fsldma.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475
  1. /*
  2. * Freescale MPC85xx, MPC83xx DMA Engine support
  3. *
  4. * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
  5. *
  6. * Author:
  7. * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
  8. * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
  9. *
  10. * Description:
  11. * DMA engine driver for Freescale MPC8540 DMA controller, which is
  12. * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  13. * The support for MPC8349 DMA controller is also added.
  14. *
  15. * This driver instructs the DMA controller to issue the PCI Read Multiple
  16. * command for PCI read operations, instead of using the default PCI Read Line
  17. * command. Please be aware that this setting may result in read pre-fetching
  18. * on some platforms.
  19. *
  20. * This is free software; you can redistribute it and/or modify
  21. * it under the terms of the GNU General Public License as published by
  22. * the Free Software Foundation; either version 2 of the License, or
  23. * (at your option) any later version.
  24. *
  25. */
  26. #include <linux/init.h>
  27. #include <linux/module.h>
  28. #include <linux/pci.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/dmaengine.h>
  32. #include <linux/delay.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/dmapool.h>
  35. #include <linux/of_platform.h>
  36. #include "fsldma.h"
  37. #define chan_dbg(chan, fmt, arg...) \
  38. dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  39. #define chan_err(chan, fmt, arg...) \
  40. dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  41. static const char msg_ld_oom[] = "No free memory for link descriptor";
  42. /*
  43. * Register Helpers
  44. */
  45. static void set_sr(struct fsldma_chan *chan, u32 val)
  46. {
  47. DMA_OUT(chan, &chan->regs->sr, val, 32);
  48. }
  49. static u32 get_sr(struct fsldma_chan *chan)
  50. {
  51. return DMA_IN(chan, &chan->regs->sr, 32);
  52. }
  53. static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  54. {
  55. DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  56. }
  57. static dma_addr_t get_cdar(struct fsldma_chan *chan)
  58. {
  59. return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
  60. }
  61. static u32 get_bcr(struct fsldma_chan *chan)
  62. {
  63. return DMA_IN(chan, &chan->regs->bcr, 32);
  64. }
  65. /*
  66. * Descriptor Helpers
  67. */
  68. static void set_desc_cnt(struct fsldma_chan *chan,
  69. struct fsl_dma_ld_hw *hw, u32 count)
  70. {
  71. hw->count = CPU_TO_DMA(chan, count, 32);
  72. }
  73. static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
  74. {
  75. return DMA_TO_CPU(chan, desc->hw.count, 32);
  76. }
  77. static void set_desc_src(struct fsldma_chan *chan,
  78. struct fsl_dma_ld_hw *hw, dma_addr_t src)
  79. {
  80. u64 snoop_bits;
  81. snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  82. ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
  83. hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
  84. }
  85. static dma_addr_t get_desc_src(struct fsldma_chan *chan,
  86. struct fsl_desc_sw *desc)
  87. {
  88. u64 snoop_bits;
  89. snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  90. ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
  91. return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
  92. }
  93. static void set_desc_dst(struct fsldma_chan *chan,
  94. struct fsl_dma_ld_hw *hw, dma_addr_t dst)
  95. {
  96. u64 snoop_bits;
  97. snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  98. ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
  99. hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
  100. }
  101. static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
  102. struct fsl_desc_sw *desc)
  103. {
  104. u64 snoop_bits;
  105. snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  106. ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
  107. return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
  108. }
  109. static void set_desc_next(struct fsldma_chan *chan,
  110. struct fsl_dma_ld_hw *hw, dma_addr_t next)
  111. {
  112. u64 snoop_bits;
  113. snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
  114. ? FSL_DMA_SNEN : 0;
  115. hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
  116. }
  117. static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
  118. {
  119. u64 snoop_bits;
  120. snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
  121. ? FSL_DMA_SNEN : 0;
  122. desc->hw.next_ln_addr = CPU_TO_DMA(chan,
  123. DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
  124. | snoop_bits, 64);
  125. }
  126. /*
  127. * DMA Engine Hardware Control Helpers
  128. */
  129. static void dma_init(struct fsldma_chan *chan)
  130. {
  131. /* Reset the channel */
  132. DMA_OUT(chan, &chan->regs->mr, 0, 32);
  133. switch (chan->feature & FSL_DMA_IP_MASK) {
  134. case FSL_DMA_IP_85XX:
  135. /* Set the channel to below modes:
  136. * EIE - Error interrupt enable
  137. * EOLNIE - End of links interrupt enable
  138. * BWC - Bandwidth sharing among channels
  139. */
  140. DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
  141. | FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
  142. break;
  143. case FSL_DMA_IP_83XX:
  144. /* Set the channel to below modes:
  145. * EOTIE - End-of-transfer interrupt enable
  146. * PRC_RM - PCI read multiple
  147. */
  148. DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
  149. | FSL_DMA_MR_PRC_RM, 32);
  150. break;
  151. }
  152. }
  153. static int dma_is_idle(struct fsldma_chan *chan)
  154. {
  155. u32 sr = get_sr(chan);
  156. return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
  157. }
  158. /*
  159. * Start the DMA controller
  160. *
  161. * Preconditions:
  162. * - the CDAR register must point to the start descriptor
  163. * - the MRn[CS] bit must be cleared
  164. */
  165. static void dma_start(struct fsldma_chan *chan)
  166. {
  167. u32 mode;
  168. mode = DMA_IN(chan, &chan->regs->mr, 32);
  169. if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
  170. DMA_OUT(chan, &chan->regs->bcr, 0, 32);
  171. mode |= FSL_DMA_MR_EMP_EN;
  172. } else {
  173. mode &= ~FSL_DMA_MR_EMP_EN;
  174. }
  175. if (chan->feature & FSL_DMA_CHAN_START_EXT) {
  176. mode |= FSL_DMA_MR_EMS_EN;
  177. } else {
  178. mode &= ~FSL_DMA_MR_EMS_EN;
  179. mode |= FSL_DMA_MR_CS;
  180. }
  181. DMA_OUT(chan, &chan->regs->mr, mode, 32);
  182. }
  183. static void dma_halt(struct fsldma_chan *chan)
  184. {
  185. u32 mode;
  186. int i;
  187. mode = DMA_IN(chan, &chan->regs->mr, 32);
  188. mode |= FSL_DMA_MR_CA;
  189. DMA_OUT(chan, &chan->regs->mr, mode, 32);
  190. mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
  191. DMA_OUT(chan, &chan->regs->mr, mode, 32);
  192. for (i = 0; i < 100; i++) {
  193. if (dma_is_idle(chan))
  194. return;
  195. udelay(10);
  196. }
  197. if (!dma_is_idle(chan))
  198. chan_err(chan, "DMA halt timeout!\n");
  199. }
  200. /**
  201. * fsl_chan_set_src_loop_size - Set source address hold transfer size
  202. * @chan : Freescale DMA channel
  203. * @size : Address loop size, 0 for disable loop
  204. *
  205. * The set source address hold transfer size. The source
  206. * address hold or loop transfer size is when the DMA transfer
  207. * data from source address (SA), if the loop size is 4, the DMA will
  208. * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
  209. * SA + 1 ... and so on.
