cfq-iosched.c 107 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "cfq.h"
  19. /*
  20. * tunables
  21. */
  22. /* max queue in one round of service */
  23. static const int cfq_quantum = 8;
  24. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  25. /* maximum backwards seek, in KiB */
  26. static const int cfq_back_max = 16 * 1024;
  27. /* penalty of a backwards seek */
  28. static const int cfq_back_penalty = 2;
  29. static const int cfq_slice_sync = HZ / 10;
  30. static int cfq_slice_async = HZ / 25;
  31. static const int cfq_slice_async_rq = 2;
  32. static int cfq_slice_idle = HZ / 125;
  33. static int cfq_group_idle = HZ / 125;
  34. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  35. static const int cfq_hist_divisor = 4;
  36. /*
  37. * offset from end of service tree
  38. */
  39. #define CFQ_IDLE_DELAY (HZ / 5)
  40. /*
  41. * below this threshold, we consider thinktime immediate
  42. */
  43. #define CFQ_MIN_TT (2)
  44. #define CFQ_SLICE_SCALE (5)
  45. #define CFQ_HW_QUEUE_MIN (5)
  46. #define CFQ_SERVICE_SHIFT 12
  47. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  48. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  49. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  50. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  51. #define RQ_CIC(rq) \
  52. ((struct cfq_io_context *) (rq)->elevator_private[0])
  53. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  54. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  55. static struct kmem_cache *cfq_pool;
  56. static struct kmem_cache *cfq_ioc_pool;
  57. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  58. static struct completion *ioc_gone;
  59. static DEFINE_SPINLOCK(ioc_gone_lock);
  60. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  61. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  62. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  63. #define sample_valid(samples) ((samples) > 80)
  64. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  65. /*
  66. * Most of our rbtree usage is for sorting with min extraction, so
  67. * if we cache the leftmost node we don't have to walk down the tree
  68. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  69. * move this into the elevator for the rq sorting as well.
  70. */
  71. struct cfq_rb_root {
  72. struct rb_root rb;
  73. struct rb_node *left;
  74. unsigned count;
  75. unsigned total_weight;
  76. u64 min_vdisktime;
  77. struct cfq_ttime ttime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  80. .ttime = {.last_end_request = jiffies,},}
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending priority requests */
  118. int prio_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. /* Number of sectors dispatched from queue in single dispatch round */
  131. unsigned long nr_sectors;
  132. };
  133. /*
  134. * First index in the service_trees.
  135. * IDLE is handled separately, so it has negative index
  136. */
  137. enum wl_prio_t {
  138. BE_WORKLOAD = 0,
  139. RT_WORKLOAD = 1,
  140. IDLE_WORKLOAD = 2,
  141. CFQ_PRIO_NR,
  142. };
  143. /*
  144. * Second index in the service_trees.
  145. */
  146. enum wl_type_t {
  147. ASYNC_WORKLOAD = 0,
  148. SYNC_NOIDLE_WORKLOAD = 1,
  149. SYNC_WORKLOAD = 2
  150. };
  151. /* This is per cgroup per device grouping structure */
  152. struct cfq_group {
  153. /* group service_tree member */
  154. struct rb_node rb_node;
  155. /* group service_tree key */
  156. u64 vdisktime;
  157. unsigned int weight;
  158. unsigned int new_weight;
  159. bool needs_update;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /*
  163. * Per group busy queues average. Useful for workload slice calc. We
  164. * create the array for each prio class but at run time it is used
  165. * only for RT and BE class and slot for IDLE class remains unused.
  166. * This is primarily done to avoid confusion and a gcc warning.
  167. */
  168. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  169. /*
  170. * rr lists of queues with requests. We maintain service trees for
  171. * RT and BE classes. These trees are subdivided in subclasses
  172. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  173. * class there is no subclassification and all the cfq queues go on
  174. * a single tree service_tree_idle.
  175. * Counts are embedded in the cfq_rb_root
  176. */
  177. struct cfq_rb_root service_trees[2][3];
  178. struct cfq_rb_root service_tree_idle;
  179. unsigned long saved_workload_slice;
  180. enum wl_type_t saved_workload;
  181. enum wl_prio_t saved_serving_prio;
  182. struct blkio_group blkg;
  183. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  184. struct hlist_node cfqd_node;
  185. int ref;
  186. #endif
  187. /* number of requests that are on the dispatch list or inside driver */
  188. int dispatched;
  189. struct cfq_ttime ttime;
  190. };
  191. /*
  192. * Per block device queue structure
  193. */
  194. struct cfq_data {
  195. struct request_queue *queue;
  196. /* Root service tree for cfq_groups */
  197. struct cfq_rb_root grp_service_tree;
  198. struct cfq_group root_group;
  199. /*
  200. * The priority currently being served
  201. */
  202. enum wl_prio_t serving_prio;
  203. enum wl_type_t serving_type;
  204. unsigned long workload_expires;
  205. struct cfq_group *serving_group;
  206. /*
  207. * Each priority tree is sorted by next_request position. These
  208. * trees are used when determining if two or more queues are
  209. * interleaving requests (see cfq_close_cooperator).
  210. */
  211. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  212. unsigned int busy_queues;
  213. unsigned int busy_sync_queues;
  214. int rq_in_driver;
  215. int rq_in_flight[2];
  216. /*
  217. * queue-depth detection
  218. */
  219. int rq_queued;
  220. int hw_tag;
  221. /*
  222. * hw_tag can be
  223. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  224. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  225. * 0 => no NCQ
  226. */
  227. int hw_tag_est_depth;
  228. unsigned int hw_tag_samples;
  229. /*
  230. * idle window management
  231. */
  232. struct timer_list idle_slice_timer;
  233. struct work_struct unplug_work;
  234. struct cfq_queue *active_queue;
  235. struct cfq_io_context *active_cic;
  236. /*
  237. * async queue for each priority case
  238. */
  239. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  240. struct cfq_queue *async_idle_cfqq;
  241. sector_t last_position;
  242. /*
  243. * tunables, see top of file
  244. */
  245. unsigned int cfq_quantum;
  246. unsigned int cfq_fifo_expire[2];
  247. unsigned int cfq_back_penalty;
  248. unsigned int cfq_back_max;
  249. unsigned int cfq_slice[2];
  250. unsigned int cfq_slice_async_rq;
  251. unsigned int cfq_slice_idle;
  252. unsigned int cfq_group_idle;
  253. unsigned int cfq_latency;
  254. struct list_head cic_list;
  255. /*
  256. * Fallback dummy cfqq for extreme OOM conditions
  257. */
  258. struct cfq_queue oom_cfqq;
  259. unsigned long last_delayed_sync;
  260. /* List of cfq groups being managed on this device*/
  261. struct hlist_head cfqg_list;
  262. /* Number of groups which are on blkcg->blkg_list */
  263. unsigned int nr_blkcg_linked_grps;
  264. };
  265. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  266. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  267. enum wl_prio_t prio,
  268. enum wl_type_t type)
  269. {
  270. if (!cfqg)
  271. return NULL;
  272. if (prio == IDLE_WORKLOAD)
  273. return &cfqg->service_tree_idle;
  274. return &cfqg->service_trees[prio][type];
  275. }
  276. enum cfqq_state_flags {
  277. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  278. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  279. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  280. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  281. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  282. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  283. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  284. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  285. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  286. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  287. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  288. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  289. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  290. };
  291. #define CFQ_CFQQ_FNS(name) \
  292. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  293. { \
  294. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  295. } \
  296. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  297. { \
  298. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  299. } \
  300. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  301. { \
  302. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  303. }
  304. CFQ_CFQQ_FNS(on_rr);
  305. CFQ_CFQQ_FNS(wait_request);
  306. CFQ_CFQQ_FNS(must_dispatch);
  307. CFQ_CFQQ_FNS(must_alloc_slice);
  308. CFQ_CFQQ_FNS(fifo_expire);
  309. CFQ_CFQQ_FNS(idle_window);
  310. CFQ_CFQQ_FNS(prio_changed);
  311. CFQ_CFQQ_FNS(slice_new);
  312. CFQ_CFQQ_FNS(sync);
  313. CFQ_CFQQ_FNS(coop);
  314. CFQ_CFQQ_FNS(split_coop);
  315. CFQ_CFQQ_FNS(deep);
  316. CFQ_CFQQ_FNS(wait_busy);
  317. #undef CFQ_CFQQ_FNS
  318. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  319. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  320. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  321. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  322. blkg_path(&(cfqq)->cfqg->blkg), ##args)
  323. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  324. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  325. blkg_path(&(cfqg)->blkg), ##args) \
  326. #else
  327. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  328. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  329. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  330. #endif
  331. #define cfq_log(cfqd, fmt, args...) \
  332. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  333. /* Traverses through cfq group service trees */
  334. #define for_each_cfqg_st(cfqg, i, j, st) \
  335. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  336. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  337. : &cfqg->service_tree_idle; \
  338. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  339. (i == IDLE_WORKLOAD && j == 0); \
  340. j++, st = i < IDLE_WORKLOAD ? \
  341. &cfqg->service_trees[i][j]: NULL) \
  342. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  343. struct cfq_ttime *ttime, bool group_idle)
  344. {
  345. unsigned long slice;
  346. if (!sample_valid(ttime->ttime_samples))
  347. return false;
  348. if (group_idle)
  349. slice = cfqd->cfq_group_idle;
  350. else
  351. slice = cfqd->cfq_slice_idle;
  352. return ttime->ttime_mean > slice;
  353. }
  354. static inline bool iops_mode(struct cfq_data *cfqd)
  355. {
  356. /*
  357. * If we are not idling on queues and it is a NCQ drive, parallel
  358. * execution of requests is on and measuring time is not possible
  359. * in most of the cases until and unless we drive shallower queue
  360. * depths and that becomes a performance bottleneck. In such cases
  361. * switch to start providing fairness in terms of number of IOs.
  362. */
  363. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  364. return true;
  365. else
  366. return false;
  367. }
  368. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  369. {
  370. if (cfq_class_idle(cfqq))
  371. return IDLE_WORKLOAD;
  372. if (cfq_class_rt(cfqq))
  373. return RT_WORKLOAD;
  374. return BE_WORKLOAD;
  375. }
  376. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  377. {
  378. if (!cfq_cfqq_sync(cfqq))
  379. return ASYNC_WORKLOAD;
  380. if (!cfq_cfqq_idle_window(cfqq))
  381. return SYNC_NOIDLE_WORKLOAD;
  382. return SYNC_WORKLOAD;
  383. }
  384. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  385. struct cfq_data *cfqd,
  386. struct cfq_group *cfqg)
  387. {
  388. if (wl == IDLE_WORKLOAD)
  389. return cfqg->service_tree_idle.count;
  390. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  391. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  392. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  393. }
  394. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  395. struct cfq_group *cfqg)
  396. {
  397. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  398. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  399. }
  400. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  401. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  402. struct io_context *, gfp_t);
  403. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  404. struct io_context *);
  405. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  406. bool is_sync)
  407. {
  408. return cic->cfqq[is_sync];
  409. }
  410. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  411. struct cfq_queue *cfqq, bool is_sync)
  412. {
  413. cic->cfqq[is_sync] = cfqq;
  414. }
  415. #define CIC_DEAD_KEY 1ul
  416. #define CIC_DEAD_INDEX_SHIFT 1
  417. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  418. {
  419. return (void *)(cfqd->queue->id << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  420. }
  421. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  422. {
  423. struct cfq_data *cfqd = cic->key;
  424. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  425. return NULL;
  426. return cfqd;
  427. }
  428. /*
  429. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  430. * set (in which case it could also be direct WRITE).
