sched_fair.c 109 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. /*
  26. * Targeted preemption latency for CPU-bound tasks:
  27. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  28. *
  29. * NOTE: this latency value is not the same as the concept of
  30. * 'timeslice length' - timeslices in CFS are of variable length
  31. * and have no persistent notion like in traditional, time-slice
  32. * based scheduling concepts.
  33. *
  34. * (to see the precise effective timeslice length of your workload,
  35. * run vmstat and monitor the context-switches (cs) field)
  36. */
  37. unsigned int sysctl_sched_latency = 6000000ULL;
  38. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  39. /*
  40. * The initial- and re-scaling of tunables is configurable
  41. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  42. *
  43. * Options are:
  44. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  45. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  46. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  47. */
  48. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  49. = SCHED_TUNABLESCALING_LOG;
  50. /*
  51. * Minimal preemption granularity for CPU-bound tasks:
  52. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  53. */
  54. unsigned int sysctl_sched_min_granularity = 750000ULL;
  55. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  56. /*
  57. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  58. */
  59. static unsigned int sched_nr_latency = 8;
  60. /*
  61. * After fork, child runs first. If set to 0 (default) then
  62. * parent will (try to) run first.
  63. */
  64. unsigned int sysctl_sched_child_runs_first __read_mostly;
  65. /*
  66. * SCHED_OTHER wake-up granularity.
  67. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68. *
  69. * This option delays the preemption effects of decoupled workloads
  70. * and reduces their over-scheduling. Synchronous workloads will still
  71. * have immediate wakeup/sleep latencies.
  72. */
  73. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  74. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  75. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  76. /*
  77. * The exponential sliding window over which load is averaged for shares
  78. * distribution.
  79. * (default: 10msec)
  80. */
  81. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  119. * another cpu ('this_cpu')
  120. */
  121. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  122. {
  123. return cfs_rq->tg->cfs_rq[this_cpu];
  124. }
  125. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  126. {
  127. if (!cfs_rq->on_list) {
  128. /*
  129. * Ensure we either appear before our parent (if already
  130. * enqueued) or force our parent to appear after us when it is
  131. * enqueued. The fact that we always enqueue bottom-up
  132. * reduces this to two cases.
  133. */
  134. if (cfs_rq->tg->parent &&
  135. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  136. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  137. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  138. } else {
  139. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  140. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  141. }
  142. cfs_rq->on_list = 1;
  143. }
  144. }
  145. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  146. {
  147. if (cfs_rq->on_list) {
  148. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  149. cfs_rq->on_list = 0;
  150. }
  151. }
  152. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  153. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  154. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  155. /* Do the two (enqueued) entities belong to the same group ? */
  156. static inline int
  157. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  158. {
  159. if (se->cfs_rq == pse->cfs_rq)
  160. return 1;
  161. return 0;
  162. }
  163. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  164. {
  165. return se->parent;
  166. }
  167. /* return depth at which a sched entity is present in the hierarchy */
  168. static inline int depth_se(struct sched_entity *se)
  169. {
  170. int depth = 0;
  171. for_each_sched_entity(se)
  172. depth++;
  173. return depth;
  174. }
  175. static void
  176. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  177. {
  178. int se_depth, pse_depth;
  179. /*
  180. * preemption test can be made between sibling entities who are in the
  181. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  182. * both tasks until we find their ancestors who are siblings of common
  183. * parent.
  184. */
  185. /* First walk up until both entities are at same depth */
  186. se_depth = depth_se(*se);
  187. pse_depth = depth_se(*pse);
  188. while (se_depth > pse_depth) {
  189. se_depth--;
  190. *se = parent_entity(*se);
  191. }
  192. while (pse_depth > se_depth) {
  193. pse_depth--;
  194. *pse = parent_entity(*pse);
  195. }
  196. while (!is_same_group(*se, *pse)) {
  197. *se = parent_entity(*se);
  198. *pse = parent_entity(*pse);
  199. }
  200. }
  201. #else /* !CONFIG_FAIR_GROUP_SCHED */
  202. static inline struct task_struct *task_of(struct sched_entity *se)
  203. {
  204. return container_of(se, struct task_struct, se);
  205. }
  206. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  207. {
  208. return container_of(cfs_rq, struct rq, cfs);
  209. }
  210. #define entity_is_task(se) 1
  211. #define for_each_sched_entity(se) \
  212. for (; se; se = NULL)
  213. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  214. {
  215. return &task_rq(p)->cfs;
  216. }
  217. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  218. {
  219. struct task_struct *p = task_of(se);
  220. struct rq *rq = task_rq(p);
  221. return &rq->cfs;
  222. }
  223. /* runqueue "owned" by this group */
  224. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  225. {
  226. return NULL;
  227. }
  228. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  229. {
  230. return &cpu_rq(this_cpu)->cfs;
  231. }
  232. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  233. {
  234. }
  235. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  236. {
  237. }
  238. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  239. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  240. static inline int
  241. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  242. {
  243. return 1;
  244. }
  245. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  246. {
  247. return NULL;
  248. }
  249. static inline void
  250. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  251. {
  252. }
  253. #endif /* CONFIG_FAIR_GROUP_SCHED */
  254. /**************************************************************
  255. * Scheduling class tree data structure manipulation methods:
  256. */
  257. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  258. {
  259. s64 delta = (s64)(vruntime - min_vruntime);
  260. if (delta > 0)
  261. min_vruntime = vruntime;
  262. return min_vruntime;
  263. }
  264. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  265. {
  266. s64 delta = (s64)(vruntime - min_vruntime);
  267. if (delta < 0)
  268. min_vruntime = vruntime;
  269. return min_vruntime;
  270. }
  271. static inline int entity_before(struct sched_entity *a,
  272. struct sched_entity *b)
  273. {
  274. return (s64)(a->vruntime - b->vruntime) < 0;
  275. }
  276. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  277. {
  278. return se->vruntime - cfs_rq->min_vruntime;
  279. }
  280. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  281. {
  282. u64 vruntime = cfs_rq->min_vruntime;
  283. if (cfs_rq->curr)
  284. vruntime = cfs_rq->curr->vruntime;
  285. if (cfs_rq->rb_leftmost) {
  286. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  287. struct sched_entity,
  288. run_node);
  289. if (!cfs_rq->curr)
  290. vruntime = se->vruntime;
  291. else
  292. vruntime = min_vruntime(vruntime, se->vruntime);
  293. }
  294. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  295. }
  296. /*
  297. * Enqueue an entity into the rb-tree:
  298. */
  299. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  300. {
  301. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  302. struct rb_node *parent = NULL;
  303. struct sched_entity *entry;
  304. s64 key = entity_key(cfs_rq, se);
  305. int leftmost = 1;
  306. /*
  307. * Find the right place in the rbtree:
  308. */
  309. while (*link) {
  310. parent = *link;
  311. entry = rb_entry(parent, struct sched_entity, run_node);
  312. /*
  313. * We dont care about collisions. Nodes with
  314. * the same key stay together.
  315. */
  316. if (key < entity_key(cfs_rq, entry)) {
  317. link = &parent->rb_left;
  318. } else {
  319. link = &parent->rb_right;
  320. leftmost = 0;
  321. }
  322. }
  323. /*
  324. * Maintain a cache of leftmost tree entries (it is frequently
  325. * used):
  326. */
  327. if (leftmost)
  328. cfs_rq->rb_leftmost = &se->run_node;
  329. rb_link_node(&se->run_node, parent, link);
  330. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  331. }
  332. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  333. {
  334. if (cfs_rq->rb_leftmost == &se->run_node) {
  335. struct rb_node *next_node;
  336. next_node = rb_next(&se->run_node);
  337. cfs_rq->rb_leftmost = next_node;
  338. }
  339. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  340. }
  341. static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  342. {
  343. struct rb_node *left = cfs_rq->rb_leftmost;
  344. if (!left)
  345. return NULL;
  346. return rb_entry(left, struct sched_entity, run_node);
  347. }
  348. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  349. {
  350. struct rb_node *next = rb_next(&se->run_node);
  351. if (!next)
  352. return NULL;
  353. return rb_entry(next, struct sched_entity, run_node);
  354. }
  355. #ifdef CONFIG_SCHED_DEBUG
  356. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  357. {
  358. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  359. if (!last)
  360. return NULL;
  361. return rb_entry(last, struct sched_entity, run_node);
  362. }
  363. /**************************************************************
  364. * Scheduling class statistics methods:
  365. */
  366. int sched_proc_update_handler(struct ctl_table *table, int write,
  367. void __user *buffer, size_t *lenp,
  368. loff_t *ppos)
  369. {
  370. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  371. int factor = get_update_sysctl_factor();
  372. if (ret || !write)
  373. return ret;
  374. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  375. sysctl_sched_min_granularity);
  376. #define WRT_SYSCTL(name) \
  377. (normalized_sysctl_##name = sysctl_##name / (factor))
  378. WRT_SYSCTL(sched_min_granularity);
  379. WRT_SYSCTL(sched_latency);
  380. WRT_SYSCTL(sched_wakeup_granularity);
  381. #undef WRT_SYSCTL
  382. return 0;
  383. }
  384. #endif
  385. /*
  386. * delta /= w
  387. */
  388. static inline unsigned long
  389. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  390. {
  391. if (unlikely(se->load.weight != NICE_0_LOAD))
  392. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  393. return delta;
  394. }
  395. /*
  396. * The idea is to set a period in which each task runs once.
  397. *
  398. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  399. * this period because otherwise the slices get too small.
  400. *
  401. * p = (nr <= nl) ? l : l*nr/nl
  402. */
  403. static u64 __sched_period(unsigned long nr_running)
  404. {
  405. u64 period = sysctl_sched_latency;
  406. unsigned long nr_latency = sched_nr_latency;
  407. if (unlikely(nr_running > nr_latency)) {
  408. period = sysctl_sched_min_granularity;
  409. period *= nr_running;
  410. }
  411. return period;
  412. }
  413. /*
  414. * We calculate the wall-time slice from the period by taking a part
  415. * proportional to the weight.
  416. *
  417. * s = p*P[w/rw]
  418. */
  419. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  420. {
  421. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  422. for_each_sched_entity(se) {
  423. struct load_weight *load;
  424. struct load_weight lw;
  425. cfs_rq = cfs_rq_of(se);
  426. load = &cfs_rq->load;
  427. if (unlikely(!se->on_rq)) {
  428. lw = cfs_rq->load;
  429. update_load_add(&lw, se->load.weight);
  430. load = &lw;
  431. }
  432. slice = calc_delta_mine(slice, se->load.weight, load);
  433. }
  434. return slice;
  435. }
  436. /*
  437. * We calculate the vruntime slice of a to be inserted task
  438. *
  439. * vs = s/w
  440. */
  441. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  442. {
  443. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  444. }
  445. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  446. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  447. /*
  448. * Update the current task's runtime statistics. Skip current tasks that
  449. * are not in our scheduling class.
  450. */
  451. static inline void
  452. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  453. unsigned long delta_exec)
  454. {
  455. unsigned long delta_exec_weighted;
  456. schedstat_set(curr->statistics.exec_max,
  457. max((u64)delta_exec, curr->statistics.exec_max));
  458. curr->sum_exec_runtime += delta_exec;
  459. schedstat_add(cfs_rq, exec_clock, delta_exec);
  460. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  461. curr->vruntime += delta_exec_weighted;
  462. update_min_vruntime(cfs_rq);
  463. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  464. cfs_rq->load_unacc_exec_time += delta_exec;
  465. #endif
  466. }
  467. static void update_curr(struct cfs_rq *cfs_rq)
  468. {
  469. struct sched_entity *curr = cfs_rq->curr;
  470. u64 now = rq_of(cfs_rq)->clock_task;
  471. unsigned long delta_exec;
  472. if (unlikely(!curr))
  473. return;
  474. /*
  475. * Get the amount of time the current task was running
  476. * since the last time we changed load (this cannot
  477. * overflow on 32 bits):
  478. */
  479. delta_exec = (unsigned long)(now - curr->exec_start);
  480. if (!delta_exec)
  481. return;
  482. __update_curr(cfs_rq, curr, delta_exec);
  483. curr->exec_start = now;
  484. if (entity_is_task(curr)) {
  485. struct task_struct *curtask = task_of(curr);
  486. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  487. cpuacct_charge(curtask, delta_exec);
  488. account_group_exec_runtime(curtask, delta_exec);
  489. }
  490. }
  491. static inline void
  492. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  493. {
  494. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  495. }
  496. /*
  497. * Task is being enqueued - update stats:
  498. */
  499. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  500. {
  501. /*
  502. * Are we enqueueing a waiting task? (for current tasks
  503. * a dequeue/enqueue event is a NOP)
  504. */
  505. if (se != cfs_rq->curr)
  506. update_stats_wait_start(cfs_rq, se);
  507. }
  508. static void
  509. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  510. {
  511. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  512. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  513. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  514. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  515. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  516. #ifdef CONFIG_SCHEDSTATS
  517. if (entity_is_task(se)) {
  518. trace_sched_stat_wait(task_of(se),
  519. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  520. }
  521. #endif
  522. schedstat_set(se->statistics.wait_start, 0);
  523. }
  524. static inline void
  525. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  526. {
  527. /*
  528. * Mark the end of the wait period if dequeueing a
  529. * waiting task:
  530. */
  531. if (se != cfs_rq->curr)
  532. update_stats_wait_end(cfs_rq, se);
  533. }
  534. /*
  535. * We are picking a new current task - update its stats:
  536. */
  537. static inline void
  538. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  539. {
  540. /*
  541. * We are starting a new run period:
  542. */
  543. se->exec_start = rq_of(cfs_rq)->clock_task;
  544. }
  545. /**************************************************
  546. * Scheduling class queueing methods:
  547. */
  548. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  549. static void
  550. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  551. {
  552. cfs_rq->task_weight += weight;
  553. }
  554. #else
  555. static inline void
  556. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  557. {
  558. }
  559. #endif
  560. static void
  561. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  562. {
  563. update_load_add(&cfs_rq->load, se->load.weight);
  564. if (!parent_entity(se))
  565. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  566. if (entity_is_task(se)) {
  567. add_cfs_task_weight(cfs_rq, se->load.weight);
  568. list_add(&se->group_node, &cfs_rq->tasks);
  569. }
  570. cfs_rq->nr_running++;
  571. }
  572. static void
  573. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  574. {
  575. update_load_sub(&cfs_rq->load, se->load.weight);
  576. if (!parent_entity(se))
  577. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  578. if (entity_is_task(se)) {
  579. add_cfs_task_weight(cfs_rq, -se->load.weight);
  580. list_del_init(&se->group_node);
  581. }
  582. cfs_rq->nr_running--;
  583. }
  584. #ifdef CONFIG_FAIR_GROUP_SCHED
  585. # ifdef CONFIG_SMP
  586. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  587. int global_update)
  588. {
  589. struct task_group *tg = cfs_rq->tg;
  590. long load_avg;
  591. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  592. load_avg -= cfs_rq->load_contribution;
  593. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  594. atomic_add(load_avg, &tg->load_weight);
  595. cfs_rq->load_contribution += load_avg;
  596. }
  597. }
  598. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  599. {
  600. u64 period = sysctl_sched_shares_window;
  601. u64 now, delta;
  602. unsigned long load = cfs_rq->load.weight;
  603. if (cfs_rq->tg == &root_task_group)
  604. return;
  605. now = rq_of(cfs_rq)->clock_task;
  606. delta = now - cfs_rq->load_stamp;
  607. /* truncate load history at 4 idle periods */
  608. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  609. now - cfs_rq->load_last > 4 * period) {
  610. cfs_rq->load_period = 0;
  611. cfs_rq->load_avg = 0;
  612. delta = period - 1;
  613. }
  614. cfs_rq->load_stamp = now;
  615. cfs_rq->load_unacc_exec_time = 0;
  616. cfs_rq->load_period += delta;
  617. if (load) {
  618. cfs_rq->load_last = now;
  619. cfs_rq->load_avg += delta * load;
  620. }
  621. /* consider updating load contribution on each fold or truncate */
  622. if (global_update || cfs_rq->load_period > period
  623. || !cfs_rq->load_period)
  624. update_cfs_rq_load_contribution(cfs_rq, global_update);
  625. while (cfs_rq->load_period > period) {
  626. /*
  627. * Inline assembly required to prevent the compiler
  628. * optimising this loop into a divmod call.