  210. */
  211. static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
  212. {
  213. u32 mode;
  214. mode = DMA_IN(chan, &chan->regs->mr, 32);
  215. switch (size) {
  216. case 0:
  217. mode &= ~FSL_DMA_MR_SAHE;
  218. break;
  219. case 1:
  220. case 2:
  221. case 4:
  222. case 8:
  223. mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
  224. break;
  225. }
  226. DMA_OUT(chan, &chan->regs->mr, mode, 32);
  227. }
  228. /**
  229. * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
  230. * @chan : Freescale DMA channel
  231. * @size : Address loop size, 0 for disable loop
  232. *
  233. * The set destination address hold transfer size. The destination
  234. * address hold or loop transfer size is when the DMA transfer
  235. * data to destination address (TA), if the loop size is 4, the DMA will
  236. * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
  237. * TA + 1 ... and so on.
  238. */
  239. static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
  240. {
  241. u32 mode;
  242. mode = DMA_IN(chan, &chan->regs->mr, 32);
  243. switch (size) {
  244. case 0:
  245. mode &= ~FSL_DMA_MR_DAHE;
  246. break;
  247. case 1:
  248. case 2:
  249. case 4:
  250. case 8:
  251. mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
  252. break;
  253. }
  254. DMA_OUT(chan, &chan->regs->mr, mode, 32);
  255. }
  256. /**
  257. * fsl_chan_set_request_count - Set DMA Request Count for external control
  258. * @chan : Freescale DMA channel
  259. * @size : Number of bytes to transfer in a single request
  260. *
  261. * The Freescale DMA channel can be controlled by the external signal DREQ#.
  262. * The DMA request count is how many bytes are allowed to transfer before
  263. * pausing the channel, after which a new assertion of DREQ# resumes channel
  264. * operation.
  265. *
  266. * A size of 0 disables external pause control. The maximum size is 1024.
  267. */
  268. static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
  269. {
  270. u32 mode;
  271. BUG_ON(size > 1024);
  272. mode = DMA_IN(chan, &chan->regs->mr, 32);
  273. mode |= (__ilog2(size) << 24) & 0x0f000000;
  274. DMA_OUT(chan, &chan->regs->mr, mode, 32);
  275. }
  276. /**
  277. * fsl_chan_toggle_ext_pause - Toggle channel external pause status
  278. * @chan : Freescale DMA channel
  279. * @enable : 0 is disabled, 1 is enabled.
  280. *
  281. * The Freescale DMA channel can be controlled by the external signal DREQ#.
  282. * The DMA Request Count feature should be used in addition to this feature
  283. * to set the number of bytes to transfer before pausing the channel.
  284. */
  285. static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
  286. {
  287. if (enable)
  288. chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
  289. else
  290. chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
  291. }
  292. /**
  293. * fsl_chan_toggle_ext_start - Toggle channel external start status
  294. * @chan : Freescale DMA channel
  295. * @enable : 0 is disabled, 1 is enabled.
  296. *
  297. * If enable the external start, the channel can be started by an
  298. * external DMA start pin. So the dma_start() does not start the
  299. * transfer immediately. The DMA channel will wait for the
  300. * control pin asserted.
  301. */
  302. static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
  303. {
  304. if (enable)
  305. chan->feature |= FSL_DMA_CHAN_START_EXT;
  306. else
  307. chan->feature &= ~FSL_DMA_CHAN_START_EXT;
  308. }
  309. static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
  310. {
  311. struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
  312. if (list_empty(&chan->ld_pending))
  313. goto out_splice;
  314. /*
  315. * Add the hardware descriptor to the chain of hardware descriptors
  316. * that already exists in memory.
  317. *
  318. * This will un-set the EOL bit of the existing transaction, and the
  319. * last link in this transaction will become the EOL descriptor.
