370. }
  371. }
  372. }
  373. /*
  374. * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
  375. * trace cache
  376. */
  377. if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
  378. /* supports eax=2 call */
  379. int j, n;
  380. unsigned int regs[4];
  381. unsigned char *dp = (unsigned char *)regs;
  382. int only_trace = 0;
  383. if (num_cache_leaves != 0 && c->x86 == 15)
  384. only_trace = 1;
  385. /* Number of times to iterate */
  386. n = cpuid_eax(2) & 0xFF;
  387. for (i = 0 ; i < n ; i++) {
  388. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  389. /* If bit 31 is set, this is an unknown format */
  390. for (j = 0 ; j < 3 ; j++)
  391. if (regs[j] & (1 << 31))
  392. regs[j] = 0;
  393. /* Byte 0 is level count, not a descriptor */
  394. for (j = 1 ; j < 16 ; j++) {
  395. unsigned char des = dp[j];
  396. unsigned char k = 0;
  397. /* look up this descriptor in the table */
  398. while (cache_table[k].descriptor != 0) {
  399. if (cache_table[k].descriptor == des) {
  400. if (only_trace && cache_table[k].cache_type != LVL_TRACE)
  401. break;
  402. switch (cache_table[k].cache_type) {
  403. case LVL_1_INST:
  404. l1i += cache_table[k].size;
  405. break;
  406. case LVL_1_DATA:
  407. l1d += cache_table[k].size;
  408. break;
  409. case LVL_2:
  410. l2 += cache_table[k].size;
  411. break;
  412. case LVL_3:
  413. l3 += cache_table[k].size;
  414. break;
  415. case LVL_TRACE:
  416. trace += cache_table[k].size;
  417. break;
  418. }
  419. break;
  420. }
  421. k++;
  422. }
  423. }
  424. }
  425. }
  426. if (new_l1d)
  427. l1d = new_l1d;
  428. if (new_l1i)
  429. l1i = new_l1i;
  430. if (new_l2) {
  431. l2 = new_l2;
  432. #ifdef CONFIG_X86_HT
  433. per_cpu(cpu_llc_id, cpu) = l2_id;
  434. #endif
  435. }
  436. if (new_l3) {
  437. l3 = new_l3;
  438. #ifdef CONFIG_X86_HT
  439. per_cpu(cpu_llc_id, cpu) = l3_id;
  440. #endif
  441. }
  442. c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
  443. return l2;
  444. }
  445. #ifdef CONFIG_SYSFS
  446. /* pointer to _cpuid4_info array (for each cache leaf) */
  447. static DEFINE_PER_CPU(struct _cpuid4_info *, ici_cpuid4_info);
  448. #define CPUID4_INFO_IDX(x, y) (&((per_cpu(ici_cpuid4_info, x))[y]))
  449. #ifdef CONFIG_SMP
  450. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  451. {
  452. struct _cpuid4_info *this_leaf, *sibling_leaf;
  453. unsigned long num_threads_sharing;
  454. int index_msb, i, sibling;
  455. struct cpuinfo_x86 *c = &cpu_data(cpu);
  456. if ((index == 3) && (c->x86_vendor == X86_VENDOR_AMD)) {
  457. for_each_cpu(i, c->llc_shared_map) {
  458. if (!per_cpu(ici_cpuid4_info, i))
  459. continue;
  460. this_leaf = CPUID4_INFO_IDX(i, index);
  461. for_each_cpu(sibling, c->llc_shared_map) {
  462. if (!cpu_online(sibling))
  463. continue;
  464. set_bit(sibling, this_leaf->shared_cpu_map);
  465. }
  466. }
  467. return;
  468. }
  469. this_leaf = CPUID4_INFO_IDX(cpu, index);
  470. num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
  471. if (num_threads_sharing == 1)
  472. cpumask_set_cpu(cpu, to_cpumask(this_leaf->shared_cpu_map));
  473. else {
  474. index_msb = get_count_order(num_threads_sharing);
  475. for_each_online_cpu(i) {
  476. if (cpu_data(i).apicid >> index_msb ==
  477. c->apicid >> index_msb) {
  478. cpumask_set_cpu(i,
  479. to_cpumask(this_leaf->shared_cpu_map));
  480. if (i != cpu && per_cpu(ici_cpuid4_info, i)) {
  481. sibling_leaf =
  482. CPUID4_INFO_IDX(i, index);
  483. cpumask_set_cpu(cpu, to_cpumask(
  484. sibling_leaf->shared_cpu_map));
  485. }
  486. }
  487. }
  488. }
  489. }
  490. static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
  491. {
  492. struct _cpuid4_info *this_leaf, *sibling_leaf;
