setup.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232
  1. /*
  2. * linux/arch/x86-64/kernel/setup.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Nov 2001 Dave Jones <davej@suse.de>
  7. * Forked from i386 setup code.
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of initialization
  11. */
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/ptrace.h>
  19. #include <linux/slab.h>
  20. #include <linux/user.h>
  21. #include <linux/a.out.h>
  22. #include <linux/screen_info.h>
  23. #include <linux/ioport.h>
  24. #include <linux/delay.h>
  25. #include <linux/init.h>
  26. #include <linux/initrd.h>
  27. #include <linux/highmem.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/module.h>
  30. #include <asm/processor.h>
  31. #include <linux/console.h>
  32. #include <linux/seq_file.h>
  33. #include <linux/crash_dump.h>
  34. #include <linux/root_dev.h>
  35. #include <linux/pci.h>
  36. #include <linux/acpi.h>
  37. #include <linux/kallsyms.h>
  38. #include <linux/edd.h>
  39. #include <linux/mmzone.h>
  40. #include <linux/kexec.h>
  41. #include <linux/cpufreq.h>
  42. #include <linux/dmi.h>
  43. #include <linux/dma-mapping.h>
  44. #include <linux/ctype.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/system.h>
  48. #include <asm/io.h>
  49. #include <asm/smp.h>
  50. #include <asm/msr.h>
  51. #include <asm/desc.h>
  52. #include <video/edid.h>
  53. #include <asm/e820.h>
  54. #include <asm/dma.h>
  55. #include <asm/mpspec.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/bootsetup.h>
  58. #include <asm/proto.h>
  59. #include <asm/setup.h>
  60. #include <asm/mach_apic.h>
  61. #include <asm/numa.h>
  62. #include <asm/sections.h>
  63. #include <asm/dmi.h>
  64. /*
  65. * Machine setup..
  66. */
  67. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  68. EXPORT_SYMBOL(boot_cpu_data);
  69. unsigned long mmu_cr4_features;
  70. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  71. int bootloader_type;
  72. unsigned long saved_video_mode;
  73. /*
  74. * Early DMI memory
  75. */
  76. int dmi_alloc_index;
  77. char dmi_alloc_data[DMI_MAX_DATA];
  78. /*
  79. * Setup options
  80. */
  81. struct screen_info screen_info;
  82. EXPORT_SYMBOL(screen_info);
  83. struct sys_desc_table_struct {
  84. unsigned short length;
  85. unsigned char table[0];
  86. };
  87. struct edid_info edid_info;
  88. EXPORT_SYMBOL_GPL(edid_info);
  89. extern int root_mountflags;
  90. char command_line[COMMAND_LINE_SIZE];
  91. struct resource standard_io_resources[] = {
  92. { .name = "dma1", .start = 0x00, .end = 0x1f,
  93. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  94. { .name = "pic1", .start = 0x20, .end = 0x21,
  95. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  96. { .name = "timer0", .start = 0x40, .end = 0x43,
  97. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  98. { .name = "timer1", .start = 0x50, .end = 0x53,
  99. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  100. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  101. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  102. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  103. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  104. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  105. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  106. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  107. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  108. { .name = "fpu", .start = 0xf0, .end = 0xff,
  109. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  110. };
  111. #define STANDARD_IO_RESOURCES \
  112. (sizeof standard_io_resources / sizeof standard_io_resources[0])
  113. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  114. struct resource data_resource = {
  115. .name = "Kernel data",
  116. .start = 0,
  117. .end = 0,
  118. .flags = IORESOURCE_RAM,
  119. };
  120. struct resource code_resource = {
  121. .name = "Kernel code",
  122. .start = 0,
  123. .end = 0,
  124. .flags = IORESOURCE_RAM,
  125. };
  126. #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
  127. static struct resource system_rom_resource = {
  128. .name = "System ROM",
  129. .start = 0xf0000,
  130. .end = 0xfffff,
  131. .flags = IORESOURCE_ROM,
  132. };
  133. static struct resource extension_rom_resource = {
  134. .name = "Extension ROM",
  135. .start = 0xe0000,
  136. .end = 0xeffff,
  137. .flags = IORESOURCE_ROM,
  138. };
  139. static struct resource adapter_rom_resources[] = {
  140. { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
