cfq-iosched.c 98 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk-cgroup.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  33. static const int cfq_hist_divisor = 4;
  34. /*
  35. * offset from end of service tree
  36. */
  37. #define CFQ_IDLE_DELAY (HZ / 5)
  38. /*
  39. * below this threshold, we consider thinktime immediate
  40. */
  41. #define CFQ_MIN_TT (2)
  42. #define CFQ_SLICE_SCALE (5)
  43. #define CFQ_HW_QUEUE_MIN (5)
  44. #define CFQ_SERVICE_SHIFT 12
  45. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  46. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  47. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  48. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  49. #define RQ_CIC(rq) \
  50. ((struct cfq_io_context *) (rq)->elevator_private)
  51. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  52. static struct kmem_cache *cfq_pool;
  53. static struct kmem_cache *cfq_ioc_pool;
  54. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  55. static struct completion *ioc_gone;
  56. static DEFINE_SPINLOCK(ioc_gone_lock);
  57. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  58. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  59. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  60. #define sample_valid(samples) ((samples) > 80)
  61. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  62. /*
  63. * Most of our rbtree usage is for sorting with min extraction, so
  64. * if we cache the leftmost node we don't have to walk down the tree
  65. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  66. * move this into the elevator for the rq sorting as well.
  67. */
  68. struct cfq_rb_root {
  69. struct rb_root rb;
  70. struct rb_node *left;
  71. unsigned count;
  72. unsigned total_weight;
  73. u64 min_vdisktime;
  74. struct rb_node *active;
  75. };
  76. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  77. .count = 0, .min_vdisktime = 0, }
  78. /*
  79. * Per process-grouping structure
  80. */
  81. struct cfq_queue {
  82. /* reference count */
  83. atomic_t ref;
  84. /* various state flags, see below */
  85. unsigned int flags;
  86. /* parent cfq_data */
  87. struct cfq_data *cfqd;
  88. /* service_tree member */
  89. struct rb_node rb_node;
  90. /* service_tree key */
  91. unsigned long rb_key;
  92. /* prio tree member */
  93. struct rb_node p_node;
  94. /* prio tree root we belong to, if any */
  95. struct rb_root *p_root;
  96. /* sorted list of pending requests */
  97. struct rb_root sort_list;
  98. /* if fifo isn't expired, next request to serve */
  99. struct request *next_rq;
  100. /* requests queued in sort_list */
  101. int queued[2];
  102. /* currently allocated requests */
  103. int allocated[2];
  104. /* fifo list of requests in sort_list */
  105. struct list_head fifo;
  106. /* time when queue got scheduled in to dispatch first request. */
  107. unsigned long dispatch_start;
  108. unsigned int allocated_slice;
  109. unsigned int slice_dispatch;
  110. /* time when first request from queue completed and slice started. */
  111. unsigned long slice_start;
  112. unsigned long slice_end;
  113. long slice_resid;
  114. /* pending metadata requests */
  115. int meta_pending;
  116. /* number of requests that are on the dispatch list or inside driver */
  117. int dispatched;
  118. /* io prio of this group */
  119. unsigned short ioprio, org_ioprio;
  120. unsigned short ioprio_class, org_ioprio_class;
  121. pid_t pid;
  122. u32 seek_history;
  123. sector_t last_request_pos;
  124. struct cfq_rb_root *service_tree;
  125. struct cfq_queue *new_cfqq;
  126. struct cfq_group *cfqg;
  127. struct cfq_group *orig_cfqg;
  128. /* Sectors dispatched in current dispatch round */
  129. unsigned long nr_sectors;
  130. };
  131. /*
  132. * First index in the service_trees.
  133. * IDLE is handled separately, so it has negative index
  134. */
  135. enum wl_prio_t {
  136. BE_WORKLOAD = 0,
  137. RT_WORKLOAD = 1,
  138. IDLE_WORKLOAD = 2,
  139. };
  140. /*
  141. * Second index in the service_trees.
  142. */
  143. enum wl_type_t {
  144. ASYNC_WORKLOAD = 0,
  145. SYNC_NOIDLE_WORKLOAD = 1,
  146. SYNC_WORKLOAD = 2
  147. };
  148. /* This is per cgroup per device grouping structure */
  149. struct cfq_group {
  150. /* group service_tree member */
  151. struct rb_node rb_node;
  152. /* group service_tree key */
  153. u64 vdisktime;
  154. unsigned int weight;
  155. bool on_st;
  156. /* number of cfqq currently on this group */
  157. int nr_cfqq;
  158. /* Per group busy queus average. Useful for workload slice calc. */
  159. unsigned int busy_queues_avg[2];
  160. /*
  161. * rr lists of queues with requests, onle rr for each priority class.
  162. * Counts are embedded in the cfq_rb_root
  163. */
  164. struct cfq_rb_root service_trees[2][3];
  165. struct cfq_rb_root service_tree_idle;
  166. unsigned long saved_workload_slice;
  167. enum wl_type_t saved_workload;
  168. enum wl_prio_t saved_serving_prio;
  169. struct blkio_group blkg;
  170. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  171. struct hlist_node cfqd_node;
  172. atomic_t ref;
  173. #endif
  174. };
  175. /*
  176. * Per block device queue structure
  177. */
  178. struct cfq_data {
  179. struct request_queue *queue;
  180. /* Root service tree for cfq_groups */
  181. struct cfq_rb_root grp_service_tree;
  182. struct cfq_group root_group;
  183. /*
  184. * The priority currently being served
  185. */
  186. enum wl_prio_t serving_prio;
  187. enum wl_type_t serving_type;
  188. unsigned long workload_expires;
  189. struct cfq_group *serving_group;
  190. bool noidle_tree_requires_idle;
  191. /*
  192. * Each priority tree is sorted by next_request position. These
  193. * trees are used when determining if two or more queues are
  194. * interleaving requests (see cfq_close_cooperator).
  195. */
  196. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  197. unsigned int busy_queues;
  198. int rq_in_driver;
  199. int rq_in_flight[2];
  200. /*
  201. * queue-depth detection
  202. */
  203. int rq_queued;
  204. int hw_tag;
  205. /*
  206. * hw_tag can be
  207. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  208. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  209. * 0 => no NCQ
  210. */
  211. int hw_tag_est_depth;
  212. unsigned int hw_tag_samples;
  213. /*
  214. * idle window management
  215. */
  216. struct timer_list idle_slice_timer;
  217. struct work_struct unplug_work;
  218. struct cfq_queue *active_queue;
  219. struct cfq_io_context *active_cic;
  220. /*
  221. * async queue for each priority case
  222. */
  223. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  224. struct cfq_queue *async_idle_cfqq;
  225. sector_t last_position;
  226. /*
  227. * tunables, see top of file
  228. */
  229. unsigned int cfq_quantum;
  230. unsigned int cfq_fifo_expire[2];
  231. unsigned int cfq_back_penalty;
  232. unsigned int cfq_back_max;
  233. unsigned int cfq_slice[2];
  234. unsigned int cfq_slice_async_rq;
  235. unsigned int cfq_slice_idle;
  236. unsigned int cfq_latency;
  237. unsigned int cfq_group_isolation;
  238. struct list_head cic_list;
  239. /*
  240. * Fallback dummy cfqq for extreme OOM conditions
  241. */
  242. struct cfq_queue oom_cfqq;
  243. unsigned long last_delayed_sync;
  244. /* List of cfq groups being managed on this device*/
  245. struct hlist_head cfqg_list;
  246. struct rcu_head rcu;
  247. };
  248. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  249. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  250. enum wl_prio_t prio,
  251. enum wl_type_t type)
  252. {
  253. if (!cfqg)
  254. return NULL;
  255. if (prio == IDLE_WORKLOAD)
  256. return &cfqg->service_tree_idle;
  257. return &cfqg->service_trees[prio][type];
  258. }
  259. enum cfqq_state_flags {
  260. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  261. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  262. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  263. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  264. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  265. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  266. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  267. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  268. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  269. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  270. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  271. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  272. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  273. };
  274. #define CFQ_CFQQ_FNS(name) \
  275. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  276. { \
  277. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  278. } \
  279. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  280. { \
  281. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  282. } \
  283. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  284. { \
  285. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  286. }
  287. CFQ_CFQQ_FNS(on_rr);
  288. CFQ_CFQQ_FNS(wait_request);
  289. CFQ_CFQQ_FNS(must_dispatch);
  290. CFQ_CFQQ_FNS(must_alloc_slice);
  291. CFQ_CFQQ_FNS(fifo_expire);
  292. CFQ_CFQQ_FNS(idle_window);
  293. CFQ_CFQQ_FNS(prio_changed);
  294. CFQ_CFQQ_FNS(slice_new);
  295. CFQ_CFQQ_FNS(sync);
  296. CFQ_CFQQ_FNS(coop);
  297. CFQ_CFQQ_FNS(split_coop);
  298. CFQ_CFQQ_FNS(deep);
  299. CFQ_CFQQ_FNS(wait_busy);
  300. #undef CFQ_CFQQ_FNS
  301. #ifdef CONFIG_DEBUG_CFQ_IOSCHED
  302. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  303. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  304. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  305. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  306. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  307. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  308. blkg_path(&(cfqg)->blkg), ##args); \
  309. #else
  310. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  311. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  312. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  313. #endif
  314. #define cfq_log(cfqd, fmt, args...) \
  315. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  316. /* Traverses through cfq group service trees */
  317. #define for_each_cfqg_st(cfqg, i, j, st) \
  318. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  319. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  320. : &cfqg->service_tree_idle; \
  321. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  322. (i == IDLE_WORKLOAD && j == 0); \
  323. j++, st = i < IDLE_WORKLOAD ? \
  324. &cfqg->service_trees[i][j]: NULL) \
  325. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  326. {
  327. if (cfq_class_idle(cfqq))
  328. return IDLE_WORKLOAD;
  329. if (cfq_class_rt(cfqq))
  330. return RT_WORKLOAD;
  331. return BE_WORKLOAD;
  332. }
  333. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  334. {
  335. if (!cfq_cfqq_sync(cfqq))
  336. return ASYNC_WORKLOAD;
  337. if (!cfq_cfqq_idle_window(cfqq))
  338. return SYNC_NOIDLE_WORKLOAD;
  339. return SYNC_WORKLOAD;
  340. }
  341. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  342. struct cfq_data *cfqd,
  343. struct cfq_group *cfqg)
  344. {
  345. if (wl == IDLE_WORKLOAD)
  346. return cfqg->service_tree_idle.count;
  347. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  348. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  349. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  350. }
  351. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  352. struct cfq_group *cfqg)
  353. {
  354. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  355. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  356. }
  357. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  358. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  359. struct io_context *, gfp_t);
  360. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  361. struct io_context *);
  362. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  363. bool is_sync)
  364. {
  365. return cic->cfqq[is_sync];
  366. }
  367. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  368. struct cfq_queue *cfqq, bool is_sync)
  369. {
  370. cic->cfqq[is_sync] = cfqq;
  371. }
  372. /*
  373. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  374. * set (in which case it could also be direct WRITE).
  375. */
  376. static inline bool cfq_bio_sync(struct bio *bio)
  377. {
  378. return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
  379. }
  380. /*
  381. * scheduler run of queue, if there are requests pending and no one in the
  382. * driver that will restart queueing
  383. */
  384. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  385. {
  386. if (cfqd->busy_queues) {
  387. cfq_log(cfqd, "schedule dispatch");
  388. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  389. }
  390. }
  391. static int cfq_queue_empty(struct request_queue *q)
  392. {
  393. struct cfq_data *cfqd = q->elevator->elevator_data;
  394. return !cfqd->rq_queued;
  395. }
  396. /*
  397. * Scale schedule slice based on io priority. Use the sync time slice only
  398. * if a queue is marked sync and has sync io queued. A sync queue with async
  399. * io only, should not get full sync slice length.
  400. */
  401. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  402. unsigned short prio)
  403. {
  404. const int base_slice = cfqd->cfq_slice[sync];
  405. WARN_ON(prio >= IOPRIO_BE_NR);
  406. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  407. }
  408. static inline int
  409. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  410. {
  411. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  412. }
  413. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  414. {
  415. u64 d = delta << CFQ_SERVICE_SHIFT;
  416. d = d * BLKIO_WEIGHT_DEFAULT;
  417. do_div(d, cfqg->weight);
  418. return d;
  419. }
  420. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  421. {
  422. s64 delta = (s64)(vdisktime - min_vdisktime);
  423. if (delta > 0)
  424. min_vdisktime = vdisktime;
  425. return min_vdisktime;
  426. }
  427. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  428. {
  429. s64 delta = (s64)(vdisktime - min_vdisktime);
  430. if (delta < 0)
  431. min_vdisktime = vdisktime;
  432. return min_vdisktime;
  433. }
  434. static void update_min_vdisktime(struct cfq_rb_root *st)
  435. {
  436. u64 vdisktime = st->min_vdisktime;
  437. struct cfq_group *cfqg;
  438. if (st->active) {
  439. cfqg = rb_entry_cfqg(st->active);
  440. vdisktime = cfqg->vdisktime;
  441. }
  442. if (st->left) {
  443. cfqg = rb_entry_cfqg(st->left);
  444. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  445. }
  446. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  447. }
  448. /*
  449. * get averaged number of queues of RT/BE priority.
