delayed-inode.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 400
  24. #define BTRFS_DELAYED_BACKGROUND 100
  25. static struct kmem_cache *delayed_node_cache;
  26. int __init btrfs_delayed_inode_init(void)
  27. {
  28. delayed_node_cache = kmem_cache_create("delayed_node",
  29. sizeof(struct btrfs_delayed_node),
  30. 0,
  31. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  32. NULL);
  33. if (!delayed_node_cache)
  34. return -ENOMEM;
  35. return 0;
  36. }
  37. void btrfs_delayed_inode_exit(void)
  38. {
  39. if (delayed_node_cache)
  40. kmem_cache_destroy(delayed_node_cache);
  41. }
  42. static inline void btrfs_init_delayed_node(
  43. struct btrfs_delayed_node *delayed_node,
  44. struct btrfs_root *root, u64 inode_id)
  45. {
  46. delayed_node->root = root;
  47. delayed_node->inode_id = inode_id;
  48. atomic_set(&delayed_node->refs, 0);
  49. delayed_node->count = 0;
  50. delayed_node->in_list = 0;
  51. delayed_node->inode_dirty = 0;
  52. delayed_node->ins_root = RB_ROOT;
  53. delayed_node->del_root = RB_ROOT;
  54. mutex_init(&delayed_node->mutex);
  55. delayed_node->index_cnt = 0;
  56. INIT_LIST_HEAD(&delayed_node->n_list);
  57. INIT_LIST_HEAD(&delayed_node->p_list);
  58. delayed_node->bytes_reserved = 0;
  59. }
  60. static inline int btrfs_is_continuous_delayed_item(
  61. struct btrfs_delayed_item *item1,
  62. struct btrfs_delayed_item *item2)
  63. {
  64. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  65. item1->key.objectid == item2->key.objectid &&
  66. item1->key.type == item2->key.type &&
  67. item1->key.offset + 1 == item2->key.offset)
  68. return 1;
  69. return 0;
  70. }
  71. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  72. struct btrfs_root *root)
  73. {
  74. return root->fs_info->delayed_root;
  75. }
  76. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  77. struct inode *inode)
  78. {
  79. struct btrfs_delayed_node *node;
  80. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  81. struct btrfs_root *root = btrfs_inode->root;
  82. int ret;
  83. again:
  84. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  85. if (node) {
  86. atomic_inc(&node->refs); /* can be accessed */
  87. return node;
  88. }
  89. spin_lock(&root->inode_lock);
  90. node = radix_tree_lookup(&root->delayed_nodes_tree, inode->i_ino);
  91. if (node) {
  92. if (btrfs_inode->delayed_node) {
  93. spin_unlock(&root->inode_lock);
  94. goto again;
  95. }
  96. btrfs_inode->delayed_node = node;
  97. atomic_inc(&node->refs); /* can be accessed */
  98. atomic_inc(&node->refs); /* cached in the inode */
  99. spin_unlock(&root->inode_lock);
  100. return node;
  101. }
  102. spin_unlock(&root->inode_lock);
  103. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  104. if (!node)
  105. return ERR_PTR(-ENOMEM);
  106. btrfs_init_delayed_node(node, root, inode->i_ino);
  107. atomic_inc(&node->refs); /* cached in the btrfs inode */
  108. atomic_inc(&node->refs); /* can be accessed */
  109. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  110. if (ret) {
  111. kmem_cache_free(delayed_node_cache, node);
  112. return ERR_PTR(ret);
  113. }
  114. spin_lock(&root->inode_lock);
  115. ret = radix_tree_insert(&root->delayed_nodes_tree, inode->i_ino, node);
  116. if (ret == -EEXIST) {
  117. kmem_cache_free(delayed_node_cache, node);
  118. spin_unlock(&root->inode_lock);
  119. radix_tree_preload_end();
  120. goto again;
  121. }
  122. btrfs_inode->delayed_node = node;
  123. spin_unlock(&root->inode_lock);
  124. radix_tree_preload_end();
  125. return node;
  126. }
  127. /*
  128. * Call it when holding delayed_node->mutex
  129. *
  130. * If mod = 1, add this node into the prepared list.
  131. */
  132. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  133. struct btrfs_delayed_node *node,
  134. int mod)
  135. {
  136. spin_lock(&root->lock);
  137. if (node->in_list) {
  138. if (!list_empty(&node->p_list))
  139. list_move_tail(&node->p_list, &root->prepare_list);
  140. else if (mod)
  141. list_add_tail(&node->p_list, &root->prepare_list);
  142. } else {
  143. list_add_tail(&node->n_list, &root->node_list);
  144. list_add_tail(&node->p_list, &root->prepare_list);
  145. atomic_inc(&node->refs); /* inserted into list */
  146. root->nodes++;
  147. node->in_list = 1;
  148. }
  149. spin_unlock(&root->lock);
  150. }
  151. /* Call it when holding delayed_node->mutex */
  152. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  153. struct btrfs_delayed_node *node)
  154. {
  155. spin_lock(&root->lock);
  156. if (node->in_list) {
  157. root->nodes--;
  158. atomic_dec(&node->refs); /* not in the list */
  159. list_del_init(&node->n_list);
  160. if (!list_empty(&node->p_list))
  161. list_del_init(&node->p_list);
  162. node->in_list = 0;
  163. }
  164. spin_unlock(&root->lock);
  165. }
  166. struct btrfs_delayed_node *btrfs_first_delayed_node(
  167. struct btrfs_delayed_root *delayed_root)
  168. {
  169. struct list_head *p;
  170. struct btrfs_delayed_node *node = NULL;
  171. spin_lock(&delayed_root->lock);
  172. if (list_empty(&delayed_root->node_list))
  173. goto out;
  174. p = delayed_root->node_list.next;
  175. node = list_entry(p, struct btrfs_delayed_node, n_list);
  176. atomic_inc(&node->refs);
  177. out:
  178. spin_unlock(&delayed_root->lock);
  179. return node;
  180. }
  181. struct btrfs_delayed_node *btrfs_next_delayed_node(
  182. struct btrfs_delayed_node *node)
  183. {
  184. struct btrfs_delayed_root *delayed_root;
  185. struct list_head *p;
  186. struct btrfs_delayed_node *next = NULL;
  187. delayed_root = node->root->fs_info->delayed_root;
  188. spin_lock(&delayed_root->lock);
  189. if (!node->in_list) { /* not in the list */
  190. if (list_empty(&delayed_root->node_list))
  191. goto out;
  192. p = delayed_root->node_list.next;
  193. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  194. goto out;
  195. else