  629. * See __iter_div_u64_rem() for another example of this.
  630. */
  631. asm("" : "+rm" (cfs_rq->load_period));
  632. cfs_rq->load_period /= 2;
  633. cfs_rq->load_avg /= 2;
  634. }
  635. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  636. list_del_leaf_cfs_rq(cfs_rq);
  637. }
  638. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  639. {
  640. long load_weight, load, shares;
  641. load = cfs_rq->load.weight;
  642. load_weight = atomic_read(&tg->load_weight);
  643. load_weight += load;
  644. load_weight -= cfs_rq->load_contribution;
  645. shares = (tg->shares * load);
  646. if (load_weight)
  647. shares /= load_weight;
  648. if (shares < MIN_SHARES)
  649. shares = MIN_SHARES;
  650. if (shares > tg->shares)
  651. shares = tg->shares;
  652. return shares;
  653. }
  654. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  655. {
  656. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  657. update_cfs_load(cfs_rq, 0);
  658. update_cfs_shares(cfs_rq);
  659. }
  660. }
  661. # else /* CONFIG_SMP */
  662. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  663. {
  664. }
  665. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  666. {
  667. return tg->shares;
  668. }
  669. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  670. {
  671. }
  672. # endif /* CONFIG_SMP */
  673. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  674. unsigned long weight)
  675. {
  676. if (se->on_rq) {
  677. /* commit outstanding execution time */
  678. if (cfs_rq->curr == se)
  679. update_curr(cfs_rq);
  680. account_entity_dequeue(cfs_rq, se);
  681. }
  682. update_load_set(&se->load, weight);
  683. if (se->on_rq)
  684. account_entity_enqueue(cfs_rq, se);
  685. }
  686. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  687. {
  688. struct task_group *tg;
  689. struct sched_entity *se;
  690. long shares;
  691. tg = cfs_rq->tg;
  692. se = tg->se[cpu_of(rq_of(cfs_rq))];
  693. if (!se)
  694. return;
  695. #ifndef CONFIG_SMP
  696. if (likely(se->load.weight == tg->shares))
  697. return;
  698. #endif
  699. shares = calc_cfs_shares(cfs_rq, tg);
  700. reweight_entity(cfs_rq_of(se), se, shares);
  701. }
  702. #else /* CONFIG_FAIR_GROUP_SCHED */
  703. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  704. {
  705. }
  706. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  707. {
  708. }
  709. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  710. {
  711. }
  712. #endif /* CONFIG_FAIR_GROUP_SCHED */
  713. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  714. {
  715. #ifdef CONFIG_SCHEDSTATS
  716. struct task_struct *tsk = NULL;
  717. if (entity_is_task(se))
  718. tsk = task_of(se);
  719. if (se->statistics.sleep_start) {
  720. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  721. if ((s64)delta < 0)
  722. delta = 0;
  723. if (unlikely(delta > se->statistics.sleep_max))
  724. se->statistics.sleep_max = delta;
  725. se->statistics.sleep_start = 0;
  726. se->statistics.sum_sleep_runtime += delta;
  727. if (tsk) {
  728. account_scheduler_latency(tsk, delta >> 10, 1);
  729. trace_sched_stat_sleep(tsk, delta);
  730. }
  731. }
  732. if (se->statistics.block_start) {
  733. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  734. if ((s64)delta < 0)
  735. delta = 0;
  736. if (unlikely(delta > se->statistics.block_max))
  737. se->statistics.block_max = delta;
  738. se->statistics.block_start = 0;
  739. se->statistics.sum_sleep_runtime += delta;
  740. if (tsk) {
  741. if (tsk->in_iowait) {
  742. se->statistics.iowait_sum += delta;
  743. se->statistics.iowait_count++;
  744. trace_sched_stat_iowait(tsk, delta);
  745. }
  746. /*
  747. * Blocking time is in units of nanosecs, so shift by
  748. * 20 to get a milliseconds-range estimation of the
  749. * amount of time that the task spent sleeping:
  750. */
  751. if (unlikely(prof_on == SLEEP_PROFILING)) {
  752. profile_hits(SLEEP_PROFILING,
  753. (void *)get_wchan(tsk),
  754. delta >> 20);
  755. }
  756. account_scheduler_latency(tsk, delta >> 10, 0);
  757. }
  758. }
  759. #endif
  760. }
  761. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  762. {
  763. #ifdef CONFIG_SCHED_DEBUG
  764. s64 d = se->vruntime - cfs_rq->min_vruntime;
  765. if (d < 0)
  766. d = -d;
  767. if (d > 3*sysctl_sched_latency)
  768. schedstat_inc(cfs_rq, nr_spread_over);
  769. #endif
  770. }
  771. static void
  772. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  773. {
  774. u64 vruntime = cfs_rq->min_vruntime;
  775. /*
  776. * The 'current' period is already promised to the current tasks,
  777. * however the extra weight of the new task will slow them down a
  778. * little, place the new task so that it fits in the slot that
  779. * stays open at the end.
  780. */
  781. if (initial && sched_feat(START_DEBIT))
  782. vruntime += sched_vslice(cfs_rq, se);
  783. /* sleeps up to a single latency don't count. */
  784. if (!initial) {
  785. unsigned long thresh = sysctl_sched_latency;
  786. /*
  787. * Halve their sleep time's effect, to allow
  788. * for a gentler effect of sleepers:
  789. */
  790. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  791. thresh >>= 1;
  792. vruntime -= thresh;
  793. }
  794. /* ensure we never gain time by being placed backwards. */
  795. vruntime = max_vruntime(se->vruntime, vruntime);
  796. se->vruntime = vruntime;
  797. }
  798. static void
  799. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  800. {
  801. /*
  802. * Update the normalized vruntime before updating min_vruntime
  803. * through callig update_curr().
  804. */
  805. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  806. se->vruntime += cfs_rq->min_vruntime;
  807. /*
  808. * Update run-time statistics of the 'current'.
  809. */
  810. update_curr(cfs_rq);
  811. update_cfs_load(cfs_rq, 0);
  812. account_entity_enqueue(cfs_rq, se);
  813. update_cfs_shares(cfs_rq);
  814. if (flags & ENQUEUE_WAKEUP) {
  815. place_entity(cfs_rq, se, 0);
  816. enqueue_sleeper(cfs_rq, se);
  817. }
  818. update_stats_enqueue(cfs_rq, se);
  819. check_spread(cfs_rq, se);
  820. if (se != cfs_rq->curr)
  821. __enqueue_entity(cfs_rq, se);
  822. se->on_rq = 1;
  823. if (cfs_rq->nr_running == 1)
  824. list_add_leaf_cfs_rq(cfs_rq);
  825. }
  826. static void __clear_buddies_last(struct sched_entity *se)
  827. {
  828. for_each_sched_entity(se) {
  829. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  830. if (cfs_rq->last == se)
  831. cfs_rq->last = NULL;
  832. else
  833. break;
  834. }
  835. }
  836. static void __clear_buddies_next(struct sched_entity *se)
  837. {
  838. for_each_sched_entity(se) {
  839. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  840. if (cfs_rq->next == se)
  841. cfs_rq->next = NULL;
  842. else
  843. break;
  844. }
  845. }
  846. static void __clear_buddies_skip(struct sched_entity *se)
  847. {
  848. for_each_sched_entity(se) {
  849. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  850. if (cfs_rq->skip == se)
  851. cfs_rq->skip = NULL;
  852. else
  853. break;
  854. }
  855. }
  856. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  857. {
  858. if (cfs_rq->last == se)
  859. __clear_buddies_last(se);
  860. if (cfs_rq->next == se)
  861. __clear_buddies_next(se);
  862. if (cfs_rq->skip == se)
  863. __clear_buddies_skip(se);
  864. }
  865. static void
  866. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  867. {
  868. /*
  869. * Update run-time statistics of the 'current'.
  870. */
  871. update_curr(cfs_rq);
  872. update_stats_dequeue(cfs_rq, se);
  873. if (flags & DEQUEUE_SLEEP) {
  874. #ifdef CONFIG_SCHEDSTATS
  875. if (entity_is_task(se)) {
  876. struct task_struct *tsk = task_of(se);
  877. if (tsk->state & TASK_INTERRUPTIBLE)
  878. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  879. if (tsk->state & TASK_UNINTERRUPTIBLE)
  880. se->statistics.block_start = rq_of(cfs_rq)->clock;
  881. }
  882. #endif
  883. }
  884. clear_buddies(cfs_rq, se);
  885. if (se != cfs_rq->curr)
  886. __dequeue_entity(cfs_rq, se);
  887. se->on_rq = 0;
  888. update_cfs_load(cfs_rq, 0);
  889. account_entity_dequeue(cfs_rq, se);
  890. update_min_vruntime(cfs_rq);
  891. update_cfs_shares(cfs_rq);
  892. /*
  893. * Normalize the entity after updating the min_vruntime because the
  894. * update can refer to the ->curr item and we need to reflect this
  895. * movement in our normalized position.
  896. */
  897. if (!(flags & DEQUEUE_SLEEP))
  898. se->vruntime -= cfs_rq->min_vruntime;
  899. }
  900. /*
  901. * Preempt the current task with a newly woken task if needed:
  902. */
  903. static void
  904. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  905. {
  906. unsigned long ideal_runtime, delta_exec;
  907. ideal_runtime = sched_slice(cfs_rq, curr);
  908. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  909. if (delta_exec > ideal_runtime) {
  910. resched_task(rq_of(cfs_rq)->curr);
  911. /*
  912. * The current task ran long enough, ensure it doesn't get
  913. * re-elected due to buddy favours.
  914. */
  915. clear_buddies(cfs_rq, curr);
  916. return;
  917. }
  918. /*
  919. * Ensure that a task that missed wakeup preemption by a
  920. * narrow margin doesn't have to wait for a full slice.
  921. * This also mitigates buddy induced latencies under load.
  922. */
  923. if (!sched_feat(WAKEUP_PREEMPT))
  924. return;
  925. if (delta_exec < sysctl_sched_min_granularity)
  926. return;
  927. if (cfs_rq->nr_running > 1) {
  928. struct sched_entity *se = __pick_first_entity(cfs_rq);
  929. s64 delta = curr->vruntime - se->vruntime;
  930. if (delta < 0)
  931. return;
  932. if (delta > ideal_runtime)
  933. resched_task(rq_of(cfs_rq)->curr);
  934. }
  935. }
  936. static void
  937. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  938. {
  939. /* 'current' is not kept within the tree. */
  940. if (se->on_rq) {
  941. /*
  942. * Any task has to be enqueued before it get to execute on
  943. * a CPU. So account for the time it spent waiting on the
  944. * runqueue.
  945. */
  946. update_stats_wait_end(cfs_rq, se);
  947. __dequeue_entity(cfs_rq, se);
  948. }
  949. update_stats_curr_start(cfs_rq, se);
  950. cfs_rq->curr = se;
  951. #ifdef CONFIG_SCHEDSTATS
  952. /*
  953. * Track our maximum slice length, if the CPU's load is at
  954. * least twice that of our own weight (i.e. dont track it
  955. * when there are only lesser-weight tasks around):
  956. */
  957. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  958. se->statistics.slice_max = max(se->statistics.slice_max,
  959. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  960. }
  961. #endif
  962. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  963. }
  964. static int
  965. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  966. /*
  967. * Pick the next process, keeping these things in mind, in this order:
  968. * 1) keep things fair between processes/task groups
  969. * 2) pick the "next" process, since someone really wants that to run
  970. * 3) pick the "last" process, for cache locality
  971. * 4) do not run the "skip" process, if something else is available
  972. */
  973. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  974. {
  975. struct sched_entity *se = __pick_first_entity(cfs_rq);
  976. struct sched_entity *left = se;
  977. /*
  978. * Avoid running the skip buddy, if running something else can
  979. * be done without getting too unfair.
  980. */
  981. if (cfs_rq->skip == se) {
  982. struct sched_entity *second = __pick_next_entity(se);
  983. if (second && wakeup_preempt_entity(second, left) < 1)
  984. se = second;
  985. }
  986. /*
  987. * Prefer last buddy, try to return the CPU to a preempted task.
  988. */
  989. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  990. se = cfs_rq->last;
  991. /*
  992. * Someone really wants this to run. If it's not unfair, run it.
  993. */
  994. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  995. se = cfs_rq->next;
  996. clear_buddies(cfs_rq, se);
  997. return se;
  998. }
  999. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1000. {
  1001. /*
  1002. * If still on the runqueue then deactivate_task()
  1003. * was not called and update_curr() has to be done:
  1004. */
  1005. if (prev->on_rq)
  1006. update_curr(cfs_rq);
  1007. check_spread(cfs_rq, prev);
  1008. if (prev->on_rq) {
  1009. update_stats_wait_start(cfs_rq, prev);
  1010. /* Put 'current' back into the tree. */
  1011. __enqueue_entity(cfs_rq, prev);
  1012. }
  1013. cfs_rq->curr = NULL;
  1014. }
  1015. static void
  1016. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1017. {
  1018. /*
  1019. * Update run-time statistics of the 'current'.
  1020. */
  1021. update_curr(cfs_rq);
  1022. /*
  1023. * Update share accounting for long-running entities.
  1024. */
  1025. update_entity_shares_tick(cfs_rq);
  1026. #ifdef CONFIG_SCHED_HRTICK
  1027. /*
  1028. * queued ticks are scheduled to match the slice, so don't bother
  1029. * validating it and just reschedule.