  141. .flags = IORESOURCE_ROM },
  142. { .name = "Adapter ROM", .start = 0, .end = 0,
  143. .flags = IORESOURCE_ROM },
  144. { .name = "Adapter ROM", .start = 0, .end = 0,
  145. .flags = IORESOURCE_ROM },
  146. { .name = "Adapter ROM", .start = 0, .end = 0,
  147. .flags = IORESOURCE_ROM },
  148. { .name = "Adapter ROM", .start = 0, .end = 0,
  149. .flags = IORESOURCE_ROM },
  150. { .name = "Adapter ROM", .start = 0, .end = 0,
  151. .flags = IORESOURCE_ROM }
  152. };
  153. #define ADAPTER_ROM_RESOURCES \
  154. (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
  155. static struct resource video_rom_resource = {
  156. .name = "Video ROM",
  157. .start = 0xc0000,
  158. .end = 0xc7fff,
  159. .flags = IORESOURCE_ROM,
  160. };
  161. static struct resource video_ram_resource = {
  162. .name = "Video RAM area",
  163. .start = 0xa0000,
  164. .end = 0xbffff,
  165. .flags = IORESOURCE_RAM,
  166. };
  167. #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
  168. static int __init romchecksum(unsigned char *rom, unsigned long length)
  169. {
  170. unsigned char *p, sum = 0;
  171. for (p = rom; p < rom + length; p++)
  172. sum += *p;
  173. return sum == 0;
  174. }
  175. static void __init probe_roms(void)
  176. {
  177. unsigned long start, length, upper;
  178. unsigned char *rom;
  179. int i;
  180. /* video rom */
  181. upper = adapter_rom_resources[0].start;
  182. for (start = video_rom_resource.start; start < upper; start += 2048) {
  183. rom = isa_bus_to_virt(start);
  184. if (!romsignature(rom))
  185. continue;
  186. video_rom_resource.start = start;
  187. /* 0 < length <= 0x7f * 512, historically */
  188. length = rom[2] * 512;
  189. /* if checksum okay, trust length byte */
  190. if (length && romchecksum(rom, length))
  191. video_rom_resource.end = start + length - 1;
  192. request_resource(&iomem_resource, &video_rom_resource);
  193. break;
  194. }
  195. start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
  196. if (start < upper)
  197. start = upper;
  198. /* system rom */
  199. request_resource(&iomem_resource, &system_rom_resource);
  200. upper = system_rom_resource.start;
  201. /* check for extension rom (ignore length byte!) */
  202. rom = isa_bus_to_virt(extension_rom_resource.start);
  203. if (romsignature(rom)) {
  204. length = extension_rom_resource.end - extension_rom_resource.start + 1;
  205. if (romchecksum(rom, length)) {
  206. request_resource(&iomem_resource, &extension_rom_resource);
  207. upper = extension_rom_resource.start;
  208. }
  209. }
  210. /* check for adapter roms on 2k boundaries */
  211. for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
  212. rom = isa_bus_to_virt(start);
  213. if (!romsignature(rom))
  214. continue;
  215. /* 0 < length <= 0x7f * 512, historically */
  216. length = rom[2] * 512;
  217. /* but accept any length that fits if checksum okay */
  218. if (!length || start + length > upper || !romchecksum(rom, length))
  219. continue;
  220. adapter_rom_resources[i].start = start;
  221. adapter_rom_resources[i].end = start + length - 1;
  222. request_resource(&iomem_resource, &adapter_rom_resources[i]);
  223. start = adapter_rom_resources[i++].end & ~2047UL;
  224. }
  225. }
  226. #ifdef CONFIG_PROC_VMCORE
  227. /* elfcorehdr= specifies the location of elf core header
  228. * stored by the crashed kernel. This option will be passed
  229. * by kexec loader to the capture kernel.
  230. */
  231. static int __init setup_elfcorehdr(char *arg)
  232. {
  233. char *end;
  234. if (!arg)
  235. return -EINVAL;
  236. elfcorehdr_addr = memparse(arg, &end);
  237. return end > arg ? 0 : -EINVAL;
  238. }
  239. early_param("elfcorehdr", setup_elfcorehdr);
  240. #endif
  241. #ifndef CONFIG_NUMA
  242. static void __init
  243. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  244. {
  245. unsigned long bootmap_size, bootmap;
  246. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  247. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  248. if (bootmap == -1L)
  249. panic("Cannot find bootmem map of size %ld\n",bootmap_size);
  250. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  251. e820_bootmem_free(NODE_DATA(0), 0, end_pfn << PAGE_SHIFT);
  252. reserve_bootmem(bootmap, bootmap_size);
  253. }
  254. #endif
  255. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  256. struct edd edd;
  257. #ifdef CONFIG_EDD_MODULE
  258. EXPORT_SYMBOL(edd);
  259. #endif
  260. /**
  261. * copy_edd() - Copy the BIOS EDD information
  262. * from boot_params into a safe place.
