i915_gem.c 109 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <drm/drmP.h>
  28. #include <drm/i915_drm.h>
  29. #include "i915_drv.h"
  30. #include "i915_trace.h"
  31. #include "intel_drv.h"
  32. #include <linux/shmem_fs.h>
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-buf.h>
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  40. unsigned alignment,
  41. bool map_and_fenceable,
  42. bool nonblocking);
  43. static int i915_gem_phys_pwrite(struct drm_device *dev,
  44. struct drm_i915_gem_object *obj,
  45. struct drm_i915_gem_pwrite *args,
  46. struct drm_file *file);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  55. static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  56. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  57. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  58. {
  59. if (obj->tiling_mode)
  60. i915_gem_release_mmap(obj);
  61. /* As we do not have an associated fence register, we will force
  62. * a tiling change if we ever need to acquire one.
  63. */
  64. obj->fence_dirty = false;
  65. obj->fence_reg = I915_FENCE_REG_NONE;
  66. }
  67. /* some bookkeeping */
  68. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  69. size_t size)
  70. {
  71. dev_priv->mm.object_count++;
  72. dev_priv->mm.object_memory += size;
  73. }
  74. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  75. size_t size)
  76. {
  77. dev_priv->mm.object_count--;
  78. dev_priv->mm.object_memory -= size;
  79. }
  80. static int
  81. i915_gem_wait_for_error(struct drm_device *dev)
  82. {
  83. struct drm_i915_private *dev_priv = dev->dev_private;
  84. struct completion *x = &dev_priv->error_completion;
  85. unsigned long flags;
  86. int ret;
  87. if (!atomic_read(&dev_priv->mm.wedged))
  88. return 0;
  89. /*
  90. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  91. * userspace. If it takes that long something really bad is going on and
  92. * we should simply try to bail out and fail as gracefully as possible.
  93. */
  94. ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
  95. if (ret == 0) {
  96. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  97. return -EIO;
  98. } else if (ret < 0) {
  99. return ret;
  100. }
  101. if (atomic_read(&dev_priv->mm.wedged)) {
  102. /* GPU is hung, bump the completion count to account for
  103. * the token we just consumed so that we never hit zero and
  104. * end up waiting upon a subsequent completion event that
  105. * will never happen.
  106. */
  107. spin_lock_irqsave(&x->wait.lock, flags);
  108. x->done++;
  109. spin_unlock_irqrestore(&x->wait.lock, flags);
  110. }
  111. return 0;
  112. }
  113. int i915_mutex_lock_interruptible(struct drm_device *dev)
  114. {
  115. int ret;
  116. ret = i915_gem_wait_for_error(dev);
  117. if (ret)
  118. return ret;
  119. ret = mutex_lock_interruptible(&dev->struct_mutex);
  120. if (ret)
  121. return ret;
  122. WARN_ON(i915_verify_lists(dev));
  123. return 0;
  124. }
  125. static inline bool
  126. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  127. {
  128. return obj->gtt_space && !obj->active;
  129. }
  130. int
  131. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  132. struct drm_file *file)
  133. {
  134. struct drm_i915_gem_init *args = data;
  135. if (drm_core_check_feature(dev, DRIVER_MODESET))
  136. return -ENODEV;
  137. if (args->gtt_start >= args->gtt_end ||
  138. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  139. return -EINVAL;
  140. /* GEM with user mode setting was never supported on ilk and later. */
  141. if (INTEL_INFO(dev)->gen >= 5)
  142. return -ENODEV;
  143. mutex_lock(&dev->struct_mutex);
  144. i915_gem_init_global_gtt(dev, args->gtt_start,
  145. args->gtt_end, args->gtt_end);
  146. mutex_unlock(&dev->struct_mutex);
  147. return 0;
  148. }
  149. int
  150. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  151. struct drm_file *file)
  152. {
  153. struct drm_i915_private *dev_priv = dev->dev_private;
  154. struct drm_i915_gem_get_aperture *args = data;
  155. struct drm_i915_gem_object *obj;
  156. size_t pinned;
  157. pinned = 0;
  158. mutex_lock(&dev->struct_mutex);
  159. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  160. if (obj->pin_count)
  161. pinned += obj->gtt_space->size;
  162. mutex_unlock(&dev->struct_mutex);
  163. args->aper_size = dev_priv->mm.gtt_total;
  164. args->aper_available_size = args->aper_size - pinned;
  165. return 0;
  166. }
  167. static int
  168. i915_gem_create(struct drm_file *file,
  169. struct drm_device *dev,
  170. uint64_t size,
  171. uint32_t *handle_p)
  172. {
  173. struct drm_i915_gem_object *obj;
  174. int ret;
  175. u32 handle;
  176. size = roundup(size, PAGE_SIZE);
  177. if (size == 0)
  178. return -EINVAL;
  179. /* Allocate the new object */
  180. obj = i915_gem_alloc_object(dev, size);
  181. if (obj == NULL)
  182. return -ENOMEM;
  183. ret = drm_gem_handle_create(file, &obj->base, &handle);
  184. if (ret) {
  185. drm_gem_object_release(&obj->base);
  186. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  187. kfree(obj);
  188. return ret;
  189. }
  190. /* drop reference from allocate - handle holds it now */
  191. drm_gem_object_unreference(&obj->base);
  192. trace_i915_gem_object_create(obj);
  193. *handle_p = handle;
  194. return 0;
  195. }
  196. int
  197. i915_gem_dumb_create(struct drm_file *file,
  198. struct drm_device *dev,
  199. struct drm_mode_create_dumb *args)
  200. {
  201. /* have to work out size/pitch and return them */
  202. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  203. args->size = args->pitch * args->height;
  204. return i915_gem_create(file, dev,
  205. args->size, &args->handle);
  206. }
  207. int i915_gem_dumb_destroy(struct drm_file *file,
  208. struct drm_device *dev,
  209. uint32_t handle)
  210. {
  211. return drm_gem_handle_delete(file, handle);
  212. }
  213. /**
  214. * Creates a new mm object and returns a handle to it.
  215. */
  216. int
  217. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  218. struct drm_file *file)
  219. {
  220. struct drm_i915_gem_create *args = data;
  221. return i915_gem_create(file, dev,
  222. args->size, &args->handle);
  223. }
  224. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  225. {
  226. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  227. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  228. obj->tiling_mode != I915_TILING_NONE;
  229. }
  230. static inline int
  231. __copy_to_user_swizzled(char __user *cpu_vaddr,
  232. const char *gpu_vaddr, int gpu_offset,
  233. int length)
  234. {
  235. int ret, cpu_offset = 0;
  236. while (length > 0) {
  237. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  238. int this_length = min(cacheline_end - gpu_offset, length);
  239. int swizzled_gpu_offset = gpu_offset ^ 64;
  240. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  241. gpu_vaddr + swizzled_gpu_offset,
  242. this_length);
  243. if (ret)
  244. return ret + length;
  245. cpu_offset += this_length;
  246. gpu_offset += this_length;
  247. length -= this_length;
  248. }
  249. return 0;
  250. }
  251. static inline int
  252. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  253. const char __user *cpu_vaddr,
  254. int length)
  255. {
  256. int ret, cpu_offset = 0;
  257. while (length > 0) {
  258. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  259. int this_length = min(cacheline_end - gpu_offset, length);
  260. int swizzled_gpu_offset = gpu_offset ^ 64;
  261. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  262. cpu_vaddr + cpu_offset,
  263. this_length);
  264. if (ret)
  265. return ret + length;
  266. cpu_offset += this_length;
  267. gpu_offset += this_length;
  268. length -= this_length;
  269. }
  270. return 0;
  271. }
  272. /* Per-page copy function for the shmem pread fastpath.
  273. * Flushes invalid cachelines before reading the target if
  274. * needs_clflush is set. */
  275. static int
  276. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  277. char __user *user_data,
  278. bool page_do_bit17_swizzling, bool needs_clflush)
  279. {
  280. char *vaddr;
  281. int ret;
  282. if (unlikely(page_do_bit17_swizzling))
  283. return -EINVAL;
  284. vaddr = kmap_atomic(page);
  285. if (needs_clflush)
  286. drm_clflush_virt_range(vaddr + shmem_page_offset,
  287. page_length);
  288. ret = __copy_to_user_inatomic(user_data,
  289. vaddr + shmem_page_offset,
  290. page_length);
  291. kunmap_atomic(vaddr);
  292. return ret ? -EFAULT : 0;
  293. }
  294. static void
  295. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  296. bool swizzled)
  297. {
  298. if (unlikely(swizzled)) {
  299. unsigned long start = (unsigned long) addr;
  300. unsigned long end = (unsigned long) addr + length;
  301. /* For swizzling simply ensure that we always flush both
  302. * channels. Lame, but simple and it works. Swizzled
  303. * pwrite/pread is far from a hotpath - current userspace
  304. * doesn't use it at all. */
  305. start = round_down(start, 128);
  306. end = round_up(end, 128);
  307. drm_clflush_virt_range((void *)start, end - start);
  308. } else {
  309. drm_clflush_virt_range(addr, length);
  310. }
  311. }
  312. /* Only difference to the fast-path function is that this can handle bit17
  313. * and uses non-atomic copy and kmap functions. */
  314. static int
  315. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  316. char __user *user_data,
  317. bool page_do_bit17_swizzling, bool needs_clflush)
  318. {
  319. char *vaddr;
  320. int ret;
  321. vaddr = kmap(page);
  322. if (needs_clflush)
  323. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  324. page_length,
  325. page_do_bit17_swizzling);
  326. if (page_do_bit17_swizzling)
  327. ret = __copy_to_user_swizzled(user_data,
  328. vaddr, shmem_page_offset,
  329. page_length);
  330. else
  331. ret = __copy_to_user(user_data,
  332. vaddr + shmem_page_offset,
  333. page_length);
  334. kunmap(page);
  335. return ret ? - EFAULT : 0;
  336. }
  337. static int
  338. i915_gem_shmem_pread(struct drm_device *dev,
  339. struct drm_i915_gem_object *obj,
  340. struct drm_i915_gem_pread *args,
  341. struct drm_file *file)
  342. {
  343. char __user *user_data;
  344. ssize_t remain;
  345. loff_t offset;
  346. int shmem_page_offset, page_length, ret = 0;
  347. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  348. int hit_slowpath = 0;
  349. int prefaulted = 0;
  350. int needs_clflush = 0;
  351. struct scatterlist *sg;
  352. int i;
  353. user_data = (char __user *) (uintptr_t) args->data_ptr;
  354. remain = args->size;
  355. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  356. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  357. /* If we're not in the cpu read domain, set ourself into the gtt
  358. * read domain and manually flush cachelines (if required). This
  359. * optimizes for the case when the gpu will dirty the data
  360. * anyway again before the next pread happens. */
  361. if (obj->cache_level == I915_CACHE_NONE)
  362. needs_clflush = 1;
  363. if (obj->gtt_space) {
  364. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  365. if (ret)
  366. return ret;
  367. }
  368. }
  369. ret = i915_gem_object_get_pages(obj);
  370. if (ret)
  371. return ret;
  372. i915_gem_object_pin_pages(obj);
  373. offset = args->offset;
  374. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  375. struct page *page;
  376. if (i < offset >> PAGE_SHIFT)
  377. continue;
  378. if (remain <= 0)
  379. break;
  380. /* Operation in this page
  381. *
  382. * shmem_page_offset = offset within page in shmem file
  383. * page_length = bytes to copy for this page
  384. */
  385. shmem_page_offset = offset_in_page(offset);
  386. page_length = remain;
  387. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  388. page_length = PAGE_SIZE - shmem_page_offset;
  389. page = sg_page(sg);
  390. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  391. (page_to_phys(page) & (1 << 17)) != 0;
  392. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  393. user_data, page_do_bit17_swizzling,
  394. needs_clflush);
  395. if (ret == 0)
  396. goto next_page;
  397. hit_slowpath = 1;
  398. mutex_unlock(&dev->struct_mutex);
  399. if (!prefaulted) {
  400. ret = fault_in_multipages_writeable(user_data, remain);
  401. /* Userspace is tricking us, but we've already clobbered
  402. * its pages with the prefault and promised to write the
  403. * data up to the first fault. Hence ignore any errors
  404. * and just continue. */
  405. (void)ret;
  406. prefaulted = 1;
  407. }
  408. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  409. user_data, page_do_bit17_swizzling,
  410. needs_clflush);
  411. mutex_lock(&dev->struct_mutex);
  412. next_page:
  413. mark_page_accessed(page);
  414. if (ret)
  415. goto out;
  416. remain -= page_length;
  417. user_data += page_length;
  418. offset += page_length;
  419. }
  420. out:
  421. i915_gem_object_unpin_pages(obj);
  422. if (hit_slowpath) {
  423. /* Fixup: Kill any reinstated backing storage pages */
  424. if (obj->madv == __I915_MADV_PURGED)
  425. i915_gem_object_truncate(obj);
  426. }
  427. return ret;
  428. }
  429. /**
  430. * Reads data from the object referenced by handle.
  431. *
  432. * On error, the contents of *data are undefined.
  433. */
  434. int
  435. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  436. struct drm_file *file)
  437. {
  438. struct drm_i915_gem_pread *args = data;
  439. struct drm_i915_gem_object *obj;
  440. int ret = 0;
  441. if (args->size == 0)
  442. return 0;
  443. if (!access_ok(VERIFY_WRITE,
  444. (char __user *)(uintptr_t)args->data_ptr,
  445. args->size))
  446. return -EFAULT;
  447. ret = i915_mutex_lock_interruptible(dev);
  448. if (ret)
  449. return ret;
  450. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  451. if (&obj->base == NULL) {
  452. ret = -ENOENT;
  453. goto unlock;
  454. }
  455. /* Bounds check source. */
  456. if (args->offset > obj->base.size ||
  457. args->size > obj->base.size - args->offset) {
  458. ret = -EINVAL;
  459. goto out;
  460. }
  461. /* prime objects have no backing filp to GEM pread/pwrite
  462. * pages from.
  463. */
  464. if (!obj->base.filp) {
  465. ret = -EINVAL;
  466. goto out;
  467. }
  468. trace_i915_gem_object_pread(obj, args->offset, args->size);
  469. ret = i915_gem_shmem_pread(dev, obj, args, file);
  470. out:
  471. drm_gem_object_unreference(&obj->base);
  472. unlock:
  473. mutex_unlock(&dev->struct_mutex);
  474. return ret;
  475. }
  476. /* This is the fast write path which cannot handle
  477. * page faults in the source data
  478. */
  479. static inline int
  480. fast_user_write(struct io_mapping *mapping,
  481. loff_t page_base, int page_offset,
  482. char __user *user_data,
  483. int length)
  484. {
  485. void __iomem *vaddr_atomic;
  486. void *vaddr;
  487. unsigned long unwritten;
  488. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  489. /* We can use the cpu mem copy function because this is X86. */
  490. vaddr = (void __force*)vaddr_atomic + page_offset;
  491. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  492. user_data, length);
  493. io_mapping_unmap_atomic(vaddr_atomic);
  494. return unwritten;
  495. }
  496. /**
  497. * This is the fast pwrite path, where we copy the data directly from the
  498. * user into the GTT, uncached.