  450. * average is updated, with a formula that gives more weight to higher numbers,
  451. * to quickly follows sudden increases and decrease slowly
  452. */
  453. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  454. struct cfq_group *cfqg, bool rt)
  455. {
  456. unsigned min_q, max_q;
  457. unsigned mult = cfq_hist_divisor - 1;
  458. unsigned round = cfq_hist_divisor / 2;
  459. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  460. min_q = min(cfqg->busy_queues_avg[rt], busy);
  461. max_q = max(cfqg->busy_queues_avg[rt], busy);
  462. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  463. cfq_hist_divisor;
  464. return cfqg->busy_queues_avg[rt];
  465. }
  466. static inline unsigned
  467. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  468. {
  469. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  470. return cfq_target_latency * cfqg->weight / st->total_weight;
  471. }
  472. static inline void
  473. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  474. {
  475. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  476. if (cfqd->cfq_latency) {
  477. /*
  478. * interested queues (we consider only the ones with the same
  479. * priority class in the cfq group)
  480. */
  481. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  482. cfq_class_rt(cfqq));
  483. unsigned sync_slice = cfqd->cfq_slice[1];
  484. unsigned expect_latency = sync_slice * iq;
  485. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  486. if (expect_latency > group_slice) {
  487. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  488. /* scale low_slice according to IO priority
  489. * and sync vs async */
  490. unsigned low_slice =
  491. min(slice, base_low_slice * slice / sync_slice);
  492. /* the adapted slice value is scaled to fit all iqs
  493. * into the target latency */
  494. slice = max(slice * group_slice / expect_latency,
  495. low_slice);
  496. }
  497. }
  498. cfqq->slice_start = jiffies;
  499. cfqq->slice_end = jiffies + slice;
  500. cfqq->allocated_slice = slice;
  501. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  502. }
  503. /*
  504. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  505. * isn't valid until the first request from the dispatch is activated
  506. * and the slice time set.
  507. */
  508. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  509. {
  510. if (cfq_cfqq_slice_new(cfqq))
  511. return 0;
  512. if (time_before(jiffies, cfqq->slice_end))
  513. return 0;
  514. return 1;
  515. }
  516. /*
  517. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  518. * We choose the request that is closest to the head right now. Distance
  519. * behind the head is penalized and only allowed to a certain extent.
  520. */
  521. static struct request *
  522. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  523. {
  524. sector_t s1, s2, d1 = 0, d2 = 0;
  525. unsigned long back_max;
  526. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  527. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  528. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  529. if (rq1 == NULL || rq1 == rq2)
  530. return rq2;
  531. if (rq2 == NULL)
  532. return rq1;
  533. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  534. return rq1;
  535. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  536. return rq2;
  537. if (rq_is_meta(rq1) && !rq_is_meta(rq2))
  538. return rq1;
  539. else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
  540. return rq2;
  541. s1 = blk_rq_pos(rq1);
  542. s2 = blk_rq_pos(rq2);
  543. /*
  544. * by definition, 1KiB is 2 sectors
  545. */
  546. back_max = cfqd->cfq_back_max * 2;
  547. /*
  548. * Strict one way elevator _except_ in the case where we allow
  549. * short backward seeks which are biased as twice the cost of a
  550. * similar forward seek.
  551. */
  552. if (s1 >= last)
  553. d1 = s1 - last;
  554. else if (s1 + back_max >= last)
  555. d1 = (last - s1) * cfqd->cfq_back_penalty;
  556. else
  557. wrap |= CFQ_RQ1_WRAP;
  558. if (s2 >= last)
  559. d2 = s2 - last;
  560. else if (s2 + back_max >= last)
  561. d2 = (last - s2) * cfqd->cfq_back_penalty;
  562. else
  563. wrap |= CFQ_RQ2_WRAP;
  564. /* Found required data */
  565. /*
  566. * By doing switch() on the bit mask "wrap" we avoid having to
  567. * check two variables for all permutations: --> faster!
  568. */
  569. switch (wrap) {
  570. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  571. if (d1 < d2)
  572. return rq1;
  573. else if (d2 < d1)
  574. return rq2;
  575. else {
  576. if (s1 >= s2)
  577. return rq1;
  578. else
  579. return rq2;
  580. }
  581. case CFQ_RQ2_WRAP:
  582. return rq1;
  583. case CFQ_RQ1_WRAP:
  584. return rq2;
  585. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  586. default:
  587. /*
  588. * Since both rqs are wrapped,
  589. * start with the one that's further behind head
  590. * (--> only *one* back seek required),
  591. * since back seek takes more time than forward.
  592. */
  593. if (s1 <= s2)
  594. return rq1;
  595. else
  596. return rq2;
  597. }
  598. }
  599. /*
  600. * The below is leftmost cache rbtree addon
  601. */
  602. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  603. {
  604. /* Service tree is empty */
  605. if (!root->count)
  606. return NULL;
  607. if (!root->left)
  608. root->left = rb_first(&root->rb);
  609. if (root->left)
  610. return rb_entry(root->left, struct cfq_queue, rb_node);
  611. return NULL;
  612. }
  613. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  614. {
  615. if (!root->left)
  616. root->left = rb_first(&root->rb);
  617. if (root->left)
  618. return rb_entry_cfqg(root->left);
  619. return NULL;
  620. }
  621. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  622. {
  623. rb_erase(n, root);
  624. RB_CLEAR_NODE(n);
  625. }
  626. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  627. {
  628. if (root->left == n)
  629. root->left = NULL;
  630. rb_erase_init(n, &root->rb);
  631. --root->count;
  632. }
  633. /*
  634. * would be nice to take fifo expire time into account as well
  635. */
  636. static struct request *
  637. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  638. struct request *last)
  639. {
  640. struct rb_node *rbnext = rb_next(&last->rb_node);
  641. struct rb_node *rbprev = rb_prev(&last->rb_node);
  642. struct request *next = NULL, *prev = NULL;
  643. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  644. if (rbprev)
  645. prev = rb_entry_rq(rbprev);
  646. if (rbnext)
  647. next = rb_entry_rq(rbnext);
  648. else {
  649. rbnext = rb_first(&cfqq->sort_list);
  650. if (rbnext && rbnext != &last->rb_node)
  651. next = rb_entry_rq(rbnext);
  652. }
  653. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  654. }
  655. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  656. struct cfq_queue *cfqq)
  657. {
  658. /*
  659. * just an approximation, should be ok.
  660. */
  661. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  662. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  663. }
  664. static inline s64
  665. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  666. {
  667. return cfqg->vdisktime - st->min_vdisktime;
  668. }
  669. static void
  670. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  671. {
  672. struct rb_node **node = &st->rb.rb_node;
  673. struct rb_node *parent = NULL;
  674. struct cfq_group *__cfqg;
  675. s64 key = cfqg_key(st, cfqg);
  676. int left = 1;
  677. while (*node != NULL) {
  678. parent = *node;
  679. __cfqg = rb_entry_cfqg(parent);
  680. if (key < cfqg_key(st, __cfqg))
  681. node = &parent->rb_left;
  682. else {
  683. node = &parent->rb_right;
  684. left = 0;
  685. }
  686. }
  687. if (left)
  688. st->left = &cfqg->rb_node;
  689. rb_link_node(&cfqg->rb_node, parent, node);
  690. rb_insert_color(&cfqg->rb_node, &st->rb);
  691. }
  692. static void
  693. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  694. {
  695. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  696. struct cfq_group *__cfqg;
  697. struct rb_node *n;
  698. cfqg->nr_cfqq++;
  699. if (cfqg->on_st)
  700. return;
  701. /*
  702. * Currently put the group at the end. Later implement something
  703. * so that groups get lesser vtime based on their weights, so that
  704. * if group does not loose all if it was not continously backlogged.
  705. */
  706. n = rb_last(&st->rb);
  707. if (n) {
  708. __cfqg = rb_entry_cfqg(n);
  709. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  710. } else
  711. cfqg->vdisktime = st->min_vdisktime;
  712. __cfq_group_service_tree_add(st, cfqg);
  713. cfqg->on_st = true;
  714. st->total_weight += cfqg->weight;
  715. }
  716. static void
  717. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  718. {
  719. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  720. if (st->active == &cfqg->rb_node)
  721. st->active = NULL;
  722. BUG_ON(cfqg->nr_cfqq < 1);
  723. cfqg->nr_cfqq--;
  724. /* If there are other cfq queues under this group, don't delete it */
  725. if (cfqg->nr_cfqq)
  726. return;
  727. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  728. cfqg->on_st = false;
  729. st->total_weight -= cfqg->weight;
  730. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  731. cfq_rb_erase(&cfqg->rb_node, st);
  732. cfqg->saved_workload_slice = 0;
  733. blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
  734. }
  735. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  736. {
  737. unsigned int slice_used;
  738. /*
  739. * Queue got expired before even a single request completed or
  740. * got expired immediately after first request completion.
  741. */
  742. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  743. /*
  744. * Also charge the seek time incurred to the group, otherwise
  745. * if there are mutiple queues in the group, each can dispatch
  746. * a single request on seeky media and cause lots of seek time
  747. * and group will never know it.
  748. */
  749. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  750. 1);
  751. } else {
  752. slice_used = jiffies - cfqq->slice_start;
  753. if (slice_used > cfqq->allocated_slice)
  754. slice_used = cfqq->allocated_slice;
  755. }
  756. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
  757. cfqq->nr_sectors);
  758. return slice_used;
  759. }
  760. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  761. struct cfq_queue *cfqq)
  762. {
  763. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  764. unsigned int used_sl, charge_sl;
  765. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  766. - cfqg->service_tree_idle.count;
  767. BUG_ON(nr_sync < 0);
  768. used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
  769. if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  770. charge_sl = cfqq->allocated_slice;
  771. /* Can't update vdisktime while group is on service tree */
  772. cfq_rb_erase(&cfqg->rb_node, st);
  773. cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
  774. __cfq_group_service_tree_add(st, cfqg);
  775. /* This group is being expired. Save the context */
  776. if (time_after(cfqd->workload_expires, jiffies)) {
  777. cfqg->saved_workload_slice = cfqd->workload_expires
  778. - jiffies;
  779. cfqg->saved_workload = cfqd->serving_type;
  780. cfqg->saved_serving_prio = cfqd->serving_prio;
  781. } else
  782. cfqg->saved_workload_slice = 0;
  783. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  784. st->min_vdisktime);
  785. blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
  786. cfqq->nr_sectors);
  787. }
  788. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  789. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  790. {
  791. if (blkg)
  792. return container_of(blkg, struct cfq_group, blkg);
  793. return NULL;
  794. }
  795. void
  796. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  797. {
  798. cfqg_of_blkg(blkg)->weight = weight;
  799. }
  800. static struct cfq_group *
  801. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  802. {
  803. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  804. struct cfq_group *cfqg = NULL;
  805. void *key = cfqd;
  806. int i, j;
  807. struct cfq_rb_root *st;
  808. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  809. unsigned int major, minor;
  810. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  811. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  812. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  813. cfqg->blkg.dev = MKDEV(major, minor);
  814. goto done;
  815. }
  816. if (cfqg || !create)
  817. goto done;
  818. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  819. if (!cfqg)
  820. goto done;
  821. cfqg->weight = blkcg->weight;
  822. for_each_cfqg_st(cfqg, i, j, st)
  823. *st = CFQ_RB_ROOT;
  824. RB_CLEAR_NODE(&cfqg->rb_node);
  825. /*
  826. * Take the initial reference that will be released on destroy
  827. * This can be thought of a joint reference by cgroup and
  828. * elevator which will be dropped by either elevator exit
  829. * or cgroup deletion path depending on who is exiting first.
  830. */
  831. atomic_set(&cfqg->ref, 1);
  832. /* Add group onto cgroup list */
  833. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  834. blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  835. MKDEV(major, minor));
  836. /* Add group on cfqd list */
  837. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  838. done:
  839. return cfqg;
  840. }
  841. /*
  842. * Search for the cfq group current task belongs to. If create = 1, then also
  843. * create the cfq group if it does not exist. request_queue lock must be held.
  844. */
  845. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  846. {
  847. struct cgroup *cgroup;
  848. struct cfq_group *cfqg = NULL;
  849. rcu_read_lock();
  850. cgroup = task_cgroup(current, blkio_subsys_id);
  851. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  852. if (!cfqg && create)
  853. cfqg = &cfqd->root_group;
  854. rcu_read_unlock();
  855. return cfqg;
  856. }
  857. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  858. {
  859. /* Currently, all async queues are mapped to root group */
  860. if (!cfq_cfqq_sync(cfqq))
  861. cfqg = &cfqq->cfqd->root_group;
  862. cfqq->cfqg = cfqg;
  863. /* cfqq reference on cfqg */
  864. atomic_inc(&cfqq->cfqg->ref);
  865. }
  866. static void cfq_put_cfqg(struct cfq_group *cfqg)
  867. {
  868. struct cfq_rb_root *st;
  869. int i, j;
  870. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  871. if (!atomic_dec_and_test(&cfqg->ref))
  872. return;
  873. for_each_cfqg_st(cfqg, i, j, st)
  874. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  875. kfree(cfqg);
  876. }
  877. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  878. {
  879. /* Something wrong if we are trying to remove same group twice */
  880. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  881. hlist_del_init(&cfqg->cfqd_node);
  882. /*
  883. * Put the reference taken at the time of creation so that when all
  884. * queues are gone, group can be destroyed.
  885. */
  886. cfq_put_cfqg(cfqg);
  887. }
  888. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  889. {
  890. struct hlist_node *pos, *n;
  891. struct cfq_group *cfqg;
  892. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  893. /*
  894. * If cgroup removal path got to blk_group first and removed
  895. * it from cgroup list, then it will take care of destroying
  896. * cfqg also.