  263. *
  264. */
  265. static inline void copy_edd(void)
  266. {
  267. memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
  268. memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
  269. edd.mbr_signature_nr = EDD_MBR_SIG_NR;
  270. edd.edd_info_nr = EDD_NR;
  271. }
  272. #else
  273. static inline void copy_edd(void)
  274. {
  275. }
  276. #endif
  277. #define EBDA_ADDR_POINTER 0x40E
  278. unsigned __initdata ebda_addr;
  279. unsigned __initdata ebda_size;
  280. static void discover_ebda(void)
  281. {
  282. /*
  283. * there is a real-mode segmented pointer pointing to the
  284. * 4K EBDA area at 0x40E
  285. */
  286. ebda_addr = *(unsigned short *)EBDA_ADDR_POINTER;
  287. ebda_addr <<= 4;
  288. ebda_size = *(unsigned short *)(unsigned long)ebda_addr;
  289. /* Round EBDA up to pages */
  290. if (ebda_size == 0)
  291. ebda_size = 1;
  292. ebda_size <<= 10;
  293. ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
  294. if (ebda_size > 64*1024)
  295. ebda_size = 64*1024;
  296. }
  297. void __init setup_arch(char **cmdline_p)
  298. {
  299. printk(KERN_INFO "Command line: %s\n", saved_command_line);
  300. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  301. screen_info = SCREEN_INFO;
  302. edid_info = EDID_INFO;
  303. saved_video_mode = SAVED_VIDEO_MODE;
  304. bootloader_type = LOADER_TYPE;
  305. #ifdef CONFIG_BLK_DEV_RAM
  306. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  307. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  308. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  309. #endif
  310. setup_memory_region();
  311. copy_edd();
  312. if (!MOUNT_ROOT_RDONLY)
  313. root_mountflags &= ~MS_RDONLY;
  314. init_mm.start_code = (unsigned long) &_text;
  315. init_mm.end_code = (unsigned long) &_etext;
  316. init_mm.end_data = (unsigned long) &_edata;
  317. init_mm.brk = (unsigned long) &_end;
  318. code_resource.start = virt_to_phys(&_text);
  319. code_resource.end = virt_to_phys(&_etext)-1;
  320. data_resource.start = virt_to_phys(&_etext);
  321. data_resource.end = virt_to_phys(&_edata)-1;
  322. early_identify_cpu(&boot_cpu_data);
  323. strlcpy(command_line, saved_command_line, COMMAND_LINE_SIZE);
  324. *cmdline_p = command_line;
  325. parse_early_param();
  326. finish_e820_parsing();
  327. /*
  328. * partially used pages are not usable - thus
  329. * we are rounding upwards:
  330. */
  331. end_pfn = e820_end_of_ram();
  332. num_physpages = end_pfn;
  333. check_efer();
  334. discover_ebda();
  335. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  336. dmi_scan_machine();
  337. zap_low_mappings(0);
  338. #ifdef CONFIG_ACPI
  339. /*
  340. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  341. * Call this early for SRAT node setup.
  342. */
  343. acpi_boot_table_init();
  344. #endif
  345. /* How many end-of-memory variables you have, grandma! */
  346. max_low_pfn = end_pfn;
  347. max_pfn = end_pfn;
  348. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  349. #ifdef CONFIG_ACPI_NUMA
  350. /*
  351. * Parse SRAT to discover nodes.
  352. */
  353. acpi_numa_init();
  354. #endif
  355. #ifdef CONFIG_NUMA
  356. numa_initmem_init(0, end_pfn);
  357. #else
  358. contig_initmem_init(0, end_pfn);
  359. #endif
  360. /* Reserve direct mapping */
  361. reserve_bootmem_generic(table_start << PAGE_SHIFT,
  362. (table_end - table_start) << PAGE_SHIFT);
  363. /* reserve kernel */
  364. reserve_bootmem_generic(__pa_symbol(&_text),
  365. __pa_symbol(&_end) - __pa_symbol(&_text));
  366. /*
  367. * reserve physical page 0 - it's a special BIOS page on many boxes,
  368. * enabling clean reboots, SMP operation, laptop functions.
  369. */
  370. reserve_bootmem_generic(0, PAGE_SIZE);
  371. /* reserve ebda region */
  372. if (ebda_addr)
  373. reserve_bootmem_generic(ebda_addr, ebda_size);
  374. #ifdef CONFIG_SMP
  375. /*
  376. * But first pinch a few for the stack/trampoline stuff
  377. * FIXME: Don't need the extra page at 4K, but need to fix
  378. * trampoline before removing it. (see the GDT stuff)
  379. */
  380. reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
  381. /* Reserve SMP trampoline */
  382. reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
  383. #endif
  384. #ifdef CONFIG_ACPI_SLEEP
  385. /*
  386. * Reserve low memory region for sleep support.
