mem.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7. * Copyright (C) 1996 Paul Mackerras
  8. * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
  9. *
  10. * Derived from "arch/i386/mm/init.c"
  11. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  12. *
  13. * This program is free software; you can redistribute it and/or
  14. * modify it under the terms of the GNU General Public License
  15. * as published by the Free Software Foundation; either version
  16. * 2 of the License, or (at your option) any later version.
  17. *
  18. */
  19. #include <linux/module.h>
  20. #include <linux/sched.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/types.h>
  25. #include <linux/mm.h>
  26. #include <linux/stddef.h>
  27. #include <linux/init.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/highmem.h>
  30. #include <linux/initrd.h>
  31. #include <linux/pagemap.h>
  32. #include <linux/suspend.h>
  33. #include <asm/pgalloc.h>
  34. #include <asm/prom.h>
  35. #include <asm/io.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/mmu.h>
  39. #include <asm/smp.h>
  40. #include <asm/machdep.h>
  41. #include <asm/btext.h>
  42. #include <asm/tlb.h>
  43. #include <asm/lmb.h>
  44. #include <asm/sections.h>
  45. #include <asm/vdso.h>
  46. #include "mmu_decl.h"
  47. #ifndef CPU_FTR_COHERENT_ICACHE
  48. #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
  49. #define CPU_FTR_NOEXECUTE 0
  50. #endif
  51. int init_bootmem_done;
  52. int mem_init_done;
  53. unsigned long memory_limit;
  54. int page_is_ram(unsigned long pfn)
  55. {
  56. unsigned long paddr = (pfn << PAGE_SHIFT);
  57. #ifndef CONFIG_PPC64 /* XXX for now */
  58. return paddr < __pa(high_memory);
  59. #else
  60. int i;
  61. for (i=0; i < lmb.memory.cnt; i++) {
  62. unsigned long base;
  63. base = lmb.memory.region[i].base;
  64. if ((paddr >= base) &&
  65. (paddr < (base + lmb.memory.region[i].size))) {
  66. return 1;
  67. }
  68. }
  69. return 0;
  70. #endif
  71. }
  72. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  73. unsigned long size, pgprot_t vma_prot)
  74. {
  75. if (ppc_md.phys_mem_access_prot)
  76. return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
  77. if (!page_is_ram(pfn))
  78. vma_prot = __pgprot(pgprot_val(vma_prot)
  79. | _PAGE_GUARDED | _PAGE_NO_CACHE);
  80. return vma_prot;
  81. }
  82. EXPORT_SYMBOL(phys_mem_access_prot);
  83. #ifdef CONFIG_MEMORY_HOTPLUG
  84. void online_page(struct page *page)
  85. {
  86. ClearPageReserved(page);
  87. init_page_count(page);
  88. __free_page(page);
  89. totalram_pages++;
  90. num_physpages++;
  91. }
  92. #ifdef CONFIG_NUMA
  93. int memory_add_physaddr_to_nid(u64 start)
  94. {
  95. return hot_add_scn_to_nid(start);
  96. }
  97. #endif
  98. int __devinit arch_add_memory(int nid, u64 start, u64 size)
  99. {
  100. struct pglist_data *pgdata;
  101. struct zone *zone;
  102. unsigned long start_pfn = start >> PAGE_SHIFT;
  103. unsigned long nr_pages = size >> PAGE_SHIFT;
  104. pgdata = NODE_DATA(nid);
  105. start = (unsigned long)__va(start);
  106. create_section_mapping(start, start + size);
  107. /* this should work for most non-highmem platforms */
  108. zone = pgdata->node_zones;
  109. return __add_pages(zone, start_pfn, nr_pages);
  110. }
  111. #endif /* CONFIG_MEMORY_HOTPLUG */
  112. void show_mem(void)
  113. {
  114. unsigned long total = 0, reserved = 0;
  115. unsigned long shared = 0, cached = 0;
  116. unsigned long highmem = 0;
  117. struct page *page;
  118. pg_data_t *pgdat;
  119. unsigned long i;
  120. printk("Mem-info:\n");
  121. show_free_areas();
  122. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  123. for_each_online_pgdat(pgdat) {
  124. unsigned long flags;
  125. pgdat_resize_lock(pgdat, &flags);
  126. for (i = 0; i < pgdat->node_spanned_pages; i++) {
  127. if (!pfn_valid(pgdat->node_start_pfn + i))
  128. continue;
  129. page = pgdat_page_nr(pgdat, i);
  130. total++;
  131. if (PageHighMem(page))
  132. highmem++;
  133. if (PageReserved(page))
  134. reserved++;
  135. else if (PageSwapCache(page))
  136. cached++;
  137. else if (page_count(page))
  138. shared += page_count(page) - 1;
  139. }
  140. pgdat_resize_unlock(pgdat, &flags);
  141. }
  142. printk("%ld pages of RAM\n", total);
  143. #ifdef CONFIG_HIGHMEM
  144. printk("%ld pages of HIGHMEM\n", highmem);
  145. #endif
  146. printk("%ld reserved pages\n", reserved);
  147. printk("%ld pages shared\n", shared);
  148. printk("%ld pages swap cached\n", cached);
  149. }
  150. /*
  151. * Initialize the bootmem system and give it all the memory we
  152. * have available. If we are using highmem, we only put the
  153. * lowmem into the bootmem system.