  897. */
  898. if (!blkiocg_del_blkio_group(&cfqg->blkg))
  899. cfq_destroy_cfqg(cfqd, cfqg);
  900. }
  901. }
  902. /*
  903. * Blk cgroup controller notification saying that blkio_group object is being
  904. * delinked as associated cgroup object is going away. That also means that
  905. * no new IO will come in this group. So get rid of this group as soon as
  906. * any pending IO in the group is finished.
  907. *
  908. * This function is called under rcu_read_lock(). key is the rcu protected
  909. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  910. * read lock.
  911. *
  912. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  913. * it should not be NULL as even if elevator was exiting, cgroup deltion
  914. * path got to it first.
  915. */
  916. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  917. {
  918. unsigned long flags;
  919. struct cfq_data *cfqd = key;
  920. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  921. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  922. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  923. }
  924. #else /* GROUP_IOSCHED */
  925. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  926. {
  927. return &cfqd->root_group;
  928. }
  929. static inline void
  930. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  931. cfqq->cfqg = cfqg;
  932. }
  933. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  934. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  935. #endif /* GROUP_IOSCHED */
  936. /*
  937. * The cfqd->service_trees holds all pending cfq_queue's that have
  938. * requests waiting to be processed. It is sorted in the order that
  939. * we will service the queues.
  940. */
  941. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  942. bool add_front)
  943. {
  944. struct rb_node **p, *parent;
  945. struct cfq_queue *__cfqq;
  946. unsigned long rb_key;
  947. struct cfq_rb_root *service_tree;
  948. int left;
  949. int new_cfqq = 1;
  950. int group_changed = 0;
  951. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  952. if (!cfqd->cfq_group_isolation
  953. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  954. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  955. /* Move this cfq to root group */
  956. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  957. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  958. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  959. cfqq->orig_cfqg = cfqq->cfqg;
  960. cfqq->cfqg = &cfqd->root_group;
  961. atomic_inc(&cfqd->root_group.ref);
  962. group_changed = 1;
  963. } else if (!cfqd->cfq_group_isolation
  964. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  965. /* cfqq is sequential now needs to go to its original group */
  966. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  967. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  968. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  969. cfq_put_cfqg(cfqq->cfqg);
  970. cfqq->cfqg = cfqq->orig_cfqg;
  971. cfqq->orig_cfqg = NULL;
  972. group_changed = 1;
  973. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  974. }
  975. #endif
  976. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  977. cfqq_type(cfqq));
  978. if (cfq_class_idle(cfqq)) {
  979. rb_key = CFQ_IDLE_DELAY;
  980. parent = rb_last(&service_tree->rb);
  981. if (parent && parent != &cfqq->rb_node) {
  982. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  983. rb_key += __cfqq->rb_key;
  984. } else
  985. rb_key += jiffies;
  986. } else if (!add_front) {
  987. /*
  988. * Get our rb key offset. Subtract any residual slice
  989. * value carried from last service. A negative resid
  990. * count indicates slice overrun, and this should position
  991. * the next service time further away in the tree.
  992. */
  993. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  994. rb_key -= cfqq->slice_resid;
  995. cfqq->slice_resid = 0;
  996. } else {
  997. rb_key = -HZ;
  998. __cfqq = cfq_rb_first(service_tree);
  999. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1000. }
  1001. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1002. new_cfqq = 0;
  1003. /*
  1004. * same position, nothing more to do
  1005. */
  1006. if (rb_key == cfqq->rb_key &&
  1007. cfqq->service_tree == service_tree)
  1008. return;
  1009. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1010. cfqq->service_tree = NULL;
  1011. }
  1012. left = 1;
  1013. parent = NULL;
  1014. cfqq->service_tree = service_tree;
  1015. p = &service_tree->rb.rb_node;
  1016. while (*p) {
  1017. struct rb_node **n;
  1018. parent = *p;
  1019. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1020. /*
  1021. * sort by key, that represents service time.
  1022. */
  1023. if (time_before(rb_key, __cfqq->rb_key))
  1024. n = &(*p)->rb_left;
  1025. else {
  1026. n = &(*p)->rb_right;
  1027. left = 0;
  1028. }
  1029. p = n;
  1030. }
  1031. if (left)
  1032. service_tree->left = &cfqq->rb_node;
  1033. cfqq->rb_key = rb_key;
  1034. rb_link_node(&cfqq->rb_node, parent, p);
  1035. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1036. service_tree->count++;
  1037. if ((add_front || !new_cfqq) && !group_changed)
  1038. return;
  1039. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1040. }
  1041. static struct cfq_queue *
  1042. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1043. sector_t sector, struct rb_node **ret_parent,
  1044. struct rb_node ***rb_link)
  1045. {
  1046. struct rb_node **p, *parent;
  1047. struct cfq_queue *cfqq = NULL;
  1048. parent = NULL;
  1049. p = &root->rb_node;
  1050. while (*p) {
  1051. struct rb_node **n;
  1052. parent = *p;
  1053. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1054. /*
  1055. * Sort strictly based on sector. Smallest to the left,
  1056. * largest to the right.
  1057. */
  1058. if (sector > blk_rq_pos(cfqq->next_rq))
  1059. n = &(*p)->rb_right;
  1060. else if (sector < blk_rq_pos(cfqq->next_rq))
  1061. n = &(*p)->rb_left;
  1062. else
  1063. break;
  1064. p = n;
  1065. cfqq = NULL;
  1066. }
  1067. *ret_parent = parent;
  1068. if (rb_link)
  1069. *rb_link = p;
  1070. return cfqq;
  1071. }
  1072. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1073. {
  1074. struct rb_node **p, *parent;
  1075. struct cfq_queue *__cfqq;
  1076. if (cfqq->p_root) {
  1077. rb_erase(&cfqq->p_node, cfqq->p_root);
  1078. cfqq->p_root = NULL;
  1079. }
  1080. if (cfq_class_idle(cfqq))
  1081. return;
  1082. if (!cfqq->next_rq)
  1083. return;
  1084. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1085. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1086. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1087. if (!__cfqq) {
  1088. rb_link_node(&cfqq->p_node, parent, p);
  1089. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1090. } else
  1091. cfqq->p_root = NULL;
  1092. }
  1093. /*
  1094. * Update cfqq's position in the service tree.
  1095. */
  1096. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1097. {
  1098. /*
  1099. * Resorting requires the cfqq to be on the RR list already.
  1100. */
  1101. if (cfq_cfqq_on_rr(cfqq)) {
  1102. cfq_service_tree_add(cfqd, cfqq, 0);
  1103. cfq_prio_tree_add(cfqd, cfqq);
  1104. }
  1105. }
  1106. /*
  1107. * add to busy list of queues for service, trying to be fair in ordering
  1108. * the pending list according to last request service
  1109. */
  1110. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1111. {
  1112. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1113. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1114. cfq_mark_cfqq_on_rr(cfqq);
  1115. cfqd->busy_queues++;
  1116. cfq_resort_rr_list(cfqd, cfqq);
  1117. }
  1118. /*
  1119. * Called when the cfqq no longer has requests pending, remove it from
  1120. * the service tree.
  1121. */
  1122. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1123. {
  1124. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1125. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1126. cfq_clear_cfqq_on_rr(cfqq);
  1127. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1128. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1129. cfqq->service_tree = NULL;
  1130. }
  1131. if (cfqq->p_root) {
  1132. rb_erase(&cfqq->p_node, cfqq->p_root);
  1133. cfqq->p_root = NULL;
  1134. }
  1135. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1136. BUG_ON(!cfqd->busy_queues);
  1137. cfqd->busy_queues--;
  1138. }
  1139. /*
  1140. * rb tree support functions
  1141. */
  1142. static void cfq_del_rq_rb(struct request *rq)
  1143. {
  1144. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1145. const int sync = rq_is_sync(rq);
  1146. BUG_ON(!cfqq->queued[sync]);
  1147. cfqq->queued[sync]--;
  1148. elv_rb_del(&cfqq->sort_list, rq);
  1149. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1150. /*
  1151. * Queue will be deleted from service tree when we actually
  1152. * expire it later. Right now just remove it from prio tree
  1153. * as it is empty.
  1154. */
  1155. if (cfqq->p_root) {
  1156. rb_erase(&cfqq->p_node, cfqq->p_root);
  1157. cfqq->p_root = NULL;
  1158. }
  1159. }
  1160. }
  1161. static void cfq_add_rq_rb(struct request *rq)
  1162. {
  1163. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1164. struct cfq_data *cfqd = cfqq->cfqd;
  1165. struct request *__alias, *prev;
  1166. cfqq->queued[rq_is_sync(rq)]++;
  1167. /*
  1168. * looks a little odd, but the first insert might return an alias.
  1169. * if that happens, put the alias on the dispatch list
  1170. */
  1171. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1172. cfq_dispatch_insert(cfqd->queue, __alias);
  1173. if (!cfq_cfqq_on_rr(cfqq))
  1174. cfq_add_cfqq_rr(cfqd, cfqq);
  1175. /*
  1176. * check if this request is a better next-serve candidate
  1177. */
  1178. prev = cfqq->next_rq;
  1179. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1180. /*
  1181. * adjust priority tree position, if ->next_rq changes
  1182. */
  1183. if (prev != cfqq->next_rq)
  1184. cfq_prio_tree_add(cfqd, cfqq);
  1185. BUG_ON(!cfqq->next_rq);
  1186. }
  1187. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1188. {
  1189. elv_rb_del(&cfqq->sort_list, rq);
  1190. cfqq->queued[rq_is_sync(rq)]--;
  1191. cfq_add_rq_rb(rq);
  1192. }
  1193. static struct request *
  1194. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1195. {
  1196. struct task_struct *tsk = current;
  1197. struct cfq_io_context *cic;
  1198. struct cfq_queue *cfqq;
  1199. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1200. if (!cic)
  1201. return NULL;
  1202. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1203. if (cfqq) {
  1204. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1205. return elv_rb_find(&cfqq->sort_list, sector);
  1206. }
  1207. return NULL;
  1208. }
  1209. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1210. {
  1211. struct cfq_data *cfqd = q->elevator->elevator_data;
  1212. cfqd->rq_in_driver++;
  1213. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1214. cfqd->rq_in_driver);
  1215. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1216. }
  1217. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1218. {
  1219. struct cfq_data *cfqd = q->elevator->elevator_data;
  1220. WARN_ON(!cfqd->rq_in_driver);
  1221. cfqd->rq_in_driver--;
  1222. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1223. cfqd->rq_in_driver);
  1224. }
  1225. static void cfq_remove_request(struct request *rq)
  1226. {
  1227. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1228. if (cfqq->next_rq == rq)
  1229. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1230. list_del_init(&rq->queuelist);
  1231. cfq_del_rq_rb(rq);
  1232. cfqq->cfqd->rq_queued--;
  1233. if (rq_is_meta(rq)) {
  1234. WARN_ON(!cfqq->meta_pending);
  1235. cfqq->meta_pending--;
  1236. }
  1237. }
  1238. static int cfq_merge(struct request_queue *q, struct request **req,
  1239. struct bio *bio)
  1240. {
  1241. struct cfq_data *cfqd = q->elevator->elevator_data;
  1242. struct request *__rq;
  1243. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1244. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1245. *req = __rq;
  1246. return ELEVATOR_FRONT_MERGE;
  1247. }
  1248. return ELEVATOR_NO_MERGE;
  1249. }
  1250. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1251. int type)
  1252. {
  1253. if (type == ELEVATOR_FRONT_MERGE) {
  1254. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1255. cfq_reposition_rq_rb(cfqq, req);
  1256. }
  1257. }
  1258. static void
  1259. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1260. struct request *next)
  1261. {
  1262. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1263. /*
  1264. * reposition in fifo if next is older than rq
  1265. */
  1266. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1267. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1268. list_move(&rq->queuelist, &next->queuelist);
  1269. rq_set_fifo_time(rq, rq_fifo_time(next));
  1270. }
  1271. if (cfqq->next_rq == next)
  1272. cfqq->next_rq = rq;
  1273. cfq_remove_request(next);
  1274. }
  1275. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1276. struct bio *bio)
  1277. {
  1278. struct cfq_data *cfqd = q->elevator->elevator_data;
  1279. struct cfq_io_context *cic;
  1280. struct cfq_queue *cfqq;
  1281. /*
  1282. * Disallow merge of a sync bio into an async request.
  1283. */
  1284. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1285. return false;
  1286. /*
  1287. * Lookup the cfqq that this bio will be queued with. Allow
  1288. * merge only if rq is queued there.
  1289. */
  1290. cic = cfq_cic_lookup(cfqd, current->io_context);
  1291. if (!cic)
  1292. return false;
  1293. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1294. return cfqq == RQ_CFQQ(rq);
  1295. }
  1296. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1297. struct cfq_queue *cfqq)
  1298. {
  1299. if (cfqq) {
  1300. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1301. cfqd->serving_prio, cfqd->serving_type);
  1302. cfqq->slice_start = 0;
  1303. cfqq->dispatch_start = jiffies;
  1304. cfqq->allocated_slice = 0;
  1305. cfqq->slice_end = 0;
  1306. cfqq->slice_dispatch = 0;
  1307. cfqq->nr_sectors = 0;
  1308. cfq_clear_cfqq_wait_request(cfqq);
  1309. cfq_clear_cfqq_must_dispatch(cfqq);
  1310. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1311. cfq_clear_cfqq_fifo_expire(cfqq);
  1312. cfq_mark_cfqq_slice_new(cfqq);
  1313. del_timer(&cfqd->idle_slice_timer);
  1314. }
  1315. cfqd->active_queue = cfqq;
  1316. }
  1317. /*
  1318. * current cfqq expired its slice (or was too idle), select new one
  1319. */
  1320. static void
  1321. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1322. bool timed_out)
  1323. {
  1324. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1325. if (cfq_cfqq_wait_request(cfqq))
  1326. del_timer(&cfqd->idle_slice_timer);
  1327. cfq_clear_cfqq_wait_request(cfqq);
  1328. cfq_clear_cfqq_wait_busy(cfqq);
  1329. /*
  1330. * If this cfqq is shared between multiple processes, check to
  1331. * make sure that those processes are still issuing I/Os within
  1332. * the mean seek distance. If not, it may be time to break the
  1333. * queues apart again.