  320. */
  321. set_desc_next(chan, &tail->hw, desc->async_tx.phys);
  322. /*
  323. * Add the software descriptor and all children to the list
  324. * of pending transactions
  325. */
  326. out_splice:
  327. list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
  328. }
  329. static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
  330. {
  331. struct fsldma_chan *chan = to_fsl_chan(tx->chan);
  332. struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
  333. struct fsl_desc_sw *child;
  334. unsigned long flags;
  335. dma_cookie_t cookie;
  336. spin_lock_irqsave(&chan->desc_lock, flags);
  337. /*
  338. * assign cookies to all of the software descriptors
  339. * that make up this transaction
  340. */
  341. cookie = chan->common.cookie;
  342. list_for_each_entry(child, &desc->tx_list, node) {
  343. cookie++;
  344. if (cookie < DMA_MIN_COOKIE)
  345. cookie = DMA_MIN_COOKIE;
  346. child->async_tx.cookie = cookie;
  347. }
  348. chan->common.cookie = cookie;
  349. /* put this transaction onto the tail of the pending queue */
  350. append_ld_queue(chan, desc);
  351. spin_unlock_irqrestore(&chan->desc_lock, flags);
  352. return cookie;
  353. }
  354. /**
  355. * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
  356. * @chan : Freescale DMA channel
  357. *
  358. * Return - The descriptor allocated. NULL for failed.
  359. */
  360. static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
  361. {
  362. struct fsl_desc_sw *desc;
  363. dma_addr_t pdesc;
  364. desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
  365. if (!desc) {
  366. chan_dbg(chan, "out of memory for link descriptor\n");
  367. return NULL;
  368. }
  369. memset(desc, 0, sizeof(*desc));
  370. INIT_LIST_HEAD(&desc->tx_list);
  371. dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
  372. desc->async_tx.tx_submit = fsl_dma_tx_submit;
  373. desc->async_tx.phys = pdesc;
  374. #ifdef FSL_DMA_LD_DEBUG
  375. chan_dbg(chan, "LD %p allocated\n", desc);
  376. #endif
  377. return desc;
  378. }
  379. /**
  380. * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
  381. * @chan : Freescale DMA channel
  382. *
  383. * This function will create a dma pool for descriptor allocation.
  384. *
  385. * Return - The number of descriptors allocated.
  386. */
  387. static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
  388. {
  389. struct fsldma_chan *chan = to_fsl_chan(dchan);
  390. /* Has this channel already been allocated? */
  391. if (chan->desc_pool)
  392. return 1;
  393. /*
  394. * We need the descriptor to be aligned to 32bytes
  395. * for meeting FSL DMA specification requirement.
  396. */
  397. chan->desc_pool = dma_pool_create(chan->name, chan->dev,
  398. sizeof(struct fsl_desc_sw),
  399. __alignof__(struct fsl_desc_sw), 0);
  400. if (!chan->desc_pool) {
  401. chan_err(chan, "unable to allocate descriptor pool\n");
  402. return -ENOMEM;
  403. }
  404. /* there is at least one descriptor free to be allocated */
  405. return 1;
  406. }
  407. /**
  408. * fsldma_free_desc_list - Free all descriptors in a queue
  409. * @chan: Freescae DMA channel
  410. * @list: the list to free
  411. *
  412. * LOCKING: must hold chan->desc_lock
  413. */
  414. static void fsldma_free_desc_list(struct fsldma_chan *chan,
  415. struct list_head *list)
  416. {
  417. struct fsl_desc_sw *desc, *_desc;
  418. list_for_each_entry_safe(desc, _desc, list, node) {
  419. list_del(&desc->node);
  420. #ifdef FSL_DMA_LD_DEBUG
  421. chan_dbg(chan, "LD %p free\n", desc);
  422. #endif
  423. dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
  424. }
  425. }
  426. static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
  427. struct list_head *list)
  428. {
  429. struct fsl_desc_sw *desc, *_desc;
  430. list_for_each_entry_safe_reverse(desc, _desc, list, node) {
  431. list_del(&desc->node);
  432. #ifdef FSL_DMA_LD_DEBUG
  433. chan_dbg(chan, "LD %p free\n", desc);
  434. #endif
  435. dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
  436. }
  437. }
  438. /**
  439. * fsl_dma_free_chan_resources - Free all resources of the channel.
