sched.c 188 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <asm/tlb.h>
  68. #include <asm/irq_regs.h>
  69. /*
  70. * Scheduler clock - returns current time in nanosec units.
  71. * This is default implementation.
  72. * Architectures and sub-architectures can override this.
  73. */
  74. unsigned long long __attribute__((weak)) sched_clock(void)
  75. {
  76. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  77. }
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. #ifdef CONFIG_SMP
  108. /*
  109. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  110. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  111. */
  112. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  113. {
  114. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  115. }
  116. /*
  117. * Each time a sched group cpu_power is changed,
  118. * we must compute its reciprocal value
  119. */
  120. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  121. {
  122. sg->__cpu_power += val;
  123. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  124. }
  125. #endif
  126. static inline int rt_policy(int policy)
  127. {
  128. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  129. return 1;
  130. return 0;
  131. }
  132. static inline int task_has_rt_policy(struct task_struct *p)
  133. {
  134. return rt_policy(p->policy);
  135. }
  136. /*
  137. * This is the priority-queue data structure of the RT scheduling class:
  138. */
  139. struct rt_prio_array {
  140. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  141. struct list_head queue[MAX_RT_PRIO];
  142. };
  143. #ifdef CONFIG_FAIR_GROUP_SCHED
  144. #include <linux/cgroup.h>
  145. struct cfs_rq;
  146. /* task group related information */
  147. struct task_group {
  148. #ifdef CONFIG_FAIR_CGROUP_SCHED
  149. struct cgroup_subsys_state css;
  150. #endif
  151. /* schedulable entities of this group on each cpu */
  152. struct sched_entity **se;
  153. /* runqueue "owned" by this group on each cpu */
  154. struct cfs_rq **cfs_rq;
  155. /*
  156. * shares assigned to a task group governs how much of cpu bandwidth
  157. * is allocated to the group. The more shares a group has, the more is
  158. * the cpu bandwidth allocated to it.
  159. *
  160. * For ex, lets say that there are three task groups, A, B and C which
  161. * have been assigned shares 1000, 2000 and 3000 respectively. Then,
  162. * cpu bandwidth allocated by the scheduler to task groups A, B and C
  163. * should be:
  164. *
  165. * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
  166. * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
  167. * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
  168. *
  169. * The weight assigned to a task group's schedulable entities on every
  170. * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
  171. * group's shares. For ex: lets say that task group A has been
  172. * assigned shares of 1000 and there are two CPUs in a system. Then,
  173. *
  174. * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
  175. *
  176. * Note: It's not necessary that each of a task's group schedulable
  177. * entity have the same weight on all CPUs. If the group
  178. * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
  179. * better distribution of weight could be:
  180. *
  181. * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
  182. * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
  183. *
  184. * rebalance_shares() is responsible for distributing the shares of a
  185. * task groups like this among the group's schedulable entities across
  186. * cpus.
  187. *
  188. */
  189. unsigned long shares;
  190. struct rcu_head rcu;
  191. };
  192. /* Default task group's sched entity on each cpu */
  193. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  194. /* Default task group's cfs_rq on each cpu */
  195. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  196. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  197. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  198. /* task_group_mutex serializes add/remove of task groups and also changes to
  199. * a task group's cpu shares.
  200. */
  201. static DEFINE_MUTEX(task_group_mutex);
  202. /* doms_cur_mutex serializes access to doms_cur[] array */
  203. static DEFINE_MUTEX(doms_cur_mutex);
  204. #ifdef CONFIG_SMP
  205. /* kernel thread that runs rebalance_shares() periodically */
  206. static struct task_struct *lb_monitor_task;
  207. static int load_balance_monitor(void *unused);
  208. #endif
  209. static void set_se_shares(struct sched_entity *se, unsigned long shares);
  210. /* Default task group.
  211. * Every task in system belong to this group at bootup.
  212. */
  213. struct task_group init_task_group = {
  214. .se = init_sched_entity_p,
  215. .cfs_rq = init_cfs_rq_p,
  216. };
  217. #ifdef CONFIG_FAIR_USER_SCHED
  218. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  219. #else
  220. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  221. #endif
  222. #define MIN_GROUP_SHARES 2
  223. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  224. /* return group to which a task belongs */
  225. static inline struct task_group *task_group(struct task_struct *p)
  226. {
  227. struct task_group *tg;
  228. #ifdef CONFIG_FAIR_USER_SCHED
  229. tg = p->user->tg;
  230. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  231. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  232. struct task_group, css);
  233. #else
  234. tg = &init_task_group;
  235. #endif
  236. return tg;
  237. }
  238. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  239. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
  240. {
  241. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  242. p->se.parent = task_group(p)->se[cpu];
  243. }
  244. static inline void lock_task_group_list(void)
  245. {
  246. mutex_lock(&task_group_mutex);
  247. }
  248. static inline void unlock_task_group_list(void)
  249. {
  250. mutex_unlock(&task_group_mutex);
  251. }
  252. static inline void lock_doms_cur(void)
  253. {
  254. mutex_lock(&doms_cur_mutex);
  255. }
  256. static inline void unlock_doms_cur(void)
  257. {
  258. mutex_unlock(&doms_cur_mutex);
  259. }
  260. #else
  261. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
  262. static inline void lock_task_group_list(void) { }
  263. static inline void unlock_task_group_list(void) { }
  264. static inline void lock_doms_cur(void) { }
  265. static inline void unlock_doms_cur(void) { }
  266. #endif /* CONFIG_FAIR_GROUP_SCHED */
  267. /* CFS-related fields in a runqueue */
  268. struct cfs_rq {
  269. struct load_weight load;
  270. unsigned long nr_running;
  271. u64 exec_clock;
  272. u64 min_vruntime;
  273. struct rb_root tasks_timeline;
  274. struct rb_node *rb_leftmost;
  275. struct rb_node *rb_load_balance_curr;
  276. /* 'curr' points to currently running entity on this cfs_rq.
  277. * It is set to NULL otherwise (i.e when none are currently running).
  278. */
  279. struct sched_entity *curr;
  280. unsigned long nr_spread_over;
  281. #ifdef CONFIG_FAIR_GROUP_SCHED
  282. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  283. /*
  284. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  285. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  286. * (like users, containers etc.)
  287. *
  288. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  289. * list is used during load balance.
  290. */
  291. struct list_head leaf_cfs_rq_list;
  292. struct task_group *tg; /* group that "owns" this runqueue */
  293. #endif
  294. };
  295. /* Real-Time classes' related field in a runqueue: */
  296. struct rt_rq {
  297. struct rt_prio_array active;
  298. int rt_load_balance_idx;
  299. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  300. unsigned long rt_nr_running;
  301. unsigned long rt_nr_migratory;
  302. /* highest queued rt task prio */
  303. int highest_prio;
  304. int overloaded;
  305. };
  306. #ifdef CONFIG_SMP
  307. /*
  308. * We add the notion of a root-domain which will be used to define per-domain
  309. * variables. Each exclusive cpuset essentially defines an island domain by
  310. * fully partitioning the member cpus from any other cpuset. Whenever a new
  311. * exclusive cpuset is created, we also create and attach a new root-domain
  312. * object.
  313. *
  314. */
  315. struct root_domain {
  316. atomic_t refcount;
  317. cpumask_t span;
  318. cpumask_t online;
  319. /*
  320. * The "RT overload" flag: it gets set if a CPU has more than
  321. * one runnable RT task.
  322. */
  323. cpumask_t rto_mask;
  324. atomic_t rto_count;
  325. };
  326. /*
  327. * By default the system creates a single root-domain with all cpus as
  328. * members (mimicking the global state we have today).
  329. */
  330. static struct root_domain def_root_domain;
  331. #endif
  332. /*
  333. * This is the main, per-CPU runqueue data structure.
  334. *
  335. * Locking rule: those places that want to lock multiple runqueues
  336. * (such as the load balancing or the thread migration code), lock
  337. * acquire operations must be ordered by ascending &runqueue.
  338. */
  339. struct rq {
  340. /* runqueue lock: */
  341. spinlock_t lock;
  342. /*
  343. * nr_running and cpu_load should be in the same cacheline because
  344. * remote CPUs use both these fields when doing load calculation.
  345. */
  346. unsigned long nr_running;
  347. #define CPU_LOAD_IDX_MAX 5
  348. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  349. unsigned char idle_at_tick;
  350. #ifdef CONFIG_NO_HZ
  351. unsigned char in_nohz_recently;
  352. #endif
  353. /* capture load from *all* tasks on this cpu: */
  354. struct load_weight load;
  355. unsigned long nr_load_updates;
  356. u64 nr_switches;
  357. struct cfs_rq cfs;
  358. #ifdef CONFIG_FAIR_GROUP_SCHED
  359. /* list of leaf cfs_rq on this cpu: */
  360. struct list_head leaf_cfs_rq_list;
  361. #endif
  362. struct rt_rq rt;
  363. /*
  364. * This is part of a global counter where only the total sum
  365. * over all CPUs matters. A task can increase this counter on
  366. * one CPU and if it got migrated afterwards it may decrease
  367. * it on another CPU. Always updated under the runqueue lock:
  368. */
  369. unsigned long nr_uninterruptible;
  370. struct task_struct *curr, *idle;
  371. unsigned long next_balance;
  372. struct mm_struct *prev_mm;
  373. u64 clock, prev_clock_raw;
  374. s64 clock_max_delta;
  375. unsigned int clock_warps, clock_overflows;
  376. u64 idle_clock;
  377. unsigned int clock_deep_idle_events;
  378. u64 tick_timestamp;
  379. atomic_t nr_iowait;
  380. #ifdef CONFIG_SMP
  381. struct root_domain *rd;
  382. struct sched_domain *sd;
  383. /* For active balancing */
  384. int active_balance;
  385. int push_cpu;
  386. /* cpu of this runqueue: */
  387. int cpu;
  388. struct task_struct *migration_thread;
  389. struct list_head migration_queue;
  390. #endif
  391. #ifdef CONFIG_SCHEDSTATS
  392. /* latency stats */
  393. struct sched_info rq_sched_info;
  394. /* sys_sched_yield() stats */
  395. unsigned int yld_exp_empty;
  396. unsigned int yld_act_empty;
  397. unsigned int yld_both_empty;
  398. unsigned int yld_count;
  399. /* schedule() stats */
  400. unsigned int sched_switch;
  401. unsigned int sched_count;
  402. unsigned int sched_goidle;
  403. /* try_to_wake_up() stats */
  404. unsigned int ttwu_count;
  405. unsigned int ttwu_local;
  406. /* BKL stats */
  407. unsigned int bkl_count;
  408. #endif
  409. struct lock_class_key rq_lock_key;
  410. };
  411. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  412. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  413. {
  414. rq->curr->sched_class->check_preempt_curr(rq, p);
  415. }
  416. static inline int cpu_of(struct rq *rq)
  417. {
  418. #ifdef CONFIG_SMP
  419. return rq->cpu;
  420. #else
  421. return 0;
  422. #endif
  423. }
  424. /*
  425. * Update the per-runqueue clock, as finegrained as the platform can give
  426. * us, but without assuming monotonicity, etc.:
  427. */
  428. static void __update_rq_clock(struct rq *rq)
  429. {
  430. u64 prev_raw = rq->prev_clock_raw;
  431. u64 now = sched_clock();
  432. s64 delta = now - prev_raw;
  433. u64 clock = rq->clock;
  434. #ifdef CONFIG_SCHED_DEBUG
  435. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  436. #endif
  437. /*
  438. * Protect against sched_clock() occasionally going backwards:
  439. */
  440. if (unlikely(delta < 0)) {
  441. clock++;
  442. rq->clock_warps++;
  443. } else {
  444. /*
  445. * Catch too large forward jumps too:
  446. */
  447. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  448. if (clock < rq->tick_timestamp + TICK_NSEC)
  449. clock = rq->tick_timestamp + TICK_NSEC;
  450. else
  451. clock++;
  452. rq->clock_overflows++;
  453. } else {
  454. if (unlikely(delta > rq->clock_max_delta))
  455. rq->clock_max_delta = delta;
  456. clock += delta;
  457. }
  458. }
  459. rq->prev_clock_raw = now;
  460. rq->clock = clock;
  461. }
  462. static void update_rq_clock(struct rq *rq)
  463. {
  464. if (likely(smp_processor_id() == cpu_of(rq)))
  465. __update_rq_clock(rq);
  466. }
  467. /*
  468. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  469. * See detach_destroy_domains: synchronize_sched for details.
  470. *
  471. * The domain tree of any CPU may only be accessed from within
  472. * preempt-disabled sections.
  473. */
  474. #define for_each_domain(cpu, __sd) \
  475. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  476. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  477. #define this_rq() (&__get_cpu_var(runqueues))
  478. #define task_rq(p) cpu_rq(task_cpu(p))
  479. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  480. /*
  481. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  482. */
  483. #ifdef CONFIG_SCHED_DEBUG
  484. # define const_debug __read_mostly
  485. #else
  486. # define const_debug static const
  487. #endif
  488. /*
  489. * Debugging: various feature bits
  490. */
  491. enum {
  492. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  493. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  494. SCHED_FEAT_START_DEBIT = 4,
  495. SCHED_FEAT_TREE_AVG = 8,
  496. SCHED_FEAT_APPROX_AVG = 16,
  497. };
  498. const_debug unsigned int sysctl_sched_features =
  499. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  500. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  501. SCHED_FEAT_START_DEBIT * 1 |
  502. SCHED_FEAT_TREE_AVG * 0 |
  503. SCHED_FEAT_APPROX_AVG * 0;
  504. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  505. /*
  506. * Number of tasks to iterate in a single balance run.
  507. * Limited because this is done with IRQs disabled.
  508. */
  509. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  510. /*
  511. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  512. * clock constructed from sched_clock():
  513. */
  514. unsigned long long cpu_clock(int cpu)
  515. {
  516. unsigned long long now;
  517. unsigned long flags;
  518. struct rq *rq;
  519. local_irq_save(flags);
  520. rq = cpu_rq(cpu);
  521. /*
  522. * Only call sched_clock() if the scheduler has already been
  523. * initialized (some code might call cpu_clock() very early):
  524. */
  525. if (rq->idle)
  526. update_rq_clock(rq);
  527. now = rq->clock;
  528. local_irq_restore(flags);
  529. return now;
  530. }
  531. EXPORT_SYMBOL_GPL(cpu_clock);
  532. #ifndef prepare_arch_switch
  533. # define prepare_arch_switch(next) do { } while (0)
  534. #endif
  535. #ifndef finish_arch_switch
  536. # define finish_arch_switch(prev) do { } while (0)
  537. #endif
  538. static inline int task_current(struct rq *rq, struct task_struct *p)
  539. {
  540. return rq->curr == p;
  541. }
  542. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  543. static inline int task_running(struct rq *rq, struct task_struct *p)
  544. {
  545. return task_current(rq, p);
  546. }
  547. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  548. {
  549. }
  550. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  551. {
  552. #ifdef CONFIG_DEBUG_SPINLOCK
  553. /* this is a valid case when another task releases the spinlock */
  554. rq->lock.owner = current;
  555. #endif
  556. /*
  557. * If we are tracking spinlock dependencies then we have to
  558. * fix up the runqueue lock - which gets 'carried over' from
  559. * prev into current:
  560. */
  561. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  562. spin_unlock_irq(&rq->lock);
  563. }
  564. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  565. static inline int task_running(struct rq *rq, struct task_struct *p)
  566. {
  567. #ifdef CONFIG_SMP
  568. return p->oncpu;
  569. #else
  570. return task_current(rq, p);
  571. #endif
  572. }
  573. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  574. {
  575. #ifdef CONFIG_SMP
  576. /*
  577. * We can optimise this out completely for !SMP, because the
  578. * SMP rebalancing from interrupt is the only thing that cares
  579. * here.
  580. */
  581. next->oncpu = 1;
  582. #endif
  583. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  584. spin_unlock_irq(&rq->lock);
  585. #else
  586. spin_unlock(&rq->lock);
  587. #endif
  588. }
  589. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  590. {
  591. #ifdef CONFIG_SMP
  592. /*
  593. * After ->oncpu is cleared, the task can be moved to a different CPU.
  594. * We must ensure this doesn't happen until the switch is completely
  595. * finished.
  596. */
  597. smp_wmb();
  598. prev->oncpu = 0;
  599. #endif
  600. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  601. local_irq_enable();
  602. #endif
  603. }
  604. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  605. /*
  606. * __task_rq_lock - lock the runqueue a given task resides on.
  607. * Must be called interrupts disabled.
  608. */
  609. static inline struct rq *__task_rq_lock(struct task_struct *p)
  610. __acquires(rq->lock)
  611. {
  612. for (;;) {
  613. struct rq *rq = task_rq(p);
  614. spin_lock(&rq->lock);
  615. if (likely(rq == task_rq(p)))
  616. return rq;
  617. spin_unlock(&rq->lock);
  618. }
  619. }
  620. /*
  621. * task_rq_lock - lock the runqueue a given task resides on and disable
  622. * interrupts. Note the ordering: we can safely lookup the task_rq without
  623. * explicitly disabling preemption.
  624. */
  625. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  626. __acquires(rq->lock)
  627. {
  628. struct rq *rq;
  629. for (;;) {
  630. local_irq_save(*flags);
  631. rq = task_rq(p);
  632. spin_lock(&rq->lock);
  633. if (likely(rq == task_rq(p)))
  634. return rq;
  635. spin_unlock_irqrestore(&rq->lock, *flags);
  636. }
  637. }
  638. static void __task_rq_unlock(struct rq *rq)
  639. __releases(rq->lock)
  640. {
  641. spin_unlock(&rq->lock);
  642. }
  643. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  644. __releases(rq->lock)
  645. {
  646. spin_unlock_irqrestore(&rq->lock, *flags);
  647. }
  648. /*
  649. * this_rq_lock - lock this runqueue and disable interrupts.
  650. */
  651. static struct rq *this_rq_lock(void)
  652. __acquires(rq->lock)
  653. {
  654. struct rq *rq;
  655. local_irq_disable();
  656. rq = this_rq();
  657. spin_lock(&rq->lock);
  658. return rq;
  659. }
  660. /*
  661. * We are going deep-idle (irqs are disabled):
  662. */
  663. void sched_clock_idle_sleep_event(void)
  664. {
  665. struct rq *rq = cpu_rq(smp_processor_id());
  666. spin_lock(&rq->lock);
  667. __update_rq_clock(rq);
  668. spin_unlock(&rq->lock);
  669. rq->clock_deep_idle_events++;
  670. }
  671. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  672. /*
  673. * We just idled delta nanoseconds (called with irqs disabled):
  674. */
  675. void sched_clock_idle_wakeup_event(u64 delta_ns)
  676. {
  677. struct rq *rq = cpu_rq(smp_processor_id());
  678. u64 now = sched_clock();
  679. touch_softlockup_watchdog();
  680. rq->idle_clock += delta_ns;
  681. /*
  682. * Override the previous timestamp and ignore all
  683. * sched_clock() deltas that occured while we idled,
  684. * and use the PM-provided delta_ns to advance the
  685. * rq clock:
  686. */
  687. spin_lock(&rq->lock);
  688. rq->prev_clock_raw = now;
  689. rq->clock += delta_ns;
  690. spin_unlock(&rq->lock);
  691. }
  692. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  693. /*
  694. * resched_task - mark a task 'to be rescheduled now'.
  695. *
  696. * On UP this means the setting of the need_resched flag, on SMP it
  697. * might also involve a cross-CPU call to trigger the scheduler on
  698. * the target CPU.
  699. */
  700. #ifdef CONFIG_SMP
  701. #ifndef tsk_is_polling
  702. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  703. #endif
  704. static void resched_task(struct task_struct *p)
  705. {
  706. int cpu;
  707. assert_spin_locked(&task_rq(p)->lock);
  708. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  709. return;
  710. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  711. cpu = task_cpu(p);
  712. if (cpu == smp_processor_id())
  713. return;
  714. /* NEED_RESCHED must be visible before we test polling */
  715. smp_mb();
  716. if (!tsk_is_polling(p))
  717. smp_send_reschedule(cpu);
  718. }
  719. static void resched_cpu(int cpu)
  720. {
  721. struct rq *rq = cpu_rq(cpu);
  722. unsigned long flags;
  723. if (!spin_trylock_irqsave(&rq->lock, flags))
  724. return;
  725. resched_task(cpu_curr(cpu));
  726. spin_unlock_irqrestore(&rq->lock, flags);
  727. }
  728. #else
  729. static inline void resched_task(struct task_struct *p)
  730. {
  731. assert_spin_locked(&task_rq(p)->lock);
  732. set_tsk_need_resched(p);
  733. }
  734. #endif
  735. #if BITS_PER_LONG == 32
  736. # define WMULT_CONST (~0UL)
  737. #else
  738. # define WMULT_CONST (1UL << 32)
  739. #endif
  740. #define WMULT_SHIFT 32
  741. /*
  742. * Shift right and round:
  743. */
  744. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  745. static unsigned long
  746. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  747. struct load_weight *lw)
  748. {
  749. u64 tmp;
  750. if (unlikely(!lw->inv_weight))
  751. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  752. tmp = (u64)delta_exec * weight;
  753. /*
  754. * Check whether we'd overflow the 64-bit multiplication:
  755. */
  756. if (unlikely(tmp > WMULT_CONST))
  757. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  758. WMULT_SHIFT/2);
  759. else
  760. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  761. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  762. }
  763. static inline unsigned long
  764. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  765. {
  766. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  767. }
  768. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  769. {
  770. lw->weight += inc;
  771. }
  772. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  773. {
  774. lw->weight -= dec;
  775. }
  776. /*
  777. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  778. * of tasks with abnormal "nice" values across CPUs the contribution that
  779. * each task makes to its run queue's load is weighted according to its
  780. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  781. * scaled version of the new time slice allocation that they receive on time
  782. * slice expiry etc.
  783. */
  784. #define WEIGHT_IDLEPRIO 2
  785. #define WMULT_IDLEPRIO (1 << 31)
  786. /*
  787. * Nice levels are multiplicative, with a gentle 10% change for every
  788. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  789. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  790. * that remained on nice 0.
  791. *
  792. * The "10% effect" is relative and cumulative: from _any_ nice level,
  793. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  794. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  795. * If a task goes up by ~10% and another task goes down by ~10% then
  796. * the relative distance between them is ~25%.)
  797. */
  798. static const int prio_to_weight[40] = {
  799. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  800. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  801. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  802. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  803. /* 0 */ 1024, 820, 655, 526, 423,
  804. /* 5 */ 335, 272, 215, 172, 137,
  805. /* 10 */ 110, 87, 70, 56, 45,
  806. /* 15 */ 36, 29, 23, 18, 15,
  807. };
  808. /*
  809. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  810. *
  811. * In cases where the weight does not change often, we can use the
  812. * precalculated inverse to speed up arithmetics by turning divisions
  813. * into multiplications:
  814. */
  815. static const u32 prio_to_wmult[40] = {
  816. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  817. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  818. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  819. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  820. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  821. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  822. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  823. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  824. };
  825. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  826. /*
  827. * runqueue iterator, to support SMP load-balancing between different
  828. * scheduling classes, without having to expose their internal data
  829. * structures to the load-balancing proper:
  830. */
  831. struct rq_iterator {
  832. void *arg;
  833. struct task_struct *(*start)(void *);
  834. struct task_struct *(*next)(void *);
  835. };
  836. #ifdef CONFIG_SMP
  837. static unsigned long
  838. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  839. unsigned long max_load_move, struct sched_domain *sd,
  840. enum cpu_idle_type idle, int *all_pinned,
  841. int *this_best_prio, struct rq_iterator *iterator);
  842. static int
  843. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  844. struct sched_domain *sd, enum cpu_idle_type idle,
  845. struct rq_iterator *iterator);
  846. #endif
  847. #ifdef CONFIG_CGROUP_CPUACCT
  848. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  849. #else
  850. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  851. #endif
  852. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  853. {
  854. update_load_add(&rq->load, load);
  855. }
  856. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  857. {
  858. update_load_sub(&rq->load, load);
  859. }
  860. #ifdef CONFIG_SMP
  861. static unsigned long source_load(int cpu, int type);
  862. static unsigned long target_load(int cpu, int type);
  863. static unsigned long cpu_avg_load_per_task(int cpu);
  864. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  865. #endif /* CONFIG_SMP */
  866. #include "sched_stats.h"
  867. #include "sched_idletask.c"
  868. #include "sched_fair.c"
  869. #include "sched_rt.c"
  870. #ifdef CONFIG_SCHED_DEBUG
  871. # include "sched_debug.c"
  872. #endif
  873. #define sched_class_highest (&rt_sched_class)
  874. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  875. {
  876. rq->nr_running++;
  877. }
  878. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  879. {
  880. rq->nr_running--;
  881. }
  882. static void set_load_weight(struct task_struct *p)
  883. {
  884. if (task_has_rt_policy(p)) {
  885. p->se.load.weight = prio_to_weight[0] * 2;
  886. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  887. return;
  888. }
  889. /*
  890. * SCHED_IDLE tasks get minimal weight:
  891. */
  892. if (p->policy == SCHED_IDLE) {
  893. p->se.load.weight = WEIGHT_IDLEPRIO;
  894. p->se.load.inv_weight = WMULT_IDLEPRIO;
  895. return;
  896. }
  897. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  898. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  899. }
  900. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  901. {
  902. sched_info_queued(p);
  903. p->sched_class->enqueue_task(rq, p, wakeup);
  904. p->se.on_rq = 1;
  905. }
  906. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  907. {
  908. p->sched_class->dequeue_task(rq, p, sleep);
  909. p->se.on_rq = 0;
  910. }
  911. /*
  912. * __normal_prio - return the priority that is based on the static prio
  913. */
  914. static inline int __normal_prio(struct task_struct *p)
  915. {
  916. return p->static_prio;
  917. }
  918. /*
  919. * Calculate the expected normal priority: i.e. priority
  920. * without taking RT-inheritance into account. Might be
  921. * boosted by interactivity modifiers. Changes upon fork,
  922. * setprio syscalls, and whenever the interactivity
  923. * estimator recalculates.
  924. */
  925. static inline int normal_prio(struct task_struct *p)
  926. {
  927. int prio;
  928. if (task_has_rt_policy(p))
  929. prio = MAX_RT_PRIO-1 - p->rt_priority;
  930. else
  931. prio = __normal_prio(p);
  932. return prio;
  933. }
  934. /*
  935. * Calculate the current priority, i.e. the priority
  936. * taken into account by the scheduler. This value might
  937. * be boosted by RT tasks, or might be boosted by
  938. * interactivity modifiers. Will be RT if the task got
  939. * RT-boosted. If not then it returns p->normal_prio.
  940. */
  941. static int effective_prio(struct task_struct *p)
  942. {
  943. p->normal_prio = normal_prio(p);
  944. /*
  945. * If we are RT tasks or we were boosted to RT priority,
  946. * keep the priority unchanged. Otherwise, update priority
  947. * to the normal priority:
  948. */
  949. if (!rt_prio(p->prio))
  950. return p->normal_prio;
  951. return p->prio;
  952. }
  953. /*
  954. * activate_task - move a task to the runqueue.
  955. */
  956. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  957. {
  958. if (p->state == TASK_UNINTERRUPTIBLE)
  959. rq->nr_uninterruptible--;
  960. enqueue_task(rq, p, wakeup);
  961. inc_nr_running(p, rq);
  962. }
  963. /*
  964. * deactivate_task - remove a task from the runqueue.
  965. */
  966. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  967. {
  968. if (p->state == TASK_UNINTERRUPTIBLE)
  969. rq->nr_uninterruptible++;
  970. dequeue_task(rq, p, sleep);
  971. dec_nr_running(p, rq);
  972. }
  973. /**
  974. * task_curr - is this task currently executing on a CPU?
  975. * @p: the task in question.
  976. */
  977. inline int task_curr(const struct task_struct *p)
  978. {
  979. return cpu_curr(task_cpu(p)) == p;
  980. }
  981. /* Used instead of source_load when we know the type == 0 */
  982. unsigned long weighted_cpuload(const int cpu)
  983. {
  984. return cpu_rq(cpu)->load.weight;
  985. }
  986. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  987. {
  988. set_task_cfs_rq(p, cpu);
  989. #ifdef CONFIG_SMP
  990. /*
  991. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  992. * successfuly executed on another CPU. We must ensure that updates of
  993. * per-task data have been completed by this moment.