  1030. */
  1031. if (queued) {
  1032. resched_task(rq_of(cfs_rq)->curr);
  1033. return;
  1034. }
  1035. /*
  1036. * don't let the period tick interfere with the hrtick preemption
  1037. */
  1038. if (!sched_feat(DOUBLE_TICK) &&
  1039. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1040. return;
  1041. #endif
  1042. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  1043. check_preempt_tick(cfs_rq, curr);
  1044. }
  1045. /**************************************************
  1046. * CFS operations on tasks:
  1047. */
  1048. #ifdef CONFIG_SCHED_HRTICK
  1049. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1050. {
  1051. struct sched_entity *se = &p->se;
  1052. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1053. WARN_ON(task_rq(p) != rq);
  1054. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  1055. u64 slice = sched_slice(cfs_rq, se);
  1056. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1057. s64 delta = slice - ran;
  1058. if (delta < 0) {
  1059. if (rq->curr == p)
  1060. resched_task(p);
  1061. return;
  1062. }
  1063. /*
  1064. * Don't schedule slices shorter than 10000ns, that just
  1065. * doesn't make sense. Rely on vruntime for fairness.
  1066. */
  1067. if (rq->curr != p)
  1068. delta = max_t(s64, 10000LL, delta);
  1069. hrtick_start(rq, delta);
  1070. }
  1071. }
  1072. /*
  1073. * called from enqueue/dequeue and updates the hrtick when the
  1074. * current task is from our class and nr_running is low enough
  1075. * to matter.
  1076. */
  1077. static void hrtick_update(struct rq *rq)
  1078. {
  1079. struct task_struct *curr = rq->curr;
  1080. if (curr->sched_class != &fair_sched_class)
  1081. return;
  1082. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1083. hrtick_start_fair(rq, curr);
  1084. }
  1085. #else /* !CONFIG_SCHED_HRTICK */
  1086. static inline void
  1087. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1088. {
  1089. }
  1090. static inline void hrtick_update(struct rq *rq)
  1091. {
  1092. }
  1093. #endif
  1094. /*
  1095. * The enqueue_task method is called before nr_running is
  1096. * increased. Here we update the fair scheduling stats and
  1097. * then put the task into the rbtree:
  1098. */
  1099. static void
  1100. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1101. {
  1102. struct cfs_rq *cfs_rq;
  1103. struct sched_entity *se = &p->se;
  1104. for_each_sched_entity(se) {
  1105. if (se->on_rq)
  1106. break;
  1107. cfs_rq = cfs_rq_of(se);
  1108. enqueue_entity(cfs_rq, se, flags);
  1109. flags = ENQUEUE_WAKEUP;
  1110. }
  1111. for_each_sched_entity(se) {
  1112. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1113. update_cfs_load(cfs_rq, 0);
  1114. update_cfs_shares(cfs_rq);
  1115. }
  1116. hrtick_update(rq);
  1117. }
  1118. /*
  1119. * The dequeue_task method is called before nr_running is
  1120. * decreased. We remove the task from the rbtree and
  1121. * update the fair scheduling stats:
  1122. */
  1123. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1124. {
  1125. struct cfs_rq *cfs_rq;
  1126. struct sched_entity *se = &p->se;
  1127. for_each_sched_entity(se) {
  1128. cfs_rq = cfs_rq_of(se);
  1129. dequeue_entity(cfs_rq, se, flags);
  1130. /* Don't dequeue parent if it has other entities besides us */
  1131. if (cfs_rq->load.weight)
  1132. break;
  1133. flags |= DEQUEUE_SLEEP;
  1134. }
  1135. for_each_sched_entity(se) {
  1136. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1137. update_cfs_load(cfs_rq, 0);
  1138. update_cfs_shares(cfs_rq);
  1139. }
  1140. hrtick_update(rq);
  1141. }
  1142. #ifdef CONFIG_SMP
  1143. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  1144. {
  1145. struct sched_entity *se = &p->se;
  1146. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1147. se->vruntime -= cfs_rq->min_vruntime;
  1148. }
  1149. #ifdef CONFIG_FAIR_GROUP_SCHED
  1150. /*
  1151. * effective_load() calculates the load change as seen from the root_task_group
  1152. *
  1153. * Adding load to a group doesn't make a group heavier, but can cause movement
  1154. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1155. * can calculate the shift in shares.
  1156. */
  1157. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1158. {
  1159. struct sched_entity *se = tg->se[cpu];
  1160. if (!tg->parent)
  1161. return wl;
  1162. for_each_sched_entity(se) {
  1163. long lw, w;
  1164. tg = se->my_q->tg;
  1165. w = se->my_q->load.weight;
  1166. /* use this cpu's instantaneous contribution */
  1167. lw = atomic_read(&tg->load_weight);
  1168. lw -= se->my_q->load_contribution;
  1169. lw += w + wg;
  1170. wl += w;
  1171. if (lw > 0 && wl < lw)
  1172. wl = (wl * tg->shares) / lw;
  1173. else
  1174. wl = tg->shares;
  1175. /* zero point is MIN_SHARES */
  1176. if (wl < MIN_SHARES)
  1177. wl = MIN_SHARES;
  1178. wl -= se->load.weight;
  1179. wg = 0;
  1180. }
  1181. return wl;
  1182. }
  1183. #else
  1184. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1185. unsigned long wl, unsigned long wg)
  1186. {
  1187. return wl;
  1188. }
  1189. #endif
  1190. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1191. {
  1192. s64 this_load, load;
  1193. int idx, this_cpu, prev_cpu;
  1194. unsigned long tl_per_task;
  1195. struct task_group *tg;
  1196. unsigned long weight;
  1197. int balanced;
  1198. idx = sd->wake_idx;
  1199. this_cpu = smp_processor_id();
  1200. prev_cpu = task_cpu(p);
  1201. load = source_load(prev_cpu, idx);
  1202. this_load = target_load(this_cpu, idx);
  1203. /*
  1204. * If sync wakeup then subtract the (maximum possible)
  1205. * effect of the currently running task from the load
  1206. * of the current CPU:
  1207. */
  1208. rcu_read_lock();
  1209. if (sync) {
  1210. tg = task_group(current);
  1211. weight = current->se.load.weight;
  1212. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1213. load += effective_load(tg, prev_cpu, 0, -weight);
  1214. }
  1215. tg = task_group(p);
  1216. weight = p->se.load.weight;
  1217. /*
  1218. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1219. * due to the sync cause above having dropped this_load to 0, we'll
  1220. * always have an imbalance, but there's really nothing you can do
  1221. * about that, so that's good too.
  1222. *
  1223. * Otherwise check if either cpus are near enough in load to allow this
  1224. * task to be woken on this_cpu.
  1225. */
  1226. if (this_load > 0) {
  1227. s64 this_eff_load, prev_eff_load;
  1228. this_eff_load = 100;
  1229. this_eff_load *= power_of(prev_cpu);
  1230. this_eff_load *= this_load +
  1231. effective_load(tg, this_cpu, weight, weight);
  1232. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1233. prev_eff_load *= power_of(this_cpu);
  1234. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1235. balanced = this_eff_load <= prev_eff_load;
  1236. } else
  1237. balanced = true;
  1238. rcu_read_unlock();
  1239. /*
  1240. * If the currently running task will sleep within
  1241. * a reasonable amount of time then attract this newly
  1242. * woken task:
  1243. */
  1244. if (sync && balanced)
  1245. return 1;
  1246. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1247. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1248. if (balanced ||
  1249. (this_load <= load &&
  1250. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1251. /*
  1252. * This domain has SD_WAKE_AFFINE and
  1253. * p is cache cold in this domain, and
  1254. * there is no bad imbalance.
  1255. */
  1256. schedstat_inc(sd, ttwu_move_affine);
  1257. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1258. return 1;
  1259. }
  1260. return 0;
  1261. }
  1262. /*
  1263. * find_idlest_group finds and returns the least busy CPU group within the
  1264. * domain.
  1265. */
  1266. static struct sched_group *
  1267. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1268. int this_cpu, int load_idx)
  1269. {
  1270. struct sched_group *idlest = NULL, *group = sd->groups;
  1271. unsigned long min_load = ULONG_MAX, this_load = 0;
  1272. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1273. do {
  1274. unsigned long load, avg_load;
  1275. int local_group;
  1276. int i;
  1277. /* Skip over this group if it has no CPUs allowed */
  1278. if (!cpumask_intersects(sched_group_cpus(group),
  1279. &p->cpus_allowed))
  1280. continue;
  1281. local_group = cpumask_test_cpu(this_cpu,
  1282. sched_group_cpus(group));
  1283. /* Tally up the load of all CPUs in the group */
  1284. avg_load = 0;
  1285. for_each_cpu(i, sched_group_cpus(group)) {
  1286. /* Bias balancing toward cpus of our domain */
  1287. if (local_group)
  1288. load = source_load(i, load_idx);
  1289. else
  1290. load = target_load(i, load_idx);
  1291. avg_load += load;
  1292. }
  1293. /* Adjust by relative CPU power of the group */
  1294. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1295. if (local_group) {
  1296. this_load = avg_load;
  1297. } else if (avg_load < min_load) {
  1298. min_load = avg_load;
  1299. idlest = group;
  1300. }
  1301. } while (group = group->next, group != sd->groups);
  1302. if (!idlest || 100*this_load < imbalance*min_load)
  1303. return NULL;
  1304. return idlest;
  1305. }
  1306. /*
  1307. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1308. */
  1309. static int
  1310. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1311. {
  1312. unsigned long load, min_load = ULONG_MAX;
  1313. int idlest = -1;
  1314. int i;
  1315. /* Traverse only the allowed CPUs */
  1316. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1317. load = weighted_cpuload(i);
  1318. if (load < min_load || (load == min_load && i == this_cpu)) {
  1319. min_load = load;
  1320. idlest = i;
  1321. }
  1322. }
  1323. return idlest;
  1324. }
  1325. /*
  1326. * Try and locate an idle CPU in the sched_domain.
  1327. */
  1328. static int select_idle_sibling(struct task_struct *p, int target)
  1329. {
  1330. int cpu = smp_processor_id();
  1331. int prev_cpu = task_cpu(p);
  1332. struct sched_domain *sd;
  1333. int i;
  1334. /*
  1335. * If the task is going to be woken-up on this cpu and if it is
  1336. * already idle, then it is the right target.
  1337. */
  1338. if (target == cpu && idle_cpu(cpu))
  1339. return cpu;
  1340. /*
  1341. * If the task is going to be woken-up on the cpu where it previously
  1342. * ran and if it is currently idle, then it the right target.
  1343. */
  1344. if (target == prev_cpu && idle_cpu(prev_cpu))
  1345. return prev_cpu;
  1346. /*
  1347. * Otherwise, iterate the domains and find an elegible idle cpu.
  1348. */
  1349. rcu_read_lock();
  1350. for_each_domain(target, sd) {
  1351. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1352. break;
  1353. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1354. if (idle_cpu(i)) {
  1355. target = i;
  1356. break;
  1357. }
  1358. }
  1359. /*
  1360. * Lets stop looking for an idle sibling when we reached
  1361. * the domain that spans the current cpu and prev_cpu.
  1362. */
  1363. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1364. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1365. break;
  1366. }
  1367. rcu_read_unlock();
  1368. return target;
  1369. }
  1370. /*
  1371. * sched_balance_self: balance the current task (running on cpu) in domains
  1372. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1373. * SD_BALANCE_EXEC.
  1374. *
  1375. * Balance, ie. select the least loaded group.
  1376. *
  1377. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1378. *
  1379. * preempt must be disabled.
  1380. */
  1381. static int
  1382. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1383. {
  1384. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1385. int cpu = smp_processor_id();
  1386. int prev_cpu = task_cpu(p);
  1387. int new_cpu = cpu;
  1388. int want_affine = 0;
  1389. int want_sd = 1;
  1390. int sync = wake_flags & WF_SYNC;
  1391. if (sd_flag & SD_BALANCE_WAKE) {
  1392. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1393. want_affine = 1;
  1394. new_cpu = prev_cpu;
  1395. }
  1396. rcu_read_lock();
  1397. for_each_domain(cpu, tmp) {
  1398. if (!(tmp->flags & SD_LOAD_BALANCE))
  1399. continue;
  1400. /*
  1401. * If power savings logic is enabled for a domain, see if we
  1402. * are not overloaded, if so, don't balance wider.
  1403. */
  1404. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1405. unsigned long power = 0;
  1406. unsigned long nr_running = 0;
  1407. unsigned long capacity;
  1408. int i;
  1409. for_each_cpu(i, sched_domain_span(tmp)) {
  1410. power += power_of(i);
  1411. nr_running += cpu_rq(i)->cfs.nr_running;
  1412. }
  1413. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1414. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1415. nr_running /= 2;
  1416. if (nr_running < capacity)
  1417. want_sd = 0;
  1418. }
  1419. /*
  1420. * If both cpu and prev_cpu are part of this domain,
  1421. * cpu is a valid SD_WAKE_AFFINE target.
  1422. */
  1423. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1424. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1425. affine_sd = tmp;
  1426. want_affine = 0;
  1427. }
  1428. if (!want_sd && !want_affine)
  1429. break;
  1430. if (!(tmp->flags & sd_flag))
  1431. continue;
  1432. if (want_sd)
  1433. sd = tmp;
  1434. }
  1435. if (affine_sd) {
  1436. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1437. prev_cpu = cpu;
  1438. new_cpu = select_idle_sibling(p, prev_cpu);
  1439. goto unlock;
  1440. }
  1441. while (sd) {
  1442. int load_idx = sd->forkexec_idx;
  1443. struct sched_group *group;
  1444. int weight;
  1445. if (!(sd->flags & sd_flag)) {
  1446. sd = sd->child;
  1447. continue;
  1448. }
  1449. if (sd_flag & SD_BALANCE_WAKE)
  1450. load_idx = sd->wake_idx;
  1451. group = find_idlest_group(sd, p, cpu, load_idx);
  1452. if (!group) {
  1453. sd = sd->child;
  1454. continue;
  1455. }
  1456. new_cpu = find_idlest_cpu(group, p, cpu);
  1457. if (new_cpu == -1 || new_cpu == cpu) {
  1458. /* Now try balancing at a lower domain level of cpu */
  1459. sd = sd->child;
  1460. continue;
  1461. }
  1462. /* Now try balancing at a lower domain level of new_cpu */
  1463. cpu = new_cpu;
  1464. weight = sd->span_weight;
  1465. sd = NULL;
  1466. for_each_domain(cpu, tmp) {
  1467. if (weight <= tmp->span_weight)
  1468. break;
  1469. if (tmp->flags & sd_flag)
  1470. sd = tmp;
  1471. }
  1472. /* while loop will break here if sd == NULL */
  1473. }
  1474. unlock:
  1475. rcu_read_unlock();
  1476. return new_cpu;
  1477. }
  1478. #endif /* CONFIG_SMP */
  1479. static unsigned long
  1480. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1481. {
  1482. unsigned long gran = sysctl_sched_wakeup_granularity;
  1483. /*
  1484. * Since its curr running now, convert the gran from real-time
  1485. * to virtual-time in his units.
  1486. *
  1487. * By using 'se' instead of 'curr' we penalize light tasks, so
  1488. * they get preempted easier. That is, if 'se' < 'curr' then
  1489. * the resulting gran will be larger, therefore penalizing the
  1490. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1491. * be smaller, again penalizing the lighter task.