  1334. */
  1335. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1336. cfq_mark_cfqq_split_coop(cfqq);
  1337. /*
  1338. * store what was left of this slice, if the queue idled/timed out
  1339. */
  1340. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1341. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1342. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1343. }
  1344. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1345. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1346. cfq_del_cfqq_rr(cfqd, cfqq);
  1347. cfq_resort_rr_list(cfqd, cfqq);
  1348. if (cfqq == cfqd->active_queue)
  1349. cfqd->active_queue = NULL;
  1350. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1351. cfqd->grp_service_tree.active = NULL;
  1352. if (cfqd->active_cic) {
  1353. put_io_context(cfqd->active_cic->ioc);
  1354. cfqd->active_cic = NULL;
  1355. }
  1356. }
  1357. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1358. {
  1359. struct cfq_queue *cfqq = cfqd->active_queue;
  1360. if (cfqq)
  1361. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1362. }
  1363. /*
  1364. * Get next queue for service. Unless we have a queue preemption,
  1365. * we'll simply select the first cfqq in the service tree.
  1366. */
  1367. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1368. {
  1369. struct cfq_rb_root *service_tree =
  1370. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1371. cfqd->serving_type);
  1372. if (!cfqd->rq_queued)
  1373. return NULL;
  1374. /* There is nothing to dispatch */
  1375. if (!service_tree)
  1376. return NULL;
  1377. if (RB_EMPTY_ROOT(&service_tree->rb))
  1378. return NULL;
  1379. return cfq_rb_first(service_tree);
  1380. }
  1381. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1382. {
  1383. struct cfq_group *cfqg;
  1384. struct cfq_queue *cfqq;
  1385. int i, j;
  1386. struct cfq_rb_root *st;
  1387. if (!cfqd->rq_queued)
  1388. return NULL;
  1389. cfqg = cfq_get_next_cfqg(cfqd);
  1390. if (!cfqg)
  1391. return NULL;
  1392. for_each_cfqg_st(cfqg, i, j, st)
  1393. if ((cfqq = cfq_rb_first(st)) != NULL)
  1394. return cfqq;
  1395. return NULL;
  1396. }
  1397. /*
  1398. * Get and set a new active queue for service.
  1399. */
  1400. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1401. struct cfq_queue *cfqq)
  1402. {
  1403. if (!cfqq)
  1404. cfqq = cfq_get_next_queue(cfqd);
  1405. __cfq_set_active_queue(cfqd, cfqq);
  1406. return cfqq;
  1407. }
  1408. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1409. struct request *rq)
  1410. {
  1411. if (blk_rq_pos(rq) >= cfqd->last_position)
  1412. return blk_rq_pos(rq) - cfqd->last_position;
  1413. else
  1414. return cfqd->last_position - blk_rq_pos(rq);
  1415. }
  1416. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1417. struct request *rq)
  1418. {
  1419. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1420. }
  1421. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1422. struct cfq_queue *cur_cfqq)
  1423. {
  1424. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1425. struct rb_node *parent, *node;
  1426. struct cfq_queue *__cfqq;
  1427. sector_t sector = cfqd->last_position;
  1428. if (RB_EMPTY_ROOT(root))
  1429. return NULL;
  1430. /*
  1431. * First, if we find a request starting at the end of the last
  1432. * request, choose it.
  1433. */
  1434. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1435. if (__cfqq)
  1436. return __cfqq;
  1437. /*
  1438. * If the exact sector wasn't found, the parent of the NULL leaf
  1439. * will contain the closest sector.
  1440. */
  1441. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1442. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1443. return __cfqq;
  1444. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1445. node = rb_next(&__cfqq->p_node);
  1446. else
  1447. node = rb_prev(&__cfqq->p_node);
  1448. if (!node)
  1449. return NULL;
  1450. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1451. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1452. return __cfqq;
  1453. return NULL;
  1454. }
  1455. /*
  1456. * cfqd - obvious
  1457. * cur_cfqq - passed in so that we don't decide that the current queue is
  1458. * closely cooperating with itself.
  1459. *
  1460. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1461. * one request, and that cfqd->last_position reflects a position on the disk
  1462. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1463. * assumption.
  1464. */
  1465. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1466. struct cfq_queue *cur_cfqq)
  1467. {
  1468. struct cfq_queue *cfqq;
  1469. if (cfq_class_idle(cur_cfqq))
  1470. return NULL;
  1471. if (!cfq_cfqq_sync(cur_cfqq))
  1472. return NULL;
  1473. if (CFQQ_SEEKY(cur_cfqq))
  1474. return NULL;
  1475. /*
  1476. * Don't search priority tree if it's the only queue in the group.
  1477. */
  1478. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1479. return NULL;
  1480. /*
  1481. * We should notice if some of the queues are cooperating, eg
  1482. * working closely on the same area of the disk. In that case,
  1483. * we can group them together and don't waste time idling.
  1484. */
  1485. cfqq = cfqq_close(cfqd, cur_cfqq);
  1486. if (!cfqq)
  1487. return NULL;
  1488. /* If new queue belongs to different cfq_group, don't choose it */
  1489. if (cur_cfqq->cfqg != cfqq->cfqg)
  1490. return NULL;
  1491. /*
  1492. * It only makes sense to merge sync queues.
  1493. */
  1494. if (!cfq_cfqq_sync(cfqq))
  1495. return NULL;
  1496. if (CFQQ_SEEKY(cfqq))
  1497. return NULL;
  1498. /*
  1499. * Do not merge queues of different priority classes
  1500. */
  1501. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1502. return NULL;
  1503. return cfqq;
  1504. }
  1505. /*
  1506. * Determine whether we should enforce idle window for this queue.
  1507. */
  1508. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1509. {
  1510. enum wl_prio_t prio = cfqq_prio(cfqq);
  1511. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1512. BUG_ON(!service_tree);
  1513. BUG_ON(!service_tree->count);
  1514. /* We never do for idle class queues. */
  1515. if (prio == IDLE_WORKLOAD)
  1516. return false;
  1517. /* We do for queues that were marked with idle window flag. */
  1518. if (cfq_cfqq_idle_window(cfqq) &&
  1519. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1520. return true;
  1521. /*
  1522. * Otherwise, we do only if they are the last ones
  1523. * in their service tree.
  1524. */
  1525. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1526. return 1;
  1527. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1528. service_tree->count);
  1529. return 0;
  1530. }
  1531. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1532. {
  1533. struct cfq_queue *cfqq = cfqd->active_queue;
  1534. struct cfq_io_context *cic;
  1535. unsigned long sl;
  1536. /*
  1537. * SSD device without seek penalty, disable idling. But only do so
  1538. * for devices that support queuing, otherwise we still have a problem
  1539. * with sync vs async workloads.
  1540. */
  1541. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1542. return;
  1543. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1544. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1545. /*
  1546. * idle is disabled, either manually or by past process history
  1547. */
  1548. if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
  1549. return;
  1550. /*
  1551. * still active requests from this queue, don't idle
  1552. */
  1553. if (cfqq->dispatched)
  1554. return;
  1555. /*
  1556. * task has exited, don't wait
  1557. */
  1558. cic = cfqd->active_cic;
  1559. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1560. return;
  1561. /*
  1562. * If our average think time is larger than the remaining time
  1563. * slice, then don't idle. This avoids overrunning the allotted
  1564. * time slice.
  1565. */
  1566. if (sample_valid(cic->ttime_samples) &&
  1567. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1568. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1569. cic->ttime_mean);
  1570. return;
  1571. }
  1572. cfq_mark_cfqq_wait_request(cfqq);
  1573. sl = cfqd->cfq_slice_idle;
  1574. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1575. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
  1576. }
  1577. /*
  1578. * Move request from internal lists to the request queue dispatch list.
  1579. */
  1580. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1581. {
  1582. struct cfq_data *cfqd = q->elevator->elevator_data;
  1583. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1584. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1585. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1586. cfq_remove_request(rq);
  1587. cfqq->dispatched++;
  1588. elv_dispatch_sort(q, rq);
  1589. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1590. cfqq->nr_sectors += blk_rq_sectors(rq);
  1591. }
  1592. /*
  1593. * return expired entry, or NULL to just start from scratch in rbtree
  1594. */
  1595. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1596. {
  1597. struct request *rq = NULL;
  1598. if (cfq_cfqq_fifo_expire(cfqq))
  1599. return NULL;
  1600. cfq_mark_cfqq_fifo_expire(cfqq);
  1601. if (list_empty(&cfqq->fifo))
  1602. return NULL;
  1603. rq = rq_entry_fifo(cfqq->fifo.next);
  1604. if (time_before(jiffies, rq_fifo_time(rq)))
  1605. rq = NULL;
  1606. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1607. return rq;
  1608. }
  1609. static inline int
  1610. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1611. {
  1612. const int base_rq = cfqd->cfq_slice_async_rq;
  1613. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1614. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1615. }
  1616. /*
  1617. * Must be called with the queue_lock held.
  1618. */
  1619. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1620. {
  1621. int process_refs, io_refs;
  1622. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1623. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1624. BUG_ON(process_refs < 0);
  1625. return process_refs;
  1626. }
  1627. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1628. {
  1629. int process_refs, new_process_refs;
  1630. struct cfq_queue *__cfqq;
  1631. /* Avoid a circular list and skip interim queue merges */
  1632. while ((__cfqq = new_cfqq->new_cfqq)) {
  1633. if (__cfqq == cfqq)
  1634. return;
  1635. new_cfqq = __cfqq;
  1636. }
  1637. process_refs = cfqq_process_refs(cfqq);
  1638. /*
  1639. * If the process for the cfqq has gone away, there is no
  1640. * sense in merging the queues.
  1641. */
  1642. if (process_refs == 0)
  1643. return;
  1644. /*
  1645. * Merge in the direction of the lesser amount of work.
  1646. */
  1647. new_process_refs = cfqq_process_refs(new_cfqq);
  1648. if (new_process_refs >= process_refs) {
  1649. cfqq->new_cfqq = new_cfqq;
  1650. atomic_add(process_refs, &new_cfqq->ref);
  1651. } else {
  1652. new_cfqq->new_cfqq = cfqq;
  1653. atomic_add(new_process_refs, &cfqq->ref);
  1654. }
  1655. }
  1656. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1657. struct cfq_group *cfqg, enum wl_prio_t prio)
  1658. {
  1659. struct cfq_queue *queue;
  1660. int i;
  1661. bool key_valid = false;
  1662. unsigned long lowest_key = 0;
  1663. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1664. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1665. /* select the one with lowest rb_key */
  1666. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1667. if (queue &&
  1668. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1669. lowest_key = queue->rb_key;
  1670. cur_best = i;
  1671. key_valid = true;
  1672. }
  1673. }
  1674. return cur_best;
  1675. }
  1676. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1677. {
  1678. unsigned slice;
  1679. unsigned count;
  1680. struct cfq_rb_root *st;
  1681. unsigned group_slice;
  1682. if (!cfqg) {
  1683. cfqd->serving_prio = IDLE_WORKLOAD;
  1684. cfqd->workload_expires = jiffies + 1;
  1685. return;
  1686. }
  1687. /* Choose next priority. RT > BE > IDLE */
  1688. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1689. cfqd->serving_prio = RT_WORKLOAD;
  1690. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1691. cfqd->serving_prio = BE_WORKLOAD;
  1692. else {
  1693. cfqd->serving_prio = IDLE_WORKLOAD;
  1694. cfqd->workload_expires = jiffies + 1;
  1695. return;
  1696. }
  1697. /*
  1698. * For RT and BE, we have to choose also the type
  1699. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1700. * expiration time
  1701. */
  1702. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1703. count = st->count;
  1704. /*
  1705. * check workload expiration, and that we still have other queues ready
  1706. */
  1707. if (count && !time_after(jiffies, cfqd->workload_expires))
  1708. return;
  1709. /* otherwise select new workload type */
  1710. cfqd->serving_type =
  1711. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1712. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1713. count = st->count;
  1714. /*
  1715. * the workload slice is computed as a fraction of target latency
  1716. * proportional to the number of queues in that workload, over
  1717. * all the queues in the same priority class
  1718. */
  1719. group_slice = cfq_group_slice(cfqd, cfqg);
  1720. slice = group_slice * count /
  1721. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1722. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1723. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1724. unsigned int tmp;
  1725. /*
  1726. * Async queues are currently system wide. Just taking
  1727. * proportion of queues with-in same group will lead to higher
  1728. * async ratio system wide as generally root group is going
  1729. * to have higher weight. A more accurate thing would be to
  1730. * calculate system wide asnc/sync ratio.