  387. */
  388. acpi_reserve_bootmem();
  389. #endif
  390. /*
  391. * Find and reserve possible boot-time SMP configuration:
  392. */
  393. find_smp_config();
  394. #ifdef CONFIG_BLK_DEV_INITRD
  395. if (LOADER_TYPE && INITRD_START) {
  396. if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
  397. reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
  398. initrd_start =
  399. INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
  400. initrd_end = initrd_start+INITRD_SIZE;
  401. }
  402. else {
  403. printk(KERN_ERR "initrd extends beyond end of memory "
  404. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  405. (unsigned long)(INITRD_START + INITRD_SIZE),
  406. (unsigned long)(end_pfn << PAGE_SHIFT));
  407. initrd_start = 0;
  408. }
  409. }
  410. #endif
  411. #ifdef CONFIG_KEXEC
  412. if (crashk_res.start != crashk_res.end) {
  413. reserve_bootmem_generic(crashk_res.start,
  414. crashk_res.end - crashk_res.start + 1);
  415. }
  416. #endif
  417. paging_init();
  418. #ifdef CONFIG_PCI
  419. early_quirks();
  420. #endif
  421. /*
  422. * set this early, so we dont allocate cpu0
  423. * if MADT list doesnt list BSP first
  424. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  425. */
  426. cpu_set(0, cpu_present_map);
  427. #ifdef CONFIG_ACPI
  428. /*
  429. * Read APIC and some other early information from ACPI tables.
  430. */
  431. acpi_boot_init();
  432. #endif
  433. init_cpu_to_node();
  434. /*
  435. * get boot-time SMP configuration:
  436. */
  437. if (smp_found_config)
  438. get_smp_config();
  439. init_apic_mappings();
  440. /*
  441. * Request address space for all standard RAM and ROM resources
  442. * and also for regions reported as reserved by the e820.
  443. */
  444. probe_roms();
  445. e820_reserve_resources();
  446. request_resource(&iomem_resource, &video_ram_resource);
  447. {
  448. unsigned i;
  449. /* request I/O space for devices used on all i[345]86 PCs */
  450. for (i = 0; i < STANDARD_IO_RESOURCES; i++)
  451. request_resource(&ioport_resource, &standard_io_resources[i]);
  452. }
  453. e820_setup_gap();
  454. #ifdef CONFIG_VT
  455. #if defined(CONFIG_VGA_CONSOLE)
  456. conswitchp = &vga_con;
  457. #elif defined(CONFIG_DUMMY_CONSOLE)
  458. conswitchp = &dummy_con;
  459. #endif
  460. #endif
  461. }
  462. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  463. {
  464. unsigned int *v;
  465. if (c->extended_cpuid_level < 0x80000004)
  466. return 0;
  467. v = (unsigned int *) c->x86_model_id;
  468. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  469. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  470. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  471. c->x86_model_id[48] = 0;
  472. return 1;
  473. }
  474. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  475. {
  476. unsigned int n, dummy, eax, ebx, ecx, edx;
  477. n = c->extended_cpuid_level;
  478. if (n >= 0x80000005) {
  479. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  480. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  481. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  482. c->x86_cache_size=(ecx>>24)+(edx>>24);
  483. /* On K8 L1 TLB is inclusive, so don't count it */
  484. c->x86_tlbsize = 0;
  485. }
  486. if (n >= 0x80000006) {
  487. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  488. ecx = cpuid_ecx(0x80000006);
  489. c->x86_cache_size = ecx >> 16;
  490. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  491. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  492. c->x86_cache_size, ecx & 0xFF);
  493. }
  494. if (n >= 0x80000007)
  495. cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
  496. if (n >= 0x80000008) {
  497. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  498. c->x86_virt_bits = (eax >> 8) & 0xff;
  499. c->x86_phys_bits = eax & 0xff;
  500. }
  501. }
  502. #ifdef CONFIG_NUMA
  503. static int nearby_node(int apicid)
  504. {
  505. int i;
  506. for (i = apicid - 1; i >= 0; i--) {
  507. int node = apicid_to_node[i];
  508. if (node != NUMA_NO_NODE && node_online(node))
  509. return node;
  510. }
  511. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  512. int node = apicid_to_node[i];
  513. if (node != NUMA_NO_NODE && node_online(node))
  514. return node;
  515. }
  516. return first_node(node_online_map); /* Shouldn't happen */
  517. }
  518. #endif
  519. /*
  520. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  521. * Assumes number of cores is a power of two.