  431. */
  432. static inline bool cfq_bio_sync(struct bio *bio)
  433. {
  434. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  435. }
  436. /*
  437. * scheduler run of queue, if there are requests pending and no one in the
  438. * driver that will restart queueing
  439. */
  440. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  441. {
  442. if (cfqd->busy_queues) {
  443. cfq_log(cfqd, "schedule dispatch");
  444. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  445. }
  446. }
  447. /*
  448. * Scale schedule slice based on io priority. Use the sync time slice only
  449. * if a queue is marked sync and has sync io queued. A sync queue with async
  450. * io only, should not get full sync slice length.
  451. */
  452. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  453. unsigned short prio)
  454. {
  455. const int base_slice = cfqd->cfq_slice[sync];
  456. WARN_ON(prio >= IOPRIO_BE_NR);
  457. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  458. }
  459. static inline int
  460. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  461. {
  462. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  463. }
  464. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  465. {
  466. u64 d = delta << CFQ_SERVICE_SHIFT;
  467. d = d * BLKIO_WEIGHT_DEFAULT;
  468. do_div(d, cfqg->weight);
  469. return d;
  470. }
  471. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  472. {
  473. s64 delta = (s64)(vdisktime - min_vdisktime);
  474. if (delta > 0)
  475. min_vdisktime = vdisktime;
  476. return min_vdisktime;
  477. }
  478. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  479. {
  480. s64 delta = (s64)(vdisktime - min_vdisktime);
  481. if (delta < 0)
  482. min_vdisktime = vdisktime;
  483. return min_vdisktime;
  484. }
  485. static void update_min_vdisktime(struct cfq_rb_root *st)
  486. {
  487. struct cfq_group *cfqg;
  488. if (st->left) {
  489. cfqg = rb_entry_cfqg(st->left);
  490. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  491. cfqg->vdisktime);
  492. }
  493. }
  494. /*
  495. * get averaged number of queues of RT/BE priority.
  496. * average is updated, with a formula that gives more weight to higher numbers,
  497. * to quickly follows sudden increases and decrease slowly
  498. */
  499. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  500. struct cfq_group *cfqg, bool rt)
  501. {
  502. unsigned min_q, max_q;
  503. unsigned mult = cfq_hist_divisor - 1;
  504. unsigned round = cfq_hist_divisor / 2;
  505. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  506. min_q = min(cfqg->busy_queues_avg[rt], busy);
  507. max_q = max(cfqg->busy_queues_avg[rt], busy);
  508. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  509. cfq_hist_divisor;
  510. return cfqg->busy_queues_avg[rt];
  511. }
  512. static inline unsigned
  513. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  514. {
  515. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  516. return cfq_target_latency * cfqg->weight / st->total_weight;
  517. }
  518. static inline unsigned
  519. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  520. {
  521. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  522. if (cfqd->cfq_latency) {
  523. /*
  524. * interested queues (we consider only the ones with the same
  525. * priority class in the cfq group)
  526. */
  527. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  528. cfq_class_rt(cfqq));
  529. unsigned sync_slice = cfqd->cfq_slice[1];
  530. unsigned expect_latency = sync_slice * iq;
  531. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  532. if (expect_latency > group_slice) {
  533. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  534. /* scale low_slice according to IO priority
  535. * and sync vs async */
  536. unsigned low_slice =
  537. min(slice, base_low_slice * slice / sync_slice);
  538. /* the adapted slice value is scaled to fit all iqs
  539. * into the target latency */
  540. slice = max(slice * group_slice / expect_latency,
  541. low_slice);
  542. }
  543. }
  544. return slice;
  545. }
  546. static inline void
  547. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  548. {
  549. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  550. cfqq->slice_start = jiffies;
  551. cfqq->slice_end = jiffies + slice;
  552. cfqq->allocated_slice = slice;
  553. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  554. }
  555. /*
  556. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  557. * isn't valid until the first request from the dispatch is activated
  558. * and the slice time set.
  559. */
  560. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  561. {
  562. if (cfq_cfqq_slice_new(cfqq))
  563. return false;
  564. if (time_before(jiffies, cfqq->slice_end))
  565. return false;
  566. return true;
  567. }
  568. /*
  569. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  570. * We choose the request that is closest to the head right now. Distance
  571. * behind the head is penalized and only allowed to a certain extent.
  572. */
  573. static struct request *
  574. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  575. {
  576. sector_t s1, s2, d1 = 0, d2 = 0;
  577. unsigned long back_max;
  578. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  579. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  580. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  581. if (rq1 == NULL || rq1 == rq2)
  582. return rq2;
  583. if (rq2 == NULL)
  584. return rq1;
  585. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  586. return rq_is_sync(rq1) ? rq1 : rq2;
  587. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  588. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  589. s1 = blk_rq_pos(rq1);
  590. s2 = blk_rq_pos(rq2);
  591. /*
  592. * by definition, 1KiB is 2 sectors
  593. */
  594. back_max = cfqd->cfq_back_max * 2;
  595. /*
  596. * Strict one way elevator _except_ in the case where we allow
  597. * short backward seeks which are biased as twice the cost of a
  598. * similar forward seek.
  599. */
  600. if (s1 >= last)
  601. d1 = s1 - last;
  602. else if (s1 + back_max >= last)
  603. d1 = (last - s1) * cfqd->cfq_back_penalty;
  604. else
  605. wrap |= CFQ_RQ1_WRAP;
  606. if (s2 >= last)
  607. d2 = s2 - last;
  608. else if (s2 + back_max >= last)
  609. d2 = (last - s2) * cfqd->cfq_back_penalty;
  610. else
  611. wrap |= CFQ_RQ2_WRAP;
  612. /* Found required data */
  613. /*
  614. * By doing switch() on the bit mask "wrap" we avoid having to
  615. * check two variables for all permutations: --> faster!
  616. */
  617. switch (wrap) {
  618. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  619. if (d1 < d2)
  620. return rq1;
  621. else if (d2 < d1)
  622. return rq2;
  623. else {
  624. if (s1 >= s2)
  625. return rq1;
  626. else
  627. return rq2;
  628. }
  629. case CFQ_RQ2_WRAP:
  630. return rq1;
  631. case CFQ_RQ1_WRAP:
  632. return rq2;
  633. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  634. default:
  635. /*
  636. * Since both rqs are wrapped,
  637. * start with the one that's further behind head
  638. * (--> only *one* back seek required),
  639. * since back seek takes more time than forward.
  640. */
  641. if (s1 <= s2)
  642. return rq1;
  643. else
  644. return rq2;
  645. }
  646. }
  647. /*
  648. * The below is leftmost cache rbtree addon
  649. */
  650. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  651. {
  652. /* Service tree is empty */
  653. if (!root->count)
  654. return NULL;
  655. if (!root->left)
  656. root->left = rb_first(&root->rb);
  657. if (root->left)
  658. return rb_entry(root->left, struct cfq_queue, rb_node);
  659. return NULL;
  660. }
  661. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  662. {
  663. if (!root->left)
  664. root->left = rb_first(&root->rb);
  665. if (root->left)
  666. return rb_entry_cfqg(root->left);
  667. return NULL;
  668. }
  669. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  670. {
  671. rb_erase(n, root);
  672. RB_CLEAR_NODE(n);
  673. }
  674. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  675. {
  676. if (root->left == n)
  677. root->left = NULL;
  678. rb_erase_init(n, &root->rb);
  679. --root->count;
  680. }
  681. /*
  682. * would be nice to take fifo expire time into account as well
  683. */
  684. static struct request *
  685. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  686. struct request *last)
  687. {
  688. struct rb_node *rbnext = rb_next(&last->rb_node);
  689. struct rb_node *rbprev = rb_prev(&last->rb_node);
  690. struct request *next = NULL, *prev = NULL;
  691. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  692. if (rbprev)
  693. prev = rb_entry_rq(rbprev);
  694. if (rbnext)
  695. next = rb_entry_rq(rbnext);
  696. else {
  697. rbnext = rb_first(&cfqq->sort_list);
  698. if (rbnext && rbnext != &last->rb_node)
  699. next = rb_entry_rq(rbnext);
  700. }
  701. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  702. }
  703. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  704. struct cfq_queue *cfqq)
  705. {
  706. /*
  707. * just an approximation, should be ok.
  708. */
  709. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  710. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  711. }
  712. static inline s64
  713. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  714. {
  715. return cfqg->vdisktime - st->min_vdisktime;
  716. }
  717. static void
  718. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  719. {
  720. struct rb_node **node = &st->rb.rb_node;
  721. struct rb_node *parent = NULL;
  722. struct cfq_group *__cfqg;
  723. s64 key = cfqg_key(st, cfqg);
  724. int left = 1;
  725. while (*node != NULL) {
  726. parent = *node;
  727. __cfqg = rb_entry_cfqg(parent);
  728. if (key < cfqg_key(st, __cfqg))
  729. node = &parent->rb_left;
  730. else {
  731. node = &parent->rb_right;
  732. left = 0;
  733. }
  734. }
  735. if (left)
  736. st->left = &cfqg->rb_node;
  737. rb_link_node(&cfqg->rb_node, parent, node);
  738. rb_insert_color(&cfqg->rb_node, &st->rb);
  739. }
  740. static void
  741. cfq_update_group_weight(struct cfq_group *cfqg)
  742. {
  743. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  744. if (cfqg->needs_update) {
  745. cfqg->weight = cfqg->new_weight;
  746. cfqg->needs_update = false;
  747. }
  748. }
  749. static void
  750. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  751. {
  752. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  753. cfq_update_group_weight(cfqg);
  754. __cfq_group_service_tree_add(st, cfqg);
  755. st->total_weight += cfqg->weight;
  756. }
  757. static void
  758. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  759. {
  760. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  761. struct cfq_group *__cfqg;
  762. struct rb_node *n;
  763. cfqg->nr_cfqq++;
  764. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  765. return;
  766. /*
  767. * Currently put the group at the end. Later implement something
  768. * so that groups get lesser vtime based on their weights, so that
  769. * if group does not loose all if it was not continuously backlogged.