  196. p = node->n_list.next;
  197. next = list_entry(p, struct btrfs_delayed_node, n_list);
  198. atomic_inc(&next->refs);
  199. out:
  200. spin_unlock(&delayed_root->lock);
  201. return next;
  202. }
  203. static void __btrfs_release_delayed_node(
  204. struct btrfs_delayed_node *delayed_node,
  205. int mod)
  206. {
  207. struct btrfs_delayed_root *delayed_root;
  208. if (!delayed_node)
  209. return;
  210. delayed_root = delayed_node->root->fs_info->delayed_root;
  211. mutex_lock(&delayed_node->mutex);
  212. if (delayed_node->count)
  213. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  214. else
  215. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  216. mutex_unlock(&delayed_node->mutex);
  217. if (atomic_dec_and_test(&delayed_node->refs)) {
  218. struct btrfs_root *root = delayed_node->root;
  219. spin_lock(&root->inode_lock);
  220. if (atomic_read(&delayed_node->refs) == 0) {
  221. radix_tree_delete(&root->delayed_nodes_tree,
  222. delayed_node->inode_id);
  223. kmem_cache_free(delayed_node_cache, delayed_node);
  224. }
  225. spin_unlock(&root->inode_lock);
  226. }
  227. }
  228. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  229. {
  230. __btrfs_release_delayed_node(node, 0);
  231. }
  232. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  233. struct btrfs_delayed_root *delayed_root)
  234. {
  235. struct list_head *p;
  236. struct btrfs_delayed_node *node = NULL;
  237. spin_lock(&delayed_root->lock);
  238. if (list_empty(&delayed_root->prepare_list))
  239. goto out;
  240. p = delayed_root->prepare_list.next;
  241. list_del_init(p);
  242. node = list_entry(p, struct btrfs_delayed_node, p_list);
  243. atomic_inc(&node->refs);
  244. out:
  245. spin_unlock(&delayed_root->lock);
  246. return node;
  247. }
  248. static inline void btrfs_release_prepared_delayed_node(
  249. struct btrfs_delayed_node *node)
  250. {
  251. __btrfs_release_delayed_node(node, 1);
  252. }
  253. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  254. {
  255. struct btrfs_delayed_item *item;
  256. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  257. if (item) {
  258. item->data_len = data_len;
  259. item->ins_or_del = 0;
  260. item->bytes_reserved = 0;
  261. item->block_rsv = NULL;
  262. item->delayed_node = NULL;
  263. atomic_set(&item->refs, 1);
  264. }
  265. return item;
  266. }
  267. /*
  268. * __btrfs_lookup_delayed_item - look up the delayed item by key
  269. * @delayed_node: pointer to the delayed node
  270. * @key: the key to look up
  271. * @prev: used to store the prev item if the right item isn't found
  272. * @next: used to store the next item if the right item isn't found
  273. *
  274. * Note: if we don't find the right item, we will return the prev item and
  275. * the next item.
  276. */
  277. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  278. struct rb_root *root,
  279. struct btrfs_key *key,
  280. struct btrfs_delayed_item **prev,
  281. struct btrfs_delayed_item **next)
  282. {
  283. struct rb_node *node, *prev_node = NULL;
  284. struct btrfs_delayed_item *delayed_item = NULL;
  285. int ret = 0;
  286. node = root->rb_node;
  287. while (node) {
  288. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  289. rb_node);
  290. prev_node = node;
  291. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  292. if (ret < 0)
  293. node = node->rb_right;
  294. else if (ret > 0)
  295. node = node->rb_left;
  296. else
  297. return delayed_item;
  298. }
  299. if (prev) {
  300. if (!prev_node)
  301. *prev = NULL;
  302. else if (ret < 0)
  303. *prev = delayed_item;
  304. else if ((node = rb_prev(prev_node)) != NULL) {
  305. *prev = rb_entry(node, struct btrfs_delayed_item,
  306. rb_node);
  307. } else
  308. *prev = NULL;
  309. }
  310. if (next) {
  311. if (!prev_node)
  312. *next = NULL;
  313. else if (ret > 0)
  314. *next = delayed_item;
  315. else if ((node = rb_next(prev_node)) != NULL) {
  316. *next = rb_entry(node, struct btrfs_delayed_item,
  317. rb_node);
  318. } else
  319. *next = NULL;
  320. }
  321. return NULL;
  322. }
  323. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  324. struct btrfs_delayed_node *delayed_node,
  325. struct btrfs_key *key)
  326. {
  327. struct btrfs_delayed_item *item;
  328. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  329. NULL, NULL);
  330. return item;
  331. }
  332. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  333. struct btrfs_delayed_node *delayed_node,
  334. struct btrfs_key *key)
  335. {
  336. struct btrfs_delayed_item *item;
  337. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  338. NULL, NULL);
  339. return item;
  340. }
  341. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  342. struct btrfs_delayed_node *delayed_node,
  343. struct btrfs_key *key)
  344. {
  345. struct btrfs_delayed_item *item, *next;
  346. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  347. NULL, &next);
  348. if (!item)
  349. item = next;
  350. return item;
  351. }
  352. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  353. struct btrfs_delayed_node *delayed_node,
  354. struct btrfs_key *key)
  355. {
  356. struct btrfs_delayed_item *item, *next;
  357. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  358. NULL, &next);
  359. if (!item)
  360. item = next;
  361. return item;
  362. }
  363. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  364. struct btrfs_delayed_item *ins,
  365. int action)
  366. {
  367. struct rb_node **p, *node;
  368. struct rb_node *parent_node = NULL;
  369. struct rb_root *root;
  370. struct btrfs_delayed_item *item;
  371. int cmp;
  372. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  373. root = &delayed_node->ins_root;
  374. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  375. root = &delayed_node->del_root;
  376. else
  377. BUG();
  378. p = &root->rb_node;
  379. node = &ins->rb_node;
  380. while (*p) {