  154. */
  155. #ifndef CONFIG_NEED_MULTIPLE_NODES
  156. void __init do_init_bootmem(void)
  157. {
  158. unsigned long i;
  159. unsigned long start, bootmap_pages;
  160. unsigned long total_pages;
  161. int boot_mapsize;
  162. max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
  163. #ifdef CONFIG_HIGHMEM
  164. total_pages = total_lowmem >> PAGE_SHIFT;
  165. #endif
  166. /*
  167. * Find an area to use for the bootmem bitmap. Calculate the size of
  168. * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
  169. * Add 1 additional page in case the address isn't page-aligned.
  170. */
  171. bootmap_pages = bootmem_bootmap_pages(total_pages);
  172. start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
  173. boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
  174. /* Add active regions with valid PFNs */
  175. for (i = 0; i < lmb.memory.cnt; i++) {
  176. unsigned long start_pfn, end_pfn;
  177. start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
  178. end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
  179. add_active_range(0, start_pfn, end_pfn);
  180. }
  181. /* Add all physical memory to the bootmem map, mark each area
  182. * present.
  183. */
  184. #ifdef CONFIG_HIGHMEM
  185. free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT);
  186. /* reserve the sections we're already using */
  187. for (i = 0; i < lmb.reserved.cnt; i++) {
  188. unsigned long addr = lmb.reserved.region[i].base +
  189. lmb_size_bytes(&lmb.reserved, i) - 1;
  190. if (addr < total_lowmem)
  191. reserve_bootmem(lmb.reserved.region[i].base,
  192. lmb_size_bytes(&lmb.reserved, i));
  193. else if (lmb.reserved.region[i].base < total_lowmem) {
  194. unsigned long adjusted_size = total_lowmem -
  195. lmb.reserved.region[i].base;
  196. reserve_bootmem(lmb.reserved.region[i].base,
  197. adjusted_size);
  198. }
  199. }
  200. #else
  201. free_bootmem_with_active_regions(0, max_pfn);
  202. /* reserve the sections we're already using */
  203. for (i = 0; i < lmb.reserved.cnt; i++)
  204. reserve_bootmem(lmb.reserved.region[i].base,
  205. lmb_size_bytes(&lmb.reserved, i));
  206. #endif
  207. /* XXX need to clip this if using highmem? */
  208. sparse_memory_present_with_active_regions(0);
  209. init_bootmem_done = 1;
  210. }
  211. /* mark pages that don't exist as nosave */
  212. static int __init mark_nonram_nosave(void)
  213. {
  214. unsigned long lmb_next_region_start_pfn,
  215. lmb_region_max_pfn;
  216. int i;
  217. for (i = 0; i < lmb.memory.cnt - 1; i++) {
  218. lmb_region_max_pfn =
  219. (lmb.memory.region[i].base >> PAGE_SHIFT) +
  220. (lmb.memory.region[i].size >> PAGE_SHIFT);
  221. lmb_next_region_start_pfn =
  222. lmb.memory.region[i+1].base >> PAGE_SHIFT;
  223. if (lmb_region_max_pfn < lmb_next_region_start_pfn)
  224. register_nosave_region(lmb_region_max_pfn,
  225. lmb_next_region_start_pfn);
  226. }
  227. return 0;
  228. }
  229. /*
  230. * paging_init() sets up the page tables - in fact we've already done this.