  499. */
  500. static int
  501. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  502. struct drm_i915_gem_object *obj,
  503. struct drm_i915_gem_pwrite *args,
  504. struct drm_file *file)
  505. {
  506. drm_i915_private_t *dev_priv = dev->dev_private;
  507. ssize_t remain;
  508. loff_t offset, page_base;
  509. char __user *user_data;
  510. int page_offset, page_length, ret;
  511. ret = i915_gem_object_pin(obj, 0, true, true);
  512. if (ret)
  513. goto out;
  514. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  515. if (ret)
  516. goto out_unpin;
  517. ret = i915_gem_object_put_fence(obj);
  518. if (ret)
  519. goto out_unpin;
  520. user_data = (char __user *) (uintptr_t) args->data_ptr;
  521. remain = args->size;
  522. offset = obj->gtt_offset + args->offset;
  523. while (remain > 0) {
  524. /* Operation in this page
  525. *
  526. * page_base = page offset within aperture
  527. * page_offset = offset within page
  528. * page_length = bytes to copy for this page
  529. */
  530. page_base = offset & PAGE_MASK;
  531. page_offset = offset_in_page(offset);
  532. page_length = remain;
  533. if ((page_offset + remain) > PAGE_SIZE)
  534. page_length = PAGE_SIZE - page_offset;
  535. /* If we get a fault while copying data, then (presumably) our
  536. * source page isn't available. Return the error and we'll
  537. * retry in the slow path.
  538. */
  539. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  540. page_offset, user_data, page_length)) {
  541. ret = -EFAULT;
  542. goto out_unpin;
  543. }
  544. remain -= page_length;
  545. user_data += page_length;
  546. offset += page_length;
  547. }
  548. out_unpin:
  549. i915_gem_object_unpin(obj);
  550. out:
  551. return ret;
  552. }
  553. /* Per-page copy function for the shmem pwrite fastpath.
  554. * Flushes invalid cachelines before writing to the target if
  555. * needs_clflush_before is set and flushes out any written cachelines after
  556. * writing if needs_clflush is set. */
  557. static int
  558. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  559. char __user *user_data,
  560. bool page_do_bit17_swizzling,
  561. bool needs_clflush_before,
  562. bool needs_clflush_after)
  563. {
  564. char *vaddr;
  565. int ret;
  566. if (unlikely(page_do_bit17_swizzling))
  567. return -EINVAL;
  568. vaddr = kmap_atomic(page);
  569. if (needs_clflush_before)
  570. drm_clflush_virt_range(vaddr + shmem_page_offset,
  571. page_length);
  572. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  573. user_data,
  574. page_length);
  575. if (needs_clflush_after)
  576. drm_clflush_virt_range(vaddr + shmem_page_offset,
  577. page_length);
  578. kunmap_atomic(vaddr);
  579. return ret ? -EFAULT : 0;
  580. }
  581. /* Only difference to the fast-path function is that this can handle bit17
  582. * and uses non-atomic copy and kmap functions. */
  583. static int
  584. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  585. char __user *user_data,
  586. bool page_do_bit17_swizzling,
  587. bool needs_clflush_before,
  588. bool needs_clflush_after)
  589. {
  590. char *vaddr;
  591. int ret;
  592. vaddr = kmap(page);
  593. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  594. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  595. page_length,
  596. page_do_bit17_swizzling);
  597. if (page_do_bit17_swizzling)
  598. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  599. user_data,
  600. page_length);
  601. else
  602. ret = __copy_from_user(vaddr + shmem_page_offset,
  603. user_data,
  604. page_length);
  605. if (needs_clflush_after)
  606. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  607. page_length,
  608. page_do_bit17_swizzling);
  609. kunmap(page);
  610. return ret ? -EFAULT : 0;
  611. }
  612. static int
  613. i915_gem_shmem_pwrite(struct drm_device *dev,
  614. struct drm_i915_gem_object *obj,
  615. struct drm_i915_gem_pwrite *args,
  616. struct drm_file *file)
  617. {
  618. ssize_t remain;
  619. loff_t offset;
  620. char __user *user_data;
  621. int shmem_page_offset, page_length, ret = 0;
  622. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  623. int hit_slowpath = 0;
  624. int needs_clflush_after = 0;
  625. int needs_clflush_before = 0;
  626. int i;
  627. struct scatterlist *sg;
  628. user_data = (char __user *) (uintptr_t) args->data_ptr;
  629. remain = args->size;
  630. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  631. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  632. /* If we're not in the cpu write domain, set ourself into the gtt
  633. * write domain and manually flush cachelines (if required). This
  634. * optimizes for the case when the gpu will use the data
  635. * right away and we therefore have to clflush anyway. */
  636. if (obj->cache_level == I915_CACHE_NONE)
  637. needs_clflush_after = 1;
  638. if (obj->gtt_space) {
  639. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  640. if (ret)
  641. return ret;
  642. }
  643. }
  644. /* Same trick applies for invalidate partially written cachelines before
  645. * writing. */
  646. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  647. && obj->cache_level == I915_CACHE_NONE)
  648. needs_clflush_before = 1;
  649. ret = i915_gem_object_get_pages(obj);
  650. if (ret)
  651. return ret;
  652. i915_gem_object_pin_pages(obj);
  653. offset = args->offset;
  654. obj->dirty = 1;
  655. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  656. struct page *page;
  657. int partial_cacheline_write;
  658. if (i < offset >> PAGE_SHIFT)
  659. continue;
  660. if (remain <= 0)
  661. break;
  662. /* Operation in this page
  663. *
  664. * shmem_page_offset = offset within page in shmem file
  665. * page_length = bytes to copy for this page
  666. */
  667. shmem_page_offset = offset_in_page(offset);
  668. page_length = remain;
  669. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  670. page_length = PAGE_SIZE - shmem_page_offset;
  671. /* If we don't overwrite a cacheline completely we need to be
  672. * careful to have up-to-date data by first clflushing. Don't
  673. * overcomplicate things and flush the entire patch. */
  674. partial_cacheline_write = needs_clflush_before &&
  675. ((shmem_page_offset | page_length)
  676. & (boot_cpu_data.x86_clflush_size - 1));
  677. page = sg_page(sg);
  678. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  679. (page_to_phys(page) & (1 << 17)) != 0;
  680. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  681. user_data, page_do_bit17_swizzling,
  682. partial_cacheline_write,
  683. needs_clflush_after);
  684. if (ret == 0)
  685. goto next_page;
  686. hit_slowpath = 1;
  687. mutex_unlock(&dev->struct_mutex);
  688. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  689. user_data, page_do_bit17_swizzling,
  690. partial_cacheline_write,
  691. needs_clflush_after);
  692. mutex_lock(&dev->struct_mutex);
  693. next_page:
  694. set_page_dirty(page);
  695. mark_page_accessed(page);
  696. if (ret)
  697. goto out;
  698. remain -= page_length;
  699. user_data += page_length;
  700. offset += page_length;
  701. }
  702. out:
  703. i915_gem_object_unpin_pages(obj);
  704. if (hit_slowpath) {
  705. /* Fixup: Kill any reinstated backing storage pages */
  706. if (obj->madv == __I915_MADV_PURGED)
  707. i915_gem_object_truncate(obj);
  708. /* and flush dirty cachelines in case the object isn't in the cpu write
  709. * domain anymore. */
  710. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  711. i915_gem_clflush_object(obj);
  712. i915_gem_chipset_flush(dev);
  713. }
  714. }
  715. if (needs_clflush_after)
  716. i915_gem_chipset_flush(dev);
  717. return ret;
  718. }
  719. /**
  720. * Writes data to the object referenced by handle.
  721. *
  722. * On error, the contents of the buffer that were to be modified are undefined.
  723. */
  724. int
  725. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  726. struct drm_file *file)
  727. {
  728. struct drm_i915_gem_pwrite *args = data;
  729. struct drm_i915_gem_object *obj;
  730. int ret;
  731. if (args->size == 0)
  732. return 0;
  733. if (!access_ok(VERIFY_READ,
  734. (char __user *)(uintptr_t)args->data_ptr,
  735. args->size))
  736. return -EFAULT;
  737. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  738. args->size);
  739. if (ret)
  740. return -EFAULT;
  741. ret = i915_mutex_lock_interruptible(dev);
  742. if (ret)
  743. return ret;
  744. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  745. if (&obj->base == NULL) {
  746. ret = -ENOENT;
  747. goto unlock;
  748. }
  749. /* Bounds check destination. */
  750. if (args->offset > obj->base.size ||
  751. args->size > obj->base.size - args->offset) {
  752. ret = -EINVAL;
  753. goto out;
  754. }
  755. /* prime objects have no backing filp to GEM pread/pwrite
  756. * pages from.
  757. */
  758. if (!obj->base.filp) {
  759. ret = -EINVAL;
  760. goto out;
  761. }
  762. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  763. ret = -EFAULT;
  764. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  765. * it would end up going through the fenced access, and we'll get
  766. * different detiling behavior between reading and writing.
  767. * pread/pwrite currently are reading and writing from the CPU
  768. * perspective, requiring manual detiling by the client.
  769. */
  770. if (obj->phys_obj) {
  771. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  772. goto out;
  773. }
  774. if (obj->cache_level == I915_CACHE_NONE &&
  775. obj->tiling_mode == I915_TILING_NONE &&
  776. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  777. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  778. /* Note that the gtt paths might fail with non-page-backed user
  779. * pointers (e.g. gtt mappings when moving data between
  780. * textures). Fallback to the shmem path in that case. */
  781. }
  782. if (ret == -EFAULT || ret == -ENOSPC)
  783. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  784. out:
  785. drm_gem_object_unreference(&obj->base);
  786. unlock:
  787. mutex_unlock(&dev->struct_mutex);
  788. return ret;
  789. }
  790. int
  791. i915_gem_check_wedge(struct drm_i915_private *dev_priv,
  792. bool interruptible)
  793. {
  794. if (atomic_read(&dev_priv->mm.wedged)) {
  795. struct completion *x = &dev_priv->error_completion;
  796. bool recovery_complete;
  797. unsigned long flags;
  798. /* Give the error handler a chance to run. */
  799. spin_lock_irqsave(&x->wait.lock, flags);
  800. recovery_complete = x->done > 0;
  801. spin_unlock_irqrestore(&x->wait.lock, flags);
  802. /* Non-interruptible callers can't handle -EAGAIN, hence return
  803. * -EIO unconditionally for these. */
  804. if (!interruptible)
  805. return -EIO;
  806. /* Recovery complete, but still wedged means reset failure. */
  807. if (recovery_complete)
  808. return -EIO;
  809. return -EAGAIN;
  810. }
  811. return 0;
  812. }
  813. /*
  814. * Compare seqno against outstanding lazy request. Emit a request if they are
  815. * equal.
  816. */
  817. static int
  818. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  819. {
  820. int ret;
  821. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  822. ret = 0;
  823. if (seqno == ring->outstanding_lazy_request)
  824. ret = i915_add_request(ring, NULL, NULL);
  825. return ret;
  826. }
  827. /**
  828. * __wait_seqno - wait until execution of seqno has finished
  829. * @ring: the ring expected to report seqno
  830. * @seqno: duh!
  831. * @interruptible: do an interruptible wait (normally yes)
  832. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  833. *
  834. * Returns 0 if the seqno was found within the alloted time. Else returns the
  835. * errno with remaining time filled in timeout argument.
  836. */
  837. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  838. bool interruptible, struct timespec *timeout)
  839. {
  840. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  841. struct timespec before, now, wait_time={1,0};
  842. unsigned long timeout_jiffies;
  843. long end;
  844. bool wait_forever = true;
  845. int ret;
  846. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  847. return 0;
  848. trace_i915_gem_request_wait_begin(ring, seqno);
  849. if (timeout != NULL) {
  850. wait_time = *timeout;
  851. wait_forever = false;
  852. }
  853. timeout_jiffies = timespec_to_jiffies(&wait_time);
  854. if (WARN_ON(!ring->irq_get(ring)))
  855. return -ENODEV;
  856. /* Record current time in case interrupted by signal, or wedged * */
  857. getrawmonotonic(&before);
  858. #define EXIT_COND \
  859. (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
  860. atomic_read(&dev_priv->mm.wedged))
  861. do {
  862. if (interruptible)
  863. end = wait_event_interruptible_timeout(ring->irq_queue,
  864. EXIT_COND,
  865. timeout_jiffies);
  866. else
  867. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  868. timeout_jiffies);
  869. ret = i915_gem_check_wedge(dev_priv, interruptible);
  870. if (ret)
  871. end = ret;
  872. } while (end == 0 && wait_forever);
  873. getrawmonotonic(&now);
  874. ring->irq_put(ring);
  875. trace_i915_gem_request_wait_end(ring, seqno);
  876. #undef EXIT_COND
  877. if (timeout) {
  878. struct timespec sleep_time = timespec_sub(now, before);
  879. *timeout = timespec_sub(*timeout, sleep_time);
  880. }
  881. switch (end) {
  882. case -EIO:
  883. case -EAGAIN: /* Wedged */
  884. case -ERESTARTSYS: /* Signal */
  885. return (int)end;
  886. case 0: /* Timeout */
  887. if (timeout)
  888. set_normalized_timespec(timeout, 0, 0);
  889. return -ETIME;
  890. default: /* Completed */
  891. WARN_ON(end < 0); /* We're not aware of other errors */
  892. return 0;
  893. }
  894. }
  895. /**
  896. * Waits for a sequence number to be signaled, and cleans up the
  897. * request and object lists appropriately for that event.
  898. */
  899. int
  900. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  901. {
  902. struct drm_device *dev = ring->dev;
  903. struct drm_i915_private *dev_priv = dev->dev_private;
  904. bool interruptible = dev_priv->mm.interruptible;
  905. int ret;
  906. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  907. BUG_ON(seqno == 0);
  908. ret = i915_gem_check_wedge(dev_priv, interruptible);
  909. if (ret)
  910. return ret;
  911. ret = i915_gem_check_olr(ring, seqno);
  912. if (ret)
  913. return ret;
  914. return __wait_seqno(ring, seqno, interruptible, NULL);
  915. }
  916. /**
  917. * Ensures that all rendering to the object has completed and the object is
  918. * safe to unbind from the GTT or access from the CPU.
  919. */
  920. static __must_check int
  921. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  922. bool readonly)
  923. {
  924. struct intel_ring_buffer *ring = obj->ring;
  925. u32 seqno;
  926. int ret;
  927. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  928. if (seqno == 0)
  929. return 0;
  930. ret = i915_wait_seqno(ring, seqno);
  931. if (ret)
  932. return ret;
  933. i915_gem_retire_requests_ring(ring);
  934. /* Manually manage the write flush as we may have not yet
  935. * retired the buffer.
  936. */
  937. if (obj->last_write_seqno &&
  938. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  939. obj->last_write_seqno = 0;
  940. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  941. }
  942. return 0;
  943. }
  944. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  945. * as the object state may change during this call.
  946. */
  947. static __must_check int
  948. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  949. bool readonly)
  950. {
  951. struct drm_device *dev = obj->base.dev;
  952. struct drm_i915_private *dev_priv = dev->dev_private;
  953. struct intel_ring_buffer *ring = obj->ring;
  954. u32 seqno;
  955. int ret;
  956. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  957. BUG_ON(!dev_priv->mm.interruptible);
  958. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  959. if (seqno == 0)
  960. return 0;
  961. ret = i915_gem_check_wedge(dev_priv, true);
  962. if (ret)
  963. return ret;
  964. ret = i915_gem_check_olr(ring, seqno);
  965. if (ret)
  966. return ret;
  967. mutex_unlock(&dev->struct_mutex);
  968. ret = __wait_seqno(ring, seqno, true, NULL);
  969. mutex_lock(&dev->struct_mutex);
  970. i915_gem_retire_requests_ring(ring);
  971. /* Manually manage the write flush as we may have not yet
  972. * retired the buffer.