  770. */
  771. n = rb_last(&st->rb);
  772. if (n) {
  773. __cfqg = rb_entry_cfqg(n);
  774. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  775. } else
  776. cfqg->vdisktime = st->min_vdisktime;
  777. cfq_group_service_tree_add(st, cfqg);
  778. }
  779. static void
  780. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  781. {
  782. st->total_weight -= cfqg->weight;
  783. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  784. cfq_rb_erase(&cfqg->rb_node, st);
  785. }
  786. static void
  787. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  788. {
  789. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  790. BUG_ON(cfqg->nr_cfqq < 1);
  791. cfqg->nr_cfqq--;
  792. /* If there are other cfq queues under this group, don't delete it */
  793. if (cfqg->nr_cfqq)
  794. return;
  795. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  796. cfq_group_service_tree_del(st, cfqg);
  797. cfqg->saved_workload_slice = 0;
  798. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  799. }
  800. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  801. unsigned int *unaccounted_time)
  802. {
  803. unsigned int slice_used;
  804. /*
  805. * Queue got expired before even a single request completed or
  806. * got expired immediately after first request completion.
  807. */
  808. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  809. /*
  810. * Also charge the seek time incurred to the group, otherwise
  811. * if there are mutiple queues in the group, each can dispatch
  812. * a single request on seeky media and cause lots of seek time
  813. * and group will never know it.
  814. */
  815. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  816. 1);
  817. } else {
  818. slice_used = jiffies - cfqq->slice_start;
  819. if (slice_used > cfqq->allocated_slice) {
  820. *unaccounted_time = slice_used - cfqq->allocated_slice;
  821. slice_used = cfqq->allocated_slice;
  822. }
  823. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  824. *unaccounted_time += cfqq->slice_start -
  825. cfqq->dispatch_start;
  826. }
  827. return slice_used;
  828. }
  829. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  830. struct cfq_queue *cfqq)
  831. {
  832. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  833. unsigned int used_sl, charge, unaccounted_sl = 0;
  834. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  835. - cfqg->service_tree_idle.count;
  836. BUG_ON(nr_sync < 0);
  837. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  838. if (iops_mode(cfqd))
  839. charge = cfqq->slice_dispatch;
  840. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  841. charge = cfqq->allocated_slice;
  842. /* Can't update vdisktime while group is on service tree */
  843. cfq_group_service_tree_del(st, cfqg);
  844. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  845. /* If a new weight was requested, update now, off tree */
  846. cfq_group_service_tree_add(st, cfqg);
  847. /* This group is being expired. Save the context */
  848. if (time_after(cfqd->workload_expires, jiffies)) {
  849. cfqg->saved_workload_slice = cfqd->workload_expires
  850. - jiffies;
  851. cfqg->saved_workload = cfqd->serving_type;
  852. cfqg->saved_serving_prio = cfqd->serving_prio;
  853. } else
  854. cfqg->saved_workload_slice = 0;
  855. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  856. st->min_vdisktime);
  857. cfq_log_cfqq(cfqq->cfqd, cfqq,
  858. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  859. used_sl, cfqq->slice_dispatch, charge,
  860. iops_mode(cfqd), cfqq->nr_sectors);
  861. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  862. unaccounted_sl);
  863. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  864. }
  865. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  866. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  867. {
  868. if (blkg)
  869. return container_of(blkg, struct cfq_group, blkg);
  870. return NULL;
  871. }
  872. static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  873. unsigned int weight)
  874. {
  875. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  876. cfqg->new_weight = weight;
  877. cfqg->needs_update = true;
  878. }
  879. static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
  880. struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
  881. {
  882. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  883. unsigned int major, minor;
  884. /*
  885. * Add group onto cgroup list. It might happen that bdi->dev is
  886. * not initialized yet. Initialize this new group without major
  887. * and minor info and this info will be filled in once a new thread
  888. * comes for IO.
  889. */
  890. if (bdi->dev) {
  891. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  892. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  893. (void *)cfqd, MKDEV(major, minor));
  894. } else
  895. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  896. (void *)cfqd, 0);
  897. cfqd->nr_blkcg_linked_grps++;
  898. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  899. /* Add group on cfqd list */
  900. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  901. }
  902. /*
  903. * Should be called from sleepable context. No request queue lock as per
  904. * cpu stats are allocated dynamically and alloc_percpu needs to be called
  905. * from sleepable context.
  906. */
  907. static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
  908. {
  909. struct cfq_group *cfqg = NULL;
  910. int i, j, ret;
  911. struct cfq_rb_root *st;
  912. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  913. if (!cfqg)
  914. return NULL;
  915. for_each_cfqg_st(cfqg, i, j, st)
  916. *st = CFQ_RB_ROOT;
  917. RB_CLEAR_NODE(&cfqg->rb_node);
  918. cfqg->ttime.last_end_request = jiffies;
  919. /*
  920. * Take the initial reference that will be released on destroy
  921. * This can be thought of a joint reference by cgroup and
  922. * elevator which will be dropped by either elevator exit
  923. * or cgroup deletion path depending on who is exiting first.
  924. */
  925. cfqg->ref = 1;
  926. ret = blkio_alloc_blkg_stats(&cfqg->blkg);
  927. if (ret) {
  928. kfree(cfqg);
  929. return NULL;
  930. }
  931. return cfqg;
  932. }
  933. static struct cfq_group *
  934. cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
  935. {
  936. struct cfq_group *cfqg = NULL;
  937. void *key = cfqd;
  938. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  939. unsigned int major, minor;
  940. /*
  941. * This is the common case when there are no blkio cgroups.
  942. * Avoid lookup in this case
  943. */
  944. if (blkcg == &blkio_root_cgroup)
  945. cfqg = &cfqd->root_group;
  946. else
  947. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  948. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  949. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  950. cfqg->blkg.dev = MKDEV(major, minor);
  951. }
  952. return cfqg;
  953. }
  954. /*
  955. * Search for the cfq group current task belongs to. request_queue lock must
  956. * be held.
  957. */
  958. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  959. {
  960. struct blkio_cgroup *blkcg;
  961. struct cfq_group *cfqg = NULL, *__cfqg = NULL;
  962. struct request_queue *q = cfqd->queue;
  963. rcu_read_lock();
  964. blkcg = task_blkio_cgroup(current);
  965. cfqg = cfq_find_cfqg(cfqd, blkcg);
  966. if (cfqg) {
  967. rcu_read_unlock();
  968. return cfqg;
  969. }
  970. /*
  971. * Need to allocate a group. Allocation of group also needs allocation
  972. * of per cpu stats which in-turn takes a mutex() and can block. Hence
  973. * we need to drop rcu lock and queue_lock before we call alloc.
  974. *
  975. * Not taking any queue reference here and assuming that queue is
  976. * around by the time we return. CFQ queue allocation code does
  977. * the same. It might be racy though.
  978. */
  979. rcu_read_unlock();
  980. spin_unlock_irq(q->queue_lock);
  981. cfqg = cfq_alloc_cfqg(cfqd);
  982. spin_lock_irq(q->queue_lock);
  983. rcu_read_lock();
  984. blkcg = task_blkio_cgroup(current);
  985. /*
  986. * If some other thread already allocated the group while we were
  987. * not holding queue lock, free up the group
  988. */
  989. __cfqg = cfq_find_cfqg(cfqd, blkcg);
  990. if (__cfqg) {
  991. kfree(cfqg);
  992. rcu_read_unlock();
  993. return __cfqg;
  994. }
  995. if (!cfqg)
  996. cfqg = &cfqd->root_group;
  997. cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
  998. rcu_read_unlock();
  999. return cfqg;
  1000. }
  1001. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1002. {
  1003. cfqg->ref++;
  1004. return cfqg;
  1005. }
  1006. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  1007. {
  1008. /* Currently, all async queues are mapped to root group */
  1009. if (!cfq_cfqq_sync(cfqq))
  1010. cfqg = &cfqq->cfqd->root_group;
  1011. cfqq->cfqg = cfqg;
  1012. /* cfqq reference on cfqg */
  1013. cfqq->cfqg->ref++;
  1014. }
  1015. static void cfq_put_cfqg(struct cfq_group *cfqg)
  1016. {
  1017. struct cfq_rb_root *st;
  1018. int i, j;
  1019. BUG_ON(cfqg->ref <= 0);
  1020. cfqg->ref--;
  1021. if (cfqg->ref)
  1022. return;
  1023. for_each_cfqg_st(cfqg, i, j, st)
  1024. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  1025. free_percpu(cfqg->blkg.stats_cpu);
  1026. kfree(cfqg);
  1027. }
  1028. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1029. {
  1030. /* Something wrong if we are trying to remove same group twice */
  1031. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  1032. hlist_del_init(&cfqg->cfqd_node);
  1033. BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
  1034. cfqd->nr_blkcg_linked_grps--;
  1035. /*
  1036. * Put the reference taken at the time of creation so that when all
  1037. * queues are gone, group can be destroyed.
  1038. */
  1039. cfq_put_cfqg(cfqg);
  1040. }
  1041. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  1042. {
  1043. struct hlist_node *pos, *n;
  1044. struct cfq_group *cfqg;
  1045. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  1046. /*
  1047. * If cgroup removal path got to blk_group first and removed
  1048. * it from cgroup list, then it will take care of destroying
  1049. * cfqg also.
  1050. */
  1051. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  1052. cfq_destroy_cfqg(cfqd, cfqg);
  1053. }
  1054. }
  1055. /*
  1056. * Blk cgroup controller notification saying that blkio_group object is being
  1057. * delinked as associated cgroup object is going away. That also means that
  1058. * no new IO will come in this group. So get rid of this group as soon as
  1059. * any pending IO in the group is finished.
  1060. *
  1061. * This function is called under rcu_read_lock(). key is the rcu protected
  1062. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  1063. * read lock.
  1064. *
  1065. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  1066. * it should not be NULL as even if elevator was exiting, cgroup deltion
  1067. * path got to it first.
  1068. */
  1069. static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1070. {
  1071. unsigned long flags;
  1072. struct cfq_data *cfqd = key;
  1073. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1074. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1075. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1076. }
  1077. #else /* GROUP_IOSCHED */
  1078. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  1079. {
  1080. return &cfqd->root_group;
  1081. }
  1082. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1083. {
  1084. return cfqg;
  1085. }
  1086. static inline void
  1087. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1088. cfqq->cfqg = cfqg;
  1089. }
  1090. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1091. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1092. #endif /* GROUP_IOSCHED */
  1093. /*
  1094. * The cfqd->service_trees holds all pending cfq_queue's that have
  1095. * requests waiting to be processed. It is sorted in the order that
  1096. * we will service the queues.