  1492. *
  1493. * This is especially important for buddies when the leftmost
  1494. * task is higher priority than the buddy.
  1495. */
  1496. return calc_delta_fair(gran, se);
  1497. }
  1498. /*
  1499. * Should 'se' preempt 'curr'.
  1500. *
  1501. * |s1
  1502. * |s2
  1503. * |s3
  1504. * g
  1505. * |<--->|c
  1506. *
  1507. * w(c, s1) = -1
  1508. * w(c, s2) = 0
  1509. * w(c, s3) = 1
  1510. *
  1511. */
  1512. static int
  1513. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1514. {
  1515. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1516. if (vdiff <= 0)
  1517. return -1;
  1518. gran = wakeup_gran(curr, se);
  1519. if (vdiff > gran)
  1520. return 1;
  1521. return 0;
  1522. }
  1523. static void set_last_buddy(struct sched_entity *se)
  1524. {
  1525. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1526. for_each_sched_entity(se)
  1527. cfs_rq_of(se)->last = se;
  1528. }
  1529. }
  1530. static void set_next_buddy(struct sched_entity *se)
  1531. {
  1532. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1533. for_each_sched_entity(se)
  1534. cfs_rq_of(se)->next = se;
  1535. }
  1536. }
  1537. static void set_skip_buddy(struct sched_entity *se)
  1538. {
  1539. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1540. for_each_sched_entity(se)
  1541. cfs_rq_of(se)->skip = se;
  1542. }
  1543. }
  1544. /*
  1545. * Preempt the current task with a newly woken task if needed:
  1546. */
  1547. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1548. {
  1549. struct task_struct *curr = rq->curr;
  1550. struct sched_entity *se = &curr->se, *pse = &p->se;
  1551. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1552. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1553. if (unlikely(se == pse))
  1554. return;
  1555. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1556. set_next_buddy(pse);
  1557. /*
  1558. * We can come here with TIF_NEED_RESCHED already set from new task
  1559. * wake up path.
  1560. */
  1561. if (test_tsk_need_resched(curr))
  1562. return;
  1563. /* Idle tasks are by definition preempted by non-idle tasks. */
  1564. if (unlikely(curr->policy == SCHED_IDLE) &&
  1565. likely(p->policy != SCHED_IDLE))
  1566. goto preempt;
  1567. /*
  1568. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  1569. * is driven by the tick):
  1570. */
  1571. if (unlikely(p->policy != SCHED_NORMAL))
  1572. return;
  1573. if (!sched_feat(WAKEUP_PREEMPT))
  1574. return;
  1575. update_curr(cfs_rq);
  1576. find_matching_se(&se, &pse);
  1577. BUG_ON(!pse);
  1578. if (wakeup_preempt_entity(se, pse) == 1)
  1579. goto preempt;
  1580. return;
  1581. preempt:
  1582. resched_task(curr);
  1583. /*
  1584. * Only set the backward buddy when the current task is still
  1585. * on the rq. This can happen when a wakeup gets interleaved
  1586. * with schedule on the ->pre_schedule() or idle_balance()
  1587. * point, either of which can * drop the rq lock.
  1588. *
  1589. * Also, during early boot the idle thread is in the fair class,
  1590. * for obvious reasons its a bad idea to schedule back to it.
  1591. */
  1592. if (unlikely(!se->on_rq || curr == rq->idle))
  1593. return;
  1594. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1595. set_last_buddy(se);
  1596. }
  1597. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1598. {
  1599. struct task_struct *p;
  1600. struct cfs_rq *cfs_rq = &rq->cfs;
  1601. struct sched_entity *se;
  1602. if (!cfs_rq->nr_running)
  1603. return NULL;
  1604. do {
  1605. se = pick_next_entity(cfs_rq);
  1606. set_next_entity(cfs_rq, se);
  1607. cfs_rq = group_cfs_rq(se);
  1608. } while (cfs_rq);
  1609. p = task_of(se);
  1610. hrtick_start_fair(rq, p);
  1611. return p;
  1612. }
  1613. /*
  1614. * Account for a descheduled task:
  1615. */
  1616. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1617. {
  1618. struct sched_entity *se = &prev->se;
  1619. struct cfs_rq *cfs_rq;
  1620. for_each_sched_entity(se) {
  1621. cfs_rq = cfs_rq_of(se);
  1622. put_prev_entity(cfs_rq, se);
  1623. }
  1624. }
  1625. /*
  1626. * sched_yield() is very simple
  1627. *
  1628. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  1629. */
  1630. static void yield_task_fair(struct rq *rq)
  1631. {
  1632. struct task_struct *curr = rq->curr;
  1633. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1634. struct sched_entity *se = &curr->se;
  1635. /*
  1636. * Are we the only task in the tree?
  1637. */
  1638. if (unlikely(rq->nr_running == 1))
  1639. return;
  1640. clear_buddies(cfs_rq, se);
  1641. if (curr->policy != SCHED_BATCH) {
  1642. update_rq_clock(rq);
  1643. /*
  1644. * Update run-time statistics of the 'current'.
  1645. */
  1646. update_curr(cfs_rq);
  1647. }
  1648. set_skip_buddy(se);
  1649. }
  1650. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  1651. {
  1652. struct sched_entity *se = &p->se;
  1653. if (!se->on_rq)
  1654. return false;
  1655. /* Tell the scheduler that we'd really like pse to run next. */
  1656. set_next_buddy(se);
  1657. yield_task_fair(rq);
  1658. return true;
  1659. }
  1660. #ifdef CONFIG_SMP
  1661. /**************************************************
  1662. * Fair scheduling class load-balancing methods:
  1663. */
  1664. /*
  1665. * pull_task - move a task from a remote runqueue to the local runqueue.
  1666. * Both runqueues must be locked.
  1667. */
  1668. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1669. struct rq *this_rq, int this_cpu)
  1670. {
  1671. deactivate_task(src_rq, p, 0);
  1672. set_task_cpu(p, this_cpu);
  1673. activate_task(this_rq, p, 0);
  1674. check_preempt_curr(this_rq, p, 0);
  1675. }
  1676. /*
  1677. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1678. */
  1679. static
  1680. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1681. struct sched_domain *sd, enum cpu_idle_type idle,
  1682. int *all_pinned)
  1683. {
  1684. int tsk_cache_hot = 0;
  1685. /*
  1686. * We do not migrate tasks that are:
  1687. * 1) running (obviously), or
  1688. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1689. * 3) are cache-hot on their current CPU.
  1690. */
  1691. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1692. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1693. return 0;
  1694. }
  1695. *all_pinned = 0;
  1696. if (task_running(rq, p)) {
  1697. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1698. return 0;
  1699. }
  1700. /*
  1701. * Aggressive migration if:
  1702. * 1) task is cache cold, or
  1703. * 2) too many balance attempts have failed.
  1704. */
  1705. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1706. if (!tsk_cache_hot ||
  1707. sd->nr_balance_failed > sd->cache_nice_tries) {
  1708. #ifdef CONFIG_SCHEDSTATS
  1709. if (tsk_cache_hot) {
  1710. schedstat_inc(sd, lb_hot_gained[idle]);
  1711. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1712. }
  1713. #endif
  1714. return 1;
  1715. }
  1716. if (tsk_cache_hot) {
  1717. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1718. return 0;
  1719. }
  1720. return 1;
  1721. }
  1722. /*
  1723. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1724. * part of active balancing operations within "domain".
  1725. * Returns 1 if successful and 0 otherwise.
  1726. *
  1727. * Called with both runqueues locked.
  1728. */
  1729. static int
  1730. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1731. struct sched_domain *sd, enum cpu_idle_type idle)
  1732. {
  1733. struct task_struct *p, *n;
  1734. struct cfs_rq *cfs_rq;
  1735. int pinned = 0;
  1736. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1737. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1738. if (!can_migrate_task(p, busiest, this_cpu,
  1739. sd, idle, &pinned))
  1740. continue;
  1741. pull_task(busiest, p, this_rq, this_cpu);
  1742. /*
  1743. * Right now, this is only the second place pull_task()
  1744. * is called, so we can safely collect pull_task()
  1745. * stats here rather than inside pull_task().
  1746. */
  1747. schedstat_inc(sd, lb_gained[idle]);
  1748. return 1;
  1749. }
  1750. }
  1751. return 0;
  1752. }
  1753. static unsigned long
  1754. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1755. unsigned long max_load_move, struct sched_domain *sd,
  1756. enum cpu_idle_type idle, int *all_pinned,
  1757. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1758. {
  1759. int loops = 0, pulled = 0;
  1760. long rem_load_move = max_load_move;
  1761. struct task_struct *p, *n;
  1762. if (max_load_move == 0)
  1763. goto out;
  1764. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1765. if (loops++ > sysctl_sched_nr_migrate)
  1766. break;
  1767. if ((p->se.load.weight >> 1) > rem_load_move ||
  1768. !can_migrate_task(p, busiest, this_cpu, sd, idle,
  1769. all_pinned))
  1770. continue;
  1771. pull_task(busiest, p, this_rq, this_cpu);
  1772. pulled++;
  1773. rem_load_move -= p->se.load.weight;
  1774. #ifdef CONFIG_PREEMPT
  1775. /*
  1776. * NEWIDLE balancing is a source of latency, so preemptible
  1777. * kernels will stop after the first task is pulled to minimize
  1778. * the critical section.
  1779. */
  1780. if (idle == CPU_NEWLY_IDLE)
  1781. break;
  1782. #endif
  1783. /*
  1784. * We only want to steal up to the prescribed amount of
  1785. * weighted load.
  1786. */
  1787. if (rem_load_move <= 0)
  1788. break;
  1789. if (p->prio < *this_best_prio)
  1790. *this_best_prio = p->prio;
  1791. }
  1792. out:
  1793. /*
  1794. * Right now, this is one of only two places pull_task() is called,
  1795. * so we can safely collect pull_task() stats here rather than
  1796. * inside pull_task().
  1797. */
  1798. schedstat_add(sd, lb_gained[idle], pulled);
  1799. return max_load_move - rem_load_move;
  1800. }
  1801. #ifdef CONFIG_FAIR_GROUP_SCHED
  1802. /*
  1803. * update tg->load_weight by folding this cpu's load_avg
  1804. */
  1805. static int update_shares_cpu(struct task_group *tg, int cpu)
  1806. {
  1807. struct cfs_rq *cfs_rq;
  1808. unsigned long flags;
  1809. struct rq *rq;
  1810. if (!tg->se[cpu])
  1811. return 0;
  1812. rq = cpu_rq(cpu);
  1813. cfs_rq = tg->cfs_rq[cpu];
  1814. raw_spin_lock_irqsave(&rq->lock, flags);
  1815. update_rq_clock(rq);
  1816. update_cfs_load(cfs_rq, 1);
  1817. /*
  1818. * We need to update shares after updating tg->load_weight in
  1819. * order to adjust the weight of groups with long running tasks.
  1820. */
  1821. update_cfs_shares(cfs_rq);
  1822. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1823. return 0;
  1824. }
  1825. static void update_shares(int cpu)
  1826. {
  1827. struct cfs_rq *cfs_rq;
  1828. struct rq *rq = cpu_rq(cpu);
  1829. rcu_read_lock();
  1830. for_each_leaf_cfs_rq(rq, cfs_rq)
  1831. update_shares_cpu(cfs_rq->tg, cpu);
  1832. rcu_read_unlock();
  1833. }
  1834. static unsigned long
  1835. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1836. unsigned long max_load_move,
  1837. struct sched_domain *sd, enum cpu_idle_type idle,
  1838. int *all_pinned, int *this_best_prio)
  1839. {
  1840. long rem_load_move = max_load_move;
  1841. int busiest_cpu = cpu_of(busiest);
  1842. struct task_group *tg;
  1843. rcu_read_lock();
  1844. update_h_load(busiest_cpu);
  1845. list_for_each_entry_rcu(tg, &task_groups, list) {
  1846. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1847. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1848. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1849. u64 rem_load, moved_load;
  1850. /*
  1851. * empty group
  1852. */
  1853. if (!busiest_cfs_rq->task_weight)
  1854. continue;
  1855. rem_load = (u64)rem_load_move * busiest_weight;
  1856. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1857. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1858. rem_load, sd, idle, all_pinned, this_best_prio,
  1859. busiest_cfs_rq);
  1860. if (!moved_load)
  1861. continue;
  1862. moved_load *= busiest_h_load;
  1863. moved_load = div_u64(moved_load, busiest_weight + 1);
  1864. rem_load_move -= moved_load;
  1865. if (rem_load_move < 0)
  1866. break;
  1867. }
  1868. rcu_read_unlock();
  1869. return max_load_move - rem_load_move;
  1870. }
  1871. #else
  1872. static inline void update_shares(int cpu)
  1873. {
  1874. }
  1875. static unsigned long
  1876. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1877. unsigned long max_load_move,
  1878. struct sched_domain *sd, enum cpu_idle_type idle,
  1879. int *all_pinned, int *this_best_prio)
  1880. {
  1881. return balance_tasks(this_rq, this_cpu, busiest,
  1882. max_load_move, sd, idle, all_pinned,
  1883. this_best_prio, &busiest->cfs);
  1884. }
  1885. #endif
  1886. /*
  1887. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1888. * this_rq, as part of a balancing operation within domain "sd".
  1889. * Returns 1 if successful and 0 otherwise.
  1890. *
  1891. * Called with both runqueues locked.
  1892. */
  1893. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1894. unsigned long max_load_move,
  1895. struct sched_domain *sd, enum cpu_idle_type idle,
  1896. int *all_pinned)
  1897. {
  1898. unsigned long total_load_moved = 0, load_moved;
  1899. int this_best_prio = this_rq->curr->prio;
  1900. do {
  1901. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1902. max_load_move - total_load_moved,
  1903. sd, idle, all_pinned, &this_best_prio);
  1904. total_load_moved += load_moved;
  1905. #ifdef CONFIG_PREEMPT
  1906. /*
  1907. * NEWIDLE balancing is a source of latency, so preemptible
  1908. * kernels will stop after the first task is pulled to minimize
  1909. * the critical section.
  1910. */
  1911. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1912. break;
  1913. if (raw_spin_is_contended(&this_rq->lock) ||
  1914. raw_spin_is_contended(&busiest->lock))
  1915. break;
  1916. #endif
  1917. } while (load_moved && max_load_move > total_load_moved);
  1918. return total_load_moved > 0;
  1919. }
  1920. /********** Helpers for find_busiest_group ************************/
  1921. /*
  1922. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1923. * during load balancing.