  973. */
  974. if (obj->last_write_seqno &&
  975. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  976. obj->last_write_seqno = 0;
  977. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  978. }
  979. return ret;
  980. }
  981. /**
  982. * Called when user space prepares to use an object with the CPU, either
  983. * through the mmap ioctl's mapping or a GTT mapping.
  984. */
  985. int
  986. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  987. struct drm_file *file)
  988. {
  989. struct drm_i915_gem_set_domain *args = data;
  990. struct drm_i915_gem_object *obj;
  991. uint32_t read_domains = args->read_domains;
  992. uint32_t write_domain = args->write_domain;
  993. int ret;
  994. /* Only handle setting domains to types used by the CPU. */
  995. if (write_domain & I915_GEM_GPU_DOMAINS)
  996. return -EINVAL;
  997. if (read_domains & I915_GEM_GPU_DOMAINS)
  998. return -EINVAL;
  999. /* Having something in the write domain implies it's in the read
  1000. * domain, and only that read domain. Enforce that in the request.
  1001. */
  1002. if (write_domain != 0 && read_domains != write_domain)
  1003. return -EINVAL;
  1004. ret = i915_mutex_lock_interruptible(dev);
  1005. if (ret)
  1006. return ret;
  1007. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1008. if (&obj->base == NULL) {
  1009. ret = -ENOENT;
  1010. goto unlock;
  1011. }
  1012. /* Try to flush the object off the GPU without holding the lock.
  1013. * We will repeat the flush holding the lock in the normal manner
  1014. * to catch cases where we are gazumped.
  1015. */
  1016. ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
  1017. if (ret)
  1018. goto unref;
  1019. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1020. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1021. /* Silently promote "you're not bound, there was nothing to do"
  1022. * to success, since the client was just asking us to
  1023. * make sure everything was done.
  1024. */
  1025. if (ret == -EINVAL)
  1026. ret = 0;
  1027. } else {
  1028. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1029. }
  1030. unref:
  1031. drm_gem_object_unreference(&obj->base);
  1032. unlock:
  1033. mutex_unlock(&dev->struct_mutex);
  1034. return ret;
  1035. }
  1036. /**
  1037. * Called when user space has done writes to this buffer
  1038. */
  1039. int
  1040. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1041. struct drm_file *file)
  1042. {
  1043. struct drm_i915_gem_sw_finish *args = data;
  1044. struct drm_i915_gem_object *obj;
  1045. int ret = 0;
  1046. ret = i915_mutex_lock_interruptible(dev);
  1047. if (ret)
  1048. return ret;
  1049. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1050. if (&obj->base == NULL) {
  1051. ret = -ENOENT;
  1052. goto unlock;
  1053. }
  1054. /* Pinned buffers may be scanout, so flush the cache */
  1055. if (obj->pin_count)
  1056. i915_gem_object_flush_cpu_write_domain(obj);
  1057. drm_gem_object_unreference(&obj->base);
  1058. unlock:
  1059. mutex_unlock(&dev->struct_mutex);
  1060. return ret;
  1061. }
  1062. /**
  1063. * Maps the contents of an object, returning the address it is mapped
  1064. * into.
  1065. *
  1066. * While the mapping holds a reference on the contents of the object, it doesn't
  1067. * imply a ref on the object itself.
  1068. */
  1069. int
  1070. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1071. struct drm_file *file)
  1072. {
  1073. struct drm_i915_gem_mmap *args = data;
  1074. struct drm_gem_object *obj;
  1075. unsigned long addr;
  1076. obj = drm_gem_object_lookup(dev, file, args->handle);
  1077. if (obj == NULL)
  1078. return -ENOENT;
  1079. /* prime objects have no backing filp to GEM mmap
  1080. * pages from.
  1081. */
  1082. if (!obj->filp) {
  1083. drm_gem_object_unreference_unlocked(obj);
  1084. return -EINVAL;
  1085. }
  1086. addr = vm_mmap(obj->filp, 0, args->size,
  1087. PROT_READ | PROT_WRITE, MAP_SHARED,
  1088. args->offset);
  1089. drm_gem_object_unreference_unlocked(obj);
  1090. if (IS_ERR((void *)addr))
  1091. return addr;
  1092. args->addr_ptr = (uint64_t) addr;
  1093. return 0;
  1094. }
  1095. /**
  1096. * i915_gem_fault - fault a page into the GTT
  1097. * vma: VMA in question
  1098. * vmf: fault info
  1099. *
  1100. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1101. * from userspace. The fault handler takes care of binding the object to
  1102. * the GTT (if needed), allocating and programming a fence register (again,
  1103. * only if needed based on whether the old reg is still valid or the object
  1104. * is tiled) and inserting a new PTE into the faulting process.
  1105. *
  1106. * Note that the faulting process may involve evicting existing objects
  1107. * from the GTT and/or fence registers to make room. So performance may
  1108. * suffer if the GTT working set is large or there are few fence registers
  1109. * left.
  1110. */
  1111. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1112. {
  1113. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1114. struct drm_device *dev = obj->base.dev;
  1115. drm_i915_private_t *dev_priv = dev->dev_private;
  1116. pgoff_t page_offset;
  1117. unsigned long pfn;
  1118. int ret = 0;
  1119. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1120. /* We don't use vmf->pgoff since that has the fake offset */
  1121. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1122. PAGE_SHIFT;
  1123. ret = i915_mutex_lock_interruptible(dev);
  1124. if (ret)
  1125. goto out;
  1126. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1127. /* Now bind it into the GTT if needed */
  1128. ret = i915_gem_object_pin(obj, 0, true, false);
  1129. if (ret)
  1130. goto unlock;
  1131. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1132. if (ret)
  1133. goto unpin;
  1134. ret = i915_gem_object_get_fence(obj);
  1135. if (ret)
  1136. goto unpin;
  1137. obj->fault_mappable = true;
  1138. pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
  1139. page_offset;
  1140. /* Finally, remap it using the new GTT offset */
  1141. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1142. unpin:
  1143. i915_gem_object_unpin(obj);
  1144. unlock:
  1145. mutex_unlock(&dev->struct_mutex);
  1146. out:
  1147. switch (ret) {
  1148. case -EIO:
  1149. /* If this -EIO is due to a gpu hang, give the reset code a
  1150. * chance to clean up the mess. Otherwise return the proper
  1151. * SIGBUS. */
  1152. if (!atomic_read(&dev_priv->mm.wedged))
  1153. return VM_FAULT_SIGBUS;
  1154. case -EAGAIN:
  1155. /* Give the error handler a chance to run and move the
  1156. * objects off the GPU active list. Next time we service the
  1157. * fault, we should be able to transition the page into the
  1158. * GTT without touching the GPU (and so avoid further
  1159. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1160. * with coherency, just lost writes.
  1161. */
  1162. set_need_resched();
  1163. case 0:
  1164. case -ERESTARTSYS:
  1165. case -EINTR:
  1166. case -EBUSY:
  1167. /*
  1168. * EBUSY is ok: this just means that another thread
  1169. * already did the job.
  1170. */
  1171. return VM_FAULT_NOPAGE;
  1172. case -ENOMEM:
  1173. return VM_FAULT_OOM;
  1174. case -ENOSPC:
  1175. return VM_FAULT_SIGBUS;
  1176. default:
  1177. WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
  1178. return VM_FAULT_SIGBUS;
  1179. }
  1180. }
  1181. /**
  1182. * i915_gem_release_mmap - remove physical page mappings
  1183. * @obj: obj in question
  1184. *
  1185. * Preserve the reservation of the mmapping with the DRM core code, but
  1186. * relinquish ownership of the pages back to the system.
  1187. *
  1188. * It is vital that we remove the page mapping if we have mapped a tiled
  1189. * object through the GTT and then lose the fence register due to
  1190. * resource pressure. Similarly if the object has been moved out of the
  1191. * aperture, than pages mapped into userspace must be revoked. Removing the
  1192. * mapping will then trigger a page fault on the next user access, allowing
  1193. * fixup by i915_gem_fault().
  1194. */
  1195. void
  1196. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1197. {
  1198. if (!obj->fault_mappable)
  1199. return;
  1200. if (obj->base.dev->dev_mapping)
  1201. unmap_mapping_range(obj->base.dev->dev_mapping,
  1202. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1203. obj->base.size, 1);
  1204. obj->fault_mappable = false;
  1205. }
  1206. static uint32_t
  1207. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1208. {
  1209. uint32_t gtt_size;
  1210. if (INTEL_INFO(dev)->gen >= 4 ||
  1211. tiling_mode == I915_TILING_NONE)
  1212. return size;
  1213. /* Previous chips need a power-of-two fence region when tiling */
  1214. if (INTEL_INFO(dev)->gen == 3)
  1215. gtt_size = 1024*1024;
  1216. else
  1217. gtt_size = 512*1024;
  1218. while (gtt_size < size)
  1219. gtt_size <<= 1;
  1220. return gtt_size;
  1221. }
  1222. /**
  1223. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1224. * @obj: object to check
  1225. *
  1226. * Return the required GTT alignment for an object, taking into account
  1227. * potential fence register mapping.
  1228. */
  1229. static uint32_t
  1230. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1231. uint32_t size,
  1232. int tiling_mode)
  1233. {
  1234. /*
  1235. * Minimum alignment is 4k (GTT page size), but might be greater
  1236. * if a fence register is needed for the object.
  1237. */
  1238. if (INTEL_INFO(dev)->gen >= 4 ||
  1239. tiling_mode == I915_TILING_NONE)
  1240. return 4096;
  1241. /*
  1242. * Previous chips need to be aligned to the size of the smallest
  1243. * fence register that can contain the object.
  1244. */
  1245. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1246. }
  1247. /**
  1248. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1249. * unfenced object
  1250. * @dev: the device
  1251. * @size: size of the object
  1252. * @tiling_mode: tiling mode of the object
  1253. *
  1254. * Return the required GTT alignment for an object, only taking into account
  1255. * unfenced tiled surface requirements.
  1256. */
  1257. uint32_t
  1258. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1259. uint32_t size,
  1260. int tiling_mode)
  1261. {
  1262. /*
  1263. * Minimum alignment is 4k (GTT page size) for sane hw.
  1264. */
  1265. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1266. tiling_mode == I915_TILING_NONE)
  1267. return 4096;
  1268. /* Previous hardware however needs to be aligned to a power-of-two
  1269. * tile height. The simplest method for determining this is to reuse
  1270. * the power-of-tile object size.
  1271. */
  1272. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1273. }
  1274. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1275. {
  1276. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1277. int ret;
  1278. if (obj->base.map_list.map)
  1279. return 0;
  1280. ret = drm_gem_create_mmap_offset(&obj->base);
  1281. if (ret != -ENOSPC)
  1282. return ret;
  1283. /* Badly fragmented mmap space? The only way we can recover
  1284. * space is by destroying unwanted objects. We can't randomly release
  1285. * mmap_offsets as userspace expects them to be persistent for the
  1286. * lifetime of the objects. The closest we can is to release the
  1287. * offsets on purgeable objects by truncating it and marking it purged,
  1288. * which prevents userspace from ever using that object again.
  1289. */
  1290. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1291. ret = drm_gem_create_mmap_offset(&obj->base);
  1292. if (ret != -ENOSPC)
  1293. return ret;
  1294. i915_gem_shrink_all(dev_priv);
  1295. return drm_gem_create_mmap_offset(&obj->base);
  1296. }
  1297. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1298. {
  1299. if (!obj->base.map_list.map)
  1300. return;
  1301. drm_gem_free_mmap_offset(&obj->base);
  1302. }
  1303. int
  1304. i915_gem_mmap_gtt(struct drm_file *file,
  1305. struct drm_device *dev,
  1306. uint32_t handle,
  1307. uint64_t *offset)
  1308. {
  1309. struct drm_i915_private *dev_priv = dev->dev_private;
  1310. struct drm_i915_gem_object *obj;
  1311. int ret;
  1312. ret = i915_mutex_lock_interruptible(dev);
  1313. if (ret)
  1314. return ret;
  1315. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1316. if (&obj->base == NULL) {
  1317. ret = -ENOENT;
  1318. goto unlock;
  1319. }
  1320. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1321. ret = -E2BIG;
  1322. goto out;
  1323. }
  1324. if (obj->madv != I915_MADV_WILLNEED) {
  1325. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1326. ret = -EINVAL;
  1327. goto out;
  1328. }
  1329. ret = i915_gem_object_create_mmap_offset(obj);
  1330. if (ret)
  1331. goto out;
  1332. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1333. out:
  1334. drm_gem_object_unreference(&obj->base);
  1335. unlock:
  1336. mutex_unlock(&dev->struct_mutex);
  1337. return ret;
  1338. }
  1339. /**
  1340. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1341. * @dev: DRM device
  1342. * @data: GTT mapping ioctl data
  1343. * @file: GEM object info
  1344. *
  1345. * Simply returns the fake offset to userspace so it can mmap it.
  1346. * The mmap call will end up in drm_gem_mmap(), which will set things
  1347. * up so we can get faults in the handler above.
  1348. *
  1349. * The fault handler will take care of binding the object into the GTT
  1350. * (since it may have been evicted to make room for something), allocating
  1351. * a fence register, and mapping the appropriate aperture address into
  1352. * userspace.
  1353. */
  1354. int
  1355. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1356. struct drm_file *file)
  1357. {
  1358. struct drm_i915_gem_mmap_gtt *args = data;
  1359. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1360. }
  1361. /* Immediately discard the backing storage */
  1362. static void
  1363. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1364. {
  1365. struct inode *inode;
  1366. i915_gem_object_free_mmap_offset(obj);
  1367. if (obj->base.filp == NULL)
  1368. return;
  1369. /* Our goal here is to return as much of the memory as
  1370. * is possible back to the system as we are called from OOM.
  1371. * To do this we must instruct the shmfs to drop all of its
  1372. * backing pages, *now*.
  1373. */
  1374. inode = obj->base.filp->f_path.dentry->d_inode;
  1375. shmem_truncate_range(inode, 0, (loff_t)-1);
  1376. obj->madv = __I915_MADV_PURGED;
  1377. }
  1378. static inline int
  1379. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1380. {
  1381. return obj->madv == I915_MADV_DONTNEED;
  1382. }
  1383. static void
  1384. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1385. {
  1386. int page_count = obj->base.size / PAGE_SIZE;
  1387. struct scatterlist *sg;
  1388. int ret, i;
  1389. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1390. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1391. if (ret) {
  1392. /* In the event of a disaster, abandon all caches and
  1393. * hope for the best.