  440. * @chan : Freescale DMA channel
  441. */
  442. static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
  443. {
  444. struct fsldma_chan *chan = to_fsl_chan(dchan);
  445. unsigned long flags;
  446. chan_dbg(chan, "free all channel resources\n");
  447. spin_lock_irqsave(&chan->desc_lock, flags);
  448. fsldma_free_desc_list(chan, &chan->ld_pending);
  449. fsldma_free_desc_list(chan, &chan->ld_running);
  450. spin_unlock_irqrestore(&chan->desc_lock, flags);
  451. dma_pool_destroy(chan->desc_pool);
  452. chan->desc_pool = NULL;
  453. }
  454. static struct dma_async_tx_descriptor *
  455. fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
  456. {
  457. struct fsldma_chan *chan;
  458. struct fsl_desc_sw *new;
  459. if (!dchan)
  460. return NULL;
  461. chan = to_fsl_chan(dchan);
  462. new = fsl_dma_alloc_descriptor(chan);
  463. if (!new) {
  464. chan_err(chan, "%s\n", msg_ld_oom);
  465. return NULL;
  466. }
  467. new->async_tx.cookie = -EBUSY;
  468. new->async_tx.flags = flags;
  469. /* Insert the link descriptor to the LD ring */
  470. list_add_tail(&new->node, &new->tx_list);
  471. /* Set End-of-link to the last link descriptor of new list */
  472. set_ld_eol(chan, new);
  473. return &new->async_tx;
  474. }
  475. static struct dma_async_tx_descriptor *
  476. fsl_dma_prep_memcpy(struct dma_chan *dchan,
  477. dma_addr_t dma_dst, dma_addr_t dma_src,
  478. size_t len, unsigned long flags)
  479. {
  480. struct fsldma_chan *chan;
  481. struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
  482. size_t copy;
  483. if (!dchan)
  484. return NULL;
  485. if (!len)
  486. return NULL;
  487. chan = to_fsl_chan(dchan);
  488. do {
  489. /* Allocate the link descriptor from DMA pool */
  490. new = fsl_dma_alloc_descriptor(chan);
  491. if (!new) {
  492. chan_err(chan, "%s\n", msg_ld_oom);
  493. goto fail;
  494. }
  495. copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
  496. set_desc_cnt(chan, &new->hw, copy);
  497. set_desc_src(chan, &new->hw, dma_src);
  498. set_desc_dst(chan, &new->hw, dma_dst);
  499. if (!first)
  500. first = new;
  501. else
  502. set_desc_next(chan, &prev->hw, new->async_tx.phys);
  503. new->async_tx.cookie = 0;
  504. async_tx_ack(&new->async_tx);
  505. prev = new;
  506. len -= copy;
  507. dma_src += copy;
  508. dma_dst += copy;
  509. /* Insert the link descriptor to the LD ring */
  510. list_add_tail(&new->node, &first->tx_list);
  511. } while (len);
  512. new->async_tx.flags = flags; /* client is in control of this ack */
  513. new->async_tx.cookie = -EBUSY;
  514. /* Set End-of-link to the last link descriptor of new list */
  515. set_ld_eol(chan, new);
  516. return &first->async_tx;
  517. fail:
  518. if (!first)
  519. return NULL;
  520. fsldma_free_desc_list_reverse(chan, &first->tx_list);
  521. return NULL;
  522. }
  523. static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
  524. struct scatterlist *dst_sg, unsigned int dst_nents,
  525. struct scatterlist *src_sg, unsigned int src_nents,
  526. unsigned long flags)
  527. {
  528. struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
  529. struct fsldma_chan *chan = to_fsl_chan(dchan);
  530. size_t dst_avail, src_avail;
  531. dma_addr_t dst, src;
  532. size_t len;
  533. /* basic sanity checks */
  534. if (dst_nents == 0 || src_nents == 0)
  535. return NULL;
  536. if (dst_sg == NULL || src_sg == NULL)
  537. return NULL;
  538. /*
  539. * TODO: should we check that both scatterlists have the same
  540. * TODO: number of bytes in total? Is that really an error?
  541. */
  542. /* get prepared for the loop */
  543. dst_avail = sg_dma_len(dst_sg);
  544. src_avail = sg_dma_len(src_sg);
  545. /* run until we are out of scatterlist entries */
  546. while (true) {
  547. /* create the largest transaction possible */
  548. len = min_t(size_t, src_avail, dst_avail);
  549. len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
  550. if (len == 0)
  551. goto fetch;
  552. dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
  553. src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
  554. /* allocate and populate the descriptor */
  555. new = fsl_dma_alloc_descriptor(chan);
  556. if (!new) {
  557. chan_err(chan, "%s\n", msg_ld_oom);
  558. goto fail;
  559. }
  560. set_desc_cnt(chan, &new->hw, len);
  561. set_desc_src(chan, &new->hw, src);
  562. set_desc_dst(chan, &new->hw, dst);
  563. if (!first)
  564. first = new;
  565. else
  566. set_desc_next(chan, &prev->hw, new->async_tx.phys);
  567. new->async_tx.cookie = 0;
  568. async_tx_ack(&new->async_tx);
  569. prev = new;
  570. /* Insert the link descriptor to the LD ring */
  571. list_add_tail(&new->node, &first->tx_list);
  572. /* update metadata */
  573. dst_avail -= len;
  574. src_avail -= len;
  575. fetch:
  576. /* fetch the next dst scatterlist entry */
  577. if (dst_avail == 0) {
  578. /* no more entries: we're done */
  579. if (dst_nents == 0)
  580. break;
  581. /* fetch the next entry: if there are no more: done */
  582. dst_sg = sg_next(dst_sg);
  583. if (dst_sg == NULL)
  584. break;
  585. dst_nents--;
  586. dst_avail = sg_dma_len(dst_sg);
  587. }
  588. /* fetch the next src scatterlist entry */
  589. if (src_avail == 0) {
  590. /* no more entries: we're done */
  591. if (src_nents == 0)
  592. break;
  593. /* fetch the next entry: if there are no more: done */
  594. src_sg = sg_next(src_sg);
  595. if (src_sg == NULL)
  596. break;
  597. src_nents--;
  598. src_avail = sg_dma_len(src_sg);
  599. }
  600. }
  601. new->async_tx.flags = flags; /* client is in control of this ack */
  602. new->async_tx.cookie = -EBUSY;
  603. /* Set End-of-link to the last link descriptor of new list */
  604. set_ld_eol(chan, new);
  605. return &first->async_tx;
  606. fail:
  607. if (!first)
  608. return NULL;
  609. fsldma_free_desc_list_reverse(chan, &first->tx_list);
  610. return NULL;
  611. }
  612. /**
  613. * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
  614. * @chan: DMA channel
  615. * @sgl: scatterlist to transfer to/from
  616. * @sg_len: number of entries in @scatterlist
  617. * @direction: DMA direction
  618. * @flags: DMAEngine flags
  619. *
  620. * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
  621. * DMA_SLAVE API, this gets the device-specific information from the
  622. * chan->private variable.