  522. */
  523. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  524. {
  525. #ifdef CONFIG_SMP
  526. unsigned bits;
  527. #ifdef CONFIG_NUMA
  528. int cpu = smp_processor_id();
  529. int node = 0;
  530. unsigned apicid = hard_smp_processor_id();
  531. #endif
  532. unsigned ecx = cpuid_ecx(0x80000008);
  533. c->x86_max_cores = (ecx & 0xff) + 1;
  534. /* CPU telling us the core id bits shift? */
  535. bits = (ecx >> 12) & 0xF;
  536. /* Otherwise recompute */
  537. if (bits == 0) {
  538. while ((1 << bits) < c->x86_max_cores)
  539. bits++;
  540. }
  541. /* Low order bits define the core id (index of core in socket) */
  542. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  543. /* Convert the APIC ID into the socket ID */
  544. c->phys_proc_id = phys_pkg_id(bits);
  545. #ifdef CONFIG_NUMA
  546. node = c->phys_proc_id;
  547. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  548. node = apicid_to_node[apicid];
  549. if (!node_online(node)) {
  550. /* Two possibilities here:
  551. - The CPU is missing memory and no node was created.
  552. In that case try picking one from a nearby CPU
  553. - The APIC IDs differ from the HyperTransport node IDs
  554. which the K8 northbridge parsing fills in.
  555. Assume they are all increased by a constant offset,
  556. but in the same order as the HT nodeids.
  557. If that doesn't result in a usable node fall back to the
  558. path for the previous case. */
  559. int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
  560. if (ht_nodeid >= 0 &&
  561. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  562. node = apicid_to_node[ht_nodeid];
  563. /* Pick a nearby node */
  564. if (!node_online(node))
  565. node = nearby_node(apicid);
  566. }
  567. numa_set_node(cpu, node);
  568. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  569. #endif
  570. #endif
  571. }
  572. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  573. {
  574. unsigned level;
  575. #ifdef CONFIG_SMP
  576. unsigned long value;
  577. /*
  578. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  579. * bit 6 of msr C001_0015
  580. *
  581. * Errata 63 for SH-B3 steppings
  582. * Errata 122 for all steppings (F+ have it disabled by default)
  583. */
  584. if (c->x86 == 15) {
  585. rdmsrl(MSR_K8_HWCR, value);
  586. value |= 1 << 6;
  587. wrmsrl(MSR_K8_HWCR, value);
  588. }
  589. #endif
  590. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  591. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  592. clear_bit(0*32+31, &c->x86_capability);
  593. /* On C+ stepping K8 rep microcode works well for copy/memset */
  594. level = cpuid_eax(1);
  595. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
  596. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  597. /* Enable workaround for FXSAVE leak */
  598. if (c->x86 >= 6)
  599. set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
  600. level = get_model_name(c);
  601. if (!level) {
  602. switch (c->x86) {
  603. case 15:
  604. /* Should distinguish Models here, but this is only
  605. a fallback anyways. */
  606. strcpy(c->x86_model_id, "Hammer");
  607. break;
  608. }
  609. }
  610. display_cacheinfo(c);
  611. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  612. if (c->x86_power & (1<<8))
  613. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  614. /* Multi core CPU? */
  615. if (c->extended_cpuid_level >= 0x80000008)
  616. amd_detect_cmp(c);
  617. /* Fix cpuid4 emulation for more */
  618. num_cache_leaves = 3;
  619. /* When there is only one core no need to synchronize RDTSC */
  620. if (num_possible_cpus() == 1)
  621. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  622. else
  623. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  624. }
  625. static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  626. {
  627. #ifdef CONFIG_SMP
  628. u32 eax, ebx, ecx, edx;
  629. int index_msb, core_bits;
  630. cpuid(1, &eax, &ebx, &ecx, &edx);
  631. if (!cpu_has(c, X86_FEATURE_HT))
  632. return;
  633. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  634. goto out;
  635. smp_num_siblings = (ebx & 0xff0000) >> 16;
  636. if (smp_num_siblings == 1) {
  637. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  638. } else if (smp_num_siblings > 1 ) {
  639. if (smp_num_siblings > NR_CPUS) {
  640. printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
  641. smp_num_siblings = 1;
  642. return;
  643. }
  644. index_msb = get_count_order(smp_num_siblings);
  645. c->phys_proc_id = phys_pkg_id(index_msb);
  646. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  647. index_msb = get_count_order(smp_num_siblings) ;
  648. core_bits = get_count_order(c->x86_max_cores);
  649. c->cpu_core_id = phys_pkg_id(index_msb) &
  650. ((1 << core_bits) - 1);
