netxen_nic_init.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386
  1. /*
  2. * Copyright (C) 2003 - 2006 NetXen, Inc.
  3. * All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
  18. * MA 02111-1307, USA.
  19. *
  20. * The full GNU General Public License is included in this distribution
  21. * in the file called LICENSE.
  22. *
  23. * Contact Information:
  24. * info@netxen.com
  25. * NetXen,
  26. * 3965 Freedom Circle, Fourth floor,
  27. * Santa Clara, CA 95054
  28. *
  29. *
  30. * Source file for NIC routines to initialize the Phantom Hardware
  31. *
  32. */
  33. #include <linux/netdevice.h>
  34. #include <linux/delay.h>
  35. #include "netxen_nic.h"
  36. #include "netxen_nic_hw.h"
  37. #include "netxen_nic_phan_reg.h"
  38. struct crb_addr_pair {
  39. u32 addr;
  40. u32 data;
  41. };
  42. unsigned long last_schedule_time;
  43. #define NETXEN_MAX_CRB_XFORM 60
  44. static unsigned int crb_addr_xform[NETXEN_MAX_CRB_XFORM];
  45. #define NETXEN_ADDR_ERROR (0xffffffff)
  46. #define crb_addr_transform(name) \
  47. crb_addr_xform[NETXEN_HW_PX_MAP_CRB_##name] = \
  48. NETXEN_HW_CRB_HUB_AGT_ADR_##name << 20
  49. #define NETXEN_NIC_XDMA_RESET 0x8000ff
  50. static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
  51. uint32_t ctx, uint32_t ringid);
  52. #if 0
  53. static void netxen_nic_locked_write_reg(struct netxen_adapter *adapter,
  54. unsigned long off, int *data)
  55. {
  56. void __iomem *addr = pci_base_offset(adapter, off);
  57. writel(*data, addr);
  58. }
  59. #endif /* 0 */
  60. static void crb_addr_transform_setup(void)
  61. {
  62. crb_addr_transform(XDMA);
  63. crb_addr_transform(TIMR);
  64. crb_addr_transform(SRE);
  65. crb_addr_transform(SQN3);
  66. crb_addr_transform(SQN2);
  67. crb_addr_transform(SQN1);
  68. crb_addr_transform(SQN0);
  69. crb_addr_transform(SQS3);
  70. crb_addr_transform(SQS2);
  71. crb_addr_transform(SQS1);
  72. crb_addr_transform(SQS0);
  73. crb_addr_transform(RPMX7);
  74. crb_addr_transform(RPMX6);
  75. crb_addr_transform(RPMX5);
  76. crb_addr_transform(RPMX4);
  77. crb_addr_transform(RPMX3);
  78. crb_addr_transform(RPMX2);
  79. crb_addr_transform(RPMX1);
  80. crb_addr_transform(RPMX0);
  81. crb_addr_transform(ROMUSB);
  82. crb_addr_transform(SN);
  83. crb_addr_transform(QMN);
  84. crb_addr_transform(QMS);
  85. crb_addr_transform(PGNI);
  86. crb_addr_transform(PGND);
  87. crb_addr_transform(PGN3);
  88. crb_addr_transform(PGN2);
  89. crb_addr_transform(PGN1);
  90. crb_addr_transform(PGN0);
  91. crb_addr_transform(PGSI);
  92. crb_addr_transform(PGSD);
  93. crb_addr_transform(PGS3);
  94. crb_addr_transform(PGS2);
  95. crb_addr_transform(PGS1);
  96. crb_addr_transform(PGS0);
  97. crb_addr_transform(PS);
  98. crb_addr_transform(PH);
  99. crb_addr_transform(NIU);
  100. crb_addr_transform(I2Q);
  101. crb_addr_transform(EG);
  102. crb_addr_transform(MN);
  103. crb_addr_transform(MS);
  104. crb_addr_transform(CAS2);
  105. crb_addr_transform(CAS1);
  106. crb_addr_transform(CAS0);
  107. crb_addr_transform(CAM);
  108. crb_addr_transform(C2C1);
  109. crb_addr_transform(C2C0);
  110. crb_addr_transform(SMB);
  111. }
  112. int netxen_init_firmware(struct netxen_adapter *adapter)
  113. {
  114. u32 state = 0, loops = 0, err = 0;
  115. /* Window 1 call */
  116. state = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  117. if (state == PHAN_INITIALIZE_ACK)
  118. return 0;
  119. while (state != PHAN_INITIALIZE_COMPLETE && loops < 2000) {
  120. udelay(100);
  121. /* Window 1 call */
  122. state = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  123. loops++;
  124. }
  125. if (loops >= 2000) {
  126. printk(KERN_ERR "Cmd Peg initialization not complete:%x.\n",
  127. state);
  128. err = -EIO;
  129. return err;
  130. }
  131. /* Window 1 call */
  132. writel(INTR_SCHEME_PERPORT,
  133. NETXEN_CRB_NORMALIZE(adapter, CRB_NIC_CAPABILITIES_HOST));
  134. writel(MSI_MODE_MULTIFUNC,
  135. NETXEN_CRB_NORMALIZE(adapter, CRB_NIC_MSI_MODE_HOST));
  136. writel(MPORT_MULTI_FUNCTION_MODE,
  137. NETXEN_CRB_NORMALIZE(adapter, CRB_MPORT_MODE));
  138. writel(PHAN_INITIALIZE_ACK,
  139. NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  140. return err;
  141. }
  142. #define NETXEN_ADDR_LIMIT 0xffffffffULL
  143. void *netxen_alloc(struct pci_dev *pdev, size_t sz, dma_addr_t * ptr,
  144. struct pci_dev **used_dev)
  145. {
  146. void *addr;
  147. addr = pci_alloc_consistent(pdev, sz, ptr);
  148. if ((unsigned long long)(*ptr) < NETXEN_ADDR_LIMIT) {
  149. *used_dev = pdev;
  150. return addr;
  151. }
  152. pci_free_consistent(pdev, sz, addr, *ptr);
  153. addr = pci_alloc_consistent(NULL, sz, ptr);
  154. *used_dev = NULL;
  155. return addr;
  156. }
  157. void netxen_initialize_adapter_sw(struct netxen_adapter *adapter)
  158. {
  159. int ctxid, ring;
  160. u32 i;
  161. u32 num_rx_bufs = 0;
  162. struct netxen_rcv_desc_ctx *rcv_desc;
  163. DPRINTK(INFO, "initializing some queues: %p\n", adapter);
  164. for (ctxid = 0; ctxid < MAX_RCV_CTX; ++ctxid) {
  165. for (ring = 0; ring < NUM_RCV_DESC_RINGS; ring++) {
  166. struct netxen_rx_buffer *rx_buf;
  167. rcv_desc = &adapter->recv_ctx[ctxid].rcv_desc[ring];
  168. rcv_desc->begin_alloc = 0;
  169. rx_buf = rcv_desc->rx_buf_arr;
  170. num_rx_bufs = rcv_desc->max_rx_desc_count;
  171. /*
  172. * Now go through all of them, set reference handles
  173. * and put them in the queues.