  1924. */
  1925. struct sd_lb_stats {
  1926. struct sched_group *busiest; /* Busiest group in this sd */
  1927. struct sched_group *this; /* Local group in this sd */
  1928. unsigned long total_load; /* Total load of all groups in sd */
  1929. unsigned long total_pwr; /* Total power of all groups in sd */
  1930. unsigned long avg_load; /* Average load across all groups in sd */
  1931. /** Statistics of this group */
  1932. unsigned long this_load;
  1933. unsigned long this_load_per_task;
  1934. unsigned long this_nr_running;
  1935. unsigned long this_has_capacity;
  1936. unsigned int this_idle_cpus;
  1937. /* Statistics of the busiest group */
  1938. unsigned int busiest_idle_cpus;
  1939. unsigned long max_load;
  1940. unsigned long busiest_load_per_task;
  1941. unsigned long busiest_nr_running;
  1942. unsigned long busiest_group_capacity;
  1943. unsigned long busiest_has_capacity;
  1944. unsigned int busiest_group_weight;
  1945. int group_imb; /* Is there imbalance in this sd */
  1946. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1947. int power_savings_balance; /* Is powersave balance needed for this sd */
  1948. struct sched_group *group_min; /* Least loaded group in sd */
  1949. struct sched_group *group_leader; /* Group which relieves group_min */
  1950. unsigned long min_load_per_task; /* load_per_task in group_min */
  1951. unsigned long leader_nr_running; /* Nr running of group_leader */
  1952. unsigned long min_nr_running; /* Nr running of group_min */
  1953. #endif
  1954. };
  1955. /*
  1956. * sg_lb_stats - stats of a sched_group required for load_balancing
  1957. */
  1958. struct sg_lb_stats {
  1959. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1960. unsigned long group_load; /* Total load over the CPUs of the group */
  1961. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1962. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1963. unsigned long group_capacity;
  1964. unsigned long idle_cpus;
  1965. unsigned long group_weight;
  1966. int group_imb; /* Is there an imbalance in the group ? */
  1967. int group_has_capacity; /* Is there extra capacity in the group? */
  1968. };
  1969. /**
  1970. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1971. * @group: The group whose first cpu is to be returned.
  1972. */
  1973. static inline unsigned int group_first_cpu(struct sched_group *group)
  1974. {
  1975. return cpumask_first(sched_group_cpus(group));
  1976. }
  1977. /**
  1978. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1979. * @sd: The sched_domain whose load_idx is to be obtained.
  1980. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1981. */
  1982. static inline int get_sd_load_idx(struct sched_domain *sd,
  1983. enum cpu_idle_type idle)
  1984. {
  1985. int load_idx;
  1986. switch (idle) {
  1987. case CPU_NOT_IDLE:
  1988. load_idx = sd->busy_idx;
  1989. break;
  1990. case CPU_NEWLY_IDLE:
  1991. load_idx = sd->newidle_idx;
  1992. break;
  1993. default:
  1994. load_idx = sd->idle_idx;
  1995. break;
  1996. }
  1997. return load_idx;
  1998. }
  1999. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2000. /**
  2001. * init_sd_power_savings_stats - Initialize power savings statistics for
  2002. * the given sched_domain, during load balancing.
  2003. *
  2004. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2005. * @sds: Variable containing the statistics for sd.
  2006. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2007. */
  2008. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2009. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2010. {
  2011. /*
  2012. * Busy processors will not participate in power savings
  2013. * balance.
  2014. */
  2015. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2016. sds->power_savings_balance = 0;
  2017. else {
  2018. sds->power_savings_balance = 1;
  2019. sds->min_nr_running = ULONG_MAX;
  2020. sds->leader_nr_running = 0;
  2021. }
  2022. }
  2023. /**
  2024. * update_sd_power_savings_stats - Update the power saving stats for a
  2025. * sched_domain while performing load balancing.
  2026. *
  2027. * @group: sched_group belonging to the sched_domain under consideration.
  2028. * @sds: Variable containing the statistics of the sched_domain
  2029. * @local_group: Does group contain the CPU for which we're performing
  2030. * load balancing ?
  2031. * @sgs: Variable containing the statistics of the group.
  2032. */
  2033. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2034. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2035. {
  2036. if (!sds->power_savings_balance)
  2037. return;
  2038. /*
  2039. * If the local group is idle or completely loaded
  2040. * no need to do power savings balance at this domain
  2041. */
  2042. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2043. !sds->this_nr_running))
  2044. sds->power_savings_balance = 0;
  2045. /*
  2046. * If a group is already running at full capacity or idle,
  2047. * don't include that group in power savings calculations
  2048. */
  2049. if (!sds->power_savings_balance ||
  2050. sgs->sum_nr_running >= sgs->group_capacity ||
  2051. !sgs->sum_nr_running)
  2052. return;
  2053. /*
  2054. * Calculate the group which has the least non-idle load.
  2055. * This is the group from where we need to pick up the load
  2056. * for saving power
  2057. */
  2058. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2059. (sgs->sum_nr_running == sds->min_nr_running &&
  2060. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2061. sds->group_min = group;
  2062. sds->min_nr_running = sgs->sum_nr_running;
  2063. sds->min_load_per_task = sgs->sum_weighted_load /
  2064. sgs->sum_nr_running;
  2065. }
  2066. /*
  2067. * Calculate the group which is almost near its
  2068. * capacity but still has some space to pick up some load
  2069. * from other group and save more power
  2070. */
  2071. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2072. return;
  2073. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2074. (sgs->sum_nr_running == sds->leader_nr_running &&
  2075. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2076. sds->group_leader = group;
  2077. sds->leader_nr_running = sgs->sum_nr_running;
  2078. }
  2079. }
  2080. /**
  2081. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2082. * @sds: Variable containing the statistics of the sched_domain
  2083. * under consideration.
  2084. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2085. * @imbalance: Variable to store the imbalance.
  2086. *
  2087. * Description:
  2088. * Check if we have potential to perform some power-savings balance.
  2089. * If yes, set the busiest group to be the least loaded group in the
  2090. * sched_domain, so that it's CPUs can be put to idle.
  2091. *
  2092. * Returns 1 if there is potential to perform power-savings balance.
  2093. * Else returns 0.
  2094. */
  2095. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2096. int this_cpu, unsigned long *imbalance)
  2097. {
  2098. if (!sds->power_savings_balance)
  2099. return 0;
  2100. if (sds->this != sds->group_leader ||
  2101. sds->group_leader == sds->group_min)
  2102. return 0;
  2103. *imbalance = sds->min_load_per_task;
  2104. sds->busiest = sds->group_min;
  2105. return 1;
  2106. }
  2107. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2108. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2109. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2110. {
  2111. return;
  2112. }
  2113. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2114. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2115. {
  2116. return;
  2117. }
  2118. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2119. int this_cpu, unsigned long *imbalance)
  2120. {
  2121. return 0;
  2122. }
  2123. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2124. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2125. {
  2126. return SCHED_LOAD_SCALE;
  2127. }
  2128. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2129. {
  2130. return default_scale_freq_power(sd, cpu);
  2131. }
  2132. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2133. {
  2134. unsigned long weight = sd->span_weight;
  2135. unsigned long smt_gain = sd->smt_gain;
  2136. smt_gain /= weight;
  2137. return smt_gain;
  2138. }
  2139. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2140. {
  2141. return default_scale_smt_power(sd, cpu);
  2142. }
  2143. unsigned long scale_rt_power(int cpu)
  2144. {
  2145. struct rq *rq = cpu_rq(cpu);
  2146. u64 total, available;
  2147. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2148. if (unlikely(total < rq->rt_avg)) {
  2149. /* Ensures that power won't end up being negative */
  2150. available = 0;
  2151. } else {
  2152. available = total - rq->rt_avg;
  2153. }
  2154. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  2155. total = SCHED_LOAD_SCALE;
  2156. total >>= SCHED_LOAD_SHIFT;
  2157. return div_u64(available, total);
  2158. }
  2159. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2160. {
  2161. unsigned long weight = sd->span_weight;
  2162. unsigned long power = SCHED_LOAD_SCALE;
  2163. struct sched_group *sdg = sd->groups;
  2164. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2165. if (sched_feat(ARCH_POWER))
  2166. power *= arch_scale_smt_power(sd, cpu);
  2167. else
  2168. power *= default_scale_smt_power(sd, cpu);
  2169. power >>= SCHED_LOAD_SHIFT;
  2170. }
  2171. sdg->cpu_power_orig = power;
  2172. if (sched_feat(ARCH_POWER))
  2173. power *= arch_scale_freq_power(sd, cpu);
  2174. else
  2175. power *= default_scale_freq_power(sd, cpu);
  2176. power >>= SCHED_LOAD_SHIFT;
  2177. power *= scale_rt_power(cpu);
  2178. power >>= SCHED_LOAD_SHIFT;
  2179. if (!power)
  2180. power = 1;
  2181. cpu_rq(cpu)->cpu_power = power;
  2182. sdg->cpu_power = power;
  2183. }
  2184. static void update_group_power(struct sched_domain *sd, int cpu)
  2185. {
  2186. struct sched_domain *child = sd->child;
  2187. struct sched_group *group, *sdg = sd->groups;
  2188. unsigned long power;
  2189. if (!child) {
  2190. update_cpu_power(sd, cpu);
  2191. return;
  2192. }
  2193. power = 0;
  2194. group = child->groups;
  2195. do {
  2196. power += group->cpu_power;
  2197. group = group->next;
  2198. } while (group != child->groups);
  2199. sdg->cpu_power = power;
  2200. }
  2201. /*
  2202. * Try and fix up capacity for tiny siblings, this is needed when
  2203. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2204. * which on its own isn't powerful enough.
  2205. *
  2206. * See update_sd_pick_busiest() and check_asym_packing().
  2207. */
  2208. static inline int
  2209. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2210. {
  2211. /*
  2212. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  2213. */
  2214. if (sd->level != SD_LV_SIBLING)
  2215. return 0;
  2216. /*
  2217. * If ~90% of the cpu_power is still there, we're good.
  2218. */
  2219. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  2220. return 1;
  2221. return 0;
  2222. }
  2223. /**
  2224. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2225. * @sd: The sched_domain whose statistics are to be updated.
  2226. * @group: sched_group whose statistics are to be updated.
  2227. * @this_cpu: Cpu for which load balance is currently performed.
  2228. * @idle: Idle status of this_cpu
  2229. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2230. * @local_group: Does group contain this_cpu.
  2231. * @cpus: Set of cpus considered for load balancing.
  2232. * @balance: Should we balance.
  2233. * @sgs: variable to hold the statistics for this group.
  2234. */
  2235. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2236. struct sched_group *group, int this_cpu,
  2237. enum cpu_idle_type idle, int load_idx,
  2238. int local_group, const struct cpumask *cpus,
  2239. int *balance, struct sg_lb_stats *sgs)
  2240. {
  2241. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2242. int i;
  2243. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2244. unsigned long avg_load_per_task = 0;
  2245. if (local_group)
  2246. balance_cpu = group_first_cpu(group);
  2247. /* Tally up the load of all CPUs in the group */
  2248. max_cpu_load = 0;
  2249. min_cpu_load = ~0UL;
  2250. max_nr_running = 0;
  2251. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2252. struct rq *rq = cpu_rq(i);
  2253. /* Bias balancing toward cpus of our domain */
  2254. if (local_group) {
  2255. if (idle_cpu(i) && !first_idle_cpu) {
  2256. first_idle_cpu = 1;
  2257. balance_cpu = i;
  2258. }
  2259. load = target_load(i, load_idx);
  2260. } else {
  2261. load = source_load(i, load_idx);
  2262. if (load > max_cpu_load) {
  2263. max_cpu_load = load;
  2264. max_nr_running = rq->nr_running;
  2265. }
  2266. if (min_cpu_load > load)
  2267. min_cpu_load = load;
  2268. }
  2269. sgs->group_load += load;
  2270. sgs->sum_nr_running += rq->nr_running;
  2271. sgs->sum_weighted_load += weighted_cpuload(i);
  2272. if (idle_cpu(i))
  2273. sgs->idle_cpus++;
  2274. }
  2275. /*
  2276. * First idle cpu or the first cpu(busiest) in this sched group
  2277. * is eligible for doing load balancing at this and above
  2278. * domains. In the newly idle case, we will allow all the cpu's
  2279. * to do the newly idle load balance.
  2280. */
  2281. if (idle != CPU_NEWLY_IDLE && local_group) {
  2282. if (balance_cpu != this_cpu) {
  2283. *balance = 0;
  2284. return;
  2285. }
  2286. update_group_power(sd, this_cpu);
  2287. }
  2288. /* Adjust by relative CPU power of the group */
  2289. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2290. /*
  2291. * Consider the group unbalanced when the imbalance is larger
  2292. * than the average weight of a task.
  2293. *
  2294. * APZ: with cgroup the avg task weight can vary wildly and
  2295. * might not be a suitable number - should we keep a
  2296. * normalized nr_running number somewhere that negates
  2297. * the hierarchy?
  2298. */
  2299. if (sgs->sum_nr_running)
  2300. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2301. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  2302. sgs->group_imb = 1;
  2303. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2304. if (!sgs->group_capacity)
  2305. sgs->group_capacity = fix_small_capacity(sd, group);
  2306. sgs->group_weight = group->group_weight;
  2307. if (sgs->group_capacity > sgs->sum_nr_running)
  2308. sgs->group_has_capacity = 1;
  2309. }
  2310. /**
  2311. * update_sd_pick_busiest - return 1 on busiest group
  2312. * @sd: sched_domain whose statistics are to be checked
  2313. * @sds: sched_domain statistics
  2314. * @sg: sched_group candidate to be checked for being the busiest
  2315. * @sgs: sched_group statistics
  2316. * @this_cpu: the current cpu
  2317. *
  2318. * Determine if @sg is a busier group than the previously selected
  2319. * busiest group.
  2320. */
  2321. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2322. struct sd_lb_stats *sds,
  2323. struct sched_group *sg,
  2324. struct sg_lb_stats *sgs,
  2325. int this_cpu)
  2326. {
  2327. if (sgs->avg_load <= sds->max_load)
  2328. return false;
  2329. if (sgs->sum_nr_running > sgs->group_capacity)
  2330. return true;
  2331. if (sgs->group_imb)
  2332. return true;
  2333. /*
  2334. * ASYM_PACKING needs to move all the work to the lowest
  2335. * numbered CPUs in the group, therefore mark all groups
  2336. * higher than ourself as busy.
  2337. */
  2338. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2339. this_cpu < group_first_cpu(sg)) {
  2340. if (!sds->busiest)
  2341. return true;
  2342. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2343. return true;
  2344. }
  2345. return false;
  2346. }
  2347. /**
  2348. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2349. * @sd: sched_domain whose statistics are to be updated.
  2350. * @this_cpu: Cpu for which load balance is currently performed.
  2351. * @idle: Idle status of this_cpu
  2352. * @cpus: Set of cpus considered for load balancing.
  2353. * @balance: Should we balance.
  2354. * @sds: variable to hold the statistics for this sched_domain.