  1394. */
  1395. WARN_ON(ret != -EIO);
  1396. i915_gem_clflush_object(obj);
  1397. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1398. }
  1399. if (i915_gem_object_needs_bit17_swizzle(obj))
  1400. i915_gem_object_save_bit_17_swizzle(obj);
  1401. if (obj->madv == I915_MADV_DONTNEED)
  1402. obj->dirty = 0;
  1403. for_each_sg(obj->pages->sgl, sg, page_count, i) {
  1404. struct page *page = sg_page(sg);
  1405. if (obj->dirty)
  1406. set_page_dirty(page);
  1407. if (obj->madv == I915_MADV_WILLNEED)
  1408. mark_page_accessed(page);
  1409. page_cache_release(page);
  1410. }
  1411. obj->dirty = 0;
  1412. sg_free_table(obj->pages);
  1413. kfree(obj->pages);
  1414. }
  1415. static int
  1416. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1417. {
  1418. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1419. if (obj->pages == NULL)
  1420. return 0;
  1421. BUG_ON(obj->gtt_space);
  1422. if (obj->pages_pin_count)
  1423. return -EBUSY;
  1424. /* ->put_pages might need to allocate memory for the bit17 swizzle
  1425. * array, hence protect them from being reaped by removing them from gtt
  1426. * lists early. */
  1427. list_del(&obj->gtt_list);
  1428. ops->put_pages(obj);
  1429. obj->pages = NULL;
  1430. if (i915_gem_object_is_purgeable(obj))
  1431. i915_gem_object_truncate(obj);
  1432. return 0;
  1433. }
  1434. static long
  1435. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1436. {
  1437. struct drm_i915_gem_object *obj, *next;
  1438. long count = 0;
  1439. list_for_each_entry_safe(obj, next,
  1440. &dev_priv->mm.unbound_list,
  1441. gtt_list) {
  1442. if (i915_gem_object_is_purgeable(obj) &&
  1443. i915_gem_object_put_pages(obj) == 0) {
  1444. count += obj->base.size >> PAGE_SHIFT;
  1445. if (count >= target)
  1446. return count;
  1447. }
  1448. }
  1449. list_for_each_entry_safe(obj, next,
  1450. &dev_priv->mm.inactive_list,
  1451. mm_list) {
  1452. if (i915_gem_object_is_purgeable(obj) &&
  1453. i915_gem_object_unbind(obj) == 0 &&
  1454. i915_gem_object_put_pages(obj) == 0) {
  1455. count += obj->base.size >> PAGE_SHIFT;
  1456. if (count >= target)
  1457. return count;
  1458. }
  1459. }
  1460. return count;
  1461. }
  1462. static void
  1463. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1464. {
  1465. struct drm_i915_gem_object *obj, *next;
  1466. i915_gem_evict_everything(dev_priv->dev);
  1467. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
  1468. i915_gem_object_put_pages(obj);
  1469. }
  1470. static int
  1471. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1472. {
  1473. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1474. int page_count, i;
  1475. struct address_space *mapping;
  1476. struct sg_table *st;
  1477. struct scatterlist *sg;
  1478. struct page *page;
  1479. gfp_t gfp;
  1480. /* Assert that the object is not currently in any GPU domain. As it
  1481. * wasn't in the GTT, there shouldn't be any way it could have been in
  1482. * a GPU cache
  1483. */
  1484. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1485. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1486. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1487. if (st == NULL)
  1488. return -ENOMEM;
  1489. page_count = obj->base.size / PAGE_SIZE;
  1490. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1491. sg_free_table(st);
  1492. kfree(st);
  1493. return -ENOMEM;
  1494. }
  1495. /* Get the list of pages out of our struct file. They'll be pinned
  1496. * at this point until we release them.
  1497. *
  1498. * Fail silently without starting the shrinker
  1499. */
  1500. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  1501. gfp = mapping_gfp_mask(mapping);
  1502. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1503. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1504. for_each_sg(st->sgl, sg, page_count, i) {
  1505. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1506. if (IS_ERR(page)) {
  1507. i915_gem_purge(dev_priv, page_count);
  1508. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1509. }
  1510. if (IS_ERR(page)) {
  1511. /* We've tried hard to allocate the memory by reaping
  1512. * our own buffer, now let the real VM do its job and
  1513. * go down in flames if truly OOM.
  1514. */
  1515. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
  1516. gfp |= __GFP_IO | __GFP_WAIT;
  1517. i915_gem_shrink_all(dev_priv);
  1518. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1519. if (IS_ERR(page))
  1520. goto err_pages;
  1521. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1522. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1523. }
  1524. sg_set_page(sg, page, PAGE_SIZE, 0);
  1525. }
  1526. obj->pages = st;
  1527. if (i915_gem_object_needs_bit17_swizzle(obj))
  1528. i915_gem_object_do_bit_17_swizzle(obj);
  1529. return 0;
  1530. err_pages:
  1531. for_each_sg(st->sgl, sg, i, page_count)
  1532. page_cache_release(sg_page(sg));
  1533. sg_free_table(st);
  1534. kfree(st);
  1535. return PTR_ERR(page);
  1536. }
  1537. /* Ensure that the associated pages are gathered from the backing storage
  1538. * and pinned into our object. i915_gem_object_get_pages() may be called
  1539. * multiple times before they are released by a single call to
  1540. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1541. * either as a result of memory pressure (reaping pages under the shrinker)
  1542. * or as the object is itself released.
  1543. */
  1544. int
  1545. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1546. {
  1547. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1548. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1549. int ret;
  1550. if (obj->pages)
  1551. return 0;
  1552. BUG_ON(obj->pages_pin_count);
  1553. ret = ops->get_pages(obj);
  1554. if (ret)
  1555. return ret;
  1556. list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  1557. return 0;
  1558. }
  1559. void
  1560. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1561. struct intel_ring_buffer *ring)
  1562. {
  1563. struct drm_device *dev = obj->base.dev;
  1564. struct drm_i915_private *dev_priv = dev->dev_private;
  1565. u32 seqno = intel_ring_get_seqno(ring);
  1566. BUG_ON(ring == NULL);
  1567. obj->ring = ring;
  1568. /* Add a reference if we're newly entering the active list. */
  1569. if (!obj->active) {
  1570. drm_gem_object_reference(&obj->base);
  1571. obj->active = 1;
  1572. }
  1573. /* Move from whatever list we were on to the tail of execution. */
  1574. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1575. list_move_tail(&obj->ring_list, &ring->active_list);
  1576. obj->last_read_seqno = seqno;
  1577. if (obj->fenced_gpu_access) {
  1578. obj->last_fenced_seqno = seqno;
  1579. /* Bump MRU to take account of the delayed flush */
  1580. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1581. struct drm_i915_fence_reg *reg;
  1582. reg = &dev_priv->fence_regs[obj->fence_reg];
  1583. list_move_tail(&reg->lru_list,
  1584. &dev_priv->mm.fence_list);
  1585. }
  1586. }
  1587. }
  1588. static void
  1589. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1590. {
  1591. struct drm_device *dev = obj->base.dev;
  1592. struct drm_i915_private *dev_priv = dev->dev_private;
  1593. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1594. BUG_ON(!obj->active);
  1595. if (obj->pin_count) /* are we a framebuffer? */
  1596. intel_mark_fb_idle(obj);
  1597. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1598. list_del_init(&obj->ring_list);
  1599. obj->ring = NULL;
  1600. obj->last_read_seqno = 0;
  1601. obj->last_write_seqno = 0;
  1602. obj->base.write_domain = 0;
  1603. obj->last_fenced_seqno = 0;
  1604. obj->fenced_gpu_access = false;
  1605. obj->active = 0;
  1606. drm_gem_object_unreference(&obj->base);
  1607. WARN_ON(i915_verify_lists(dev));
  1608. }
  1609. static int
  1610. i915_gem_handle_seqno_wrap(struct drm_device *dev)
  1611. {
  1612. struct drm_i915_private *dev_priv = dev->dev_private;
  1613. struct intel_ring_buffer *ring;
  1614. int ret, i, j;
  1615. /* The hardware uses various monotonic 32-bit counters, if we
  1616. * detect that they will wraparound we need to idle the GPU
  1617. * and reset those counters.
  1618. */
  1619. ret = 0;
  1620. for_each_ring(ring, dev_priv, i) {
  1621. for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
  1622. ret |= ring->sync_seqno[j] != 0;
  1623. }
  1624. if (ret == 0)
  1625. return ret;
  1626. ret = i915_gpu_idle(dev);
  1627. if (ret)
  1628. return ret;
  1629. i915_gem_retire_requests(dev);
  1630. for_each_ring(ring, dev_priv, i) {
  1631. for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
  1632. ring->sync_seqno[j] = 0;
  1633. }
  1634. return 0;
  1635. }
  1636. int
  1637. i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
  1638. {
  1639. struct drm_i915_private *dev_priv = dev->dev_private;
  1640. /* reserve 0 for non-seqno */
  1641. if (dev_priv->next_seqno == 0) {
  1642. int ret = i915_gem_handle_seqno_wrap(dev);
  1643. if (ret)
  1644. return ret;
  1645. dev_priv->next_seqno = 1;
  1646. }
  1647. *seqno = dev_priv->next_seqno++;
  1648. return 0;
  1649. }
  1650. int
  1651. i915_add_request(struct intel_ring_buffer *ring,
  1652. struct drm_file *file,
  1653. u32 *out_seqno)
  1654. {
  1655. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1656. struct drm_i915_gem_request *request;
  1657. u32 request_ring_position;
  1658. int was_empty;
  1659. int ret;
  1660. /*
  1661. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1662. * after having emitted the batchbuffer command. Hence we need to fix
  1663. * things up similar to emitting the lazy request. The difference here
  1664. * is that the flush _must_ happen before the next request, no matter
  1665. * what.
  1666. */
  1667. ret = intel_ring_flush_all_caches(ring);
  1668. if (ret)
  1669. return ret;
  1670. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1671. if (request == NULL)
  1672. return -ENOMEM;
  1673. /* Record the position of the start of the request so that
  1674. * should we detect the updated seqno part-way through the
  1675. * GPU processing the request, we never over-estimate the
  1676. * position of the head.
  1677. */
  1678. request_ring_position = intel_ring_get_tail(ring);
  1679. ret = ring->add_request(ring);
  1680. if (ret) {
  1681. kfree(request);
  1682. return ret;
  1683. }
  1684. request->seqno = intel_ring_get_seqno(ring);
  1685. request->ring = ring;
  1686. request->tail = request_ring_position;
  1687. request->emitted_jiffies = jiffies;
  1688. was_empty = list_empty(&ring->request_list);
  1689. list_add_tail(&request->list, &ring->request_list);
  1690. request->file_priv = NULL;
  1691. if (file) {
  1692. struct drm_i915_file_private *file_priv = file->driver_priv;
  1693. spin_lock(&file_priv->mm.lock);
  1694. request->file_priv = file_priv;
  1695. list_add_tail(&request->client_list,
  1696. &file_priv->mm.request_list);
  1697. spin_unlock(&file_priv->mm.lock);
  1698. }
  1699. trace_i915_gem_request_add(ring, request->seqno);
  1700. ring->outstanding_lazy_request = 0;
  1701. if (!dev_priv->mm.suspended) {
  1702. if (i915_enable_hangcheck) {
  1703. mod_timer(&dev_priv->hangcheck_timer,
  1704. round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
  1705. }
  1706. if (was_empty) {
  1707. queue_delayed_work(dev_priv->wq,
  1708. &dev_priv->mm.retire_work,
  1709. round_jiffies_up_relative(HZ));
  1710. intel_mark_busy(dev_priv->dev);
  1711. }
  1712. }
  1713. if (out_seqno)
  1714. *out_seqno = request->seqno;
  1715. return 0;
  1716. }
  1717. static inline void
  1718. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1719. {
  1720. struct drm_i915_file_private *file_priv = request->file_priv;
  1721. if (!file_priv)
  1722. return;
  1723. spin_lock(&file_priv->mm.lock);
  1724. if (request->file_priv) {
  1725. list_del(&request->client_list);
  1726. request->file_priv = NULL;
  1727. }
  1728. spin_unlock(&file_priv->mm.lock);
  1729. }
  1730. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1731. struct intel_ring_buffer *ring)
  1732. {
  1733. while (!list_empty(&ring->request_list)) {
  1734. struct drm_i915_gem_request *request;
  1735. request = list_first_entry(&ring->request_list,
  1736. struct drm_i915_gem_request,
  1737. list);
  1738. list_del(&request->list);
  1739. i915_gem_request_remove_from_client(request);
  1740. kfree(request);
  1741. }
  1742. while (!list_empty(&ring->active_list)) {
  1743. struct drm_i915_gem_object *obj;
  1744. obj = list_first_entry(&ring->active_list,
  1745. struct drm_i915_gem_object,
  1746. ring_list);
  1747. i915_gem_object_move_to_inactive(obj);
  1748. }
  1749. }
  1750. static void i915_gem_reset_fences(struct drm_device *dev)
  1751. {
  1752. struct drm_i915_private *dev_priv = dev->dev_private;
  1753. int i;
  1754. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1755. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1756. i915_gem_write_fence(dev, i, NULL);
  1757. if (reg->obj)
  1758. i915_gem_object_fence_lost(reg->obj);
  1759. reg->pin_count = 0;
  1760. reg->obj = NULL;
  1761. INIT_LIST_HEAD(&reg->lru_list);
  1762. }
  1763. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1764. }
  1765. void i915_gem_reset(struct drm_device *dev)
  1766. {
  1767. struct drm_i915_private *dev_priv = dev->dev_private;
  1768. struct drm_i915_gem_object *obj;
  1769. struct intel_ring_buffer *ring;
  1770. int i;
  1771. for_each_ring(ring, dev_priv, i)
  1772. i915_gem_reset_ring_lists(dev_priv, ring);
  1773. /* Move everything out of the GPU domains to ensure we do any
  1774. * necessary invalidation upon reuse.
  1775. */
  1776. list_for_each_entry(obj,
  1777. &dev_priv->mm.inactive_list,
  1778. mm_list)
  1779. {
  1780. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1781. }
  1782. /* The fence registers are invalidated so clear them out */
  1783. i915_gem_reset_fences(dev);
  1784. }
  1785. /**
  1786. * This function clears the request list as sequence numbers are passed.
  1787. */
  1788. void
  1789. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1790. {
  1791. uint32_t seqno;
  1792. if (list_empty(&ring->request_list))
  1793. return;
  1794. WARN_ON(i915_verify_lists(ring->dev));
  1795. seqno = ring->get_seqno(ring, true);
  1796. while (!list_empty(&ring->request_list)) {
  1797. struct drm_i915_gem_request *request;
  1798. request = list_first_entry(&ring->request_list,
  1799. struct drm_i915_gem_request,
  1800. list);
  1801. if (!i915_seqno_passed(seqno, request->seqno))
  1802. break;
  1803. trace_i915_gem_request_retire(ring, request->seqno);
  1804. /* We know the GPU must have read the request to have
  1805. * sent us the seqno + interrupt, so use the position
  1806. * of tail of the request to update the last known position
  1807. * of the GPU head.