  174. */
  175. for (i = 0; i < num_rx_bufs; i++) {
  176. rx_buf->ref_handle = i;
  177. rx_buf->state = NETXEN_BUFFER_FREE;
  178. DPRINTK(INFO, "Rx buf:ctx%d i(%d) rx_buf:"
  179. "%p\n", ctxid, i, rx_buf);
  180. rx_buf++;
  181. }
  182. }
  183. }
  184. }
  185. void netxen_initialize_adapter_ops(struct netxen_adapter *adapter)
  186. {
  187. switch (adapter->ahw.board_type) {
  188. case NETXEN_NIC_GBE:
  189. adapter->enable_phy_interrupts =
  190. netxen_niu_gbe_enable_phy_interrupts;
  191. adapter->disable_phy_interrupts =
  192. netxen_niu_gbe_disable_phy_interrupts;
  193. adapter->handle_phy_intr = netxen_nic_gbe_handle_phy_intr;
  194. adapter->macaddr_set = netxen_niu_macaddr_set;
  195. adapter->set_mtu = netxen_nic_set_mtu_gb;
  196. adapter->set_promisc = netxen_niu_set_promiscuous_mode;
  197. adapter->unset_promisc = netxen_niu_set_promiscuous_mode;
  198. adapter->phy_read = netxen_niu_gbe_phy_read;
  199. adapter->phy_write = netxen_niu_gbe_phy_write;
  200. adapter->init_niu = netxen_nic_init_niu_gb;
  201. adapter->stop_port = netxen_niu_disable_gbe_port;
  202. break;
  203. case NETXEN_NIC_XGBE:
  204. adapter->enable_phy_interrupts =
  205. netxen_niu_xgbe_enable_phy_interrupts;
  206. adapter->disable_phy_interrupts =
  207. netxen_niu_xgbe_disable_phy_interrupts;
  208. adapter->handle_phy_intr = netxen_nic_xgbe_handle_phy_intr;
  209. adapter->macaddr_set = netxen_niu_xg_macaddr_set;
  210. adapter->set_mtu = netxen_nic_set_mtu_xgb;
  211. adapter->init_port = netxen_niu_xg_init_port;
  212. adapter->set_promisc = netxen_niu_xg_set_promiscuous_mode;
  213. adapter->unset_promisc = netxen_niu_xg_set_promiscuous_mode;
  214. adapter->stop_port = netxen_niu_disable_xg_port;
  215. break;
  216. default:
  217. break;
  218. }
  219. }
  220. /*
  221. * netxen_decode_crb_addr(0 - utility to translate from internal Phantom CRB
  222. * address to external PCI CRB address.
  223. */
  224. static u32 netxen_decode_crb_addr(u32 addr)
  225. {
  226. int i;
  227. u32 base_addr, offset, pci_base;
  228. crb_addr_transform_setup();
  229. pci_base = NETXEN_ADDR_ERROR;
  230. base_addr = addr & 0xfff00000;
  231. offset = addr & 0x000fffff;
  232. for (i = 0; i < NETXEN_MAX_CRB_XFORM; i++) {
  233. if (crb_addr_xform[i] == base_addr) {
  234. pci_base = i << 20;
  235. break;
  236. }
  237. }
  238. if (pci_base == NETXEN_ADDR_ERROR)
  239. return pci_base;
  240. else
  241. return (pci_base + offset);
  242. }
  243. static long rom_max_timeout = 100;
  244. static long rom_lock_timeout = 10000;
  245. static long rom_write_timeout = 700;
  246. static int rom_lock(struct netxen_adapter *adapter)
  247. {
  248. int iter;
  249. u32 done = 0;
  250. int timeout = 0;
  251. while (!done) {
  252. /* acquire semaphore2 from PCI HW block */
  253. netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_LOCK),
  254. &done);
  255. if (done == 1)
  256. break;
  257. if (timeout >= rom_lock_timeout)
  258. return -EIO;
  259. timeout++;
  260. /*
  261. * Yield CPU
  262. */
  263. if (!in_atomic())
  264. schedule();
  265. else {
  266. for (iter = 0; iter < 20; iter++)
  267. cpu_relax(); /*This a nop instr on i386 */
  268. }
  269. }
  270. netxen_nic_reg_write(adapter, NETXEN_ROM_LOCK_ID, ROM_LOCK_DRIVER);
  271. return 0;
  272. }
  273. static int netxen_wait_rom_done(struct netxen_adapter *adapter)
  274. {
  275. long timeout = 0;
  276. long done = 0;
  277. while (done == 0) {
  278. done = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_GLB_STATUS);
  279. done &= 2;
  280. timeout++;
  281. if (timeout >= rom_max_timeout) {
  282. printk("Timeout reached waiting for rom done");
  283. return -EIO;
  284. }
  285. }
  286. return 0;
  287. }
  288. static int netxen_rom_wren(struct netxen_adapter *adapter)
  289. {
  290. /* Set write enable latch in ROM status register */
  291. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  292. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  293. M25P_INSTR_WREN);
  294. if (netxen_wait_rom_done(adapter)) {
  295. return -1;
  296. }
  297. return 0;
  298. }
  299. static unsigned int netxen_rdcrbreg(struct netxen_adapter *adapter,
  300. unsigned int addr)
  301. {
  302. unsigned int data = 0xdeaddead;
  303. data = netxen_nic_reg_read(adapter, addr);
  304. return data;
  305. }
  306. static int netxen_do_rom_rdsr(struct netxen_adapter *adapter)
  307. {
  308. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  309. M25P_INSTR_RDSR);
  310. if (netxen_wait_rom_done(adapter)) {
  311. return -1;
  312. }
  313. return netxen_rdcrbreg(adapter, NETXEN_ROMUSB_ROM_RDATA);
  314. }
  315. static void netxen_rom_unlock(struct netxen_adapter *adapter)
  316. {
  317. u32 val;
  318. /* release semaphore2 */
  319. netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_UNLOCK), &val);
  320. }
  321. static int netxen_rom_wip_poll(struct netxen_adapter *adapter)
  322. {
  323. long timeout = 0;
  324. long wip = 1;
  325. int val;
  326. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  327. while (wip != 0) {
  328. val = netxen_do_rom_rdsr(adapter);
  329. wip = val & 1;