  994. */
  995. smp_wmb();
  996. task_thread_info(p)->cpu = cpu;
  997. #endif
  998. }
  999. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1000. const struct sched_class *prev_class,
  1001. int oldprio, int running)
  1002. {
  1003. if (prev_class != p->sched_class) {
  1004. if (prev_class->switched_from)
  1005. prev_class->switched_from(rq, p, running);
  1006. p->sched_class->switched_to(rq, p, running);
  1007. } else
  1008. p->sched_class->prio_changed(rq, p, oldprio, running);
  1009. }
  1010. #ifdef CONFIG_SMP
  1011. /*
  1012. * Is this task likely cache-hot:
  1013. */
  1014. static int
  1015. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1016. {
  1017. s64 delta;
  1018. if (p->sched_class != &fair_sched_class)
  1019. return 0;
  1020. if (sysctl_sched_migration_cost == -1)
  1021. return 1;
  1022. if (sysctl_sched_migration_cost == 0)
  1023. return 0;
  1024. delta = now - p->se.exec_start;
  1025. return delta < (s64)sysctl_sched_migration_cost;
  1026. }
  1027. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1028. {
  1029. int old_cpu = task_cpu(p);
  1030. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1031. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1032. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1033. u64 clock_offset;
  1034. clock_offset = old_rq->clock - new_rq->clock;
  1035. #ifdef CONFIG_SCHEDSTATS
  1036. if (p->se.wait_start)
  1037. p->se.wait_start -= clock_offset;
  1038. if (p->se.sleep_start)
  1039. p->se.sleep_start -= clock_offset;
  1040. if (p->se.block_start)
  1041. p->se.block_start -= clock_offset;
  1042. if (old_cpu != new_cpu) {
  1043. schedstat_inc(p, se.nr_migrations);
  1044. if (task_hot(p, old_rq->clock, NULL))
  1045. schedstat_inc(p, se.nr_forced2_migrations);
  1046. }
  1047. #endif
  1048. p->se.vruntime -= old_cfsrq->min_vruntime -
  1049. new_cfsrq->min_vruntime;
  1050. __set_task_cpu(p, new_cpu);
  1051. }
  1052. struct migration_req {
  1053. struct list_head list;
  1054. struct task_struct *task;
  1055. int dest_cpu;
  1056. struct completion done;
  1057. };
  1058. /*
  1059. * The task's runqueue lock must be held.
  1060. * Returns true if you have to wait for migration thread.
  1061. */
  1062. static int
  1063. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1064. {
  1065. struct rq *rq = task_rq(p);
  1066. /*
  1067. * If the task is not on a runqueue (and not running), then
  1068. * it is sufficient to simply update the task's cpu field.
  1069. */
  1070. if (!p->se.on_rq && !task_running(rq, p)) {
  1071. set_task_cpu(p, dest_cpu);
  1072. return 0;
  1073. }
  1074. init_completion(&req->done);
  1075. req->task = p;
  1076. req->dest_cpu = dest_cpu;
  1077. list_add(&req->list, &rq->migration_queue);
  1078. return 1;
  1079. }
  1080. /*
  1081. * wait_task_inactive - wait for a thread to unschedule.
  1082. *
  1083. * The caller must ensure that the task *will* unschedule sometime soon,
  1084. * else this function might spin for a *long* time. This function can't
  1085. * be called with interrupts off, or it may introduce deadlock with
  1086. * smp_call_function() if an IPI is sent by the same process we are
  1087. * waiting to become inactive.
  1088. */
  1089. void wait_task_inactive(struct task_struct *p)
  1090. {
  1091. unsigned long flags;
  1092. int running, on_rq;
  1093. struct rq *rq;
  1094. for (;;) {
  1095. /*
  1096. * We do the initial early heuristics without holding
  1097. * any task-queue locks at all. We'll only try to get
  1098. * the runqueue lock when things look like they will
  1099. * work out!
  1100. */
  1101. rq = task_rq(p);
  1102. /*
  1103. * If the task is actively running on another CPU
  1104. * still, just relax and busy-wait without holding
  1105. * any locks.
  1106. *
  1107. * NOTE! Since we don't hold any locks, it's not
  1108. * even sure that "rq" stays as the right runqueue!
  1109. * But we don't care, since "task_running()" will
  1110. * return false if the runqueue has changed and p
  1111. * is actually now running somewhere else!
  1112. */
  1113. while (task_running(rq, p))
  1114. cpu_relax();
  1115. /*
  1116. * Ok, time to look more closely! We need the rq
  1117. * lock now, to be *sure*. If we're wrong, we'll
  1118. * just go back and repeat.
  1119. */
  1120. rq = task_rq_lock(p, &flags);
  1121. running = task_running(rq, p);
  1122. on_rq = p->se.on_rq;
  1123. task_rq_unlock(rq, &flags);
  1124. /*
  1125. * Was it really running after all now that we
  1126. * checked with the proper locks actually held?
  1127. *
  1128. * Oops. Go back and try again..
  1129. */
  1130. if (unlikely(running)) {
  1131. cpu_relax();
  1132. continue;
  1133. }
  1134. /*
  1135. * It's not enough that it's not actively running,
  1136. * it must be off the runqueue _entirely_, and not
  1137. * preempted!
  1138. *
  1139. * So if it wa still runnable (but just not actively
  1140. * running right now), it's preempted, and we should
  1141. * yield - it could be a while.
  1142. */
  1143. if (unlikely(on_rq)) {
  1144. schedule_timeout_uninterruptible(1);
  1145. continue;
  1146. }
  1147. /*
  1148. * Ahh, all good. It wasn't running, and it wasn't
  1149. * runnable, which means that it will never become
  1150. * running in the future either. We're all done!
  1151. */
  1152. break;
  1153. }
  1154. }
  1155. /***
  1156. * kick_process - kick a running thread to enter/exit the kernel
  1157. * @p: the to-be-kicked thread
  1158. *
  1159. * Cause a process which is running on another CPU to enter
  1160. * kernel-mode, without any delay. (to get signals handled.)
  1161. *
  1162. * NOTE: this function doesnt have to take the runqueue lock,
  1163. * because all it wants to ensure is that the remote task enters
  1164. * the kernel. If the IPI races and the task has been migrated
  1165. * to another CPU then no harm is done and the purpose has been
  1166. * achieved as well.
  1167. */
  1168. void kick_process(struct task_struct *p)
  1169. {
  1170. int cpu;
  1171. preempt_disable();
  1172. cpu = task_cpu(p);
  1173. if ((cpu != smp_processor_id()) && task_curr(p))
  1174. smp_send_reschedule(cpu);
  1175. preempt_enable();
  1176. }
  1177. /*
  1178. * Return a low guess at the load of a migration-source cpu weighted
  1179. * according to the scheduling class and "nice" value.
  1180. *
  1181. * We want to under-estimate the load of migration sources, to
  1182. * balance conservatively.
  1183. */
  1184. static unsigned long source_load(int cpu, int type)
  1185. {
  1186. struct rq *rq = cpu_rq(cpu);
  1187. unsigned long total = weighted_cpuload(cpu);
  1188. if (type == 0)
  1189. return total;
  1190. return min(rq->cpu_load[type-1], total);
  1191. }
  1192. /*
  1193. * Return a high guess at the load of a migration-target cpu weighted
  1194. * according to the scheduling class and "nice" value.
  1195. */
  1196. static unsigned long target_load(int cpu, int type)
  1197. {
  1198. struct rq *rq = cpu_rq(cpu);
  1199. unsigned long total = weighted_cpuload(cpu);
  1200. if (type == 0)
  1201. return total;
  1202. return max(rq->cpu_load[type-1], total);
  1203. }
  1204. /*
  1205. * Return the average load per task on the cpu's run queue
  1206. */
  1207. static unsigned long cpu_avg_load_per_task(int cpu)
  1208. {
  1209. struct rq *rq = cpu_rq(cpu);
  1210. unsigned long total = weighted_cpuload(cpu);
  1211. unsigned long n = rq->nr_running;
  1212. return n ? total / n : SCHED_LOAD_SCALE;
  1213. }
  1214. /*
  1215. * find_idlest_group finds and returns the least busy CPU group within the
  1216. * domain.
  1217. */
  1218. static struct sched_group *
  1219. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1220. {
  1221. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1222. unsigned long min_load = ULONG_MAX, this_load = 0;
  1223. int load_idx = sd->forkexec_idx;
  1224. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1225. do {
  1226. unsigned long load, avg_load;
  1227. int local_group;
  1228. int i;
  1229. /* Skip over this group if it has no CPUs allowed */
  1230. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1231. continue;
  1232. local_group = cpu_isset(this_cpu, group->cpumask);
  1233. /* Tally up the load of all CPUs in the group */
  1234. avg_load = 0;
  1235. for_each_cpu_mask(i, group->cpumask) {
  1236. /* Bias balancing toward cpus of our domain */
  1237. if (local_group)
  1238. load = source_load(i, load_idx);
  1239. else
  1240. load = target_load(i, load_idx);
  1241. avg_load += load;
  1242. }
  1243. /* Adjust by relative CPU power of the group */
  1244. avg_load = sg_div_cpu_power(group,
  1245. avg_load * SCHED_LOAD_SCALE);
  1246. if (local_group) {
  1247. this_load = avg_load;
  1248. this = group;
  1249. } else if (avg_load < min_load) {
  1250. min_load = avg_load;
  1251. idlest = group;
  1252. }
  1253. } while (group = group->next, group != sd->groups);
  1254. if (!idlest || 100*this_load < imbalance*min_load)
  1255. return NULL;
  1256. return idlest;
  1257. }
  1258. /*
  1259. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1260. */
  1261. static int
  1262. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1263. {
  1264. cpumask_t tmp;
  1265. unsigned long load, min_load = ULONG_MAX;
  1266. int idlest = -1;
  1267. int i;
  1268. /* Traverse only the allowed CPUs */
  1269. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1270. for_each_cpu_mask(i, tmp) {
  1271. load = weighted_cpuload(i);
  1272. if (load < min_load || (load == min_load && i == this_cpu)) {
  1273. min_load = load;
  1274. idlest = i;
  1275. }
  1276. }
  1277. return idlest;
  1278. }
  1279. /*
  1280. * sched_balance_self: balance the current task (running on cpu) in domains
  1281. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1282. * SD_BALANCE_EXEC.
  1283. *
  1284. * Balance, ie. select the least loaded group.
  1285. *
  1286. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1287. *
  1288. * preempt must be disabled.
  1289. */
  1290. static int sched_balance_self(int cpu, int flag)
  1291. {
  1292. struct task_struct *t = current;
  1293. struct sched_domain *tmp, *sd = NULL;
  1294. for_each_domain(cpu, tmp) {
  1295. /*
  1296. * If power savings logic is enabled for a domain, stop there.
  1297. */
  1298. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1299. break;
  1300. if (tmp->flags & flag)
  1301. sd = tmp;
  1302. }
  1303. while (sd) {
  1304. cpumask_t span;
  1305. struct sched_group *group;
  1306. int new_cpu, weight;
  1307. if (!(sd->flags & flag)) {
  1308. sd = sd->child;
  1309. continue;
  1310. }
  1311. span = sd->span;
  1312. group = find_idlest_group(sd, t, cpu);
  1313. if (!group) {
  1314. sd = sd->child;
  1315. continue;
  1316. }
  1317. new_cpu = find_idlest_cpu(group, t, cpu);
  1318. if (new_cpu == -1 || new_cpu == cpu) {
  1319. /* Now try balancing at a lower domain level of cpu */
  1320. sd = sd->child;
  1321. continue;
  1322. }
  1323. /* Now try balancing at a lower domain level of new_cpu */
  1324. cpu = new_cpu;
  1325. sd = NULL;
  1326. weight = cpus_weight(span);
  1327. for_each_domain(cpu, tmp) {
  1328. if (weight <= cpus_weight(tmp->span))
  1329. break;
  1330. if (tmp->flags & flag)
  1331. sd = tmp;
  1332. }
  1333. /* while loop will break here if sd == NULL */
  1334. }
  1335. return cpu;
  1336. }
  1337. #endif /* CONFIG_SMP */
  1338. /***
  1339. * try_to_wake_up - wake up a thread
  1340. * @p: the to-be-woken-up thread
  1341. * @state: the mask of task states that can be woken
  1342. * @sync: do a synchronous wakeup?
  1343. *
  1344. * Put it on the run-queue if it's not already there. The "current"
  1345. * thread is always on the run-queue (except when the actual
  1346. * re-schedule is in progress), and as such you're allowed to do
  1347. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1348. * runnable without the overhead of this.
  1349. *
  1350. * returns failure only if the task is already active.
  1351. */
  1352. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1353. {
  1354. int cpu, orig_cpu, this_cpu, success = 0;
  1355. unsigned long flags;
  1356. long old_state;
  1357. struct rq *rq;
  1358. rq = task_rq_lock(p, &flags);
  1359. old_state = p->state;
  1360. if (!(old_state & state))
  1361. goto out;
  1362. if (p->se.on_rq)
  1363. goto out_running;
  1364. cpu = task_cpu(p);
  1365. orig_cpu = cpu;
  1366. this_cpu = smp_processor_id();
  1367. #ifdef CONFIG_SMP
  1368. if (unlikely(task_running(rq, p)))
  1369. goto out_activate;
  1370. cpu = p->sched_class->select_task_rq(p, sync);
  1371. if (cpu != orig_cpu) {
  1372. set_task_cpu(p, cpu);
  1373. task_rq_unlock(rq, &flags);
  1374. /* might preempt at this point */
  1375. rq = task_rq_lock(p, &flags);
  1376. old_state = p->state;
  1377. if (!(old_state & state))
  1378. goto out;
  1379. if (p->se.on_rq)
  1380. goto out_running;
  1381. this_cpu = smp_processor_id();
  1382. cpu = task_cpu(p);
  1383. }
  1384. #ifdef CONFIG_SCHEDSTATS
  1385. schedstat_inc(rq, ttwu_count);
  1386. if (cpu == this_cpu)
  1387. schedstat_inc(rq, ttwu_local);
  1388. else {
  1389. struct sched_domain *sd;
  1390. for_each_domain(this_cpu, sd) {
  1391. if (cpu_isset(cpu, sd->span)) {
  1392. schedstat_inc(sd, ttwu_wake_remote);
  1393. break;
  1394. }
  1395. }
  1396. }
  1397. #endif
  1398. out_activate:
  1399. #endif /* CONFIG_SMP */
  1400. schedstat_inc(p, se.nr_wakeups);
  1401. if (sync)
  1402. schedstat_inc(p, se.nr_wakeups_sync);
  1403. if (orig_cpu != cpu)
  1404. schedstat_inc(p, se.nr_wakeups_migrate);
  1405. if (cpu == this_cpu)
  1406. schedstat_inc(p, se.nr_wakeups_local);
  1407. else
  1408. schedstat_inc(p, se.nr_wakeups_remote);
  1409. update_rq_clock(rq);
  1410. activate_task(rq, p, 1);
  1411. check_preempt_curr(rq, p);
  1412. success = 1;
  1413. out_running:
  1414. p->state = TASK_RUNNING;
  1415. #ifdef CONFIG_SMP
  1416. if (p->sched_class->task_wake_up)
  1417. p->sched_class->task_wake_up(rq, p);
  1418. #endif
  1419. out:
  1420. task_rq_unlock(rq, &flags);
  1421. return success;
  1422. }
  1423. int fastcall wake_up_process(struct task_struct *p)
  1424. {
  1425. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1426. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1427. }
  1428. EXPORT_SYMBOL(wake_up_process);
  1429. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1430. {
  1431. return try_to_wake_up(p, state, 0);
  1432. }
  1433. /*
  1434. * Perform scheduler related setup for a newly forked process p.
  1435. * p is forked by current.
  1436. *
  1437. * __sched_fork() is basic setup used by init_idle() too:
  1438. */
  1439. static void __sched_fork(struct task_struct *p)
  1440. {
  1441. p->se.exec_start = 0;
  1442. p->se.sum_exec_runtime = 0;
  1443. p->se.prev_sum_exec_runtime = 0;
  1444. #ifdef CONFIG_SCHEDSTATS
  1445. p->se.wait_start = 0;
  1446. p->se.sum_sleep_runtime = 0;
  1447. p->se.sleep_start = 0;
  1448. p->se.block_start = 0;
  1449. p->se.sleep_max = 0;
  1450. p->se.block_max = 0;
  1451. p->se.exec_max = 0;
  1452. p->se.slice_max = 0;
  1453. p->se.wait_max = 0;
  1454. #endif
  1455. INIT_LIST_HEAD(&p->run_list);
  1456. p->se.on_rq = 0;
  1457. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1458. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1459. #endif
  1460. /*
  1461. * We mark the process as running here, but have not actually
  1462. * inserted it onto the runqueue yet. This guarantees that
  1463. * nobody will actually run it, and a signal or other external
  1464. * event cannot wake it up and insert it on the runqueue either.
  1465. */
  1466. p->state = TASK_RUNNING;
  1467. }
  1468. /*
  1469. * fork()/clone()-time setup:
  1470. */
  1471. void sched_fork(struct task_struct *p, int clone_flags)
  1472. {
  1473. int cpu = get_cpu();
  1474. __sched_fork(p);
  1475. #ifdef CONFIG_SMP
  1476. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1477. #endif
  1478. set_task_cpu(p, cpu);
  1479. /*
  1480. * Make sure we do not leak PI boosting priority to the child:
  1481. */
  1482. p->prio = current->normal_prio;
  1483. if (!rt_prio(p->prio))
  1484. p->sched_class = &fair_sched_class;
  1485. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1486. if (likely(sched_info_on()))
  1487. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1488. #endif
  1489. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1490. p->oncpu = 0;
  1491. #endif
  1492. #ifdef CONFIG_PREEMPT
  1493. /* Want to start with kernel preemption disabled. */
  1494. task_thread_info(p)->preempt_count = 1;
  1495. #endif
  1496. put_cpu();
  1497. }
  1498. /*
  1499. * wake_up_new_task - wake up a newly created task for the first time.
  1500. *
  1501. * This function will do some initial scheduler statistics housekeeping
  1502. * that must be done for every newly created context, then puts the task
  1503. * on the runqueue and wakes it.
  1504. */
  1505. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1506. {
  1507. unsigned long flags;
  1508. struct rq *rq;
  1509. rq = task_rq_lock(p, &flags);
  1510. BUG_ON(p->state != TASK_RUNNING);
  1511. update_rq_clock(rq);
  1512. p->prio = effective_prio(p);
  1513. if (!p->sched_class->task_new || !current->se.on_rq) {
  1514. activate_task(rq, p, 0);
  1515. } else {
  1516. /*
  1517. * Let the scheduling class do new task startup
  1518. * management (if any):
  1519. */
  1520. p->sched_class->task_new(rq, p);
  1521. inc_nr_running(p, rq);
  1522. }
  1523. check_preempt_curr(rq, p);
  1524. #ifdef CONFIG_SMP
  1525. if (p->sched_class->task_wake_up)
  1526. p->sched_class->task_wake_up(rq, p);
  1527. #endif
  1528. task_rq_unlock(rq, &flags);
  1529. }
  1530. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1531. /**
  1532. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1533. * @notifier: notifier struct to register
  1534. */
  1535. void preempt_notifier_register(struct preempt_notifier *notifier)
  1536. {
  1537. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1538. }
  1539. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1540. /**
  1541. * preempt_notifier_unregister - no longer interested in preemption notifications
  1542. * @notifier: notifier struct to unregister
  1543. *
  1544. * This is safe to call from within a preemption notifier.
  1545. */
  1546. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1547. {
  1548. hlist_del(&notifier->link);
  1549. }
  1550. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1551. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1552. {
  1553. struct preempt_notifier *notifier;
  1554. struct hlist_node *node;
  1555. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1556. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1557. }
  1558. static void
  1559. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1560. struct task_struct *next)
  1561. {
  1562. struct preempt_notifier *notifier;
  1563. struct hlist_node *node;
  1564. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1565. notifier->ops->sched_out(notifier, next);
  1566. }
  1567. #else
  1568. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1569. {
  1570. }
  1571. static void
  1572. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1573. struct task_struct *next)
  1574. {
  1575. }
  1576. #endif
  1577. /**
  1578. * prepare_task_switch - prepare to switch tasks
  1579. * @rq: the runqueue preparing to switch
  1580. * @prev: the current task that is being switched out
  1581. * @next: the task we are going to switch to.
  1582. *
  1583. * This is called with the rq lock held and interrupts off. It must
  1584. * be paired with a subsequent finish_task_switch after the context
  1585. * switch.
  1586. *
  1587. * prepare_task_switch sets up locking and calls architecture specific
  1588. * hooks.
  1589. */
  1590. static inline void
  1591. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1592. struct task_struct *next)
  1593. {
  1594. fire_sched_out_preempt_notifiers(prev, next);
  1595. prepare_lock_switch(rq, next);
  1596. prepare_arch_switch(next);
  1597. }
  1598. /**
  1599. * finish_task_switch - clean up after a task-switch
  1600. * @rq: runqueue associated with task-switch
  1601. * @prev: the thread we just switched away from.
  1602. *
  1603. * finish_task_switch must be called after the context switch, paired
  1604. * with a prepare_task_switch call before the context switch.
  1605. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1606. * and do any other architecture-specific cleanup actions.
  1607. *
  1608. * Note that we may have delayed dropping an mm in context_switch(). If
  1609. * so, we finish that here outside of the runqueue lock. (Doing it
  1610. * with the lock held can cause deadlocks; see schedule() for
  1611. * details.)
  1612. */
  1613. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1614. __releases(rq->lock)
  1615. {
  1616. struct mm_struct *mm = rq->prev_mm;
  1617. long prev_state;
  1618. rq->prev_mm = NULL;
  1619. /*
  1620. * A task struct has one reference for the use as "current".
  1621. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1622. * schedule one last time. The schedule call will never return, and
  1623. * the scheduled task must drop that reference.
  1624. * The test for TASK_DEAD must occur while the runqueue locks are
  1625. * still held, otherwise prev could be scheduled on another cpu, die
  1626. * there before we look at prev->state, and then the reference would
  1627. * be dropped twice.
  1628. * Manfred Spraul <manfred@colorfullife.com>
  1629. */
  1630. prev_state = prev->state;
  1631. finish_arch_switch(prev);
  1632. finish_lock_switch(rq, prev);
  1633. #ifdef CONFIG_SMP
  1634. if (current->sched_class->post_schedule)
  1635. current->sched_class->post_schedule(rq);
  1636. #endif
  1637. fire_sched_in_preempt_notifiers(current);
  1638. if (mm)
  1639. mmdrop(mm);
  1640. if (unlikely(prev_state == TASK_DEAD)) {
  1641. /*
  1642. * Remove function-return probe instances associated with this
  1643. * task and put them back on the free list.
  1644. */
  1645. kprobe_flush_task(prev);
  1646. put_task_struct(prev);
  1647. }
  1648. }
  1649. /**
  1650. * schedule_tail - first thing a freshly forked thread must call.
  1651. * @prev: the thread we just switched away from.
  1652. */
  1653. asmlinkage void schedule_tail(struct task_struct *prev)
  1654. __releases(rq->lock)
  1655. {
  1656. struct rq *rq = this_rq();
  1657. finish_task_switch(rq, prev);
  1658. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1659. /* In this case, finish_task_switch does not reenable preemption */
  1660. preempt_enable();
  1661. #endif
  1662. if (current->set_child_tid)
  1663. put_user(task_pid_vnr(current), current->set_child_tid);
  1664. }
  1665. /*
  1666. * context_switch - switch to the new MM and the new
  1667. * thread's register state.
  1668. */
  1669. static inline void
  1670. context_switch(struct rq *rq, struct task_struct *prev,
  1671. struct task_struct *next)
  1672. {
  1673. struct mm_struct *mm, *oldmm;
  1674. prepare_task_switch(rq, prev, next);
  1675. mm = next->mm;
  1676. oldmm = prev->active_mm;
  1677. /*
  1678. * For paravirt, this is coupled with an exit in switch_to to
  1679. * combine the page table reload and the switch backend into
  1680. * one hypercall.
  1681. */
  1682. arch_enter_lazy_cpu_mode();
  1683. if (unlikely(!mm)) {
  1684. next->active_mm = oldmm;
  1685. atomic_inc(&oldmm->mm_count);
  1686. enter_lazy_tlb(oldmm, next);
  1687. } else
  1688. switch_mm(oldmm, mm, next);
  1689. if (unlikely(!prev->mm)) {
  1690. prev->active_mm = NULL;
  1691. rq->prev_mm = oldmm;
  1692. }
  1693. /*
  1694. * Since the runqueue lock will be released by the next
  1695. * task (which is an invalid locking op but in the case
  1696. * of the scheduler it's an obvious special-case), so we
  1697. * do an early lockdep release here:
  1698. */
  1699. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1700. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1701. #endif
  1702. /* Here we just switch the register state and the stack. */
  1703. switch_to(prev, next, prev);
  1704. barrier();
  1705. /*
  1706. * this_rq must be evaluated again because prev may have moved
  1707. * CPUs since it called schedule(), thus the 'rq' on its stack
  1708. * frame will be invalid.
  1709. */
  1710. finish_task_switch(this_rq(), prev);
  1711. }
  1712. /*
  1713. * nr_running, nr_uninterruptible and nr_context_switches:
  1714. *
  1715. * externally visible scheduler statistics: current number of runnable
  1716. * threads, current number of uninterruptible-sleeping threads, total
  1717. * number of context switches performed since bootup.
  1718. */
  1719. unsigned long nr_running(void)
  1720. {
  1721. unsigned long i, sum = 0;
  1722. for_each_online_cpu(i)
  1723. sum += cpu_rq(i)->nr_running;
  1724. return sum;
  1725. }
  1726. unsigned long nr_uninterruptible(void)
  1727. {
  1728. unsigned long i, sum = 0;
  1729. for_each_possible_cpu(i)
  1730. sum += cpu_rq(i)->nr_uninterruptible;
  1731. /*
  1732. * Since we read the counters lockless, it might be slightly
  1733. * inaccurate. Do not allow it to go below zero though:
  1734. */
  1735. if (unlikely((long)sum < 0))
  1736. sum = 0;
  1737. return sum;
  1738. }
  1739. unsigned long long nr_context_switches(void)
  1740. {
  1741. int i;
  1742. unsigned long long sum = 0;
  1743. for_each_possible_cpu(i)
  1744. sum += cpu_rq(i)->nr_switches;
  1745. return sum;
  1746. }
  1747. unsigned long nr_iowait(void)
  1748. {
  1749. unsigned long i, sum = 0;
  1750. for_each_possible_cpu(i)
  1751. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1752. return sum;
  1753. }
  1754. unsigned long nr_active(void)
  1755. {
  1756. unsigned long i, running = 0, uninterruptible = 0;
  1757. for_each_online_cpu(i) {
  1758. running += cpu_rq(i)->nr_running;
  1759. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1760. }
  1761. if (unlikely((long)uninterruptible < 0))
  1762. uninterruptible = 0;
  1763. return running + uninterruptible;
  1764. }
  1765. /*
  1766. * Update rq->cpu_load[] statistics. This function is usually called every
  1767. * scheduler tick (TICK_NSEC).
  1768. */
  1769. static void update_cpu_load(struct rq *this_rq)
  1770. {
  1771. unsigned long this_load = this_rq->load.weight;
  1772. int i, scale;
  1773. this_rq->nr_load_updates++;
  1774. /* Update our load: */
  1775. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1776. unsigned long old_load, new_load;
  1777. /* scale is effectively 1 << i now, and >> i divides by scale */
  1778. old_load = this_rq->cpu_load[i];
  1779. new_load = this_load;
  1780. /*
  1781. * Round up the averaging division if load is increasing. This
  1782. * prevents us from getting stuck on 9 if the load is 10, for
  1783. * example.
  1784. */
  1785. if (new_load > old_load)
  1786. new_load += scale-1;
  1787. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1788. }
  1789. }
  1790. #ifdef CONFIG_SMP
  1791. /*
  1792. * double_rq_lock - safely lock two runqueues
  1793. *
  1794. * Note this does not disable interrupts like task_rq_lock,
  1795. * you need to do so manually before calling.
  1796. */
  1797. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1798. __acquires(rq1->lock)
  1799. __acquires(rq2->lock)
  1800. {
  1801. BUG_ON(!irqs_disabled());
  1802. if (rq1 == rq2) {
  1803. spin_lock(&rq1->lock);
  1804. __acquire(rq2->lock); /* Fake it out ;) */
  1805. } else {
  1806. if (rq1 < rq2) {
  1807. spin_lock(&rq1->lock);
  1808. spin_lock(&rq2->lock);
  1809. } else {
  1810. spin_lock(&rq2->lock);
  1811. spin_lock(&rq1->lock);
  1812. }
  1813. }
  1814. update_rq_clock(rq1);
  1815. update_rq_clock(rq2);
  1816. }
  1817. /*
  1818. * double_rq_unlock - safely unlock two runqueues
  1819. *
  1820. * Note this does not restore interrupts like task_rq_unlock,
  1821. * you need to do so manually after calling.