  1808. */
  1809. ring->last_retired_head = request->tail;
  1810. list_del(&request->list);
  1811. i915_gem_request_remove_from_client(request);
  1812. kfree(request);
  1813. }
  1814. /* Move any buffers on the active list that are no longer referenced
  1815. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1816. */
  1817. while (!list_empty(&ring->active_list)) {
  1818. struct drm_i915_gem_object *obj;
  1819. obj = list_first_entry(&ring->active_list,
  1820. struct drm_i915_gem_object,
  1821. ring_list);
  1822. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  1823. break;
  1824. i915_gem_object_move_to_inactive(obj);
  1825. }
  1826. if (unlikely(ring->trace_irq_seqno &&
  1827. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1828. ring->irq_put(ring);
  1829. ring->trace_irq_seqno = 0;
  1830. }
  1831. WARN_ON(i915_verify_lists(ring->dev));
  1832. }
  1833. void
  1834. i915_gem_retire_requests(struct drm_device *dev)
  1835. {
  1836. drm_i915_private_t *dev_priv = dev->dev_private;
  1837. struct intel_ring_buffer *ring;
  1838. int i;
  1839. for_each_ring(ring, dev_priv, i)
  1840. i915_gem_retire_requests_ring(ring);
  1841. }
  1842. static void
  1843. i915_gem_retire_work_handler(struct work_struct *work)
  1844. {
  1845. drm_i915_private_t *dev_priv;
  1846. struct drm_device *dev;
  1847. struct intel_ring_buffer *ring;
  1848. bool idle;
  1849. int i;
  1850. dev_priv = container_of(work, drm_i915_private_t,
  1851. mm.retire_work.work);
  1852. dev = dev_priv->dev;
  1853. /* Come back later if the device is busy... */
  1854. if (!mutex_trylock(&dev->struct_mutex)) {
  1855. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  1856. round_jiffies_up_relative(HZ));
  1857. return;
  1858. }
  1859. i915_gem_retire_requests(dev);
  1860. /* Send a periodic flush down the ring so we don't hold onto GEM
  1861. * objects indefinitely.
  1862. */
  1863. idle = true;
  1864. for_each_ring(ring, dev_priv, i) {
  1865. if (ring->gpu_caches_dirty)
  1866. i915_add_request(ring, NULL, NULL);
  1867. idle &= list_empty(&ring->request_list);
  1868. }
  1869. if (!dev_priv->mm.suspended && !idle)
  1870. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  1871. round_jiffies_up_relative(HZ));
  1872. if (idle)
  1873. intel_mark_idle(dev);
  1874. mutex_unlock(&dev->struct_mutex);
  1875. }
  1876. /**
  1877. * Ensures that an object will eventually get non-busy by flushing any required
  1878. * write domains, emitting any outstanding lazy request and retiring and
  1879. * completed requests.
  1880. */
  1881. static int
  1882. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  1883. {
  1884. int ret;
  1885. if (obj->active) {
  1886. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  1887. if (ret)
  1888. return ret;
  1889. i915_gem_retire_requests_ring(obj->ring);
  1890. }
  1891. return 0;
  1892. }
  1893. /**
  1894. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1895. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1896. *
  1897. * Returns 0 if successful, else an error is returned with the remaining time in
  1898. * the timeout parameter.
  1899. * -ETIME: object is still busy after timeout
  1900. * -ERESTARTSYS: signal interrupted the wait
  1901. * -ENONENT: object doesn't exist
  1902. * Also possible, but rare:
  1903. * -EAGAIN: GPU wedged
  1904. * -ENOMEM: damn
  1905. * -ENODEV: Internal IRQ fail
  1906. * -E?: The add request failed
  1907. *
  1908. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1909. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1910. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1911. * without holding struct_mutex the object may become re-busied before this
  1912. * function completes. A similar but shorter * race condition exists in the busy
  1913. * ioctl
  1914. */
  1915. int
  1916. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1917. {
  1918. struct drm_i915_gem_wait *args = data;
  1919. struct drm_i915_gem_object *obj;
  1920. struct intel_ring_buffer *ring = NULL;
  1921. struct timespec timeout_stack, *timeout = NULL;
  1922. u32 seqno = 0;
  1923. int ret = 0;
  1924. if (args->timeout_ns >= 0) {
  1925. timeout_stack = ns_to_timespec(args->timeout_ns);
  1926. timeout = &timeout_stack;
  1927. }
  1928. ret = i915_mutex_lock_interruptible(dev);
  1929. if (ret)
  1930. return ret;
  1931. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1932. if (&obj->base == NULL) {
  1933. mutex_unlock(&dev->struct_mutex);
  1934. return -ENOENT;
  1935. }
  1936. /* Need to make sure the object gets inactive eventually. */
  1937. ret = i915_gem_object_flush_active(obj);
  1938. if (ret)
  1939. goto out;
  1940. if (obj->active) {
  1941. seqno = obj->last_read_seqno;
  1942. ring = obj->ring;
  1943. }
  1944. if (seqno == 0)
  1945. goto out;
  1946. /* Do this after OLR check to make sure we make forward progress polling
  1947. * on this IOCTL with a 0 timeout (like busy ioctl)
  1948. */
  1949. if (!args->timeout_ns) {
  1950. ret = -ETIME;
  1951. goto out;
  1952. }
  1953. drm_gem_object_unreference(&obj->base);
  1954. mutex_unlock(&dev->struct_mutex);
  1955. ret = __wait_seqno(ring, seqno, true, timeout);
  1956. if (timeout) {
  1957. WARN_ON(!timespec_valid(timeout));
  1958. args->timeout_ns = timespec_to_ns(timeout);
  1959. }
  1960. return ret;
  1961. out:
  1962. drm_gem_object_unreference(&obj->base);
  1963. mutex_unlock(&dev->struct_mutex);
  1964. return ret;
  1965. }
  1966. /**
  1967. * i915_gem_object_sync - sync an object to a ring.
  1968. *
  1969. * @obj: object which may be in use on another ring.
  1970. * @to: ring we wish to use the object on. May be NULL.
  1971. *
  1972. * This code is meant to abstract object synchronization with the GPU.
  1973. * Calling with NULL implies synchronizing the object with the CPU
  1974. * rather than a particular GPU ring.
  1975. *
  1976. * Returns 0 if successful, else propagates up the lower layer error.
  1977. */
  1978. int
  1979. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1980. struct intel_ring_buffer *to)
  1981. {
  1982. struct intel_ring_buffer *from = obj->ring;
  1983. u32 seqno;
  1984. int ret, idx;
  1985. if (from == NULL || to == from)
  1986. return 0;
  1987. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1988. return i915_gem_object_wait_rendering(obj, false);
  1989. idx = intel_ring_sync_index(from, to);
  1990. seqno = obj->last_read_seqno;
  1991. if (seqno <= from->sync_seqno[idx])
  1992. return 0;
  1993. ret = i915_gem_check_olr(obj->ring, seqno);
  1994. if (ret)
  1995. return ret;
  1996. ret = to->sync_to(to, from, seqno);
  1997. if (!ret)
  1998. /* We use last_read_seqno because sync_to()
  1999. * might have just caused seqno wrap under
  2000. * the radar.
  2001. */
  2002. from->sync_seqno[idx] = obj->last_read_seqno;
  2003. return ret;
  2004. }
  2005. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  2006. {
  2007. u32 old_write_domain, old_read_domains;
  2008. /* Act a barrier for all accesses through the GTT */
  2009. mb();
  2010. /* Force a pagefault for domain tracking on next user access */
  2011. i915_gem_release_mmap(obj);
  2012. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2013. return;
  2014. old_read_domains = obj->base.read_domains;
  2015. old_write_domain = obj->base.write_domain;
  2016. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  2017. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  2018. trace_i915_gem_object_change_domain(obj,
  2019. old_read_domains,
  2020. old_write_domain);
  2021. }
  2022. /**
  2023. * Unbinds an object from the GTT aperture.
  2024. */
  2025. int
  2026. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  2027. {
  2028. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2029. int ret = 0;
  2030. if (obj->gtt_space == NULL)
  2031. return 0;
  2032. if (obj->pin_count)
  2033. return -EBUSY;
  2034. BUG_ON(obj->pages == NULL);
  2035. ret = i915_gem_object_finish_gpu(obj);
  2036. if (ret)
  2037. return ret;
  2038. /* Continue on if we fail due to EIO, the GPU is hung so we
  2039. * should be safe and we need to cleanup or else we might
  2040. * cause memory corruption through use-after-free.
  2041. */
  2042. i915_gem_object_finish_gtt(obj);
  2043. /* release the fence reg _after_ flushing */
  2044. ret = i915_gem_object_put_fence(obj);
  2045. if (ret)
  2046. return ret;
  2047. trace_i915_gem_object_unbind(obj);
  2048. if (obj->has_global_gtt_mapping)
  2049. i915_gem_gtt_unbind_object(obj);
  2050. if (obj->has_aliasing_ppgtt_mapping) {
  2051. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  2052. obj->has_aliasing_ppgtt_mapping = 0;
  2053. }
  2054. i915_gem_gtt_finish_object(obj);
  2055. list_del(&obj->mm_list);
  2056. list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  2057. /* Avoid an unnecessary call to unbind on rebind. */
  2058. obj->map_and_fenceable = true;
  2059. drm_mm_put_block(obj->gtt_space);
  2060. obj->gtt_space = NULL;
  2061. obj->gtt_offset = 0;
  2062. return 0;
  2063. }
  2064. int i915_gpu_idle(struct drm_device *dev)
  2065. {
  2066. drm_i915_private_t *dev_priv = dev->dev_private;
  2067. struct intel_ring_buffer *ring;
  2068. int ret, i;
  2069. /* Flush everything onto the inactive list. */
  2070. for_each_ring(ring, dev_priv, i) {
  2071. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  2072. if (ret)
  2073. return ret;
  2074. ret = intel_ring_idle(ring);
  2075. if (ret)
  2076. return ret;
  2077. }
  2078. return 0;
  2079. }
  2080. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  2081. struct drm_i915_gem_object *obj)
  2082. {
  2083. drm_i915_private_t *dev_priv = dev->dev_private;
  2084. uint64_t val;
  2085. if (obj) {
  2086. u32 size = obj->gtt_space->size;
  2087. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2088. 0xfffff000) << 32;
  2089. val |= obj->gtt_offset & 0xfffff000;
  2090. val |= (uint64_t)((obj->stride / 128) - 1) <<
  2091. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2092. if (obj->tiling_mode == I915_TILING_Y)
  2093. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2094. val |= I965_FENCE_REG_VALID;
  2095. } else
  2096. val = 0;
  2097. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  2098. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  2099. }
  2100. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2101. struct drm_i915_gem_object *obj)
  2102. {
  2103. drm_i915_private_t *dev_priv = dev->dev_private;
  2104. uint64_t val;
  2105. if (obj) {
  2106. u32 size = obj->gtt_space->size;
  2107. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2108. 0xfffff000) << 32;
  2109. val |= obj->gtt_offset & 0xfffff000;
  2110. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2111. if (obj->tiling_mode == I915_TILING_Y)
  2112. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2113. val |= I965_FENCE_REG_VALID;
  2114. } else
  2115. val = 0;
  2116. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  2117. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  2118. }
  2119. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2120. struct drm_i915_gem_object *obj)
  2121. {
  2122. drm_i915_private_t *dev_priv = dev->dev_private;
  2123. u32 val;
  2124. if (obj) {
  2125. u32 size = obj->gtt_space->size;
  2126. int pitch_val;
  2127. int tile_width;
  2128. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  2129. (size & -size) != size ||
  2130. (obj->gtt_offset & (size - 1)),
  2131. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2132. obj->gtt_offset, obj->map_and_fenceable, size);
  2133. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2134. tile_width = 128;
  2135. else
  2136. tile_width = 512;
  2137. /* Note: pitch better be a power of two tile widths */
  2138. pitch_val = obj->stride / tile_width;
  2139. pitch_val = ffs(pitch_val) - 1;
  2140. val = obj->gtt_offset;
  2141. if (obj->tiling_mode == I915_TILING_Y)
  2142. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2143. val |= I915_FENCE_SIZE_BITS(size);
  2144. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2145. val |= I830_FENCE_REG_VALID;
  2146. } else
  2147. val = 0;
  2148. if (reg < 8)
  2149. reg = FENCE_REG_830_0 + reg * 4;
  2150. else
  2151. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2152. I915_WRITE(reg, val);
  2153. POSTING_READ(reg);
  2154. }
  2155. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2156. struct drm_i915_gem_object *obj)
  2157. {
  2158. drm_i915_private_t *dev_priv = dev->dev_private;
  2159. uint32_t val;
  2160. if (obj) {
  2161. u32 size = obj->gtt_space->size;
  2162. uint32_t pitch_val;
  2163. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2164. (size & -size) != size ||
  2165. (obj->gtt_offset & (size - 1)),
  2166. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2167. obj->gtt_offset, size);
  2168. pitch_val = obj->stride / 128;
  2169. pitch_val = ffs(pitch_val) - 1;
  2170. val = obj->gtt_offset;
  2171. if (obj->tiling_mode == I915_TILING_Y)
  2172. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2173. val |= I830_FENCE_SIZE_BITS(size);
  2174. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2175. val |= I830_FENCE_REG_VALID;
  2176. } else
  2177. val = 0;
  2178. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2179. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2180. }
  2181. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2182. struct drm_i915_gem_object *obj)
  2183. {
  2184. switch (INTEL_INFO(dev)->gen) {
  2185. case 7:
  2186. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  2187. case 5:
  2188. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2189. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2190. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2191. default: break;
  2192. }
  2193. }
  2194. static inline int fence_number(struct drm_i915_private *dev_priv,
  2195. struct drm_i915_fence_reg *fence)
  2196. {
  2197. return fence - dev_priv->fence_regs;
  2198. }
  2199. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2200. struct drm_i915_fence_reg *fence,
  2201. bool enable)
  2202. {
  2203. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2204. int reg = fence_number(dev_priv, fence);
  2205. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2206. if (enable) {
  2207. obj->fence_reg = reg;
  2208. fence->obj = obj;
  2209. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2210. } else {
  2211. obj->fence_reg = I915_FENCE_REG_NONE;
  2212. fence->obj = NULL;
  2213. list_del_init(&fence->lru_list);
  2214. }
  2215. }
  2216. static int
  2217. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2218. {
  2219. if (obj->last_fenced_seqno) {
  2220. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2221. if (ret)
  2222. return ret;
  2223. obj->last_fenced_seqno = 0;
  2224. }
  2225. /* Ensure that all CPU reads are completed before installing a fence
  2226. * and all writes before removing the fence.
  2227. */
  2228. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2229. mb();
  2230. obj->fenced_gpu_access = false;
  2231. return 0;
  2232. }
  2233. int
  2234. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2235. {
  2236. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2237. int ret;
  2238. ret = i915_gem_object_flush_fence(obj);
  2239. if (ret)
  2240. return ret;
  2241. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2242. return 0;
  2243. i915_gem_object_update_fence(obj,
  2244. &dev_priv->fence_regs[obj->fence_reg],
  2245. false);
  2246. i915_gem_object_fence_lost(obj);
  2247. return 0;
  2248. }
  2249. static struct drm_i915_fence_reg *
  2250. i915_find_fence_reg(struct drm_device *dev)
  2251. {
  2252. struct drm_i915_private *dev_priv = dev->dev_private;
  2253. struct drm_i915_fence_reg *reg, *avail;
  2254. int i;
  2255. /* First try to find a free reg */
  2256. avail = NULL;
  2257. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2258. reg = &dev_priv->fence_regs[i];
  2259. if (!reg->obj)
  2260. return reg;
  2261. if (!reg->pin_count)
  2262. avail = reg;
  2263. }
  2264. if (avail == NULL)
  2265. return NULL;
  2266. /* None available, try to steal one or wait for a user to finish */
  2267. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2268. if (reg->pin_count)
  2269. continue;
  2270. return reg;
  2271. }
  2272. return NULL;
  2273. }
  2274. /**
  2275. * i915_gem_object_get_fence - set up fencing for an object
  2276. * @obj: object to map through a fence reg
  2277. *
  2278. * When mapping objects through the GTT, userspace wants to be able to write
  2279. * to them without having to worry about swizzling if the object is tiled.
  2280. * This function walks the fence regs looking for a free one for @obj,
  2281. * stealing one if it can't find any.