  493. int sibling;
  494. this_leaf = CPUID4_INFO_IDX(cpu, index);
  495. for_each_cpu(sibling, to_cpumask(this_leaf->shared_cpu_map)) {
  496. sibling_leaf = CPUID4_INFO_IDX(sibling, index);
  497. cpumask_clear_cpu(cpu,
  498. to_cpumask(sibling_leaf->shared_cpu_map));
  499. }
  500. }
  501. #else
  502. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  503. {
  504. }
  505. static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
  506. {
  507. }
  508. #endif
  509. static void __cpuinit free_cache_attributes(unsigned int cpu)
  510. {
  511. int i;
  512. for (i = 0; i < num_cache_leaves; i++)
  513. cache_remove_shared_cpu_map(cpu, i);
  514. kfree(per_cpu(ici_cpuid4_info, cpu));
  515. per_cpu(ici_cpuid4_info, cpu) = NULL;
  516. }
  517. static int
  518. __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
  519. {
  520. struct _cpuid4_info_regs *leaf_regs =
  521. (struct _cpuid4_info_regs *)this_leaf;
  522. return cpuid4_cache_lookup_regs(index, leaf_regs);
  523. }
  524. static void __cpuinit get_cpu_leaves(void *_retval)
  525. {
  526. int j, *retval = _retval, cpu = smp_processor_id();
  527. /* Do cpuid and store the results */
  528. for (j = 0; j < num_cache_leaves; j++) {
  529. struct _cpuid4_info *this_leaf;
  530. this_leaf = CPUID4_INFO_IDX(cpu, j);
  531. *retval = cpuid4_cache_lookup(j, this_leaf);
  532. if (unlikely(*retval < 0)) {
  533. int i;
  534. for (i = 0; i < j; i++)
  535. cache_remove_shared_cpu_map(cpu, i);
  536. break;
  537. }
  538. cache_shared_cpu_map_setup(cpu, j);
  539. }
  540. }
  541. static int __cpuinit detect_cache_attributes(unsigned int cpu)
  542. {
  543. int retval;
  544. if (num_cache_leaves == 0)
  545. return -ENOENT;
  546. per_cpu(ici_cpuid4_info, cpu) = kzalloc(
  547. sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
  548. if (per_cpu(ici_cpuid4_info, cpu) == NULL)
  549. return -ENOMEM;
  550. smp_call_function_single(cpu, get_cpu_leaves, &retval, true);
  551. if (retval) {
  552. kfree(per_cpu(ici_cpuid4_info, cpu));
  553. per_cpu(ici_cpuid4_info, cpu) = NULL;
  554. }
  555. return retval;
  556. }
  557. #include <linux/kobject.h>
  558. #include <linux/sysfs.h>
  559. extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
  560. /* pointer to kobject for cpuX/cache */
  561. static DEFINE_PER_CPU(struct kobject *, ici_cache_kobject);
  562. struct _index_kobject {
  563. struct kobject kobj;
  564. unsigned int cpu;
  565. unsigned short index;
  566. };
  567. /* pointer to array of kobjects for cpuX/cache/indexY */
  568. static DEFINE_PER_CPU(struct _index_kobject *, ici_index_kobject);
  569. #define INDEX_KOBJECT_PTR(x, y) (&((per_cpu(ici_index_kobject, x))[y]))
  570. #define show_one_plus(file_name, object, val) \
  571. static ssize_t show_##file_name \
  572. (struct _cpuid4_info *this_leaf, char *buf) \
  573. { \
  574. return sprintf(buf, "%lu\n", (unsigned long)this_leaf->object + val); \
  575. }
  576. show_one_plus(level, eax.split.level, 0);
  577. show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
  578. show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
  579. show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
  580. show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
  581. static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
  582. {
  583. return sprintf(buf, "%luK\n", this_leaf->size / 1024);
  584. }
  585. static ssize_t show_shared_cpu_map_func(struct _cpuid4_info *this_leaf,
  586. int type, char *buf)
  587. {
  588. ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
  589. int n = 0;
  590. if (len > 1) {
  591. const struct cpumask *mask;
  592. mask = to_cpumask(this_leaf->shared_cpu_map);
  593. n = type ?