  1822. */
  1823. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1824. __releases(rq1->lock)
  1825. __releases(rq2->lock)
  1826. {
  1827. spin_unlock(&rq1->lock);
  1828. if (rq1 != rq2)
  1829. spin_unlock(&rq2->lock);
  1830. else
  1831. __release(rq2->lock);
  1832. }
  1833. /*
  1834. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1835. */
  1836. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1837. __releases(this_rq->lock)
  1838. __acquires(busiest->lock)
  1839. __acquires(this_rq->lock)
  1840. {
  1841. int ret = 0;
  1842. if (unlikely(!irqs_disabled())) {
  1843. /* printk() doesn't work good under rq->lock */
  1844. spin_unlock(&this_rq->lock);
  1845. BUG_ON(1);
  1846. }
  1847. if (unlikely(!spin_trylock(&busiest->lock))) {
  1848. if (busiest < this_rq) {
  1849. spin_unlock(&this_rq->lock);
  1850. spin_lock(&busiest->lock);
  1851. spin_lock(&this_rq->lock);
  1852. ret = 1;
  1853. } else
  1854. spin_lock(&busiest->lock);
  1855. }
  1856. return ret;
  1857. }
  1858. /*
  1859. * If dest_cpu is allowed for this process, migrate the task to it.
  1860. * This is accomplished by forcing the cpu_allowed mask to only
  1861. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1862. * the cpu_allowed mask is restored.
  1863. */
  1864. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1865. {
  1866. struct migration_req req;
  1867. unsigned long flags;
  1868. struct rq *rq;
  1869. rq = task_rq_lock(p, &flags);
  1870. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1871. || unlikely(cpu_is_offline(dest_cpu)))
  1872. goto out;
  1873. /* force the process onto the specified CPU */
  1874. if (migrate_task(p, dest_cpu, &req)) {
  1875. /* Need to wait for migration thread (might exit: take ref). */
  1876. struct task_struct *mt = rq->migration_thread;
  1877. get_task_struct(mt);
  1878. task_rq_unlock(rq, &flags);
  1879. wake_up_process(mt);
  1880. put_task_struct(mt);
  1881. wait_for_completion(&req.done);
  1882. return;
  1883. }
  1884. out:
  1885. task_rq_unlock(rq, &flags);
  1886. }
  1887. /*
  1888. * sched_exec - execve() is a valuable balancing opportunity, because at
  1889. * this point the task has the smallest effective memory and cache footprint.
  1890. */
  1891. void sched_exec(void)
  1892. {
  1893. int new_cpu, this_cpu = get_cpu();
  1894. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1895. put_cpu();
  1896. if (new_cpu != this_cpu)
  1897. sched_migrate_task(current, new_cpu);
  1898. }
  1899. /*
  1900. * pull_task - move a task from a remote runqueue to the local runqueue.
  1901. * Both runqueues must be locked.
  1902. */
  1903. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1904. struct rq *this_rq, int this_cpu)
  1905. {
  1906. deactivate_task(src_rq, p, 0);
  1907. set_task_cpu(p, this_cpu);
  1908. activate_task(this_rq, p, 0);
  1909. /*
  1910. * Note that idle threads have a prio of MAX_PRIO, for this test
  1911. * to be always true for them.
  1912. */
  1913. check_preempt_curr(this_rq, p);
  1914. }
  1915. /*
  1916. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1917. */
  1918. static
  1919. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1920. struct sched_domain *sd, enum cpu_idle_type idle,
  1921. int *all_pinned)
  1922. {
  1923. /*
  1924. * We do not migrate tasks that are:
  1925. * 1) running (obviously), or
  1926. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1927. * 3) are cache-hot on their current CPU.
  1928. */
  1929. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1930. schedstat_inc(p, se.nr_failed_migrations_affine);
  1931. return 0;
  1932. }
  1933. *all_pinned = 0;
  1934. if (task_running(rq, p)) {
  1935. schedstat_inc(p, se.nr_failed_migrations_running);
  1936. return 0;
  1937. }
  1938. /*
  1939. * Aggressive migration if:
  1940. * 1) task is cache cold, or
  1941. * 2) too many balance attempts have failed.
  1942. */
  1943. if (!task_hot(p, rq->clock, sd) ||
  1944. sd->nr_balance_failed > sd->cache_nice_tries) {
  1945. #ifdef CONFIG_SCHEDSTATS
  1946. if (task_hot(p, rq->clock, sd)) {
  1947. schedstat_inc(sd, lb_hot_gained[idle]);
  1948. schedstat_inc(p, se.nr_forced_migrations);
  1949. }
  1950. #endif
  1951. return 1;
  1952. }
  1953. if (task_hot(p, rq->clock, sd)) {
  1954. schedstat_inc(p, se.nr_failed_migrations_hot);
  1955. return 0;
  1956. }
  1957. return 1;
  1958. }
  1959. static unsigned long
  1960. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1961. unsigned long max_load_move, struct sched_domain *sd,
  1962. enum cpu_idle_type idle, int *all_pinned,
  1963. int *this_best_prio, struct rq_iterator *iterator)
  1964. {
  1965. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  1966. struct task_struct *p;
  1967. long rem_load_move = max_load_move;
  1968. if (max_load_move == 0)
  1969. goto out;
  1970. pinned = 1;
  1971. /*
  1972. * Start the load-balancing iterator:
  1973. */
  1974. p = iterator->start(iterator->arg);
  1975. next:
  1976. if (!p || loops++ > sysctl_sched_nr_migrate)
  1977. goto out;
  1978. /*
  1979. * To help distribute high priority tasks across CPUs we don't
  1980. * skip a task if it will be the highest priority task (i.e. smallest
  1981. * prio value) on its new queue regardless of its load weight
  1982. */
  1983. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1984. SCHED_LOAD_SCALE_FUZZ;
  1985. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1986. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1987. p = iterator->next(iterator->arg);
  1988. goto next;
  1989. }
  1990. pull_task(busiest, p, this_rq, this_cpu);
  1991. pulled++;
  1992. rem_load_move -= p->se.load.weight;
  1993. /*
  1994. * We only want to steal up to the prescribed amount of weighted load.
  1995. */
  1996. if (rem_load_move > 0) {
  1997. if (p->prio < *this_best_prio)
  1998. *this_best_prio = p->prio;
  1999. p = iterator->next(iterator->arg);
  2000. goto next;
  2001. }
  2002. out:
  2003. /*
  2004. * Right now, this is one of only two places pull_task() is called,
  2005. * so we can safely collect pull_task() stats here rather than
  2006. * inside pull_task().
  2007. */
  2008. schedstat_add(sd, lb_gained[idle], pulled);
  2009. if (all_pinned)
  2010. *all_pinned = pinned;
  2011. return max_load_move - rem_load_move;
  2012. }
  2013. /*
  2014. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2015. * this_rq, as part of a balancing operation within domain "sd".
  2016. * Returns 1 if successful and 0 otherwise.
  2017. *
  2018. * Called with both runqueues locked.
  2019. */
  2020. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2021. unsigned long max_load_move,
  2022. struct sched_domain *sd, enum cpu_idle_type idle,
  2023. int *all_pinned)
  2024. {
  2025. const struct sched_class *class = sched_class_highest;
  2026. unsigned long total_load_moved = 0;
  2027. int this_best_prio = this_rq->curr->prio;
  2028. do {
  2029. total_load_moved +=
  2030. class->load_balance(this_rq, this_cpu, busiest,
  2031. max_load_move - total_load_moved,
  2032. sd, idle, all_pinned, &this_best_prio);
  2033. class = class->next;
  2034. } while (class && max_load_move > total_load_moved);
  2035. return total_load_moved > 0;
  2036. }
  2037. static int
  2038. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2039. struct sched_domain *sd, enum cpu_idle_type idle,
  2040. struct rq_iterator *iterator)
  2041. {
  2042. struct task_struct *p = iterator->start(iterator->arg);
  2043. int pinned = 0;
  2044. while (p) {
  2045. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2046. pull_task(busiest, p, this_rq, this_cpu);
  2047. /*
  2048. * Right now, this is only the second place pull_task()
  2049. * is called, so we can safely collect pull_task()
  2050. * stats here rather than inside pull_task().
  2051. */
  2052. schedstat_inc(sd, lb_gained[idle]);
  2053. return 1;
  2054. }
  2055. p = iterator->next(iterator->arg);
  2056. }
  2057. return 0;
  2058. }
  2059. /*
  2060. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2061. * part of active balancing operations within "domain".
  2062. * Returns 1 if successful and 0 otherwise.
  2063. *
  2064. * Called with both runqueues locked.
  2065. */
  2066. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2067. struct sched_domain *sd, enum cpu_idle_type idle)
  2068. {
  2069. const struct sched_class *class;
  2070. for (class = sched_class_highest; class; class = class->next)
  2071. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2072. return 1;
  2073. return 0;
  2074. }
  2075. /*
  2076. * find_busiest_group finds and returns the busiest CPU group within the
  2077. * domain. It calculates and returns the amount of weighted load which
  2078. * should be moved to restore balance via the imbalance parameter.
  2079. */
  2080. static struct sched_group *
  2081. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2082. unsigned long *imbalance, enum cpu_idle_type idle,
  2083. int *sd_idle, cpumask_t *cpus, int *balance)
  2084. {
  2085. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2086. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2087. unsigned long max_pull;
  2088. unsigned long busiest_load_per_task, busiest_nr_running;
  2089. unsigned long this_load_per_task, this_nr_running;
  2090. int load_idx, group_imb = 0;
  2091. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2092. int power_savings_balance = 1;
  2093. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2094. unsigned long min_nr_running = ULONG_MAX;
  2095. struct sched_group *group_min = NULL, *group_leader = NULL;
  2096. #endif
  2097. max_load = this_load = total_load = total_pwr = 0;
  2098. busiest_load_per_task = busiest_nr_running = 0;
  2099. this_load_per_task = this_nr_running = 0;
  2100. if (idle == CPU_NOT_IDLE)
  2101. load_idx = sd->busy_idx;
  2102. else if (idle == CPU_NEWLY_IDLE)
  2103. load_idx = sd->newidle_idx;
  2104. else
  2105. load_idx = sd->idle_idx;
  2106. do {
  2107. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2108. int local_group;
  2109. int i;
  2110. int __group_imb = 0;
  2111. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2112. unsigned long sum_nr_running, sum_weighted_load;
  2113. local_group = cpu_isset(this_cpu, group->cpumask);
  2114. if (local_group)
  2115. balance_cpu = first_cpu(group->cpumask);
  2116. /* Tally up the load of all CPUs in the group */
  2117. sum_weighted_load = sum_nr_running = avg_load = 0;
  2118. max_cpu_load = 0;
  2119. min_cpu_load = ~0UL;
  2120. for_each_cpu_mask(i, group->cpumask) {
  2121. struct rq *rq;
  2122. if (!cpu_isset(i, *cpus))
  2123. continue;
  2124. rq = cpu_rq(i);
  2125. if (*sd_idle && rq->nr_running)
  2126. *sd_idle = 0;
  2127. /* Bias balancing toward cpus of our domain */
  2128. if (local_group) {
  2129. if (idle_cpu(i) && !first_idle_cpu) {
  2130. first_idle_cpu = 1;
  2131. balance_cpu = i;
  2132. }
  2133. load = target_load(i, load_idx);
  2134. } else {
  2135. load = source_load(i, load_idx);
  2136. if (load > max_cpu_load)
  2137. max_cpu_load = load;
  2138. if (min_cpu_load > load)
  2139. min_cpu_load = load;
  2140. }
  2141. avg_load += load;
  2142. sum_nr_running += rq->nr_running;
  2143. sum_weighted_load += weighted_cpuload(i);
  2144. }
  2145. /*
  2146. * First idle cpu or the first cpu(busiest) in this sched group
  2147. * is eligible for doing load balancing at this and above
  2148. * domains. In the newly idle case, we will allow all the cpu's
  2149. * to do the newly idle load balance.
  2150. */
  2151. if (idle != CPU_NEWLY_IDLE && local_group &&
  2152. balance_cpu != this_cpu && balance) {
  2153. *balance = 0;
  2154. goto ret;
  2155. }
  2156. total_load += avg_load;
  2157. total_pwr += group->__cpu_power;
  2158. /* Adjust by relative CPU power of the group */
  2159. avg_load = sg_div_cpu_power(group,
  2160. avg_load * SCHED_LOAD_SCALE);
  2161. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2162. __group_imb = 1;
  2163. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2164. if (local_group) {
  2165. this_load = avg_load;
  2166. this = group;
  2167. this_nr_running = sum_nr_running;
  2168. this_load_per_task = sum_weighted_load;
  2169. } else if (avg_load > max_load &&
  2170. (sum_nr_running > group_capacity || __group_imb)) {
  2171. max_load = avg_load;
  2172. busiest = group;
  2173. busiest_nr_running = sum_nr_running;
  2174. busiest_load_per_task = sum_weighted_load;
  2175. group_imb = __group_imb;
  2176. }
  2177. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2178. /*
  2179. * Busy processors will not participate in power savings
  2180. * balance.
  2181. */
  2182. if (idle == CPU_NOT_IDLE ||
  2183. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2184. goto group_next;
  2185. /*
  2186. * If the local group is idle or completely loaded
  2187. * no need to do power savings balance at this domain
  2188. */
  2189. if (local_group && (this_nr_running >= group_capacity ||
  2190. !this_nr_running))
  2191. power_savings_balance = 0;
  2192. /*
  2193. * If a group is already running at full capacity or idle,
  2194. * don't include that group in power savings calculations
  2195. */
  2196. if (!power_savings_balance || sum_nr_running >= group_capacity
  2197. || !sum_nr_running)
  2198. goto group_next;
  2199. /*
  2200. * Calculate the group which has the least non-idle load.
  2201. * This is the group from where we need to pick up the load
  2202. * for saving power
  2203. */
  2204. if ((sum_nr_running < min_nr_running) ||
  2205. (sum_nr_running == min_nr_running &&
  2206. first_cpu(group->cpumask) <
  2207. first_cpu(group_min->cpumask))) {
  2208. group_min = group;
  2209. min_nr_running = sum_nr_running;
  2210. min_load_per_task = sum_weighted_load /
  2211. sum_nr_running;
  2212. }
  2213. /*
  2214. * Calculate the group which is almost near its
  2215. * capacity but still has some space to pick up some load
  2216. * from other group and save more power
  2217. */
  2218. if (sum_nr_running <= group_capacity - 1) {
  2219. if (sum_nr_running > leader_nr_running ||
  2220. (sum_nr_running == leader_nr_running &&
  2221. first_cpu(group->cpumask) >
  2222. first_cpu(group_leader->cpumask))) {
  2223. group_leader = group;
  2224. leader_nr_running = sum_nr_running;
  2225. }
  2226. }
  2227. group_next:
  2228. #endif
  2229. group = group->next;
  2230. } while (group != sd->groups);
  2231. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2232. goto out_balanced;
  2233. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2234. if (this_load >= avg_load ||
  2235. 100*max_load <= sd->imbalance_pct*this_load)
  2236. goto out_balanced;
  2237. busiest_load_per_task /= busiest_nr_running;
  2238. if (group_imb)
  2239. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2240. /*
  2241. * We're trying to get all the cpus to the average_load, so we don't
  2242. * want to push ourselves above the average load, nor do we wish to
  2243. * reduce the max loaded cpu below the average load, as either of these
  2244. * actions would just result in more rebalancing later, and ping-pong
  2245. * tasks around. Thus we look for the minimum possible imbalance.
  2246. * Negative imbalances (*we* are more loaded than anyone else) will
  2247. * be counted as no imbalance for these purposes -- we can't fix that
  2248. * by pulling tasks to us. Be careful of negative numbers as they'll
  2249. * appear as very large values with unsigned longs.
  2250. */
  2251. if (max_load <= busiest_load_per_task)
  2252. goto out_balanced;
  2253. /*
  2254. * In the presence of smp nice balancing, certain scenarios can have
  2255. * max load less than avg load(as we skip the groups at or below
  2256. * its cpu_power, while calculating max_load..)
  2257. */
  2258. if (max_load < avg_load) {
  2259. *imbalance = 0;
  2260. goto small_imbalance;
  2261. }
  2262. /* Don't want to pull so many tasks that a group would go idle */
  2263. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2264. /* How much load to actually move to equalise the imbalance */
  2265. *imbalance = min(max_pull * busiest->__cpu_power,
  2266. (avg_load - this_load) * this->__cpu_power)
  2267. / SCHED_LOAD_SCALE;
  2268. /*
  2269. * if *imbalance is less than the average load per runnable task
  2270. * there is no gaurantee that any tasks will be moved so we'll have
  2271. * a think about bumping its value to force at least one task to be
  2272. * moved
  2273. */
  2274. if (*imbalance < busiest_load_per_task) {
  2275. unsigned long tmp, pwr_now, pwr_move;
  2276. unsigned int imbn;
  2277. small_imbalance:
  2278. pwr_move = pwr_now = 0;
  2279. imbn = 2;
  2280. if (this_nr_running) {
  2281. this_load_per_task /= this_nr_running;
  2282. if (busiest_load_per_task > this_load_per_task)
  2283. imbn = 1;
  2284. } else
  2285. this_load_per_task = SCHED_LOAD_SCALE;
  2286. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2287. busiest_load_per_task * imbn) {
  2288. *imbalance = busiest_load_per_task;
  2289. return busiest;
  2290. }
  2291. /*
  2292. * OK, we don't have enough imbalance to justify moving tasks,
  2293. * however we may be able to increase total CPU power used by
  2294. * moving them.
  2295. */
  2296. pwr_now += busiest->__cpu_power *
  2297. min(busiest_load_per_task, max_load);
  2298. pwr_now += this->__cpu_power *
  2299. min(this_load_per_task, this_load);
  2300. pwr_now /= SCHED_LOAD_SCALE;
  2301. /* Amount of load we'd subtract */
  2302. tmp = sg_div_cpu_power(busiest,
  2303. busiest_load_per_task * SCHED_LOAD_SCALE);
  2304. if (max_load > tmp)
  2305. pwr_move += busiest->__cpu_power *
  2306. min(busiest_load_per_task, max_load - tmp);
  2307. /* Amount of load we'd add */
  2308. if (max_load * busiest->__cpu_power <
  2309. busiest_load_per_task * SCHED_LOAD_SCALE)
  2310. tmp = sg_div_cpu_power(this,
  2311. max_load * busiest->__cpu_power);
  2312. else
  2313. tmp = sg_div_cpu_power(this,
  2314. busiest_load_per_task * SCHED_LOAD_SCALE);
  2315. pwr_move += this->__cpu_power *
  2316. min(this_load_per_task, this_load + tmp);
  2317. pwr_move /= SCHED_LOAD_SCALE;
  2318. /* Move if we gain throughput */
  2319. if (pwr_move > pwr_now)
  2320. *imbalance = busiest_load_per_task;
  2321. }
  2322. return busiest;
  2323. out_balanced:
  2324. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2325. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2326. goto ret;
  2327. if (this == group_leader && group_leader != group_min) {
  2328. *imbalance = min_load_per_task;
  2329. return group_min;
  2330. }
  2331. #endif
  2332. ret:
  2333. *imbalance = 0;
  2334. return NULL;
  2335. }
  2336. /*
  2337. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2338. */
  2339. static struct rq *
  2340. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2341. unsigned long imbalance, cpumask_t *cpus)
  2342. {
  2343. struct rq *busiest = NULL, *rq;
  2344. unsigned long max_load = 0;
  2345. int i;
  2346. for_each_cpu_mask(i, group->cpumask) {
  2347. unsigned long wl;
  2348. if (!cpu_isset(i, *cpus))
  2349. continue;
  2350. rq = cpu_rq(i);
  2351. wl = weighted_cpuload(i);
  2352. if (rq->nr_running == 1 && wl > imbalance)
  2353. continue;
  2354. if (wl > max_load) {
  2355. max_load = wl;
  2356. busiest = rq;
  2357. }
  2358. }
  2359. return busiest;
  2360. }
  2361. /*
  2362. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2363. * so long as it is large enough.
  2364. */
  2365. #define MAX_PINNED_INTERVAL 512
  2366. /*
  2367. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2368. * tasks if there is an imbalance.
  2369. */
  2370. static int load_balance(int this_cpu, struct rq *this_rq,
  2371. struct sched_domain *sd, enum cpu_idle_type idle,
  2372. int *balance)
  2373. {
  2374. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2375. struct sched_group *group;
  2376. unsigned long imbalance;
  2377. struct rq *busiest;
  2378. cpumask_t cpus = CPU_MASK_ALL;
  2379. unsigned long flags;
  2380. /*
  2381. * When power savings policy is enabled for the parent domain, idle
  2382. * sibling can pick up load irrespective of busy siblings. In this case,
  2383. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2384. * portraying it as CPU_NOT_IDLE.
  2385. */
  2386. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2387. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2388. sd_idle = 1;
  2389. schedstat_inc(sd, lb_count[idle]);
  2390. redo:
  2391. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2392. &cpus, balance);
  2393. if (*balance == 0)
  2394. goto out_balanced;
  2395. if (!group) {
  2396. schedstat_inc(sd, lb_nobusyg[idle]);
  2397. goto out_balanced;
  2398. }
  2399. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2400. if (!busiest) {
  2401. schedstat_inc(sd, lb_nobusyq[idle]);
  2402. goto out_balanced;
  2403. }
  2404. BUG_ON(busiest == this_rq);
  2405. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2406. ld_moved = 0;
  2407. if (busiest->nr_running > 1) {
  2408. /*
  2409. * Attempt to move tasks. If find_busiest_group has found
  2410. * an imbalance but busiest->nr_running <= 1, the group is
  2411. * still unbalanced. ld_moved simply stays zero, so it is
  2412. * correctly treated as an imbalance.
  2413. */
  2414. local_irq_save(flags);
  2415. double_rq_lock(this_rq, busiest);
  2416. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2417. imbalance, sd, idle, &all_pinned);
  2418. double_rq_unlock(this_rq, busiest);
  2419. local_irq_restore(flags);
  2420. /*
  2421. * some other cpu did the load balance for us.
  2422. */
  2423. if (ld_moved && this_cpu != smp_processor_id())
  2424. resched_cpu(this_cpu);
  2425. /* All tasks on this runqueue were pinned by CPU affinity */
  2426. if (unlikely(all_pinned)) {
  2427. cpu_clear(cpu_of(busiest), cpus);
  2428. if (!cpus_empty(cpus))
  2429. goto redo;
  2430. goto out_balanced;
  2431. }
  2432. }
  2433. if (!ld_moved) {
  2434. schedstat_inc(sd, lb_failed[idle]);
  2435. sd->nr_balance_failed++;
  2436. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2437. spin_lock_irqsave(&busiest->lock, flags);
  2438. /* don't kick the migration_thread, if the curr
  2439. * task on busiest cpu can't be moved to this_cpu
  2440. */
  2441. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2442. spin_unlock_irqrestore(&busiest->lock, flags);
  2443. all_pinned = 1;
  2444. goto out_one_pinned;
  2445. }
  2446. if (!busiest->active_balance) {
  2447. busiest->active_balance = 1;
  2448. busiest->push_cpu = this_cpu;
  2449. active_balance = 1;
  2450. }
  2451. spin_unlock_irqrestore(&busiest->lock, flags);
  2452. if (active_balance)
  2453. wake_up_process(busiest->migration_thread);
  2454. /*
  2455. * We've kicked active balancing, reset the failure
  2456. * counter.
  2457. */
  2458. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2459. }
  2460. } else
  2461. sd->nr_balance_failed = 0;
  2462. if (likely(!active_balance)) {
  2463. /* We were unbalanced, so reset the balancing interval */
  2464. sd->balance_interval = sd->min_interval;
  2465. } else {
  2466. /*
  2467. * If we've begun active balancing, start to back off. This
  2468. * case may not be covered by the all_pinned logic if there
  2469. * is only 1 task on the busy runqueue (because we don't call
  2470. * move_tasks).
  2471. */
  2472. if (sd->balance_interval < sd->max_interval)
  2473. sd->balance_interval *= 2;
  2474. }
  2475. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2476. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2477. return -1;
  2478. return ld_moved;
  2479. out_balanced:
  2480. schedstat_inc(sd, lb_balanced[idle]);
  2481. sd->nr_balance_failed = 0;
  2482. out_one_pinned:
  2483. /* tune up the balancing interval */
  2484. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2485. (sd->balance_interval < sd->max_interval))
  2486. sd->balance_interval *= 2;
  2487. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2488. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2489. return -1;
  2490. return 0;
  2491. }
  2492. /*
  2493. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2494. * tasks if there is an imbalance.
  2495. *
  2496. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2497. * this_rq is locked.
  2498. */
  2499. static int
  2500. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2501. {
  2502. struct sched_group *group;
  2503. struct rq *busiest = NULL;
  2504. unsigned long imbalance;
  2505. int ld_moved = 0;
  2506. int sd_idle = 0;
  2507. int all_pinned = 0;
  2508. cpumask_t cpus = CPU_MASK_ALL;
  2509. /*
  2510. * When power savings policy is enabled for the parent domain, idle
  2511. * sibling can pick up load irrespective of busy siblings. In this case,
  2512. * let the state of idle sibling percolate up as IDLE, instead of
  2513. * portraying it as CPU_NOT_IDLE.
  2514. */
  2515. if (sd->flags & SD_SHARE_CPUPOWER &&
  2516. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2517. sd_idle = 1;
  2518. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2519. redo:
  2520. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2521. &sd_idle, &cpus, NULL);
  2522. if (!group) {
  2523. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2524. goto out_balanced;
  2525. }
  2526. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2527. &cpus);
  2528. if (!busiest) {
  2529. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2530. goto out_balanced;
  2531. }
  2532. BUG_ON(busiest == this_rq);
  2533. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2534. ld_moved = 0;
  2535. if (busiest->nr_running > 1) {
  2536. /* Attempt to move tasks */
  2537. double_lock_balance(this_rq, busiest);
  2538. /* this_rq->clock is already updated */
  2539. update_rq_clock(busiest);
  2540. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2541. imbalance, sd, CPU_NEWLY_IDLE,
  2542. &all_pinned);
  2543. spin_unlock(&busiest->lock);
  2544. if (unlikely(all_pinned)) {
  2545. cpu_clear(cpu_of(busiest), cpus);
  2546. if (!cpus_empty(cpus))
  2547. goto redo;
  2548. }
  2549. }
  2550. if (!ld_moved) {
  2551. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2552. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2553. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2554. return -1;
  2555. } else
  2556. sd->nr_balance_failed = 0;
  2557. return ld_moved;
  2558. out_balanced:
  2559. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2560. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2561. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2562. return -1;
  2563. sd->nr_balance_failed = 0;
  2564. return 0;
  2565. }
  2566. /*
  2567. * idle_balance is called by schedule() if this_cpu is about to become
  2568. * idle. Attempts to pull tasks from other CPUs.
  2569. */
  2570. static void idle_balance(int this_cpu, struct rq *this_rq)
  2571. {
  2572. struct sched_domain *sd;
  2573. int pulled_task = -1;
  2574. unsigned long next_balance = jiffies + HZ;
  2575. for_each_domain(this_cpu, sd) {
  2576. unsigned long interval;
  2577. if (!(sd->flags & SD_LOAD_BALANCE))
  2578. continue;
  2579. if (sd->flags & SD_BALANCE_NEWIDLE)
  2580. /* If we've pulled tasks over stop searching: */
  2581. pulled_task = load_balance_newidle(this_cpu,
  2582. this_rq, sd);
  2583. interval = msecs_to_jiffies(sd->balance_interval);
  2584. if (time_after(next_balance, sd->last_balance + interval))
  2585. next_balance = sd->last_balance + interval;
  2586. if (pulled_task)
  2587. break;
  2588. }
  2589. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2590. /*
  2591. * We are going idle. next_balance may be set based on
  2592. * a busy processor. So reset next_balance.
  2593. */
  2594. this_rq->next_balance = next_balance;
  2595. }
  2596. }
  2597. /*
  2598. * active_load_balance is run by migration threads. It pushes running tasks
  2599. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2600. * running on each physical CPU where possible, and avoids physical /
  2601. * logical imbalances.