  2282. *
  2283. * It then sets up the reg based on the object's properties: address, pitch
  2284. * and tiling format.
  2285. *
  2286. * For an untiled surface, this removes any existing fence.
  2287. */
  2288. int
  2289. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2290. {
  2291. struct drm_device *dev = obj->base.dev;
  2292. struct drm_i915_private *dev_priv = dev->dev_private;
  2293. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2294. struct drm_i915_fence_reg *reg;
  2295. int ret;
  2296. /* Have we updated the tiling parameters upon the object and so
  2297. * will need to serialise the write to the associated fence register?
  2298. */
  2299. if (obj->fence_dirty) {
  2300. ret = i915_gem_object_flush_fence(obj);
  2301. if (ret)
  2302. return ret;
  2303. }
  2304. /* Just update our place in the LRU if our fence is getting reused. */
  2305. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2306. reg = &dev_priv->fence_regs[obj->fence_reg];
  2307. if (!obj->fence_dirty) {
  2308. list_move_tail(&reg->lru_list,
  2309. &dev_priv->mm.fence_list);
  2310. return 0;
  2311. }
  2312. } else if (enable) {
  2313. reg = i915_find_fence_reg(dev);
  2314. if (reg == NULL)
  2315. return -EDEADLK;
  2316. if (reg->obj) {
  2317. struct drm_i915_gem_object *old = reg->obj;
  2318. ret = i915_gem_object_flush_fence(old);
  2319. if (ret)
  2320. return ret;
  2321. i915_gem_object_fence_lost(old);
  2322. }
  2323. } else
  2324. return 0;
  2325. i915_gem_object_update_fence(obj, reg, enable);
  2326. obj->fence_dirty = false;
  2327. return 0;
  2328. }
  2329. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2330. struct drm_mm_node *gtt_space,
  2331. unsigned long cache_level)
  2332. {
  2333. struct drm_mm_node *other;
  2334. /* On non-LLC machines we have to be careful when putting differing
  2335. * types of snoopable memory together to avoid the prefetcher
  2336. * crossing memory domains and dieing.
  2337. */
  2338. if (HAS_LLC(dev))
  2339. return true;
  2340. if (gtt_space == NULL)
  2341. return true;
  2342. if (list_empty(&gtt_space->node_list))
  2343. return true;
  2344. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2345. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2346. return false;
  2347. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2348. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2349. return false;
  2350. return true;
  2351. }
  2352. static void i915_gem_verify_gtt(struct drm_device *dev)
  2353. {
  2354. #if WATCH_GTT
  2355. struct drm_i915_private *dev_priv = dev->dev_private;
  2356. struct drm_i915_gem_object *obj;
  2357. int err = 0;
  2358. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  2359. if (obj->gtt_space == NULL) {
  2360. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2361. err++;
  2362. continue;
  2363. }
  2364. if (obj->cache_level != obj->gtt_space->color) {
  2365. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2366. obj->gtt_space->start,
  2367. obj->gtt_space->start + obj->gtt_space->size,
  2368. obj->cache_level,
  2369. obj->gtt_space->color);
  2370. err++;
  2371. continue;
  2372. }
  2373. if (!i915_gem_valid_gtt_space(dev,
  2374. obj->gtt_space,
  2375. obj->cache_level)) {
  2376. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2377. obj->gtt_space->start,
  2378. obj->gtt_space->start + obj->gtt_space->size,
  2379. obj->cache_level);
  2380. err++;
  2381. continue;
  2382. }
  2383. }
  2384. WARN_ON(err);
  2385. #endif
  2386. }
  2387. /**
  2388. * Finds free space in the GTT aperture and binds the object there.
  2389. */
  2390. static int
  2391. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2392. unsigned alignment,
  2393. bool map_and_fenceable,
  2394. bool nonblocking)
  2395. {
  2396. struct drm_device *dev = obj->base.dev;
  2397. drm_i915_private_t *dev_priv = dev->dev_private;
  2398. struct drm_mm_node *node;
  2399. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2400. bool mappable, fenceable;
  2401. int ret;
  2402. if (obj->madv != I915_MADV_WILLNEED) {
  2403. DRM_ERROR("Attempting to bind a purgeable object\n");
  2404. return -EINVAL;
  2405. }
  2406. fence_size = i915_gem_get_gtt_size(dev,
  2407. obj->base.size,
  2408. obj->tiling_mode);
  2409. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2410. obj->base.size,
  2411. obj->tiling_mode);
  2412. unfenced_alignment =
  2413. i915_gem_get_unfenced_gtt_alignment(dev,
  2414. obj->base.size,
  2415. obj->tiling_mode);
  2416. if (alignment == 0)
  2417. alignment = map_and_fenceable ? fence_alignment :
  2418. unfenced_alignment;
  2419. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2420. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2421. return -EINVAL;
  2422. }
  2423. size = map_and_fenceable ? fence_size : obj->base.size;
  2424. /* If the object is bigger than the entire aperture, reject it early
  2425. * before evicting everything in a vain attempt to find space.
  2426. */
  2427. if (obj->base.size >
  2428. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2429. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2430. return -E2BIG;
  2431. }
  2432. ret = i915_gem_object_get_pages(obj);
  2433. if (ret)
  2434. return ret;
  2435. i915_gem_object_pin_pages(obj);
  2436. node = kzalloc(sizeof(*node), GFP_KERNEL);
  2437. if (node == NULL) {
  2438. i915_gem_object_unpin_pages(obj);
  2439. return -ENOMEM;
  2440. }
  2441. search_free:
  2442. if (map_and_fenceable)
  2443. ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
  2444. size, alignment, obj->cache_level,
  2445. 0, dev_priv->mm.gtt_mappable_end);
  2446. else
  2447. ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
  2448. size, alignment, obj->cache_level);
  2449. if (ret) {
  2450. ret = i915_gem_evict_something(dev, size, alignment,
  2451. obj->cache_level,
  2452. map_and_fenceable,
  2453. nonblocking);
  2454. if (ret == 0)
  2455. goto search_free;
  2456. i915_gem_object_unpin_pages(obj);
  2457. kfree(node);
  2458. return ret;
  2459. }
  2460. if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
  2461. i915_gem_object_unpin_pages(obj);
  2462. drm_mm_put_block(node);
  2463. return -EINVAL;
  2464. }
  2465. ret = i915_gem_gtt_prepare_object(obj);
  2466. if (ret) {
  2467. i915_gem_object_unpin_pages(obj);
  2468. drm_mm_put_block(node);
  2469. return ret;
  2470. }
  2471. list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
  2472. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2473. obj->gtt_space = node;
  2474. obj->gtt_offset = node->start;
  2475. fenceable =
  2476. node->size == fence_size &&
  2477. (node->start & (fence_alignment - 1)) == 0;
  2478. mappable =
  2479. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2480. obj->map_and_fenceable = mappable && fenceable;
  2481. i915_gem_object_unpin_pages(obj);
  2482. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2483. i915_gem_verify_gtt(dev);
  2484. return 0;
  2485. }
  2486. void
  2487. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2488. {
  2489. /* If we don't have a page list set up, then we're not pinned
  2490. * to GPU, and we can ignore the cache flush because it'll happen
  2491. * again at bind time.
  2492. */
  2493. if (obj->pages == NULL)
  2494. return;
  2495. /* If the GPU is snooping the contents of the CPU cache,
  2496. * we do not need to manually clear the CPU cache lines. However,
  2497. * the caches are only snooped when the render cache is
  2498. * flushed/invalidated. As we always have to emit invalidations
  2499. * and flushes when moving into and out of the RENDER domain, correct
  2500. * snooping behaviour occurs naturally as the result of our domain
  2501. * tracking.
  2502. */
  2503. if (obj->cache_level != I915_CACHE_NONE)
  2504. return;
  2505. trace_i915_gem_object_clflush(obj);
  2506. drm_clflush_sg(obj->pages);
  2507. }
  2508. /** Flushes the GTT write domain for the object if it's dirty. */
  2509. static void
  2510. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2511. {
  2512. uint32_t old_write_domain;
  2513. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2514. return;
  2515. /* No actual flushing is required for the GTT write domain. Writes
  2516. * to it immediately go to main memory as far as we know, so there's
  2517. * no chipset flush. It also doesn't land in render cache.
  2518. *
  2519. * However, we do have to enforce the order so that all writes through
  2520. * the GTT land before any writes to the device, such as updates to
  2521. * the GATT itself.
  2522. */
  2523. wmb();
  2524. old_write_domain = obj->base.write_domain;
  2525. obj->base.write_domain = 0;
  2526. trace_i915_gem_object_change_domain(obj,
  2527. obj->base.read_domains,
  2528. old_write_domain);
  2529. }
  2530. /** Flushes the CPU write domain for the object if it's dirty. */
  2531. static void
  2532. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2533. {
  2534. uint32_t old_write_domain;
  2535. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2536. return;
  2537. i915_gem_clflush_object(obj);
  2538. i915_gem_chipset_flush(obj->base.dev);
  2539. old_write_domain = obj->base.write_domain;
  2540. obj->base.write_domain = 0;
  2541. trace_i915_gem_object_change_domain(obj,
  2542. obj->base.read_domains,
  2543. old_write_domain);
  2544. }
  2545. /**
  2546. * Moves a single object to the GTT read, and possibly write domain.
  2547. *
  2548. * This function returns when the move is complete, including waiting on
  2549. * flushes to occur.
  2550. */
  2551. int
  2552. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2553. {
  2554. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2555. uint32_t old_write_domain, old_read_domains;
  2556. int ret;
  2557. /* Not valid to be called on unbound objects. */
  2558. if (obj->gtt_space == NULL)
  2559. return -EINVAL;
  2560. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2561. return 0;
  2562. ret = i915_gem_object_wait_rendering(obj, !write);
  2563. if (ret)
  2564. return ret;
  2565. i915_gem_object_flush_cpu_write_domain(obj);
  2566. old_write_domain = obj->base.write_domain;
  2567. old_read_domains = obj->base.read_domains;
  2568. /* It should now be out of any other write domains, and we can update
  2569. * the domain values for our changes.
  2570. */
  2571. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2572. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2573. if (write) {
  2574. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2575. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2576. obj->dirty = 1;
  2577. }
  2578. trace_i915_gem_object_change_domain(obj,
  2579. old_read_domains,
  2580. old_write_domain);
  2581. /* And bump the LRU for this access */
  2582. if (i915_gem_object_is_inactive(obj))
  2583. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2584. return 0;
  2585. }
  2586. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2587. enum i915_cache_level cache_level)
  2588. {
  2589. struct drm_device *dev = obj->base.dev;
  2590. drm_i915_private_t *dev_priv = dev->dev_private;
  2591. int ret;
  2592. if (obj->cache_level == cache_level)
  2593. return 0;
  2594. if (obj->pin_count) {
  2595. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2596. return -EBUSY;
  2597. }
  2598. if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
  2599. ret = i915_gem_object_unbind(obj);
  2600. if (ret)
  2601. return ret;
  2602. }
  2603. if (obj->gtt_space) {
  2604. ret = i915_gem_object_finish_gpu(obj);
  2605. if (ret)
  2606. return ret;
  2607. i915_gem_object_finish_gtt(obj);
  2608. /* Before SandyBridge, you could not use tiling or fence
  2609. * registers with snooped memory, so relinquish any fences
  2610. * currently pointing to our region in the aperture.
  2611. */
  2612. if (INTEL_INFO(dev)->gen < 6) {
  2613. ret = i915_gem_object_put_fence(obj);
  2614. if (ret)
  2615. return ret;
  2616. }
  2617. if (obj->has_global_gtt_mapping)
  2618. i915_gem_gtt_bind_object(obj, cache_level);
  2619. if (obj->has_aliasing_ppgtt_mapping)
  2620. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2621. obj, cache_level);
  2622. obj->gtt_space->color = cache_level;
  2623. }
  2624. if (cache_level == I915_CACHE_NONE) {
  2625. u32 old_read_domains, old_write_domain;
  2626. /* If we're coming from LLC cached, then we haven't
  2627. * actually been tracking whether the data is in the
  2628. * CPU cache or not, since we only allow one bit set
  2629. * in obj->write_domain and have been skipping the clflushes.
  2630. * Just set it to the CPU cache for now.
  2631. */
  2632. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2633. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2634. old_read_domains = obj->base.read_domains;
  2635. old_write_domain = obj->base.write_domain;
  2636. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2637. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2638. trace_i915_gem_object_change_domain(obj,
  2639. old_read_domains,
  2640. old_write_domain);
  2641. }
  2642. obj->cache_level = cache_level;
  2643. i915_gem_verify_gtt(dev);
  2644. return 0;
  2645. }
  2646. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  2647. struct drm_file *file)
  2648. {
  2649. struct drm_i915_gem_caching *args = data;
  2650. struct drm_i915_gem_object *obj;
  2651. int ret;
  2652. ret = i915_mutex_lock_interruptible(dev);
  2653. if (ret)
  2654. return ret;
  2655. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2656. if (&obj->base == NULL) {
  2657. ret = -ENOENT;
  2658. goto unlock;
  2659. }
  2660. args->caching = obj->cache_level != I915_CACHE_NONE;
  2661. drm_gem_object_unreference(&obj->base);
  2662. unlock:
  2663. mutex_unlock(&dev->struct_mutex);
  2664. return ret;
  2665. }
  2666. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  2667. struct drm_file *file)
  2668. {
  2669. struct drm_i915_gem_caching *args = data;
  2670. struct drm_i915_gem_object *obj;
  2671. enum i915_cache_level level;
  2672. int ret;
  2673. switch (args->caching) {
  2674. case I915_CACHING_NONE:
  2675. level = I915_CACHE_NONE;
  2676. break;
  2677. case I915_CACHING_CACHED:
  2678. level = I915_CACHE_LLC;
  2679. break;
  2680. default:
  2681. return -EINVAL;
  2682. }
  2683. ret = i915_mutex_lock_interruptible(dev);
  2684. if (ret)
  2685. return ret;
  2686. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2687. if (&obj->base == NULL) {
  2688. ret = -ENOENT;
  2689. goto unlock;
  2690. }
  2691. ret = i915_gem_object_set_cache_level(obj, level);
  2692. drm_gem_object_unreference(&obj->base);
  2693. unlock:
  2694. mutex_unlock(&dev->struct_mutex);
  2695. return ret;
  2696. }
  2697. /*
  2698. * Prepare buffer for display plane (scanout, cursors, etc).
  2699. * Can be called from an uninterruptible phase (modesetting) and allows
  2700. * any flushes to be pipelined (for pageflips).
  2701. */
  2702. int
  2703. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2704. u32 alignment,
  2705. struct intel_ring_buffer *pipelined)
  2706. {
  2707. u32 old_read_domains, old_write_domain;
  2708. int ret;
  2709. if (pipelined != obj->ring) {
  2710. ret = i915_gem_object_sync(obj, pipelined);
  2711. if (ret)
  2712. return ret;
  2713. }
  2714. /* The display engine is not coherent with the LLC cache on gen6. As
  2715. * a result, we make sure that the pinning that is about to occur is
  2716. * done with uncached PTEs. This is lowest common denominator for all
  2717. * chipsets.
  2718. *
  2719. * However for gen6+, we could do better by using the GFDT bit instead
  2720. * of uncaching, which would allow us to flush all the LLC-cached data
  2721. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2722. */
  2723. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2724. if (ret)
  2725. return ret;
  2726. /* As the user may map the buffer once pinned in the display plane
  2727. * (e.g. libkms for the bootup splash), we have to ensure that we
  2728. * always use map_and_fenceable for all scanout buffers.