  651. }
  652. out:
  653. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  654. printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
  655. printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
  656. }
  657. #endif
  658. }
  659. /*
  660. * find out the number of processor cores on the die
  661. */
  662. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  663. {
  664. unsigned int eax, t;
  665. if (c->cpuid_level < 4)
  666. return 1;
  667. cpuid_count(4, 0, &eax, &t, &t, &t);
  668. if (eax & 0x1f)
  669. return ((eax >> 26) + 1);
  670. else
  671. return 1;
  672. }
  673. static void srat_detect_node(void)
  674. {
  675. #ifdef CONFIG_NUMA
  676. unsigned node;
  677. int cpu = smp_processor_id();
  678. int apicid = hard_smp_processor_id();
  679. /* Don't do the funky fallback heuristics the AMD version employs
  680. for now. */
  681. node = apicid_to_node[apicid];
  682. if (node == NUMA_NO_NODE)
  683. node = first_node(node_online_map);
  684. numa_set_node(cpu, node);
  685. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  686. #endif
  687. }
  688. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  689. {
  690. /* Cache sizes */
  691. unsigned n;
  692. init_intel_cacheinfo(c);
  693. if (c->cpuid_level > 9 ) {
  694. unsigned eax = cpuid_eax(10);
  695. /* Check for version and the number of counters */
  696. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  697. set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
  698. }
  699. n = c->extended_cpuid_level;
  700. if (n >= 0x80000008) {
  701. unsigned eax = cpuid_eax(0x80000008);
  702. c->x86_virt_bits = (eax >> 8) & 0xff;
  703. c->x86_phys_bits = eax & 0xff;
  704. /* CPUID workaround for Intel 0F34 CPU */
  705. if (c->x86_vendor == X86_VENDOR_INTEL &&
  706. c->x86 == 0xF && c->x86_model == 0x3 &&
  707. c->x86_mask == 0x4)
  708. c->x86_phys_bits = 36;
  709. }
  710. if (c->x86 == 15)
  711. c->x86_cache_alignment = c->x86_clflush_size * 2;
  712. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  713. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  714. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  715. if (c->x86 == 6)
  716. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  717. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  718. c->x86_max_cores = intel_num_cpu_cores(c);
  719. srat_detect_node();
  720. }
  721. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  722. {
  723. char *v = c->x86_vendor_id;
  724. if (!strcmp(v, "AuthenticAMD"))
  725. c->x86_vendor = X86_VENDOR_AMD;
  726. else if (!strcmp(v, "GenuineIntel"))
  727. c->x86_vendor = X86_VENDOR_INTEL;
  728. else
  729. c->x86_vendor = X86_VENDOR_UNKNOWN;
  730. }
  731. struct cpu_model_info {
  732. int vendor;
  733. int family;
  734. char *model_names[16];
  735. };
  736. /* Do some early cpuid on the boot CPU to get some parameter that are
  737. needed before check_bugs. Everything advanced is in identify_cpu
  738. below. */
  739. void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  740. {
  741. u32 tfms;
  742. c->loops_per_jiffy = loops_per_jiffy;
  743. c->x86_cache_size = -1;
  744. c->x86_vendor = X86_VENDOR_UNKNOWN;
  745. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  746. c->x86_vendor_id[0] = '\0'; /* Unset */
  747. c->x86_model_id[0] = '\0'; /* Unset */
  748. c->x86_clflush_size = 64;
  749. c->x86_cache_alignment = c->x86_clflush_size;
  750. c->x86_max_cores = 1;
  751. c->extended_cpuid_level = 0;
  752. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  753. /* Get vendor name */
  754. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  755. (unsigned int *)&c->x86_vendor_id[0],
  756. (unsigned int *)&c->x86_vendor_id[8],
  757. (unsigned int *)&c->x86_vendor_id[4]);
  758. get_cpu_vendor(c);
  759. /* Initialize the standard set of capabilities */
  760. /* Note that the vendor-specific code below might override */
  761. /* Intel-defined flags: level 0x00000001 */
  762. if (c->cpuid_level >= 0x00000001) {
  763. __u32 misc;
  764. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  765. &c->x86_capability[0]);
  766. c->x86 = (tfms >> 8) & 0xf;
  767. c->x86_model = (tfms >> 4) & 0xf;
  768. c->x86_mask = tfms & 0xf;
  769. if (c->x86 == 0xf)
  770. c->x86 += (tfms >> 20) & 0xff;
  771. if (c->x86 >= 0x6)
  772. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  773. if (c->x86_capability[0] & (1<<19))
  774. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  775. } else {
  776. /* Have CPUID level 0 only - unheard of */
  777. c->x86 = 4;
  778. }
  779. #ifdef CONFIG_SMP
  780. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  781. #endif
  782. }
  783. /*
  784. * This does the hard work of actually picking apart the CPU stuff...