  1097. */
  1098. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1099. bool add_front)
  1100. {
  1101. struct rb_node **p, *parent;
  1102. struct cfq_queue *__cfqq;
  1103. unsigned long rb_key;
  1104. struct cfq_rb_root *service_tree;
  1105. int left;
  1106. int new_cfqq = 1;
  1107. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1108. cfqq_type(cfqq));
  1109. if (cfq_class_idle(cfqq)) {
  1110. rb_key = CFQ_IDLE_DELAY;
  1111. parent = rb_last(&service_tree->rb);
  1112. if (parent && parent != &cfqq->rb_node) {
  1113. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1114. rb_key += __cfqq->rb_key;
  1115. } else
  1116. rb_key += jiffies;
  1117. } else if (!add_front) {
  1118. /*
  1119. * Get our rb key offset. Subtract any residual slice
  1120. * value carried from last service. A negative resid
  1121. * count indicates slice overrun, and this should position
  1122. * the next service time further away in the tree.
  1123. */
  1124. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1125. rb_key -= cfqq->slice_resid;
  1126. cfqq->slice_resid = 0;
  1127. } else {
  1128. rb_key = -HZ;
  1129. __cfqq = cfq_rb_first(service_tree);
  1130. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1131. }
  1132. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1133. new_cfqq = 0;
  1134. /*
  1135. * same position, nothing more to do
  1136. */
  1137. if (rb_key == cfqq->rb_key &&
  1138. cfqq->service_tree == service_tree)
  1139. return;
  1140. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1141. cfqq->service_tree = NULL;
  1142. }
  1143. left = 1;
  1144. parent = NULL;
  1145. cfqq->service_tree = service_tree;
  1146. p = &service_tree->rb.rb_node;
  1147. while (*p) {
  1148. struct rb_node **n;
  1149. parent = *p;
  1150. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1151. /*
  1152. * sort by key, that represents service time.
  1153. */
  1154. if (time_before(rb_key, __cfqq->rb_key))
  1155. n = &(*p)->rb_left;
  1156. else {
  1157. n = &(*p)->rb_right;
  1158. left = 0;
  1159. }
  1160. p = n;
  1161. }
  1162. if (left)
  1163. service_tree->left = &cfqq->rb_node;
  1164. cfqq->rb_key = rb_key;
  1165. rb_link_node(&cfqq->rb_node, parent, p);
  1166. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1167. service_tree->count++;
  1168. if (add_front || !new_cfqq)
  1169. return;
  1170. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1171. }
  1172. static struct cfq_queue *
  1173. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1174. sector_t sector, struct rb_node **ret_parent,
  1175. struct rb_node ***rb_link)
  1176. {
  1177. struct rb_node **p, *parent;
  1178. struct cfq_queue *cfqq = NULL;
  1179. parent = NULL;
  1180. p = &root->rb_node;
  1181. while (*p) {
  1182. struct rb_node **n;
  1183. parent = *p;
  1184. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1185. /*
  1186. * Sort strictly based on sector. Smallest to the left,
  1187. * largest to the right.
  1188. */
  1189. if (sector > blk_rq_pos(cfqq->next_rq))
  1190. n = &(*p)->rb_right;
  1191. else if (sector < blk_rq_pos(cfqq->next_rq))
  1192. n = &(*p)->rb_left;
  1193. else
  1194. break;
  1195. p = n;
  1196. cfqq = NULL;
  1197. }
  1198. *ret_parent = parent;
  1199. if (rb_link)
  1200. *rb_link = p;
  1201. return cfqq;
  1202. }
  1203. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1204. {
  1205. struct rb_node **p, *parent;
  1206. struct cfq_queue *__cfqq;
  1207. if (cfqq->p_root) {
  1208. rb_erase(&cfqq->p_node, cfqq->p_root);
  1209. cfqq->p_root = NULL;
  1210. }
  1211. if (cfq_class_idle(cfqq))
  1212. return;
  1213. if (!cfqq->next_rq)
  1214. return;
  1215. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1216. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1217. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1218. if (!__cfqq) {
  1219. rb_link_node(&cfqq->p_node, parent, p);
  1220. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1221. } else
  1222. cfqq->p_root = NULL;
  1223. }
  1224. /*
  1225. * Update cfqq's position in the service tree.
  1226. */
  1227. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1228. {
  1229. /*
  1230. * Resorting requires the cfqq to be on the RR list already.
  1231. */
  1232. if (cfq_cfqq_on_rr(cfqq)) {
  1233. cfq_service_tree_add(cfqd, cfqq, 0);
  1234. cfq_prio_tree_add(cfqd, cfqq);
  1235. }
  1236. }
  1237. /*
  1238. * add to busy list of queues for service, trying to be fair in ordering
  1239. * the pending list according to last request service
  1240. */
  1241. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1242. {
  1243. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1244. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1245. cfq_mark_cfqq_on_rr(cfqq);
  1246. cfqd->busy_queues++;
  1247. if (cfq_cfqq_sync(cfqq))
  1248. cfqd->busy_sync_queues++;
  1249. cfq_resort_rr_list(cfqd, cfqq);
  1250. }
  1251. /*
  1252. * Called when the cfqq no longer has requests pending, remove it from
  1253. * the service tree.
  1254. */
  1255. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1256. {
  1257. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1258. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1259. cfq_clear_cfqq_on_rr(cfqq);
  1260. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1261. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1262. cfqq->service_tree = NULL;
  1263. }
  1264. if (cfqq->p_root) {
  1265. rb_erase(&cfqq->p_node, cfqq->p_root);
  1266. cfqq->p_root = NULL;
  1267. }
  1268. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1269. BUG_ON(!cfqd->busy_queues);
  1270. cfqd->busy_queues--;
  1271. if (cfq_cfqq_sync(cfqq))
  1272. cfqd->busy_sync_queues--;
  1273. }
  1274. /*
  1275. * rb tree support functions
  1276. */
  1277. static void cfq_del_rq_rb(struct request *rq)
  1278. {
  1279. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1280. const int sync = rq_is_sync(rq);
  1281. BUG_ON(!cfqq->queued[sync]);
  1282. cfqq->queued[sync]--;
  1283. elv_rb_del(&cfqq->sort_list, rq);
  1284. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1285. /*
  1286. * Queue will be deleted from service tree when we actually
  1287. * expire it later. Right now just remove it from prio tree
  1288. * as it is empty.
  1289. */
  1290. if (cfqq->p_root) {
  1291. rb_erase(&cfqq->p_node, cfqq->p_root);
  1292. cfqq->p_root = NULL;
  1293. }
  1294. }
  1295. }
  1296. static void cfq_add_rq_rb(struct request *rq)
  1297. {
  1298. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1299. struct cfq_data *cfqd = cfqq->cfqd;
  1300. struct request *prev;
  1301. cfqq->queued[rq_is_sync(rq)]++;
  1302. elv_rb_add(&cfqq->sort_list, rq);
  1303. if (!cfq_cfqq_on_rr(cfqq))
  1304. cfq_add_cfqq_rr(cfqd, cfqq);
  1305. /*
  1306. * check if this request is a better next-serve candidate
  1307. */
  1308. prev = cfqq->next_rq;
  1309. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1310. /*
  1311. * adjust priority tree position, if ->next_rq changes
  1312. */
  1313. if (prev != cfqq->next_rq)
  1314. cfq_prio_tree_add(cfqd, cfqq);
  1315. BUG_ON(!cfqq->next_rq);
  1316. }
  1317. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1318. {
  1319. elv_rb_del(&cfqq->sort_list, rq);
  1320. cfqq->queued[rq_is_sync(rq)]--;
  1321. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1322. rq_data_dir(rq), rq_is_sync(rq));
  1323. cfq_add_rq_rb(rq);
  1324. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1325. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1326. rq_is_sync(rq));
  1327. }
  1328. static struct request *
  1329. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1330. {
  1331. struct task_struct *tsk = current;
  1332. struct cfq_io_context *cic;
  1333. struct cfq_queue *cfqq;
  1334. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1335. if (!cic)
  1336. return NULL;
  1337. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1338. if (cfqq) {
  1339. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1340. return elv_rb_find(&cfqq->sort_list, sector);
  1341. }
  1342. return NULL;
  1343. }
  1344. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1345. {
  1346. struct cfq_data *cfqd = q->elevator->elevator_data;
  1347. cfqd->rq_in_driver++;
  1348. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1349. cfqd->rq_in_driver);
  1350. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1351. }
  1352. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1353. {
  1354. struct cfq_data *cfqd = q->elevator->elevator_data;
  1355. WARN_ON(!cfqd->rq_in_driver);
  1356. cfqd->rq_in_driver--;
  1357. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1358. cfqd->rq_in_driver);
  1359. }
  1360. static void cfq_remove_request(struct request *rq)
  1361. {
  1362. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1363. if (cfqq->next_rq == rq)
  1364. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1365. list_del_init(&rq->queuelist);
  1366. cfq_del_rq_rb(rq);
  1367. cfqq->cfqd->rq_queued--;
  1368. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1369. rq_data_dir(rq), rq_is_sync(rq));
  1370. if (rq->cmd_flags & REQ_PRIO) {
  1371. WARN_ON(!cfqq->prio_pending);
  1372. cfqq->prio_pending--;
  1373. }
  1374. }
  1375. static int cfq_merge(struct request_queue *q, struct request **req,
  1376. struct bio *bio)
  1377. {
  1378. struct cfq_data *cfqd = q->elevator->elevator_data;
  1379. struct request *__rq;
  1380. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1381. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1382. *req = __rq;
  1383. return ELEVATOR_FRONT_MERGE;
  1384. }
  1385. return ELEVATOR_NO_MERGE;
  1386. }
  1387. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1388. int type)
  1389. {
  1390. if (type == ELEVATOR_FRONT_MERGE) {
  1391. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1392. cfq_reposition_rq_rb(cfqq, req);
  1393. }
  1394. }
  1395. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1396. struct bio *bio)
  1397. {
  1398. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1399. bio_data_dir(bio), cfq_bio_sync(bio));
  1400. }
  1401. static void
  1402. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1403. struct request *next)
  1404. {
  1405. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1406. /*
  1407. * reposition in fifo if next is older than rq
  1408. */
  1409. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1410. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1411. list_move(&rq->queuelist, &next->queuelist);
  1412. rq_set_fifo_time(rq, rq_fifo_time(next));
  1413. }
  1414. if (cfqq->next_rq == next)
  1415. cfqq->next_rq = rq;
  1416. cfq_remove_request(next);
  1417. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1418. rq_data_dir(next), rq_is_sync(next));
  1419. }
  1420. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1421. struct bio *bio)
  1422. {
  1423. struct cfq_data *cfqd = q->elevator->elevator_data;
  1424. struct cfq_io_context *cic;
  1425. struct cfq_queue *cfqq;
  1426. /*
  1427. * Disallow merge of a sync bio into an async request.