  330. timeout++;
  331. if (timeout > rom_max_timeout) {
  332. return -1;
  333. }
  334. }
  335. return 0;
  336. }
  337. static int do_rom_fast_write(struct netxen_adapter *adapter, int addr,
  338. int data)
  339. {
  340. if (netxen_rom_wren(adapter)) {
  341. return -1;
  342. }
  343. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_WDATA, data);
  344. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  345. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  346. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  347. M25P_INSTR_PP);
  348. if (netxen_wait_rom_done(adapter)) {
  349. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  350. return -1;
  351. }
  352. return netxen_rom_wip_poll(adapter);
  353. }
  354. static int do_rom_fast_read(struct netxen_adapter *adapter,
  355. int addr, int *valp)
  356. {
  357. cond_resched();
  358. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  359. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  360. udelay(100); /* prevent bursting on CRB */
  361. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
  362. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0xb);
  363. if (netxen_wait_rom_done(adapter)) {
  364. printk("Error waiting for rom done\n");
  365. return -EIO;
  366. }
  367. /* reset abyte_cnt and dummy_byte_cnt */
  368. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  369. udelay(100); /* prevent bursting on CRB */
  370. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
  371. *valp = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_ROM_RDATA);
  372. return 0;
  373. }
  374. static int do_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
  375. u8 *bytes, size_t size)
  376. {
  377. int addridx;
  378. int ret = 0;
  379. for (addridx = addr; addridx < (addr + size); addridx += 4) {
  380. int v;
  381. ret = do_rom_fast_read(adapter, addridx, &v);
  382. if (ret != 0)
  383. break;
  384. *(__le32 *)bytes = cpu_to_le32(v);
  385. bytes += 4;
  386. }
  387. return ret;
  388. }
  389. int
  390. netxen_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
  391. u8 *bytes, size_t size)
  392. {
  393. int ret;
  394. ret = rom_lock(adapter);
  395. if (ret < 0)
  396. return ret;
  397. ret = do_rom_fast_read_words(adapter, addr, bytes, size);
  398. netxen_rom_unlock(adapter);
  399. return ret;
  400. }
  401. int netxen_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp)
  402. {
  403. int ret;
  404. if (rom_lock(adapter) != 0)
  405. return -EIO;
  406. ret = do_rom_fast_read(adapter, addr, valp);
  407. netxen_rom_unlock(adapter);
  408. return ret;
  409. }
  410. #if 0
  411. int netxen_rom_fast_write(struct netxen_adapter *adapter, int addr, int data)
  412. {
  413. int ret = 0;
  414. if (rom_lock(adapter) != 0) {
  415. return -1;
  416. }
  417. ret = do_rom_fast_write(adapter, addr, data);
  418. netxen_rom_unlock(adapter);
  419. return ret;
  420. }
  421. #endif /* 0 */
  422. static int do_rom_fast_write_words(struct netxen_adapter *adapter,
  423. int addr, u8 *bytes, size_t size)
  424. {
  425. int addridx = addr;
  426. int ret = 0;
  427. while (addridx < (addr + size)) {
  428. int last_attempt = 0;
  429. int timeout = 0;
  430. int data;
  431. data = le32_to_cpu((*(__le32*)bytes));
  432. ret = do_rom_fast_write(adapter, addridx, data);
  433. if (ret < 0)
  434. return ret;
  435. while(1) {
  436. int data1;
  437. ret = do_rom_fast_read(adapter, addridx, &data1);
  438. if (ret < 0)
  439. return ret;
  440. if (data1 == data)
  441. break;
  442. if (timeout++ >= rom_write_timeout) {
  443. if (last_attempt++ < 4) {
  444. ret = do_rom_fast_write(adapter,
  445. addridx, data);
  446. if (ret < 0)
  447. return ret;
  448. }
  449. else {
  450. printk(KERN_INFO "Data write did not "
  451. "succeed at address 0x%x\n", addridx);
  452. break;
  453. }
  454. }
  455. }
  456. bytes += 4;
  457. addridx += 4;
  458. }
  459. return ret;
  460. }
  461. int netxen_rom_fast_write_words(struct netxen_adapter *adapter, int addr,
  462. u8 *bytes, size_t size)
  463. {
  464. int ret = 0;
  465. ret = rom_lock(adapter);
  466. if (ret < 0)
  467. return ret;
  468. ret = do_rom_fast_write_words(adapter, addr, bytes, size);
  469. netxen_rom_unlock(adapter);
  470. return ret;
  471. }
  472. static int netxen_rom_wrsr(struct netxen_adapter *adapter, int data)
  473. {
  474. int ret;
  475. ret = netxen_rom_wren(adapter);
  476. if (ret < 0)
  477. return ret;
  478. netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_ROM_WDATA, data);
  479. netxen_crb_writelit_adapter(adapter,
  480. NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0x1);
  481. ret = netxen_wait_rom_done(adapter);
  482. if (ret < 0)
  483. return ret;
  484. return netxen_rom_wip_poll(adapter);
  485. }
  486. static int netxen_rom_rdsr(struct netxen_adapter *adapter)
  487. {
  488. int ret;
  489. ret = rom_lock(adapter);
  490. if (ret < 0)
  491. return ret;
  492. ret = netxen_do_rom_rdsr(adapter);
  493. netxen_rom_unlock(adapter);
  494. return ret;
  495. }
  496. int netxen_backup_crbinit(struct netxen_adapter *adapter)