  381. parent_node = *p;
  382. item = rb_entry(parent_node, struct btrfs_delayed_item,
  383. rb_node);
  384. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  385. if (cmp < 0)
  386. p = &(*p)->rb_right;
  387. else if (cmp > 0)
  388. p = &(*p)->rb_left;
  389. else
  390. return -EEXIST;
  391. }
  392. rb_link_node(node, parent_node, p);
  393. rb_insert_color(node, root);
  394. ins->delayed_node = delayed_node;
  395. ins->ins_or_del = action;
  396. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  397. action == BTRFS_DELAYED_INSERTION_ITEM &&
  398. ins->key.offset >= delayed_node->index_cnt)
  399. delayed_node->index_cnt = ins->key.offset + 1;
  400. delayed_node->count++;
  401. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  402. return 0;
  403. }
  404. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  405. struct btrfs_delayed_item *item)
  406. {
  407. return __btrfs_add_delayed_item(node, item,
  408. BTRFS_DELAYED_INSERTION_ITEM);
  409. }
  410. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  411. struct btrfs_delayed_item *item)
  412. {
  413. return __btrfs_add_delayed_item(node, item,
  414. BTRFS_DELAYED_DELETION_ITEM);
  415. }
  416. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  417. {
  418. struct rb_root *root;
  419. struct btrfs_delayed_root *delayed_root;
  420. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  421. BUG_ON(!delayed_root);
  422. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  423. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  424. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  425. root = &delayed_item->delayed_node->ins_root;
  426. else
  427. root = &delayed_item->delayed_node->del_root;
  428. rb_erase(&delayed_item->rb_node, root);
  429. delayed_item->delayed_node->count--;
  430. atomic_dec(&delayed_root->items);
  431. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
  432. waitqueue_active(&delayed_root->wait))
  433. wake_up(&delayed_root->wait);
  434. }
  435. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  436. {
  437. if (item) {
  438. __btrfs_remove_delayed_item(item);
  439. if (atomic_dec_and_test(&item->refs))
  440. kfree(item);
  441. }
  442. }
  443. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  444. struct btrfs_delayed_node *delayed_node)
  445. {
  446. struct rb_node *p;
  447. struct btrfs_delayed_item *item = NULL;
  448. p = rb_first(&delayed_node->ins_root);
  449. if (p)
  450. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  451. return item;
  452. }
  453. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  454. struct btrfs_delayed_node *delayed_node)
  455. {
  456. struct rb_node *p;
  457. struct btrfs_delayed_item *item = NULL;
  458. p = rb_first(&delayed_node->del_root);
  459. if (p)
  460. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  461. return item;
  462. }
  463. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  464. struct btrfs_delayed_item *item)
  465. {
  466. struct rb_node *p;
  467. struct btrfs_delayed_item *next = NULL;
  468. p = rb_next(&item->rb_node);
  469. if (p)
  470. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  471. return next;
  472. }
  473. static inline struct btrfs_delayed_node *btrfs_get_delayed_node(
  474. struct inode *inode)
  475. {
  476. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  477. struct btrfs_delayed_node *delayed_node;
  478. delayed_node = btrfs_inode->delayed_node;
  479. if (delayed_node)
  480. atomic_inc(&delayed_node->refs);
  481. return delayed_node;
  482. }
  483. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  484. u64 root_id)
  485. {
  486. struct btrfs_key root_key;
  487. if (root->objectid == root_id)
  488. return root;
  489. root_key.objectid = root_id;
  490. root_key.type = BTRFS_ROOT_ITEM_KEY;
  491. root_key.offset = (u64)-1;
  492. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  493. }
  494. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  495. struct btrfs_root *root,
  496. struct btrfs_delayed_item *item)
  497. {
  498. struct btrfs_block_rsv *src_rsv;
  499. struct btrfs_block_rsv *dst_rsv;
  500. u64 num_bytes;
  501. int ret;
  502. if (!trans->bytes_reserved)
  503. return 0;
  504. src_rsv = trans->block_rsv;
  505. dst_rsv = &root->fs_info->global_block_rsv;
  506. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  507. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  508. if (!ret) {
  509. item->bytes_reserved = num_bytes;
  510. item->block_rsv = dst_rsv;
  511. }
  512. return ret;
  513. }
  514. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  515. struct btrfs_delayed_item *item)
  516. {
  517. if (!item->bytes_reserved)
  518. return;
  519. btrfs_block_rsv_release(root, item->block_rsv,
  520. item->bytes_reserved);
  521. }
  522. static int btrfs_delayed_inode_reserve_metadata(
  523. struct btrfs_trans_handle *trans,
  524. struct btrfs_root *root,
  525. struct btrfs_delayed_node *node)
  526. {
  527. struct btrfs_block_rsv *src_rsv;
  528. struct btrfs_block_rsv *dst_rsv;
  529. u64 num_bytes;
  530. int ret;
  531. if (!trans->bytes_reserved)
  532. return 0;
  533. src_rsv = trans->block_rsv;
  534. dst_rsv = &root->fs_info->global_block_rsv;
  535. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  536. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  537. if (!ret)
  538. node->bytes_reserved = num_bytes;
  539. return ret;
  540. }
  541. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  542. struct btrfs_delayed_node *node)
  543. {
  544. struct btrfs_block_rsv *rsv;
  545. if (!node->bytes_reserved)
  546. return;
  547. rsv = &root->fs_info->global_block_rsv;
  548. btrfs_block_rsv_release(root, rsv,
  549. node->bytes_reserved);
  550. node->bytes_reserved = 0;
  551. }
  552. /*
  553. * This helper will insert some continuous items into the same leaf according
  554. * to the free space of the leaf.