  1428. */
  1429. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1430. return false;
  1431. /*
  1432. * Lookup the cfqq that this bio will be queued with. Allow
  1433. * merge only if rq is queued there.
  1434. */
  1435. cic = cfq_cic_lookup(cfqd, current->io_context);
  1436. if (!cic)
  1437. return false;
  1438. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1439. return cfqq == RQ_CFQQ(rq);
  1440. }
  1441. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1442. {
  1443. del_timer(&cfqd->idle_slice_timer);
  1444. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1445. }
  1446. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1447. struct cfq_queue *cfqq)
  1448. {
  1449. if (cfqq) {
  1450. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1451. cfqd->serving_prio, cfqd->serving_type);
  1452. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1453. cfqq->slice_start = 0;
  1454. cfqq->dispatch_start = jiffies;
  1455. cfqq->allocated_slice = 0;
  1456. cfqq->slice_end = 0;
  1457. cfqq->slice_dispatch = 0;
  1458. cfqq->nr_sectors = 0;
  1459. cfq_clear_cfqq_wait_request(cfqq);
  1460. cfq_clear_cfqq_must_dispatch(cfqq);
  1461. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1462. cfq_clear_cfqq_fifo_expire(cfqq);
  1463. cfq_mark_cfqq_slice_new(cfqq);
  1464. cfq_del_timer(cfqd, cfqq);
  1465. }
  1466. cfqd->active_queue = cfqq;
  1467. }
  1468. /*
  1469. * current cfqq expired its slice (or was too idle), select new one
  1470. */
  1471. static void
  1472. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1473. bool timed_out)
  1474. {
  1475. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1476. if (cfq_cfqq_wait_request(cfqq))
  1477. cfq_del_timer(cfqd, cfqq);
  1478. cfq_clear_cfqq_wait_request(cfqq);
  1479. cfq_clear_cfqq_wait_busy(cfqq);
  1480. /*
  1481. * If this cfqq is shared between multiple processes, check to
  1482. * make sure that those processes are still issuing I/Os within
  1483. * the mean seek distance. If not, it may be time to break the
  1484. * queues apart again.
  1485. */
  1486. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1487. cfq_mark_cfqq_split_coop(cfqq);
  1488. /*
  1489. * store what was left of this slice, if the queue idled/timed out
  1490. */
  1491. if (timed_out) {
  1492. if (cfq_cfqq_slice_new(cfqq))
  1493. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1494. else
  1495. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1496. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1497. }
  1498. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1499. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1500. cfq_del_cfqq_rr(cfqd, cfqq);
  1501. cfq_resort_rr_list(cfqd, cfqq);
  1502. if (cfqq == cfqd->active_queue)
  1503. cfqd->active_queue = NULL;
  1504. if (cfqd->active_cic) {
  1505. put_io_context(cfqd->active_cic->ioc);
  1506. cfqd->active_cic = NULL;
  1507. }
  1508. }
  1509. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1510. {
  1511. struct cfq_queue *cfqq = cfqd->active_queue;
  1512. if (cfqq)
  1513. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1514. }
  1515. /*
  1516. * Get next queue for service. Unless we have a queue preemption,
  1517. * we'll simply select the first cfqq in the service tree.
  1518. */
  1519. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1520. {
  1521. struct cfq_rb_root *service_tree =
  1522. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1523. cfqd->serving_type);
  1524. if (!cfqd->rq_queued)
  1525. return NULL;
  1526. /* There is nothing to dispatch */
  1527. if (!service_tree)
  1528. return NULL;
  1529. if (RB_EMPTY_ROOT(&service_tree->rb))
  1530. return NULL;
  1531. return cfq_rb_first(service_tree);
  1532. }
  1533. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1534. {
  1535. struct cfq_group *cfqg;
  1536. struct cfq_queue *cfqq;
  1537. int i, j;
  1538. struct cfq_rb_root *st;
  1539. if (!cfqd->rq_queued)
  1540. return NULL;
  1541. cfqg = cfq_get_next_cfqg(cfqd);
  1542. if (!cfqg)
  1543. return NULL;
  1544. for_each_cfqg_st(cfqg, i, j, st)
  1545. if ((cfqq = cfq_rb_first(st)) != NULL)
  1546. return cfqq;
  1547. return NULL;
  1548. }
  1549. /*
  1550. * Get and set a new active queue for service.
  1551. */
  1552. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1553. struct cfq_queue *cfqq)
  1554. {
  1555. if (!cfqq)
  1556. cfqq = cfq_get_next_queue(cfqd);
  1557. __cfq_set_active_queue(cfqd, cfqq);
  1558. return cfqq;
  1559. }
  1560. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1561. struct request *rq)
  1562. {
  1563. if (blk_rq_pos(rq) >= cfqd->last_position)
  1564. return blk_rq_pos(rq) - cfqd->last_position;
  1565. else
  1566. return cfqd->last_position - blk_rq_pos(rq);
  1567. }
  1568. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1569. struct request *rq)
  1570. {
  1571. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1572. }
  1573. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1574. struct cfq_queue *cur_cfqq)
  1575. {
  1576. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1577. struct rb_node *parent, *node;
  1578. struct cfq_queue *__cfqq;
  1579. sector_t sector = cfqd->last_position;
  1580. if (RB_EMPTY_ROOT(root))
  1581. return NULL;
  1582. /*
  1583. * First, if we find a request starting at the end of the last
  1584. * request, choose it.
  1585. */
  1586. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1587. if (__cfqq)
  1588. return __cfqq;
  1589. /*
  1590. * If the exact sector wasn't found, the parent of the NULL leaf
  1591. * will contain the closest sector.
  1592. */
  1593. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1594. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1595. return __cfqq;
  1596. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1597. node = rb_next(&__cfqq->p_node);
  1598. else
  1599. node = rb_prev(&__cfqq->p_node);
  1600. if (!node)
  1601. return NULL;
  1602. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1603. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1604. return __cfqq;
  1605. return NULL;
  1606. }
  1607. /*
  1608. * cfqd - obvious
  1609. * cur_cfqq - passed in so that we don't decide that the current queue is
  1610. * closely cooperating with itself.
  1611. *
  1612. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1613. * one request, and that cfqd->last_position reflects a position on the disk
  1614. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1615. * assumption.
  1616. */
  1617. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1618. struct cfq_queue *cur_cfqq)
  1619. {
  1620. struct cfq_queue *cfqq;
  1621. if (cfq_class_idle(cur_cfqq))
  1622. return NULL;
  1623. if (!cfq_cfqq_sync(cur_cfqq))
  1624. return NULL;
  1625. if (CFQQ_SEEKY(cur_cfqq))
  1626. return NULL;
  1627. /*
  1628. * Don't search priority tree if it's the only queue in the group.
  1629. */
  1630. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1631. return NULL;
  1632. /*
  1633. * We should notice if some of the queues are cooperating, eg
  1634. * working closely on the same area of the disk. In that case,
  1635. * we can group them together and don't waste time idling.
  1636. */
  1637. cfqq = cfqq_close(cfqd, cur_cfqq);
  1638. if (!cfqq)
  1639. return NULL;
  1640. /* If new queue belongs to different cfq_group, don't choose it */
  1641. if (cur_cfqq->cfqg != cfqq->cfqg)
  1642. return NULL;
  1643. /*
  1644. * It only makes sense to merge sync queues.
  1645. */
  1646. if (!cfq_cfqq_sync(cfqq))
  1647. return NULL;
  1648. if (CFQQ_SEEKY(cfqq))
  1649. return NULL;
  1650. /*
  1651. * Do not merge queues of different priority classes
  1652. */
  1653. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1654. return NULL;
  1655. return cfqq;
  1656. }
  1657. /*
  1658. * Determine whether we should enforce idle window for this queue.
  1659. */
  1660. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1661. {
  1662. enum wl_prio_t prio = cfqq_prio(cfqq);
  1663. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1664. BUG_ON(!service_tree);
  1665. BUG_ON(!service_tree->count);
  1666. if (!cfqd->cfq_slice_idle)
  1667. return false;
  1668. /* We never do for idle class queues. */
  1669. if (prio == IDLE_WORKLOAD)
  1670. return false;
  1671. /* We do for queues that were marked with idle window flag. */
  1672. if (cfq_cfqq_idle_window(cfqq) &&
  1673. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1674. return true;
  1675. /*
  1676. * Otherwise, we do only if they are the last ones
  1677. * in their service tree.
  1678. */
  1679. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1680. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1681. return true;
  1682. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1683. service_tree->count);
  1684. return false;
  1685. }
  1686. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1687. {
  1688. struct cfq_queue *cfqq = cfqd->active_queue;
  1689. struct cfq_io_context *cic;
  1690. unsigned long sl, group_idle = 0;
  1691. /*
  1692. * SSD device without seek penalty, disable idling. But only do so
  1693. * for devices that support queuing, otherwise we still have a problem
  1694. * with sync vs async workloads.
  1695. */
  1696. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1697. return;
  1698. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1699. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1700. /*
  1701. * idle is disabled, either manually or by past process history
  1702. */
  1703. if (!cfq_should_idle(cfqd, cfqq)) {
  1704. /* no queue idling. Check for group idling */
  1705. if (cfqd->cfq_group_idle)
  1706. group_idle = cfqd->cfq_group_idle;
  1707. else
  1708. return;
  1709. }
  1710. /*
  1711. * still active requests from this queue, don't idle
  1712. */
  1713. if (cfqq->dispatched)
  1714. return;
  1715. /*
  1716. * task has exited, don't wait
  1717. */
  1718. cic = cfqd->active_cic;
  1719. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1720. return;
  1721. /*
  1722. * If our average think time is larger than the remaining time
  1723. * slice, then don't idle. This avoids overrunning the allotted
  1724. * time slice.
  1725. */
  1726. if (sample_valid(cic->ttime.ttime_samples) &&
  1727. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1728. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1729. cic->ttime.ttime_mean);
  1730. return;
  1731. }
  1732. /* There are other queues in the group, don't do group idle */
  1733. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1734. return;
  1735. cfq_mark_cfqq_wait_request(cfqq);
  1736. if (group_idle)
  1737. sl = cfqd->cfq_group_idle;
  1738. else
  1739. sl = cfqd->cfq_slice_idle;
  1740. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1741. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1742. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1743. group_idle ? 1 : 0);
  1744. }
  1745. /*
  1746. * Move request from internal lists to the request queue dispatch list.