  497. {
  498. int ret = FLASH_SUCCESS;
  499. int val;
  500. char *buffer = kmalloc(NETXEN_FLASH_SECTOR_SIZE, GFP_KERNEL);
  501. if (!buffer)
  502. return -ENOMEM;
  503. /* unlock sector 63 */
  504. val = netxen_rom_rdsr(adapter);
  505. val = val & 0xe3;
  506. ret = netxen_rom_wrsr(adapter, val);
  507. if (ret != FLASH_SUCCESS)
  508. goto out_kfree;
  509. ret = netxen_rom_wip_poll(adapter);
  510. if (ret != FLASH_SUCCESS)
  511. goto out_kfree;
  512. /* copy sector 0 to sector 63 */
  513. ret = netxen_rom_fast_read_words(adapter, NETXEN_CRBINIT_START,
  514. buffer, NETXEN_FLASH_SECTOR_SIZE);
  515. if (ret != FLASH_SUCCESS)
  516. goto out_kfree;
  517. ret = netxen_rom_fast_write_words(adapter, NETXEN_FIXED_START,
  518. buffer, NETXEN_FLASH_SECTOR_SIZE);
  519. if (ret != FLASH_SUCCESS)
  520. goto out_kfree;
  521. /* lock sector 63 */
  522. val = netxen_rom_rdsr(adapter);
  523. if (!(val & 0x8)) {
  524. val |= (0x1 << 2);
  525. /* lock sector 63 */
  526. if (netxen_rom_wrsr(adapter, val) == 0) {
  527. ret = netxen_rom_wip_poll(adapter);
  528. if (ret != FLASH_SUCCESS)
  529. goto out_kfree;
  530. /* lock SR writes */
  531. ret = netxen_rom_wip_poll(adapter);
  532. if (ret != FLASH_SUCCESS)
  533. goto out_kfree;
  534. }
  535. }
  536. out_kfree:
  537. kfree(buffer);
  538. return ret;
  539. }
  540. static int netxen_do_rom_se(struct netxen_adapter *adapter, int addr)
  541. {
  542. netxen_rom_wren(adapter);
  543. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  544. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  545. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  546. M25P_INSTR_SE);
  547. if (netxen_wait_rom_done(adapter)) {
  548. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  549. return -1;
  550. }
  551. return netxen_rom_wip_poll(adapter);
  552. }
  553. static void check_erased_flash(struct netxen_adapter *adapter, int addr)
  554. {
  555. int i;
  556. int val;
  557. int count = 0, erased_errors = 0;
  558. int range;
  559. range = (addr == NETXEN_USER_START) ?
  560. NETXEN_FIXED_START : addr + NETXEN_FLASH_SECTOR_SIZE;
  561. for (i = addr; i < range; i += 4) {
  562. netxen_rom_fast_read(adapter, i, &val);
  563. if (val != 0xffffffff)
  564. erased_errors++;
  565. count++;
  566. }
  567. if (erased_errors)
  568. printk(KERN_INFO "0x%x out of 0x%x words fail to be erased "
  569. "for sector address: %x\n", erased_errors, count, addr);
  570. }
  571. int netxen_rom_se(struct netxen_adapter *adapter, int addr)
  572. {
  573. int ret = 0;
  574. if (rom_lock(adapter) != 0) {
  575. return -1;
  576. }
  577. ret = netxen_do_rom_se(adapter, addr);
  578. netxen_rom_unlock(adapter);
  579. msleep(30);
  580. check_erased_flash(adapter, addr);
  581. return ret;
  582. }
  583. static int netxen_flash_erase_sections(struct netxen_adapter *adapter,
  584. int start, int end)
  585. {
  586. int ret = FLASH_SUCCESS;
  587. int i;
  588. for (i = start; i < end; i++) {
  589. ret = netxen_rom_se(adapter, i * NETXEN_FLASH_SECTOR_SIZE);
  590. if (ret)
  591. break;
  592. ret = netxen_rom_wip_poll(adapter);
  593. if (ret < 0)
  594. return ret;
  595. }
  596. return ret;
  597. }
  598. int
  599. netxen_flash_erase_secondary(struct netxen_adapter *adapter)
  600. {
  601. int ret = FLASH_SUCCESS;
  602. int start, end;
  603. start = NETXEN_SECONDARY_START / NETXEN_FLASH_SECTOR_SIZE;
  604. end = NETXEN_USER_START / NETXEN_FLASH_SECTOR_SIZE;
  605. ret = netxen_flash_erase_sections(adapter, start, end);
  606. return ret;
  607. }
  608. int
  609. netxen_flash_erase_primary(struct netxen_adapter *adapter)
  610. {
  611. int ret = FLASH_SUCCESS;
  612. int start, end;
  613. start = NETXEN_PRIMARY_START / NETXEN_FLASH_SECTOR_SIZE;
  614. end = NETXEN_SECONDARY_START / NETXEN_FLASH_SECTOR_SIZE;
  615. ret = netxen_flash_erase_sections(adapter, start, end);
  616. return ret;
  617. }
  618. void netxen_halt_pegs(struct netxen_adapter *adapter)
  619. {
  620. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x3c, 1);
  621. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x3c, 1);
  622. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x3c, 1);
  623. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x3c, 1);
  624. }
  625. int netxen_flash_unlock(struct netxen_adapter *adapter)
  626. {
  627. int ret = 0;
  628. ret = netxen_rom_wrsr(adapter, 0);
  629. if (ret < 0)
  630. return ret;
  631. ret = netxen_rom_wren(adapter);
  632. if (ret < 0)
  633. return ret;
  634. return ret;
  635. }
  636. #define NETXEN_BOARDTYPE 0x4008
  637. #define NETXEN_BOARDNUM 0x400c
  638. #define NETXEN_CHIPNUM 0x4010
  639. #define NETXEN_ROMBUS_RESET 0xFFFFFFFF
  640. #define NETXEN_ROM_FIRST_BARRIER 0x800000000ULL
  641. #define NETXEN_ROM_FOUND_INIT 0x400
  642. int netxen_pinit_from_rom(struct netxen_adapter *adapter, int verbose)
  643. {
  644. int addr, val;
  645. int n, i;
  646. int init_delay = 0;
  647. struct crb_addr_pair *buf;
  648. u32 off;
  649. /* resetall */
  650. netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET,
  651. NETXEN_ROMBUS_RESET);