  555. */
  556. static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
  557. struct btrfs_root *root,
  558. struct btrfs_path *path,
  559. struct btrfs_delayed_item *item)
  560. {
  561. struct btrfs_delayed_item *curr, *next;
  562. int free_space;
  563. int total_data_size = 0, total_size = 0;
  564. struct extent_buffer *leaf;
  565. char *data_ptr;
  566. struct btrfs_key *keys;
  567. u32 *data_size;
  568. struct list_head head;
  569. int slot;
  570. int nitems;
  571. int i;
  572. int ret = 0;
  573. BUG_ON(!path->nodes[0]);
  574. leaf = path->nodes[0];
  575. free_space = btrfs_leaf_free_space(root, leaf);
  576. INIT_LIST_HEAD(&head);
  577. next = item;
  578. /*
  579. * count the number of the continuous items that we can insert in batch
  580. */
  581. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  582. free_space) {
  583. total_data_size += next->data_len;
  584. total_size += next->data_len + sizeof(struct btrfs_item);
  585. list_add_tail(&next->tree_list, &head);
  586. nitems++;
  587. curr = next;
  588. next = __btrfs_next_delayed_item(curr);
  589. if (!next)
  590. break;
  591. if (!btrfs_is_continuous_delayed_item(curr, next))
  592. break;
  593. }
  594. if (!nitems) {
  595. ret = 0;
  596. goto out;
  597. }
  598. /*
  599. * we need allocate some memory space, but it might cause the task
  600. * to sleep, so we set all locked nodes in the path to blocking locks
  601. * first.
  602. */
  603. btrfs_set_path_blocking(path);
  604. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  605. if (!keys) {
  606. ret = -ENOMEM;
  607. goto out;
  608. }
  609. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  610. if (!data_size) {
  611. ret = -ENOMEM;
  612. goto error;
  613. }
  614. /* get keys of all the delayed items */
  615. i = 0;
  616. list_for_each_entry(next, &head, tree_list) {
  617. keys[i] = next->key;
  618. data_size[i] = next->data_len;
  619. i++;
  620. }
  621. /* reset all the locked nodes in the patch to spinning locks. */
  622. btrfs_clear_path_blocking(path, NULL);
  623. /* insert the keys of the items */
  624. ret = setup_items_for_insert(trans, root, path, keys, data_size,
  625. total_data_size, total_size, nitems);
  626. if (ret)
  627. goto error;
  628. /* insert the dir index items */
  629. slot = path->slots[0];
  630. list_for_each_entry_safe(curr, next, &head, tree_list) {
  631. data_ptr = btrfs_item_ptr(leaf, slot, char);
  632. write_extent_buffer(leaf, &curr->data,
  633. (unsigned long)data_ptr,
  634. curr->data_len);
  635. slot++;
  636. btrfs_delayed_item_release_metadata(root, curr);
  637. list_del(&curr->tree_list);
  638. btrfs_release_delayed_item(curr);
  639. }
  640. error:
  641. kfree(data_size);
  642. kfree(keys);
  643. out:
  644. return ret;
  645. }
  646. /*
  647. * This helper can just do simple insertion that needn't extend item for new
  648. * data, such as directory name index insertion, inode insertion.
  649. */
  650. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  651. struct btrfs_root *root,
  652. struct btrfs_path *path,
  653. struct btrfs_delayed_item *delayed_item)
  654. {
  655. struct extent_buffer *leaf;
  656. struct btrfs_item *item;
  657. char *ptr;
  658. int ret;
  659. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  660. delayed_item->data_len);
  661. if (ret < 0 && ret != -EEXIST)
  662. return ret;
  663. leaf = path->nodes[0];
  664. item = btrfs_item_nr(leaf, path->slots[0]);
  665. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  666. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  667. delayed_item->data_len);
  668. btrfs_mark_buffer_dirty(leaf);
  669. btrfs_delayed_item_release_metadata(root, delayed_item);
  670. return 0;
  671. }
  672. /*
  673. * we insert an item first, then if there are some continuous items, we try
  674. * to insert those items into the same leaf.