  785. */
  786. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  787. {
  788. int i;
  789. u32 xlvl;
  790. early_identify_cpu(c);
  791. /* AMD-defined flags: level 0x80000001 */
  792. xlvl = cpuid_eax(0x80000000);
  793. c->extended_cpuid_level = xlvl;
  794. if ((xlvl & 0xffff0000) == 0x80000000) {
  795. if (xlvl >= 0x80000001) {
  796. c->x86_capability[1] = cpuid_edx(0x80000001);
  797. c->x86_capability[6] = cpuid_ecx(0x80000001);
  798. }
  799. if (xlvl >= 0x80000004)
  800. get_model_name(c); /* Default name */
  801. }
  802. /* Transmeta-defined flags: level 0x80860001 */
  803. xlvl = cpuid_eax(0x80860000);
  804. if ((xlvl & 0xffff0000) == 0x80860000) {
  805. /* Don't set x86_cpuid_level here for now to not confuse. */
  806. if (xlvl >= 0x80860001)
  807. c->x86_capability[2] = cpuid_edx(0x80860001);
  808. }
  809. c->apicid = phys_pkg_id(0);
  810. /*
  811. * Vendor-specific initialization. In this section we
  812. * canonicalize the feature flags, meaning if there are
  813. * features a certain CPU supports which CPUID doesn't
  814. * tell us, CPUID claiming incorrect flags, or other bugs,
  815. * we handle them here.
  816. *
  817. * At the end of this section, c->x86_capability better
  818. * indicate the features this CPU genuinely supports!
  819. */
  820. switch (c->x86_vendor) {
  821. case X86_VENDOR_AMD:
  822. init_amd(c);
  823. break;
  824. case X86_VENDOR_INTEL:
  825. init_intel(c);
  826. break;
  827. case X86_VENDOR_UNKNOWN:
  828. default:
  829. display_cacheinfo(c);
  830. break;
  831. }
  832. select_idle_routine(c);
  833. detect_ht(c);
  834. /*
  835. * On SMP, boot_cpu_data holds the common feature set between
  836. * all CPUs; so make sure that we indicate which features are
  837. * common between the CPUs. The first time this routine gets
  838. * executed, c == &boot_cpu_data.
  839. */
  840. if (c != &boot_cpu_data) {
  841. /* AND the already accumulated flags with these */
  842. for (i = 0 ; i < NCAPINTS ; i++)
  843. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  844. }
  845. #ifdef CONFIG_X86_MCE
  846. mcheck_init(c);
  847. #endif
  848. if (c == &boot_cpu_data)
  849. mtrr_bp_init();
  850. else
  851. mtrr_ap_init();
  852. #ifdef CONFIG_NUMA
  853. numa_add_cpu(smp_processor_id());
  854. #endif
  855. }
  856. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  857. {
  858. if (c->x86_model_id[0])
  859. printk("%s", c->x86_model_id);
  860. if (c->x86_mask || c->cpuid_level >= 0)
  861. printk(" stepping %02x\n", c->x86_mask);
  862. else
  863. printk("\n");
  864. }
  865. /*
  866. * Get CPU information for use by the procfs.
  867. */
  868. static int show_cpuinfo(struct seq_file *m, void *v)
  869. {
  870. struct cpuinfo_x86 *c = v;
  871. /*
  872. * These flag bits must match the definitions in <asm/cpufeature.h>.
  873. * NULL means this bit is undefined or reserved; either way it doesn't
  874. * have meaning as far as Linux is concerned. Note that it's important
  875. * to realize there is a difference between this table and CPUID -- if
  876. * applications want to get the raw CPUID data, they should access
  877. * /dev/cpu/<cpu_nr>/cpuid instead.