  652. if (verbose) {
  653. int val;
  654. if (netxen_rom_fast_read(adapter, NETXEN_BOARDTYPE, &val) == 0)
  655. printk("P2 ROM board type: 0x%08x\n", val);
  656. else
  657. printk("Could not read board type\n");
  658. if (netxen_rom_fast_read(adapter, NETXEN_BOARDNUM, &val) == 0)
  659. printk("P2 ROM board num: 0x%08x\n", val);
  660. else
  661. printk("Could not read board number\n");
  662. if (netxen_rom_fast_read(adapter, NETXEN_CHIPNUM, &val) == 0)
  663. printk("P2 ROM chip num: 0x%08x\n", val);
  664. else
  665. printk("Could not read chip number\n");
  666. }
  667. if (netxen_rom_fast_read(adapter, 0, &n) == 0
  668. && (n & NETXEN_ROM_FIRST_BARRIER)) {
  669. n &= ~NETXEN_ROM_ROUNDUP;
  670. if (n < NETXEN_ROM_FOUND_INIT) {
  671. if (verbose)
  672. printk("%s: %d CRB init values found"
  673. " in ROM.\n", netxen_nic_driver_name, n);
  674. } else {
  675. printk("%s:n=0x%x Error! NetXen card flash not"
  676. " initialized.\n", __FUNCTION__, n);
  677. return -EIO;
  678. }
  679. buf = kcalloc(n, sizeof(struct crb_addr_pair), GFP_KERNEL);
  680. if (buf == NULL) {
  681. printk("%s: netxen_pinit_from_rom: Unable to calloc "
  682. "memory.\n", netxen_nic_driver_name);
  683. return -ENOMEM;
  684. }
  685. for (i = 0; i < n; i++) {
  686. if (netxen_rom_fast_read(adapter, 8 * i + 4, &val) != 0
  687. || netxen_rom_fast_read(adapter, 8 * i + 8,
  688. &addr) != 0)
  689. return -EIO;
  690. buf[i].addr = addr;
  691. buf[i].data = val;
  692. if (verbose)
  693. printk("%s: PCI: 0x%08x == 0x%08x\n",
  694. netxen_nic_driver_name, (unsigned int)
  695. netxen_decode_crb_addr(addr), val);
  696. }
  697. for (i = 0; i < n; i++) {
  698. off = netxen_decode_crb_addr(buf[i].addr);
  699. if (off == NETXEN_ADDR_ERROR) {
  700. printk(KERN_ERR"CRB init value out of range %x\n",
  701. buf[i].addr);
  702. continue;
  703. }
  704. off += NETXEN_PCI_CRBSPACE;
  705. /* skipping cold reboot MAGIC */
  706. if (off == NETXEN_CAM_RAM(0x1fc))
  707. continue;
  708. /* After writing this register, HW needs time for CRB */
  709. /* to quiet down (else crb_window returns 0xffffffff) */
  710. if (off == NETXEN_ROMUSB_GLB_SW_RESET) {
  711. init_delay = 1;
  712. /* hold xdma in reset also */
  713. buf[i].data = NETXEN_NIC_XDMA_RESET;
  714. }
  715. if (ADDR_IN_WINDOW1(off)) {
  716. writel(buf[i].data,
  717. NETXEN_CRB_NORMALIZE(adapter, off));
  718. } else {
  719. netxen_nic_pci_change_crbwindow(adapter, 0);
  720. writel(buf[i].data,
  721. pci_base_offset(adapter, off));
  722. netxen_nic_pci_change_crbwindow(adapter, 1);
  723. }
  724. if (init_delay == 1) {
  725. msleep(2000);
  726. init_delay = 0;
  727. }
  728. msleep(20);
  729. }
  730. kfree(buf);
  731. /* disable_peg_cache_all */
  732. /* unreset_net_cache */
  733. netxen_nic_hw_read_wx(adapter, NETXEN_ROMUSB_GLB_SW_RESET, &val,
  734. 4);
  735. netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET,
  736. (val & 0xffffff0f));
  737. /* p2dn replyCount */
  738. netxen_crb_writelit_adapter(adapter,
  739. NETXEN_CRB_PEG_NET_D + 0xec, 0x1e);
  740. /* disable_peg_cache 0 */
  741. netxen_crb_writelit_adapter(adapter,
  742. NETXEN_CRB_PEG_NET_D + 0x4c, 8);
  743. /* disable_peg_cache 1 */
  744. netxen_crb_writelit_adapter(adapter,
  745. NETXEN_CRB_PEG_NET_I + 0x4c, 8);
  746. /* peg_clr_all */
  747. /* peg_clr 0 */
  748. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x8,
  749. 0);
  750. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0xc,
  751. 0);
  752. /* peg_clr 1 */
  753. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x8,
  754. 0);
  755. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0xc,
  756. 0);
  757. /* peg_clr 2 */
  758. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x8,
  759. 0);
  760. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0xc,
  761. 0);
  762. /* peg_clr 3 */
  763. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x8,
  764. 0);
  765. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0xc,
  766. 0);
  767. }
  768. return 0;
  769. }
  770. int netxen_initialize_adapter_offload(struct netxen_adapter *adapter)
  771. {
  772. uint64_t addr;
  773. uint32_t hi;
  774. uint32_t lo;
  775. adapter->dummy_dma.addr =
  776. pci_alloc_consistent(adapter->ahw.pdev,
  777. NETXEN_HOST_DUMMY_DMA_SIZE,
  778. &adapter->dummy_dma.phys_addr);
  779. if (adapter->dummy_dma.addr == NULL) {
  780. printk("%s: ERROR: Could not allocate dummy DMA memory\n",
  781. __FUNCTION__);
  782. return -ENOMEM;
  783. }
  784. addr = (uint64_t) adapter->dummy_dma.phys_addr;
  785. hi = (addr >> 32) & 0xffffffff;
  786. lo = addr & 0xffffffff;
  787. writel(hi, NETXEN_CRB_NORMALIZE(adapter, CRB_HOST_DUMMY_BUF_ADDR_HI));
  788. writel(lo, NETXEN_CRB_NORMALIZE(adapter, CRB_HOST_DUMMY_BUF_ADDR_LO));
  789. return 0;
  790. }
  791. void netxen_free_adapter_offload(struct netxen_adapter *adapter)
  792. {
  793. if (adapter->dummy_dma.addr) {
  794. pci_free_consistent(adapter->ahw.pdev,
  795. NETXEN_HOST_DUMMY_DMA_SIZE,
  796. adapter->dummy_dma.addr,
  797. adapter->dummy_dma.phys_addr);
  798. adapter->dummy_dma.addr = NULL;
  799. }