  675. */
  676. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  677. struct btrfs_path *path,
  678. struct btrfs_root *root,
  679. struct btrfs_delayed_node *node)
  680. {
  681. struct btrfs_delayed_item *curr, *prev;
  682. int ret = 0;
  683. do_again:
  684. mutex_lock(&node->mutex);
  685. curr = __btrfs_first_delayed_insertion_item(node);
  686. if (!curr)
  687. goto insert_end;
  688. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  689. if (ret < 0) {
  690. btrfs_release_path(root, path);
  691. goto insert_end;
  692. }
  693. prev = curr;
  694. curr = __btrfs_next_delayed_item(prev);
  695. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  696. /* insert the continuous items into the same leaf */
  697. path->slots[0]++;
  698. btrfs_batch_insert_items(trans, root, path, curr);
  699. }
  700. btrfs_release_delayed_item(prev);
  701. btrfs_mark_buffer_dirty(path->nodes[0]);
  702. btrfs_release_path(root, path);
  703. mutex_unlock(&node->mutex);
  704. goto do_again;
  705. insert_end:
  706. mutex_unlock(&node->mutex);
  707. return ret;
  708. }
  709. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  710. struct btrfs_root *root,
  711. struct btrfs_path *path,
  712. struct btrfs_delayed_item *item)
  713. {
  714. struct btrfs_delayed_item *curr, *next;
  715. struct extent_buffer *leaf;
  716. struct btrfs_key key;
  717. struct list_head head;
  718. int nitems, i, last_item;
  719. int ret = 0;
  720. BUG_ON(!path->nodes[0]);
  721. leaf = path->nodes[0];
  722. i = path->slots[0];
  723. last_item = btrfs_header_nritems(leaf) - 1;
  724. if (i > last_item)
  725. return -ENOENT; /* FIXME: Is errno suitable? */
  726. next = item;
  727. INIT_LIST_HEAD(&head);
  728. btrfs_item_key_to_cpu(leaf, &key, i);
  729. nitems = 0;
  730. /*
  731. * count the number of the dir index items that we can delete in batch
  732. */
  733. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  734. list_add_tail(&next->tree_list, &head);
  735. nitems++;
  736. curr = next;
  737. next = __btrfs_next_delayed_item(curr);
  738. if (!next)
  739. break;
  740. if (!btrfs_is_continuous_delayed_item(curr, next))
  741. break;
  742. i++;
  743. if (i > last_item)
  744. break;
  745. btrfs_item_key_to_cpu(leaf, &key, i);
  746. }
  747. if (!nitems)
  748. return 0;
  749. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  750. if (ret)
  751. goto out;
  752. list_for_each_entry_safe(curr, next, &head, tree_list) {
  753. btrfs_delayed_item_release_metadata(root, curr);
  754. list_del(&curr->tree_list);
  755. btrfs_release_delayed_item(curr);
  756. }
  757. out:
  758. return ret;
  759. }
  760. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  761. struct btrfs_path *path,
  762. struct btrfs_root *root,
  763. struct btrfs_delayed_node *node)
  764. {
  765. struct btrfs_delayed_item *curr, *prev;
  766. int ret = 0;
  767. do_again:
  768. mutex_lock(&node->mutex);
  769. curr = __btrfs_first_delayed_deletion_item(node);
  770. if (!curr)
  771. goto delete_fail;
  772. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  773. if (ret < 0)
  774. goto delete_fail;
  775. else if (ret > 0) {
  776. /*
  777. * can't find the item which the node points to, so this node
  778. * is invalid, just drop it.
  779. */
  780. prev = curr;
  781. curr = __btrfs_next_delayed_item(prev);
  782. btrfs_release_delayed_item(prev);
  783. ret = 0;
  784. btrfs_release_path(root, path);
  785. if (curr)
  786. goto do_again;
  787. else
  788. goto delete_fail;
  789. }
  790. btrfs_batch_delete_items(trans, root, path, curr);
  791. btrfs_release_path(root, path);
  792. mutex_unlock(&node->mutex);
  793. goto do_again;
  794. delete_fail:
  795. btrfs_release_path(root, path);
  796. mutex_unlock(&node->mutex);
  797. return ret;
  798. }
  799. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  800. {
  801. struct btrfs_delayed_root *delayed_root;
  802. if (delayed_node && delayed_node->inode_dirty) {
  803. BUG_ON(!delayed_node->root);
  804. delayed_node->inode_dirty = 0;
  805. delayed_node->count--;
  806. delayed_root = delayed_node->root->fs_info->delayed_root;
  807. atomic_dec(&delayed_root->items);
  808. if (atomic_read(&delayed_root->items) <
  809. BTRFS_DELAYED_BACKGROUND &&
  810. waitqueue_active(&delayed_root->wait))
  811. wake_up(&delayed_root->wait);
  812. }
  813. }
  814. static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  815. struct btrfs_root *root,
  816. struct btrfs_path *path,
  817. struct btrfs_delayed_node *node)
  818. {
  819. struct btrfs_key key;
  820. struct btrfs_inode_item *inode_item;
  821. struct extent_buffer *leaf;
  822. int ret;
  823. mutex_lock(&node->mutex);
  824. if (!node->inode_dirty) {
  825. mutex_unlock(&node->mutex);
  826. return 0;
  827. }
  828. key.objectid = node->inode_id;
  829. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  830. key.offset = 0;
  831. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  832. if (ret > 0) {
  833. btrfs_release_path(root, path);
  834. mutex_unlock(&node->mutex);
  835. return -ENOENT;
  836. } else if (ret < 0) {
  837. mutex_unlock(&node->mutex);
  838. return ret;
  839. }
  840. btrfs_unlock_up_safe(path, 1);
  841. leaf = path->nodes[0];
  842. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  843. struct btrfs_inode_item);
  844. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  845. sizeof(struct btrfs_inode_item));
  846. btrfs_mark_buffer_dirty(leaf);
  847. btrfs_release_path(root, path);
  848. btrfs_delayed_inode_release_metadata(root, node);
  849. btrfs_release_delayed_inode(node);
  850. mutex_unlock(&node->mutex);
  851. return 0;
  852. }
  853. /* Called when committing the transaction. */
  854. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  855. struct btrfs_root *root)
  856. {
  857. struct btrfs_delayed_root *delayed_root;
  858. struct btrfs_delayed_node *curr_node, *prev_node;
  859. struct btrfs_path *path;
  860. int ret = 0;
  861. path = btrfs_alloc_path();
  862. if (!path)
  863. return -ENOMEM;
  864. path->leave_spinning = 1;
  865. delayed_root = btrfs_get_delayed_root(root);
  866. curr_node = btrfs_first_delayed_node(delayed_root);
  867. while (curr_node) {
  868. root = curr_node->root;
  869. ret = btrfs_insert_delayed_items(trans, path, root,
  870. curr_node);
  871. if (!ret)
  872. ret = btrfs_delete_delayed_items(trans, path, root,
  873. curr_node);
  874. if (!ret)
  875. ret = btrfs_update_delayed_inode(trans, root, path,
  876. curr_node);
  877. if (ret) {
  878. btrfs_release_delayed_node(curr_node);
  879. break;
  880. }
  881. prev_node = curr_node;