  594. cpulist_scnprintf(buf, len-2, mask) :
  595. cpumask_scnprintf(buf, len-2, mask);
  596. buf[n++] = '\n';
  597. buf[n] = '\0';
  598. }
  599. return n;
  600. }
  601. static inline ssize_t show_shared_cpu_map(struct _cpuid4_info *leaf, char *buf)
  602. {
  603. return show_shared_cpu_map_func(leaf, 0, buf);
  604. }
  605. static inline ssize_t show_shared_cpu_list(struct _cpuid4_info *leaf, char *buf)
  606. {
  607. return show_shared_cpu_map_func(leaf, 1, buf);
  608. }
  609. static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf)
  610. {
  611. switch (this_leaf->eax.split.type) {
  612. case CACHE_TYPE_DATA:
  613. return sprintf(buf, "Data\n");
  614. case CACHE_TYPE_INST:
  615. return sprintf(buf, "Instruction\n");
  616. case CACHE_TYPE_UNIFIED:
  617. return sprintf(buf, "Unified\n");
  618. default:
  619. return sprintf(buf, "Unknown\n");
  620. }
  621. }
  622. #define to_object(k) container_of(k, struct _index_kobject, kobj)
  623. #define to_attr(a) container_of(a, struct _cache_attr, attr)
  624. static ssize_t show_cache_disable(struct _cpuid4_info *this_leaf, char *buf,
  625. unsigned int index)
  626. {
  627. int cpu = cpumask_first(to_cpumask(this_leaf->shared_cpu_map));
  628. int node = cpu_to_node(cpu);
  629. struct pci_dev *dev = node_to_k8_nb_misc(node);
  630. unsigned int reg = 0;
  631. if (!this_leaf->can_disable)
  632. return -EINVAL;
  633. if (!dev)
  634. return -EINVAL;
  635. pci_read_config_dword(dev, 0x1BC + index * 4, &reg);
  636. return sprintf(buf, "0x%08x\n", reg);
  637. }
  638. #define SHOW_CACHE_DISABLE(index) \
  639. static ssize_t \
  640. show_cache_disable_##index(struct _cpuid4_info *this_leaf, char *buf) \
  641. { \
  642. return show_cache_disable(this_leaf, buf, index); \
  643. }
  644. SHOW_CACHE_DISABLE(0)
  645. SHOW_CACHE_DISABLE(1)
  646. static ssize_t store_cache_disable(struct _cpuid4_info *this_leaf,
  647. const char *buf, size_t count, unsigned int index)
  648. {
  649. int cpu = cpumask_first(to_cpumask(this_leaf->shared_cpu_map));
  650. int node = cpu_to_node(cpu);
  651. struct pci_dev *dev = node_to_k8_nb_misc(node);
  652. unsigned long val = 0;
  653. #define SUBCACHE_MASK (3UL << 20)
  654. #define SUBCACHE_INDEX 0xfff
  655. if (!this_leaf->can_disable)
  656. return -EINVAL;
  657. if (!capable(CAP_SYS_ADMIN))
  658. return -EPERM;
  659. if (!dev)
  660. return -EINVAL;
  661. if (strict_strtoul(buf, 10, &val) < 0)
  662. return -EINVAL;
  663. /* do not allow writes outside of allowed bits */
  664. if (val & ~(SUBCACHE_MASK | SUBCACHE_INDEX))
  665. return -EINVAL;
  666. val |= BIT(30);
  667. pci_write_config_dword(dev, 0x1BC + index * 4, val);
  668. /*
  669. * We need to WBINVD on a core on the node containing the L3 cache which
  670. * indices we disable therefore a simple wbinvd() is not sufficient.