  623. */
  624. static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
  625. struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
  626. enum dma_data_direction direction, unsigned long flags)
  627. {
  628. /*
  629. * This operation is not supported on the Freescale DMA controller
  630. *
  631. * However, we need to provide the function pointer to allow the
  632. * device_control() method to work.
  633. */
  634. return NULL;
  635. }
  636. static int fsl_dma_device_control(struct dma_chan *dchan,
  637. enum dma_ctrl_cmd cmd, unsigned long arg)
  638. {
  639. struct dma_slave_config *config;
  640. struct fsldma_chan *chan;
  641. unsigned long flags;
  642. int size;
  643. if (!dchan)
  644. return -EINVAL;
  645. chan = to_fsl_chan(dchan);
  646. switch (cmd) {
  647. case DMA_TERMINATE_ALL:
  648. spin_lock_irqsave(&chan->desc_lock, flags);
  649. /* Halt the DMA engine */
  650. dma_halt(chan);
  651. /* Remove and free all of the descriptors in the LD queue */
  652. fsldma_free_desc_list(chan, &chan->ld_pending);
  653. fsldma_free_desc_list(chan, &chan->ld_running);
  654. chan->idle = true;
  655. spin_unlock_irqrestore(&chan->desc_lock, flags);
  656. return 0;
  657. case DMA_SLAVE_CONFIG:
  658. config = (struct dma_slave_config *)arg;
  659. /* make sure the channel supports setting burst size */
  660. if (!chan->set_request_count)
  661. return -ENXIO;
  662. /* we set the controller burst size depending on direction */
  663. if (config->direction == DMA_TO_DEVICE)
  664. size = config->dst_addr_width * config->dst_maxburst;
  665. else
  666. size = config->src_addr_width * config->src_maxburst;
  667. chan->set_request_count(chan, size);
  668. return 0;
  669. case FSLDMA_EXTERNAL_START:
  670. /* make sure the channel supports external start */
  671. if (!chan->toggle_ext_start)
  672. return -ENXIO;
  673. chan->toggle_ext_start(chan, arg);
  674. return 0;
  675. default:
  676. return -ENXIO;
  677. }
  678. return 0;
  679. }
  680. /**
  681. * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
  682. * @chan: Freescale DMA channel
  683. * @desc: descriptor to cleanup and free
  684. *
  685. * This function is used on a descriptor which has been executed by the DMA
  686. * controller. It will run any callbacks, submit any dependencies, and then
  687. * free the descriptor.
  688. */
  689. static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
  690. struct fsl_desc_sw *desc)
  691. {
  692. struct dma_async_tx_descriptor *txd = &desc->async_tx;
  693. struct device *dev = chan->common.device->dev;
  694. dma_addr_t src = get_desc_src(chan, desc);
  695. dma_addr_t dst = get_desc_dst(chan, desc);
  696. u32 len = get_desc_cnt(chan, desc);
  697. /* Run the link descriptor callback function */
  698. if (txd->callback) {
  699. #ifdef FSL_DMA_LD_DEBUG
  700. chan_dbg(chan, "LD %p callback\n", desc);
  701. #endif
  702. txd->callback(txd->callback_param);
  703. }
  704. /* Run any dependencies */
  705. dma_run_dependencies(txd);
  706. /* Unmap the dst buffer, if requested */
  707. if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  708. if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
  709. dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
  710. else
  711. dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
  712. }
  713. /* Unmap the src buffer, if requested */
  714. if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  715. if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
  716. dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
  717. else
  718. dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
  719. }
  720. #ifdef FSL_DMA_LD_DEBUG
  721. chan_dbg(chan, "LD %p free\n", desc);
  722. #endif
  723. dma_pool_free(chan->desc_pool, desc, txd->phys);
  724. }
  725. /**
  726. * fsl_chan_xfer_ld_queue - transfer any pending transactions
  727. * @chan : Freescale DMA channel
  728. *
  729. * HARDWARE STATE: idle
  730. * LOCKING: must hold chan->desc_lock
  731. */
  732. static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
  733. {
  734. struct fsl_desc_sw *desc;
  735. /*
  736. * If the list of pending descriptors is empty, then we
  737. * don't need to do any work at all
  738. */
  739. if (list_empty(&chan->ld_pending)) {
  740. chan_dbg(chan, "no pending LDs\n");
  741. return;
  742. }
  743. /*
  744. * The DMA controller is not idle, which means that the interrupt
  745. * handler will start any queued transactions when it runs after
  746. * this transaction finishes
  747. */
  748. if (!chan->idle) {
  749. chan_dbg(chan, "DMA controller still busy\n");
  750. return;
  751. }
  752. /*
  753. * If there are some link descriptors which have not been
  754. * transferred, we need to start the controller
  755. */
  756. /*
  757. * Move all elements from the queue of pending transactions
  758. * onto the list of running transactions
  759. */
  760. chan_dbg(chan, "idle, starting controller\n");
  761. desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
  762. list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
  763. /*
  764. * The 85xx DMA controller doesn't clear the channel start bit
  765. * automatically at the end of a transfer. Therefore we must clear
  766. * it in software before starting the transfer.