  2602. *
  2603. * Called with busiest_rq locked.
  2604. */
  2605. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2606. {
  2607. int target_cpu = busiest_rq->push_cpu;
  2608. struct sched_domain *sd;
  2609. struct rq *target_rq;
  2610. /* Is there any task to move? */
  2611. if (busiest_rq->nr_running <= 1)
  2612. return;
  2613. target_rq = cpu_rq(target_cpu);
  2614. /*
  2615. * This condition is "impossible", if it occurs
  2616. * we need to fix it. Originally reported by
  2617. * Bjorn Helgaas on a 128-cpu setup.
  2618. */
  2619. BUG_ON(busiest_rq == target_rq);
  2620. /* move a task from busiest_rq to target_rq */
  2621. double_lock_balance(busiest_rq, target_rq);
  2622. update_rq_clock(busiest_rq);
  2623. update_rq_clock(target_rq);
  2624. /* Search for an sd spanning us and the target CPU. */
  2625. for_each_domain(target_cpu, sd) {
  2626. if ((sd->flags & SD_LOAD_BALANCE) &&
  2627. cpu_isset(busiest_cpu, sd->span))
  2628. break;
  2629. }
  2630. if (likely(sd)) {
  2631. schedstat_inc(sd, alb_count);
  2632. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2633. sd, CPU_IDLE))
  2634. schedstat_inc(sd, alb_pushed);
  2635. else
  2636. schedstat_inc(sd, alb_failed);
  2637. }
  2638. spin_unlock(&target_rq->lock);
  2639. }
  2640. #ifdef CONFIG_NO_HZ
  2641. static struct {
  2642. atomic_t load_balancer;
  2643. cpumask_t cpu_mask;
  2644. } nohz ____cacheline_aligned = {
  2645. .load_balancer = ATOMIC_INIT(-1),
  2646. .cpu_mask = CPU_MASK_NONE,
  2647. };
  2648. /*
  2649. * This routine will try to nominate the ilb (idle load balancing)
  2650. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2651. * load balancing on behalf of all those cpus. If all the cpus in the system
  2652. * go into this tickless mode, then there will be no ilb owner (as there is
  2653. * no need for one) and all the cpus will sleep till the next wakeup event
  2654. * arrives...
  2655. *
  2656. * For the ilb owner, tick is not stopped. And this tick will be used
  2657. * for idle load balancing. ilb owner will still be part of
  2658. * nohz.cpu_mask..
  2659. *
  2660. * While stopping the tick, this cpu will become the ilb owner if there
  2661. * is no other owner. And will be the owner till that cpu becomes busy
  2662. * or if all cpus in the system stop their ticks at which point
  2663. * there is no need for ilb owner.
  2664. *
  2665. * When the ilb owner becomes busy, it nominates another owner, during the
  2666. * next busy scheduler_tick()
  2667. */
  2668. int select_nohz_load_balancer(int stop_tick)
  2669. {
  2670. int cpu = smp_processor_id();
  2671. if (stop_tick) {
  2672. cpu_set(cpu, nohz.cpu_mask);
  2673. cpu_rq(cpu)->in_nohz_recently = 1;
  2674. /*
  2675. * If we are going offline and still the leader, give up!
  2676. */
  2677. if (cpu_is_offline(cpu) &&
  2678. atomic_read(&nohz.load_balancer) == cpu) {
  2679. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2680. BUG();
  2681. return 0;
  2682. }
  2683. /* time for ilb owner also to sleep */
  2684. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2685. if (atomic_read(&nohz.load_balancer) == cpu)
  2686. atomic_set(&nohz.load_balancer, -1);
  2687. return 0;
  2688. }
  2689. if (atomic_read(&nohz.load_balancer) == -1) {
  2690. /* make me the ilb owner */
  2691. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2692. return 1;
  2693. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2694. return 1;
  2695. } else {
  2696. if (!cpu_isset(cpu, nohz.cpu_mask))
  2697. return 0;
  2698. cpu_clear(cpu, nohz.cpu_mask);
  2699. if (atomic_read(&nohz.load_balancer) == cpu)
  2700. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2701. BUG();
  2702. }
  2703. return 0;
  2704. }
  2705. #endif
  2706. static DEFINE_SPINLOCK(balancing);
  2707. /*
  2708. * It checks each scheduling domain to see if it is due to be balanced,
  2709. * and initiates a balancing operation if so.
  2710. *
  2711. * Balancing parameters are set up in arch_init_sched_domains.
  2712. */
  2713. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2714. {
  2715. int balance = 1;
  2716. struct rq *rq = cpu_rq(cpu);
  2717. unsigned long interval;
  2718. struct sched_domain *sd;
  2719. /* Earliest time when we have to do rebalance again */
  2720. unsigned long next_balance = jiffies + 60*HZ;
  2721. int update_next_balance = 0;
  2722. for_each_domain(cpu, sd) {
  2723. if (!(sd->flags & SD_LOAD_BALANCE))
  2724. continue;
  2725. interval = sd->balance_interval;
  2726. if (idle != CPU_IDLE)
  2727. interval *= sd->busy_factor;
  2728. /* scale ms to jiffies */
  2729. interval = msecs_to_jiffies(interval);
  2730. if (unlikely(!interval))
  2731. interval = 1;
  2732. if (interval > HZ*NR_CPUS/10)
  2733. interval = HZ*NR_CPUS/10;
  2734. if (sd->flags & SD_SERIALIZE) {
  2735. if (!spin_trylock(&balancing))
  2736. goto out;
  2737. }
  2738. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2739. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2740. /*
  2741. * We've pulled tasks over so either we're no
  2742. * longer idle, or one of our SMT siblings is
  2743. * not idle.
  2744. */
  2745. idle = CPU_NOT_IDLE;
  2746. }
  2747. sd->last_balance = jiffies;
  2748. }
  2749. if (sd->flags & SD_SERIALIZE)
  2750. spin_unlock(&balancing);
  2751. out:
  2752. if (time_after(next_balance, sd->last_balance + interval)) {
  2753. next_balance = sd->last_balance + interval;
  2754. update_next_balance = 1;
  2755. }
  2756. /*
  2757. * Stop the load balance at this level. There is another
  2758. * CPU in our sched group which is doing load balancing more
  2759. * actively.
  2760. */
  2761. if (!balance)
  2762. break;
  2763. }
  2764. /*
  2765. * next_balance will be updated only when there is a need.
  2766. * When the cpu is attached to null domain for ex, it will not be
  2767. * updated.
  2768. */
  2769. if (likely(update_next_balance))
  2770. rq->next_balance = next_balance;
  2771. }
  2772. /*
  2773. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2774. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2775. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2776. */
  2777. static void run_rebalance_domains(struct softirq_action *h)
  2778. {
  2779. int this_cpu = smp_processor_id();
  2780. struct rq *this_rq = cpu_rq(this_cpu);
  2781. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2782. CPU_IDLE : CPU_NOT_IDLE;
  2783. rebalance_domains(this_cpu, idle);
  2784. #ifdef CONFIG_NO_HZ
  2785. /*
  2786. * If this cpu is the owner for idle load balancing, then do the
  2787. * balancing on behalf of the other idle cpus whose ticks are
  2788. * stopped.
  2789. */
  2790. if (this_rq->idle_at_tick &&
  2791. atomic_read(&nohz.load_balancer) == this_cpu) {
  2792. cpumask_t cpus = nohz.cpu_mask;
  2793. struct rq *rq;
  2794. int balance_cpu;
  2795. cpu_clear(this_cpu, cpus);
  2796. for_each_cpu_mask(balance_cpu, cpus) {
  2797. /*
  2798. * If this cpu gets work to do, stop the load balancing
  2799. * work being done for other cpus. Next load
  2800. * balancing owner will pick it up.
  2801. */
  2802. if (need_resched())
  2803. break;
  2804. rebalance_domains(balance_cpu, CPU_IDLE);
  2805. rq = cpu_rq(balance_cpu);
  2806. if (time_after(this_rq->next_balance, rq->next_balance))
  2807. this_rq->next_balance = rq->next_balance;
  2808. }
  2809. }
  2810. #endif
  2811. }
  2812. /*
  2813. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2814. *
  2815. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2816. * idle load balancing owner or decide to stop the periodic load balancing,
  2817. * if the whole system is idle.
  2818. */
  2819. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2820. {
  2821. #ifdef CONFIG_NO_HZ
  2822. /*
  2823. * If we were in the nohz mode recently and busy at the current
  2824. * scheduler tick, then check if we need to nominate new idle
  2825. * load balancer.
  2826. */
  2827. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2828. rq->in_nohz_recently = 0;
  2829. if (atomic_read(&nohz.load_balancer) == cpu) {
  2830. cpu_clear(cpu, nohz.cpu_mask);
  2831. atomic_set(&nohz.load_balancer, -1);
  2832. }
  2833. if (atomic_read(&nohz.load_balancer) == -1) {
  2834. /*
  2835. * simple selection for now: Nominate the
  2836. * first cpu in the nohz list to be the next
  2837. * ilb owner.
  2838. *
  2839. * TBD: Traverse the sched domains and nominate
  2840. * the nearest cpu in the nohz.cpu_mask.
  2841. */
  2842. int ilb = first_cpu(nohz.cpu_mask);
  2843. if (ilb != NR_CPUS)
  2844. resched_cpu(ilb);
  2845. }
  2846. }
  2847. /*
  2848. * If this cpu is idle and doing idle load balancing for all the
  2849. * cpus with ticks stopped, is it time for that to stop?
  2850. */
  2851. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2852. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2853. resched_cpu(cpu);
  2854. return;
  2855. }
  2856. /*
  2857. * If this cpu is idle and the idle load balancing is done by
  2858. * someone else, then no need raise the SCHED_SOFTIRQ
  2859. */
  2860. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2861. cpu_isset(cpu, nohz.cpu_mask))
  2862. return;
  2863. #endif
  2864. if (time_after_eq(jiffies, rq->next_balance))
  2865. raise_softirq(SCHED_SOFTIRQ);
  2866. }
  2867. #else /* CONFIG_SMP */
  2868. /*
  2869. * on UP we do not need to balance between CPUs:
  2870. */
  2871. static inline void idle_balance(int cpu, struct rq *rq)
  2872. {
  2873. }
  2874. #endif
  2875. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2876. EXPORT_PER_CPU_SYMBOL(kstat);
  2877. /*
  2878. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2879. * that have not yet been banked in case the task is currently running.
  2880. */
  2881. unsigned long long task_sched_runtime(struct task_struct *p)
  2882. {
  2883. unsigned long flags;
  2884. u64 ns, delta_exec;
  2885. struct rq *rq;
  2886. rq = task_rq_lock(p, &flags);
  2887. ns = p->se.sum_exec_runtime;
  2888. if (task_current(rq, p)) {
  2889. update_rq_clock(rq);
  2890. delta_exec = rq->clock - p->se.exec_start;
  2891. if ((s64)delta_exec > 0)
  2892. ns += delta_exec;
  2893. }
  2894. task_rq_unlock(rq, &flags);
  2895. return ns;
  2896. }
  2897. /*
  2898. * Account user cpu time to a process.
  2899. * @p: the process that the cpu time gets accounted to
  2900. * @cputime: the cpu time spent in user space since the last update
  2901. */
  2902. void account_user_time(struct task_struct *p, cputime_t cputime)
  2903. {
  2904. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2905. cputime64_t tmp;
  2906. p->utime = cputime_add(p->utime, cputime);
  2907. /* Add user time to cpustat. */
  2908. tmp = cputime_to_cputime64(cputime);
  2909. if (TASK_NICE(p) > 0)
  2910. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2911. else
  2912. cpustat->user = cputime64_add(cpustat->user, tmp);
  2913. }
  2914. /*
  2915. * Account guest cpu time to a process.
  2916. * @p: the process that the cpu time gets accounted to
  2917. * @cputime: the cpu time spent in virtual machine since the last update
  2918. */
  2919. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2920. {
  2921. cputime64_t tmp;
  2922. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2923. tmp = cputime_to_cputime64(cputime);
  2924. p->utime = cputime_add(p->utime, cputime);
  2925. p->gtime = cputime_add(p->gtime, cputime);
  2926. cpustat->user = cputime64_add(cpustat->user, tmp);
  2927. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2928. }
  2929. /*
  2930. * Account scaled user cpu time to a process.
  2931. * @p: the process that the cpu time gets accounted to
  2932. * @cputime: the cpu time spent in user space since the last update
  2933. */
  2934. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2935. {
  2936. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2937. }
  2938. /*
  2939. * Account system cpu time to a process.
  2940. * @p: the process that the cpu time gets accounted to
  2941. * @hardirq_offset: the offset to subtract from hardirq_count()
  2942. * @cputime: the cpu time spent in kernel space since the last update
  2943. */
  2944. void account_system_time(struct task_struct *p, int hardirq_offset,
  2945. cputime_t cputime)
  2946. {
  2947. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2948. struct rq *rq = this_rq();
  2949. cputime64_t tmp;
  2950. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  2951. return account_guest_time(p, cputime);
  2952. p->stime = cputime_add(p->stime, cputime);
  2953. /* Add system time to cpustat. */
  2954. tmp = cputime_to_cputime64(cputime);
  2955. if (hardirq_count() - hardirq_offset)
  2956. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2957. else if (softirq_count())
  2958. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2959. else if (p != rq->idle)
  2960. cpustat->system = cputime64_add(cpustat->system, tmp);
  2961. else if (atomic_read(&rq->nr_iowait) > 0)
  2962. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2963. else
  2964. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2965. /* Account for system time used */
  2966. acct_update_integrals(p);
  2967. }
  2968. /*
  2969. * Account scaled system cpu time to a process.
  2970. * @p: the process that the cpu time gets accounted to
  2971. * @hardirq_offset: the offset to subtract from hardirq_count()
  2972. * @cputime: the cpu time spent in kernel space since the last update
  2973. */
  2974. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2975. {
  2976. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2977. }
  2978. /*
  2979. * Account for involuntary wait time.
  2980. * @p: the process from which the cpu time has been stolen
  2981. * @steal: the cpu time spent in involuntary wait
  2982. */
  2983. void account_steal_time(struct task_struct *p, cputime_t steal)
  2984. {
  2985. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2986. cputime64_t tmp = cputime_to_cputime64(steal);
  2987. struct rq *rq = this_rq();
  2988. if (p == rq->idle) {
  2989. p->stime = cputime_add(p->stime, steal);
  2990. if (atomic_read(&rq->nr_iowait) > 0)
  2991. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2992. else
  2993. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2994. } else
  2995. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2996. }
  2997. /*
  2998. * This function gets called by the timer code, with HZ frequency.
  2999. * We call it with interrupts disabled.
  3000. *
  3001. * It also gets called by the fork code, when changing the parent's
  3002. * timeslices.
  3003. */
  3004. void scheduler_tick(void)
  3005. {
  3006. int cpu = smp_processor_id();
  3007. struct rq *rq = cpu_rq(cpu);
  3008. struct task_struct *curr = rq->curr;
  3009. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3010. spin_lock(&rq->lock);
  3011. __update_rq_clock(rq);
  3012. /*
  3013. * Let rq->clock advance by at least TICK_NSEC:
  3014. */
  3015. if (unlikely(rq->clock < next_tick))
  3016. rq->clock = next_tick;
  3017. rq->tick_timestamp = rq->clock;
  3018. update_cpu_load(rq);
  3019. if (curr != rq->idle) /* FIXME: needed? */
  3020. curr->sched_class->task_tick(rq, curr);
  3021. spin_unlock(&rq->lock);
  3022. #ifdef CONFIG_SMP
  3023. rq->idle_at_tick = idle_cpu(cpu);
  3024. trigger_load_balance(rq, cpu);
  3025. #endif
  3026. }
  3027. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3028. void fastcall add_preempt_count(int val)
  3029. {
  3030. /*
  3031. * Underflow?
  3032. */
  3033. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3034. return;
  3035. preempt_count() += val;
  3036. /*
  3037. * Spinlock count overflowing soon?
  3038. */
  3039. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3040. PREEMPT_MASK - 10);
  3041. }
  3042. EXPORT_SYMBOL(add_preempt_count);
  3043. void fastcall sub_preempt_count(int val)
  3044. {
  3045. /*
  3046. * Underflow?
  3047. */
  3048. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3049. return;
  3050. /*
  3051. * Is the spinlock portion underflowing?
  3052. */
  3053. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3054. !(preempt_count() & PREEMPT_MASK)))
  3055. return;
  3056. preempt_count() -= val;
  3057. }
  3058. EXPORT_SYMBOL(sub_preempt_count);
  3059. #endif
  3060. /*
  3061. * Print scheduling while atomic bug:
  3062. */
  3063. static noinline void __schedule_bug(struct task_struct *prev)
  3064. {
  3065. struct pt_regs *regs = get_irq_regs();
  3066. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3067. prev->comm, prev->pid, preempt_count());
  3068. debug_show_held_locks(prev);
  3069. if (irqs_disabled())
  3070. print_irqtrace_events(prev);
  3071. if (regs)
  3072. show_regs(regs);
  3073. else
  3074. dump_stack();
  3075. }
  3076. /*
  3077. * Various schedule()-time debugging checks and statistics:
  3078. */
  3079. static inline void schedule_debug(struct task_struct *prev)
  3080. {
  3081. /*
  3082. * Test if we are atomic. Since do_exit() needs to call into
  3083. * schedule() atomically, we ignore that path for now.
  3084. * Otherwise, whine if we are scheduling when we should not be.
  3085. */
  3086. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3087. __schedule_bug(prev);
  3088. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3089. schedstat_inc(this_rq(), sched_count);
  3090. #ifdef CONFIG_SCHEDSTATS
  3091. if (unlikely(prev->lock_depth >= 0)) {
  3092. schedstat_inc(this_rq(), bkl_count);
  3093. schedstat_inc(prev, sched_info.bkl_count);
  3094. }
  3095. #endif
  3096. }
  3097. /*
  3098. * Pick up the highest-prio task:
  3099. */
  3100. static inline struct task_struct *
  3101. pick_next_task(struct rq *rq, struct task_struct *prev)
  3102. {
  3103. const struct sched_class *class;
  3104. struct task_struct *p;
  3105. /*
  3106. * Optimization: we know that if all tasks are in
  3107. * the fair class we can call that function directly:
  3108. */
  3109. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3110. p = fair_sched_class.pick_next_task(rq);
  3111. if (likely(p))
  3112. return p;
  3113. }
  3114. class = sched_class_highest;
  3115. for ( ; ; ) {
  3116. p = class->pick_next_task(rq);
  3117. if (p)
  3118. return p;
  3119. /*
  3120. * Will never be NULL as the idle class always
  3121. * returns a non-NULL p:
  3122. */
  3123. class = class->next;
  3124. }
  3125. }
  3126. /*
  3127. * schedule() is the main scheduler function.
  3128. */
  3129. asmlinkage void __sched schedule(void)
  3130. {
  3131. struct task_struct *prev, *next;
  3132. long *switch_count;
  3133. struct rq *rq;
  3134. int cpu;
  3135. need_resched:
  3136. preempt_disable();
  3137. cpu = smp_processor_id();
  3138. rq = cpu_rq(cpu);
  3139. rcu_qsctr_inc(cpu);
  3140. prev = rq->curr;
  3141. switch_count = &prev->nivcsw;
  3142. release_kernel_lock(prev);
  3143. need_resched_nonpreemptible:
  3144. schedule_debug(prev);
  3145. /*
  3146. * Do the rq-clock update outside the rq lock:
  3147. */
  3148. local_irq_disable();
  3149. __update_rq_clock(rq);
  3150. spin_lock(&rq->lock);
  3151. clear_tsk_need_resched(prev);
  3152. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3153. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3154. unlikely(signal_pending(prev)))) {
  3155. prev->state = TASK_RUNNING;
  3156. } else {
  3157. deactivate_task(rq, prev, 1);
  3158. }
  3159. switch_count = &prev->nvcsw;
  3160. }
  3161. #ifdef CONFIG_SMP
  3162. if (prev->sched_class->pre_schedule)
  3163. prev->sched_class->pre_schedule(rq, prev);
  3164. #endif
  3165. if (unlikely(!rq->nr_running))
  3166. idle_balance(cpu, rq);
  3167. prev->sched_class->put_prev_task(rq, prev);
  3168. next = pick_next_task(rq, prev);
  3169. sched_info_switch(prev, next);
  3170. if (likely(prev != next)) {
  3171. rq->nr_switches++;
  3172. rq->curr = next;
  3173. ++*switch_count;
  3174. context_switch(rq, prev, next); /* unlocks the rq */
  3175. } else
  3176. spin_unlock_irq(&rq->lock);
  3177. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3178. cpu = smp_processor_id();
  3179. rq = cpu_rq(cpu);
  3180. goto need_resched_nonpreemptible;
  3181. }
  3182. preempt_enable_no_resched();
  3183. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3184. goto need_resched;
  3185. }
  3186. EXPORT_SYMBOL(schedule);
  3187. #ifdef CONFIG_PREEMPT
  3188. /*
  3189. * this is the entry point to schedule() from in-kernel preemption
  3190. * off of preempt_enable. Kernel preemptions off return from interrupt
  3191. * occur there and call schedule directly.
  3192. */
  3193. asmlinkage void __sched preempt_schedule(void)
  3194. {
  3195. struct thread_info *ti = current_thread_info();
  3196. #ifdef CONFIG_PREEMPT_BKL
  3197. struct task_struct *task = current;
  3198. int saved_lock_depth;
  3199. #endif
  3200. /*
  3201. * If there is a non-zero preempt_count or interrupts are disabled,
  3202. * we do not want to preempt the current task. Just return..
  3203. */
  3204. if (likely(ti->preempt_count || irqs_disabled()))
  3205. return;
  3206. do {
  3207. add_preempt_count(PREEMPT_ACTIVE);
  3208. /*
  3209. * We keep the big kernel semaphore locked, but we
  3210. * clear ->lock_depth so that schedule() doesnt
  3211. * auto-release the semaphore:
  3212. */
  3213. #ifdef CONFIG_PREEMPT_BKL
  3214. saved_lock_depth = task->lock_depth;
  3215. task->lock_depth = -1;
  3216. #endif
  3217. schedule();
  3218. #ifdef CONFIG_PREEMPT_BKL
  3219. task->lock_depth = saved_lock_depth;
  3220. #endif
  3221. sub_preempt_count(PREEMPT_ACTIVE);
  3222. /*
  3223. * Check again in case we missed a preemption opportunity
  3224. * between schedule and now.
  3225. */
  3226. barrier();
  3227. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3228. }
  3229. EXPORT_SYMBOL(preempt_schedule);
  3230. /*
  3231. * this is the entry point to schedule() from kernel preemption
  3232. * off of irq context.
  3233. * Note, that this is called and return with irqs disabled. This will
  3234. * protect us against recursive calling from irq.
  3235. */
  3236. asmlinkage void __sched preempt_schedule_irq(void)
  3237. {
  3238. struct thread_info *ti = current_thread_info();
  3239. #ifdef CONFIG_PREEMPT_BKL
  3240. struct task_struct *task = current;
  3241. int saved_lock_depth;
  3242. #endif
  3243. /* Catch callers which need to be fixed */
  3244. BUG_ON(ti->preempt_count || !irqs_disabled());
  3245. do {
  3246. add_preempt_count(PREEMPT_ACTIVE);
  3247. /*
  3248. * We keep the big kernel semaphore locked, but we
  3249. * clear ->lock_depth so that schedule() doesnt
  3250. * auto-release the semaphore:
  3251. */
  3252. #ifdef CONFIG_PREEMPT_BKL
  3253. saved_lock_depth = task->lock_depth;
  3254. task->lock_depth = -1;
  3255. #endif
  3256. local_irq_enable();
  3257. schedule();
  3258. local_irq_disable();
  3259. #ifdef CONFIG_PREEMPT_BKL
  3260. task->lock_depth = saved_lock_depth;
  3261. #endif
  3262. sub_preempt_count(PREEMPT_ACTIVE);
  3263. /*
  3264. * Check again in case we missed a preemption opportunity
  3265. * between schedule and now.
  3266. */
  3267. barrier();
  3268. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3269. }
  3270. #endif /* CONFIG_PREEMPT */
  3271. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3272. void *key)
  3273. {
  3274. return try_to_wake_up(curr->private, mode, sync);
  3275. }
  3276. EXPORT_SYMBOL(default_wake_function);
  3277. /*
  3278. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3279. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3280. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3281. *
  3282. * There are circumstances in which we can try to wake a task which has already
  3283. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3284. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3285. */
  3286. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3287. int nr_exclusive, int sync, void *key)
  3288. {
  3289. wait_queue_t *curr, *next;
  3290. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3291. unsigned flags = curr->flags;
  3292. if (curr->func(curr, mode, sync, key) &&
  3293. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3294. break;
  3295. }
  3296. }
  3297. /**
  3298. * __wake_up - wake up threads blocked on a waitqueue.
  3299. * @q: the waitqueue
  3300. * @mode: which threads
  3301. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3302. * @key: is directly passed to the wakeup function
  3303. */
  3304. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3305. int nr_exclusive, void *key)
  3306. {
  3307. unsigned long flags;
  3308. spin_lock_irqsave(&q->lock, flags);
  3309. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3310. spin_unlock_irqrestore(&q->lock, flags);
  3311. }
  3312. EXPORT_SYMBOL(__wake_up);
  3313. /*
  3314. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3315. */
  3316. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3317. {
  3318. __wake_up_common(q, mode, 1, 0, NULL);
  3319. }
  3320. /**
  3321. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3322. * @q: the waitqueue
  3323. * @mode: which threads
  3324. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3325. *
  3326. * The sync wakeup differs that the waker knows that it will schedule
  3327. * away soon, so while the target thread will be woken up, it will not
  3328. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3329. * with each other. This can prevent needless bouncing between CPUs.
  3330. *
  3331. * On UP it can prevent extra preemption.
  3332. */
  3333. void fastcall
  3334. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3335. {
  3336. unsigned long flags;
  3337. int sync = 1;
  3338. if (unlikely(!q))
  3339. return;
  3340. if (unlikely(!nr_exclusive))
  3341. sync = 0;
  3342. spin_lock_irqsave(&q->lock, flags);
  3343. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3344. spin_unlock_irqrestore(&q->lock, flags);
  3345. }
  3346. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3347. void complete(struct completion *x)
  3348. {
  3349. unsigned long flags;
  3350. spin_lock_irqsave(&x->wait.lock, flags);
  3351. x->done++;
  3352. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3353. 1, 0, NULL);
  3354. spin_unlock_irqrestore(&x->wait.lock, flags);
  3355. }
  3356. EXPORT_SYMBOL(complete);
  3357. void complete_all(struct completion *x)
  3358. {
  3359. unsigned long flags;
  3360. spin_lock_irqsave(&x->wait.lock, flags);
  3361. x->done += UINT_MAX/2;
  3362. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3363. 0, 0, NULL);
  3364. spin_unlock_irqrestore(&x->wait.lock, flags);
  3365. }
  3366. EXPORT_SYMBOL(complete_all);
  3367. static inline long __sched
  3368. do_wait_for_common(struct completion *x, long timeout, int state)
  3369. {
  3370. if (!x->done) {
  3371. DECLARE_WAITQUEUE(wait, current);
  3372. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3373. __add_wait_queue_tail(&x->wait, &wait);
  3374. do {
  3375. if (state == TASK_INTERRUPTIBLE &&
  3376. signal_pending(current)) {
  3377. __remove_wait_queue(&x->wait, &wait);
  3378. return -ERESTARTSYS;
  3379. }
  3380. __set_current_state(state);
  3381. spin_unlock_irq(&x->wait.lock);
  3382. timeout = schedule_timeout(timeout);
  3383. spin_lock_irq(&x->wait.lock);
  3384. if (!timeout) {
  3385. __remove_wait_queue(&x->wait, &wait);
  3386. return timeout;
  3387. }
  3388. } while (!x->done);
  3389. __remove_wait_queue(&x->wait, &wait);
  3390. }
  3391. x->done--;
  3392. return timeout;
  3393. }
  3394. static long __sched
  3395. wait_for_common(struct completion *x, long timeout, int state)
  3396. {
  3397. might_sleep();
  3398. spin_lock_irq(&x->wait.lock);
  3399. timeout = do_wait_for_common(x, timeout, state);
  3400. spin_unlock_irq(&x->wait.lock);
  3401. return timeout;
  3402. }
  3403. void __sched wait_for_completion(struct completion *x)
  3404. {
  3405. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3406. }
  3407. EXPORT_SYMBOL(wait_for_completion);
  3408. unsigned long __sched
  3409. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3410. {
  3411. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3412. }
  3413. EXPORT_SYMBOL(wait_for_completion_timeout);
  3414. int __sched wait_for_completion_interruptible(struct completion *x)
  3415. {
  3416. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3417. if (t == -ERESTARTSYS)
  3418. return t;
  3419. return 0;
  3420. }
  3421. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3422. unsigned long __sched
  3423. wait_for_completion_interruptible_timeout(struct completion *x,
  3424. unsigned long timeout)
  3425. {
  3426. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3427. }
  3428. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3429. static long __sched
  3430. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3431. {
  3432. unsigned long flags;
  3433. wait_queue_t wait;
  3434. init_waitqueue_entry(&wait, current);
  3435. __set_current_state(state);
  3436. spin_lock_irqsave(&q->lock, flags);
  3437. __add_wait_queue(q, &wait);
  3438. spin_unlock(&q->lock);
  3439. timeout = schedule_timeout(timeout);
  3440. spin_lock_irq(&q->lock);
  3441. __remove_wait_queue(q, &wait);
  3442. spin_unlock_irqrestore(&q->lock, flags);
  3443. return timeout;
  3444. }
  3445. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3446. {
  3447. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3448. }
  3449. EXPORT_SYMBOL(interruptible_sleep_on);
  3450. long __sched
  3451. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3452. {
  3453. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3454. }
  3455. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3456. void __sched sleep_on(wait_queue_head_t *q)
  3457. {
  3458. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3459. }
  3460. EXPORT_SYMBOL(sleep_on);
  3461. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3462. {
  3463. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3464. }
  3465. EXPORT_SYMBOL(sleep_on_timeout);
  3466. #ifdef CONFIG_RT_MUTEXES
  3467. /*
  3468. * rt_mutex_setprio - set the current priority of a task
  3469. * @p: task
  3470. * @prio: prio value (kernel-internal form)
  3471. *
  3472. * This function changes the 'effective' priority of a task. It does
  3473. * not touch ->normal_prio like __setscheduler().