  2355. */
  2356. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2357. enum cpu_idle_type idle, const struct cpumask *cpus,
  2358. int *balance, struct sd_lb_stats *sds)
  2359. {
  2360. struct sched_domain *child = sd->child;
  2361. struct sched_group *sg = sd->groups;
  2362. struct sg_lb_stats sgs;
  2363. int load_idx, prefer_sibling = 0;
  2364. if (child && child->flags & SD_PREFER_SIBLING)
  2365. prefer_sibling = 1;
  2366. init_sd_power_savings_stats(sd, sds, idle);
  2367. load_idx = get_sd_load_idx(sd, idle);
  2368. do {
  2369. int local_group;
  2370. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2371. memset(&sgs, 0, sizeof(sgs));
  2372. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  2373. local_group, cpus, balance, &sgs);
  2374. if (local_group && !(*balance))
  2375. return;
  2376. sds->total_load += sgs.group_load;
  2377. sds->total_pwr += sg->cpu_power;
  2378. /*
  2379. * In case the child domain prefers tasks go to siblings
  2380. * first, lower the sg capacity to one so that we'll try
  2381. * and move all the excess tasks away. We lower the capacity
  2382. * of a group only if the local group has the capacity to fit
  2383. * these excess tasks, i.e. nr_running < group_capacity. The
  2384. * extra check prevents the case where you always pull from the
  2385. * heaviest group when it is already under-utilized (possible
  2386. * with a large weight task outweighs the tasks on the system).
  2387. */
  2388. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2389. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2390. if (local_group) {
  2391. sds->this_load = sgs.avg_load;
  2392. sds->this = sg;
  2393. sds->this_nr_running = sgs.sum_nr_running;
  2394. sds->this_load_per_task = sgs.sum_weighted_load;
  2395. sds->this_has_capacity = sgs.group_has_capacity;
  2396. sds->this_idle_cpus = sgs.idle_cpus;
  2397. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2398. sds->max_load = sgs.avg_load;
  2399. sds->busiest = sg;
  2400. sds->busiest_nr_running = sgs.sum_nr_running;
  2401. sds->busiest_idle_cpus = sgs.idle_cpus;
  2402. sds->busiest_group_capacity = sgs.group_capacity;
  2403. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2404. sds->busiest_has_capacity = sgs.group_has_capacity;
  2405. sds->busiest_group_weight = sgs.group_weight;
  2406. sds->group_imb = sgs.group_imb;
  2407. }
  2408. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2409. sg = sg->next;
  2410. } while (sg != sd->groups);
  2411. }
  2412. int __weak arch_sd_sibling_asym_packing(void)
  2413. {
  2414. return 0*SD_ASYM_PACKING;
  2415. }
  2416. /**
  2417. * check_asym_packing - Check to see if the group is packed into the
  2418. * sched doman.
  2419. *
  2420. * This is primarily intended to used at the sibling level. Some
  2421. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2422. * case of POWER7, it can move to lower SMT modes only when higher
  2423. * threads are idle. When in lower SMT modes, the threads will
  2424. * perform better since they share less core resources. Hence when we
  2425. * have idle threads, we want them to be the higher ones.
  2426. *
  2427. * This packing function is run on idle threads. It checks to see if
  2428. * the busiest CPU in this domain (core in the P7 case) has a higher
  2429. * CPU number than the packing function is being run on. Here we are
  2430. * assuming lower CPU number will be equivalent to lower a SMT thread
  2431. * number.
  2432. *
  2433. * Returns 1 when packing is required and a task should be moved to
  2434. * this CPU. The amount of the imbalance is returned in *imbalance.
  2435. *
  2436. * @sd: The sched_domain whose packing is to be checked.
  2437. * @sds: Statistics of the sched_domain which is to be packed
  2438. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2439. * @imbalance: returns amount of imbalanced due to packing.
  2440. */
  2441. static int check_asym_packing(struct sched_domain *sd,
  2442. struct sd_lb_stats *sds,
  2443. int this_cpu, unsigned long *imbalance)
  2444. {
  2445. int busiest_cpu;
  2446. if (!(sd->flags & SD_ASYM_PACKING))
  2447. return 0;
  2448. if (!sds->busiest)
  2449. return 0;
  2450. busiest_cpu = group_first_cpu(sds->busiest);
  2451. if (this_cpu > busiest_cpu)
  2452. return 0;
  2453. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2454. SCHED_LOAD_SCALE);
  2455. return 1;
  2456. }
  2457. /**
  2458. * fix_small_imbalance - Calculate the minor imbalance that exists
  2459. * amongst the groups of a sched_domain, during
  2460. * load balancing.
  2461. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2462. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2463. * @imbalance: Variable to store the imbalance.
  2464. */
  2465. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2466. int this_cpu, unsigned long *imbalance)
  2467. {
  2468. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2469. unsigned int imbn = 2;
  2470. unsigned long scaled_busy_load_per_task;
  2471. if (sds->this_nr_running) {
  2472. sds->this_load_per_task /= sds->this_nr_running;
  2473. if (sds->busiest_load_per_task >
  2474. sds->this_load_per_task)
  2475. imbn = 1;
  2476. } else
  2477. sds->this_load_per_task =
  2478. cpu_avg_load_per_task(this_cpu);
  2479. scaled_busy_load_per_task = sds->busiest_load_per_task
  2480. * SCHED_LOAD_SCALE;
  2481. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2482. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2483. (scaled_busy_load_per_task * imbn)) {
  2484. *imbalance = sds->busiest_load_per_task;
  2485. return;
  2486. }
  2487. /*
  2488. * OK, we don't have enough imbalance to justify moving tasks,
  2489. * however we may be able to increase total CPU power used by
  2490. * moving them.
  2491. */
  2492. pwr_now += sds->busiest->cpu_power *
  2493. min(sds->busiest_load_per_task, sds->max_load);
  2494. pwr_now += sds->this->cpu_power *
  2495. min(sds->this_load_per_task, sds->this_load);
  2496. pwr_now /= SCHED_LOAD_SCALE;
  2497. /* Amount of load we'd subtract */
  2498. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2499. sds->busiest->cpu_power;
  2500. if (sds->max_load > tmp)
  2501. pwr_move += sds->busiest->cpu_power *
  2502. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2503. /* Amount of load we'd add */
  2504. if (sds->max_load * sds->busiest->cpu_power <
  2505. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2506. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2507. sds->this->cpu_power;
  2508. else
  2509. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2510. sds->this->cpu_power;
  2511. pwr_move += sds->this->cpu_power *
  2512. min(sds->this_load_per_task, sds->this_load + tmp);
  2513. pwr_move /= SCHED_LOAD_SCALE;
  2514. /* Move if we gain throughput */
  2515. if (pwr_move > pwr_now)
  2516. *imbalance = sds->busiest_load_per_task;
  2517. }
  2518. /**
  2519. * calculate_imbalance - Calculate the amount of imbalance present within the
  2520. * groups of a given sched_domain during load balance.
  2521. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2522. * @this_cpu: Cpu for which currently load balance is being performed.
  2523. * @imbalance: The variable to store the imbalance.
  2524. */
  2525. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2526. unsigned long *imbalance)
  2527. {
  2528. unsigned long max_pull, load_above_capacity = ~0UL;
  2529. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2530. if (sds->group_imb) {
  2531. sds->busiest_load_per_task =
  2532. min(sds->busiest_load_per_task, sds->avg_load);
  2533. }
  2534. /*
  2535. * In the presence of smp nice balancing, certain scenarios can have
  2536. * max load less than avg load(as we skip the groups at or below
  2537. * its cpu_power, while calculating max_load..)
  2538. */
  2539. if (sds->max_load < sds->avg_load) {
  2540. *imbalance = 0;
  2541. return fix_small_imbalance(sds, this_cpu, imbalance);
  2542. }
  2543. if (!sds->group_imb) {
  2544. /*
  2545. * Don't want to pull so many tasks that a group would go idle.
  2546. */
  2547. load_above_capacity = (sds->busiest_nr_running -
  2548. sds->busiest_group_capacity);
  2549. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2550. load_above_capacity /= sds->busiest->cpu_power;
  2551. }
  2552. /*
  2553. * We're trying to get all the cpus to the average_load, so we don't
  2554. * want to push ourselves above the average load, nor do we wish to
  2555. * reduce the max loaded cpu below the average load. At the same time,
  2556. * we also don't want to reduce the group load below the group capacity
  2557. * (so that we can implement power-savings policies etc). Thus we look
  2558. * for the minimum possible imbalance.
  2559. * Be careful of negative numbers as they'll appear as very large values
  2560. * with unsigned longs.
  2561. */
  2562. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2563. /* How much load to actually move to equalise the imbalance */
  2564. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2565. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2566. / SCHED_LOAD_SCALE;
  2567. /*
  2568. * if *imbalance is less than the average load per runnable task
  2569. * there is no guarantee that any tasks will be moved so we'll have
  2570. * a think about bumping its value to force at least one task to be
  2571. * moved
  2572. */
  2573. if (*imbalance < sds->busiest_load_per_task)
  2574. return fix_small_imbalance(sds, this_cpu, imbalance);
  2575. }
  2576. /******* find_busiest_group() helpers end here *********************/
  2577. /**
  2578. * find_busiest_group - Returns the busiest group within the sched_domain
  2579. * if there is an imbalance. If there isn't an imbalance, and
  2580. * the user has opted for power-savings, it returns a group whose
  2581. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2582. * such a group exists.
  2583. *
  2584. * Also calculates the amount of weighted load which should be moved
  2585. * to restore balance.
  2586. *
  2587. * @sd: The sched_domain whose busiest group is to be returned.
  2588. * @this_cpu: The cpu for which load balancing is currently being performed.
  2589. * @imbalance: Variable which stores amount of weighted load which should
  2590. * be moved to restore balance/put a group to idle.
  2591. * @idle: The idle status of this_cpu.
  2592. * @cpus: The set of CPUs under consideration for load-balancing.
  2593. * @balance: Pointer to a variable indicating if this_cpu
  2594. * is the appropriate cpu to perform load balancing at this_level.
  2595. *
  2596. * Returns: - the busiest group if imbalance exists.
  2597. * - If no imbalance and user has opted for power-savings balance,
  2598. * return the least loaded group whose CPUs can be
  2599. * put to idle by rebalancing its tasks onto our group.
  2600. */
  2601. static struct sched_group *
  2602. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2603. unsigned long *imbalance, enum cpu_idle_type idle,
  2604. const struct cpumask *cpus, int *balance)
  2605. {
  2606. struct sd_lb_stats sds;
  2607. memset(&sds, 0, sizeof(sds));
  2608. /*
  2609. * Compute the various statistics relavent for load balancing at
  2610. * this level.
  2611. */
  2612. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  2613. /*
  2614. * this_cpu is not the appropriate cpu to perform load balancing at
  2615. * this level.
  2616. */
  2617. if (!(*balance))
  2618. goto ret;
  2619. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2620. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2621. return sds.busiest;
  2622. /* There is no busy sibling group to pull tasks from */
  2623. if (!sds.busiest || sds.busiest_nr_running == 0)
  2624. goto out_balanced;
  2625. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2626. /*
  2627. * If the busiest group is imbalanced the below checks don't
  2628. * work because they assumes all things are equal, which typically
  2629. * isn't true due to cpus_allowed constraints and the like.
  2630. */
  2631. if (sds.group_imb)
  2632. goto force_balance;
  2633. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2634. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2635. !sds.busiest_has_capacity)
  2636. goto force_balance;
  2637. /*
  2638. * If the local group is more busy than the selected busiest group
  2639. * don't try and pull any tasks.
  2640. */
  2641. if (sds.this_load >= sds.max_load)
  2642. goto out_balanced;
  2643. /*
  2644. * Don't pull any tasks if this group is already above the domain
  2645. * average load.
  2646. */
  2647. if (sds.this_load >= sds.avg_load)
  2648. goto out_balanced;
  2649. if (idle == CPU_IDLE) {
  2650. /*
  2651. * This cpu is idle. If the busiest group load doesn't
  2652. * have more tasks than the number of available cpu's and
  2653. * there is no imbalance between this and busiest group
  2654. * wrt to idle cpu's, it is balanced.
  2655. */
  2656. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2657. sds.busiest_nr_running <= sds.busiest_group_weight)
  2658. goto out_balanced;
  2659. } else {
  2660. /*
  2661. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  2662. * imbalance_pct to be conservative.
  2663. */
  2664. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2665. goto out_balanced;
  2666. }
  2667. force_balance:
  2668. /* Looks like there is an imbalance. Compute it */
  2669. calculate_imbalance(&sds, this_cpu, imbalance);
  2670. return sds.busiest;
  2671. out_balanced:
  2672. /*
  2673. * There is no obvious imbalance. But check if we can do some balancing
  2674. * to save power.
  2675. */
  2676. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2677. return sds.busiest;
  2678. ret:
  2679. *imbalance = 0;
  2680. return NULL;
  2681. }
  2682. /*
  2683. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2684. */
  2685. static struct rq *
  2686. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2687. enum cpu_idle_type idle, unsigned long imbalance,
  2688. const struct cpumask *cpus)
  2689. {
  2690. struct rq *busiest = NULL, *rq;
  2691. unsigned long max_load = 0;
  2692. int i;
  2693. for_each_cpu(i, sched_group_cpus(group)) {
  2694. unsigned long power = power_of(i);
  2695. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2696. unsigned long wl;
  2697. if (!capacity)
  2698. capacity = fix_small_capacity(sd, group);
  2699. if (!cpumask_test_cpu(i, cpus))
  2700. continue;
  2701. rq = cpu_rq(i);
  2702. wl = weighted_cpuload(i);
  2703. /*
  2704. * When comparing with imbalance, use weighted_cpuload()
  2705. * which is not scaled with the cpu power.
  2706. */
  2707. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2708. continue;
  2709. /*
  2710. * For the load comparisons with the other cpu's, consider
  2711. * the weighted_cpuload() scaled with the cpu power, so that
  2712. * the load can be moved away from the cpu that is potentially
  2713. * running at a lower capacity.
  2714. */
  2715. wl = (wl * SCHED_LOAD_SCALE) / power;
  2716. if (wl > max_load) {
  2717. max_load = wl;
  2718. busiest = rq;
  2719. }
  2720. }
  2721. return busiest;
  2722. }
  2723. /*
  2724. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2725. * so long as it is large enough.
  2726. */
  2727. #define MAX_PINNED_INTERVAL 512
  2728. /* Working cpumask for load_balance and load_balance_newidle. */
  2729. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2730. static int need_active_balance(struct sched_domain *sd, int idle,
  2731. int busiest_cpu, int this_cpu)
  2732. {
  2733. if (idle == CPU_NEWLY_IDLE) {
  2734. /*
  2735. * ASYM_PACKING needs to force migrate tasks from busy but
  2736. * higher numbered CPUs in order to pack all tasks in the
  2737. * lowest numbered CPUs.
  2738. */
  2739. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2740. return 1;
  2741. /*
  2742. * The only task running in a non-idle cpu can be moved to this
  2743. * cpu in an attempt to completely freeup the other CPU
  2744. * package.
  2745. *
  2746. * The package power saving logic comes from
  2747. * find_busiest_group(). If there are no imbalance, then
  2748. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2749. * f_b_g() will select a group from which a running task may be
  2750. * pulled to this cpu in order to make the other package idle.