  1747. */
  1748. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1749. {
  1750. struct cfq_data *cfqd = q->elevator->elevator_data;
  1751. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1752. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1753. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1754. cfq_remove_request(rq);
  1755. cfqq->dispatched++;
  1756. (RQ_CFQG(rq))->dispatched++;
  1757. elv_dispatch_sort(q, rq);
  1758. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1759. cfqq->nr_sectors += blk_rq_sectors(rq);
  1760. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1761. rq_data_dir(rq), rq_is_sync(rq));
  1762. }
  1763. /*
  1764. * return expired entry, or NULL to just start from scratch in rbtree
  1765. */
  1766. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1767. {
  1768. struct request *rq = NULL;
  1769. if (cfq_cfqq_fifo_expire(cfqq))
  1770. return NULL;
  1771. cfq_mark_cfqq_fifo_expire(cfqq);
  1772. if (list_empty(&cfqq->fifo))
  1773. return NULL;
  1774. rq = rq_entry_fifo(cfqq->fifo.next);
  1775. if (time_before(jiffies, rq_fifo_time(rq)))
  1776. rq = NULL;
  1777. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1778. return rq;
  1779. }
  1780. static inline int
  1781. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1782. {
  1783. const int base_rq = cfqd->cfq_slice_async_rq;
  1784. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1785. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1786. }
  1787. /*
  1788. * Must be called with the queue_lock held.
  1789. */
  1790. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1791. {
  1792. int process_refs, io_refs;
  1793. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1794. process_refs = cfqq->ref - io_refs;
  1795. BUG_ON(process_refs < 0);
  1796. return process_refs;
  1797. }
  1798. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1799. {
  1800. int process_refs, new_process_refs;
  1801. struct cfq_queue *__cfqq;
  1802. /*
  1803. * If there are no process references on the new_cfqq, then it is
  1804. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1805. * chain may have dropped their last reference (not just their
  1806. * last process reference).
  1807. */
  1808. if (!cfqq_process_refs(new_cfqq))
  1809. return;
  1810. /* Avoid a circular list and skip interim queue merges */
  1811. while ((__cfqq = new_cfqq->new_cfqq)) {
  1812. if (__cfqq == cfqq)
  1813. return;
  1814. new_cfqq = __cfqq;
  1815. }
  1816. process_refs = cfqq_process_refs(cfqq);
  1817. new_process_refs = cfqq_process_refs(new_cfqq);
  1818. /*
  1819. * If the process for the cfqq has gone away, there is no
  1820. * sense in merging the queues.
  1821. */
  1822. if (process_refs == 0 || new_process_refs == 0)
  1823. return;
  1824. /*
  1825. * Merge in the direction of the lesser amount of work.
  1826. */
  1827. if (new_process_refs >= process_refs) {
  1828. cfqq->new_cfqq = new_cfqq;
  1829. new_cfqq->ref += process_refs;
  1830. } else {
  1831. new_cfqq->new_cfqq = cfqq;
  1832. cfqq->ref += new_process_refs;
  1833. }
  1834. }
  1835. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1836. struct cfq_group *cfqg, enum wl_prio_t prio)
  1837. {
  1838. struct cfq_queue *queue;
  1839. int i;
  1840. bool key_valid = false;
  1841. unsigned long lowest_key = 0;
  1842. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1843. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1844. /* select the one with lowest rb_key */
  1845. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1846. if (queue &&
  1847. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1848. lowest_key = queue->rb_key;
  1849. cur_best = i;
  1850. key_valid = true;
  1851. }
  1852. }
  1853. return cur_best;
  1854. }
  1855. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1856. {
  1857. unsigned slice;
  1858. unsigned count;
  1859. struct cfq_rb_root *st;
  1860. unsigned group_slice;
  1861. enum wl_prio_t original_prio = cfqd->serving_prio;
  1862. /* Choose next priority. RT > BE > IDLE */
  1863. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1864. cfqd->serving_prio = RT_WORKLOAD;
  1865. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1866. cfqd->serving_prio = BE_WORKLOAD;
  1867. else {
  1868. cfqd->serving_prio = IDLE_WORKLOAD;
  1869. cfqd->workload_expires = jiffies + 1;
  1870. return;
  1871. }
  1872. if (original_prio != cfqd->serving_prio)
  1873. goto new_workload;
  1874. /*
  1875. * For RT and BE, we have to choose also the type
  1876. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1877. * expiration time
  1878. */
  1879. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1880. count = st->count;
  1881. /*
  1882. * check workload expiration, and that we still have other queues ready
  1883. */
  1884. if (count && !time_after(jiffies, cfqd->workload_expires))
  1885. return;
  1886. new_workload:
  1887. /* otherwise select new workload type */
  1888. cfqd->serving_type =
  1889. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1890. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1891. count = st->count;
  1892. /*
  1893. * the workload slice is computed as a fraction of target latency
  1894. * proportional to the number of queues in that workload, over
  1895. * all the queues in the same priority class
  1896. */
  1897. group_slice = cfq_group_slice(cfqd, cfqg);
  1898. slice = group_slice * count /
  1899. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1900. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1901. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1902. unsigned int tmp;
  1903. /*
  1904. * Async queues are currently system wide. Just taking
  1905. * proportion of queues with-in same group will lead to higher
  1906. * async ratio system wide as generally root group is going
  1907. * to have higher weight. A more accurate thing would be to
  1908. * calculate system wide asnc/sync ratio.
  1909. */
  1910. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1911. tmp = tmp/cfqd->busy_queues;
  1912. slice = min_t(unsigned, slice, tmp);
  1913. /* async workload slice is scaled down according to
  1914. * the sync/async slice ratio. */
  1915. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1916. } else
  1917. /* sync workload slice is at least 2 * cfq_slice_idle */
  1918. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1919. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1920. cfq_log(cfqd, "workload slice:%d", slice);
  1921. cfqd->workload_expires = jiffies + slice;
  1922. }
  1923. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1924. {
  1925. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1926. struct cfq_group *cfqg;
  1927. if (RB_EMPTY_ROOT(&st->rb))
  1928. return NULL;
  1929. cfqg = cfq_rb_first_group(st);
  1930. update_min_vdisktime(st);
  1931. return cfqg;
  1932. }
  1933. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1934. {
  1935. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1936. cfqd->serving_group = cfqg;
  1937. /* Restore the workload type data */
  1938. if (cfqg->saved_workload_slice) {
  1939. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1940. cfqd->serving_type = cfqg->saved_workload;
  1941. cfqd->serving_prio = cfqg->saved_serving_prio;
  1942. } else
  1943. cfqd->workload_expires = jiffies - 1;
  1944. choose_service_tree(cfqd, cfqg);
  1945. }
  1946. /*
  1947. * Select a queue for service. If we have a current active queue,
  1948. * check whether to continue servicing it, or retrieve and set a new one.
  1949. */
  1950. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1951. {
  1952. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1953. cfqq = cfqd->active_queue;
  1954. if (!cfqq)
  1955. goto new_queue;
  1956. if (!cfqd->rq_queued)
  1957. return NULL;
  1958. /*
  1959. * We were waiting for group to get backlogged. Expire the queue
  1960. */
  1961. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1962. goto expire;
  1963. /*
  1964. * The active queue has run out of time, expire it and select new.
  1965. */
  1966. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1967. /*
  1968. * If slice had not expired at the completion of last request
  1969. * we might not have turned on wait_busy flag. Don't expire
  1970. * the queue yet. Allow the group to get backlogged.
  1971. *
  1972. * The very fact that we have used the slice, that means we
  1973. * have been idling all along on this queue and it should be
  1974. * ok to wait for this request to complete.
  1975. */
  1976. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1977. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1978. cfqq = NULL;
  1979. goto keep_queue;
  1980. } else
  1981. goto check_group_idle;
  1982. }
  1983. /*
  1984. * The active queue has requests and isn't expired, allow it to
  1985. * dispatch.
  1986. */
  1987. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1988. goto keep_queue;
  1989. /*
  1990. * If another queue has a request waiting within our mean seek
  1991. * distance, let it run. The expire code will check for close
  1992. * cooperators and put the close queue at the front of the service
  1993. * tree. If possible, merge the expiring queue with the new cfqq.
  1994. */
  1995. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1996. if (new_cfqq) {
  1997. if (!cfqq->new_cfqq)
  1998. cfq_setup_merge(cfqq, new_cfqq);
  1999. goto expire;
  2000. }
  2001. /*
  2002. * No requests pending. If the active queue still has requests in
  2003. * flight or is idling for a new request, allow either of these
  2004. * conditions to happen (or time out) before selecting a new queue.
  2005. */
  2006. if (timer_pending(&cfqd->idle_slice_timer)) {
  2007. cfqq = NULL;
  2008. goto keep_queue;
  2009. }
  2010. /*
  2011. * This is a deep seek queue, but the device is much faster than
  2012. * the queue can deliver, don't idle
  2013. **/
  2014. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  2015. (cfq_cfqq_slice_new(cfqq) ||
  2016. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  2017. cfq_clear_cfqq_deep(cfqq);
  2018. cfq_clear_cfqq_idle_window(cfqq);
  2019. }
  2020. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2021. cfqq = NULL;
  2022. goto keep_queue;
  2023. }
  2024. /*
  2025. * If group idle is enabled and there are requests dispatched from
  2026. * this group, wait for requests to complete.
  2027. */
  2028. check_group_idle:
  2029. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  2030. cfqq->cfqg->dispatched &&
  2031. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  2032. cfqq = NULL;
  2033. goto keep_queue;
  2034. }
  2035. expire:
  2036. cfq_slice_expired(cfqd, 0);
  2037. new_queue:
  2038. /*
  2039. * Current queue expired. Check if we have to switch to a new
  2040. * service tree
  2041. */
  2042. if (!new_cfqq)
  2043. cfq_choose_cfqg(cfqd);
  2044. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2045. keep_queue:
  2046. return cfqq;
  2047. }
  2048. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2049. {
  2050. int dispatched = 0;
  2051. while (cfqq->next_rq) {
  2052. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2053. dispatched++;
  2054. }
  2055. BUG_ON(!list_empty(&cfqq->fifo));
  2056. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2057. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2058. return dispatched;
  2059. }
  2060. /*
  2061. * Drain our current requests. Used for barriers and when switching
  2062. * io schedulers on-the-fly.
  2063. */
  2064. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2065. {
  2066. struct cfq_queue *cfqq;
  2067. int dispatched = 0;
  2068. /* Expire the timeslice of the current active queue first */
  2069. cfq_slice_expired(cfqd, 0);
  2070. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2071. __cfq_set_active_queue(cfqd, cfqq);
  2072. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2073. }
  2074. BUG_ON(cfqd->busy_queues);
  2075. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2076. return dispatched;
  2077. }
  2078. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2079. struct cfq_queue *cfqq)
  2080. {
  2081. /* the queue hasn't finished any request, can't estimate */
  2082. if (cfq_cfqq_slice_new(cfqq))
  2083. return true;
  2084. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2085. cfqq->slice_end))
  2086. return true;
  2087. return false;
  2088. }
  2089. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2090. {
  2091. unsigned int max_dispatch;
  2092. /*
  2093. * Drain async requests before we start sync IO
  2094. */
  2095. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2096. return false;
  2097. /*
  2098. * If this is an async queue and we have sync IO in flight, let it wait
  2099. */
  2100. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2101. return false;
  2102. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2103. if (cfq_class_idle(cfqq))
  2104. max_dispatch = 1;
  2105. /*
  2106. * Does this cfqq already have too much IO in flight?