  800. }
  801. int netxen_phantom_init(struct netxen_adapter *adapter, int pegtune_val)
  802. {
  803. u32 val = 0;
  804. int retries = 30;
  805. if (!pegtune_val) {
  806. do {
  807. val = readl(NETXEN_CRB_NORMALIZE
  808. (adapter, CRB_CMDPEG_STATE));
  809. pegtune_val = readl(NETXEN_CRB_NORMALIZE
  810. (adapter, NETXEN_ROMUSB_GLB_PEGTUNE_DONE));
  811. if (val == PHAN_INITIALIZE_COMPLETE ||
  812. val == PHAN_INITIALIZE_ACK)
  813. return 0;
  814. msleep(1000);
  815. } while (--retries);
  816. if (!retries) {
  817. printk(KERN_WARNING "netxen_phantom_init: init failed, "
  818. "pegtune_val=%x\n", pegtune_val);
  819. return -1;
  820. }
  821. }
  822. return 0;
  823. }
  824. static int netxen_nic_check_temp(struct netxen_adapter *adapter)
  825. {
  826. struct net_device *netdev = adapter->netdev;
  827. uint32_t temp, temp_state, temp_val;
  828. int rv = 0;
  829. temp = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_TEMP_STATE));
  830. temp_state = nx_get_temp_state(temp);
  831. temp_val = nx_get_temp_val(temp);
  832. if (temp_state == NX_TEMP_PANIC) {
  833. printk(KERN_ALERT
  834. "%s: Device temperature %d degrees C exceeds"
  835. " maximum allowed. Hardware has been shut down.\n",
  836. netxen_nic_driver_name, temp_val);
  837. netif_carrier_off(netdev);
  838. netif_stop_queue(netdev);
  839. rv = 1;
  840. } else if (temp_state == NX_TEMP_WARN) {
  841. if (adapter->temp == NX_TEMP_NORMAL) {
  842. printk(KERN_ALERT
  843. "%s: Device temperature %d degrees C "
  844. "exceeds operating range."
  845. " Immediate action needed.\n",
  846. netxen_nic_driver_name, temp_val);
  847. }
  848. } else {
  849. if (adapter->temp == NX_TEMP_WARN) {
  850. printk(KERN_INFO
  851. "%s: Device temperature is now %d degrees C"
  852. " in normal range.\n", netxen_nic_driver_name,
  853. temp_val);
  854. }
  855. }
  856. adapter->temp = temp_state;
  857. return rv;
  858. }
  859. void netxen_watchdog_task(struct work_struct *work)
  860. {
  861. struct netxen_adapter *adapter =
  862. container_of(work, struct netxen_adapter, watchdog_task);
  863. if ((adapter->portnum == 0) && netxen_nic_check_temp(adapter))
  864. return;
  865. if (adapter->handle_phy_intr)
  866. adapter->handle_phy_intr(adapter);
  867. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  868. }
  869. /*
  870. * netxen_process_rcv() send the received packet to the protocol stack.
  871. * and if the number of receives exceeds RX_BUFFERS_REFILL, then we
  872. * invoke the routine to send more rx buffers to the Phantom...
  873. */
  874. static void netxen_process_rcv(struct netxen_adapter *adapter, int ctxid,
  875. struct status_desc *desc)
  876. {
  877. struct pci_dev *pdev = adapter->pdev;
  878. struct net_device *netdev = adapter->netdev;
  879. u64 sts_data = le64_to_cpu(desc->status_desc_data);
  880. int index = netxen_get_sts_refhandle(sts_data);
  881. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
  882. struct netxen_rx_buffer *buffer;
  883. struct sk_buff *skb;
  884. u32 length = netxen_get_sts_totallength(sts_data);
  885. u32 desc_ctx;
  886. struct netxen_rcv_desc_ctx *rcv_desc;
  887. int ret;
  888. desc_ctx = netxen_get_sts_type(sts_data);
  889. if (unlikely(desc_ctx >= NUM_RCV_DESC_RINGS)) {
  890. printk("%s: %s Bad Rcv descriptor ring\n",
  891. netxen_nic_driver_name, netdev->name);
  892. return;
  893. }
  894. rcv_desc = &recv_ctx->rcv_desc[desc_ctx];
  895. if (unlikely(index > rcv_desc->max_rx_desc_count)) {
  896. DPRINTK(ERR, "Got a buffer index:%x Max is %x\n",
  897. index, rcv_desc->max_rx_desc_count);
  898. return;
  899. }
  900. buffer = &rcv_desc->rx_buf_arr[index];
  901. if (desc_ctx == RCV_DESC_LRO_CTXID) {
  902. buffer->lro_current_frags++;
  903. if (netxen_get_sts_desc_lro_last_frag(desc)) {
  904. buffer->lro_expected_frags =
  905. netxen_get_sts_desc_lro_cnt(desc);
  906. buffer->lro_length = length;
  907. }
  908. if (buffer->lro_current_frags != buffer->lro_expected_frags) {
  909. if (buffer->lro_expected_frags != 0) {
  910. printk("LRO: (refhandle:%x) recv frag. "
  911. "wait for last. flags: %x expected:%d "
  912. "have:%d\n", index,
  913. netxen_get_sts_desc_lro_last_frag(desc),
  914. buffer->lro_expected_frags,
  915. buffer->lro_current_frags);
  916. }
  917. return;
  918. }
  919. }
  920. pci_unmap_single(pdev, buffer->dma, rcv_desc->dma_size,
  921. PCI_DMA_FROMDEVICE);
  922. skb = (struct sk_buff *)buffer->skb;
  923. if (likely(adapter->rx_csum &&
  924. netxen_get_sts_status(sts_data) == STATUS_CKSUM_OK)) {
  925. adapter->stats.csummed++;
  926. skb->ip_summed = CHECKSUM_UNNECESSARY;
  927. } else
  928. skb->ip_summed = CHECKSUM_NONE;
  929. skb->dev = netdev;
  930. if (desc_ctx == RCV_DESC_LRO_CTXID) {
  931. /* True length was only available on the last pkt */
  932. skb_put(skb, buffer->lro_length);
  933. } else {
  934. skb_put(skb, length);
  935. }
  936. skb->protocol = eth_type_trans(skb, netdev);
  937. ret = netif_receive_skb(skb);
  938. netdev->last_rx = jiffies;
  939. rcv_desc->rcv_pending--;
  940. /*
  941. * We just consumed one buffer so post a buffer.