  3474. *
  3475. * Used by the rt_mutex code to implement priority inheritance logic.
  3476. */
  3477. void rt_mutex_setprio(struct task_struct *p, int prio)
  3478. {
  3479. unsigned long flags;
  3480. int oldprio, on_rq, running;
  3481. struct rq *rq;
  3482. const struct sched_class *prev_class = p->sched_class;
  3483. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3484. rq = task_rq_lock(p, &flags);
  3485. update_rq_clock(rq);
  3486. oldprio = p->prio;
  3487. on_rq = p->se.on_rq;
  3488. running = task_current(rq, p);
  3489. if (on_rq) {
  3490. dequeue_task(rq, p, 0);
  3491. if (running)
  3492. p->sched_class->put_prev_task(rq, p);
  3493. }
  3494. if (rt_prio(prio))
  3495. p->sched_class = &rt_sched_class;
  3496. else
  3497. p->sched_class = &fair_sched_class;
  3498. p->prio = prio;
  3499. if (on_rq) {
  3500. if (running)
  3501. p->sched_class->set_curr_task(rq);
  3502. enqueue_task(rq, p, 0);
  3503. check_class_changed(rq, p, prev_class, oldprio, running);
  3504. }
  3505. task_rq_unlock(rq, &flags);
  3506. }
  3507. #endif
  3508. void set_user_nice(struct task_struct *p, long nice)
  3509. {
  3510. int old_prio, delta, on_rq;
  3511. unsigned long flags;
  3512. struct rq *rq;
  3513. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3514. return;
  3515. /*
  3516. * We have to be careful, if called from sys_setpriority(),
  3517. * the task might be in the middle of scheduling on another CPU.
  3518. */
  3519. rq = task_rq_lock(p, &flags);
  3520. update_rq_clock(rq);
  3521. /*
  3522. * The RT priorities are set via sched_setscheduler(), but we still
  3523. * allow the 'normal' nice value to be set - but as expected
  3524. * it wont have any effect on scheduling until the task is
  3525. * SCHED_FIFO/SCHED_RR:
  3526. */
  3527. if (task_has_rt_policy(p)) {
  3528. p->static_prio = NICE_TO_PRIO(nice);
  3529. goto out_unlock;
  3530. }
  3531. on_rq = p->se.on_rq;
  3532. if (on_rq)
  3533. dequeue_task(rq, p, 0);
  3534. p->static_prio = NICE_TO_PRIO(nice);
  3535. set_load_weight(p);
  3536. old_prio = p->prio;
  3537. p->prio = effective_prio(p);
  3538. delta = p->prio - old_prio;
  3539. if (on_rq) {
  3540. enqueue_task(rq, p, 0);
  3541. /*
  3542. * If the task increased its priority or is running and
  3543. * lowered its priority, then reschedule its CPU:
  3544. */
  3545. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3546. resched_task(rq->curr);
  3547. }
  3548. out_unlock:
  3549. task_rq_unlock(rq, &flags);
  3550. }
  3551. EXPORT_SYMBOL(set_user_nice);
  3552. /*
  3553. * can_nice - check if a task can reduce its nice value
  3554. * @p: task
  3555. * @nice: nice value
  3556. */
  3557. int can_nice(const struct task_struct *p, const int nice)
  3558. {
  3559. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3560. int nice_rlim = 20 - nice;
  3561. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3562. capable(CAP_SYS_NICE));
  3563. }
  3564. #ifdef __ARCH_WANT_SYS_NICE
  3565. /*
  3566. * sys_nice - change the priority of the current process.
  3567. * @increment: priority increment
  3568. *
  3569. * sys_setpriority is a more generic, but much slower function that
  3570. * does similar things.
  3571. */
  3572. asmlinkage long sys_nice(int increment)
  3573. {
  3574. long nice, retval;
  3575. /*
  3576. * Setpriority might change our priority at the same moment.
  3577. * We don't have to worry. Conceptually one call occurs first
  3578. * and we have a single winner.
  3579. */
  3580. if (increment < -40)
  3581. increment = -40;
  3582. if (increment > 40)
  3583. increment = 40;
  3584. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3585. if (nice < -20)
  3586. nice = -20;
  3587. if (nice > 19)
  3588. nice = 19;
  3589. if (increment < 0 && !can_nice(current, nice))
  3590. return -EPERM;
  3591. retval = security_task_setnice(current, nice);
  3592. if (retval)
  3593. return retval;
  3594. set_user_nice(current, nice);
  3595. return 0;
  3596. }
  3597. #endif
  3598. /**
  3599. * task_prio - return the priority value of a given task.
  3600. * @p: the task in question.
  3601. *
  3602. * This is the priority value as seen by users in /proc.
  3603. * RT tasks are offset by -200. Normal tasks are centered
  3604. * around 0, value goes from -16 to +15.
  3605. */
  3606. int task_prio(const struct task_struct *p)
  3607. {
  3608. return p->prio - MAX_RT_PRIO;
  3609. }
  3610. /**
  3611. * task_nice - return the nice value of a given task.
  3612. * @p: the task in question.
  3613. */
  3614. int task_nice(const struct task_struct *p)
  3615. {
  3616. return TASK_NICE(p);
  3617. }
  3618. EXPORT_SYMBOL_GPL(task_nice);
  3619. /**
  3620. * idle_cpu - is a given cpu idle currently?
  3621. * @cpu: the processor in question.
  3622. */
  3623. int idle_cpu(int cpu)
  3624. {
  3625. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3626. }
  3627. /**
  3628. * idle_task - return the idle task for a given cpu.
  3629. * @cpu: the processor in question.
  3630. */
  3631. struct task_struct *idle_task(int cpu)
  3632. {
  3633. return cpu_rq(cpu)->idle;
  3634. }
  3635. /**
  3636. * find_process_by_pid - find a process with a matching PID value.
  3637. * @pid: the pid in question.
  3638. */
  3639. static struct task_struct *find_process_by_pid(pid_t pid)
  3640. {
  3641. return pid ? find_task_by_vpid(pid) : current;
  3642. }
  3643. /* Actually do priority change: must hold rq lock. */
  3644. static void
  3645. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3646. {
  3647. BUG_ON(p->se.on_rq);
  3648. p->policy = policy;
  3649. switch (p->policy) {
  3650. case SCHED_NORMAL:
  3651. case SCHED_BATCH:
  3652. case SCHED_IDLE:
  3653. p->sched_class = &fair_sched_class;
  3654. break;
  3655. case SCHED_FIFO:
  3656. case SCHED_RR:
  3657. p->sched_class = &rt_sched_class;
  3658. break;
  3659. }
  3660. p->rt_priority = prio;
  3661. p->normal_prio = normal_prio(p);
  3662. /* we are holding p->pi_lock already */
  3663. p->prio = rt_mutex_getprio(p);
  3664. set_load_weight(p);
  3665. }
  3666. /**
  3667. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3668. * @p: the task in question.
  3669. * @policy: new policy.
  3670. * @param: structure containing the new RT priority.
  3671. *
  3672. * NOTE that the task may be already dead.
  3673. */
  3674. int sched_setscheduler(struct task_struct *p, int policy,
  3675. struct sched_param *param)
  3676. {
  3677. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3678. unsigned long flags;
  3679. const struct sched_class *prev_class = p->sched_class;
  3680. struct rq *rq;
  3681. /* may grab non-irq protected spin_locks */
  3682. BUG_ON(in_interrupt());
  3683. recheck:
  3684. /* double check policy once rq lock held */
  3685. if (policy < 0)
  3686. policy = oldpolicy = p->policy;
  3687. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3688. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3689. policy != SCHED_IDLE)
  3690. return -EINVAL;
  3691. /*
  3692. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3693. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3694. * SCHED_BATCH and SCHED_IDLE is 0.
  3695. */
  3696. if (param->sched_priority < 0 ||
  3697. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3698. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3699. return -EINVAL;
  3700. if (rt_policy(policy) != (param->sched_priority != 0))
  3701. return -EINVAL;
  3702. /*
  3703. * Allow unprivileged RT tasks to decrease priority:
  3704. */
  3705. if (!capable(CAP_SYS_NICE)) {
  3706. if (rt_policy(policy)) {
  3707. unsigned long rlim_rtprio;
  3708. if (!lock_task_sighand(p, &flags))
  3709. return -ESRCH;
  3710. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3711. unlock_task_sighand(p, &flags);
  3712. /* can't set/change the rt policy */
  3713. if (policy != p->policy && !rlim_rtprio)
  3714. return -EPERM;
  3715. /* can't increase priority */
  3716. if (param->sched_priority > p->rt_priority &&
  3717. param->sched_priority > rlim_rtprio)
  3718. return -EPERM;
  3719. }
  3720. /*
  3721. * Like positive nice levels, dont allow tasks to
  3722. * move out of SCHED_IDLE either:
  3723. */
  3724. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3725. return -EPERM;
  3726. /* can't change other user's priorities */
  3727. if ((current->euid != p->euid) &&
  3728. (current->euid != p->uid))
  3729. return -EPERM;
  3730. }
  3731. retval = security_task_setscheduler(p, policy, param);
  3732. if (retval)
  3733. return retval;
  3734. /*
  3735. * make sure no PI-waiters arrive (or leave) while we are
  3736. * changing the priority of the task:
  3737. */
  3738. spin_lock_irqsave(&p->pi_lock, flags);
  3739. /*
  3740. * To be able to change p->policy safely, the apropriate
  3741. * runqueue lock must be held.
  3742. */
  3743. rq = __task_rq_lock(p);
  3744. /* recheck policy now with rq lock held */
  3745. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3746. policy = oldpolicy = -1;
  3747. __task_rq_unlock(rq);
  3748. spin_unlock_irqrestore(&p->pi_lock, flags);
  3749. goto recheck;
  3750. }
  3751. update_rq_clock(rq);
  3752. on_rq = p->se.on_rq;
  3753. running = task_current(rq, p);
  3754. if (on_rq) {
  3755. deactivate_task(rq, p, 0);
  3756. if (running)
  3757. p->sched_class->put_prev_task(rq, p);
  3758. }
  3759. oldprio = p->prio;
  3760. __setscheduler(rq, p, policy, param->sched_priority);
  3761. if (on_rq) {
  3762. if (running)
  3763. p->sched_class->set_curr_task(rq);
  3764. activate_task(rq, p, 0);
  3765. check_class_changed(rq, p, prev_class, oldprio, running);
  3766. }
  3767. __task_rq_unlock(rq);
  3768. spin_unlock_irqrestore(&p->pi_lock, flags);
  3769. rt_mutex_adjust_pi(p);
  3770. return 0;
  3771. }
  3772. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3773. static int
  3774. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3775. {
  3776. struct sched_param lparam;
  3777. struct task_struct *p;
  3778. int retval;
  3779. if (!param || pid < 0)
  3780. return -EINVAL;
  3781. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3782. return -EFAULT;
  3783. rcu_read_lock();
  3784. retval = -ESRCH;
  3785. p = find_process_by_pid(pid);
  3786. if (p != NULL)
  3787. retval = sched_setscheduler(p, policy, &lparam);
  3788. rcu_read_unlock();
  3789. return retval;
  3790. }
  3791. /**
  3792. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3793. * @pid: the pid in question.
  3794. * @policy: new policy.
  3795. * @param: structure containing the new RT priority.
  3796. */
  3797. asmlinkage long
  3798. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3799. {
  3800. /* negative values for policy are not valid */
  3801. if (policy < 0)
  3802. return -EINVAL;
  3803. return do_sched_setscheduler(pid, policy, param);
  3804. }
  3805. /**
  3806. * sys_sched_setparam - set/change the RT priority of a thread
  3807. * @pid: the pid in question.
  3808. * @param: structure containing the new RT priority.
  3809. */
  3810. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3811. {
  3812. return do_sched_setscheduler(pid, -1, param);
  3813. }
  3814. /**
  3815. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3816. * @pid: the pid in question.
  3817. */
  3818. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3819. {
  3820. struct task_struct *p;
  3821. int retval;
  3822. if (pid < 0)
  3823. return -EINVAL;
  3824. retval = -ESRCH;
  3825. read_lock(&tasklist_lock);
  3826. p = find_process_by_pid(pid);
  3827. if (p) {
  3828. retval = security_task_getscheduler(p);
  3829. if (!retval)
  3830. retval = p->policy;
  3831. }
  3832. read_unlock(&tasklist_lock);
  3833. return retval;
  3834. }
  3835. /**
  3836. * sys_sched_getscheduler - get the RT priority of a thread
  3837. * @pid: the pid in question.
  3838. * @param: structure containing the RT priority.
  3839. */
  3840. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3841. {
  3842. struct sched_param lp;
  3843. struct task_struct *p;
  3844. int retval;
  3845. if (!param || pid < 0)
  3846. return -EINVAL;
  3847. read_lock(&tasklist_lock);
  3848. p = find_process_by_pid(pid);
  3849. retval = -ESRCH;
  3850. if (!p)
  3851. goto out_unlock;
  3852. retval = security_task_getscheduler(p);
  3853. if (retval)
  3854. goto out_unlock;
  3855. lp.sched_priority = p->rt_priority;
  3856. read_unlock(&tasklist_lock);
  3857. /*
  3858. * This one might sleep, we cannot do it with a spinlock held ...
  3859. */
  3860. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3861. return retval;
  3862. out_unlock:
  3863. read_unlock(&tasklist_lock);
  3864. return retval;
  3865. }
  3866. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3867. {
  3868. cpumask_t cpus_allowed;
  3869. struct task_struct *p;
  3870. int retval;
  3871. get_online_cpus();
  3872. read_lock(&tasklist_lock);
  3873. p = find_process_by_pid(pid);
  3874. if (!p) {
  3875. read_unlock(&tasklist_lock);
  3876. put_online_cpus();
  3877. return -ESRCH;
  3878. }
  3879. /*
  3880. * It is not safe to call set_cpus_allowed with the
  3881. * tasklist_lock held. We will bump the task_struct's
  3882. * usage count and then drop tasklist_lock.
  3883. */
  3884. get_task_struct(p);
  3885. read_unlock(&tasklist_lock);
  3886. retval = -EPERM;
  3887. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3888. !capable(CAP_SYS_NICE))
  3889. goto out_unlock;
  3890. retval = security_task_setscheduler(p, 0, NULL);
  3891. if (retval)
  3892. goto out_unlock;
  3893. cpus_allowed = cpuset_cpus_allowed(p);
  3894. cpus_and(new_mask, new_mask, cpus_allowed);
  3895. again:
  3896. retval = set_cpus_allowed(p, new_mask);
  3897. if (!retval) {
  3898. cpus_allowed = cpuset_cpus_allowed(p);
  3899. if (!cpus_subset(new_mask, cpus_allowed)) {
  3900. /*
  3901. * We must have raced with a concurrent cpuset
  3902. * update. Just reset the cpus_allowed to the
  3903. * cpuset's cpus_allowed
  3904. */
  3905. new_mask = cpus_allowed;
  3906. goto again;
  3907. }
  3908. }
  3909. out_unlock:
  3910. put_task_struct(p);
  3911. put_online_cpus();
  3912. return retval;
  3913. }
  3914. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3915. cpumask_t *new_mask)
  3916. {
  3917. if (len < sizeof(cpumask_t)) {
  3918. memset(new_mask, 0, sizeof(cpumask_t));
  3919. } else if (len > sizeof(cpumask_t)) {
  3920. len = sizeof(cpumask_t);
  3921. }
  3922. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3923. }
  3924. /**
  3925. * sys_sched_setaffinity - set the cpu affinity of a process
  3926. * @pid: pid of the process
  3927. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3928. * @user_mask_ptr: user-space pointer to the new cpu mask
  3929. */
  3930. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3931. unsigned long __user *user_mask_ptr)
  3932. {
  3933. cpumask_t new_mask;
  3934. int retval;
  3935. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3936. if (retval)
  3937. return retval;
  3938. return sched_setaffinity(pid, new_mask);
  3939. }
  3940. /*
  3941. * Represents all cpu's present in the system
  3942. * In systems capable of hotplug, this map could dynamically grow
  3943. * as new cpu's are detected in the system via any platform specific
  3944. * method, such as ACPI for e.g.
  3945. */
  3946. cpumask_t cpu_present_map __read_mostly;
  3947. EXPORT_SYMBOL(cpu_present_map);
  3948. #ifndef CONFIG_SMP
  3949. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3950. EXPORT_SYMBOL(cpu_online_map);
  3951. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3952. EXPORT_SYMBOL(cpu_possible_map);
  3953. #endif
  3954. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3955. {
  3956. struct task_struct *p;
  3957. int retval;
  3958. get_online_cpus();
  3959. read_lock(&tasklist_lock);
  3960. retval = -ESRCH;
  3961. p = find_process_by_pid(pid);
  3962. if (!p)
  3963. goto out_unlock;
  3964. retval = security_task_getscheduler(p);
  3965. if (retval)
  3966. goto out_unlock;
  3967. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3968. out_unlock:
  3969. read_unlock(&tasklist_lock);
  3970. put_online_cpus();
  3971. return retval;
  3972. }
  3973. /**
  3974. * sys_sched_getaffinity - get the cpu affinity of a process
  3975. * @pid: pid of the process
  3976. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3977. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3978. */
  3979. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3980. unsigned long __user *user_mask_ptr)
  3981. {
  3982. int ret;
  3983. cpumask_t mask;
  3984. if (len < sizeof(cpumask_t))
  3985. return -EINVAL;
  3986. ret = sched_getaffinity(pid, &mask);
  3987. if (ret < 0)
  3988. return ret;
  3989. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3990. return -EFAULT;
  3991. return sizeof(cpumask_t);
  3992. }
  3993. /**
  3994. * sys_sched_yield - yield the current processor to other threads.
  3995. *
  3996. * This function yields the current CPU to other tasks. If there are no
  3997. * other threads running on this CPU then this function will return.
  3998. */
  3999. asmlinkage long sys_sched_yield(void)
  4000. {
  4001. struct rq *rq = this_rq_lock();
  4002. schedstat_inc(rq, yld_count);
  4003. current->sched_class->yield_task(rq);
  4004. /*
  4005. * Since we are going to call schedule() anyway, there's
  4006. * no need to preempt or enable interrupts:
  4007. */
  4008. __release(rq->lock);
  4009. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4010. _raw_spin_unlock(&rq->lock);
  4011. preempt_enable_no_resched();
  4012. schedule();
  4013. return 0;
  4014. }
  4015. static void __cond_resched(void)
  4016. {
  4017. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4018. __might_sleep(__FILE__, __LINE__);
  4019. #endif
  4020. /*
  4021. * The BKS might be reacquired before we have dropped
  4022. * PREEMPT_ACTIVE, which could trigger a second
  4023. * cond_resched() call.
  4024. */
  4025. do {
  4026. add_preempt_count(PREEMPT_ACTIVE);
  4027. schedule();
  4028. sub_preempt_count(PREEMPT_ACTIVE);
  4029. } while (need_resched());
  4030. }
  4031. int __sched cond_resched(void)
  4032. {
  4033. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4034. system_state == SYSTEM_RUNNING) {
  4035. __cond_resched();
  4036. return 1;
  4037. }
  4038. return 0;
  4039. }
  4040. EXPORT_SYMBOL(cond_resched);
  4041. /*
  4042. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4043. * call schedule, and on return reacquire the lock.
  4044. *
  4045. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4046. * operations here to prevent schedule() from being called twice (once via
  4047. * spin_unlock(), once by hand).
  4048. */
  4049. int cond_resched_lock(spinlock_t *lock)
  4050. {
  4051. int ret = 0;
  4052. if (need_lockbreak(lock)) {
  4053. spin_unlock(lock);
  4054. cpu_relax();
  4055. ret = 1;
  4056. spin_lock(lock);
  4057. }
  4058. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4059. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4060. _raw_spin_unlock(lock);
  4061. preempt_enable_no_resched();
  4062. __cond_resched();
  4063. ret = 1;
  4064. spin_lock(lock);
  4065. }
  4066. return ret;
  4067. }
  4068. EXPORT_SYMBOL(cond_resched_lock);
  4069. int __sched cond_resched_softirq(void)
  4070. {
  4071. BUG_ON(!in_softirq());
  4072. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4073. local_bh_enable();
  4074. __cond_resched();
  4075. local_bh_disable();
  4076. return 1;
  4077. }
  4078. return 0;
  4079. }
  4080. EXPORT_SYMBOL(cond_resched_softirq);
  4081. /**
  4082. * yield - yield the current processor to other threads.
  4083. *
  4084. * This is a shortcut for kernel-space yielding - it marks the
  4085. * thread runnable and calls sys_sched_yield().
  4086. */
  4087. void __sched yield(void)
  4088. {
  4089. set_current_state(TASK_RUNNING);
  4090. sys_sched_yield();
  4091. }
  4092. EXPORT_SYMBOL(yield);
  4093. /*
  4094. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4095. * that process accounting knows that this is a task in IO wait state.
  4096. *
  4097. * But don't do that if it is a deliberate, throttling IO wait (this task
  4098. * has set its backing_dev_info: the queue against which it should throttle)
  4099. */
  4100. void __sched io_schedule(void)
  4101. {
  4102. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4103. delayacct_blkio_start();
  4104. atomic_inc(&rq->nr_iowait);
  4105. schedule();
  4106. atomic_dec(&rq->nr_iowait);
  4107. delayacct_blkio_end();
  4108. }
  4109. EXPORT_SYMBOL(io_schedule);
  4110. long __sched io_schedule_timeout(long timeout)
  4111. {
  4112. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4113. long ret;
  4114. delayacct_blkio_start();
  4115. atomic_inc(&rq->nr_iowait);
  4116. ret = schedule_timeout(timeout);
  4117. atomic_dec(&rq->nr_iowait);
  4118. delayacct_blkio_end();
  4119. return ret;
  4120. }
  4121. /**
  4122. * sys_sched_get_priority_max - return maximum RT priority.
  4123. * @policy: scheduling class.
  4124. *
  4125. * this syscall returns the maximum rt_priority that can be used
  4126. * by a given scheduling class.
  4127. */
  4128. asmlinkage long sys_sched_get_priority_max(int policy)
  4129. {
  4130. int ret = -EINVAL;
  4131. switch (policy) {
  4132. case SCHED_FIFO:
  4133. case SCHED_RR:
  4134. ret = MAX_USER_RT_PRIO-1;
  4135. break;
  4136. case SCHED_NORMAL:
  4137. case SCHED_BATCH:
  4138. case SCHED_IDLE:
  4139. ret = 0;
  4140. break;
  4141. }
  4142. return ret;
  4143. }
  4144. /**
  4145. * sys_sched_get_priority_min - return minimum RT priority.
  4146. * @policy: scheduling class.
  4147. *
  4148. * this syscall returns the minimum rt_priority that can be used
  4149. * by a given scheduling class.
  4150. */
  4151. asmlinkage long sys_sched_get_priority_min(int policy)
  4152. {
  4153. int ret = -EINVAL;
  4154. switch (policy) {
  4155. case SCHED_FIFO:
  4156. case SCHED_RR:
  4157. ret = 1;
  4158. break;
  4159. case SCHED_NORMAL:
  4160. case SCHED_BATCH:
  4161. case SCHED_IDLE:
  4162. ret = 0;
  4163. }
  4164. return ret;
  4165. }
  4166. /**
  4167. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4168. * @pid: pid of the process.
  4169. * @interval: userspace pointer to the timeslice value.
  4170. *
  4171. * this syscall writes the default timeslice value of a given process
  4172. * into the user-space timespec buffer. A value of '0' means infinity.
  4173. */
  4174. asmlinkage
  4175. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4176. {
  4177. struct task_struct *p;
  4178. unsigned int time_slice;
  4179. int retval;
  4180. struct timespec t;
  4181. if (pid < 0)
  4182. return -EINVAL;
  4183. retval = -ESRCH;
  4184. read_lock(&tasklist_lock);
  4185. p = find_process_by_pid(pid);
  4186. if (!p)
  4187. goto out_unlock;
  4188. retval = security_task_getscheduler(p);
  4189. if (retval)
  4190. goto out_unlock;
  4191. /*
  4192. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4193. * tasks that are on an otherwise idle runqueue:
  4194. */
  4195. time_slice = 0;
  4196. if (p->policy == SCHED_RR) {
  4197. time_slice = DEF_TIMESLICE;
  4198. } else {
  4199. struct sched_entity *se = &p->se;
  4200. unsigned long flags;
  4201. struct rq *rq;
  4202. rq = task_rq_lock(p, &flags);
  4203. if (rq->cfs.load.weight)
  4204. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4205. task_rq_unlock(rq, &flags);
  4206. }
  4207. read_unlock(&tasklist_lock);
  4208. jiffies_to_timespec(time_slice, &t);
  4209. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4210. return retval;
  4211. out_unlock:
  4212. read_unlock(&tasklist_lock);
  4213. return retval;
  4214. }
  4215. static const char stat_nam[] = "RSDTtZX";
  4216. void sched_show_task(struct task_struct *p)
  4217. {
  4218. unsigned long free = 0;
  4219. unsigned state;
  4220. state = p->state ? __ffs(p->state) + 1 : 0;
  4221. printk(KERN_INFO "%-13.13s %c", p->comm,
  4222. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4223. #if BITS_PER_LONG == 32
  4224. if (state == TASK_RUNNING)
  4225. printk(KERN_CONT " running ");
  4226. else
  4227. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4228. #else
  4229. if (state == TASK_RUNNING)
  4230. printk(KERN_CONT " running task ");
  4231. else
  4232. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4233. #endif
  4234. #ifdef CONFIG_DEBUG_STACK_USAGE
  4235. {
  4236. unsigned long *n = end_of_stack(p);
  4237. while (!*n)
  4238. n++;
  4239. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4240. }
  4241. #endif
  4242. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4243. task_pid_nr(p), task_pid_nr(p->real_parent));
  4244. if (state != TASK_RUNNING)
  4245. show_stack(p, NULL);
  4246. }
  4247. void show_state_filter(unsigned long state_filter)
  4248. {
  4249. struct task_struct *g, *p;
  4250. #if BITS_PER_LONG == 32
  4251. printk(KERN_INFO
  4252. " task PC stack pid father\n");
  4253. #else
  4254. printk(KERN_INFO
  4255. " task PC stack pid father\n");
  4256. #endif
  4257. read_lock(&tasklist_lock);
  4258. do_each_thread(g, p) {
  4259. /*
  4260. * reset the NMI-timeout, listing all files on a slow
  4261. * console might take alot of time:
  4262. */
  4263. touch_nmi_watchdog();
  4264. if (!state_filter || (p->state & state_filter))
  4265. sched_show_task(p);
  4266. } while_each_thread(g, p);
  4267. touch_all_softlockup_watchdogs();
  4268. #ifdef CONFIG_SCHED_DEBUG
  4269. sysrq_sched_debug_show();
  4270. #endif
  4271. read_unlock(&tasklist_lock);
  4272. /*
  4273. * Only show locks if all tasks are dumped:
  4274. */
  4275. if (state_filter == -1)
  4276. debug_show_all_locks();
  4277. }
  4278. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4279. {
  4280. idle->sched_class = &idle_sched_class;
  4281. }
  4282. /**
  4283. * init_idle - set up an idle thread for a given CPU
  4284. * @idle: task in question
  4285. * @cpu: cpu the idle task belongs to
  4286. *
  4287. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4288. * flag, to make booting more robust.