  1731. */
  1732. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1733. tmp = tmp/cfqd->busy_queues;
  1734. slice = min_t(unsigned, slice, tmp);
  1735. /* async workload slice is scaled down according to
  1736. * the sync/async slice ratio. */
  1737. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1738. } else
  1739. /* sync workload slice is at least 2 * cfq_slice_idle */
  1740. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1741. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1742. cfq_log(cfqd, "workload slice:%d", slice);
  1743. cfqd->workload_expires = jiffies + slice;
  1744. cfqd->noidle_tree_requires_idle = false;
  1745. }
  1746. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1747. {
  1748. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1749. struct cfq_group *cfqg;
  1750. if (RB_EMPTY_ROOT(&st->rb))
  1751. return NULL;
  1752. cfqg = cfq_rb_first_group(st);
  1753. st->active = &cfqg->rb_node;
  1754. update_min_vdisktime(st);
  1755. return cfqg;
  1756. }
  1757. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1758. {
  1759. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1760. cfqd->serving_group = cfqg;
  1761. /* Restore the workload type data */
  1762. if (cfqg->saved_workload_slice) {
  1763. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1764. cfqd->serving_type = cfqg->saved_workload;
  1765. cfqd->serving_prio = cfqg->saved_serving_prio;
  1766. } else
  1767. cfqd->workload_expires = jiffies - 1;
  1768. choose_service_tree(cfqd, cfqg);
  1769. }
  1770. /*
  1771. * Select a queue for service. If we have a current active queue,
  1772. * check whether to continue servicing it, or retrieve and set a new one.
  1773. */
  1774. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1775. {
  1776. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1777. cfqq = cfqd->active_queue;
  1778. if (!cfqq)
  1779. goto new_queue;
  1780. if (!cfqd->rq_queued)
  1781. return NULL;
  1782. /*
  1783. * We were waiting for group to get backlogged. Expire the queue
  1784. */
  1785. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1786. goto expire;
  1787. /*
  1788. * The active queue has run out of time, expire it and select new.
  1789. */
  1790. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1791. /*
  1792. * If slice had not expired at the completion of last request
  1793. * we might not have turned on wait_busy flag. Don't expire
  1794. * the queue yet. Allow the group to get backlogged.
  1795. *
  1796. * The very fact that we have used the slice, that means we
  1797. * have been idling all along on this queue and it should be
  1798. * ok to wait for this request to complete.
  1799. */
  1800. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1801. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1802. cfqq = NULL;
  1803. goto keep_queue;
  1804. } else
  1805. goto expire;
  1806. }
  1807. /*
  1808. * The active queue has requests and isn't expired, allow it to
  1809. * dispatch.
  1810. */
  1811. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1812. goto keep_queue;
  1813. /*
  1814. * If another queue has a request waiting within our mean seek
  1815. * distance, let it run. The expire code will check for close
  1816. * cooperators and put the close queue at the front of the service
  1817. * tree. If possible, merge the expiring queue with the new cfqq.
  1818. */
  1819. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1820. if (new_cfqq) {
  1821. if (!cfqq->new_cfqq)
  1822. cfq_setup_merge(cfqq, new_cfqq);
  1823. goto expire;
  1824. }
  1825. /*
  1826. * No requests pending. If the active queue still has requests in
  1827. * flight or is idling for a new request, allow either of these
  1828. * conditions to happen (or time out) before selecting a new queue.
  1829. */
  1830. if (timer_pending(&cfqd->idle_slice_timer) ||
  1831. (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
  1832. cfqq = NULL;
  1833. goto keep_queue;
  1834. }
  1835. expire:
  1836. cfq_slice_expired(cfqd, 0);
  1837. new_queue:
  1838. /*
  1839. * Current queue expired. Check if we have to switch to a new
  1840. * service tree
  1841. */
  1842. if (!new_cfqq)
  1843. cfq_choose_cfqg(cfqd);
  1844. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1845. keep_queue:
  1846. return cfqq;
  1847. }
  1848. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1849. {
  1850. int dispatched = 0;
  1851. while (cfqq->next_rq) {
  1852. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1853. dispatched++;
  1854. }
  1855. BUG_ON(!list_empty(&cfqq->fifo));
  1856. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1857. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1858. return dispatched;
  1859. }
  1860. /*
  1861. * Drain our current requests. Used for barriers and when switching
  1862. * io schedulers on-the-fly.
  1863. */
  1864. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1865. {
  1866. struct cfq_queue *cfqq;
  1867. int dispatched = 0;
  1868. /* Expire the timeslice of the current active queue first */
  1869. cfq_slice_expired(cfqd, 0);
  1870. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1871. __cfq_set_active_queue(cfqd, cfqq);
  1872. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1873. }
  1874. BUG_ON(cfqd->busy_queues);
  1875. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1876. return dispatched;
  1877. }
  1878. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  1879. struct cfq_queue *cfqq)
  1880. {
  1881. /* the queue hasn't finished any request, can't estimate */
  1882. if (cfq_cfqq_slice_new(cfqq))
  1883. return 1;
  1884. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  1885. cfqq->slice_end))
  1886. return 1;
  1887. return 0;
  1888. }
  1889. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1890. {
  1891. unsigned int max_dispatch;
  1892. /*
  1893. * Drain async requests before we start sync IO
  1894. */
  1895. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  1896. return false;
  1897. /*
  1898. * If this is an async queue and we have sync IO in flight, let it wait
  1899. */
  1900. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  1901. return false;
  1902. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  1903. if (cfq_class_idle(cfqq))
  1904. max_dispatch = 1;
  1905. /*
  1906. * Does this cfqq already have too much IO in flight?
  1907. */
  1908. if (cfqq->dispatched >= max_dispatch) {
  1909. /*
  1910. * idle queue must always only have a single IO in flight
  1911. */
  1912. if (cfq_class_idle(cfqq))
  1913. return false;
  1914. /*
  1915. * We have other queues, don't allow more IO from this one
  1916. */
  1917. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
  1918. return false;
  1919. /*
  1920. * Sole queue user, no limit
  1921. */
  1922. if (cfqd->busy_queues == 1)
  1923. max_dispatch = -1;
  1924. else
  1925. /*
  1926. * Normally we start throttling cfqq when cfq_quantum/2
  1927. * requests have been dispatched. But we can drive
  1928. * deeper queue depths at the beginning of slice
  1929. * subjected to upper limit of cfq_quantum.
  1930. * */
  1931. max_dispatch = cfqd->cfq_quantum;
  1932. }
  1933. /*
  1934. * Async queues must wait a bit before being allowed dispatch.
  1935. * We also ramp up the dispatch depth gradually for async IO,
  1936. * based on the last sync IO we serviced
  1937. */
  1938. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  1939. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  1940. unsigned int depth;
  1941. depth = last_sync / cfqd->cfq_slice[1];
  1942. if (!depth && !cfqq->dispatched)
  1943. depth = 1;
  1944. if (depth < max_dispatch)
  1945. max_dispatch = depth;
  1946. }
  1947. /*
  1948. * If we're below the current max, allow a dispatch
  1949. */
  1950. return cfqq->dispatched < max_dispatch;
  1951. }
  1952. /*
  1953. * Dispatch a request from cfqq, moving them to the request queue
  1954. * dispatch list.
  1955. */
  1956. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1957. {
  1958. struct request *rq;
  1959. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  1960. if (!cfq_may_dispatch(cfqd, cfqq))
  1961. return false;
  1962. /*
  1963. * follow expired path, else get first next available
  1964. */
  1965. rq = cfq_check_fifo(cfqq);
  1966. if (!rq)
  1967. rq = cfqq->next_rq;
  1968. /*
  1969. * insert request into driver dispatch list
  1970. */
  1971. cfq_dispatch_insert(cfqd->queue, rq);
  1972. if (!cfqd->active_cic) {
  1973. struct cfq_io_context *cic = RQ_CIC(rq);
  1974. atomic_long_inc(&cic->ioc->refcount);
  1975. cfqd->active_cic = cic;
  1976. }
  1977. return true;
  1978. }
  1979. /*
  1980. * Find the cfqq that we need to service and move a request from that to the
  1981. * dispatch list
  1982. */
  1983. static int cfq_dispatch_requests(struct request_queue *q, int force)
  1984. {
  1985. struct cfq_data *cfqd = q->elevator->elevator_data;
  1986. struct cfq_queue *cfqq;
  1987. if (!cfqd->busy_queues)
  1988. return 0;
  1989. if (unlikely(force))
  1990. return cfq_forced_dispatch(cfqd);
  1991. cfqq = cfq_select_queue(cfqd);
  1992. if (!cfqq)
  1993. return 0;
  1994. /*
  1995. * Dispatch a request from this cfqq, if it is allowed
  1996. */
  1997. if (!cfq_dispatch_request(cfqd, cfqq))
  1998. return 0;
  1999. cfqq->slice_dispatch++;
  2000. cfq_clear_cfqq_must_dispatch(cfqq);
  2001. /*
  2002. * expire an async queue immediately if it has used up its slice. idle
  2003. * queue always expire after 1 dispatch round.
  2004. */
  2005. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2006. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2007. cfq_class_idle(cfqq))) {
  2008. cfqq->slice_end = jiffies + 1;
  2009. cfq_slice_expired(cfqd, 0);
  2010. }
  2011. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2012. return 1;
  2013. }
  2014. /*
  2015. * task holds one reference to the queue, dropped when task exits. each rq
  2016. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2017. *
  2018. * Each cfq queue took a reference on the parent group. Drop it now.
  2019. * queue lock must be held here.
  2020. */
  2021. static void cfq_put_queue(struct cfq_queue *cfqq)
  2022. {
  2023. struct cfq_data *cfqd = cfqq->cfqd;
  2024. struct cfq_group *cfqg, *orig_cfqg;
  2025. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2026. if (!atomic_dec_and_test(&cfqq->ref))
  2027. return;
  2028. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2029. BUG_ON(rb_first(&cfqq->sort_list));
  2030. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2031. cfqg = cfqq->cfqg;
  2032. orig_cfqg = cfqq->orig_cfqg;
  2033. if (unlikely(cfqd->active_queue == cfqq)) {
  2034. __cfq_slice_expired(cfqd, cfqq, 0);
  2035. cfq_schedule_dispatch(cfqd);
  2036. }
  2037. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2038. kmem_cache_free(cfq_pool, cfqq);
  2039. cfq_put_cfqg(cfqg);
  2040. if (orig_cfqg)
  2041. cfq_put_cfqg(orig_cfqg);
  2042. }
  2043. /*
  2044. * Must always be called with the rcu_read_lock() held
  2045. */
  2046. static void
  2047. __call_for_each_cic(struct io_context *ioc,
  2048. void (*func)(struct io_context *, struct cfq_io_context *))
  2049. {
  2050. struct cfq_io_context *cic;
  2051. struct hlist_node *n;
  2052. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2053. func(ioc, cic);
  2054. }
  2055. /*
  2056. * Call func for each cic attached to this ioc.
  2057. */
  2058. static void
  2059. call_for_each_cic(struct io_context *ioc,
  2060. void (*func)(struct io_context *, struct cfq_io_context *))
  2061. {
  2062. rcu_read_lock();
  2063. __call_for_each_cic(ioc, func);
  2064. rcu_read_unlock();
  2065. }
  2066. static void cfq_cic_free_rcu(struct rcu_head *head)
  2067. {
  2068. struct cfq_io_context *cic;
  2069. cic = container_of(head, struct cfq_io_context, rcu_head);
  2070. kmem_cache_free(cfq_ioc_pool, cic);
  2071. elv_ioc_count_dec(cfq_ioc_count);
  2072. if (ioc_gone) {
  2073. /*
  2074. * CFQ scheduler is exiting, grab exit lock and check
  2075. * the pending io context count. If it hits zero,
  2076. * complete ioc_gone and set it back to NULL
  2077. */
  2078. spin_lock(&ioc_gone_lock);
  2079. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2080. complete(ioc_gone);
  2081. ioc_gone = NULL;
  2082. }
  2083. spin_unlock(&ioc_gone_lock);
  2084. }
  2085. }
  2086. static void cfq_cic_free(struct cfq_io_context *cic)
  2087. {
  2088. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2089. }
  2090. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2091. {
  2092. unsigned long flags;
  2093. BUG_ON(!cic->dead_key);
  2094. spin_lock_irqsave(&ioc->lock, flags);
  2095. radix_tree_delete(&ioc->radix_root, cic->dead_key);
  2096. hlist_del_rcu(&cic->cic_list);
  2097. spin_unlock_irqrestore(&ioc->lock, flags);
  2098. cfq_cic_free(cic);
  2099. }
  2100. /*
  2101. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2102. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2103. * and ->trim() which is called with the task lock held
  2104. */
  2105. static void cfq_free_io_context(struct io_context *ioc)
  2106. {
  2107. /*
  2108. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2109. * so no more cic's are allowed to be linked into this ioc. So it
  2110. * should be ok to iterate over the known list, we will see all cic's
  2111. * since no new ones are added.