  767. */
  768. if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
  769. u32 mode;
  770. mode = DMA_IN(chan, &chan->regs->mr, 32);
  771. mode &= ~FSL_DMA_MR_CS;
  772. DMA_OUT(chan, &chan->regs->mr, mode, 32);
  773. }
  774. /*
  775. * Program the descriptor's address into the DMA controller,
  776. * then start the DMA transaction
  777. */
  778. set_cdar(chan, desc->async_tx.phys);
  779. get_cdar(chan);
  780. dma_start(chan);
  781. chan->idle = false;
  782. }
  783. /**
  784. * fsl_dma_memcpy_issue_pending - Issue the DMA start command
  785. * @chan : Freescale DMA channel
  786. */
  787. static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
  788. {
  789. struct fsldma_chan *chan = to_fsl_chan(dchan);
  790. unsigned long flags;
  791. spin_lock_irqsave(&chan->desc_lock, flags);
  792. fsl_chan_xfer_ld_queue(chan);
  793. spin_unlock_irqrestore(&chan->desc_lock, flags);
  794. }
  795. /**
  796. * fsl_tx_status - Determine the DMA status
  797. * @chan : Freescale DMA channel
  798. */
  799. static enum dma_status fsl_tx_status(struct dma_chan *dchan,
  800. dma_cookie_t cookie,
  801. struct dma_tx_state *txstate)
  802. {
  803. struct fsldma_chan *chan = to_fsl_chan(dchan);
  804. dma_cookie_t last_complete;
  805. dma_cookie_t last_used;
  806. unsigned long flags;
  807. spin_lock_irqsave(&chan->desc_lock, flags);
  808. last_complete = chan->completed_cookie;
  809. last_used = dchan->cookie;
  810. spin_unlock_irqrestore(&chan->desc_lock, flags);
  811. dma_set_tx_state(txstate, last_complete, last_used, 0);
  812. return dma_async_is_complete(cookie, last_complete, last_used);
  813. }
  814. /*----------------------------------------------------------------------------*/
  815. /* Interrupt Handling */
  816. /*----------------------------------------------------------------------------*/
  817. static irqreturn_t fsldma_chan_irq(int irq, void *data)
  818. {
  819. struct fsldma_chan *chan = data;
  820. u32 stat;
  821. /* save and clear the status register */
  822. stat = get_sr(chan);
  823. set_sr(chan, stat);
  824. chan_dbg(chan, "irq: stat = 0x%x\n", stat);
  825. /* check that this was really our device */
  826. stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
  827. if (!stat)
  828. return IRQ_NONE;
  829. if (stat & FSL_DMA_SR_TE)
  830. chan_err(chan, "Transfer Error!\n");
  831. /*
  832. * Programming Error
  833. * The DMA_INTERRUPT async_tx is a NULL transfer, which will
  834. * triger a PE interrupt.
  835. */
  836. if (stat & FSL_DMA_SR_PE) {
  837. chan_dbg(chan, "irq: Programming Error INT\n");
  838. stat &= ~FSL_DMA_SR_PE;
  839. if (get_bcr(chan) != 0)
  840. chan_err(chan, "Programming Error!\n");
  841. }
  842. /*
  843. * For MPC8349, EOCDI event need to update cookie
  844. * and start the next transfer if it exist.
  845. */
  846. if (stat & FSL_DMA_SR_EOCDI) {
  847. chan_dbg(chan, "irq: End-of-Chain link INT\n");
  848. stat &= ~FSL_DMA_SR_EOCDI;
  849. }
  850. /*
  851. * If it current transfer is the end-of-transfer,
  852. * we should clear the Channel Start bit for
  853. * prepare next transfer.
  854. */
  855. if (stat & FSL_DMA_SR_EOLNI) {
  856. chan_dbg(chan, "irq: End-of-link INT\n");
  857. stat &= ~FSL_DMA_SR_EOLNI;
  858. }
  859. /* check that the DMA controller is really idle */
  860. if (!dma_is_idle(chan))
  861. chan_err(chan, "irq: controller not idle!\n");
  862. /* check that we handled all of the bits */
  863. if (stat)
  864. chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
  865. /*
  866. * Schedule the tasklet to handle all cleanup of the current
  867. * transaction. It will start a new transaction if there is
  868. * one pending.
  869. */
  870. tasklet_schedule(&chan->tasklet);
  871. chan_dbg(chan, "irq: Exit\n");
  872. return IRQ_HANDLED;
  873. }
  874. static void dma_do_tasklet(unsigned long data)
  875. {
  876. struct fsldma_chan *chan = (struct fsldma_chan *)data;
  877. struct fsl_desc_sw *desc, *_desc;
  878. LIST_HEAD(ld_cleanup);
  879. unsigned long flags;
  880. chan_dbg(chan, "tasklet entry\n");
  881. spin_lock_irqsave(&chan->desc_lock, flags);
  882. /* update the cookie if we have some descriptors to cleanup */
  883. if (!list_empty(&chan->ld_running)) {
  884. dma_cookie_t cookie;
  885. desc = to_fsl_desc(chan->ld_running.prev);
  886. cookie = desc->async_tx.cookie;
  887. chan->completed_cookie = cookie;
  888. chan_dbg(chan, "completed_cookie=%d\n", cookie);
  889. }
  890. /*
  891. * move the descriptors to a temporary list so we can drop the lock
  892. * during the entire cleanup operation
  893. */
  894. list_splice_tail_init(&chan->ld_running, &ld_cleanup);
  895. /* the hardware is now idle and ready for more */
  896. chan->idle = true;
  897. /*
  898. * Start any pending transactions automatically
  899. *
  900. * In the ideal case, we keep the DMA controller busy while we go
  901. * ahead and free the descriptors below.