  4289. */
  4290. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4291. {
  4292. struct rq *rq = cpu_rq(cpu);
  4293. unsigned long flags;
  4294. __sched_fork(idle);
  4295. idle->se.exec_start = sched_clock();
  4296. idle->prio = idle->normal_prio = MAX_PRIO;
  4297. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4298. __set_task_cpu(idle, cpu);
  4299. spin_lock_irqsave(&rq->lock, flags);
  4300. rq->curr = rq->idle = idle;
  4301. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4302. idle->oncpu = 1;
  4303. #endif
  4304. spin_unlock_irqrestore(&rq->lock, flags);
  4305. /* Set the preempt count _outside_ the spinlocks! */
  4306. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4307. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4308. #else
  4309. task_thread_info(idle)->preempt_count = 0;
  4310. #endif
  4311. /*
  4312. * The idle tasks have their own, simple scheduling class:
  4313. */
  4314. idle->sched_class = &idle_sched_class;
  4315. }
  4316. /*
  4317. * In a system that switches off the HZ timer nohz_cpu_mask
  4318. * indicates which cpus entered this state. This is used
  4319. * in the rcu update to wait only for active cpus. For system
  4320. * which do not switch off the HZ timer nohz_cpu_mask should
  4321. * always be CPU_MASK_NONE.
  4322. */
  4323. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4324. /*
  4325. * Increase the granularity value when there are more CPUs,
  4326. * because with more CPUs the 'effective latency' as visible
  4327. * to users decreases. But the relationship is not linear,
  4328. * so pick a second-best guess by going with the log2 of the
  4329. * number of CPUs.
  4330. *
  4331. * This idea comes from the SD scheduler of Con Kolivas:
  4332. */
  4333. static inline void sched_init_granularity(void)
  4334. {
  4335. unsigned int factor = 1 + ilog2(num_online_cpus());
  4336. const unsigned long limit = 200000000;
  4337. sysctl_sched_min_granularity *= factor;
  4338. if (sysctl_sched_min_granularity > limit)
  4339. sysctl_sched_min_granularity = limit;
  4340. sysctl_sched_latency *= factor;
  4341. if (sysctl_sched_latency > limit)
  4342. sysctl_sched_latency = limit;
  4343. sysctl_sched_wakeup_granularity *= factor;
  4344. sysctl_sched_batch_wakeup_granularity *= factor;
  4345. }
  4346. #ifdef CONFIG_SMP
  4347. /*
  4348. * This is how migration works:
  4349. *
  4350. * 1) we queue a struct migration_req structure in the source CPU's
  4351. * runqueue and wake up that CPU's migration thread.
  4352. * 2) we down() the locked semaphore => thread blocks.
  4353. * 3) migration thread wakes up (implicitly it forces the migrated
  4354. * thread off the CPU)
  4355. * 4) it gets the migration request and checks whether the migrated
  4356. * task is still in the wrong runqueue.
  4357. * 5) if it's in the wrong runqueue then the migration thread removes
  4358. * it and puts it into the right queue.
  4359. * 6) migration thread up()s the semaphore.
  4360. * 7) we wake up and the migration is done.
  4361. */
  4362. /*
  4363. * Change a given task's CPU affinity. Migrate the thread to a
  4364. * proper CPU and schedule it away if the CPU it's executing on
  4365. * is removed from the allowed bitmask.
  4366. *
  4367. * NOTE: the caller must have a valid reference to the task, the
  4368. * task must not exit() & deallocate itself prematurely. The
  4369. * call is not atomic; no spinlocks may be held.
  4370. */
  4371. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4372. {
  4373. struct migration_req req;
  4374. unsigned long flags;
  4375. struct rq *rq;
  4376. int ret = 0;
  4377. rq = task_rq_lock(p, &flags);
  4378. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4379. ret = -EINVAL;
  4380. goto out;
  4381. }
  4382. if (p->sched_class->set_cpus_allowed)
  4383. p->sched_class->set_cpus_allowed(p, &new_mask);
  4384. else {
  4385. p->cpus_allowed = new_mask;
  4386. p->nr_cpus_allowed = cpus_weight(new_mask);
  4387. }
  4388. /* Can the task run on the task's current CPU? If so, we're done */
  4389. if (cpu_isset(task_cpu(p), new_mask))
  4390. goto out;
  4391. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4392. /* Need help from migration thread: drop lock and wait. */
  4393. task_rq_unlock(rq, &flags);
  4394. wake_up_process(rq->migration_thread);
  4395. wait_for_completion(&req.done);
  4396. tlb_migrate_finish(p->mm);
  4397. return 0;
  4398. }
  4399. out:
  4400. task_rq_unlock(rq, &flags);
  4401. return ret;
  4402. }
  4403. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4404. /*
  4405. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4406. * this because either it can't run here any more (set_cpus_allowed()
  4407. * away from this CPU, or CPU going down), or because we're
  4408. * attempting to rebalance this task on exec (sched_exec).
  4409. *
  4410. * So we race with normal scheduler movements, but that's OK, as long
  4411. * as the task is no longer on this CPU.
  4412. *
  4413. * Returns non-zero if task was successfully migrated.
  4414. */
  4415. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4416. {
  4417. struct rq *rq_dest, *rq_src;
  4418. int ret = 0, on_rq;
  4419. if (unlikely(cpu_is_offline(dest_cpu)))
  4420. return ret;
  4421. rq_src = cpu_rq(src_cpu);
  4422. rq_dest = cpu_rq(dest_cpu);
  4423. double_rq_lock(rq_src, rq_dest);
  4424. /* Already moved. */
  4425. if (task_cpu(p) != src_cpu)
  4426. goto out;
  4427. /* Affinity changed (again). */
  4428. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4429. goto out;
  4430. on_rq = p->se.on_rq;
  4431. if (on_rq)
  4432. deactivate_task(rq_src, p, 0);
  4433. set_task_cpu(p, dest_cpu);
  4434. if (on_rq) {
  4435. activate_task(rq_dest, p, 0);
  4436. check_preempt_curr(rq_dest, p);
  4437. }
  4438. ret = 1;
  4439. out:
  4440. double_rq_unlock(rq_src, rq_dest);
  4441. return ret;
  4442. }
  4443. /*
  4444. * migration_thread - this is a highprio system thread that performs
  4445. * thread migration by bumping thread off CPU then 'pushing' onto
  4446. * another runqueue.
  4447. */
  4448. static int migration_thread(void *data)
  4449. {
  4450. int cpu = (long)data;
  4451. struct rq *rq;
  4452. rq = cpu_rq(cpu);
  4453. BUG_ON(rq->migration_thread != current);
  4454. set_current_state(TASK_INTERRUPTIBLE);
  4455. while (!kthread_should_stop()) {
  4456. struct migration_req *req;
  4457. struct list_head *head;
  4458. spin_lock_irq(&rq->lock);
  4459. if (cpu_is_offline(cpu)) {
  4460. spin_unlock_irq(&rq->lock);
  4461. goto wait_to_die;
  4462. }
  4463. if (rq->active_balance) {
  4464. active_load_balance(rq, cpu);
  4465. rq->active_balance = 0;
  4466. }
  4467. head = &rq->migration_queue;
  4468. if (list_empty(head)) {
  4469. spin_unlock_irq(&rq->lock);
  4470. schedule();
  4471. set_current_state(TASK_INTERRUPTIBLE);
  4472. continue;
  4473. }
  4474. req = list_entry(head->next, struct migration_req, list);
  4475. list_del_init(head->next);
  4476. spin_unlock(&rq->lock);
  4477. __migrate_task(req->task, cpu, req->dest_cpu);
  4478. local_irq_enable();
  4479. complete(&req->done);
  4480. }
  4481. __set_current_state(TASK_RUNNING);
  4482. return 0;
  4483. wait_to_die:
  4484. /* Wait for kthread_stop */
  4485. set_current_state(TASK_INTERRUPTIBLE);
  4486. while (!kthread_should_stop()) {
  4487. schedule();
  4488. set_current_state(TASK_INTERRUPTIBLE);
  4489. }
  4490. __set_current_state(TASK_RUNNING);
  4491. return 0;
  4492. }
  4493. #ifdef CONFIG_HOTPLUG_CPU
  4494. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4495. {
  4496. int ret;
  4497. local_irq_disable();
  4498. ret = __migrate_task(p, src_cpu, dest_cpu);
  4499. local_irq_enable();
  4500. return ret;
  4501. }
  4502. /*
  4503. * Figure out where task on dead CPU should go, use force if necessary.
  4504. * NOTE: interrupts should be disabled by the caller
  4505. */
  4506. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4507. {
  4508. unsigned long flags;
  4509. cpumask_t mask;
  4510. struct rq *rq;
  4511. int dest_cpu;
  4512. do {
  4513. /* On same node? */
  4514. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4515. cpus_and(mask, mask, p->cpus_allowed);
  4516. dest_cpu = any_online_cpu(mask);
  4517. /* On any allowed CPU? */
  4518. if (dest_cpu == NR_CPUS)
  4519. dest_cpu = any_online_cpu(p->cpus_allowed);
  4520. /* No more Mr. Nice Guy. */
  4521. if (dest_cpu == NR_CPUS) {
  4522. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4523. /*
  4524. * Try to stay on the same cpuset, where the
  4525. * current cpuset may be a subset of all cpus.
  4526. * The cpuset_cpus_allowed_locked() variant of
  4527. * cpuset_cpus_allowed() will not block. It must be
  4528. * called within calls to cpuset_lock/cpuset_unlock.
  4529. */
  4530. rq = task_rq_lock(p, &flags);
  4531. p->cpus_allowed = cpus_allowed;
  4532. dest_cpu = any_online_cpu(p->cpus_allowed);
  4533. task_rq_unlock(rq, &flags);
  4534. /*
  4535. * Don't tell them about moving exiting tasks or
  4536. * kernel threads (both mm NULL), since they never
  4537. * leave kernel.
  4538. */
  4539. if (p->mm && printk_ratelimit()) {
  4540. printk(KERN_INFO "process %d (%s) no "
  4541. "longer affine to cpu%d\n",
  4542. task_pid_nr(p), p->comm, dead_cpu);
  4543. }
  4544. }
  4545. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4546. }
  4547. /*
  4548. * While a dead CPU has no uninterruptible tasks queued at this point,
  4549. * it might still have a nonzero ->nr_uninterruptible counter, because
  4550. * for performance reasons the counter is not stricly tracking tasks to
  4551. * their home CPUs. So we just add the counter to another CPU's counter,
  4552. * to keep the global sum constant after CPU-down:
  4553. */
  4554. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4555. {
  4556. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4557. unsigned long flags;
  4558. local_irq_save(flags);
  4559. double_rq_lock(rq_src, rq_dest);
  4560. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4561. rq_src->nr_uninterruptible = 0;
  4562. double_rq_unlock(rq_src, rq_dest);
  4563. local_irq_restore(flags);
  4564. }
  4565. /* Run through task list and migrate tasks from the dead cpu. */
  4566. static void migrate_live_tasks(int src_cpu)
  4567. {
  4568. struct task_struct *p, *t;
  4569. read_lock(&tasklist_lock);
  4570. do_each_thread(t, p) {
  4571. if (p == current)
  4572. continue;
  4573. if (task_cpu(p) == src_cpu)
  4574. move_task_off_dead_cpu(src_cpu, p);
  4575. } while_each_thread(t, p);
  4576. read_unlock(&tasklist_lock);
  4577. }
  4578. /*
  4579. * Schedules idle task to be the next runnable task on current CPU.
  4580. * It does so by boosting its priority to highest possible.
  4581. * Used by CPU offline code.
  4582. */
  4583. void sched_idle_next(void)
  4584. {
  4585. int this_cpu = smp_processor_id();
  4586. struct rq *rq = cpu_rq(this_cpu);
  4587. struct task_struct *p = rq->idle;
  4588. unsigned long flags;
  4589. /* cpu has to be offline */
  4590. BUG_ON(cpu_online(this_cpu));
  4591. /*
  4592. * Strictly not necessary since rest of the CPUs are stopped by now
  4593. * and interrupts disabled on the current cpu.
  4594. */
  4595. spin_lock_irqsave(&rq->lock, flags);
  4596. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4597. update_rq_clock(rq);
  4598. activate_task(rq, p, 0);
  4599. spin_unlock_irqrestore(&rq->lock, flags);
  4600. }
  4601. /*
  4602. * Ensures that the idle task is using init_mm right before its cpu goes
  4603. * offline.
  4604. */
  4605. void idle_task_exit(void)
  4606. {
  4607. struct mm_struct *mm = current->active_mm;
  4608. BUG_ON(cpu_online(smp_processor_id()));
  4609. if (mm != &init_mm)
  4610. switch_mm(mm, &init_mm, current);
  4611. mmdrop(mm);
  4612. }
  4613. /* called under rq->lock with disabled interrupts */
  4614. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4615. {
  4616. struct rq *rq = cpu_rq(dead_cpu);
  4617. /* Must be exiting, otherwise would be on tasklist. */
  4618. BUG_ON(!p->exit_state);
  4619. /* Cannot have done final schedule yet: would have vanished. */
  4620. BUG_ON(p->state == TASK_DEAD);
  4621. get_task_struct(p);
  4622. /*
  4623. * Drop lock around migration; if someone else moves it,
  4624. * that's OK. No task can be added to this CPU, so iteration is
  4625. * fine.
  4626. */
  4627. spin_unlock_irq(&rq->lock);
  4628. move_task_off_dead_cpu(dead_cpu, p);
  4629. spin_lock_irq(&rq->lock);
  4630. put_task_struct(p);
  4631. }
  4632. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4633. static void migrate_dead_tasks(unsigned int dead_cpu)
  4634. {
  4635. struct rq *rq = cpu_rq(dead_cpu);
  4636. struct task_struct *next;
  4637. for ( ; ; ) {
  4638. if (!rq->nr_running)
  4639. break;
  4640. update_rq_clock(rq);
  4641. next = pick_next_task(rq, rq->curr);
  4642. if (!next)
  4643. break;
  4644. migrate_dead(dead_cpu, next);
  4645. }
  4646. }
  4647. #endif /* CONFIG_HOTPLUG_CPU */
  4648. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4649. static struct ctl_table sd_ctl_dir[] = {
  4650. {
  4651. .procname = "sched_domain",
  4652. .mode = 0555,
  4653. },
  4654. {0, },
  4655. };
  4656. static struct ctl_table sd_ctl_root[] = {
  4657. {
  4658. .ctl_name = CTL_KERN,
  4659. .procname = "kernel",
  4660. .mode = 0555,
  4661. .child = sd_ctl_dir,
  4662. },
  4663. {0, },
  4664. };
  4665. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4666. {
  4667. struct ctl_table *entry =
  4668. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4669. return entry;
  4670. }
  4671. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4672. {
  4673. struct ctl_table *entry;
  4674. /*
  4675. * In the intermediate directories, both the child directory and
  4676. * procname are dynamically allocated and could fail but the mode
  4677. * will always be set. In the lowest directory the names are
  4678. * static strings and all have proc handlers.
  4679. */
  4680. for (entry = *tablep; entry->mode; entry++) {
  4681. if (entry->child)
  4682. sd_free_ctl_entry(&entry->child);
  4683. if (entry->proc_handler == NULL)
  4684. kfree(entry->procname);
  4685. }
  4686. kfree(*tablep);
  4687. *tablep = NULL;
  4688. }
  4689. static void
  4690. set_table_entry(struct ctl_table *entry,
  4691. const char *procname, void *data, int maxlen,
  4692. mode_t mode, proc_handler *proc_handler)
  4693. {
  4694. entry->procname = procname;
  4695. entry->data = data;
  4696. entry->maxlen = maxlen;
  4697. entry->mode = mode;
  4698. entry->proc_handler = proc_handler;
  4699. }
  4700. static struct ctl_table *
  4701. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4702. {
  4703. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4704. if (table == NULL)
  4705. return NULL;
  4706. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4707. sizeof(long), 0644, proc_doulongvec_minmax);
  4708. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4709. sizeof(long), 0644, proc_doulongvec_minmax);
  4710. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4711. sizeof(int), 0644, proc_dointvec_minmax);
  4712. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4713. sizeof(int), 0644, proc_dointvec_minmax);
  4714. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4715. sizeof(int), 0644, proc_dointvec_minmax);
  4716. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4717. sizeof(int), 0644, proc_dointvec_minmax);
  4718. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4719. sizeof(int), 0644, proc_dointvec_minmax);
  4720. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4721. sizeof(int), 0644, proc_dointvec_minmax);
  4722. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4723. sizeof(int), 0644, proc_dointvec_minmax);
  4724. set_table_entry(&table[9], "cache_nice_tries",
  4725. &sd->cache_nice_tries,
  4726. sizeof(int), 0644, proc_dointvec_minmax);
  4727. set_table_entry(&table[10], "flags", &sd->flags,
  4728. sizeof(int), 0644, proc_dointvec_minmax);
  4729. /* &table[11] is terminator */
  4730. return table;
  4731. }
  4732. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4733. {
  4734. struct ctl_table *entry, *table;
  4735. struct sched_domain *sd;
  4736. int domain_num = 0, i;
  4737. char buf[32];
  4738. for_each_domain(cpu, sd)
  4739. domain_num++;
  4740. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4741. if (table == NULL)
  4742. return NULL;
  4743. i = 0;
  4744. for_each_domain(cpu, sd) {
  4745. snprintf(buf, 32, "domain%d", i);
  4746. entry->procname = kstrdup(buf, GFP_KERNEL);
  4747. entry->mode = 0555;
  4748. entry->child = sd_alloc_ctl_domain_table(sd);
  4749. entry++;
  4750. i++;
  4751. }
  4752. return table;
  4753. }
  4754. static struct ctl_table_header *sd_sysctl_header;
  4755. static void register_sched_domain_sysctl(void)
  4756. {
  4757. int i, cpu_num = num_online_cpus();
  4758. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4759. char buf[32];
  4760. WARN_ON(sd_ctl_dir[0].child);
  4761. sd_ctl_dir[0].child = entry;
  4762. if (entry == NULL)
  4763. return;
  4764. for_each_online_cpu(i) {
  4765. snprintf(buf, 32, "cpu%d", i);
  4766. entry->procname = kstrdup(buf, GFP_KERNEL);
  4767. entry->mode = 0555;
  4768. entry->child = sd_alloc_ctl_cpu_table(i);
  4769. entry++;
  4770. }
  4771. WARN_ON(sd_sysctl_header);
  4772. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4773. }
  4774. /* may be called multiple times per register */
  4775. static void unregister_sched_domain_sysctl(void)
  4776. {
  4777. if (sd_sysctl_header)
  4778. unregister_sysctl_table(sd_sysctl_header);
  4779. sd_sysctl_header = NULL;
  4780. if (sd_ctl_dir[0].child)
  4781. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4782. }
  4783. #else
  4784. static void register_sched_domain_sysctl(void)
  4785. {
  4786. }
  4787. static void unregister_sched_domain_sysctl(void)
  4788. {
  4789. }
  4790. #endif
  4791. /*
  4792. * migration_call - callback that gets triggered when a CPU is added.
  4793. * Here we can start up the necessary migration thread for the new CPU.
  4794. */
  4795. static int __cpuinit
  4796. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4797. {
  4798. struct task_struct *p;
  4799. int cpu = (long)hcpu;
  4800. unsigned long flags;
  4801. struct rq *rq;
  4802. switch (action) {
  4803. case CPU_UP_PREPARE:
  4804. case CPU_UP_PREPARE_FROZEN:
  4805. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4806. if (IS_ERR(p))
  4807. return NOTIFY_BAD;
  4808. kthread_bind(p, cpu);
  4809. /* Must be high prio: stop_machine expects to yield to it. */
  4810. rq = task_rq_lock(p, &flags);
  4811. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4812. task_rq_unlock(rq, &flags);
  4813. cpu_rq(cpu)->migration_thread = p;
  4814. break;
  4815. case CPU_ONLINE:
  4816. case CPU_ONLINE_FROZEN:
  4817. /* Strictly unnecessary, as first user will wake it. */
  4818. wake_up_process(cpu_rq(cpu)->migration_thread);
  4819. /* Update our root-domain */
  4820. rq = cpu_rq(cpu);
  4821. spin_lock_irqsave(&rq->lock, flags);
  4822. if (rq->rd) {
  4823. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  4824. cpu_set(cpu, rq->rd->online);
  4825. }
  4826. spin_unlock_irqrestore(&rq->lock, flags);
  4827. break;
  4828. #ifdef CONFIG_HOTPLUG_CPU
  4829. case CPU_UP_CANCELED:
  4830. case CPU_UP_CANCELED_FROZEN:
  4831. if (!cpu_rq(cpu)->migration_thread)
  4832. break;
  4833. /* Unbind it from offline cpu so it can run. Fall thru. */
  4834. kthread_bind(cpu_rq(cpu)->migration_thread,
  4835. any_online_cpu(cpu_online_map));
  4836. kthread_stop(cpu_rq(cpu)->migration_thread);
  4837. cpu_rq(cpu)->migration_thread = NULL;
  4838. break;
  4839. case CPU_DEAD:
  4840. case CPU_DEAD_FROZEN:
  4841. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4842. migrate_live_tasks(cpu);
  4843. rq = cpu_rq(cpu);
  4844. kthread_stop(rq->migration_thread);
  4845. rq->migration_thread = NULL;
  4846. /* Idle task back to normal (off runqueue, low prio) */
  4847. spin_lock_irq(&rq->lock);
  4848. update_rq_clock(rq);
  4849. deactivate_task(rq, rq->idle, 0);
  4850. rq->idle->static_prio = MAX_PRIO;
  4851. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4852. rq->idle->sched_class = &idle_sched_class;
  4853. migrate_dead_tasks(cpu);
  4854. spin_unlock_irq(&rq->lock);
  4855. cpuset_unlock();
  4856. migrate_nr_uninterruptible(rq);
  4857. BUG_ON(rq->nr_running != 0);
  4858. /*
  4859. * No need to migrate the tasks: it was best-effort if
  4860. * they didn't take sched_hotcpu_mutex. Just wake up
  4861. * the requestors.
  4862. */
  4863. spin_lock_irq(&rq->lock);
  4864. while (!list_empty(&rq->migration_queue)) {
  4865. struct migration_req *req;
  4866. req = list_entry(rq->migration_queue.next,
  4867. struct migration_req, list);
  4868. list_del_init(&req->list);
  4869. complete(&req->done);
  4870. }
  4871. spin_unlock_irq(&rq->lock);
  4872. break;
  4873. case CPU_DOWN_PREPARE:
  4874. /* Update our root-domain */
  4875. rq = cpu_rq(cpu);
  4876. spin_lock_irqsave(&rq->lock, flags);
  4877. if (rq->rd) {
  4878. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  4879. cpu_clear(cpu, rq->rd->online);
  4880. }
  4881. spin_unlock_irqrestore(&rq->lock, flags);
  4882. break;
  4883. #endif
  4884. }
  4885. return NOTIFY_OK;
  4886. }
  4887. /* Register at highest priority so that task migration (migrate_all_tasks)
  4888. * happens before everything else.
  4889. */
  4890. static struct notifier_block __cpuinitdata migration_notifier = {
  4891. .notifier_call = migration_call,
  4892. .priority = 10
  4893. };
  4894. void __init migration_init(void)
  4895. {
  4896. void *cpu = (void *)(long)smp_processor_id();
  4897. int err;
  4898. /* Start one for the boot CPU: */
  4899. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4900. BUG_ON(err == NOTIFY_BAD);
  4901. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4902. register_cpu_notifier(&migration_notifier);
  4903. }
  4904. #endif
  4905. #ifdef CONFIG_SMP
  4906. /* Number of possible processor ids */
  4907. int nr_cpu_ids __read_mostly = NR_CPUS;
  4908. EXPORT_SYMBOL(nr_cpu_ids);
  4909. #ifdef CONFIG_SCHED_DEBUG
  4910. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4911. {
  4912. struct sched_group *group = sd->groups;
  4913. cpumask_t groupmask;
  4914. char str[NR_CPUS];
  4915. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4916. cpus_clear(groupmask);
  4917. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4918. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4919. printk("does not load-balance\n");
  4920. if (sd->parent)
  4921. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4922. " has parent");
  4923. return -1;
  4924. }
  4925. printk(KERN_CONT "span %s\n", str);
  4926. if (!cpu_isset(cpu, sd->span)) {
  4927. printk(KERN_ERR "ERROR: domain->span does not contain "
  4928. "CPU%d\n", cpu);
  4929. }
  4930. if (!cpu_isset(cpu, group->cpumask)) {
  4931. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4932. " CPU%d\n", cpu);
  4933. }
  4934. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4935. do {
  4936. if (!group) {
  4937. printk("\n");
  4938. printk(KERN_ERR "ERROR: group is NULL\n");
  4939. break;
  4940. }
  4941. if (!group->__cpu_power) {
  4942. printk(KERN_CONT "\n");
  4943. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4944. "set\n");
  4945. break;
  4946. }
  4947. if (!cpus_weight(group->cpumask)) {
  4948. printk(KERN_CONT "\n");
  4949. printk(KERN_ERR "ERROR: empty group\n");
  4950. break;
  4951. }
  4952. if (cpus_intersects(groupmask, group->cpumask)) {
  4953. printk(KERN_CONT "\n");
  4954. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4955. break;
  4956. }
  4957. cpus_or(groupmask, groupmask, group->cpumask);
  4958. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4959. printk(KERN_CONT " %s", str);
  4960. group = group->next;
  4961. } while (group != sd->groups);
  4962. printk(KERN_CONT "\n");
  4963. if (!cpus_equal(sd->span, groupmask))
  4964. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4965. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4966. printk(KERN_ERR "ERROR: parent span is not a superset "
  4967. "of domain->span\n");
  4968. return 0;
  4969. }
  4970. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4971. {
  4972. int level = 0;
  4973. if (!sd) {
  4974. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4975. return;
  4976. }
  4977. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4978. for (;;) {
  4979. if (sched_domain_debug_one(sd, cpu, level))
  4980. break;
  4981. level++;
  4982. sd = sd->parent;
  4983. if (!sd)
  4984. break;
  4985. }
  4986. }
  4987. #else
  4988. # define sched_domain_debug(sd, cpu) do { } while (0)
  4989. #endif
  4990. static int sd_degenerate(struct sched_domain *sd)
  4991. {
  4992. if (cpus_weight(sd->span) == 1)
  4993. return 1;
  4994. /* Following flags need at least 2 groups */
  4995. if (sd->flags & (SD_LOAD_BALANCE |
  4996. SD_BALANCE_NEWIDLE |
  4997. SD_BALANCE_FORK |
  4998. SD_BALANCE_EXEC |
  4999. SD_SHARE_CPUPOWER |
  5000. SD_SHARE_PKG_RESOURCES)) {
  5001. if (sd->groups != sd->groups->next)
  5002. return 0;
  5003. }
  5004. /* Following flags don't use groups */
  5005. if (sd->flags & (SD_WAKE_IDLE |
  5006. SD_WAKE_AFFINE |
  5007. SD_WAKE_BALANCE))
  5008. return 0;
  5009. return 1;
  5010. }
  5011. static int
  5012. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5013. {
  5014. unsigned long cflags = sd->flags, pflags = parent->flags;
  5015. if (sd_degenerate(parent))
  5016. return 1;
  5017. if (!cpus_equal(sd->span, parent->span))
  5018. return 0;
  5019. /* Does parent contain flags not in child? */
  5020. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5021. if (cflags & SD_WAKE_AFFINE)
  5022. pflags &= ~SD_WAKE_BALANCE;
  5023. /* Flags needing groups don't count if only 1 group in parent */
  5024. if (parent->groups == parent->groups->next) {
  5025. pflags &= ~(SD_LOAD_BALANCE |
  5026. SD_BALANCE_NEWIDLE |
  5027. SD_BALANCE_FORK |
  5028. SD_BALANCE_EXEC |
  5029. SD_SHARE_CPUPOWER |
  5030. SD_SHARE_PKG_RESOURCES);
  5031. }
  5032. if (~cflags & pflags)
  5033. return 0;
  5034. return 1;
  5035. }
  5036. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5037. {
  5038. unsigned long flags;
  5039. const struct sched_class *class;
  5040. spin_lock_irqsave(&rq->lock, flags);
  5041. if (rq->rd) {
  5042. struct root_domain *old_rd = rq->rd;
  5043. for (class = sched_class_highest; class; class = class->next) {
  5044. if (class->leave_domain)
  5045. class->leave_domain(rq);
  5046. }
  5047. cpu_clear(rq->cpu, old_rd->span);
  5048. cpu_clear(rq->cpu, old_rd->online);
  5049. if (atomic_dec_and_test(&old_rd->refcount))
  5050. kfree(old_rd);
  5051. }
  5052. atomic_inc(&rd->refcount);
  5053. rq->rd = rd;
  5054. cpu_set(rq->cpu, rd->span);
  5055. if (cpu_isset(rq->cpu, cpu_online_map))
  5056. cpu_set(rq->cpu, rd->online);
  5057. for (class = sched_class_highest; class; class = class->next) {
  5058. if (class->join_domain)
  5059. class->join_domain(rq);
  5060. }
  5061. spin_unlock_irqrestore(&rq->lock, flags);
  5062. }
  5063. static void init_rootdomain(struct root_domain *rd)
  5064. {
  5065. memset(rd, 0, sizeof(*rd));
  5066. cpus_clear(rd->span);
  5067. cpus_clear(rd->online);
  5068. }
  5069. static void init_defrootdomain(void)
  5070. {
  5071. init_rootdomain(&def_root_domain);
  5072. atomic_set(&def_root_domain.refcount, 1);
  5073. }
  5074. static struct root_domain *alloc_rootdomain(void)
  5075. {
  5076. struct root_domain *rd;
  5077. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5078. if (!rd)
  5079. return NULL;
  5080. init_rootdomain(rd);
  5081. return rd;
  5082. }
  5083. /*
  5084. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5085. * hold the hotplug lock.