  2107. */
  2108. if (cfqq->dispatched >= max_dispatch) {
  2109. bool promote_sync = false;
  2110. /*
  2111. * idle queue must always only have a single IO in flight
  2112. */
  2113. if (cfq_class_idle(cfqq))
  2114. return false;
  2115. /*
  2116. * If there is only one sync queue
  2117. * we can ignore async queue here and give the sync
  2118. * queue no dispatch limit. The reason is a sync queue can
  2119. * preempt async queue, limiting the sync queue doesn't make
  2120. * sense. This is useful for aiostress test.
  2121. */
  2122. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2123. promote_sync = true;
  2124. /*
  2125. * We have other queues, don't allow more IO from this one
  2126. */
  2127. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2128. !promote_sync)
  2129. return false;
  2130. /*
  2131. * Sole queue user, no limit
  2132. */
  2133. if (cfqd->busy_queues == 1 || promote_sync)
  2134. max_dispatch = -1;
  2135. else
  2136. /*
  2137. * Normally we start throttling cfqq when cfq_quantum/2
  2138. * requests have been dispatched. But we can drive
  2139. * deeper queue depths at the beginning of slice
  2140. * subjected to upper limit of cfq_quantum.
  2141. * */
  2142. max_dispatch = cfqd->cfq_quantum;
  2143. }
  2144. /*
  2145. * Async queues must wait a bit before being allowed dispatch.
  2146. * We also ramp up the dispatch depth gradually for async IO,
  2147. * based on the last sync IO we serviced
  2148. */
  2149. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2150. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2151. unsigned int depth;
  2152. depth = last_sync / cfqd->cfq_slice[1];
  2153. if (!depth && !cfqq->dispatched)
  2154. depth = 1;
  2155. if (depth < max_dispatch)
  2156. max_dispatch = depth;
  2157. }
  2158. /*
  2159. * If we're below the current max, allow a dispatch
  2160. */
  2161. return cfqq->dispatched < max_dispatch;
  2162. }
  2163. /*
  2164. * Dispatch a request from cfqq, moving them to the request queue
  2165. * dispatch list.
  2166. */
  2167. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2168. {
  2169. struct request *rq;
  2170. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2171. if (!cfq_may_dispatch(cfqd, cfqq))
  2172. return false;
  2173. /*
  2174. * follow expired path, else get first next available
  2175. */
  2176. rq = cfq_check_fifo(cfqq);
  2177. if (!rq)
  2178. rq = cfqq->next_rq;
  2179. /*
  2180. * insert request into driver dispatch list
  2181. */
  2182. cfq_dispatch_insert(cfqd->queue, rq);
  2183. if (!cfqd->active_cic) {
  2184. struct cfq_io_context *cic = RQ_CIC(rq);
  2185. atomic_long_inc(&cic->ioc->refcount);
  2186. cfqd->active_cic = cic;
  2187. }
  2188. return true;
  2189. }
  2190. /*
  2191. * Find the cfqq that we need to service and move a request from that to the
  2192. * dispatch list
  2193. */
  2194. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2195. {
  2196. struct cfq_data *cfqd = q->elevator->elevator_data;
  2197. struct cfq_queue *cfqq;
  2198. if (!cfqd->busy_queues)
  2199. return 0;
  2200. if (unlikely(force))
  2201. return cfq_forced_dispatch(cfqd);
  2202. cfqq = cfq_select_queue(cfqd);
  2203. if (!cfqq)
  2204. return 0;
  2205. /*
  2206. * Dispatch a request from this cfqq, if it is allowed
  2207. */
  2208. if (!cfq_dispatch_request(cfqd, cfqq))
  2209. return 0;
  2210. cfqq->slice_dispatch++;
  2211. cfq_clear_cfqq_must_dispatch(cfqq);
  2212. /*
  2213. * expire an async queue immediately if it has used up its slice. idle
  2214. * queue always expire after 1 dispatch round.
  2215. */
  2216. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2217. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2218. cfq_class_idle(cfqq))) {
  2219. cfqq->slice_end = jiffies + 1;
  2220. cfq_slice_expired(cfqd, 0);
  2221. }
  2222. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2223. return 1;
  2224. }
  2225. /*
  2226. * task holds one reference to the queue, dropped when task exits. each rq
  2227. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2228. *
  2229. * Each cfq queue took a reference on the parent group. Drop it now.
  2230. * queue lock must be held here.
  2231. */
  2232. static void cfq_put_queue(struct cfq_queue *cfqq)
  2233. {
  2234. struct cfq_data *cfqd = cfqq->cfqd;
  2235. struct cfq_group *cfqg;
  2236. BUG_ON(cfqq->ref <= 0);
  2237. cfqq->ref--;
  2238. if (cfqq->ref)
  2239. return;
  2240. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2241. BUG_ON(rb_first(&cfqq->sort_list));
  2242. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2243. cfqg = cfqq->cfqg;
  2244. if (unlikely(cfqd->active_queue == cfqq)) {
  2245. __cfq_slice_expired(cfqd, cfqq, 0);
  2246. cfq_schedule_dispatch(cfqd);
  2247. }
  2248. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2249. kmem_cache_free(cfq_pool, cfqq);
  2250. cfq_put_cfqg(cfqg);
  2251. }
  2252. /*
  2253. * Call func for each cic attached to this ioc.
  2254. */
  2255. static void
  2256. call_for_each_cic(struct io_context *ioc,
  2257. void (*func)(struct io_context *, struct cfq_io_context *))
  2258. {
  2259. struct cfq_io_context *cic;
  2260. struct hlist_node *n;
  2261. rcu_read_lock();
  2262. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2263. func(ioc, cic);
  2264. rcu_read_unlock();
  2265. }
  2266. static void cfq_cic_free_rcu(struct rcu_head *head)
  2267. {
  2268. struct cfq_io_context *cic;
  2269. cic = container_of(head, struct cfq_io_context, rcu_head);
  2270. kmem_cache_free(cfq_ioc_pool, cic);
  2271. elv_ioc_count_dec(cfq_ioc_count);
  2272. if (ioc_gone) {
  2273. /*
  2274. * CFQ scheduler is exiting, grab exit lock and check
  2275. * the pending io context count. If it hits zero,
  2276. * complete ioc_gone and set it back to NULL
  2277. */
  2278. spin_lock(&ioc_gone_lock);
  2279. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2280. complete(ioc_gone);
  2281. ioc_gone = NULL;
  2282. }
  2283. spin_unlock(&ioc_gone_lock);
  2284. }
  2285. }
  2286. static void cfq_cic_free(struct cfq_io_context *cic)
  2287. {
  2288. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2289. }
  2290. static void cfq_release_cic(struct cfq_io_context *cic)
  2291. {
  2292. struct io_context *ioc = cic->ioc;
  2293. unsigned long dead_key = (unsigned long) cic->key;
  2294. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2295. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2296. hlist_del_rcu(&cic->cic_list);
  2297. cfq_cic_free(cic);
  2298. }
  2299. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2300. {
  2301. unsigned long flags;
  2302. spin_lock_irqsave(&ioc->lock, flags);
  2303. cfq_release_cic(cic);
  2304. spin_unlock_irqrestore(&ioc->lock, flags);
  2305. }
  2306. /*
  2307. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2308. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2309. * and ->trim() which is called with the task lock held
  2310. */
  2311. static void cfq_free_io_context(struct io_context *ioc)
  2312. {
  2313. /*
  2314. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2315. * so no more cic's are allowed to be linked into this ioc. So it
  2316. * should be ok to iterate over the known list, we will see all cic's
  2317. * since no new ones are added.
  2318. */
  2319. call_for_each_cic(ioc, cic_free_func);
  2320. }
  2321. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2322. {
  2323. struct cfq_queue *__cfqq, *next;
  2324. /*
  2325. * If this queue was scheduled to merge with another queue, be
  2326. * sure to drop the reference taken on that queue (and others in
  2327. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2328. */
  2329. __cfqq = cfqq->new_cfqq;
  2330. while (__cfqq) {
  2331. if (__cfqq == cfqq) {
  2332. WARN(1, "cfqq->new_cfqq loop detected\n");
  2333. break;
  2334. }
  2335. next = __cfqq->new_cfqq;
  2336. cfq_put_queue(__cfqq);
  2337. __cfqq = next;
  2338. }
  2339. }
  2340. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2341. {
  2342. if (unlikely(cfqq == cfqd->active_queue)) {
  2343. __cfq_slice_expired(cfqd, cfqq, 0);
  2344. cfq_schedule_dispatch(cfqd);
  2345. }
  2346. cfq_put_cooperator(cfqq);
  2347. cfq_put_queue(cfqq);
  2348. }
  2349. static void cfq_exit_cic(struct cfq_io_context *cic)
  2350. {
  2351. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2352. struct io_context *ioc = cic->ioc;
  2353. list_del_init(&cic->queue_list);
  2354. /*
  2355. * Make sure dead mark is seen for dead queues
  2356. */
  2357. smp_wmb();
  2358. cic->key = cfqd_dead_key(cfqd);
  2359. rcu_read_lock();
  2360. if (rcu_dereference(ioc->ioc_data) == cic) {
  2361. rcu_read_unlock();
  2362. spin_lock(&ioc->lock);
  2363. rcu_assign_pointer(ioc->ioc_data, NULL);
  2364. spin_unlock(&ioc->lock);
  2365. } else
  2366. rcu_read_unlock();
  2367. if (cic->cfqq[BLK_RW_ASYNC]) {
  2368. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2369. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2370. }
  2371. if (cic->cfqq[BLK_RW_SYNC]) {
  2372. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2373. cic->cfqq[BLK_RW_SYNC] = NULL;
  2374. }
  2375. }
  2376. static void cfq_exit_single_io_context(struct io_context *ioc,
  2377. struct cfq_io_context *cic)
  2378. {
  2379. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2380. if (cfqd) {
  2381. struct request_queue *q = cfqd->queue;
  2382. unsigned long flags;
  2383. spin_lock_irqsave(q->queue_lock, flags);
  2384. /*
  2385. * Ensure we get a fresh copy of the ->key to prevent
  2386. * race between exiting task and queue
  2387. */
  2388. smp_read_barrier_depends();
  2389. if (cic->key == cfqd)
  2390. cfq_exit_cic(cic);
  2391. spin_unlock_irqrestore(q->queue_lock, flags);
  2392. }
  2393. }
  2394. /*
  2395. * The process that ioc belongs to has exited, we need to clean up
  2396. * and put the internal structures we have that belongs to that process.