  2751. * If there is no opportunity to make a package idle and if
  2752. * there are no imbalance, then f_b_g() will return NULL and no
  2753. * action will be taken in load_balance_newidle().
  2754. *
  2755. * Under normal task pull operation due to imbalance, there
  2756. * will be more than one task in the source run queue and
  2757. * move_tasks() will succeed. ld_moved will be true and this
  2758. * active balance code will not be triggered.
  2759. */
  2760. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2761. return 0;
  2762. }
  2763. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2764. }
  2765. static int active_load_balance_cpu_stop(void *data);
  2766. /*
  2767. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2768. * tasks if there is an imbalance.
  2769. */
  2770. static int load_balance(int this_cpu, struct rq *this_rq,
  2771. struct sched_domain *sd, enum cpu_idle_type idle,
  2772. int *balance)
  2773. {
  2774. int ld_moved, all_pinned = 0, active_balance = 0;
  2775. struct sched_group *group;
  2776. unsigned long imbalance;
  2777. struct rq *busiest;
  2778. unsigned long flags;
  2779. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2780. cpumask_copy(cpus, cpu_active_mask);
  2781. schedstat_inc(sd, lb_count[idle]);
  2782. redo:
  2783. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  2784. cpus, balance);
  2785. if (*balance == 0)
  2786. goto out_balanced;
  2787. if (!group) {
  2788. schedstat_inc(sd, lb_nobusyg[idle]);
  2789. goto out_balanced;
  2790. }
  2791. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2792. if (!busiest) {
  2793. schedstat_inc(sd, lb_nobusyq[idle]);
  2794. goto out_balanced;
  2795. }
  2796. BUG_ON(busiest == this_rq);
  2797. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2798. ld_moved = 0;
  2799. if (busiest->nr_running > 1) {
  2800. /*
  2801. * Attempt to move tasks. If find_busiest_group has found
  2802. * an imbalance but busiest->nr_running <= 1, the group is
  2803. * still unbalanced. ld_moved simply stays zero, so it is
  2804. * correctly treated as an imbalance.
  2805. */
  2806. all_pinned = 1;
  2807. local_irq_save(flags);
  2808. double_rq_lock(this_rq, busiest);
  2809. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2810. imbalance, sd, idle, &all_pinned);
  2811. double_rq_unlock(this_rq, busiest);
  2812. local_irq_restore(flags);
  2813. /*
  2814. * some other cpu did the load balance for us.
  2815. */
  2816. if (ld_moved && this_cpu != smp_processor_id())
  2817. resched_cpu(this_cpu);
  2818. /* All tasks on this runqueue were pinned by CPU affinity */
  2819. if (unlikely(all_pinned)) {
  2820. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2821. if (!cpumask_empty(cpus))
  2822. goto redo;
  2823. goto out_balanced;
  2824. }
  2825. }
  2826. if (!ld_moved) {
  2827. schedstat_inc(sd, lb_failed[idle]);
  2828. /*
  2829. * Increment the failure counter only on periodic balance.
  2830. * We do not want newidle balance, which can be very
  2831. * frequent, pollute the failure counter causing
  2832. * excessive cache_hot migrations and active balances.
  2833. */
  2834. if (idle != CPU_NEWLY_IDLE)
  2835. sd->nr_balance_failed++;
  2836. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  2837. raw_spin_lock_irqsave(&busiest->lock, flags);
  2838. /* don't kick the active_load_balance_cpu_stop,
  2839. * if the curr task on busiest cpu can't be
  2840. * moved to this_cpu
  2841. */
  2842. if (!cpumask_test_cpu(this_cpu,
  2843. &busiest->curr->cpus_allowed)) {
  2844. raw_spin_unlock_irqrestore(&busiest->lock,
  2845. flags);
  2846. all_pinned = 1;
  2847. goto out_one_pinned;
  2848. }
  2849. /*
  2850. * ->active_balance synchronizes accesses to
  2851. * ->active_balance_work. Once set, it's cleared
  2852. * only after active load balance is finished.
  2853. */
  2854. if (!busiest->active_balance) {
  2855. busiest->active_balance = 1;
  2856. busiest->push_cpu = this_cpu;
  2857. active_balance = 1;
  2858. }
  2859. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2860. if (active_balance)
  2861. stop_one_cpu_nowait(cpu_of(busiest),
  2862. active_load_balance_cpu_stop, busiest,
  2863. &busiest->active_balance_work);
  2864. /*
  2865. * We've kicked active balancing, reset the failure
  2866. * counter.
  2867. */
  2868. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2869. }
  2870. } else
  2871. sd->nr_balance_failed = 0;
  2872. if (likely(!active_balance)) {
  2873. /* We were unbalanced, so reset the balancing interval */
  2874. sd->balance_interval = sd->min_interval;
  2875. } else {
  2876. /*
  2877. * If we've begun active balancing, start to back off. This
  2878. * case may not be covered by the all_pinned logic if there
  2879. * is only 1 task on the busy runqueue (because we don't call
  2880. * move_tasks).
  2881. */
  2882. if (sd->balance_interval < sd->max_interval)
  2883. sd->balance_interval *= 2;
  2884. }
  2885. goto out;
  2886. out_balanced:
  2887. schedstat_inc(sd, lb_balanced[idle]);
  2888. sd->nr_balance_failed = 0;
  2889. out_one_pinned:
  2890. /* tune up the balancing interval */
  2891. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2892. (sd->balance_interval < sd->max_interval))
  2893. sd->balance_interval *= 2;
  2894. ld_moved = 0;
  2895. out:
  2896. return ld_moved;
  2897. }
  2898. /*
  2899. * idle_balance is called by schedule() if this_cpu is about to become
  2900. * idle. Attempts to pull tasks from other CPUs.
  2901. */
  2902. static void idle_balance(int this_cpu, struct rq *this_rq)
  2903. {
  2904. struct sched_domain *sd;
  2905. int pulled_task = 0;
  2906. unsigned long next_balance = jiffies + HZ;
  2907. this_rq->idle_stamp = this_rq->clock;
  2908. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2909. return;
  2910. /*
  2911. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2912. */
  2913. raw_spin_unlock(&this_rq->lock);
  2914. update_shares(this_cpu);
  2915. rcu_read_lock();
  2916. for_each_domain(this_cpu, sd) {
  2917. unsigned long interval;
  2918. int balance = 1;
  2919. if (!(sd->flags & SD_LOAD_BALANCE))
  2920. continue;
  2921. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2922. /* If we've pulled tasks over stop searching: */
  2923. pulled_task = load_balance(this_cpu, this_rq,
  2924. sd, CPU_NEWLY_IDLE, &balance);
  2925. }
  2926. interval = msecs_to_jiffies(sd->balance_interval);
  2927. if (time_after(next_balance, sd->last_balance + interval))
  2928. next_balance = sd->last_balance + interval;
  2929. if (pulled_task) {
  2930. this_rq->idle_stamp = 0;
  2931. break;
  2932. }
  2933. }
  2934. rcu_read_unlock();
  2935. raw_spin_lock(&this_rq->lock);
  2936. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2937. /*
  2938. * We are going idle. next_balance may be set based on
  2939. * a busy processor. So reset next_balance.
  2940. */
  2941. this_rq->next_balance = next_balance;
  2942. }
  2943. }
  2944. /*
  2945. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2946. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2947. * least 1 task to be running on each physical CPU where possible, and
  2948. * avoids physical / logical imbalances.
  2949. */
  2950. static int active_load_balance_cpu_stop(void *data)
  2951. {
  2952. struct rq *busiest_rq = data;
  2953. int busiest_cpu = cpu_of(busiest_rq);
  2954. int target_cpu = busiest_rq->push_cpu;
  2955. struct rq *target_rq = cpu_rq(target_cpu);
  2956. struct sched_domain *sd;
  2957. raw_spin_lock_irq(&busiest_rq->lock);
  2958. /* make sure the requested cpu hasn't gone down in the meantime */
  2959. if (unlikely(busiest_cpu != smp_processor_id() ||
  2960. !busiest_rq->active_balance))
  2961. goto out_unlock;
  2962. /* Is there any task to move? */
  2963. if (busiest_rq->nr_running <= 1)
  2964. goto out_unlock;
  2965. /*
  2966. * This condition is "impossible", if it occurs
  2967. * we need to fix it. Originally reported by
  2968. * Bjorn Helgaas on a 128-cpu setup.
  2969. */
  2970. BUG_ON(busiest_rq == target_rq);
  2971. /* move a task from busiest_rq to target_rq */
  2972. double_lock_balance(busiest_rq, target_rq);
  2973. /* Search for an sd spanning us and the target CPU. */
  2974. rcu_read_lock();
  2975. for_each_domain(target_cpu, sd) {
  2976. if ((sd->flags & SD_LOAD_BALANCE) &&
  2977. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2978. break;
  2979. }
  2980. if (likely(sd)) {
  2981. schedstat_inc(sd, alb_count);
  2982. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2983. sd, CPU_IDLE))
  2984. schedstat_inc(sd, alb_pushed);
  2985. else
  2986. schedstat_inc(sd, alb_failed);
  2987. }
  2988. rcu_read_unlock();
  2989. double_unlock_balance(busiest_rq, target_rq);
  2990. out_unlock:
  2991. busiest_rq->active_balance = 0;
  2992. raw_spin_unlock_irq(&busiest_rq->lock);
  2993. return 0;
  2994. }
  2995. #ifdef CONFIG_NO_HZ
  2996. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2997. static void trigger_sched_softirq(void *data)
  2998. {
  2999. raise_softirq_irqoff(SCHED_SOFTIRQ);
  3000. }
  3001. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  3002. {
  3003. csd->func = trigger_sched_softirq;
  3004. csd->info = NULL;
  3005. csd->flags = 0;
  3006. csd->priv = 0;
  3007. }
  3008. /*
  3009. * idle load balancing details
  3010. * - One of the idle CPUs nominates itself as idle load_balancer, while
  3011. * entering idle.
  3012. * - This idle load balancer CPU will also go into tickless mode when
  3013. * it is idle, just like all other idle CPUs
  3014. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3015. * needed, they will kick the idle load balancer, which then does idle
  3016. * load balancing for all the idle CPUs.
  3017. */
  3018. static struct {
  3019. atomic_t load_balancer;
  3020. atomic_t first_pick_cpu;
  3021. atomic_t second_pick_cpu;
  3022. cpumask_var_t idle_cpus_mask;
  3023. cpumask_var_t grp_idle_mask;
  3024. unsigned long next_balance; /* in jiffy units */
  3025. } nohz ____cacheline_aligned;
  3026. int get_nohz_load_balancer(void)
  3027. {
  3028. return atomic_read(&nohz.load_balancer);
  3029. }
  3030. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3031. /**
  3032. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3033. * @cpu: The cpu whose lowest level of sched domain is to
  3034. * be returned.
  3035. * @flag: The flag to check for the lowest sched_domain
  3036. * for the given cpu.
  3037. *
  3038. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3039. */
  3040. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3041. {
  3042. struct sched_domain *sd;
  3043. for_each_domain(cpu, sd)
  3044. if (sd && (sd->flags & flag))
  3045. break;
  3046. return sd;
  3047. }
  3048. /**
  3049. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3050. * @cpu: The cpu whose domains we're iterating over.
  3051. * @sd: variable holding the value of the power_savings_sd
  3052. * for cpu.
  3053. * @flag: The flag to filter the sched_domains to be iterated.
  3054. *
  3055. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3056. * set, starting from the lowest sched_domain to the highest.
  3057. */
  3058. #define for_each_flag_domain(cpu, sd, flag) \
  3059. for (sd = lowest_flag_domain(cpu, flag); \
  3060. (sd && (sd->flags & flag)); sd = sd->parent)
  3061. /**
  3062. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3063. * @ilb_group: group to be checked for semi-idleness
  3064. *
  3065. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3066. *
  3067. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3068. * and atleast one non-idle CPU. This helper function checks if the given
  3069. * sched_group is semi-idle or not.
  3070. */
  3071. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3072. {
  3073. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3074. sched_group_cpus(ilb_group));
  3075. /*
  3076. * A sched_group is semi-idle when it has atleast one busy cpu
  3077. * and atleast one idle cpu.
  3078. */
  3079. if (cpumask_empty(nohz.grp_idle_mask))
  3080. return 0;
  3081. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3082. return 0;
  3083. return 1;
  3084. }
  3085. /**
  3086. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3087. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3088. *
  3089. * Returns: Returns the id of the idle load balancer if it exists,
  3090. * Else, returns >= nr_cpu_ids.
  3091. *
  3092. * This algorithm picks the idle load balancer such that it belongs to a
  3093. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3094. * completely idle packages/cores just for the purpose of idle load balancing
  3095. * when there are other idle cpu's which are better suited for that job.
  3096. */
  3097. static int find_new_ilb(int cpu)
  3098. {
  3099. struct sched_domain *sd;
  3100. struct sched_group *ilb_group;
  3101. int ilb = nr_cpu_ids;
  3102. /*
  3103. * Have idle load balancer selection from semi-idle packages only
  3104. * when power-aware load balancing is enabled
  3105. */
  3106. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3107. goto out_done;
  3108. /*
  3109. * Optimize for the case when we have no idle CPUs or only one
  3110. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3111. */
  3112. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3113. goto out_done;
  3114. rcu_read_lock();
  3115. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3116. ilb_group = sd->groups;
  3117. do {
  3118. if (is_semi_idle_group(ilb_group)) {
  3119. ilb = cpumask_first(nohz.grp_idle_mask);
  3120. goto unlock;
  3121. }
  3122. ilb_group = ilb_group->next;
  3123. } while (ilb_group != sd->groups);
  3124. }
  3125. unlock:
  3126. rcu_read_unlock();
  3127. out_done:
  3128. return ilb;
  3129. }
  3130. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3131. static inline int find_new_ilb(int call_cpu)
  3132. {
  3133. return nr_cpu_ids;
  3134. }
  3135. #endif
  3136. /*
  3137. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3138. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3139. * CPU (if there is one).
  3140. */
  3141. static void nohz_balancer_kick(int cpu)
  3142. {
  3143. int ilb_cpu;
  3144. nohz.next_balance++;
  3145. ilb_cpu = get_nohz_load_balancer();
  3146. if (ilb_cpu >= nr_cpu_ids) {
  3147. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3148. if (ilb_cpu >= nr_cpu_ids)
  3149. return;
  3150. }
  3151. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3152. struct call_single_data *cp;
  3153. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3154. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3155. __smp_call_function_single(ilb_cpu, cp, 0);
  3156. }
  3157. return;
  3158. }
  3159. /*
  3160. * This routine will try to nominate the ilb (idle load balancing)
  3161. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3162. * load balancing on behalf of all those cpus.
  3163. *
  3164. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3165. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3166. * idle load balancing by kicking one of the idle CPUs.
  3167. *
  3168. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3169. * ilb owner CPU in future (when there is a need for idle load balancing on
  3170. * behalf of all idle CPUs).