  942. */
  943. buffer->skb = NULL;
  944. buffer->state = NETXEN_BUFFER_FREE;
  945. buffer->lro_current_frags = 0;
  946. buffer->lro_expected_frags = 0;
  947. adapter->stats.no_rcv++;
  948. adapter->stats.rxbytes += length;
  949. }
  950. /* Process Receive status ring */
  951. u32 netxen_process_rcv_ring(struct netxen_adapter *adapter, int ctxid, int max)
  952. {
  953. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
  954. struct status_desc *desc_head = recv_ctx->rcv_status_desc_head;
  955. struct status_desc *desc; /* used to read status desc here */
  956. u32 consumer = recv_ctx->status_rx_consumer;
  957. u32 producer = 0;
  958. int count = 0, ring;
  959. while (count < max) {
  960. desc = &desc_head[consumer];
  961. if (!(netxen_get_sts_owner(desc) & STATUS_OWNER_HOST)) {
  962. DPRINTK(ERR, "desc %p ownedby %x\n", desc,
  963. netxen_get_sts_owner(desc));
  964. break;
  965. }
  966. netxen_process_rcv(adapter, ctxid, desc);
  967. netxen_set_sts_owner(desc, STATUS_OWNER_PHANTOM);
  968. consumer = (consumer + 1) & (adapter->max_rx_desc_count - 1);
  969. count++;
  970. }
  971. for (ring = 0; ring < NUM_RCV_DESC_RINGS; ring++)
  972. netxen_post_rx_buffers_nodb(adapter, ctxid, ring);
  973. /* update the consumer index in phantom */
  974. if (count) {
  975. recv_ctx->status_rx_consumer = consumer;
  976. recv_ctx->status_rx_producer = producer;
  977. /* Window = 1 */
  978. writel(consumer,
  979. NETXEN_CRB_NORMALIZE(adapter,
  980. recv_crb_registers[adapter->portnum].
  981. crb_rcv_status_consumer));
  982. }
  983. return count;
  984. }
  985. /* Process Command status ring */
  986. int netxen_process_cmd_ring(struct netxen_adapter *adapter)
  987. {
  988. u32 last_consumer, consumer;
  989. int count = 0, i;
  990. struct netxen_cmd_buffer *buffer;
  991. struct pci_dev *pdev = adapter->pdev;
  992. struct net_device *netdev = adapter->netdev;
  993. struct netxen_skb_frag *frag;
  994. int done = 0;
  995. last_consumer = adapter->last_cmd_consumer;
  996. consumer = le32_to_cpu(*(adapter->cmd_consumer));
  997. while (last_consumer != consumer) {
  998. buffer = &adapter->cmd_buf_arr[last_consumer];
  999. if (buffer->skb) {
  1000. frag = &buffer->frag_array[0];
  1001. pci_unmap_single(pdev, frag->dma, frag->length,
  1002. PCI_DMA_TODEVICE);
  1003. frag->dma = 0ULL;
  1004. for (i = 1; i < buffer->frag_count; i++) {
  1005. frag++; /* Get the next frag */
  1006. pci_unmap_page(pdev, frag->dma, frag->length,
  1007. PCI_DMA_TODEVICE);
  1008. frag->dma = 0ULL;
  1009. }
  1010. adapter->stats.xmitfinished++;
  1011. dev_kfree_skb_any(buffer->skb);
  1012. buffer->skb = NULL;
  1013. }
  1014. last_consumer = get_next_index(last_consumer,
  1015. adapter->max_tx_desc_count);
  1016. if (++count >= MAX_STATUS_HANDLE)
  1017. break;
  1018. }
  1019. if (count) {
  1020. adapter->last_cmd_consumer = last_consumer;
  1021. smp_mb();
  1022. if (netif_queue_stopped(netdev) && netif_running(netdev)) {
  1023. netif_tx_lock(netdev);
  1024. netif_wake_queue(netdev);
  1025. smp_mb();
  1026. netif_tx_unlock(netdev);
  1027. }
  1028. }
  1029. /*
  1030. * If everything is freed up to consumer then check if the ring is full
  1031. * If the ring is full then check if more needs to be freed and
  1032. * schedule the call back again.
  1033. *
  1034. * This happens when there are 2 CPUs. One could be freeing and the
  1035. * other filling it. If the ring is full when we get out of here and
  1036. * the card has already interrupted the host then the host can miss the
  1037. * interrupt.
  1038. *
  1039. * There is still a possible race condition and the host could miss an
  1040. * interrupt. The card has to take care of this.
  1041. */
  1042. consumer = le32_to_cpu(*(adapter->cmd_consumer));
  1043. done = (last_consumer == consumer);
  1044. return (done);
  1045. }
  1046. /*
  1047. * netxen_post_rx_buffers puts buffer in the Phantom memory
  1048. */
  1049. void netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ctx, u32 ringid)
  1050. {
  1051. struct pci_dev *pdev = adapter->ahw.pdev;
  1052. struct sk_buff *skb;
  1053. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]);
  1054. struct netxen_rcv_desc_ctx *rcv_desc = NULL;
  1055. uint producer;
  1056. struct rcv_desc *pdesc;
  1057. struct netxen_rx_buffer *buffer;
  1058. int count = 0;
  1059. int index = 0;
  1060. netxen_ctx_msg msg = 0;
  1061. dma_addr_t dma;
  1062. rcv_desc = &recv_ctx->rcv_desc[ringid];
  1063. producer = rcv_desc->producer;
  1064. index = rcv_desc->begin_alloc;
  1065. buffer = &rcv_desc->rx_buf_arr[index];
  1066. /* We can start writing rx descriptors into the phantom memory. */
  1067. while (buffer->state == NETXEN_BUFFER_FREE) {
  1068. skb = dev_alloc_skb(rcv_desc->skb_size);
  1069. if (unlikely(!skb)) {
  1070. /*
  1071. * TODO
  1072. * We need to schedule the posting of buffers to the pegs.