  902. */
  903. fsl_chan_xfer_ld_queue(chan);
  904. spin_unlock_irqrestore(&chan->desc_lock, flags);
  905. /* Run the callback for each descriptor, in order */
  906. list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
  907. /* Remove from the list of transactions */
  908. list_del(&desc->node);
  909. /* Run all cleanup for this descriptor */
  910. fsldma_cleanup_descriptor(chan, desc);
  911. }
  912. chan_dbg(chan, "tasklet exit\n");
  913. }
  914. static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
  915. {
  916. struct fsldma_device *fdev = data;
  917. struct fsldma_chan *chan;
  918. unsigned int handled = 0;
  919. u32 gsr, mask;
  920. int i;
  921. gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
  922. : in_le32(fdev->regs);
  923. mask = 0xff000000;
  924. dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
  925. for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
  926. chan = fdev->chan[i];
  927. if (!chan)
  928. continue;
  929. if (gsr & mask) {
  930. dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
  931. fsldma_chan_irq(irq, chan);
  932. handled++;
  933. }
  934. gsr &= ~mask;
  935. mask >>= 8;
  936. }
  937. return IRQ_RETVAL(handled);
  938. }
  939. static void fsldma_free_irqs(struct fsldma_device *fdev)
  940. {
  941. struct fsldma_chan *chan;
  942. int i;
  943. if (fdev->irq != NO_IRQ) {
  944. dev_dbg(fdev->dev, "free per-controller IRQ\n");
  945. free_irq(fdev->irq, fdev);
  946. return;
  947. }
  948. for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
  949. chan = fdev->chan[i];
  950. if (chan && chan->irq != NO_IRQ) {
  951. chan_dbg(chan, "free per-channel IRQ\n");
  952. free_irq(chan->irq, chan);
  953. }
  954. }
  955. }
  956. static int fsldma_request_irqs(struct fsldma_device *fdev)
  957. {
  958. struct fsldma_chan *chan;
  959. int ret;
  960. int i;
  961. /* if we have a per-controller IRQ, use that */
  962. if (fdev->irq != NO_IRQ) {
  963. dev_dbg(fdev->dev, "request per-controller IRQ\n");
  964. ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
  965. "fsldma-controller", fdev);
  966. return ret;
  967. }
  968. /* no per-controller IRQ, use the per-channel IRQs */
  969. for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
  970. chan = fdev->chan[i];
  971. if (!chan)
  972. continue;
  973. if (chan->irq == NO_IRQ) {
  974. chan_err(chan, "interrupts property missing in device tree\n");
  975. ret = -ENODEV;
  976. goto out_unwind;
  977. }
  978. chan_dbg(chan, "request per-channel IRQ\n");
  979. ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
  980. "fsldma-chan", chan);
  981. if (ret) {
  982. chan_err(chan, "unable to request per-channel IRQ\n");
  983. goto out_unwind;
  984. }
  985. }
  986. return 0;
  987. out_unwind:
  988. for (/* none */; i >= 0; i--) {
  989. chan = fdev->chan[i];
  990. if (!chan)
  991. continue;
  992. if (chan->irq == NO_IRQ)
  993. continue;
  994. free_irq(chan->irq, chan);
  995. }
  996. return ret;
  997. }
  998. /*----------------------------------------------------------------------------*/
  999. /* OpenFirmware Subsystem */
  1000. /*----------------------------------------------------------------------------*/
  1001. static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
  1002. struct device_node *node, u32 feature, const char *compatible)
  1003. {
  1004. struct fsldma_chan *chan;
  1005. struct resource res;
  1006. int err;
  1007. /* alloc channel */
  1008. chan = kzalloc(sizeof(*chan), GFP_KERNEL);
  1009. if (!chan) {
  1010. dev_err(fdev->dev, "no free memory for DMA channels!\n");
  1011. err = -ENOMEM;
  1012. goto out_return;
  1013. }
  1014. /* ioremap registers for use */
  1015. chan->regs = of_iomap(node, 0);
  1016. if (!chan->regs) {
  1017. dev_err(fdev->dev, "unable to ioremap registers\n");
  1018. err = -ENOMEM;
  1019. goto out_free_chan;
  1020. }
  1021. err = of_address_to_resource(node, 0, &res);
  1022. if (err) {
  1023. dev_err(fdev->dev, "unable to find 'reg' property\n");
  1024. goto out_iounmap_regs;
  1025. }
  1026. chan->feature = feature;
  1027. if (!fdev->feature)
  1028. fdev->feature = chan->feature;
  1029. /*
  1030. * If the DMA device's feature is different than the feature
  1031. * of its channels, report the bug
  1032. */
  1033. WARN_ON(fdev->feature != chan->feature);
  1034. chan->dev = fdev->dev;
  1035. chan->id = ((res.start - 0x100) & 0xfff) >> 7;
  1036. if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
  1037. dev_err(fdev->dev, "too many channels for device\n");
  1038. err = -EINVAL;
  1039. goto out_iounmap_regs;
  1040. }
  1041. fdev->chan[chan->id] = chan;
  1042. tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
  1043. snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
  1044. /* Initialize the channel */
  1045. dma_init(chan);
  1046. /* Clear cdar registers */
  1047. set_cdar(chan, 0);
  1048. switch (chan->feature & FSL_DMA_IP_MASK) {
  1049. case FSL_DMA_IP_85XX:
  1050. chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
  1051. case FSL_DMA_IP_83XX:
  1052. chan->toggle_ext_start = fsl_chan_toggle_ext_start;
  1053. chan->set_src_loop_size = fsl_chan_set_src_loop_size;
  1054. chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
  1055. chan->set_request_count = fsl_chan_set_request_count;
  1056. }
  1057. spin_lock_init(&chan->desc_lock);
  1058. INIT_LIST_HEAD(&chan->ld_pending);
  1059. INIT_LIST_HEAD(&chan->ld_running);
  1060. chan->idle = true;
  1061. chan->common.device = &fdev->common;
  1062. /* find the IRQ line, if it exists in the device tree */