  882. curr_node = btrfs_next_delayed_node(curr_node);
  883. btrfs_release_delayed_node(prev_node);
  884. }
  885. btrfs_free_path(path);
  886. return ret;
  887. }
  888. static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  889. struct btrfs_delayed_node *node)
  890. {
  891. struct btrfs_path *path;
  892. int ret;
  893. path = btrfs_alloc_path();
  894. if (!path)
  895. return -ENOMEM;
  896. path->leave_spinning = 1;
  897. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  898. if (!ret)
  899. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  900. if (!ret)
  901. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  902. btrfs_free_path(path);
  903. return ret;
  904. }
  905. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  906. struct inode *inode)
  907. {
  908. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  909. int ret;
  910. if (!delayed_node)
  911. return 0;
  912. mutex_lock(&delayed_node->mutex);
  913. if (!delayed_node->count) {
  914. mutex_unlock(&delayed_node->mutex);
  915. btrfs_release_delayed_node(delayed_node);
  916. return 0;
  917. }
  918. mutex_unlock(&delayed_node->mutex);
  919. ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
  920. btrfs_release_delayed_node(delayed_node);
  921. return ret;
  922. }
  923. void btrfs_remove_delayed_node(struct inode *inode)
  924. {
  925. struct btrfs_delayed_node *delayed_node;
  926. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  927. if (!delayed_node)
  928. return;
  929. BTRFS_I(inode)->delayed_node = NULL;
  930. btrfs_release_delayed_node(delayed_node);
  931. }
  932. struct btrfs_async_delayed_node {
  933. struct btrfs_root *root;
  934. struct btrfs_delayed_node *delayed_node;
  935. struct btrfs_work work;
  936. };
  937. static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
  938. {
  939. struct btrfs_async_delayed_node *async_node;
  940. struct btrfs_trans_handle *trans;
  941. struct btrfs_path *path;
  942. struct btrfs_delayed_node *delayed_node = NULL;
  943. struct btrfs_root *root;
  944. unsigned long nr = 0;
  945. int need_requeue = 0;
  946. int ret;
  947. async_node = container_of(work, struct btrfs_async_delayed_node, work);
  948. path = btrfs_alloc_path();
  949. if (!path)
  950. goto out;
  951. path->leave_spinning = 1;
  952. delayed_node = async_node->delayed_node;
  953. root = delayed_node->root;
  954. trans = btrfs_join_transaction(root, 0);
  955. if (IS_ERR(trans))
  956. goto free_path;
  957. ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
  958. if (!ret)
  959. ret = btrfs_delete_delayed_items(trans, path, root,
  960. delayed_node);
  961. if (!ret)
  962. btrfs_update_delayed_inode(trans, root, path, delayed_node);
  963. /*
  964. * Maybe new delayed items have been inserted, so we need requeue
  965. * the work. Besides that, we must dequeue the empty delayed nodes
  966. * to avoid the race between delayed items balance and the worker.
  967. * The race like this:
  968. * Task1 Worker thread
  969. * count == 0, needn't requeue
  970. * also needn't insert the
  971. * delayed node into prepare
  972. * list again.
  973. * add lots of delayed items
  974. * queue the delayed node
  975. * already in the list,
  976. * and not in the prepare
  977. * list, it means the delayed
  978. * node is being dealt with
  979. * by the worker.
  980. * do delayed items balance
  981. * the delayed node is being
  982. * dealt with by the worker
  983. * now, just wait.
  984. * the worker goto idle.
  985. * Task1 will sleep until the transaction is commited.
  986. */
  987. mutex_lock(&delayed_node->mutex);
  988. if (delayed_node->count)
  989. need_requeue = 1;
  990. else
  991. btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
  992. delayed_node);
  993. mutex_unlock(&delayed_node->mutex);
  994. nr = trans->blocks_used;
  995. btrfs_end_transaction_dmeta(trans, root);
  996. __btrfs_btree_balance_dirty(root, nr);
  997. free_path:
  998. btrfs_free_path(path);
  999. out:
  1000. if (need_requeue)
  1001. btrfs_requeue_work(&async_node->work);
  1002. else {
  1003. btrfs_release_prepared_delayed_node(delayed_node);
  1004. kfree(async_node);
  1005. }
  1006. }
  1007. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1008. struct btrfs_root *root, int all)
  1009. {
  1010. struct btrfs_async_delayed_node *async_node;
  1011. struct btrfs_delayed_node *curr;
  1012. int count = 0;
  1013. again:
  1014. curr = btrfs_first_prepared_delayed_node(delayed_root);
  1015. if (!curr)
  1016. return 0;
  1017. async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
  1018. if (!async_node) {
  1019. btrfs_release_prepared_delayed_node(curr);
  1020. return -ENOMEM;
  1021. }
  1022. async_node->root = root;
  1023. async_node->delayed_node = curr;
  1024. async_node->work.func = btrfs_async_run_delayed_node_done;
  1025. async_node->work.flags = 0;
  1026. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
  1027. count++;
  1028. if (all || count < 4)
  1029. goto again;
  1030. return 0;
  1031. }
  1032. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1033. {
  1034. struct btrfs_delayed_root *delayed_root;
  1035. delayed_root = btrfs_get_delayed_root(root);
  1036. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1037. return;
  1038. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1039. int ret;
  1040. ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
  1041. if (ret)
  1042. return;
  1043. wait_event_interruptible_timeout(
  1044. delayed_root->wait,
  1045. (atomic_read(&delayed_root->items) <
  1046. BTRFS_DELAYED_BACKGROUND),
  1047. HZ);
  1048. return;
  1049. }
  1050. btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1051. }
  1052. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1053. struct btrfs_root *root, const char *name,
  1054. int name_len, struct inode *dir,
  1055. struct btrfs_disk_key *disk_key, u8 type,
  1056. u64 index)
  1057. {
  1058. struct btrfs_delayed_node *delayed_node;
  1059. struct btrfs_delayed_item *delayed_item;
  1060. struct btrfs_dir_item *dir_item;
  1061. int ret;
  1062. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1063. if (IS_ERR(delayed_node))
  1064. return PTR_ERR(delayed_node);
  1065. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1066. if (!delayed_item) {
  1067. ret = -ENOMEM;
  1068. goto release_node;
  1069. }
  1070. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1071. /*
  1072. * we have reserved enough space when we start a new transaction,
  1073. * so reserving metadata failure is impossible
  1074. */
  1075. BUG_ON(ret);
  1076. delayed_item->key.objectid = dir->i_ino;