  2112. */
  2113. __call_for_each_cic(ioc, cic_free_func);
  2114. }
  2115. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2116. {
  2117. struct cfq_queue *__cfqq, *next;
  2118. if (unlikely(cfqq == cfqd->active_queue)) {
  2119. __cfq_slice_expired(cfqd, cfqq, 0);
  2120. cfq_schedule_dispatch(cfqd);
  2121. }
  2122. /*
  2123. * If this queue was scheduled to merge with another queue, be
  2124. * sure to drop the reference taken on that queue (and others in
  2125. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2126. */
  2127. __cfqq = cfqq->new_cfqq;
  2128. while (__cfqq) {
  2129. if (__cfqq == cfqq) {
  2130. WARN(1, "cfqq->new_cfqq loop detected\n");
  2131. break;
  2132. }
  2133. next = __cfqq->new_cfqq;
  2134. cfq_put_queue(__cfqq);
  2135. __cfqq = next;
  2136. }
  2137. cfq_put_queue(cfqq);
  2138. }
  2139. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2140. struct cfq_io_context *cic)
  2141. {
  2142. struct io_context *ioc = cic->ioc;
  2143. list_del_init(&cic->queue_list);
  2144. /*
  2145. * Make sure key == NULL is seen for dead queues
  2146. */
  2147. smp_wmb();
  2148. cic->dead_key = (unsigned long) cic->key;
  2149. cic->key = NULL;
  2150. if (ioc->ioc_data == cic)
  2151. rcu_assign_pointer(ioc->ioc_data, NULL);
  2152. if (cic->cfqq[BLK_RW_ASYNC]) {
  2153. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2154. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2155. }
  2156. if (cic->cfqq[BLK_RW_SYNC]) {
  2157. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2158. cic->cfqq[BLK_RW_SYNC] = NULL;
  2159. }
  2160. }
  2161. static void cfq_exit_single_io_context(struct io_context *ioc,
  2162. struct cfq_io_context *cic)
  2163. {
  2164. struct cfq_data *cfqd = cic->key;
  2165. if (cfqd) {
  2166. struct request_queue *q = cfqd->queue;
  2167. unsigned long flags;
  2168. spin_lock_irqsave(q->queue_lock, flags);
  2169. /*
  2170. * Ensure we get a fresh copy of the ->key to prevent
  2171. * race between exiting task and queue
  2172. */
  2173. smp_read_barrier_depends();
  2174. if (cic->key)
  2175. __cfq_exit_single_io_context(cfqd, cic);
  2176. spin_unlock_irqrestore(q->queue_lock, flags);
  2177. }
  2178. }
  2179. /*
  2180. * The process that ioc belongs to has exited, we need to clean up
  2181. * and put the internal structures we have that belongs to that process.
  2182. */
  2183. static void cfq_exit_io_context(struct io_context *ioc)
  2184. {
  2185. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2186. }
  2187. static struct cfq_io_context *
  2188. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2189. {
  2190. struct cfq_io_context *cic;
  2191. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2192. cfqd->queue->node);
  2193. if (cic) {
  2194. cic->last_end_request = jiffies;
  2195. INIT_LIST_HEAD(&cic->queue_list);
  2196. INIT_HLIST_NODE(&cic->cic_list);
  2197. cic->dtor = cfq_free_io_context;
  2198. cic->exit = cfq_exit_io_context;
  2199. elv_ioc_count_inc(cfq_ioc_count);
  2200. }
  2201. return cic;
  2202. }
  2203. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2204. {
  2205. struct task_struct *tsk = current;
  2206. int ioprio_class;
  2207. if (!cfq_cfqq_prio_changed(cfqq))
  2208. return;
  2209. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2210. switch (ioprio_class) {
  2211. default:
  2212. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2213. case IOPRIO_CLASS_NONE:
  2214. /*
  2215. * no prio set, inherit CPU scheduling settings
  2216. */
  2217. cfqq->ioprio = task_nice_ioprio(tsk);
  2218. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2219. break;
  2220. case IOPRIO_CLASS_RT:
  2221. cfqq->ioprio = task_ioprio(ioc);
  2222. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2223. break;
  2224. case IOPRIO_CLASS_BE:
  2225. cfqq->ioprio = task_ioprio(ioc);
  2226. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2227. break;
  2228. case IOPRIO_CLASS_IDLE:
  2229. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2230. cfqq->ioprio = 7;
  2231. cfq_clear_cfqq_idle_window(cfqq);
  2232. break;
  2233. }
  2234. /*
  2235. * keep track of original prio settings in case we have to temporarily
  2236. * elevate the priority of this queue
  2237. */
  2238. cfqq->org_ioprio = cfqq->ioprio;
  2239. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2240. cfq_clear_cfqq_prio_changed(cfqq);
  2241. }
  2242. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2243. {
  2244. struct cfq_data *cfqd = cic->key;
  2245. struct cfq_queue *cfqq;
  2246. unsigned long flags;
  2247. if (unlikely(!cfqd))
  2248. return;
  2249. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2250. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2251. if (cfqq) {
  2252. struct cfq_queue *new_cfqq;
  2253. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2254. GFP_ATOMIC);
  2255. if (new_cfqq) {
  2256. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2257. cfq_put_queue(cfqq);
  2258. }
  2259. }
  2260. cfqq = cic->cfqq[BLK_RW_SYNC];
  2261. if (cfqq)
  2262. cfq_mark_cfqq_prio_changed(cfqq);
  2263. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2264. }
  2265. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2266. {
  2267. call_for_each_cic(ioc, changed_ioprio);
  2268. ioc->ioprio_changed = 0;
  2269. }
  2270. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2271. pid_t pid, bool is_sync)
  2272. {
  2273. RB_CLEAR_NODE(&cfqq->rb_node);
  2274. RB_CLEAR_NODE(&cfqq->p_node);
  2275. INIT_LIST_HEAD(&cfqq->fifo);
  2276. atomic_set(&cfqq->ref, 0);
  2277. cfqq->cfqd = cfqd;
  2278. cfq_mark_cfqq_prio_changed(cfqq);
  2279. if (is_sync) {
  2280. if (!cfq_class_idle(cfqq))
  2281. cfq_mark_cfqq_idle_window(cfqq);
  2282. cfq_mark_cfqq_sync(cfqq);
  2283. }
  2284. cfqq->pid = pid;
  2285. }
  2286. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2287. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2288. {
  2289. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2290. struct cfq_data *cfqd = cic->key;
  2291. unsigned long flags;
  2292. struct request_queue *q;
  2293. if (unlikely(!cfqd))
  2294. return;
  2295. q = cfqd->queue;
  2296. spin_lock_irqsave(q->queue_lock, flags);
  2297. if (sync_cfqq) {
  2298. /*
  2299. * Drop reference to sync queue. A new sync queue will be
  2300. * assigned in new group upon arrival of a fresh request.
  2301. */
  2302. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2303. cic_set_cfqq(cic, NULL, 1);
  2304. cfq_put_queue(sync_cfqq);
  2305. }
  2306. spin_unlock_irqrestore(q->queue_lock, flags);
  2307. }
  2308. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2309. {
  2310. call_for_each_cic(ioc, changed_cgroup);
  2311. ioc->cgroup_changed = 0;
  2312. }
  2313. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2314. static struct cfq_queue *
  2315. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2316. struct io_context *ioc, gfp_t gfp_mask)
  2317. {
  2318. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2319. struct cfq_io_context *cic;
  2320. struct cfq_group *cfqg;
  2321. retry:
  2322. cfqg = cfq_get_cfqg(cfqd, 1);
  2323. cic = cfq_cic_lookup(cfqd, ioc);
  2324. /* cic always exists here */
  2325. cfqq = cic_to_cfqq(cic, is_sync);
  2326. /*
  2327. * Always try a new alloc if we fell back to the OOM cfqq
  2328. * originally, since it should just be a temporary situation.
  2329. */
  2330. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2331. cfqq = NULL;
  2332. if (new_cfqq) {
  2333. cfqq = new_cfqq;
  2334. new_cfqq = NULL;
  2335. } else if (gfp_mask & __GFP_WAIT) {
  2336. spin_unlock_irq(cfqd->queue->queue_lock);
  2337. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2338. gfp_mask | __GFP_ZERO,
  2339. cfqd->queue->node);
  2340. spin_lock_irq(cfqd->queue->queue_lock);
  2341. if (new_cfqq)
  2342. goto retry;
  2343. } else {
  2344. cfqq = kmem_cache_alloc_node(cfq_pool,
  2345. gfp_mask | __GFP_ZERO,
  2346. cfqd->queue->node);
  2347. }
  2348. if (cfqq) {
  2349. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2350. cfq_init_prio_data(cfqq, ioc);
  2351. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2352. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2353. } else
  2354. cfqq = &cfqd->oom_cfqq;
  2355. }
  2356. if (new_cfqq)
  2357. kmem_cache_free(cfq_pool, new_cfqq);
  2358. return cfqq;
  2359. }
  2360. static struct cfq_queue **
  2361. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2362. {
  2363. switch (ioprio_class) {
  2364. case IOPRIO_CLASS_RT:
  2365. return &cfqd->async_cfqq[0][ioprio];
  2366. case IOPRIO_CLASS_BE:
  2367. return &cfqd->async_cfqq[1][ioprio];
  2368. case IOPRIO_CLASS_IDLE:
  2369. return &cfqd->async_idle_cfqq;
  2370. default:
  2371. BUG();
  2372. }
  2373. }
  2374. static struct cfq_queue *
  2375. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2376. gfp_t gfp_mask)
  2377. {
  2378. const int ioprio = task_ioprio(ioc);
  2379. const int ioprio_class = task_ioprio_class(ioc);
  2380. struct cfq_queue **async_cfqq = NULL;
  2381. struct cfq_queue *cfqq = NULL;
  2382. if (!is_sync) {
  2383. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2384. cfqq = *async_cfqq;
  2385. }
  2386. if (!cfqq)
  2387. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2388. /*
  2389. * pin the queue now that it's allocated, scheduler exit will prune it
  2390. */
  2391. if (!is_sync && !(*async_cfqq)) {
  2392. atomic_inc(&cfqq->ref);
  2393. *async_cfqq = cfqq;
  2394. }
  2395. atomic_inc(&cfqq->ref);
  2396. return cfqq;
  2397. }
  2398. /*
  2399. * We drop cfq io contexts lazily, so we may find a dead one.
  2400. */
  2401. static void
  2402. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2403. struct cfq_io_context *cic)
  2404. {
  2405. unsigned long flags;
  2406. WARN_ON(!list_empty(&cic->queue_list));
  2407. spin_lock_irqsave(&ioc->lock, flags);
  2408. BUG_ON(ioc->ioc_data == cic);
  2409. radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
  2410. hlist_del_rcu(&cic->cic_list);
  2411. spin_unlock_irqrestore(&ioc->lock, flags);
  2412. cfq_cic_free(cic);
  2413. }
  2414. static struct cfq_io_context *
  2415. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2416. {
  2417. struct cfq_io_context *cic;
  2418. unsigned long flags;
  2419. void *k;
  2420. if (unlikely(!ioc))
  2421. return NULL;
  2422. rcu_read_lock();
  2423. /*
  2424. * we maintain a last-hit cache, to avoid browsing over the tree
  2425. */
  2426. cic = rcu_dereference(ioc->ioc_data);
  2427. if (cic && cic->key == cfqd) {
  2428. rcu_read_unlock();
  2429. return cic;
  2430. }
  2431. do {
  2432. cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
  2433. rcu_read_unlock();
  2434. if (!cic)
  2435. break;
  2436. /* ->key must be copied to avoid race with cfq_exit_queue() */
  2437. k = cic->key;
  2438. if (unlikely(!k)) {
  2439. cfq_drop_dead_cic(cfqd, ioc, cic);
  2440. rcu_read_lock();
  2441. continue;
  2442. }
  2443. spin_lock_irqsave(&ioc->lock, flags);
  2444. rcu_assign_pointer(ioc->ioc_data, cic);
  2445. spin_unlock_irqrestore(&ioc->lock, flags);
  2446. break;
  2447. } while (1);
  2448. return cic;
  2449. }
  2450. /*
  2451. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2452. * the process specific cfq io context when entered from the block layer.
  2453. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2454. */
  2455. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2456. struct cfq_io_context *cic, gfp_t gfp_mask)
  2457. {
  2458. unsigned long flags;
  2459. int ret;
  2460. ret = radix_tree_preload(gfp_mask);
  2461. if (!ret) {
  2462. cic->ioc = ioc;
  2463. cic->key = cfqd;
  2464. spin_lock_irqsave(&ioc->lock, flags);
  2465. ret = radix_tree_insert(&ioc->radix_root,
  2466. (unsigned long) cfqd, cic);
  2467. if (!ret)
  2468. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2469. spin_unlock_irqrestore(&ioc->lock, flags);
  2470. radix_tree_preload_end();
  2471. if (!ret) {
  2472. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2473. list_add(&cic->queue_list, &cfqd->cic_list);
  2474. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2475. }
  2476. }
  2477. if (ret)
  2478. printk(KERN_ERR "cfq: cic link failed!\n");
  2479. return ret;
  2480. }
  2481. /*
  2482. * Setup general io context and cfq io context. There can be several cfq
  2483. * io contexts per general io context, if this process is doing io to more
  2484. * than one device managed by cfq.
  2485. */
  2486. static struct cfq_io_context *
  2487. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2488. {
  2489. struct io_context *ioc = NULL;
  2490. struct cfq_io_context *cic;
  2491. might_sleep_if(gfp_mask & __GFP_WAIT);
  2492. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2493. if (!ioc)
  2494. return NULL;
  2495. cic = cfq_cic_lookup(cfqd, ioc);
  2496. if (cic)
  2497. goto out;
  2498. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2499. if (cic == NULL)
  2500. goto err;
  2501. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2502. goto err_free;
  2503. out:
  2504. smp_read_barrier_depends();
  2505. if (unlikely(ioc->ioprio_changed))
  2506. cfq_ioc_set_ioprio(ioc);
  2507. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2508. if (unlikely(ioc->cgroup_changed))
  2509. cfq_ioc_set_cgroup(ioc);
  2510. #endif
  2511. return cic;
  2512. err_free:
  2513. cfq_cic_free(cic);
  2514. err:
  2515. put_io_context(ioc);
  2516. return NULL;
  2517. }
  2518. static void
  2519. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2520. {
  2521. unsigned long elapsed = jiffies - cic->last_end_request;
  2522. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2523. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2524. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2525. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2526. }
  2527. static void
  2528. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2529. struct request *rq)
  2530. {
  2531. sector_t sdist = 0;
  2532. sector_t n_sec = blk_rq_sectors(rq);
  2533. if (cfqq->last_request_pos) {
  2534. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2535. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2536. else
  2537. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2538. }
  2539. cfqq->seek_history <<= 1;
  2540. if (blk_queue_nonrot(cfqd->queue))
  2541. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2542. else
  2543. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2544. }
  2545. /*
  2546. * Disable idle window if the process thinks too long or seeks so much that
  2547. * it doesn't matter
  2548. */
  2549. static void
  2550. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2551. struct cfq_io_context *cic)
  2552. {
  2553. int old_idle, enable_idle;
  2554. /*
  2555. * Don't idle for async or idle io prio class
  2556. */
  2557. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2558. return;
  2559. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2560. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2561. cfq_mark_cfqq_deep(cfqq);
  2562. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2563. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2564. enable_idle = 0;
  2565. else if (sample_valid(cic->ttime_samples)) {
  2566. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2567. enable_idle = 0;
  2568. else
  2569. enable_idle = 1;
  2570. }
  2571. if (old_idle != enable_idle) {
  2572. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2573. if (enable_idle)
  2574. cfq_mark_cfqq_idle_window(cfqq);
  2575. else
  2576. cfq_clear_cfqq_idle_window(cfqq);
  2577. }
  2578. }
  2579. /*
  2580. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2581. * no or if we aren't sure, a 1 will cause a preempt.