  2729. */
  2730. ret = i915_gem_object_pin(obj, alignment, true, false);
  2731. if (ret)
  2732. return ret;
  2733. i915_gem_object_flush_cpu_write_domain(obj);
  2734. old_write_domain = obj->base.write_domain;
  2735. old_read_domains = obj->base.read_domains;
  2736. /* It should now be out of any other write domains, and we can update
  2737. * the domain values for our changes.
  2738. */
  2739. obj->base.write_domain = 0;
  2740. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2741. trace_i915_gem_object_change_domain(obj,
  2742. old_read_domains,
  2743. old_write_domain);
  2744. return 0;
  2745. }
  2746. int
  2747. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2748. {
  2749. int ret;
  2750. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2751. return 0;
  2752. ret = i915_gem_object_wait_rendering(obj, false);
  2753. if (ret)
  2754. return ret;
  2755. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2756. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2757. return 0;
  2758. }
  2759. /**
  2760. * Moves a single object to the CPU read, and possibly write domain.
  2761. *
  2762. * This function returns when the move is complete, including waiting on
  2763. * flushes to occur.
  2764. */
  2765. int
  2766. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2767. {
  2768. uint32_t old_write_domain, old_read_domains;
  2769. int ret;
  2770. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2771. return 0;
  2772. ret = i915_gem_object_wait_rendering(obj, !write);
  2773. if (ret)
  2774. return ret;
  2775. i915_gem_object_flush_gtt_write_domain(obj);
  2776. old_write_domain = obj->base.write_domain;
  2777. old_read_domains = obj->base.read_domains;
  2778. /* Flush the CPU cache if it's still invalid. */
  2779. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2780. i915_gem_clflush_object(obj);
  2781. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2782. }
  2783. /* It should now be out of any other write domains, and we can update
  2784. * the domain values for our changes.
  2785. */
  2786. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2787. /* If we're writing through the CPU, then the GPU read domains will
  2788. * need to be invalidated at next use.
  2789. */
  2790. if (write) {
  2791. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2792. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2793. }
  2794. trace_i915_gem_object_change_domain(obj,
  2795. old_read_domains,
  2796. old_write_domain);
  2797. return 0;
  2798. }
  2799. /* Throttle our rendering by waiting until the ring has completed our requests
  2800. * emitted over 20 msec ago.
  2801. *
  2802. * Note that if we were to use the current jiffies each time around the loop,
  2803. * we wouldn't escape the function with any frames outstanding if the time to
  2804. * render a frame was over 20ms.
  2805. *
  2806. * This should get us reasonable parallelism between CPU and GPU but also
  2807. * relatively low latency when blocking on a particular request to finish.
  2808. */
  2809. static int
  2810. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2811. {
  2812. struct drm_i915_private *dev_priv = dev->dev_private;
  2813. struct drm_i915_file_private *file_priv = file->driver_priv;
  2814. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2815. struct drm_i915_gem_request *request;
  2816. struct intel_ring_buffer *ring = NULL;
  2817. u32 seqno = 0;
  2818. int ret;
  2819. if (atomic_read(&dev_priv->mm.wedged))
  2820. return -EIO;
  2821. spin_lock(&file_priv->mm.lock);
  2822. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2823. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2824. break;
  2825. ring = request->ring;
  2826. seqno = request->seqno;
  2827. }
  2828. spin_unlock(&file_priv->mm.lock);
  2829. if (seqno == 0)
  2830. return 0;
  2831. ret = __wait_seqno(ring, seqno, true, NULL);
  2832. if (ret == 0)
  2833. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2834. return ret;
  2835. }
  2836. int
  2837. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2838. uint32_t alignment,
  2839. bool map_and_fenceable,
  2840. bool nonblocking)
  2841. {
  2842. int ret;
  2843. if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  2844. return -EBUSY;
  2845. if (obj->gtt_space != NULL) {
  2846. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2847. (map_and_fenceable && !obj->map_and_fenceable)) {
  2848. WARN(obj->pin_count,
  2849. "bo is already pinned with incorrect alignment:"
  2850. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2851. " obj->map_and_fenceable=%d\n",
  2852. obj->gtt_offset, alignment,
  2853. map_and_fenceable,
  2854. obj->map_and_fenceable);
  2855. ret = i915_gem_object_unbind(obj);
  2856. if (ret)
  2857. return ret;
  2858. }
  2859. }
  2860. if (obj->gtt_space == NULL) {
  2861. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2862. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2863. map_and_fenceable,
  2864. nonblocking);
  2865. if (ret)
  2866. return ret;
  2867. if (!dev_priv->mm.aliasing_ppgtt)
  2868. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2869. }
  2870. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2871. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2872. obj->pin_count++;
  2873. obj->pin_mappable |= map_and_fenceable;
  2874. return 0;
  2875. }
  2876. void
  2877. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2878. {
  2879. BUG_ON(obj->pin_count == 0);
  2880. BUG_ON(obj->gtt_space == NULL);
  2881. if (--obj->pin_count == 0)
  2882. obj->pin_mappable = false;
  2883. }
  2884. int
  2885. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2886. struct drm_file *file)
  2887. {
  2888. struct drm_i915_gem_pin *args = data;
  2889. struct drm_i915_gem_object *obj;
  2890. int ret;
  2891. ret = i915_mutex_lock_interruptible(dev);
  2892. if (ret)
  2893. return ret;
  2894. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2895. if (&obj->base == NULL) {
  2896. ret = -ENOENT;
  2897. goto unlock;
  2898. }
  2899. if (obj->madv != I915_MADV_WILLNEED) {
  2900. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2901. ret = -EINVAL;
  2902. goto out;
  2903. }
  2904. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2905. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2906. args->handle);
  2907. ret = -EINVAL;
  2908. goto out;
  2909. }
  2910. obj->user_pin_count++;
  2911. obj->pin_filp = file;
  2912. if (obj->user_pin_count == 1) {
  2913. ret = i915_gem_object_pin(obj, args->alignment, true, false);
  2914. if (ret)
  2915. goto out;
  2916. }
  2917. /* XXX - flush the CPU caches for pinned objects
  2918. * as the X server doesn't manage domains yet
  2919. */
  2920. i915_gem_object_flush_cpu_write_domain(obj);
  2921. args->offset = obj->gtt_offset;
  2922. out:
  2923. drm_gem_object_unreference(&obj->base);
  2924. unlock:
  2925. mutex_unlock(&dev->struct_mutex);
  2926. return ret;
  2927. }
  2928. int
  2929. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2930. struct drm_file *file)
  2931. {
  2932. struct drm_i915_gem_pin *args = data;
  2933. struct drm_i915_gem_object *obj;
  2934. int ret;
  2935. ret = i915_mutex_lock_interruptible(dev);
  2936. if (ret)
  2937. return ret;
  2938. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2939. if (&obj->base == NULL) {
  2940. ret = -ENOENT;
  2941. goto unlock;
  2942. }
  2943. if (obj->pin_filp != file) {
  2944. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2945. args->handle);
  2946. ret = -EINVAL;
  2947. goto out;
  2948. }
  2949. obj->user_pin_count--;
  2950. if (obj->user_pin_count == 0) {
  2951. obj->pin_filp = NULL;
  2952. i915_gem_object_unpin(obj);
  2953. }
  2954. out:
  2955. drm_gem_object_unreference(&obj->base);
  2956. unlock:
  2957. mutex_unlock(&dev->struct_mutex);
  2958. return ret;
  2959. }
  2960. int
  2961. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2962. struct drm_file *file)
  2963. {
  2964. struct drm_i915_gem_busy *args = data;
  2965. struct drm_i915_gem_object *obj;
  2966. int ret;
  2967. ret = i915_mutex_lock_interruptible(dev);
  2968. if (ret)
  2969. return ret;
  2970. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2971. if (&obj->base == NULL) {
  2972. ret = -ENOENT;
  2973. goto unlock;
  2974. }
  2975. /* Count all active objects as busy, even if they are currently not used
  2976. * by the gpu. Users of this interface expect objects to eventually
  2977. * become non-busy without any further actions, therefore emit any
  2978. * necessary flushes here.
  2979. */
  2980. ret = i915_gem_object_flush_active(obj);
  2981. args->busy = obj->active;
  2982. if (obj->ring) {
  2983. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  2984. args->busy |= intel_ring_flag(obj->ring) << 16;
  2985. }
  2986. drm_gem_object_unreference(&obj->base);
  2987. unlock:
  2988. mutex_unlock(&dev->struct_mutex);
  2989. return ret;
  2990. }
  2991. int
  2992. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2993. struct drm_file *file_priv)
  2994. {
  2995. return i915_gem_ring_throttle(dev, file_priv);
  2996. }
  2997. int
  2998. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2999. struct drm_file *file_priv)
  3000. {
  3001. struct drm_i915_gem_madvise *args = data;
  3002. struct drm_i915_gem_object *obj;
  3003. int ret;
  3004. switch (args->madv) {
  3005. case I915_MADV_DONTNEED:
  3006. case I915_MADV_WILLNEED:
  3007. break;
  3008. default:
  3009. return -EINVAL;
  3010. }
  3011. ret = i915_mutex_lock_interruptible(dev);
  3012. if (ret)
  3013. return ret;
  3014. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3015. if (&obj->base == NULL) {
  3016. ret = -ENOENT;
  3017. goto unlock;
  3018. }
  3019. if (obj->pin_count) {
  3020. ret = -EINVAL;
  3021. goto out;
  3022. }
  3023. if (obj->madv != __I915_MADV_PURGED)
  3024. obj->madv = args->madv;
  3025. /* if the object is no longer attached, discard its backing storage */
  3026. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3027. i915_gem_object_truncate(obj);
  3028. args->retained = obj->madv != __I915_MADV_PURGED;
  3029. out:
  3030. drm_gem_object_unreference(&obj->base);
  3031. unlock:
  3032. mutex_unlock(&dev->struct_mutex);
  3033. return ret;
  3034. }
  3035. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3036. const struct drm_i915_gem_object_ops *ops)
  3037. {
  3038. INIT_LIST_HEAD(&obj->mm_list);
  3039. INIT_LIST_HEAD(&obj->gtt_list);
  3040. INIT_LIST_HEAD(&obj->ring_list);
  3041. INIT_LIST_HEAD(&obj->exec_list);
  3042. obj->ops = ops;
  3043. obj->fence_reg = I915_FENCE_REG_NONE;
  3044. obj->madv = I915_MADV_WILLNEED;
  3045. /* Avoid an unnecessary call to unbind on the first bind. */
  3046. obj->map_and_fenceable = true;
  3047. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3048. }
  3049. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3050. .get_pages = i915_gem_object_get_pages_gtt,
  3051. .put_pages = i915_gem_object_put_pages_gtt,
  3052. };
  3053. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3054. size_t size)
  3055. {
  3056. struct drm_i915_gem_object *obj;
  3057. struct address_space *mapping;
  3058. u32 mask;
  3059. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3060. if (obj == NULL)
  3061. return NULL;
  3062. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3063. kfree(obj);
  3064. return NULL;
  3065. }
  3066. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3067. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3068. /* 965gm cannot relocate objects above 4GiB. */
  3069. mask &= ~__GFP_HIGHMEM;
  3070. mask |= __GFP_DMA32;
  3071. }
  3072. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3073. mapping_set_gfp_mask(mapping, mask);
  3074. i915_gem_object_init(obj, &i915_gem_object_ops);
  3075. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3076. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3077. if (HAS_LLC(dev)) {
  3078. /* On some devices, we can have the GPU use the LLC (the CPU
  3079. * cache) for about a 10% performance improvement
  3080. * compared to uncached. Graphics requests other than
  3081. * display scanout are coherent with the CPU in
  3082. * accessing this cache. This means in this mode we
  3083. * don't need to clflush on the CPU side, and on the
  3084. * GPU side we only need to flush internal caches to
  3085. * get data visible to the CPU.
  3086. *
  3087. * However, we maintain the display planes as UC, and so
  3088. * need to rebind when first used as such.
  3089. */
  3090. obj->cache_level = I915_CACHE_LLC;
  3091. } else
  3092. obj->cache_level = I915_CACHE_NONE;
  3093. return obj;
  3094. }
  3095. int i915_gem_init_object(struct drm_gem_object *obj)
  3096. {
  3097. BUG();
  3098. return 0;
  3099. }
  3100. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3101. {
  3102. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3103. struct drm_device *dev = obj->base.dev;
  3104. drm_i915_private_t *dev_priv = dev->dev_private;
  3105. trace_i915_gem_object_destroy(obj);
  3106. if (obj->phys_obj)
  3107. i915_gem_detach_phys_object(dev, obj);
  3108. obj->pin_count = 0;
  3109. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  3110. bool was_interruptible;
  3111. was_interruptible = dev_priv->mm.interruptible;
  3112. dev_priv->mm.interruptible = false;
  3113. WARN_ON(i915_gem_object_unbind(obj));
  3114. dev_priv->mm.interruptible = was_interruptible;
  3115. }
  3116. obj->pages_pin_count = 0;
  3117. i915_gem_object_put_pages(obj);
  3118. i915_gem_object_free_mmap_offset(obj);
  3119. BUG_ON(obj->pages);
  3120. if (obj->base.import_attach)
  3121. drm_prime_gem_destroy(&obj->base, NULL);
  3122. drm_gem_object_release(&obj->base);
  3123. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3124. kfree(obj->bit_17);
  3125. kfree(obj);
  3126. }
  3127. int
  3128. i915_gem_idle(struct drm_device *dev)
  3129. {
  3130. drm_i915_private_t *dev_priv = dev->dev_private;
  3131. int ret;
  3132. mutex_lock(&dev->struct_mutex);
  3133. if (dev_priv->mm.suspended) {
  3134. mutex_unlock(&dev->struct_mutex);
  3135. return 0;
  3136. }
  3137. ret = i915_gpu_idle(dev);
  3138. if (ret) {
  3139. mutex_unlock(&dev->struct_mutex);
  3140. return ret;
  3141. }
  3142. i915_gem_retire_requests(dev);
  3143. /* Under UMS, be paranoid and evict. */
  3144. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3145. i915_gem_evict_everything(dev);
  3146. i915_gem_reset_fences(dev);
  3147. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3148. * We need to replace this with a semaphore, or something.
  3149. * And not confound mm.suspended!