  231. */
  232. void __init paging_init(void)
  233. {
  234. unsigned long total_ram = lmb_phys_mem_size();
  235. unsigned long top_of_ram = lmb_end_of_DRAM();
  236. unsigned long max_zone_pfns[MAX_NR_ZONES];
  237. #ifdef CONFIG_HIGHMEM
  238. map_page(PKMAP_BASE, 0, 0); /* XXX gross */
  239. pkmap_page_table = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
  240. (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
  241. map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
  242. kmap_pte = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
  243. (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN),
  244. KMAP_FIX_BEGIN);
  245. kmap_prot = PAGE_KERNEL;
  246. #endif /* CONFIG_HIGHMEM */
  247. printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
  248. top_of_ram, total_ram);
  249. printk(KERN_DEBUG "Memory hole size: %ldMB\n",
  250. (top_of_ram - total_ram) >> 20);
  251. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  252. #ifdef CONFIG_HIGHMEM
  253. max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
  254. max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
  255. #else
  256. max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
  257. #endif
  258. free_area_init_nodes(max_zone_pfns);
  259. mark_nonram_nosave();
  260. }
  261. #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
  262. void __init mem_init(void)
  263. {
  264. #ifdef CONFIG_NEED_MULTIPLE_NODES
  265. int nid;
  266. #endif
  267. pg_data_t *pgdat;
  268. unsigned long i;
  269. struct page *page;
  270. unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
  271. num_physpages = lmb.memory.size >> PAGE_SHIFT;
  272. high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
  273. #ifdef CONFIG_NEED_MULTIPLE_NODES
  274. for_each_online_node(nid) {
  275. if (NODE_DATA(nid)->node_spanned_pages != 0) {
  276. printk("freeing bootmem node %d\n", nid);
  277. totalram_pages +=
  278. free_all_bootmem_node(NODE_DATA(nid));
  279. }
  280. }
  281. #else
  282. max_mapnr = max_pfn;
  283. totalram_pages += free_all_bootmem();
  284. #endif
  285. for_each_online_pgdat(pgdat) {
  286. for (i = 0; i < pgdat->node_spanned_pages; i++) {
  287. if (!pfn_valid(pgdat->node_start_pfn + i))
  288. continue;
  289. page = pgdat_page_nr(pgdat, i);
  290. if (PageReserved(page))
  291. reservedpages++;
  292. }
  293. }
  294. codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
  295. datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
  296. initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
  297. bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
  298. #ifdef CONFIG_HIGHMEM
  299. {
  300. unsigned long pfn, highmem_mapnr;
  301. highmem_mapnr = total_lowmem >> PAGE_SHIFT;
  302. for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
  303. struct page *page = pfn_to_page(pfn);
  304. if (lmb_is_reserved(pfn << PAGE_SHIFT))
  305. continue;
  306. ClearPageReserved(page);
  307. init_page_count(page);
  308. __free_page(page);
  309. totalhigh_pages++;
  310. reservedpages--;
  311. }
  312. totalram_pages += totalhigh_pages;
  313. printk(KERN_DEBUG "High memory: %luk\n",
  314. totalhigh_pages << (PAGE_SHIFT-10));
  315. }
  316. #endif /* CONFIG_HIGHMEM */
  317. printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
  318. "%luk reserved, %luk data, %luk bss, %luk init)\n",
  319. (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
  320. num_physpages << (PAGE_SHIFT-10),
  321. codesize >> 10,
  322. reservedpages << (PAGE_SHIFT-10),
  323. datasize >> 10,
  324. bsssize >> 10,
  325. initsize >> 10);
  326. mem_init_done = 1;
  327. }
  328. /*
  329. * This is called when a page has been modified by the kernel.
  330. * It just marks the page as not i-cache clean. We do the i-cache
  331. * flush later when the page is given to a user process, if necessary.