  3171. */
  3172. void select_nohz_load_balancer(int stop_tick)
  3173. {
  3174. int cpu = smp_processor_id();
  3175. if (stop_tick) {
  3176. if (!cpu_active(cpu)) {
  3177. if (atomic_read(&nohz.load_balancer) != cpu)
  3178. return;
  3179. /*
  3180. * If we are going offline and still the leader,
  3181. * give up!
  3182. */
  3183. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3184. nr_cpu_ids) != cpu)
  3185. BUG();
  3186. return;
  3187. }
  3188. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3189. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3190. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3191. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3192. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3193. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3194. int new_ilb;
  3195. /* make me the ilb owner */
  3196. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3197. cpu) != nr_cpu_ids)
  3198. return;
  3199. /*
  3200. * Check to see if there is a more power-efficient
  3201. * ilb.
  3202. */
  3203. new_ilb = find_new_ilb(cpu);
  3204. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3205. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3206. resched_cpu(new_ilb);
  3207. return;
  3208. }
  3209. return;
  3210. }
  3211. } else {
  3212. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3213. return;
  3214. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3215. if (atomic_read(&nohz.load_balancer) == cpu)
  3216. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3217. nr_cpu_ids) != cpu)
  3218. BUG();
  3219. }
  3220. return;
  3221. }
  3222. #endif
  3223. static DEFINE_SPINLOCK(balancing);
  3224. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3225. /*
  3226. * Scale the max load_balance interval with the number of CPUs in the system.
  3227. * This trades load-balance latency on larger machines for less cross talk.
  3228. */
  3229. static void update_max_interval(void)
  3230. {
  3231. max_load_balance_interval = HZ*num_online_cpus()/10;
  3232. }
  3233. /*
  3234. * It checks each scheduling domain to see if it is due to be balanced,
  3235. * and initiates a balancing operation if so.
  3236. *
  3237. * Balancing parameters are set up in arch_init_sched_domains.
  3238. */
  3239. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3240. {
  3241. int balance = 1;
  3242. struct rq *rq = cpu_rq(cpu);
  3243. unsigned long interval;
  3244. struct sched_domain *sd;
  3245. /* Earliest time when we have to do rebalance again */
  3246. unsigned long next_balance = jiffies + 60*HZ;
  3247. int update_next_balance = 0;
  3248. int need_serialize;
  3249. update_shares(cpu);
  3250. rcu_read_lock();
  3251. for_each_domain(cpu, sd) {
  3252. if (!(sd->flags & SD_LOAD_BALANCE))
  3253. continue;
  3254. interval = sd->balance_interval;
  3255. if (idle != CPU_IDLE)
  3256. interval *= sd->busy_factor;
  3257. /* scale ms to jiffies */
  3258. interval = msecs_to_jiffies(interval);
  3259. interval = clamp(interval, 1UL, max_load_balance_interval);
  3260. need_serialize = sd->flags & SD_SERIALIZE;
  3261. if (need_serialize) {
  3262. if (!spin_trylock(&balancing))
  3263. goto out;
  3264. }
  3265. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3266. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3267. /*
  3268. * We've pulled tasks over so either we're no
  3269. * longer idle.
  3270. */
  3271. idle = CPU_NOT_IDLE;
  3272. }
  3273. sd->last_balance = jiffies;
  3274. }
  3275. if (need_serialize)
  3276. spin_unlock(&balancing);
  3277. out:
  3278. if (time_after(next_balance, sd->last_balance + interval)) {
  3279. next_balance = sd->last_balance + interval;
  3280. update_next_balance = 1;
  3281. }
  3282. /*
  3283. * Stop the load balance at this level. There is another
  3284. * CPU in our sched group which is doing load balancing more
  3285. * actively.
  3286. */
  3287. if (!balance)
  3288. break;
  3289. }
  3290. rcu_read_unlock();
  3291. /*
  3292. * next_balance will be updated only when there is a need.
  3293. * When the cpu is attached to null domain for ex, it will not be
  3294. * updated.
  3295. */
  3296. if (likely(update_next_balance))
  3297. rq->next_balance = next_balance;
  3298. }
  3299. #ifdef CONFIG_NO_HZ
  3300. /*
  3301. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3302. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3303. */
  3304. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3305. {
  3306. struct rq *this_rq = cpu_rq(this_cpu);
  3307. struct rq *rq;
  3308. int balance_cpu;
  3309. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3310. return;
  3311. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3312. if (balance_cpu == this_cpu)
  3313. continue;
  3314. /*
  3315. * If this cpu gets work to do, stop the load balancing
  3316. * work being done for other cpus. Next load
  3317. * balancing owner will pick it up.
  3318. */
  3319. if (need_resched()) {
  3320. this_rq->nohz_balance_kick = 0;
  3321. break;
  3322. }
  3323. raw_spin_lock_irq(&this_rq->lock);
  3324. update_rq_clock(this_rq);
  3325. update_cpu_load(this_rq);
  3326. raw_spin_unlock_irq(&this_rq->lock);
  3327. rebalance_domains(balance_cpu, CPU_IDLE);
  3328. rq = cpu_rq(balance_cpu);
  3329. if (time_after(this_rq->next_balance, rq->next_balance))
  3330. this_rq->next_balance = rq->next_balance;
  3331. }
  3332. nohz.next_balance = this_rq->next_balance;
  3333. this_rq->nohz_balance_kick = 0;
  3334. }
  3335. /*
  3336. * Current heuristic for kicking the idle load balancer
  3337. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3338. * idle load balancer when it has more than one process active. This
  3339. * eliminates the need for idle load balancing altogether when we have
  3340. * only one running process in the system (common case).
  3341. * - If there are more than one busy CPU, idle load balancer may have
  3342. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3343. * SMT or core siblings and can run better if they move to different
  3344. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3345. * which will kick idle load balancer as soon as it has any load.
  3346. */
  3347. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3348. {
  3349. unsigned long now = jiffies;
  3350. int ret;
  3351. int first_pick_cpu, second_pick_cpu;
  3352. if (time_before(now, nohz.next_balance))
  3353. return 0;
  3354. if (rq->idle_at_tick)
  3355. return 0;
  3356. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3357. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3358. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3359. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3360. return 0;
  3361. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3362. if (ret == nr_cpu_ids || ret == cpu) {
  3363. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3364. if (rq->nr_running > 1)
  3365. return 1;
  3366. } else {
  3367. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3368. if (ret == nr_cpu_ids || ret == cpu) {
  3369. if (rq->nr_running)
  3370. return 1;
  3371. }
  3372. }
  3373. return 0;
  3374. }
  3375. #else
  3376. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3377. #endif
  3378. /*
  3379. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3380. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3381. */
  3382. static void run_rebalance_domains(struct softirq_action *h)
  3383. {
  3384. int this_cpu = smp_processor_id();
  3385. struct rq *this_rq = cpu_rq(this_cpu);
  3386. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3387. CPU_IDLE : CPU_NOT_IDLE;
  3388. rebalance_domains(this_cpu, idle);
  3389. /*
  3390. * If this cpu has a pending nohz_balance_kick, then do the
  3391. * balancing on behalf of the other idle cpus whose ticks are
  3392. * stopped.
  3393. */
  3394. nohz_idle_balance(this_cpu, idle);
  3395. }
  3396. static inline int on_null_domain(int cpu)
  3397. {
  3398. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3399. }
  3400. /*
  3401. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3402. */
  3403. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3404. {
  3405. /* Don't need to rebalance while attached to NULL domain */
  3406. if (time_after_eq(jiffies, rq->next_balance) &&
  3407. likely(!on_null_domain(cpu)))
  3408. raise_softirq(SCHED_SOFTIRQ);
  3409. #ifdef CONFIG_NO_HZ
  3410. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3411. nohz_balancer_kick(cpu);
  3412. #endif
  3413. }
  3414. static void rq_online_fair(struct rq *rq)
  3415. {
  3416. update_sysctl();
  3417. }
  3418. static void rq_offline_fair(struct rq *rq)
  3419. {
  3420. update_sysctl();
  3421. }
  3422. #else /* CONFIG_SMP */
  3423. /*
  3424. * on UP we do not need to balance between CPUs:
  3425. */
  3426. static inline void idle_balance(int cpu, struct rq *rq)
  3427. {
  3428. }
  3429. #endif /* CONFIG_SMP */
  3430. /*
  3431. * scheduler tick hitting a task of our scheduling class:
  3432. */
  3433. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3434. {
  3435. struct cfs_rq *cfs_rq;
  3436. struct sched_entity *se = &curr->se;
  3437. for_each_sched_entity(se) {
  3438. cfs_rq = cfs_rq_of(se);
  3439. entity_tick(cfs_rq, se, queued);
  3440. }
  3441. }
  3442. /*
  3443. * called on fork with the child task as argument from the parent's context
  3444. * - child not yet on the tasklist
  3445. * - preemption disabled
  3446. */
  3447. static void task_fork_fair(struct task_struct *p)
  3448. {
  3449. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3450. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3451. int this_cpu = smp_processor_id();
  3452. struct rq *rq = this_rq();
  3453. unsigned long flags;
  3454. raw_spin_lock_irqsave(&rq->lock, flags);
  3455. update_rq_clock(rq);
  3456. if (unlikely(task_cpu(p) != this_cpu)) {
  3457. rcu_read_lock();
  3458. __set_task_cpu(p, this_cpu);
  3459. rcu_read_unlock();
  3460. }
  3461. update_curr(cfs_rq);
  3462. if (curr)
  3463. se->vruntime = curr->vruntime;
  3464. place_entity(cfs_rq, se, 1);
  3465. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3466. /*
  3467. * Upon rescheduling, sched_class::put_prev_task() will place
  3468. * 'current' within the tree based on its new key value.
  3469. */
  3470. swap(curr->vruntime, se->vruntime);
  3471. resched_task(rq->curr);
  3472. }
  3473. se->vruntime -= cfs_rq->min_vruntime;
  3474. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3475. }
  3476. /*
  3477. * Priority of the task has changed. Check to see if we preempt
  3478. * the current task.
  3479. */
  3480. static void
  3481. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  3482. {
  3483. if (!p->se.on_rq)
  3484. return;
  3485. /*
  3486. * Reschedule if we are currently running on this runqueue and
  3487. * our priority decreased, or if we are not currently running on
  3488. * this runqueue and our priority is higher than the current's
  3489. */
  3490. if (rq->curr == p) {
  3491. if (p->prio > oldprio)
  3492. resched_task(rq->curr);
  3493. } else
  3494. check_preempt_curr(rq, p, 0);
  3495. }
  3496. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  3497. {
  3498. struct sched_entity *se = &p->se;
  3499. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3500. /*
  3501. * Ensure the task's vruntime is normalized, so that when its
  3502. * switched back to the fair class the enqueue_entity(.flags=0) will
  3503. * do the right thing.
  3504. *
  3505. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  3506. * have normalized the vruntime, if it was !on_rq, then only when
  3507. * the task is sleeping will it still have non-normalized vruntime.
  3508. */
  3509. if (!se->on_rq && p->state != TASK_RUNNING) {
  3510. /*
  3511. * Fix up our vruntime so that the current sleep doesn't
  3512. * cause 'unlimited' sleep bonus.
  3513. */
  3514. place_entity(cfs_rq, se, 0);
  3515. se->vruntime -= cfs_rq->min_vruntime;
  3516. }
  3517. }
  3518. /*
  3519. * We switched to the sched_fair class.
  3520. */
  3521. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  3522. {
  3523. if (!p->se.on_rq)
  3524. return;
  3525. /*
  3526. * We were most likely switched from sched_rt, so
  3527. * kick off the schedule if running, otherwise just see
  3528. * if we can still preempt the current task.
  3529. */
  3530. if (rq->curr == p)
  3531. resched_task(rq->curr);
  3532. else
  3533. check_preempt_curr(rq, p, 0);
  3534. }
  3535. /* Account for a task changing its policy or group.
  3536. *
  3537. * This routine is mostly called to set cfs_rq->curr field when a task
  3538. * migrates between groups/classes.
  3539. */
  3540. static void set_curr_task_fair(struct rq *rq)
  3541. {
  3542. struct sched_entity *se = &rq->curr->se;
  3543. for_each_sched_entity(se)
  3544. set_next_entity(cfs_rq_of(se), se);
  3545. }
  3546. #ifdef CONFIG_FAIR_GROUP_SCHED
  3547. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3548. {
  3549. /*
  3550. * If the task was not on the rq at the time of this cgroup movement
  3551. * it must have been asleep, sleeping tasks keep their ->vruntime
  3552. * absolute on their old rq until wakeup (needed for the fair sleeper
  3553. * bonus in place_entity()).
  3554. *
  3555. * If it was on the rq, we've just 'preempted' it, which does convert
  3556. * ->vruntime to a relative base.
  3557. *
  3558. * Make sure both cases convert their relative position when migrating
  3559. * to another cgroup's rq. This does somewhat interfere with the
  3560. * fair sleeper stuff for the first placement, but who cares.
  3561. */
  3562. if (!on_rq)
  3563. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3564. set_task_rq(p, task_cpu(p));
  3565. if (!on_rq)
  3566. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3567. }
  3568. #endif
  3569. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3570. {
  3571. struct sched_entity *se = &task->se;
  3572. unsigned int rr_interval = 0;
  3573. /*
  3574. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3575. * idle runqueue:
  3576. */
  3577. if (rq->cfs.load.weight)
  3578. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3579. return rr_interval;
  3580. }
  3581. /*
  3582. * All the scheduling class methods:
  3583. */
  3584. static const struct sched_class fair_sched_class = {
  3585. .next = &idle_sched_class,
  3586. .enqueue_task = enqueue_task_fair,
  3587. .dequeue_task = dequeue_task_fair,
  3588. .yield_task = yield_task_fair,
  3589. .yield_to_task = yield_to_task_fair,
  3590. .check_preempt_curr = check_preempt_wakeup,
  3591. .pick_next_task = pick_next_task_fair,
  3592. .put_prev_task = put_prev_task_fair,
  3593. #ifdef CONFIG_SMP
  3594. .select_task_rq = select_task_rq_fair,
  3595. .rq_online = rq_online_fair,
  3596. .rq_offline = rq_offline_fair,
  3597. .task_waking = task_waking_fair,
  3598. #endif
  3599. .set_curr_task = set_curr_task_fair,
  3600. .task_tick = task_tick_fair,
  3601. .task_fork = task_fork_fair,
  3602. .prio_changed = prio_changed_fair,
  3603. .switched_from = switched_from_fair,
  3604. .switched_to = switched_to_fair,
  3605. .get_rr_interval = get_rr_interval_fair,
  3606. #ifdef CONFIG_FAIR_GROUP_SCHED
  3607. .task_move_group = task_move_group_fair,
  3608. #endif
  3609. };
  3610. #ifdef CONFIG_SCHED_DEBUG
  3611. static void print_cfs_stats(struct seq_file *m, int cpu)
  3612. {
  3613. struct cfs_rq *cfs_rq;
  3614. rcu_read_lock();
  3615. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3616. print_cfs_rq(m, cpu, cfs_rq);
  3617. rcu_read_unlock();
  3618. }
  3619. #endif