  671. */
  672. wbinvd_on_cpu(cpu);
  673. pci_write_config_dword(dev, 0x1BC + index * 4, val | BIT(31));
  674. return count;
  675. }
  676. #define STORE_CACHE_DISABLE(index) \
  677. static ssize_t \
  678. store_cache_disable_##index(struct _cpuid4_info *this_leaf, \
  679. const char *buf, size_t count) \
  680. { \
  681. return store_cache_disable(this_leaf, buf, count, index); \
  682. }
  683. STORE_CACHE_DISABLE(0)
  684. STORE_CACHE_DISABLE(1)
  685. struct _cache_attr {
  686. struct attribute attr;
  687. ssize_t (*show)(struct _cpuid4_info *, char *);
  688. ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
  689. };
  690. #define define_one_ro(_name) \
  691. static struct _cache_attr _name = \
  692. __ATTR(_name, 0444, show_##_name, NULL)
  693. define_one_ro(level);
  694. define_one_ro(type);
  695. define_one_ro(coherency_line_size);
  696. define_one_ro(physical_line_partition);
  697. define_one_ro(ways_of_associativity);
  698. define_one_ro(number_of_sets);
  699. define_one_ro(size);
  700. define_one_ro(shared_cpu_map);
  701. define_one_ro(shared_cpu_list);
  702. static struct _cache_attr cache_disable_0 = __ATTR(cache_disable_0, 0644,
  703. show_cache_disable_0, store_cache_disable_0);
  704. static struct _cache_attr cache_disable_1 = __ATTR(cache_disable_1, 0644,
  705. show_cache_disable_1, store_cache_disable_1);
  706. static struct attribute *default_attrs[] = {
  707. &type.attr,
  708. &level.attr,
  709. &coherency_line_size.attr,
  710. &physical_line_partition.attr,
  711. &ways_of_associativity.attr,
  712. &number_of_sets.attr,
  713. &size.attr,
  714. &shared_cpu_map.attr,
  715. &shared_cpu_list.attr,
  716. &cache_disable_0.attr,
  717. &cache_disable_1.attr,
  718. NULL
  719. };
  720. static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
  721. {
  722. struct _cache_attr *fattr = to_attr(attr);
  723. struct _index_kobject *this_leaf = to_object(kobj);
  724. ssize_t ret;
  725. ret = fattr->show ?
  726. fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  727. buf) :
  728. 0;
  729. return ret;
  730. }
  731. static ssize_t store(struct kobject *kobj, struct attribute *attr,
  732. const char *buf, size_t count)
  733. {
  734. struct _cache_attr *fattr = to_attr(attr);
  735. struct _index_kobject *this_leaf = to_object(kobj);
  736. ssize_t ret;
  737. ret = fattr->store ?
  738. fattr->store(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  739. buf, count) :
  740. 0;
  741. return ret;
  742. }
  743. static struct sysfs_ops sysfs_ops = {
  744. .show = show,
  745. .store = store,
  746. };
  747. static struct kobj_type ktype_cache = {
  748. .sysfs_ops = &sysfs_ops,
  749. .default_attrs = default_attrs,
  750. };
  751. static struct kobj_type ktype_percpu_entry = {
  752. .sysfs_ops = &sysfs_ops,
  753. };
  754. static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu)
  755. {
  756. kfree(per_cpu(ici_cache_kobject, cpu));
  757. kfree(per_cpu(ici_index_kobject, cpu));
  758. per_cpu(ici_cache_kobject, cpu) = NULL;
  759. per_cpu(ici_index_kobject, cpu) = NULL;
  760. free_cache_attributes(cpu);
  761. }
  762. static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
  763. {
  764. int err;
  765. if (num_cache_leaves == 0)
  766. return -ENOENT;
  767. err = detect_cache_attributes(cpu);
  768. if (err)
  769. return err;
  770. /* Allocate all required memory */
  771. per_cpu(ici_cache_kobject, cpu) =