  1077. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1078. delayed_item->key.offset = index;
  1079. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1080. dir_item->location = *disk_key;
  1081. dir_item->transid = cpu_to_le64(trans->transid);
  1082. dir_item->data_len = 0;
  1083. dir_item->name_len = cpu_to_le16(name_len);
  1084. dir_item->type = type;
  1085. memcpy((char *)(dir_item + 1), name, name_len);
  1086. mutex_lock(&delayed_node->mutex);
  1087. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1088. if (unlikely(ret)) {
  1089. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1090. "the insertion tree of the delayed node"
  1091. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1092. name,
  1093. (unsigned long long)delayed_node->root->objectid,
  1094. (unsigned long long)delayed_node->inode_id,
  1095. ret);
  1096. BUG();
  1097. }
  1098. mutex_unlock(&delayed_node->mutex);
  1099. release_node:
  1100. btrfs_release_delayed_node(delayed_node);
  1101. return ret;
  1102. }
  1103. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1104. struct btrfs_delayed_node *node,
  1105. struct btrfs_key *key)
  1106. {
  1107. struct btrfs_delayed_item *item;
  1108. mutex_lock(&node->mutex);
  1109. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1110. if (!item) {
  1111. mutex_unlock(&node->mutex);
  1112. return 1;
  1113. }
  1114. btrfs_delayed_item_release_metadata(root, item);
  1115. btrfs_release_delayed_item(item);
  1116. mutex_unlock(&node->mutex);
  1117. return 0;
  1118. }
  1119. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1120. struct btrfs_root *root, struct inode *dir,
  1121. u64 index)
  1122. {
  1123. struct btrfs_delayed_node *node;
  1124. struct btrfs_delayed_item *item;
  1125. struct btrfs_key item_key;
  1126. int ret;
  1127. node = btrfs_get_or_create_delayed_node(dir);
  1128. if (IS_ERR(node))
  1129. return PTR_ERR(node);
  1130. item_key.objectid = dir->i_ino;
  1131. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1132. item_key.offset = index;
  1133. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1134. if (!ret)
  1135. goto end;
  1136. item = btrfs_alloc_delayed_item(0);
  1137. if (!item) {
  1138. ret = -ENOMEM;
  1139. goto end;
  1140. }
  1141. item->key = item_key;
  1142. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1143. /*
  1144. * we have reserved enough space when we start a new transaction,
  1145. * so reserving metadata failure is impossible.
  1146. */
  1147. BUG_ON(ret);
  1148. mutex_lock(&node->mutex);
  1149. ret = __btrfs_add_delayed_deletion_item(node, item);
  1150. if (unlikely(ret)) {
  1151. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1152. "into the deletion tree of the delayed node"
  1153. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1154. (unsigned long long)index,
  1155. (unsigned long long)node->root->objectid,
  1156. (unsigned long long)node->inode_id,
  1157. ret);
  1158. BUG();
  1159. }
  1160. mutex_unlock(&node->mutex);
  1161. end:
  1162. btrfs_release_delayed_node(node);
  1163. return ret;
  1164. }
  1165. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1166. {
  1167. struct btrfs_delayed_node *delayed_node = BTRFS_I(inode)->delayed_node;
  1168. int ret = 0;
  1169. if (!delayed_node)
  1170. return -ENOENT;
  1171. /*
  1172. * Since we have held i_mutex of this directory, it is impossible that
  1173. * a new directory index is added into the delayed node and index_cnt
  1174. * is updated now. So we needn't lock the delayed node.
  1175. */
  1176. if (!delayed_node->index_cnt)
  1177. return -EINVAL;
  1178. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1179. return ret;
  1180. }
  1181. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1182. struct list_head *del_list)
  1183. {
  1184. struct btrfs_delayed_node *delayed_node;
  1185. struct btrfs_delayed_item *item;
  1186. delayed_node = btrfs_get_delayed_node(inode);
  1187. if (!delayed_node)
  1188. return;
  1189. mutex_lock(&delayed_node->mutex);
  1190. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1191. while (item) {
  1192. atomic_inc(&item->refs);
  1193. list_add_tail(&item->readdir_list, ins_list);
  1194. item = __btrfs_next_delayed_item(item);
  1195. }
  1196. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1197. while (item) {
  1198. atomic_inc(&item->refs);
  1199. list_add_tail(&item->readdir_list, del_list);
  1200. item = __btrfs_next_delayed_item(item);
  1201. }
  1202. mutex_unlock(&delayed_node->mutex);
  1203. /*
  1204. * This delayed node is still cached in the btrfs inode, so refs
  1205. * must be > 1 now, and we needn't check it is going to be freed
  1206. * or not.
  1207. *
  1208. * Besides that, this function is used to read dir, we do not
  1209. * insert/delete delayed items in this period. So we also needn't
  1210. * requeue or dequeue this delayed node.
  1211. */
  1212. atomic_dec(&delayed_node->refs);
  1213. }
  1214. void btrfs_put_delayed_items(struct list_head *ins_list,
  1215. struct list_head *del_list)
  1216. {
  1217. struct btrfs_delayed_item *curr, *next;
  1218. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1219. list_del(&curr->readdir_list);
  1220. if (atomic_dec_and_test(&curr->refs))
  1221. kfree(curr);
  1222. }
  1223. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1224. list_del(&curr->readdir_list);
  1225. if (atomic_dec_and_test(&curr->refs))
  1226. kfree(curr);
  1227. }
  1228. }
  1229. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1230. u64 index)
  1231. {
  1232. struct btrfs_delayed_item *curr, *next;
  1233. int ret;
  1234. if (list_empty(del_list))
  1235. return 0;
  1236. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1237. if (curr->key.offset > index)
  1238. break;
  1239. list_del(&curr->readdir_list);
  1240. ret = (curr->key.offset == index);
  1241. if (atomic_dec_and_test(&curr->refs))
  1242. kfree(curr);
  1243. if (ret)
  1244. return 1;
  1245. else
  1246. continue;
  1247. }
  1248. return 0;
  1249. }
  1250. /*
  1251. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1252. *
  1253. */
  1254. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1255. filldir_t filldir,
  1256. struct list_head *ins_list)
  1257. {
  1258. struct btrfs_dir_item *di;
  1259. struct btrfs_delayed_item *curr, *next;
  1260. struct btrfs_key location;
  1261. char *name;
  1262. int name_len;
  1263. int over = 0;
  1264. unsigned char d_type;
  1265. if (list_empty(ins_list))
  1266. return 0;
  1267. /*
  1268. * Changing the data of the delayed item is impossible. So
  1269. * we needn't lock them. And we have held i_mutex of the
  1270. * directory, nobody can delete any directory indexes now.