  332. */
  333. void flush_dcache_page(struct page *page)
  334. {
  335. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  336. return;
  337. /* avoid an atomic op if possible */
  338. if (test_bit(PG_arch_1, &page->flags))
  339. clear_bit(PG_arch_1, &page->flags);
  340. }
  341. EXPORT_SYMBOL(flush_dcache_page);
  342. void flush_dcache_icache_page(struct page *page)
  343. {
  344. #ifdef CONFIG_BOOKE
  345. void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
  346. __flush_dcache_icache(start);
  347. kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
  348. #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
  349. /* On 8xx there is no need to kmap since highmem is not supported */
  350. __flush_dcache_icache(page_address(page));
  351. #else
  352. __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
  353. #endif
  354. }
  355. void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
  356. {
  357. clear_page(page);
  358. /*
  359. * We shouldnt have to do this, but some versions of glibc
  360. * require it (ld.so assumes zero filled pages are icache clean)
  361. * - Anton
  362. */
  363. flush_dcache_page(pg);
  364. }
  365. EXPORT_SYMBOL(clear_user_page);
  366. void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
  367. struct page *pg)
  368. {
  369. copy_page(vto, vfrom);
  370. /*
  371. * We should be able to use the following optimisation, however
  372. * there are two problems.
  373. * Firstly a bug in some versions of binutils meant PLT sections
  374. * were not marked executable.
  375. * Secondly the first word in the GOT section is blrl, used
  376. * to establish the GOT address. Until recently the GOT was
  377. * not marked executable.
  378. * - Anton
  379. */
  380. #if 0
  381. if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
  382. return;
  383. #endif
  384. flush_dcache_page(pg);
  385. }
  386. void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
  387. unsigned long addr, int len)
  388. {
  389. unsigned long maddr;
  390. maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
  391. flush_icache_range(maddr, maddr + len);
  392. kunmap(page);
  393. }
  394. EXPORT_SYMBOL(flush_icache_user_range);
  395. /*
  396. * This is called at the end of handling a user page fault, when the
  397. * fault has been handled by updating a PTE in the linux page tables.
  398. * We use it to preload an HPTE into the hash table corresponding to
  399. * the updated linux PTE.
  400. *
  401. * This must always be called with the pte lock held.
  402. */
  403. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
  404. pte_t pte)
  405. {
  406. #ifdef CONFIG_PPC_STD_MMU
  407. unsigned long access = 0, trap;
  408. #endif
  409. unsigned long pfn = pte_pfn(pte);
  410. /* handle i-cache coherency */
  411. if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
  412. !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
  413. pfn_valid(pfn)) {
  414. struct page *page = pfn_to_page(pfn);
  415. #ifdef CONFIG_8xx
  416. /* On 8xx, cache control instructions (particularly
  417. * "dcbst" from flush_dcache_icache) fault as write
  418. * operation if there is an unpopulated TLB entry
  419. * for the address in question. To workaround that,
  420. * we invalidate the TLB here, thus avoiding dcbst
  421. * misbehaviour.
  422. */
  423. _tlbie(address, 0 /* 8xx doesn't care about PID */);
  424. #endif
  425. if (!PageReserved(page)
  426. && !test_bit(PG_arch_1, &page->flags)) {
  427. if (vma->vm_mm == current->active_mm) {
  428. __flush_dcache_icache((void *) address);
  429. } else
  430. flush_dcache_icache_page(page);
  431. set_bit(PG_arch_1, &page->flags);
  432. }
  433. }
  434. #ifdef CONFIG_PPC_STD_MMU
  435. /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
  436. if (!pte_young(pte) || address >= TASK_SIZE)
  437. return;
  438. /* We try to figure out if we are coming from an instruction
  439. * access fault and pass that down to __hash_page so we avoid
  440. * double-faulting on execution of fresh text. We have to test
  441. * for regs NULL since init will get here first thing at boot
  442. *
  443. * We also avoid filling the hash if not coming from a fault
  444. */
  445. if (current->thread.regs == NULL)
  446. return;
  447. trap = TRAP(current->thread.regs);
  448. if (trap == 0x400)
  449. access |= _PAGE_EXEC;
  450. else if (trap != 0x300)
  451. return;
  452. hash_preload(vma->vm_mm, address, access, trap);
  453. #endif /* CONFIG_PPC_STD_MMU */
  454. }