  2582. */
  2583. static bool
  2584. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2585. struct request *rq)
  2586. {
  2587. struct cfq_queue *cfqq;
  2588. cfqq = cfqd->active_queue;
  2589. if (!cfqq)
  2590. return false;
  2591. if (cfq_class_idle(new_cfqq))
  2592. return false;
  2593. if (cfq_class_idle(cfqq))
  2594. return true;
  2595. /*
  2596. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2597. */
  2598. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2599. return false;
  2600. /*
  2601. * if the new request is sync, but the currently running queue is
  2602. * not, let the sync request have priority.
  2603. */
  2604. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2605. return true;
  2606. if (new_cfqq->cfqg != cfqq->cfqg)
  2607. return false;
  2608. if (cfq_slice_used(cfqq))
  2609. return true;
  2610. /* Allow preemption only if we are idling on sync-noidle tree */
  2611. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2612. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2613. new_cfqq->service_tree->count == 2 &&
  2614. RB_EMPTY_ROOT(&cfqq->sort_list))
  2615. return true;
  2616. /*
  2617. * So both queues are sync. Let the new request get disk time if
  2618. * it's a metadata request and the current queue is doing regular IO.
  2619. */
  2620. if (rq_is_meta(rq) && !cfqq->meta_pending)
  2621. return true;
  2622. /*
  2623. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2624. */
  2625. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2626. return true;
  2627. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2628. return false;
  2629. /*
  2630. * if this request is as-good as one we would expect from the
  2631. * current cfqq, let it preempt
  2632. */
  2633. if (cfq_rq_close(cfqd, cfqq, rq))
  2634. return true;
  2635. return false;
  2636. }
  2637. /*
  2638. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2639. * let it have half of its nominal slice.
  2640. */
  2641. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2642. {
  2643. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2644. cfq_slice_expired(cfqd, 1);
  2645. /*
  2646. * Put the new queue at the front of the of the current list,
  2647. * so we know that it will be selected next.
  2648. */
  2649. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2650. cfq_service_tree_add(cfqd, cfqq, 1);
  2651. cfqq->slice_end = 0;
  2652. cfq_mark_cfqq_slice_new(cfqq);
  2653. }
  2654. /*
  2655. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2656. * something we should do about it
  2657. */
  2658. static void
  2659. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2660. struct request *rq)
  2661. {
  2662. struct cfq_io_context *cic = RQ_CIC(rq);
  2663. cfqd->rq_queued++;
  2664. if (rq_is_meta(rq))
  2665. cfqq->meta_pending++;
  2666. cfq_update_io_thinktime(cfqd, cic);
  2667. cfq_update_io_seektime(cfqd, cfqq, rq);
  2668. cfq_update_idle_window(cfqd, cfqq, cic);
  2669. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2670. if (cfqq == cfqd->active_queue) {
  2671. /*
  2672. * Remember that we saw a request from this process, but
  2673. * don't start queuing just yet. Otherwise we risk seeing lots
  2674. * of tiny requests, because we disrupt the normal plugging
  2675. * and merging. If the request is already larger than a single
  2676. * page, let it rip immediately. For that case we assume that
  2677. * merging is already done. Ditto for a busy system that
  2678. * has other work pending, don't risk delaying until the
  2679. * idle timer unplug to continue working.
  2680. */
  2681. if (cfq_cfqq_wait_request(cfqq)) {
  2682. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2683. cfqd->busy_queues > 1) {
  2684. del_timer(&cfqd->idle_slice_timer);
  2685. cfq_clear_cfqq_wait_request(cfqq);
  2686. __blk_run_queue(cfqd->queue);
  2687. } else
  2688. cfq_mark_cfqq_must_dispatch(cfqq);
  2689. }
  2690. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2691. /*
  2692. * not the active queue - expire current slice if it is
  2693. * idle and has expired it's mean thinktime or this new queue
  2694. * has some old slice time left and is of higher priority or
  2695. * this new queue is RT and the current one is BE
  2696. */
  2697. cfq_preempt_queue(cfqd, cfqq);
  2698. __blk_run_queue(cfqd->queue);
  2699. }
  2700. }
  2701. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2702. {
  2703. struct cfq_data *cfqd = q->elevator->elevator_data;
  2704. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2705. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2706. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2707. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2708. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2709. cfq_add_rq_rb(rq);
  2710. cfq_rq_enqueued(cfqd, cfqq, rq);
  2711. }
  2712. /*
  2713. * Update hw_tag based on peak queue depth over 50 samples under
  2714. * sufficient load.
  2715. */
  2716. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2717. {
  2718. struct cfq_queue *cfqq = cfqd->active_queue;
  2719. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2720. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2721. if (cfqd->hw_tag == 1)
  2722. return;
  2723. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2724. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2725. return;
  2726. /*
  2727. * If active queue hasn't enough requests and can idle, cfq might not
  2728. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2729. * case
  2730. */
  2731. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2732. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2733. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2734. return;
  2735. if (cfqd->hw_tag_samples++ < 50)
  2736. return;
  2737. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2738. cfqd->hw_tag = 1;
  2739. else
  2740. cfqd->hw_tag = 0;
  2741. }
  2742. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2743. {
  2744. struct cfq_io_context *cic = cfqd->active_cic;
  2745. /* If there are other queues in the group, don't wait */
  2746. if (cfqq->cfqg->nr_cfqq > 1)
  2747. return false;
  2748. if (cfq_slice_used(cfqq))
  2749. return true;
  2750. /* if slice left is less than think time, wait busy */
  2751. if (cic && sample_valid(cic->ttime_samples)
  2752. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2753. return true;
  2754. /*
  2755. * If think times is less than a jiffy than ttime_mean=0 and above
  2756. * will not be true. It might happen that slice has not expired yet
  2757. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2758. * case where think time is less than a jiffy, mark the queue wait
  2759. * busy if only 1 jiffy is left in the slice.
  2760. */
  2761. if (cfqq->slice_end - jiffies == 1)
  2762. return true;
  2763. return false;
  2764. }
  2765. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2766. {
  2767. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2768. struct cfq_data *cfqd = cfqq->cfqd;
  2769. const int sync = rq_is_sync(rq);
  2770. unsigned long now;
  2771. now = jiffies;
  2772. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
  2773. cfq_update_hw_tag(cfqd);
  2774. WARN_ON(!cfqd->rq_in_driver);
  2775. WARN_ON(!cfqq->dispatched);
  2776. cfqd->rq_in_driver--;
  2777. cfqq->dispatched--;
  2778. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2779. if (sync) {
  2780. RQ_CIC(rq)->last_end_request = now;
  2781. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2782. cfqd->last_delayed_sync = now;
  2783. }
  2784. /*
  2785. * If this is the active queue, check if it needs to be expired,
  2786. * or if we want to idle in case it has no pending requests.
  2787. */
  2788. if (cfqd->active_queue == cfqq) {
  2789. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2790. if (cfq_cfqq_slice_new(cfqq)) {
  2791. cfq_set_prio_slice(cfqd, cfqq);
  2792. cfq_clear_cfqq_slice_new(cfqq);
  2793. }
  2794. /*
  2795. * Should we wait for next request to come in before we expire
  2796. * the queue.
  2797. */
  2798. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2799. cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
  2800. cfq_mark_cfqq_wait_busy(cfqq);
  2801. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2802. }
  2803. /*
  2804. * Idling is not enabled on:
  2805. * - expired queues
  2806. * - idle-priority queues
  2807. * - async queues
  2808. * - queues with still some requests queued
  2809. * - when there is a close cooperator
  2810. */
  2811. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2812. cfq_slice_expired(cfqd, 1);
  2813. else if (sync && cfqq_empty &&
  2814. !cfq_close_cooperator(cfqd, cfqq)) {
  2815. cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
  2816. /*
  2817. * Idling is enabled for SYNC_WORKLOAD.
  2818. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2819. * only if we processed at least one !rq_noidle request
  2820. */
  2821. if (cfqd->serving_type == SYNC_WORKLOAD
  2822. || cfqd->noidle_tree_requires_idle
  2823. || cfqq->cfqg->nr_cfqq == 1)
  2824. cfq_arm_slice_timer(cfqd);
  2825. }
  2826. }
  2827. if (!cfqd->rq_in_driver)
  2828. cfq_schedule_dispatch(cfqd);
  2829. }
  2830. /*
  2831. * we temporarily boost lower priority queues if they are holding fs exclusive
  2832. * resources. they are boosted to normal prio (CLASS_BE/4)
  2833. */
  2834. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2835. {
  2836. if (has_fs_excl()) {
  2837. /*
  2838. * boost idle prio on transactions that would lock out other
  2839. * users of the filesystem
  2840. */
  2841. if (cfq_class_idle(cfqq))
  2842. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2843. if (cfqq->ioprio > IOPRIO_NORM)
  2844. cfqq->ioprio = IOPRIO_NORM;
  2845. } else {
  2846. /*
  2847. * unboost the queue (if needed)
  2848. */
  2849. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2850. cfqq->ioprio = cfqq->org_ioprio;
  2851. }
  2852. }
  2853. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2854. {
  2855. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2856. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2857. return ELV_MQUEUE_MUST;
  2858. }
  2859. return ELV_MQUEUE_MAY;
  2860. }
  2861. static int cfq_may_queue(struct request_queue *q, int rw)
  2862. {
  2863. struct cfq_data *cfqd = q->elevator->elevator_data;
  2864. struct task_struct *tsk = current;
  2865. struct cfq_io_context *cic;
  2866. struct cfq_queue *cfqq;
  2867. /*
  2868. * don't force setup of a queue from here, as a call to may_queue
  2869. * does not necessarily imply that a request actually will be queued.
  2870. * so just lookup a possibly existing queue, or return 'may queue'
  2871. * if that fails
  2872. */
  2873. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2874. if (!cic)
  2875. return ELV_MQUEUE_MAY;
  2876. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2877. if (cfqq) {
  2878. cfq_init_prio_data(cfqq, cic->ioc);
  2879. cfq_prio_boost(cfqq);
  2880. return __cfq_may_queue(cfqq);
  2881. }
  2882. return ELV_MQUEUE_MAY;
  2883. }
  2884. /*
  2885. * queue lock held here
  2886. */
  2887. static void cfq_put_request(struct request *rq)
  2888. {
  2889. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2890. if (cfqq) {
  2891. const int rw = rq_data_dir(rq);
  2892. BUG_ON(!cfqq->allocated[rw]);
  2893. cfqq->allocated[rw]--;
  2894. put_io_context(RQ_CIC(rq)->ioc);
  2895. rq->elevator_private = NULL;
  2896. rq->elevator_private2 = NULL;
  2897. cfq_put_queue(cfqq);
  2898. }
  2899. }
  2900. static struct cfq_queue *
  2901. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  2902. struct cfq_queue *cfqq)
  2903. {
  2904. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2905. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2906. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2907. cfq_put_queue(cfqq);
  2908. return cic_to_cfqq(cic, 1);
  2909. }
  2910. /*
  2911. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2912. * was the last process referring to said cfqq.
  2913. */
  2914. static struct cfq_queue *
  2915. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  2916. {
  2917. if (cfqq_process_refs(cfqq) == 1) {
  2918. cfqq->pid = current->pid;
  2919. cfq_clear_cfqq_coop(cfqq);
  2920. cfq_clear_cfqq_split_coop(cfqq);
  2921. return cfqq;
  2922. }
  2923. cic_set_cfqq(cic, NULL, 1);
  2924. cfq_put_queue(cfqq);
  2925. return NULL;
  2926. }
  2927. /*
  2928. * Allocate cfq data structures associated with this request.
  2929. */
  2930. static int
  2931. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  2932. {
  2933. struct cfq_data *cfqd = q->elevator->elevator_data;
  2934. struct cfq_io_context *cic;
  2935. const int rw = rq_data_dir(rq);
  2936. const bool is_sync = rq_is_sync(rq);
  2937. struct cfq_queue *cfqq;
  2938. unsigned long flags;
  2939. might_sleep_if(gfp_mask & __GFP_WAIT);
  2940. cic = cfq_get_io_context(cfqd, gfp_mask);
  2941. spin_lock_irqsave(q->queue_lock, flags);
  2942. if (!cic)
  2943. goto queue_fail;
  2944. new_queue:
  2945. cfqq = cic_to_cfqq(cic, is_sync);
  2946. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2947. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  2948. cic_set_cfqq(cic, cfqq, is_sync);
  2949. } else {
  2950. /*
  2951. * If the queue was seeky for too long, break it apart.