  878. */
  879. static char *x86_cap_flags[] = {
  880. /* Intel-defined */
  881. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  882. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  883. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  884. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
  885. /* AMD-defined */
  886. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  887. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  888. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  889. NULL, "fxsr_opt", NULL, "rdtscp", NULL, "lm", "3dnowext", "3dnow",
  890. /* Transmeta-defined */
  891. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  892. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  893. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  894. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  895. /* Other (Linux-defined) */
  896. "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
  897. "constant_tsc", NULL, NULL,
  898. "up", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  899. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  900. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  901. /* Intel-defined (#2) */
  902. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  903. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  904. NULL, NULL, "dca", NULL, NULL, NULL, NULL, NULL,
  905. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  906. /* VIA/Cyrix/Centaur-defined */
  907. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  908. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  909. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  910. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  911. /* AMD-defined (#2) */
  912. "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
  913. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  914. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  915. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  916. };
  917. static char *x86_power_flags[] = {
  918. "ts", /* temperature sensor */
  919. "fid", /* frequency id control */
  920. "vid", /* voltage id control */
  921. "ttp", /* thermal trip */
  922. "tm",
  923. "stc",
  924. NULL,
  925. /* nothing */ /* constant_tsc - moved to flags */
  926. };
  927. #ifdef CONFIG_SMP
  928. if (!cpu_online(c-cpu_data))
  929. return 0;
  930. #endif
  931. seq_printf(m,"processor\t: %u\n"
  932. "vendor_id\t: %s\n"
  933. "cpu family\t: %d\n"
  934. "model\t\t: %d\n"
  935. "model name\t: %s\n",
  936. (unsigned)(c-cpu_data),
  937. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  938. c->x86,
  939. (int)c->x86_model,
  940. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  941. if (c->x86_mask || c->cpuid_level >= 0)
  942. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  943. else
  944. seq_printf(m, "stepping\t: unknown\n");
  945. if (cpu_has(c,X86_FEATURE_TSC)) {
  946. unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
  947. if (!freq)
  948. freq = cpu_khz;
  949. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  950. freq / 1000, (freq % 1000));
  951. }
  952. /* Cache size */
  953. if (c->x86_cache_size >= 0)
  954. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  955. #ifdef CONFIG_SMP
  956. if (smp_num_siblings * c->x86_max_cores > 1) {
  957. int cpu = c - cpu_data;
  958. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  959. seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
  960. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  961. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  962. }
  963. #endif
  964. seq_printf(m,
  965. "fpu\t\t: yes\n"
  966. "fpu_exception\t: yes\n"
  967. "cpuid level\t: %d\n"
  968. "wp\t\t: yes\n"
  969. "flags\t\t:",
  970. c->cpuid_level);
  971. {
  972. int i;
  973. for ( i = 0 ; i < 32*NCAPINTS ; i++ )
  974. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  975. seq_printf(m, " %s", x86_cap_flags[i]);
  976. }
  977. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  978. c->loops_per_jiffy/(500000/HZ),
  979. (c->loops_per_jiffy/(5000/HZ)) % 100);
  980. if (c->x86_tlbsize > 0)
  981. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  982. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  983. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  984. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  985. c->x86_phys_bits, c->x86_virt_bits);
  986. seq_printf(m, "power management:");
  987. {
  988. unsigned i;
  989. for (i = 0; i < 32; i++)
  990. if (c->x86_power & (1 << i)) {
  991. if (i < ARRAY_SIZE(x86_power_flags) &&
  992. x86_power_flags[i])
  993. seq_printf(m, "%s%s",
  994. x86_power_flags[i][0]?" ":"",
  995. x86_power_flags[i]);
  996. else
  997. seq_printf(m, " [%d]", i);
  998. }
  999. }
  1000. seq_printf(m, "\n\n");
  1001. return 0;
  1002. }
  1003. static void *c_start(struct seq_file *m, loff_t *pos)
  1004. {
  1005. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  1006. }
  1007. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1008. {
  1009. ++*pos;
  1010. return c_start(m, pos);
  1011. }
  1012. static void c_stop(struct seq_file *m, void *v)
  1013. {
  1014. }
  1015. struct seq_operations cpuinfo_op = {
  1016. .start =c_start,
  1017. .next = c_next,
  1018. .stop = c_stop,
  1019. .show = show_cpuinfo,
  1020. };
  1021. #if defined(CONFIG_INPUT_PCSPKR) || defined(CONFIG_INPUT_PCSPKR_MODULE)
  1022. #include <linux/platform_device.h>
  1023. static __init int add_pcspkr(void)
  1024. {
  1025. struct platform_device *pd;
  1026. int ret;
  1027. pd = platform_device_alloc("pcspkr", -1);
  1028. if (!pd)
  1029. return -ENOMEM;
  1030. ret = platform_device_add(pd);
  1031. if (ret)
  1032. platform_device_put(pd);
  1033. return ret;
  1034. }
  1035. device_initcall(add_pcspkr);
  1036. #endif