  5086. */
  5087. static void
  5088. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5089. {
  5090. struct rq *rq = cpu_rq(cpu);
  5091. struct sched_domain *tmp;
  5092. /* Remove the sched domains which do not contribute to scheduling. */
  5093. for (tmp = sd; tmp; tmp = tmp->parent) {
  5094. struct sched_domain *parent = tmp->parent;
  5095. if (!parent)
  5096. break;
  5097. if (sd_parent_degenerate(tmp, parent)) {
  5098. tmp->parent = parent->parent;
  5099. if (parent->parent)
  5100. parent->parent->child = tmp;
  5101. }
  5102. }
  5103. if (sd && sd_degenerate(sd)) {
  5104. sd = sd->parent;
  5105. if (sd)
  5106. sd->child = NULL;
  5107. }
  5108. sched_domain_debug(sd, cpu);
  5109. rq_attach_root(rq, rd);
  5110. rcu_assign_pointer(rq->sd, sd);
  5111. }
  5112. /* cpus with isolated domains */
  5113. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5114. /* Setup the mask of cpus configured for isolated domains */
  5115. static int __init isolated_cpu_setup(char *str)
  5116. {
  5117. int ints[NR_CPUS], i;
  5118. str = get_options(str, ARRAY_SIZE(ints), ints);
  5119. cpus_clear(cpu_isolated_map);
  5120. for (i = 1; i <= ints[0]; i++)
  5121. if (ints[i] < NR_CPUS)
  5122. cpu_set(ints[i], cpu_isolated_map);
  5123. return 1;
  5124. }
  5125. __setup("isolcpus=", isolated_cpu_setup);
  5126. /*
  5127. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5128. * to a function which identifies what group(along with sched group) a CPU
  5129. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5130. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5131. *
  5132. * init_sched_build_groups will build a circular linked list of the groups
  5133. * covered by the given span, and will set each group's ->cpumask correctly,
  5134. * and ->cpu_power to 0.
  5135. */
  5136. static void
  5137. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5138. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5139. struct sched_group **sg))
  5140. {
  5141. struct sched_group *first = NULL, *last = NULL;
  5142. cpumask_t covered = CPU_MASK_NONE;
  5143. int i;
  5144. for_each_cpu_mask(i, span) {
  5145. struct sched_group *sg;
  5146. int group = group_fn(i, cpu_map, &sg);
  5147. int j;
  5148. if (cpu_isset(i, covered))
  5149. continue;
  5150. sg->cpumask = CPU_MASK_NONE;
  5151. sg->__cpu_power = 0;
  5152. for_each_cpu_mask(j, span) {
  5153. if (group_fn(j, cpu_map, NULL) != group)
  5154. continue;
  5155. cpu_set(j, covered);
  5156. cpu_set(j, sg->cpumask);
  5157. }
  5158. if (!first)
  5159. first = sg;
  5160. if (last)
  5161. last->next = sg;
  5162. last = sg;
  5163. }
  5164. last->next = first;
  5165. }
  5166. #define SD_NODES_PER_DOMAIN 16
  5167. #ifdef CONFIG_NUMA
  5168. /**
  5169. * find_next_best_node - find the next node to include in a sched_domain
  5170. * @node: node whose sched_domain we're building
  5171. * @used_nodes: nodes already in the sched_domain
  5172. *
  5173. * Find the next node to include in a given scheduling domain. Simply
  5174. * finds the closest node not already in the @used_nodes map.
  5175. *
  5176. * Should use nodemask_t.
  5177. */
  5178. static int find_next_best_node(int node, unsigned long *used_nodes)
  5179. {
  5180. int i, n, val, min_val, best_node = 0;
  5181. min_val = INT_MAX;
  5182. for (i = 0; i < MAX_NUMNODES; i++) {
  5183. /* Start at @node */
  5184. n = (node + i) % MAX_NUMNODES;
  5185. if (!nr_cpus_node(n))
  5186. continue;
  5187. /* Skip already used nodes */
  5188. if (test_bit(n, used_nodes))
  5189. continue;
  5190. /* Simple min distance search */
  5191. val = node_distance(node, n);
  5192. if (val < min_val) {
  5193. min_val = val;
  5194. best_node = n;
  5195. }
  5196. }
  5197. set_bit(best_node, used_nodes);
  5198. return best_node;
  5199. }
  5200. /**
  5201. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5202. * @node: node whose cpumask we're constructing
  5203. * @size: number of nodes to include in this span
  5204. *
  5205. * Given a node, construct a good cpumask for its sched_domain to span. It
  5206. * should be one that prevents unnecessary balancing, but also spreads tasks
  5207. * out optimally.
  5208. */
  5209. static cpumask_t sched_domain_node_span(int node)
  5210. {
  5211. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5212. cpumask_t span, nodemask;
  5213. int i;
  5214. cpus_clear(span);
  5215. bitmap_zero(used_nodes, MAX_NUMNODES);
  5216. nodemask = node_to_cpumask(node);
  5217. cpus_or(span, span, nodemask);
  5218. set_bit(node, used_nodes);
  5219. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5220. int next_node = find_next_best_node(node, used_nodes);
  5221. nodemask = node_to_cpumask(next_node);
  5222. cpus_or(span, span, nodemask);
  5223. }
  5224. return span;
  5225. }
  5226. #endif
  5227. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5228. /*
  5229. * SMT sched-domains:
  5230. */
  5231. #ifdef CONFIG_SCHED_SMT
  5232. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5233. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5234. static int
  5235. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5236. {
  5237. if (sg)
  5238. *sg = &per_cpu(sched_group_cpus, cpu);
  5239. return cpu;
  5240. }
  5241. #endif
  5242. /*
  5243. * multi-core sched-domains:
  5244. */
  5245. #ifdef CONFIG_SCHED_MC
  5246. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5247. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5248. #endif
  5249. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5250. static int
  5251. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5252. {
  5253. int group;
  5254. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5255. cpus_and(mask, mask, *cpu_map);
  5256. group = first_cpu(mask);
  5257. if (sg)
  5258. *sg = &per_cpu(sched_group_core, group);
  5259. return group;
  5260. }
  5261. #elif defined(CONFIG_SCHED_MC)
  5262. static int
  5263. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5264. {
  5265. if (sg)
  5266. *sg = &per_cpu(sched_group_core, cpu);
  5267. return cpu;
  5268. }
  5269. #endif
  5270. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5271. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5272. static int
  5273. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5274. {
  5275. int group;
  5276. #ifdef CONFIG_SCHED_MC
  5277. cpumask_t mask = cpu_coregroup_map(cpu);
  5278. cpus_and(mask, mask, *cpu_map);
  5279. group = first_cpu(mask);
  5280. #elif defined(CONFIG_SCHED_SMT)
  5281. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5282. cpus_and(mask, mask, *cpu_map);
  5283. group = first_cpu(mask);
  5284. #else
  5285. group = cpu;
  5286. #endif
  5287. if (sg)
  5288. *sg = &per_cpu(sched_group_phys, group);
  5289. return group;
  5290. }
  5291. #ifdef CONFIG_NUMA
  5292. /*
  5293. * The init_sched_build_groups can't handle what we want to do with node
  5294. * groups, so roll our own. Now each node has its own list of groups which
  5295. * gets dynamically allocated.
  5296. */
  5297. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5298. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5299. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5300. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5301. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5302. struct sched_group **sg)
  5303. {
  5304. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5305. int group;
  5306. cpus_and(nodemask, nodemask, *cpu_map);
  5307. group = first_cpu(nodemask);
  5308. if (sg)
  5309. *sg = &per_cpu(sched_group_allnodes, group);
  5310. return group;
  5311. }
  5312. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5313. {
  5314. struct sched_group *sg = group_head;
  5315. int j;
  5316. if (!sg)
  5317. return;
  5318. do {
  5319. for_each_cpu_mask(j, sg->cpumask) {
  5320. struct sched_domain *sd;
  5321. sd = &per_cpu(phys_domains, j);
  5322. if (j != first_cpu(sd->groups->cpumask)) {
  5323. /*
  5324. * Only add "power" once for each
  5325. * physical package.
  5326. */
  5327. continue;
  5328. }
  5329. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5330. }
  5331. sg = sg->next;
  5332. } while (sg != group_head);
  5333. }
  5334. #endif
  5335. #ifdef CONFIG_NUMA
  5336. /* Free memory allocated for various sched_group structures */
  5337. static void free_sched_groups(const cpumask_t *cpu_map)
  5338. {
  5339. int cpu, i;
  5340. for_each_cpu_mask(cpu, *cpu_map) {
  5341. struct sched_group **sched_group_nodes
  5342. = sched_group_nodes_bycpu[cpu];
  5343. if (!sched_group_nodes)
  5344. continue;
  5345. for (i = 0; i < MAX_NUMNODES; i++) {
  5346. cpumask_t nodemask = node_to_cpumask(i);
  5347. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5348. cpus_and(nodemask, nodemask, *cpu_map);
  5349. if (cpus_empty(nodemask))
  5350. continue;
  5351. if (sg == NULL)
  5352. continue;
  5353. sg = sg->next;
  5354. next_sg:
  5355. oldsg = sg;
  5356. sg = sg->next;
  5357. kfree(oldsg);
  5358. if (oldsg != sched_group_nodes[i])
  5359. goto next_sg;
  5360. }
  5361. kfree(sched_group_nodes);
  5362. sched_group_nodes_bycpu[cpu] = NULL;
  5363. }
  5364. }
  5365. #else
  5366. static void free_sched_groups(const cpumask_t *cpu_map)
  5367. {
  5368. }
  5369. #endif
  5370. /*
  5371. * Initialize sched groups cpu_power.
  5372. *
  5373. * cpu_power indicates the capacity of sched group, which is used while
  5374. * distributing the load between different sched groups in a sched domain.
  5375. * Typically cpu_power for all the groups in a sched domain will be same unless
  5376. * there are asymmetries in the topology. If there are asymmetries, group
  5377. * having more cpu_power will pickup more load compared to the group having
  5378. * less cpu_power.
  5379. *
  5380. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5381. * the maximum number of tasks a group can handle in the presence of other idle
  5382. * or lightly loaded groups in the same sched domain.
  5383. */
  5384. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5385. {
  5386. struct sched_domain *child;
  5387. struct sched_group *group;
  5388. WARN_ON(!sd || !sd->groups);
  5389. if (cpu != first_cpu(sd->groups->cpumask))
  5390. return;
  5391. child = sd->child;
  5392. sd->groups->__cpu_power = 0;
  5393. /*
  5394. * For perf policy, if the groups in child domain share resources
  5395. * (for example cores sharing some portions of the cache hierarchy
  5396. * or SMT), then set this domain groups cpu_power such that each group
  5397. * can handle only one task, when there are other idle groups in the
  5398. * same sched domain.
  5399. */
  5400. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5401. (child->flags &
  5402. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5403. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5404. return;
  5405. }
  5406. /*
  5407. * add cpu_power of each child group to this groups cpu_power
  5408. */
  5409. group = child->groups;
  5410. do {
  5411. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5412. group = group->next;
  5413. } while (group != child->groups);
  5414. }
  5415. /*
  5416. * Build sched domains for a given set of cpus and attach the sched domains
  5417. * to the individual cpus
  5418. */
  5419. static int build_sched_domains(const cpumask_t *cpu_map)
  5420. {
  5421. int i;
  5422. struct root_domain *rd;
  5423. #ifdef CONFIG_NUMA
  5424. struct sched_group **sched_group_nodes = NULL;
  5425. int sd_allnodes = 0;
  5426. /*
  5427. * Allocate the per-node list of sched groups
  5428. */
  5429. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5430. GFP_KERNEL);
  5431. if (!sched_group_nodes) {
  5432. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5433. return -ENOMEM;
  5434. }
  5435. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5436. #endif
  5437. rd = alloc_rootdomain();
  5438. if (!rd) {
  5439. printk(KERN_WARNING "Cannot alloc root domain\n");
  5440. return -ENOMEM;
  5441. }
  5442. /*
  5443. * Set up domains for cpus specified by the cpu_map.
  5444. */
  5445. for_each_cpu_mask(i, *cpu_map) {
  5446. struct sched_domain *sd = NULL, *p;
  5447. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5448. cpus_and(nodemask, nodemask, *cpu_map);
  5449. #ifdef CONFIG_NUMA
  5450. if (cpus_weight(*cpu_map) >
  5451. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5452. sd = &per_cpu(allnodes_domains, i);
  5453. *sd = SD_ALLNODES_INIT;
  5454. sd->span = *cpu_map;
  5455. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5456. p = sd;
  5457. sd_allnodes = 1;
  5458. } else
  5459. p = NULL;
  5460. sd = &per_cpu(node_domains, i);
  5461. *sd = SD_NODE_INIT;
  5462. sd->span = sched_domain_node_span(cpu_to_node(i));
  5463. sd->parent = p;
  5464. if (p)
  5465. p->child = sd;
  5466. cpus_and(sd->span, sd->span, *cpu_map);
  5467. #endif
  5468. p = sd;
  5469. sd = &per_cpu(phys_domains, i);
  5470. *sd = SD_CPU_INIT;
  5471. sd->span = nodemask;
  5472. sd->parent = p;
  5473. if (p)
  5474. p->child = sd;
  5475. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5476. #ifdef CONFIG_SCHED_MC
  5477. p = sd;
  5478. sd = &per_cpu(core_domains, i);
  5479. *sd = SD_MC_INIT;
  5480. sd->span = cpu_coregroup_map(i);
  5481. cpus_and(sd->span, sd->span, *cpu_map);
  5482. sd->parent = p;
  5483. p->child = sd;
  5484. cpu_to_core_group(i, cpu_map, &sd->groups);
  5485. #endif
  5486. #ifdef CONFIG_SCHED_SMT
  5487. p = sd;
  5488. sd = &per_cpu(cpu_domains, i);
  5489. *sd = SD_SIBLING_INIT;
  5490. sd->span = per_cpu(cpu_sibling_map, i);
  5491. cpus_and(sd->span, sd->span, *cpu_map);
  5492. sd->parent = p;
  5493. p->child = sd;
  5494. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5495. #endif
  5496. }
  5497. #ifdef CONFIG_SCHED_SMT
  5498. /* Set up CPU (sibling) groups */
  5499. for_each_cpu_mask(i, *cpu_map) {
  5500. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5501. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5502. if (i != first_cpu(this_sibling_map))
  5503. continue;
  5504. init_sched_build_groups(this_sibling_map, cpu_map,
  5505. &cpu_to_cpu_group);
  5506. }
  5507. #endif
  5508. #ifdef CONFIG_SCHED_MC
  5509. /* Set up multi-core groups */
  5510. for_each_cpu_mask(i, *cpu_map) {
  5511. cpumask_t this_core_map = cpu_coregroup_map(i);
  5512. cpus_and(this_core_map, this_core_map, *cpu_map);
  5513. if (i != first_cpu(this_core_map))
  5514. continue;
  5515. init_sched_build_groups(this_core_map, cpu_map,
  5516. &cpu_to_core_group);
  5517. }
  5518. #endif
  5519. /* Set up physical groups */
  5520. for (i = 0; i < MAX_NUMNODES; i++) {
  5521. cpumask_t nodemask = node_to_cpumask(i);
  5522. cpus_and(nodemask, nodemask, *cpu_map);
  5523. if (cpus_empty(nodemask))
  5524. continue;
  5525. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5526. }
  5527. #ifdef CONFIG_NUMA
  5528. /* Set up node groups */
  5529. if (sd_allnodes)
  5530. init_sched_build_groups(*cpu_map, cpu_map,
  5531. &cpu_to_allnodes_group);
  5532. for (i = 0; i < MAX_NUMNODES; i++) {
  5533. /* Set up node groups */
  5534. struct sched_group *sg, *prev;
  5535. cpumask_t nodemask = node_to_cpumask(i);
  5536. cpumask_t domainspan;
  5537. cpumask_t covered = CPU_MASK_NONE;
  5538. int j;
  5539. cpus_and(nodemask, nodemask, *cpu_map);
  5540. if (cpus_empty(nodemask)) {
  5541. sched_group_nodes[i] = NULL;
  5542. continue;
  5543. }
  5544. domainspan = sched_domain_node_span(i);
  5545. cpus_and(domainspan, domainspan, *cpu_map);
  5546. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5547. if (!sg) {
  5548. printk(KERN_WARNING "Can not alloc domain group for "
  5549. "node %d\n", i);
  5550. goto error;
  5551. }
  5552. sched_group_nodes[i] = sg;
  5553. for_each_cpu_mask(j, nodemask) {
  5554. struct sched_domain *sd;
  5555. sd = &per_cpu(node_domains, j);
  5556. sd->groups = sg;
  5557. }
  5558. sg->__cpu_power = 0;
  5559. sg->cpumask = nodemask;
  5560. sg->next = sg;
  5561. cpus_or(covered, covered, nodemask);
  5562. prev = sg;
  5563. for (j = 0; j < MAX_NUMNODES; j++) {
  5564. cpumask_t tmp, notcovered;
  5565. int n = (i + j) % MAX_NUMNODES;
  5566. cpus_complement(notcovered, covered);
  5567. cpus_and(tmp, notcovered, *cpu_map);
  5568. cpus_and(tmp, tmp, domainspan);
  5569. if (cpus_empty(tmp))
  5570. break;
  5571. nodemask = node_to_cpumask(n);
  5572. cpus_and(tmp, tmp, nodemask);
  5573. if (cpus_empty(tmp))
  5574. continue;
  5575. sg = kmalloc_node(sizeof(struct sched_group),
  5576. GFP_KERNEL, i);
  5577. if (!sg) {
  5578. printk(KERN_WARNING
  5579. "Can not alloc domain group for node %d\n", j);
  5580. goto error;
  5581. }
  5582. sg->__cpu_power = 0;
  5583. sg->cpumask = tmp;
  5584. sg->next = prev->next;
  5585. cpus_or(covered, covered, tmp);
  5586. prev->next = sg;
  5587. prev = sg;
  5588. }
  5589. }
  5590. #endif
  5591. /* Calculate CPU power for physical packages and nodes */
  5592. #ifdef CONFIG_SCHED_SMT
  5593. for_each_cpu_mask(i, *cpu_map) {
  5594. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5595. init_sched_groups_power(i, sd);
  5596. }
  5597. #endif
  5598. #ifdef CONFIG_SCHED_MC
  5599. for_each_cpu_mask(i, *cpu_map) {
  5600. struct sched_domain *sd = &per_cpu(core_domains, i);
  5601. init_sched_groups_power(i, sd);
  5602. }
  5603. #endif
  5604. for_each_cpu_mask(i, *cpu_map) {
  5605. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5606. init_sched_groups_power(i, sd);
  5607. }
  5608. #ifdef CONFIG_NUMA
  5609. for (i = 0; i < MAX_NUMNODES; i++)
  5610. init_numa_sched_groups_power(sched_group_nodes[i]);
  5611. if (sd_allnodes) {
  5612. struct sched_group *sg;
  5613. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5614. init_numa_sched_groups_power(sg);
  5615. }
  5616. #endif
  5617. /* Attach the domains */
  5618. for_each_cpu_mask(i, *cpu_map) {
  5619. struct sched_domain *sd;
  5620. #ifdef CONFIG_SCHED_SMT
  5621. sd = &per_cpu(cpu_domains, i);
  5622. #elif defined(CONFIG_SCHED_MC)
  5623. sd = &per_cpu(core_domains, i);
  5624. #else
  5625. sd = &per_cpu(phys_domains, i);
  5626. #endif
  5627. cpu_attach_domain(sd, rd, i);
  5628. }
  5629. return 0;
  5630. #ifdef CONFIG_NUMA
  5631. error:
  5632. free_sched_groups(cpu_map);
  5633. return -ENOMEM;
  5634. #endif
  5635. }
  5636. static cpumask_t *doms_cur; /* current sched domains */
  5637. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5638. /*
  5639. * Special case: If a kmalloc of a doms_cur partition (array of
  5640. * cpumask_t) fails, then fallback to a single sched domain,
  5641. * as determined by the single cpumask_t fallback_doms.
  5642. */
  5643. static cpumask_t fallback_doms;
  5644. /*
  5645. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5646. * For now this just excludes isolated cpus, but could be used to
  5647. * exclude other special cases in the future.
  5648. */
  5649. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5650. {
  5651. int err;
  5652. ndoms_cur = 1;
  5653. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5654. if (!doms_cur)
  5655. doms_cur = &fallback_doms;
  5656. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5657. err = build_sched_domains(doms_cur);
  5658. register_sched_domain_sysctl();
  5659. return err;
  5660. }
  5661. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5662. {
  5663. free_sched_groups(cpu_map);
  5664. }
  5665. /*
  5666. * Detach sched domains from a group of cpus specified in cpu_map
  5667. * These cpus will now be attached to the NULL domain
  5668. */
  5669. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5670. {
  5671. int i;
  5672. unregister_sched_domain_sysctl();
  5673. for_each_cpu_mask(i, *cpu_map)
  5674. cpu_attach_domain(NULL, &def_root_domain, i);
  5675. synchronize_sched();
  5676. arch_destroy_sched_domains(cpu_map);
  5677. }
  5678. /*
  5679. * Partition sched domains as specified by the 'ndoms_new'
  5680. * cpumasks in the array doms_new[] of cpumasks. This compares
  5681. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5682. * It destroys each deleted domain and builds each new domain.
  5683. *
  5684. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5685. * The masks don't intersect (don't overlap.) We should setup one
  5686. * sched domain for each mask. CPUs not in any of the cpumasks will
  5687. * not be load balanced. If the same cpumask appears both in the
  5688. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5689. * it as it is.
  5690. *
  5691. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5692. * ownership of it and will kfree it when done with it. If the caller
  5693. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5694. * and partition_sched_domains() will fallback to the single partition
  5695. * 'fallback_doms'.
  5696. *
  5697. * Call with hotplug lock held
  5698. */
  5699. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5700. {
  5701. int i, j;
  5702. lock_doms_cur();
  5703. /* always unregister in case we don't destroy any domains */
  5704. unregister_sched_domain_sysctl();
  5705. if (doms_new == NULL) {
  5706. ndoms_new = 1;
  5707. doms_new = &fallback_doms;
  5708. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5709. }
  5710. /* Destroy deleted domains */
  5711. for (i = 0; i < ndoms_cur; i++) {
  5712. for (j = 0; j < ndoms_new; j++) {
  5713. if (cpus_equal(doms_cur[i], doms_new[j]))
  5714. goto match1;
  5715. }
  5716. /* no match - a current sched domain not in new doms_new[] */
  5717. detach_destroy_domains(doms_cur + i);
  5718. match1:
  5719. ;
  5720. }
  5721. /* Build new domains */
  5722. for (i = 0; i < ndoms_new; i++) {
  5723. for (j = 0; j < ndoms_cur; j++) {
  5724. if (cpus_equal(doms_new[i], doms_cur[j]))
  5725. goto match2;
  5726. }
  5727. /* no match - add a new doms_new */
  5728. build_sched_domains(doms_new + i);
  5729. match2:
  5730. ;
  5731. }
  5732. /* Remember the new sched domains */
  5733. if (doms_cur != &fallback_doms)
  5734. kfree(doms_cur);
  5735. doms_cur = doms_new;
  5736. ndoms_cur = ndoms_new;
  5737. register_sched_domain_sysctl();
  5738. unlock_doms_cur();
  5739. }
  5740. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5741. static int arch_reinit_sched_domains(void)
  5742. {
  5743. int err;
  5744. get_online_cpus();
  5745. detach_destroy_domains(&cpu_online_map);
  5746. err = arch_init_sched_domains(&cpu_online_map);
  5747. put_online_cpus();
  5748. return err;
  5749. }
  5750. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5751. {
  5752. int ret;
  5753. if (buf[0] != '0' && buf[0] != '1')
  5754. return -EINVAL;
  5755. if (smt)
  5756. sched_smt_power_savings = (buf[0] == '1');
  5757. else
  5758. sched_mc_power_savings = (buf[0] == '1');
  5759. ret = arch_reinit_sched_domains();
  5760. return ret ? ret : count;
  5761. }
  5762. #ifdef CONFIG_SCHED_MC
  5763. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5764. {
  5765. return sprintf(page, "%u\n", sched_mc_power_savings);
  5766. }
  5767. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5768. const char *buf, size_t count)
  5769. {
  5770. return sched_power_savings_store(buf, count, 0);
  5771. }
  5772. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5773. sched_mc_power_savings_store);
  5774. #endif
  5775. #ifdef CONFIG_SCHED_SMT
  5776. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5777. {
  5778. return sprintf(page, "%u\n", sched_smt_power_savings);
  5779. }
  5780. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5781. const char *buf, size_t count)
  5782. {
  5783. return sched_power_savings_store(buf, count, 1);
  5784. }
  5785. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5786. sched_smt_power_savings_store);
  5787. #endif
  5788. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5789. {
  5790. int err = 0;
  5791. #ifdef CONFIG_SCHED_SMT
  5792. if (smt_capable())
  5793. err = sysfs_create_file(&cls->kset.kobj,
  5794. &attr_sched_smt_power_savings.attr);
  5795. #endif
  5796. #ifdef CONFIG_SCHED_MC
  5797. if (!err && mc_capable())
  5798. err = sysfs_create_file(&cls->kset.kobj,
  5799. &attr_sched_mc_power_savings.attr);
  5800. #endif
  5801. return err;
  5802. }
  5803. #endif
  5804. /*
  5805. * Force a reinitialization of the sched domains hierarchy. The domains
  5806. * and groups cannot be updated in place without racing with the balancing
  5807. * code, so we temporarily attach all running cpus to the NULL domain
  5808. * which will prevent rebalancing while the sched domains are recalculated.
  5809. */
  5810. static int update_sched_domains(struct notifier_block *nfb,
  5811. unsigned long action, void *hcpu)
  5812. {
  5813. switch (action) {
  5814. case CPU_UP_PREPARE:
  5815. case CPU_UP_PREPARE_FROZEN:
  5816. case CPU_DOWN_PREPARE:
  5817. case CPU_DOWN_PREPARE_FROZEN:
  5818. detach_destroy_domains(&cpu_online_map);
  5819. return NOTIFY_OK;
  5820. case CPU_UP_CANCELED:
  5821. case CPU_UP_CANCELED_FROZEN:
  5822. case CPU_DOWN_FAILED:
  5823. case CPU_DOWN_FAILED_FROZEN:
  5824. case CPU_ONLINE:
  5825. case CPU_ONLINE_FROZEN:
  5826. case CPU_DEAD:
  5827. case CPU_DEAD_FROZEN:
  5828. /*
  5829. * Fall through and re-initialise the domains.