  2952. */
  2953. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  2954. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2955. cfqq = split_cfqq(cic, cfqq);
  2956. if (!cfqq)
  2957. goto new_queue;
  2958. }
  2959. /*
  2960. * Check to see if this queue is scheduled to merge with
  2961. * another, closely cooperating queue. The merging of
  2962. * queues happens here as it must be done in process context.
  2963. * The reference on new_cfqq was taken in merge_cfqqs.
  2964. */
  2965. if (cfqq->new_cfqq)
  2966. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2967. }
  2968. cfqq->allocated[rw]++;
  2969. atomic_inc(&cfqq->ref);
  2970. spin_unlock_irqrestore(q->queue_lock, flags);
  2971. rq->elevator_private = cic;
  2972. rq->elevator_private2 = cfqq;
  2973. return 0;
  2974. queue_fail:
  2975. if (cic)
  2976. put_io_context(cic->ioc);
  2977. cfq_schedule_dispatch(cfqd);
  2978. spin_unlock_irqrestore(q->queue_lock, flags);
  2979. cfq_log(cfqd, "set_request fail");
  2980. return 1;
  2981. }
  2982. static void cfq_kick_queue(struct work_struct *work)
  2983. {
  2984. struct cfq_data *cfqd =
  2985. container_of(work, struct cfq_data, unplug_work);
  2986. struct request_queue *q = cfqd->queue;
  2987. spin_lock_irq(q->queue_lock);
  2988. __blk_run_queue(cfqd->queue);
  2989. spin_unlock_irq(q->queue_lock);
  2990. }
  2991. /*
  2992. * Timer running if the active_queue is currently idling inside its time slice
  2993. */
  2994. static void cfq_idle_slice_timer(unsigned long data)
  2995. {
  2996. struct cfq_data *cfqd = (struct cfq_data *) data;
  2997. struct cfq_queue *cfqq;
  2998. unsigned long flags;
  2999. int timed_out = 1;
  3000. cfq_log(cfqd, "idle timer fired");
  3001. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3002. cfqq = cfqd->active_queue;
  3003. if (cfqq) {
  3004. timed_out = 0;
  3005. /*
  3006. * We saw a request before the queue expired, let it through
  3007. */
  3008. if (cfq_cfqq_must_dispatch(cfqq))
  3009. goto out_kick;
  3010. /*
  3011. * expired
  3012. */
  3013. if (cfq_slice_used(cfqq))
  3014. goto expire;
  3015. /*
  3016. * only expire and reinvoke request handler, if there are
  3017. * other queues with pending requests
  3018. */
  3019. if (!cfqd->busy_queues)
  3020. goto out_cont;
  3021. /*
  3022. * not expired and it has a request pending, let it dispatch
  3023. */
  3024. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3025. goto out_kick;
  3026. /*
  3027. * Queue depth flag is reset only when the idle didn't succeed
  3028. */
  3029. cfq_clear_cfqq_deep(cfqq);
  3030. }
  3031. expire:
  3032. cfq_slice_expired(cfqd, timed_out);
  3033. out_kick:
  3034. cfq_schedule_dispatch(cfqd);
  3035. out_cont:
  3036. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3037. }
  3038. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3039. {
  3040. del_timer_sync(&cfqd->idle_slice_timer);
  3041. cancel_work_sync(&cfqd->unplug_work);
  3042. }
  3043. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3044. {
  3045. int i;
  3046. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3047. if (cfqd->async_cfqq[0][i])
  3048. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3049. if (cfqd->async_cfqq[1][i])
  3050. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3051. }
  3052. if (cfqd->async_idle_cfqq)
  3053. cfq_put_queue(cfqd->async_idle_cfqq);
  3054. }
  3055. static void cfq_cfqd_free(struct rcu_head *head)
  3056. {
  3057. kfree(container_of(head, struct cfq_data, rcu));
  3058. }
  3059. static void cfq_exit_queue(struct elevator_queue *e)
  3060. {
  3061. struct cfq_data *cfqd = e->elevator_data;
  3062. struct request_queue *q = cfqd->queue;
  3063. cfq_shutdown_timer_wq(cfqd);
  3064. spin_lock_irq(q->queue_lock);
  3065. if (cfqd->active_queue)
  3066. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3067. while (!list_empty(&cfqd->cic_list)) {
  3068. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3069. struct cfq_io_context,
  3070. queue_list);
  3071. __cfq_exit_single_io_context(cfqd, cic);
  3072. }
  3073. cfq_put_async_queues(cfqd);
  3074. cfq_release_cfq_groups(cfqd);
  3075. blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3076. spin_unlock_irq(q->queue_lock);
  3077. cfq_shutdown_timer_wq(cfqd);
  3078. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3079. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3080. }
  3081. static void *cfq_init_queue(struct request_queue *q)
  3082. {
  3083. struct cfq_data *cfqd;
  3084. int i, j;
  3085. struct cfq_group *cfqg;
  3086. struct cfq_rb_root *st;
  3087. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3088. if (!cfqd)
  3089. return NULL;
  3090. /* Init root service tree */
  3091. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3092. /* Init root group */
  3093. cfqg = &cfqd->root_group;
  3094. for_each_cfqg_st(cfqg, i, j, st)
  3095. *st = CFQ_RB_ROOT;
  3096. RB_CLEAR_NODE(&cfqg->rb_node);
  3097. /* Give preference to root group over other groups */
  3098. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3099. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3100. /*
  3101. * Take a reference to root group which we never drop. This is just
  3102. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3103. */
  3104. atomic_set(&cfqg->ref, 1);
  3105. rcu_read_lock();
  3106. blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
  3107. 0);
  3108. rcu_read_unlock();
  3109. #endif
  3110. /*
  3111. * Not strictly needed (since RB_ROOT just clears the node and we
  3112. * zeroed cfqd on alloc), but better be safe in case someone decides
  3113. * to add magic to the rb code
  3114. */
  3115. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3116. cfqd->prio_trees[i] = RB_ROOT;
  3117. /*
  3118. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3119. * Grab a permanent reference to it, so that the normal code flow
  3120. * will not attempt to free it.
  3121. */
  3122. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3123. atomic_inc(&cfqd->oom_cfqq.ref);
  3124. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3125. INIT_LIST_HEAD(&cfqd->cic_list);
  3126. cfqd->queue = q;
  3127. init_timer(&cfqd->idle_slice_timer);
  3128. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3129. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3130. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3131. cfqd->cfq_quantum = cfq_quantum;
  3132. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3133. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3134. cfqd->cfq_back_max = cfq_back_max;
  3135. cfqd->cfq_back_penalty = cfq_back_penalty;
  3136. cfqd->cfq_slice[0] = cfq_slice_async;
  3137. cfqd->cfq_slice[1] = cfq_slice_sync;
  3138. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3139. cfqd->cfq_slice_idle = cfq_slice_idle;
  3140. cfqd->cfq_latency = 1;
  3141. cfqd->cfq_group_isolation = 0;
  3142. cfqd->hw_tag = -1;
  3143. /*
  3144. * we optimistically start assuming sync ops weren't delayed in last
  3145. * second, in order to have larger depth for async operations.
  3146. */
  3147. cfqd->last_delayed_sync = jiffies - HZ;
  3148. INIT_RCU_HEAD(&cfqd->rcu);
  3149. return cfqd;
  3150. }
  3151. static void cfq_slab_kill(void)
  3152. {
  3153. /*
  3154. * Caller already ensured that pending RCU callbacks are completed,
  3155. * so we should have no busy allocations at this point.
  3156. */
  3157. if (cfq_pool)
  3158. kmem_cache_destroy(cfq_pool);
  3159. if (cfq_ioc_pool)
  3160. kmem_cache_destroy(cfq_ioc_pool);
  3161. }
  3162. static int __init cfq_slab_setup(void)
  3163. {
  3164. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3165. if (!cfq_pool)
  3166. goto fail;
  3167. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3168. if (!cfq_ioc_pool)
  3169. goto fail;
  3170. return 0;
  3171. fail:
  3172. cfq_slab_kill();
  3173. return -ENOMEM;
  3174. }
  3175. /*
  3176. * sysfs parts below -->
  3177. */
  3178. static ssize_t
  3179. cfq_var_show(unsigned int var, char *page)
  3180. {
  3181. return sprintf(page, "%d\n", var);
  3182. }
  3183. static ssize_t
  3184. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3185. {
  3186. char *p = (char *) page;
  3187. *var = simple_strtoul(p, &p, 10);
  3188. return count;
  3189. }
  3190. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3191. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3192. { \
  3193. struct cfq_data *cfqd = e->elevator_data; \
  3194. unsigned int __data = __VAR; \
  3195. if (__CONV) \
  3196. __data = jiffies_to_msecs(__data); \
  3197. return cfq_var_show(__data, (page)); \
  3198. }
  3199. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3200. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3201. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3202. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3203. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3204. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3205. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3206. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3207. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3208. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3209. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3210. #undef SHOW_FUNCTION
  3211. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3212. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3213. { \
  3214. struct cfq_data *cfqd = e->elevator_data; \
  3215. unsigned int __data; \
  3216. int ret = cfq_var_store(&__data, (page), count); \
  3217. if (__data < (MIN)) \
  3218. __data = (MIN); \
  3219. else if (__data > (MAX)) \
  3220. __data = (MAX); \
  3221. if (__CONV) \
  3222. *(__PTR) = msecs_to_jiffies(__data); \
  3223. else \
  3224. *(__PTR) = __data; \
  3225. return ret; \
  3226. }
  3227. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3228. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3229. UINT_MAX, 1);
  3230. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3231. UINT_MAX, 1);
  3232. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3233. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3234. UINT_MAX, 0);
  3235. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3236. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3237. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3238. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3239. UINT_MAX, 0);
  3240. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3241. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3242. #undef STORE_FUNCTION
  3243. #define CFQ_ATTR(name) \
  3244. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3245. static struct elv_fs_entry cfq_attrs[] = {
  3246. CFQ_ATTR(quantum),
  3247. CFQ_ATTR(fifo_expire_sync),
  3248. CFQ_ATTR(fifo_expire_async),
  3249. CFQ_ATTR(back_seek_max),
  3250. CFQ_ATTR(back_seek_penalty),
  3251. CFQ_ATTR(slice_sync),
  3252. CFQ_ATTR(slice_async),
  3253. CFQ_ATTR(slice_async_rq),
  3254. CFQ_ATTR(slice_idle),
  3255. CFQ_ATTR(low_latency),
  3256. CFQ_ATTR(group_isolation),
  3257. __ATTR_NULL
  3258. };
  3259. static struct elevator_type iosched_cfq = {
  3260. .ops = {
  3261. .elevator_merge_fn = cfq_merge,
  3262. .elevator_merged_fn = cfq_merged_request,
  3263. .elevator_merge_req_fn = cfq_merged_requests,
  3264. .elevator_allow_merge_fn = cfq_allow_merge,
  3265. .elevator_dispatch_fn = cfq_dispatch_requests,
  3266. .elevator_add_req_fn = cfq_insert_request,
  3267. .elevator_activate_req_fn = cfq_activate_request,
  3268. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3269. .elevator_queue_empty_fn = cfq_queue_empty,
  3270. .elevator_completed_req_fn = cfq_completed_request,
  3271. .elevator_former_req_fn = elv_rb_former_request,
  3272. .elevator_latter_req_fn = elv_rb_latter_request,
  3273. .elevator_set_req_fn = cfq_set_request,
  3274. .elevator_put_req_fn = cfq_put_request,
  3275. .elevator_may_queue_fn = cfq_may_queue,
  3276. .elevator_init_fn = cfq_init_queue,
  3277. .elevator_exit_fn = cfq_exit_queue,
  3278. .trim = cfq_free_io_context,
  3279. },
  3280. .elevator_attrs = cfq_attrs,
  3281. .elevator_name = "cfq",
  3282. .elevator_owner = THIS_MODULE,
  3283. };
  3284. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3285. static struct blkio_policy_type blkio_policy_cfq = {
  3286. .ops = {
  3287. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3288. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3289. },
  3290. };
  3291. #else
  3292. static struct blkio_policy_type blkio_policy_cfq;
  3293. #endif
  3294. static int __init cfq_init(void)
  3295. {
  3296. /*
  3297. * could be 0 on HZ < 1000 setups
  3298. */
  3299. if (!cfq_slice_async)
  3300. cfq_slice_async = 1;
  3301. if (!cfq_slice_idle)
  3302. cfq_slice_idle = 1;
  3303. if (cfq_slab_setup())
  3304. return -ENOMEM;
  3305. elv_register(&iosched_cfq);
  3306. blkio_policy_register(&blkio_policy_cfq);
  3307. return 0;
  3308. }
  3309. static void __exit cfq_exit(void)
  3310. {
  3311. DECLARE_COMPLETION_ONSTACK(all_gone);
  3312. blkio_policy_unregister(&blkio_policy_cfq);
  3313. elv_unregister(&iosched_cfq);
  3314. ioc_gone = &all_gone;
  3315. /* ioc_gone's update must be visible before reading ioc_count */
  3316. smp_wmb();
  3317. /*
  3318. * this also protects us from entering cfq_slab_kill() with
  3319. * pending RCU callbacks
  3320. */
  3321. if (elv_ioc_count_read(cfq_ioc_count))
  3322. wait_for_completion(&all_gone);
  3323. cfq_slab_kill();
  3324. }
  3325. module_init(cfq_init);
  3326. module_exit(cfq_exit);
  3327. MODULE_AUTHOR("Jens Axboe");
  3328. MODULE_LICENSE("GPL");
  3329. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");