  1073. */
  1074. rcv_desc->begin_alloc = index;
  1075. DPRINTK(ERR, "netxen_post_rx_buffers: "
  1076. " allocated only %d buffers\n", count);
  1077. break;
  1078. }
  1079. count++; /* now there should be no failure */
  1080. pdesc = &rcv_desc->desc_head[producer];
  1081. #if defined(XGB_DEBUG)
  1082. *(unsigned long *)(skb->head) = 0xc0debabe;
  1083. if (skb_is_nonlinear(skb)) {
  1084. printk("Allocated SKB @%p is nonlinear\n");
  1085. }
  1086. #endif
  1087. skb_reserve(skb, 2);
  1088. /* This will be setup when we receive the
  1089. * buffer after it has been filled FSL TBD TBD
  1090. * skb->dev = netdev;
  1091. */
  1092. dma = pci_map_single(pdev, skb->data, rcv_desc->dma_size,
  1093. PCI_DMA_FROMDEVICE);
  1094. pdesc->addr_buffer = cpu_to_le64(dma);
  1095. buffer->skb = skb;
  1096. buffer->state = NETXEN_BUFFER_BUSY;
  1097. buffer->dma = dma;
  1098. /* make a rcv descriptor */
  1099. pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
  1100. pdesc->buffer_length = cpu_to_le32(rcv_desc->dma_size);
  1101. DPRINTK(INFO, "done writing descripter\n");
  1102. producer =
  1103. get_next_index(producer, rcv_desc->max_rx_desc_count);
  1104. index = get_next_index(index, rcv_desc->max_rx_desc_count);
  1105. buffer = &rcv_desc->rx_buf_arr[index];
  1106. }
  1107. /* if we did allocate buffers, then write the count to Phantom */
  1108. if (count) {
  1109. rcv_desc->begin_alloc = index;
  1110. rcv_desc->rcv_pending += count;
  1111. rcv_desc->producer = producer;
  1112. /* Window = 1 */
  1113. writel((producer - 1) &
  1114. (rcv_desc->max_rx_desc_count - 1),
  1115. NETXEN_CRB_NORMALIZE(adapter,
  1116. recv_crb_registers[
  1117. adapter->portnum].
  1118. rcv_desc_crb[ringid].
  1119. crb_rcv_producer_offset));
  1120. /*
  1121. * Write a doorbell msg to tell phanmon of change in
  1122. * receive ring producer
  1123. */
  1124. netxen_set_msg_peg_id(msg, NETXEN_RCV_PEG_DB_ID);
  1125. netxen_set_msg_privid(msg);
  1126. netxen_set_msg_count(msg,
  1127. ((producer -
  1128. 1) & (rcv_desc->
  1129. max_rx_desc_count - 1)));
  1130. netxen_set_msg_ctxid(msg, adapter->portnum);
  1131. netxen_set_msg_opcode(msg, NETXEN_RCV_PRODUCER(ringid));
  1132. writel(msg,
  1133. DB_NORMALIZE(adapter,
  1134. NETXEN_RCV_PRODUCER_OFFSET));
  1135. }
  1136. }
  1137. static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
  1138. uint32_t ctx, uint32_t ringid)
  1139. {
  1140. struct pci_dev *pdev = adapter->ahw.pdev;
  1141. struct sk_buff *skb;
  1142. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]);
  1143. struct netxen_rcv_desc_ctx *rcv_desc = NULL;
  1144. u32 producer;
  1145. struct rcv_desc *pdesc;
  1146. struct netxen_rx_buffer *buffer;
  1147. int count = 0;
  1148. int index = 0;
  1149. rcv_desc = &recv_ctx->rcv_desc[ringid];
  1150. producer = rcv_desc->producer;
  1151. index = rcv_desc->begin_alloc;
  1152. buffer = &rcv_desc->rx_buf_arr[index];
  1153. /* We can start writing rx descriptors into the phantom memory. */
  1154. while (buffer->state == NETXEN_BUFFER_FREE) {
  1155. skb = dev_alloc_skb(rcv_desc->skb_size);
  1156. if (unlikely(!skb)) {
  1157. /*
  1158. * We need to schedule the posting of buffers to the pegs.
  1159. */
  1160. rcv_desc->begin_alloc = index;
  1161. DPRINTK(ERR, "netxen_post_rx_buffers_nodb: "
  1162. " allocated only %d buffers\n", count);
  1163. break;
  1164. }
  1165. count++; /* now there should be no failure */
  1166. pdesc = &rcv_desc->desc_head[producer];
  1167. skb_reserve(skb, 2);
  1168. /*
  1169. * This will be setup when we receive the
  1170. * buffer after it has been filled
  1171. * skb->dev = netdev;
  1172. */
  1173. buffer->skb = skb;
  1174. buffer->state = NETXEN_BUFFER_BUSY;
  1175. buffer->dma = pci_map_single(pdev, skb->data,
  1176. rcv_desc->dma_size,
  1177. PCI_DMA_FROMDEVICE);
  1178. /* make a rcv descriptor */
  1179. pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
  1180. pdesc->buffer_length = cpu_to_le32(rcv_desc->dma_size);
  1181. pdesc->addr_buffer = cpu_to_le64(buffer->dma);
  1182. DPRINTK(INFO, "done writing descripter\n");
  1183. producer =
  1184. get_next_index(producer, rcv_desc->max_rx_desc_count);
  1185. index = get_next_index(index, rcv_desc->max_rx_desc_count);
  1186. buffer = &rcv_desc->rx_buf_arr[index];
  1187. }
  1188. /* if we did allocate buffers, then write the count to Phantom */
  1189. if (count) {
  1190. rcv_desc->begin_alloc = index;
  1191. rcv_desc->rcv_pending += count;
  1192. rcv_desc->producer = producer;
  1193. /* Window = 1 */
  1194. writel((producer - 1) &
  1195. (rcv_desc->max_rx_desc_count - 1),
  1196. NETXEN_CRB_NORMALIZE(adapter,
  1197. recv_crb_registers[
  1198. adapter->portnum].
  1199. rcv_desc_crb[ringid].
  1200. crb_rcv_producer_offset));
  1201. wmb();
  1202. }
  1203. }
  1204. void netxen_nic_clear_stats(struct netxen_adapter *adapter)
  1205. {
  1206. memset(&adapter->stats, 0, sizeof(adapter->stats));
  1207. return;
  1208. }