  772. kzalloc(sizeof(struct kobject), GFP_KERNEL);
  773. if (unlikely(per_cpu(ici_cache_kobject, cpu) == NULL))
  774. goto err_out;
  775. per_cpu(ici_index_kobject, cpu) = kzalloc(
  776. sizeof(struct _index_kobject) * num_cache_leaves, GFP_KERNEL);
  777. if (unlikely(per_cpu(ici_index_kobject, cpu) == NULL))
  778. goto err_out;
  779. return 0;
  780. err_out:
  781. cpuid4_cache_sysfs_exit(cpu);
  782. return -ENOMEM;
  783. }
  784. static DECLARE_BITMAP(cache_dev_map, NR_CPUS);
  785. /* Add/Remove cache interface for CPU device */
  786. static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
  787. {
  788. unsigned int cpu = sys_dev->id;
  789. unsigned long i, j;
  790. struct _index_kobject *this_object;
  791. int retval;
  792. retval = cpuid4_cache_sysfs_init(cpu);
  793. if (unlikely(retval < 0))
  794. return retval;
  795. retval = kobject_init_and_add(per_cpu(ici_cache_kobject, cpu),
  796. &ktype_percpu_entry,
  797. &sys_dev->kobj, "%s", "cache");
  798. if (retval < 0) {
  799. cpuid4_cache_sysfs_exit(cpu);
  800. return retval;
  801. }
  802. for (i = 0; i < num_cache_leaves; i++) {
  803. this_object = INDEX_KOBJECT_PTR(cpu, i);
  804. this_object->cpu = cpu;
  805. this_object->index = i;
  806. retval = kobject_init_and_add(&(this_object->kobj),
  807. &ktype_cache,
  808. per_cpu(ici_cache_kobject, cpu),
  809. "index%1lu", i);
  810. if (unlikely(retval)) {
  811. for (j = 0; j < i; j++)
  812. kobject_put(&(INDEX_KOBJECT_PTR(cpu, j)->kobj));
  813. kobject_put(per_cpu(ici_cache_kobject, cpu));
  814. cpuid4_cache_sysfs_exit(cpu);
  815. return retval;
  816. }
  817. kobject_uevent(&(this_object->kobj), KOBJ_ADD);
  818. }
  819. cpumask_set_cpu(cpu, to_cpumask(cache_dev_map));
  820. kobject_uevent(per_cpu(ici_cache_kobject, cpu), KOBJ_ADD);
  821. return 0;
  822. }
  823. static void __cpuinit cache_remove_dev(struct sys_device * sys_dev)
  824. {
  825. unsigned int cpu = sys_dev->id;
  826. unsigned long i;
  827. if (per_cpu(ici_cpuid4_info, cpu) == NULL)
  828. return;
  829. if (!cpumask_test_cpu(cpu, to_cpumask(cache_dev_map)))
  830. return;
  831. cpumask_clear_cpu(cpu, to_cpumask(cache_dev_map));
  832. for (i = 0; i < num_cache_leaves; i++)
  833. kobject_put(&(INDEX_KOBJECT_PTR(cpu, i)->kobj));
  834. kobject_put(per_cpu(ici_cache_kobject, cpu));
  835. cpuid4_cache_sysfs_exit(cpu);
  836. }
  837. static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
  838. unsigned long action, void *hcpu)
  839. {
  840. unsigned int cpu = (unsigned long)hcpu;
  841. struct sys_device *sys_dev;
  842. sys_dev = get_cpu_sysdev(cpu);
  843. switch (action) {
  844. case CPU_ONLINE:
  845. case CPU_ONLINE_FROZEN:
  846. cache_add_dev(sys_dev);
  847. break;
  848. case CPU_DEAD:
  849. case CPU_DEAD_FROZEN:
  850. cache_remove_dev(sys_dev);
  851. break;
  852. }
  853. return NOTIFY_OK;
  854. }
  855. static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier = {
  856. .notifier_call = cacheinfo_cpu_callback,
  857. };
  858. static int __cpuinit cache_sysfs_init(void)
  859. {
  860. int i;
  861. if (num_cache_leaves == 0)
  862. return 0;
  863. for_each_online_cpu(i) {
  864. int err;
  865. struct sys_device *sys_dev = get_cpu_sysdev(i);
  866. err = cache_add_dev(sys_dev);
  867. if (err)
  868. return err;
  869. }
  870. register_hotcpu_notifier(&cacheinfo_cpu_notifier);
  871. return 0;
  872. }
  873. device_initcall(cache_sysfs_init);
  874. #endif