  3150. */
  3151. dev_priv->mm.suspended = 1;
  3152. del_timer_sync(&dev_priv->hangcheck_timer);
  3153. i915_kernel_lost_context(dev);
  3154. i915_gem_cleanup_ringbuffer(dev);
  3155. mutex_unlock(&dev->struct_mutex);
  3156. /* Cancel the retire work handler, which should be idle now. */
  3157. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3158. return 0;
  3159. }
  3160. void i915_gem_l3_remap(struct drm_device *dev)
  3161. {
  3162. drm_i915_private_t *dev_priv = dev->dev_private;
  3163. u32 misccpctl;
  3164. int i;
  3165. if (!IS_IVYBRIDGE(dev))
  3166. return;
  3167. if (!dev_priv->l3_parity.remap_info)
  3168. return;
  3169. misccpctl = I915_READ(GEN7_MISCCPCTL);
  3170. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  3171. POSTING_READ(GEN7_MISCCPCTL);
  3172. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3173. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  3174. if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
  3175. DRM_DEBUG("0x%x was already programmed to %x\n",
  3176. GEN7_L3LOG_BASE + i, remap);
  3177. if (remap && !dev_priv->l3_parity.remap_info[i/4])
  3178. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  3179. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
  3180. }
  3181. /* Make sure all the writes land before disabling dop clock gating */
  3182. POSTING_READ(GEN7_L3LOG_BASE);
  3183. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3184. }
  3185. void i915_gem_init_swizzling(struct drm_device *dev)
  3186. {
  3187. drm_i915_private_t *dev_priv = dev->dev_private;
  3188. if (INTEL_INFO(dev)->gen < 5 ||
  3189. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3190. return;
  3191. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3192. DISP_TILE_SURFACE_SWIZZLING);
  3193. if (IS_GEN5(dev))
  3194. return;
  3195. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3196. if (IS_GEN6(dev))
  3197. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3198. else
  3199. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3200. }
  3201. static bool
  3202. intel_enable_blt(struct drm_device *dev)
  3203. {
  3204. if (!HAS_BLT(dev))
  3205. return false;
  3206. /* The blitter was dysfunctional on early prototypes */
  3207. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3208. DRM_INFO("BLT not supported on this pre-production hardware;"
  3209. " graphics performance will be degraded.\n");
  3210. return false;
  3211. }
  3212. return true;
  3213. }
  3214. int
  3215. i915_gem_init_hw(struct drm_device *dev)
  3216. {
  3217. drm_i915_private_t *dev_priv = dev->dev_private;
  3218. int ret;
  3219. if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
  3220. return -EIO;
  3221. if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
  3222. I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
  3223. i915_gem_l3_remap(dev);
  3224. i915_gem_init_swizzling(dev);
  3225. ret = intel_init_render_ring_buffer(dev);
  3226. if (ret)
  3227. return ret;
  3228. if (HAS_BSD(dev)) {
  3229. ret = intel_init_bsd_ring_buffer(dev);
  3230. if (ret)
  3231. goto cleanup_render_ring;
  3232. }
  3233. if (intel_enable_blt(dev)) {
  3234. ret = intel_init_blt_ring_buffer(dev);
  3235. if (ret)
  3236. goto cleanup_bsd_ring;
  3237. }
  3238. dev_priv->next_seqno = 1;
  3239. /*
  3240. * XXX: There was some w/a described somewhere suggesting loading
  3241. * contexts before PPGTT.
  3242. */
  3243. i915_gem_context_init(dev);
  3244. i915_gem_init_ppgtt(dev);
  3245. return 0;
  3246. cleanup_bsd_ring:
  3247. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3248. cleanup_render_ring:
  3249. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3250. return ret;
  3251. }
  3252. static bool
  3253. intel_enable_ppgtt(struct drm_device *dev)
  3254. {
  3255. if (i915_enable_ppgtt >= 0)
  3256. return i915_enable_ppgtt;
  3257. #ifdef CONFIG_INTEL_IOMMU
  3258. /* Disable ppgtt on SNB if VT-d is on. */
  3259. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  3260. return false;
  3261. #endif
  3262. return true;
  3263. }
  3264. int i915_gem_init(struct drm_device *dev)
  3265. {
  3266. struct drm_i915_private *dev_priv = dev->dev_private;
  3267. unsigned long gtt_size, mappable_size;
  3268. int ret;
  3269. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  3270. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  3271. mutex_lock(&dev->struct_mutex);
  3272. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  3273. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  3274. * aperture accordingly when using aliasing ppgtt. */
  3275. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  3276. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  3277. ret = i915_gem_init_aliasing_ppgtt(dev);
  3278. if (ret) {
  3279. mutex_unlock(&dev->struct_mutex);
  3280. return ret;
  3281. }
  3282. } else {
  3283. /* Let GEM Manage all of the aperture.
  3284. *
  3285. * However, leave one page at the end still bound to the scratch
  3286. * page. There are a number of places where the hardware
  3287. * apparently prefetches past the end of the object, and we've
  3288. * seen multiple hangs with the GPU head pointer stuck in a
  3289. * batchbuffer bound at the last page of the aperture. One page
  3290. * should be enough to keep any prefetching inside of the
  3291. * aperture.
  3292. */
  3293. i915_gem_init_global_gtt(dev, 0, mappable_size,
  3294. gtt_size);
  3295. }
  3296. ret = i915_gem_init_hw(dev);
  3297. mutex_unlock(&dev->struct_mutex);
  3298. if (ret) {
  3299. i915_gem_cleanup_aliasing_ppgtt(dev);
  3300. return ret;
  3301. }
  3302. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3303. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3304. dev_priv->dri1.allow_batchbuffer = 1;
  3305. return 0;
  3306. }
  3307. void
  3308. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3309. {
  3310. drm_i915_private_t *dev_priv = dev->dev_private;
  3311. struct intel_ring_buffer *ring;
  3312. int i;
  3313. for_each_ring(ring, dev_priv, i)
  3314. intel_cleanup_ring_buffer(ring);
  3315. }
  3316. int
  3317. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3318. struct drm_file *file_priv)
  3319. {
  3320. drm_i915_private_t *dev_priv = dev->dev_private;
  3321. int ret;
  3322. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3323. return 0;
  3324. if (atomic_read(&dev_priv->mm.wedged)) {
  3325. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3326. atomic_set(&dev_priv->mm.wedged, 0);
  3327. }
  3328. mutex_lock(&dev->struct_mutex);
  3329. dev_priv->mm.suspended = 0;
  3330. ret = i915_gem_init_hw(dev);
  3331. if (ret != 0) {
  3332. mutex_unlock(&dev->struct_mutex);
  3333. return ret;
  3334. }
  3335. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3336. mutex_unlock(&dev->struct_mutex);
  3337. ret = drm_irq_install(dev);
  3338. if (ret)
  3339. goto cleanup_ringbuffer;
  3340. return 0;
  3341. cleanup_ringbuffer:
  3342. mutex_lock(&dev->struct_mutex);
  3343. i915_gem_cleanup_ringbuffer(dev);
  3344. dev_priv->mm.suspended = 1;
  3345. mutex_unlock(&dev->struct_mutex);
  3346. return ret;
  3347. }
  3348. int
  3349. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3350. struct drm_file *file_priv)
  3351. {
  3352. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3353. return 0;
  3354. drm_irq_uninstall(dev);
  3355. return i915_gem_idle(dev);
  3356. }
  3357. void
  3358. i915_gem_lastclose(struct drm_device *dev)
  3359. {
  3360. int ret;
  3361. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3362. return;
  3363. ret = i915_gem_idle(dev);
  3364. if (ret)
  3365. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3366. }
  3367. static void
  3368. init_ring_lists(struct intel_ring_buffer *ring)
  3369. {
  3370. INIT_LIST_HEAD(&ring->active_list);
  3371. INIT_LIST_HEAD(&ring->request_list);
  3372. }
  3373. void
  3374. i915_gem_load(struct drm_device *dev)
  3375. {
  3376. int i;
  3377. drm_i915_private_t *dev_priv = dev->dev_private;
  3378. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3379. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3380. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3381. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3382. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3383. for (i = 0; i < I915_NUM_RINGS; i++)
  3384. init_ring_lists(&dev_priv->ring[i]);
  3385. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3386. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3387. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3388. i915_gem_retire_work_handler);
  3389. init_completion(&dev_priv->error_completion);
  3390. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3391. if (IS_GEN3(dev)) {
  3392. I915_WRITE(MI_ARB_STATE,
  3393. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3394. }
  3395. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3396. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3397. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3398. dev_priv->fence_reg_start = 3;
  3399. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3400. dev_priv->num_fence_regs = 16;
  3401. else
  3402. dev_priv->num_fence_regs = 8;
  3403. /* Initialize fence registers to zero */
  3404. i915_gem_reset_fences(dev);
  3405. i915_gem_detect_bit_6_swizzle(dev);
  3406. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3407. dev_priv->mm.interruptible = true;
  3408. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3409. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3410. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3411. }
  3412. /*
  3413. * Create a physically contiguous memory object for this object
  3414. * e.g. for cursor + overlay regs
  3415. */
  3416. static int i915_gem_init_phys_object(struct drm_device *dev,
  3417. int id, int size, int align)
  3418. {
  3419. drm_i915_private_t *dev_priv = dev->dev_private;
  3420. struct drm_i915_gem_phys_object *phys_obj;
  3421. int ret;
  3422. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3423. return 0;
  3424. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3425. if (!phys_obj)
  3426. return -ENOMEM;
  3427. phys_obj->id = id;
  3428. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3429. if (!phys_obj->handle) {
  3430. ret = -ENOMEM;
  3431. goto kfree_obj;
  3432. }
  3433. #ifdef CONFIG_X86
  3434. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3435. #endif
  3436. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3437. return 0;
  3438. kfree_obj:
  3439. kfree(phys_obj);
  3440. return ret;
  3441. }
  3442. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3443. {
  3444. drm_i915_private_t *dev_priv = dev->dev_private;
  3445. struct drm_i915_gem_phys_object *phys_obj;
  3446. if (!dev_priv->mm.phys_objs[id - 1])
  3447. return;
  3448. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3449. if (phys_obj->cur_obj) {
  3450. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3451. }
  3452. #ifdef CONFIG_X86
  3453. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3454. #endif
  3455. drm_pci_free(dev, phys_obj->handle);
  3456. kfree(phys_obj);
  3457. dev_priv->mm.phys_objs[id - 1] = NULL;
  3458. }
  3459. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3460. {
  3461. int i;
  3462. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3463. i915_gem_free_phys_object(dev, i);
  3464. }
  3465. void i915_gem_detach_phys_object(struct drm_device *dev,
  3466. struct drm_i915_gem_object *obj)
  3467. {
  3468. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3469. char *vaddr;
  3470. int i;
  3471. int page_count;
  3472. if (!obj->phys_obj)
  3473. return;
  3474. vaddr = obj->phys_obj->handle->vaddr;
  3475. page_count = obj->base.size / PAGE_SIZE;
  3476. for (i = 0; i < page_count; i++) {
  3477. struct page *page = shmem_read_mapping_page(mapping, i);
  3478. if (!IS_ERR(page)) {
  3479. char *dst = kmap_atomic(page);
  3480. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3481. kunmap_atomic(dst);
  3482. drm_clflush_pages(&page, 1);
  3483. set_page_dirty(page);
  3484. mark_page_accessed(page);
  3485. page_cache_release(page);
  3486. }
  3487. }
  3488. i915_gem_chipset_flush(dev);
  3489. obj->phys_obj->cur_obj = NULL;
  3490. obj->phys_obj = NULL;
  3491. }
  3492. int
  3493. i915_gem_attach_phys_object(struct drm_device *dev,
  3494. struct drm_i915_gem_object *obj,
  3495. int id,
  3496. int align)
  3497. {
  3498. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3499. drm_i915_private_t *dev_priv = dev->dev_private;
  3500. int ret = 0;
  3501. int page_count;
  3502. int i;
  3503. if (id > I915_MAX_PHYS_OBJECT)
  3504. return -EINVAL;
  3505. if (obj->phys_obj) {
  3506. if (obj->phys_obj->id == id)
  3507. return 0;
  3508. i915_gem_detach_phys_object(dev, obj);
  3509. }
  3510. /* create a new object */
  3511. if (!dev_priv->mm.phys_objs[id - 1]) {
  3512. ret = i915_gem_init_phys_object(dev, id,
  3513. obj->base.size, align);
  3514. if (ret) {
  3515. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3516. id, obj->base.size);
  3517. return ret;
  3518. }
  3519. }
  3520. /* bind to the object */
  3521. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3522. obj->phys_obj->cur_obj = obj;
  3523. page_count = obj->base.size / PAGE_SIZE;
  3524. for (i = 0; i < page_count; i++) {
  3525. struct page *page;
  3526. char *dst, *src;
  3527. page = shmem_read_mapping_page(mapping, i);
  3528. if (IS_ERR(page))
  3529. return PTR_ERR(page);
  3530. src = kmap_atomic(page);
  3531. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3532. memcpy(dst, src, PAGE_SIZE);
  3533. kunmap_atomic(src);
  3534. mark_page_accessed(page);
  3535. page_cache_release(page);
  3536. }
  3537. return 0;
  3538. }
  3539. static int
  3540. i915_gem_phys_pwrite(struct drm_device *dev,
  3541. struct drm_i915_gem_object *obj,
  3542. struct drm_i915_gem_pwrite *args,
  3543. struct drm_file *file_priv)
  3544. {
  3545. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3546. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3547. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3548. unsigned long unwritten;
  3549. /* The physical object once assigned is fixed for the lifetime
  3550. * of the obj, so we can safely drop the lock and continue
  3551. * to access vaddr.
  3552. */
  3553. mutex_unlock(&dev->struct_mutex);
  3554. unwritten = copy_from_user(vaddr, user_data, args->size);
  3555. mutex_lock(&dev->struct_mutex);
  3556. if (unwritten)
  3557. return -EFAULT;
  3558. }
  3559. i915_gem_chipset_flush(dev);
  3560. return 0;
  3561. }
  3562. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3563. {
  3564. struct drm_i915_file_private *file_priv = file->driver_priv;
  3565. /* Clean up our request list when the client is going away, so that
  3566. * later retire_requests won't dereference our soon-to-be-gone
  3567. * file_priv.
  3568. */
  3569. spin_lock(&file_priv->mm.lock);
  3570. while (!list_empty(&file_priv->mm.request_list)) {
  3571. struct drm_i915_gem_request *request;
  3572. request = list_first_entry(&file_priv->mm.request_list,
  3573. struct drm_i915_gem_request,
  3574. client_list);
  3575. list_del(&request->client_list);
  3576. request->file_priv = NULL;
  3577. }
  3578. spin_unlock(&file_priv->mm.lock);
  3579. }
  3580. static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
  3581. {
  3582. if (!mutex_is_locked(mutex))
  3583. return false;
  3584. #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
  3585. return mutex->owner == task;
  3586. #else
  3587. /* Since UP may be pre-empted, we cannot assume that we own the lock */
  3588. return false;
  3589. #endif
  3590. }
  3591. static int
  3592. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3593. {
  3594. struct drm_i915_private *dev_priv =
  3595. container_of(shrinker,
  3596. struct drm_i915_private,
  3597. mm.inactive_shrinker);
  3598. struct drm_device *dev = dev_priv->dev;
  3599. struct drm_i915_gem_object *obj;
  3600. int nr_to_scan = sc->nr_to_scan;
  3601. bool unlock = true;
  3602. int cnt;
  3603. if (!mutex_trylock(&dev->struct_mutex)) {
  3604. if (!mutex_is_locked_by(&dev->struct_mutex, current))
  3605. return 0;
  3606. unlock = false;
  3607. }
  3608. if (nr_to_scan) {
  3609. nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
  3610. if (nr_to_scan > 0)
  3611. i915_gem_shrink_all(dev_priv);
  3612. }
  3613. cnt = 0;
  3614. list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
  3615. if (obj->pages_pin_count == 0)
  3616. cnt += obj->base.size >> PAGE_SHIFT;
  3617. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  3618. if (obj->pin_count == 0 && obj->pages_pin_count == 0)
  3619. cnt += obj->base.size >> PAGE_SHIFT;
  3620. if (unlock)
  3621. mutex_unlock(&dev->struct_mutex);
  3622. return cnt;
  3623. }