  5830. */
  5831. break;
  5832. default:
  5833. return NOTIFY_DONE;
  5834. }
  5835. /* The hotplug lock is already held by cpu_up/cpu_down */
  5836. arch_init_sched_domains(&cpu_online_map);
  5837. return NOTIFY_OK;
  5838. }
  5839. void __init sched_init_smp(void)
  5840. {
  5841. cpumask_t non_isolated_cpus;
  5842. get_online_cpus();
  5843. arch_init_sched_domains(&cpu_online_map);
  5844. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5845. if (cpus_empty(non_isolated_cpus))
  5846. cpu_set(smp_processor_id(), non_isolated_cpus);
  5847. put_online_cpus();
  5848. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5849. hotcpu_notifier(update_sched_domains, 0);
  5850. /* Move init over to a non-isolated CPU */
  5851. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5852. BUG();
  5853. sched_init_granularity();
  5854. #ifdef CONFIG_FAIR_GROUP_SCHED
  5855. if (nr_cpu_ids == 1)
  5856. return;
  5857. lb_monitor_task = kthread_create(load_balance_monitor, NULL,
  5858. "group_balance");
  5859. if (!IS_ERR(lb_monitor_task)) {
  5860. lb_monitor_task->flags |= PF_NOFREEZE;
  5861. wake_up_process(lb_monitor_task);
  5862. } else {
  5863. printk(KERN_ERR "Could not create load balance monitor thread"
  5864. "(error = %ld) \n", PTR_ERR(lb_monitor_task));
  5865. }
  5866. #endif
  5867. }
  5868. #else
  5869. void __init sched_init_smp(void)
  5870. {
  5871. sched_init_granularity();
  5872. }
  5873. #endif /* CONFIG_SMP */
  5874. int in_sched_functions(unsigned long addr)
  5875. {
  5876. return in_lock_functions(addr) ||
  5877. (addr >= (unsigned long)__sched_text_start
  5878. && addr < (unsigned long)__sched_text_end);
  5879. }
  5880. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5881. {
  5882. cfs_rq->tasks_timeline = RB_ROOT;
  5883. #ifdef CONFIG_FAIR_GROUP_SCHED
  5884. cfs_rq->rq = rq;
  5885. #endif
  5886. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5887. }
  5888. void __init sched_init(void)
  5889. {
  5890. int highest_cpu = 0;
  5891. int i, j;
  5892. #ifdef CONFIG_SMP
  5893. init_defrootdomain();
  5894. #endif
  5895. for_each_possible_cpu(i) {
  5896. struct rt_prio_array *array;
  5897. struct rq *rq;
  5898. rq = cpu_rq(i);
  5899. spin_lock_init(&rq->lock);
  5900. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5901. rq->nr_running = 0;
  5902. rq->clock = 1;
  5903. init_cfs_rq(&rq->cfs, rq);
  5904. #ifdef CONFIG_FAIR_GROUP_SCHED
  5905. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5906. {
  5907. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5908. struct sched_entity *se =
  5909. &per_cpu(init_sched_entity, i);
  5910. init_cfs_rq_p[i] = cfs_rq;
  5911. init_cfs_rq(cfs_rq, rq);
  5912. cfs_rq->tg = &init_task_group;
  5913. list_add(&cfs_rq->leaf_cfs_rq_list,
  5914. &rq->leaf_cfs_rq_list);
  5915. init_sched_entity_p[i] = se;
  5916. se->cfs_rq = &rq->cfs;
  5917. se->my_q = cfs_rq;
  5918. se->load.weight = init_task_group_load;
  5919. se->load.inv_weight =
  5920. div64_64(1ULL<<32, init_task_group_load);
  5921. se->parent = NULL;
  5922. }
  5923. init_task_group.shares = init_task_group_load;
  5924. #endif
  5925. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5926. rq->cpu_load[j] = 0;
  5927. #ifdef CONFIG_SMP
  5928. rq->sd = NULL;
  5929. rq->rd = NULL;
  5930. rq->active_balance = 0;
  5931. rq->next_balance = jiffies;
  5932. rq->push_cpu = 0;
  5933. rq->cpu = i;
  5934. rq->migration_thread = NULL;
  5935. INIT_LIST_HEAD(&rq->migration_queue);
  5936. rq->rt.highest_prio = MAX_RT_PRIO;
  5937. rq->rt.overloaded = 0;
  5938. rq_attach_root(rq, &def_root_domain);
  5939. #endif
  5940. atomic_set(&rq->nr_iowait, 0);
  5941. array = &rq->rt.active;
  5942. for (j = 0; j < MAX_RT_PRIO; j++) {
  5943. INIT_LIST_HEAD(array->queue + j);
  5944. __clear_bit(j, array->bitmap);
  5945. }
  5946. highest_cpu = i;
  5947. /* delimiter for bitsearch: */
  5948. __set_bit(MAX_RT_PRIO, array->bitmap);
  5949. }
  5950. set_load_weight(&init_task);
  5951. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5952. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5953. #endif
  5954. #ifdef CONFIG_SMP
  5955. nr_cpu_ids = highest_cpu + 1;
  5956. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5957. #endif
  5958. #ifdef CONFIG_RT_MUTEXES
  5959. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5960. #endif
  5961. /*
  5962. * The boot idle thread does lazy MMU switching as well:
  5963. */
  5964. atomic_inc(&init_mm.mm_count);
  5965. enter_lazy_tlb(&init_mm, current);
  5966. /*
  5967. * Make us the idle thread. Technically, schedule() should not be
  5968. * called from this thread, however somewhere below it might be,
  5969. * but because we are the idle thread, we just pick up running again
  5970. * when this runqueue becomes "idle".
  5971. */
  5972. init_idle(current, smp_processor_id());
  5973. /*
  5974. * During early bootup we pretend to be a normal task:
  5975. */
  5976. current->sched_class = &fair_sched_class;
  5977. }
  5978. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5979. void __might_sleep(char *file, int line)
  5980. {
  5981. #ifdef in_atomic
  5982. static unsigned long prev_jiffy; /* ratelimiting */
  5983. if ((in_atomic() || irqs_disabled()) &&
  5984. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5985. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5986. return;
  5987. prev_jiffy = jiffies;
  5988. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5989. " context at %s:%d\n", file, line);
  5990. printk("in_atomic():%d, irqs_disabled():%d\n",
  5991. in_atomic(), irqs_disabled());
  5992. debug_show_held_locks(current);
  5993. if (irqs_disabled())
  5994. print_irqtrace_events(current);
  5995. dump_stack();
  5996. }
  5997. #endif
  5998. }
  5999. EXPORT_SYMBOL(__might_sleep);
  6000. #endif
  6001. #ifdef CONFIG_MAGIC_SYSRQ
  6002. static void normalize_task(struct rq *rq, struct task_struct *p)
  6003. {
  6004. int on_rq;
  6005. update_rq_clock(rq);
  6006. on_rq = p->se.on_rq;
  6007. if (on_rq)
  6008. deactivate_task(rq, p, 0);
  6009. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6010. if (on_rq) {
  6011. activate_task(rq, p, 0);
  6012. resched_task(rq->curr);
  6013. }
  6014. }
  6015. void normalize_rt_tasks(void)
  6016. {
  6017. struct task_struct *g, *p;
  6018. unsigned long flags;
  6019. struct rq *rq;
  6020. read_lock_irq(&tasklist_lock);
  6021. do_each_thread(g, p) {
  6022. /*
  6023. * Only normalize user tasks:
  6024. */
  6025. if (!p->mm)
  6026. continue;
  6027. p->se.exec_start = 0;
  6028. #ifdef CONFIG_SCHEDSTATS
  6029. p->se.wait_start = 0;
  6030. p->se.sleep_start = 0;
  6031. p->se.block_start = 0;
  6032. #endif
  6033. task_rq(p)->clock = 0;
  6034. if (!rt_task(p)) {
  6035. /*
  6036. * Renice negative nice level userspace
  6037. * tasks back to 0:
  6038. */
  6039. if (TASK_NICE(p) < 0 && p->mm)
  6040. set_user_nice(p, 0);
  6041. continue;
  6042. }
  6043. spin_lock_irqsave(&p->pi_lock, flags);
  6044. rq = __task_rq_lock(p);
  6045. normalize_task(rq, p);
  6046. __task_rq_unlock(rq);
  6047. spin_unlock_irqrestore(&p->pi_lock, flags);
  6048. } while_each_thread(g, p);
  6049. read_unlock_irq(&tasklist_lock);
  6050. }
  6051. #endif /* CONFIG_MAGIC_SYSRQ */
  6052. #ifdef CONFIG_IA64
  6053. /*
  6054. * These functions are only useful for the IA64 MCA handling.
  6055. *
  6056. * They can only be called when the whole system has been
  6057. * stopped - every CPU needs to be quiescent, and no scheduling
  6058. * activity can take place. Using them for anything else would
  6059. * be a serious bug, and as a result, they aren't even visible
  6060. * under any other configuration.
  6061. */
  6062. /**
  6063. * curr_task - return the current task for a given cpu.
  6064. * @cpu: the processor in question.
  6065. *
  6066. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6067. */
  6068. struct task_struct *curr_task(int cpu)
  6069. {
  6070. return cpu_curr(cpu);
  6071. }
  6072. /**
  6073. * set_curr_task - set the current task for a given cpu.
  6074. * @cpu: the processor in question.
  6075. * @p: the task pointer to set.
  6076. *
  6077. * Description: This function must only be used when non-maskable interrupts
  6078. * are serviced on a separate stack. It allows the architecture to switch the
  6079. * notion of the current task on a cpu in a non-blocking manner. This function
  6080. * must be called with all CPU's synchronized, and interrupts disabled, the
  6081. * and caller must save the original value of the current task (see
  6082. * curr_task() above) and restore that value before reenabling interrupts and
  6083. * re-starting the system.
  6084. *
  6085. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6086. */
  6087. void set_curr_task(int cpu, struct task_struct *p)
  6088. {
  6089. cpu_curr(cpu) = p;
  6090. }
  6091. #endif
  6092. #ifdef CONFIG_FAIR_GROUP_SCHED
  6093. #ifdef CONFIG_SMP
  6094. /*
  6095. * distribute shares of all task groups among their schedulable entities,
  6096. * to reflect load distrbution across cpus.
  6097. */
  6098. static int rebalance_shares(struct sched_domain *sd, int this_cpu)
  6099. {
  6100. struct cfs_rq *cfs_rq;
  6101. struct rq *rq = cpu_rq(this_cpu);
  6102. cpumask_t sdspan = sd->span;
  6103. int balanced = 1;
  6104. /* Walk thr' all the task groups that we have */
  6105. for_each_leaf_cfs_rq(rq, cfs_rq) {
  6106. int i;
  6107. unsigned long total_load = 0, total_shares;
  6108. struct task_group *tg = cfs_rq->tg;
  6109. /* Gather total task load of this group across cpus */
  6110. for_each_cpu_mask(i, sdspan)
  6111. total_load += tg->cfs_rq[i]->load.weight;
  6112. /* Nothing to do if this group has no load */
  6113. if (!total_load)
  6114. continue;
  6115. /*
  6116. * tg->shares represents the number of cpu shares the task group
  6117. * is eligible to hold on a single cpu. On N cpus, it is
  6118. * eligible to hold (N * tg->shares) number of cpu shares.
  6119. */
  6120. total_shares = tg->shares * cpus_weight(sdspan);
  6121. /*
  6122. * redistribute total_shares across cpus as per the task load
  6123. * distribution.
  6124. */
  6125. for_each_cpu_mask(i, sdspan) {
  6126. unsigned long local_load, local_shares;
  6127. local_load = tg->cfs_rq[i]->load.weight;
  6128. local_shares = (local_load * total_shares) / total_load;
  6129. if (!local_shares)
  6130. local_shares = MIN_GROUP_SHARES;
  6131. if (local_shares == tg->se[i]->load.weight)
  6132. continue;
  6133. spin_lock_irq(&cpu_rq(i)->lock);
  6134. set_se_shares(tg->se[i], local_shares);
  6135. spin_unlock_irq(&cpu_rq(i)->lock);
  6136. balanced = 0;
  6137. }
  6138. }
  6139. return balanced;
  6140. }
  6141. /*
  6142. * How frequently should we rebalance_shares() across cpus?
  6143. *
  6144. * The more frequently we rebalance shares, the more accurate is the fairness
  6145. * of cpu bandwidth distribution between task groups. However higher frequency
  6146. * also implies increased scheduling overhead.
  6147. *
  6148. * sysctl_sched_min_bal_int_shares represents the minimum interval between
  6149. * consecutive calls to rebalance_shares() in the same sched domain.
  6150. *
  6151. * sysctl_sched_max_bal_int_shares represents the maximum interval between
  6152. * consecutive calls to rebalance_shares() in the same sched domain.
  6153. *
  6154. * These settings allows for the appropriate tradeoff between accuracy of
  6155. * fairness and the associated overhead.
  6156. *
  6157. */
  6158. /* default: 8ms, units: milliseconds */
  6159. const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
  6160. /* default: 128ms, units: milliseconds */
  6161. const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
  6162. /* kernel thread that runs rebalance_shares() periodically */
  6163. static int load_balance_monitor(void *unused)
  6164. {
  6165. unsigned int timeout = sysctl_sched_min_bal_int_shares;
  6166. struct sched_param schedparm;
  6167. int ret;
  6168. /*
  6169. * We don't want this thread's execution to be limited by the shares
  6170. * assigned to default group (init_task_group). Hence make it run
  6171. * as a SCHED_RR RT task at the lowest priority.
  6172. */
  6173. schedparm.sched_priority = 1;
  6174. ret = sched_setscheduler(current, SCHED_RR, &schedparm);
  6175. if (ret)
  6176. printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
  6177. " monitor thread (error = %d) \n", ret);
  6178. while (!kthread_should_stop()) {
  6179. int i, cpu, balanced = 1;
  6180. /* Prevent cpus going down or coming up */
  6181. get_online_cpus();
  6182. /* lockout changes to doms_cur[] array */
  6183. lock_doms_cur();
  6184. /*
  6185. * Enter a rcu read-side critical section to safely walk rq->sd
  6186. * chain on various cpus and to walk task group list
  6187. * (rq->leaf_cfs_rq_list) in rebalance_shares().
  6188. */
  6189. rcu_read_lock();
  6190. for (i = 0; i < ndoms_cur; i++) {
  6191. cpumask_t cpumap = doms_cur[i];
  6192. struct sched_domain *sd = NULL, *sd_prev = NULL;
  6193. cpu = first_cpu(cpumap);
  6194. /* Find the highest domain at which to balance shares */
  6195. for_each_domain(cpu, sd) {
  6196. if (!(sd->flags & SD_LOAD_BALANCE))
  6197. continue;
  6198. sd_prev = sd;
  6199. }
  6200. sd = sd_prev;
  6201. /* sd == NULL? No load balance reqd in this domain */
  6202. if (!sd)
  6203. continue;
  6204. balanced &= rebalance_shares(sd, cpu);
  6205. }
  6206. rcu_read_unlock();
  6207. unlock_doms_cur();
  6208. put_online_cpus();
  6209. if (!balanced)
  6210. timeout = sysctl_sched_min_bal_int_shares;
  6211. else if (timeout < sysctl_sched_max_bal_int_shares)
  6212. timeout *= 2;
  6213. msleep_interruptible(timeout);
  6214. }
  6215. return 0;
  6216. }
  6217. #endif /* CONFIG_SMP */
  6218. /* allocate runqueue etc for a new task group */
  6219. struct task_group *sched_create_group(void)
  6220. {
  6221. struct task_group *tg;
  6222. struct cfs_rq *cfs_rq;
  6223. struct sched_entity *se;
  6224. struct rq *rq;
  6225. int i;
  6226. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6227. if (!tg)
  6228. return ERR_PTR(-ENOMEM);
  6229. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6230. if (!tg->cfs_rq)
  6231. goto err;
  6232. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6233. if (!tg->se)
  6234. goto err;
  6235. for_each_possible_cpu(i) {
  6236. rq = cpu_rq(i);
  6237. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6238. cpu_to_node(i));
  6239. if (!cfs_rq)
  6240. goto err;
  6241. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6242. cpu_to_node(i));
  6243. if (!se)
  6244. goto err;
  6245. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6246. memset(se, 0, sizeof(struct sched_entity));
  6247. tg->cfs_rq[i] = cfs_rq;
  6248. init_cfs_rq(cfs_rq, rq);
  6249. cfs_rq->tg = tg;
  6250. tg->se[i] = se;
  6251. se->cfs_rq = &rq->cfs;
  6252. se->my_q = cfs_rq;
  6253. se->load.weight = NICE_0_LOAD;
  6254. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6255. se->parent = NULL;
  6256. }
  6257. tg->shares = NICE_0_LOAD;
  6258. lock_task_group_list();
  6259. for_each_possible_cpu(i) {
  6260. rq = cpu_rq(i);
  6261. cfs_rq = tg->cfs_rq[i];
  6262. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6263. }
  6264. unlock_task_group_list();
  6265. return tg;
  6266. err:
  6267. for_each_possible_cpu(i) {
  6268. if (tg->cfs_rq)
  6269. kfree(tg->cfs_rq[i]);
  6270. if (tg->se)
  6271. kfree(tg->se[i]);
  6272. }
  6273. kfree(tg->cfs_rq);
  6274. kfree(tg->se);
  6275. kfree(tg);
  6276. return ERR_PTR(-ENOMEM);
  6277. }
  6278. /* rcu callback to free various structures associated with a task group */
  6279. static void free_sched_group(struct rcu_head *rhp)
  6280. {
  6281. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6282. struct cfs_rq *cfs_rq;
  6283. struct sched_entity *se;
  6284. int i;
  6285. /* now it should be safe to free those cfs_rqs */
  6286. for_each_possible_cpu(i) {
  6287. cfs_rq = tg->cfs_rq[i];
  6288. kfree(cfs_rq);
  6289. se = tg->se[i];
  6290. kfree(se);
  6291. }
  6292. kfree(tg->cfs_rq);
  6293. kfree(tg->se);
  6294. kfree(tg);
  6295. }
  6296. /* Destroy runqueue etc associated with a task group */
  6297. void sched_destroy_group(struct task_group *tg)
  6298. {
  6299. struct cfs_rq *cfs_rq = NULL;
  6300. int i;
  6301. lock_task_group_list();
  6302. for_each_possible_cpu(i) {
  6303. cfs_rq = tg->cfs_rq[i];
  6304. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6305. }
  6306. unlock_task_group_list();
  6307. BUG_ON(!cfs_rq);
  6308. /* wait for possible concurrent references to cfs_rqs complete */
  6309. call_rcu(&tg->rcu, free_sched_group);
  6310. }
  6311. /* change task's runqueue when it moves between groups.
  6312. * The caller of this function should have put the task in its new group
  6313. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6314. * reflect its new group.
  6315. */
  6316. void sched_move_task(struct task_struct *tsk)
  6317. {
  6318. int on_rq, running;
  6319. unsigned long flags;
  6320. struct rq *rq;
  6321. rq = task_rq_lock(tsk, &flags);
  6322. if (tsk->sched_class != &fair_sched_class) {
  6323. set_task_cfs_rq(tsk, task_cpu(tsk));
  6324. goto done;
  6325. }
  6326. update_rq_clock(rq);
  6327. running = task_current(rq, tsk);
  6328. on_rq = tsk->se.on_rq;
  6329. if (on_rq) {
  6330. dequeue_task(rq, tsk, 0);
  6331. if (unlikely(running))
  6332. tsk->sched_class->put_prev_task(rq, tsk);
  6333. }
  6334. set_task_cfs_rq(tsk, task_cpu(tsk));
  6335. if (on_rq) {
  6336. if (unlikely(running))
  6337. tsk->sched_class->set_curr_task(rq);
  6338. enqueue_task(rq, tsk, 0);
  6339. }
  6340. done:
  6341. task_rq_unlock(rq, &flags);
  6342. }
  6343. /* rq->lock to be locked by caller */
  6344. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6345. {
  6346. struct cfs_rq *cfs_rq = se->cfs_rq;
  6347. struct rq *rq = cfs_rq->rq;
  6348. int on_rq;
  6349. if (!shares)
  6350. shares = MIN_GROUP_SHARES;
  6351. on_rq = se->on_rq;
  6352. if (on_rq) {
  6353. dequeue_entity(cfs_rq, se, 0);
  6354. dec_cpu_load(rq, se->load.weight);
  6355. }
  6356. se->load.weight = shares;
  6357. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6358. if (on_rq) {
  6359. enqueue_entity(cfs_rq, se, 0);
  6360. inc_cpu_load(rq, se->load.weight);
  6361. }
  6362. }
  6363. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6364. {
  6365. int i;
  6366. struct cfs_rq *cfs_rq;
  6367. struct rq *rq;
  6368. lock_task_group_list();
  6369. if (tg->shares == shares)
  6370. goto done;
  6371. if (shares < MIN_GROUP_SHARES)
  6372. shares = MIN_GROUP_SHARES;
  6373. /*
  6374. * Prevent any load balance activity (rebalance_shares,
  6375. * load_balance_fair) from referring to this group first,
  6376. * by taking it off the rq->leaf_cfs_rq_list on each cpu.
  6377. */
  6378. for_each_possible_cpu(i) {
  6379. cfs_rq = tg->cfs_rq[i];
  6380. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6381. }
  6382. /* wait for any ongoing reference to this group to finish */
  6383. synchronize_sched();
  6384. /*
  6385. * Now we are free to modify the group's share on each cpu
  6386. * w/o tripping rebalance_share or load_balance_fair.
  6387. */
  6388. tg->shares = shares;
  6389. for_each_possible_cpu(i) {
  6390. spin_lock_irq(&cpu_rq(i)->lock);
  6391. set_se_shares(tg->se[i], shares);
  6392. spin_unlock_irq(&cpu_rq(i)->lock);
  6393. }
  6394. /*
  6395. * Enable load balance activity on this group, by inserting it back on
  6396. * each cpu's rq->leaf_cfs_rq_list.
  6397. */
  6398. for_each_possible_cpu(i) {
  6399. rq = cpu_rq(i);
  6400. cfs_rq = tg->cfs_rq[i];
  6401. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6402. }
  6403. done:
  6404. unlock_task_group_list();
  6405. return 0;
  6406. }
  6407. unsigned long sched_group_shares(struct task_group *tg)
  6408. {
  6409. return tg->shares;
  6410. }
  6411. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6412. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6413. /* return corresponding task_group object of a cgroup */
  6414. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6415. {
  6416. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6417. struct task_group, css);
  6418. }
  6419. static struct cgroup_subsys_state *
  6420. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6421. {
  6422. struct task_group *tg;
  6423. if (!cgrp->parent) {
  6424. /* This is early initialization for the top cgroup */
  6425. init_task_group.css.cgroup = cgrp;
  6426. return &init_task_group.css;
  6427. }
  6428. /* we support only 1-level deep hierarchical scheduler atm */
  6429. if (cgrp->parent->parent)
  6430. return ERR_PTR(-EINVAL);
  6431. tg = sched_create_group();
  6432. if (IS_ERR(tg))
  6433. return ERR_PTR(-ENOMEM);
  6434. /* Bind the cgroup to task_group object we just created */
  6435. tg->css.cgroup = cgrp;
  6436. return &tg->css;
  6437. }
  6438. static void
  6439. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6440. {
  6441. struct task_group *tg = cgroup_tg(cgrp);
  6442. sched_destroy_group(tg);
  6443. }
  6444. static int
  6445. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6446. struct task_struct *tsk)
  6447. {
  6448. /* We don't support RT-tasks being in separate groups */
  6449. if (tsk->sched_class != &fair_sched_class)
  6450. return -EINVAL;
  6451. return 0;
  6452. }
  6453. static void
  6454. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6455. struct cgroup *old_cont, struct task_struct *tsk)
  6456. {
  6457. sched_move_task(tsk);
  6458. }
  6459. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6460. u64 shareval)
  6461. {
  6462. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6463. }
  6464. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6465. {
  6466. struct task_group *tg = cgroup_tg(cgrp);
  6467. return (u64) tg->shares;
  6468. }
  6469. static struct cftype cpu_files[] = {
  6470. {
  6471. .name = "shares",
  6472. .read_uint = cpu_shares_read_uint,
  6473. .write_uint = cpu_shares_write_uint,
  6474. },
  6475. };
  6476. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6477. {
  6478. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6479. }
  6480. struct cgroup_subsys cpu_cgroup_subsys = {
  6481. .name = "cpu",
  6482. .create = cpu_cgroup_create,
  6483. .destroy = cpu_cgroup_destroy,
  6484. .can_attach = cpu_cgroup_can_attach,
  6485. .attach = cpu_cgroup_attach,
  6486. .populate = cpu_cgroup_populate,
  6487. .subsys_id = cpu_cgroup_subsys_id,
  6488. .early_init = 1,
  6489. };
  6490. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6491. #ifdef CONFIG_CGROUP_CPUACCT
  6492. /*
  6493. * CPU accounting code for task groups.
  6494. *
  6495. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6496. * (balbir@in.ibm.com).
  6497. */
  6498. /* track cpu usage of a group of tasks */
  6499. struct cpuacct {
  6500. struct cgroup_subsys_state css;
  6501. /* cpuusage holds pointer to a u64-type object on every cpu */
  6502. u64 *cpuusage;
  6503. };
  6504. struct cgroup_subsys cpuacct_subsys;
  6505. /* return cpu accounting group corresponding to this container */
  6506. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6507. {
  6508. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6509. struct cpuacct, css);
  6510. }
  6511. /* return cpu accounting group to which this task belongs */
  6512. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6513. {
  6514. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6515. struct cpuacct, css);
  6516. }
  6517. /* create a new cpu accounting group */
  6518. static struct cgroup_subsys_state *cpuacct_create(
  6519. struct cgroup_subsys *ss, struct cgroup *cont)
  6520. {
  6521. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6522. if (!ca)
  6523. return ERR_PTR(-ENOMEM);
  6524. ca->cpuusage = alloc_percpu(u64);
  6525. if (!ca->cpuusage) {
  6526. kfree(ca);
  6527. return ERR_PTR(-ENOMEM);
  6528. }
  6529. return &ca->css;
  6530. }
  6531. /* destroy an existing cpu accounting group */
  6532. static void
  6533. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6534. {
  6535. struct cpuacct *ca = cgroup_ca(cont);
  6536. free_percpu(ca->cpuusage);
  6537. kfree(ca);
  6538. }
  6539. /* return total cpu usage (in nanoseconds) of a group */
  6540. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6541. {
  6542. struct cpuacct *ca = cgroup_ca(cont);
  6543. u64 totalcpuusage = 0;
  6544. int i;
  6545. for_each_possible_cpu(i) {
  6546. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6547. /*
  6548. * Take rq->lock to make 64-bit addition safe on 32-bit
  6549. * platforms.
  6550. */
  6551. spin_lock_irq(&cpu_rq(i)->lock);
  6552. totalcpuusage += *cpuusage;
  6553. spin_unlock_irq(&cpu_rq(i)->lock);
  6554. }
  6555. return totalcpuusage;
  6556. }
  6557. static struct cftype files[] = {
  6558. {
  6559. .name = "usage",
  6560. .read_uint = cpuusage_read,
  6561. },
  6562. };
  6563. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6564. {
  6565. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6566. }
  6567. /*
  6568. * charge this task's execution time to its accounting group.
  6569. *
  6570. * called with rq->lock held.
  6571. */
  6572. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6573. {
  6574. struct cpuacct *ca;
  6575. if (!cpuacct_subsys.active)
  6576. return;
  6577. ca = task_ca(tsk);
  6578. if (ca) {
  6579. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6580. *cpuusage += cputime;
  6581. }
  6582. }
  6583. struct cgroup_subsys cpuacct_subsys = {
  6584. .name = "cpuacct",
  6585. .create = cpuacct_create,
  6586. .destroy = cpuacct_destroy,
  6587. .populate = cpuacct_populate,
  6588. .subsys_id = cpuacct_subsys_id,
  6589. };
  6590. #endif /* CONFIG_CGROUP_CPUACCT */