  1063. chan->irq = irq_of_parse_and_map(node, 0);
  1064. /* Add the channel to DMA device channel list */
  1065. list_add_tail(&chan->common.device_node, &fdev->common.channels);
  1066. fdev->common.chancnt++;
  1067. dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
  1068. chan->irq != NO_IRQ ? chan->irq : fdev->irq);
  1069. return 0;
  1070. out_iounmap_regs:
  1071. iounmap(chan->regs);
  1072. out_free_chan:
  1073. kfree(chan);
  1074. out_return:
  1075. return err;
  1076. }
  1077. static void fsl_dma_chan_remove(struct fsldma_chan *chan)
  1078. {
  1079. irq_dispose_mapping(chan->irq);
  1080. list_del(&chan->common.device_node);
  1081. iounmap(chan->regs);
  1082. kfree(chan);
  1083. }
  1084. static int __devinit fsldma_of_probe(struct platform_device *op,
  1085. const struct of_device_id *match)
  1086. {
  1087. struct fsldma_device *fdev;
  1088. struct device_node *child;
  1089. int err;
  1090. fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
  1091. if (!fdev) {
  1092. dev_err(&op->dev, "No enough memory for 'priv'\n");
  1093. err = -ENOMEM;
  1094. goto out_return;
  1095. }
  1096. fdev->dev = &op->dev;
  1097. INIT_LIST_HEAD(&fdev->common.channels);
  1098. /* ioremap the registers for use */
  1099. fdev->regs = of_iomap(op->dev.of_node, 0);
  1100. if (!fdev->regs) {
  1101. dev_err(&op->dev, "unable to ioremap registers\n");
  1102. err = -ENOMEM;
  1103. goto out_free_fdev;
  1104. }
  1105. /* map the channel IRQ if it exists, but don't hookup the handler yet */
  1106. fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
  1107. dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
  1108. dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
  1109. dma_cap_set(DMA_SG, fdev->common.cap_mask);
  1110. dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
  1111. fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
  1112. fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
  1113. fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
  1114. fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
  1115. fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
  1116. fdev->common.device_tx_status = fsl_tx_status;
  1117. fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
  1118. fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
  1119. fdev->common.device_control = fsl_dma_device_control;
  1120. fdev->common.dev = &op->dev;
  1121. dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
  1122. dev_set_drvdata(&op->dev, fdev);
  1123. /*
  1124. * We cannot use of_platform_bus_probe() because there is no
  1125. * of_platform_bus_remove(). Instead, we manually instantiate every DMA
  1126. * channel object.
  1127. */
  1128. for_each_child_of_node(op->dev.of_node, child) {
  1129. if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
  1130. fsl_dma_chan_probe(fdev, child,
  1131. FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
  1132. "fsl,eloplus-dma-channel");
  1133. }
  1134. if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
  1135. fsl_dma_chan_probe(fdev, child,
  1136. FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
  1137. "fsl,elo-dma-channel");
  1138. }
  1139. }
  1140. /*
  1141. * Hookup the IRQ handler(s)
  1142. *
  1143. * If we have a per-controller interrupt, we prefer that to the
  1144. * per-channel interrupts to reduce the number of shared interrupt
  1145. * handlers on the same IRQ line
  1146. */
  1147. err = fsldma_request_irqs(fdev);
  1148. if (err) {
  1149. dev_err(fdev->dev, "unable to request IRQs\n");
  1150. goto out_free_fdev;
  1151. }
  1152. dma_async_device_register(&fdev->common);
  1153. return 0;
  1154. out_free_fdev:
  1155. irq_dispose_mapping(fdev->irq);
  1156. kfree(fdev);
  1157. out_return:
  1158. return err;
  1159. }
  1160. static int fsldma_of_remove(struct platform_device *op)
  1161. {
  1162. struct fsldma_device *fdev;
  1163. unsigned int i;
  1164. fdev = dev_get_drvdata(&op->dev);
  1165. dma_async_device_unregister(&fdev->common);
  1166. fsldma_free_irqs(fdev);
  1167. for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
  1168. if (fdev->chan[i])
  1169. fsl_dma_chan_remove(fdev->chan[i]);
  1170. }
  1171. iounmap(fdev->regs);
  1172. dev_set_drvdata(&op->dev, NULL);
  1173. kfree(fdev);
  1174. return 0;
  1175. }
  1176. static const struct of_device_id fsldma_of_ids[] = {
  1177. { .compatible = "fsl,eloplus-dma", },
  1178. { .compatible = "fsl,elo-dma", },
  1179. {}
  1180. };
  1181. static struct of_platform_driver fsldma_of_driver = {
  1182. .driver = {
  1183. .name = "fsl-elo-dma",
  1184. .owner = THIS_MODULE,
  1185. .of_match_table = fsldma_of_ids,
  1186. },
  1187. .probe = fsldma_of_probe,
  1188. .remove = fsldma_of_remove,
  1189. };
  1190. /*----------------------------------------------------------------------------*/
  1191. /* Module Init / Exit */
  1192. /*----------------------------------------------------------------------------*/
  1193. static __init int fsldma_init(void)
  1194. {
  1195. int ret;
  1196. pr_info("Freescale Elo / Elo Plus DMA driver\n");
  1197. ret = of_register_platform_driver(&fsldma_of_driver);
  1198. if (ret)
  1199. pr_err("fsldma: failed to register platform driver\n");
  1200. return ret;
  1201. }
  1202. static void __exit fsldma_exit(void)
  1203. {
  1204. of_unregister_platform_driver(&fsldma_of_driver);
  1205. }
  1206. subsys_initcall(fsldma_init);
  1207. module_exit(fsldma_exit);
  1208. MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
  1209. MODULE_LICENSE("GPL");