  1271. */
  1272. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1273. list_del(&curr->readdir_list);
  1274. if (curr->key.offset < filp->f_pos) {
  1275. if (atomic_dec_and_test(&curr->refs))
  1276. kfree(curr);
  1277. continue;
  1278. }
  1279. filp->f_pos = curr->key.offset;
  1280. di = (struct btrfs_dir_item *)curr->data;
  1281. name = (char *)(di + 1);
  1282. name_len = le16_to_cpu(di->name_len);
  1283. d_type = btrfs_filetype_table[di->type];
  1284. btrfs_disk_key_to_cpu(&location, &di->location);
  1285. over = filldir(dirent, name, name_len, curr->key.offset,
  1286. location.objectid, d_type);
  1287. if (atomic_dec_and_test(&curr->refs))
  1288. kfree(curr);
  1289. if (over)
  1290. return 1;
  1291. }
  1292. return 0;
  1293. }
  1294. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1295. generation, 64);
  1296. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1297. sequence, 64);
  1298. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1299. transid, 64);
  1300. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1301. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1302. nbytes, 64);
  1303. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1304. block_group, 64);
  1305. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1306. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1307. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1308. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1309. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1310. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1311. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1312. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1313. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1314. struct btrfs_inode_item *inode_item,
  1315. struct inode *inode)
  1316. {
  1317. btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
  1318. btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
  1319. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1320. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1321. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1322. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1323. btrfs_set_stack_inode_generation(inode_item,
  1324. BTRFS_I(inode)->generation);
  1325. btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
  1326. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1327. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1328. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1329. btrfs_set_stack_inode_block_group(inode_item,
  1330. BTRFS_I(inode)->block_group);
  1331. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1332. inode->i_atime.tv_sec);
  1333. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1334. inode->i_atime.tv_nsec);
  1335. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1336. inode->i_mtime.tv_sec);
  1337. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1338. inode->i_mtime.tv_nsec);
  1339. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1340. inode->i_ctime.tv_sec);
  1341. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1342. inode->i_ctime.tv_nsec);
  1343. }
  1344. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1345. struct btrfs_root *root, struct inode *inode)
  1346. {
  1347. struct btrfs_delayed_node *delayed_node;
  1348. int ret;
  1349. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1350. if (IS_ERR(delayed_node))
  1351. return PTR_ERR(delayed_node);
  1352. mutex_lock(&delayed_node->mutex);
  1353. if (delayed_node->inode_dirty) {
  1354. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1355. goto release_node;
  1356. }
  1357. ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
  1358. /*
  1359. * we must reserve enough space when we start a new transaction,
  1360. * so reserving metadata failure is impossible
  1361. */
  1362. BUG_ON(ret);
  1363. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1364. delayed_node->inode_dirty = 1;
  1365. delayed_node->count++;
  1366. atomic_inc(&root->fs_info->delayed_root->items);
  1367. release_node:
  1368. mutex_unlock(&delayed_node->mutex);
  1369. btrfs_release_delayed_node(delayed_node);
  1370. return ret;
  1371. }
  1372. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1373. {
  1374. struct btrfs_root *root = delayed_node->root;
  1375. struct btrfs_delayed_item *curr_item, *prev_item;
  1376. mutex_lock(&delayed_node->mutex);
  1377. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1378. while (curr_item) {
  1379. btrfs_delayed_item_release_metadata(root, curr_item);
  1380. prev_item = curr_item;
  1381. curr_item = __btrfs_next_delayed_item(prev_item);
  1382. btrfs_release_delayed_item(prev_item);
  1383. }
  1384. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1385. while (curr_item) {
  1386. btrfs_delayed_item_release_metadata(root, curr_item);
  1387. prev_item = curr_item;
  1388. curr_item = __btrfs_next_delayed_item(prev_item);
  1389. btrfs_release_delayed_item(prev_item);
  1390. }
  1391. if (delayed_node->inode_dirty) {
  1392. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1393. btrfs_release_delayed_inode(delayed_node);
  1394. }
  1395. mutex_unlock(&delayed_node->mutex);
  1396. }
  1397. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1398. {
  1399. struct btrfs_delayed_node *delayed_node;
  1400. delayed_node = btrfs_get_delayed_node(inode);
  1401. if (!delayed_node)
  1402. return;
  1403. __btrfs_kill_delayed_node(delayed_node);
  1404. btrfs_release_delayed_node(delayed_node);
  1405. }
  1406. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1407. {
  1408. u64 inode_id = 0;
  1409. struct btrfs_delayed_node *delayed_nodes[8];
  1410. int i, n;
  1411. while (1) {
  1412. spin_lock(&root->inode_lock);
  1413. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1414. (void **)delayed_nodes, inode_id,
  1415. ARRAY_SIZE(delayed_nodes));
  1416. if (!n) {
  1417. spin_unlock(&root->inode_lock);
  1418. break;
  1419. }
  1420. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1421. for (i = 0; i < n; i++)
  1422. atomic_inc(&delayed_nodes[i]->refs);
  1423. spin_unlock(&root->inode_lock);
  1424. for (i = 0; i < n; i++) {
  1425. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1426. btrfs_release_delayed_node(delayed_nodes[i]);
  1427. }
  1428. }
  1429. }