  2397. */
  2398. static void cfq_exit_io_context(struct io_context *ioc)
  2399. {
  2400. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2401. }
  2402. static struct cfq_io_context *
  2403. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2404. {
  2405. struct cfq_io_context *cic;
  2406. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2407. cfqd->queue->node);
  2408. if (cic) {
  2409. cic->ttime.last_end_request = jiffies;
  2410. INIT_LIST_HEAD(&cic->queue_list);
  2411. INIT_HLIST_NODE(&cic->cic_list);
  2412. cic->dtor = cfq_free_io_context;
  2413. cic->exit = cfq_exit_io_context;
  2414. elv_ioc_count_inc(cfq_ioc_count);
  2415. }
  2416. return cic;
  2417. }
  2418. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2419. {
  2420. struct task_struct *tsk = current;
  2421. int ioprio_class;
  2422. if (!cfq_cfqq_prio_changed(cfqq))
  2423. return;
  2424. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2425. switch (ioprio_class) {
  2426. default:
  2427. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2428. case IOPRIO_CLASS_NONE:
  2429. /*
  2430. * no prio set, inherit CPU scheduling settings
  2431. */
  2432. cfqq->ioprio = task_nice_ioprio(tsk);
  2433. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2434. break;
  2435. case IOPRIO_CLASS_RT:
  2436. cfqq->ioprio = task_ioprio(ioc);
  2437. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2438. break;
  2439. case IOPRIO_CLASS_BE:
  2440. cfqq->ioprio = task_ioprio(ioc);
  2441. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2442. break;
  2443. case IOPRIO_CLASS_IDLE:
  2444. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2445. cfqq->ioprio = 7;
  2446. cfq_clear_cfqq_idle_window(cfqq);
  2447. break;
  2448. }
  2449. /*
  2450. * keep track of original prio settings in case we have to temporarily
  2451. * elevate the priority of this queue
  2452. */
  2453. cfqq->org_ioprio = cfqq->ioprio;
  2454. cfq_clear_cfqq_prio_changed(cfqq);
  2455. }
  2456. static void changed_ioprio(struct cfq_io_context *cic)
  2457. {
  2458. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2459. struct cfq_queue *cfqq;
  2460. unsigned long flags;
  2461. if (unlikely(!cfqd))
  2462. return;
  2463. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2464. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2465. if (cfqq) {
  2466. struct cfq_queue *new_cfqq;
  2467. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2468. GFP_ATOMIC);
  2469. if (new_cfqq) {
  2470. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2471. cfq_put_queue(cfqq);
  2472. }
  2473. }
  2474. cfqq = cic->cfqq[BLK_RW_SYNC];
  2475. if (cfqq)
  2476. cfq_mark_cfqq_prio_changed(cfqq);
  2477. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2478. }
  2479. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2480. pid_t pid, bool is_sync)
  2481. {
  2482. RB_CLEAR_NODE(&cfqq->rb_node);
  2483. RB_CLEAR_NODE(&cfqq->p_node);
  2484. INIT_LIST_HEAD(&cfqq->fifo);
  2485. cfqq->ref = 0;
  2486. cfqq->cfqd = cfqd;
  2487. cfq_mark_cfqq_prio_changed(cfqq);
  2488. if (is_sync) {
  2489. if (!cfq_class_idle(cfqq))
  2490. cfq_mark_cfqq_idle_window(cfqq);
  2491. cfq_mark_cfqq_sync(cfqq);
  2492. }
  2493. cfqq->pid = pid;
  2494. }
  2495. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2496. static void changed_cgroup(struct cfq_io_context *cic)
  2497. {
  2498. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2499. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2500. unsigned long flags;
  2501. struct request_queue *q;
  2502. if (unlikely(!cfqd))
  2503. return;
  2504. q = cfqd->queue;
  2505. spin_lock_irqsave(q->queue_lock, flags);
  2506. if (sync_cfqq) {
  2507. /*
  2508. * Drop reference to sync queue. A new sync queue will be
  2509. * assigned in new group upon arrival of a fresh request.
  2510. */
  2511. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2512. cic_set_cfqq(cic, NULL, 1);
  2513. cfq_put_queue(sync_cfqq);
  2514. }
  2515. spin_unlock_irqrestore(q->queue_lock, flags);
  2516. }
  2517. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2518. static struct cfq_queue *
  2519. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2520. struct io_context *ioc, gfp_t gfp_mask)
  2521. {
  2522. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2523. struct cfq_io_context *cic;
  2524. struct cfq_group *cfqg;
  2525. retry:
  2526. cfqg = cfq_get_cfqg(cfqd);
  2527. cic = cfq_cic_lookup(cfqd, ioc);
  2528. /* cic always exists here */
  2529. cfqq = cic_to_cfqq(cic, is_sync);
  2530. /*
  2531. * Always try a new alloc if we fell back to the OOM cfqq
  2532. * originally, since it should just be a temporary situation.
  2533. */
  2534. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2535. cfqq = NULL;
  2536. if (new_cfqq) {
  2537. cfqq = new_cfqq;
  2538. new_cfqq = NULL;
  2539. } else if (gfp_mask & __GFP_WAIT) {
  2540. spin_unlock_irq(cfqd->queue->queue_lock);
  2541. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2542. gfp_mask | __GFP_ZERO,
  2543. cfqd->queue->node);
  2544. spin_lock_irq(cfqd->queue->queue_lock);
  2545. if (new_cfqq)
  2546. goto retry;
  2547. } else {
  2548. cfqq = kmem_cache_alloc_node(cfq_pool,
  2549. gfp_mask | __GFP_ZERO,
  2550. cfqd->queue->node);
  2551. }
  2552. if (cfqq) {
  2553. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2554. cfq_init_prio_data(cfqq, ioc);
  2555. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2556. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2557. } else
  2558. cfqq = &cfqd->oom_cfqq;
  2559. }
  2560. if (new_cfqq)
  2561. kmem_cache_free(cfq_pool, new_cfqq);
  2562. return cfqq;
  2563. }
  2564. static struct cfq_queue **
  2565. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2566. {
  2567. switch (ioprio_class) {
  2568. case IOPRIO_CLASS_RT:
  2569. return &cfqd->async_cfqq[0][ioprio];
  2570. case IOPRIO_CLASS_BE:
  2571. return &cfqd->async_cfqq[1][ioprio];
  2572. case IOPRIO_CLASS_IDLE:
  2573. return &cfqd->async_idle_cfqq;
  2574. default:
  2575. BUG();
  2576. }
  2577. }
  2578. static struct cfq_queue *
  2579. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2580. gfp_t gfp_mask)
  2581. {
  2582. const int ioprio = task_ioprio(ioc);
  2583. const int ioprio_class = task_ioprio_class(ioc);
  2584. struct cfq_queue **async_cfqq = NULL;
  2585. struct cfq_queue *cfqq = NULL;
  2586. if (!is_sync) {
  2587. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2588. cfqq = *async_cfqq;
  2589. }
  2590. if (!cfqq)
  2591. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2592. /*
  2593. * pin the queue now that it's allocated, scheduler exit will prune it
  2594. */
  2595. if (!is_sync && !(*async_cfqq)) {
  2596. cfqq->ref++;
  2597. *async_cfqq = cfqq;
  2598. }
  2599. cfqq->ref++;
  2600. return cfqq;
  2601. }
  2602. /*
  2603. * We drop cfq io contexts lazily, so we may find a dead one.
  2604. */
  2605. static void
  2606. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2607. struct cfq_io_context *cic)
  2608. {
  2609. unsigned long flags;
  2610. WARN_ON(!list_empty(&cic->queue_list));
  2611. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2612. spin_lock_irqsave(&ioc->lock, flags);
  2613. BUG_ON(rcu_dereference_check(ioc->ioc_data,
  2614. lockdep_is_held(&ioc->lock)) == cic);
  2615. radix_tree_delete(&ioc->radix_root, cfqd->queue->id);
  2616. hlist_del_rcu(&cic->cic_list);
  2617. spin_unlock_irqrestore(&ioc->lock, flags);
  2618. cfq_cic_free(cic);
  2619. }
  2620. static struct cfq_io_context *
  2621. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2622. {
  2623. struct cfq_io_context *cic;
  2624. unsigned long flags;
  2625. if (unlikely(!ioc))
  2626. return NULL;
  2627. rcu_read_lock();
  2628. /*
  2629. * we maintain a last-hit cache, to avoid browsing over the tree
  2630. */
  2631. cic = rcu_dereference(ioc->ioc_data);
  2632. if (cic && cic->key == cfqd) {
  2633. rcu_read_unlock();
  2634. return cic;
  2635. }
  2636. do {
  2637. cic = radix_tree_lookup(&ioc->radix_root, cfqd->queue->id);
  2638. rcu_read_unlock();
  2639. if (!cic)
  2640. break;
  2641. if (unlikely(cic->key != cfqd)) {
  2642. cfq_drop_dead_cic(cfqd, ioc, cic);
  2643. rcu_read_lock();
  2644. continue;
  2645. }
  2646. spin_lock_irqsave(&ioc->lock, flags);
  2647. rcu_assign_pointer(ioc->ioc_data, cic);
  2648. spin_unlock_irqrestore(&ioc->lock, flags);
  2649. break;
  2650. } while (1);
  2651. return cic;
  2652. }
  2653. /*
  2654. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2655. * the process specific cfq io context when entered from the block layer.
  2656. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2657. */
  2658. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2659. struct cfq_io_context *cic, gfp_t gfp_mask)
  2660. {
  2661. unsigned long flags;
  2662. int ret;
  2663. ret = radix_tree_preload(gfp_mask);
  2664. if (ret)
  2665. goto out;
  2666. cic->ioc = ioc;
  2667. cic->key = cfqd;
  2668. cic->q = cfqd->queue;
  2669. spin_lock_irqsave(&ioc->lock, flags);
  2670. ret = radix_tree_insert(&ioc->radix_root, cfqd->queue->id, cic);
  2671. if (!ret)
  2672. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2673. spin_unlock_irqrestore(&ioc->lock, flags);
  2674. radix_tree_preload_end();
  2675. if (!ret) {
  2676. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2677. list_add(&cic->queue_list, &cfqd->cic_list);
  2678. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2679. }
  2680. out:
  2681. if (ret)
  2682. printk(KERN_ERR "cfq: cic link failed!\n");
  2683. return ret;
  2684. }
  2685. /*
  2686. * Setup general io context and cfq io context. There can be several cfq
  2687. * io contexts per general io context, if this process is doing io to more
  2688. * than one device managed by cfq.
  2689. */
  2690. static struct cfq_io_context *
  2691. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2692. {
  2693. struct io_context *ioc = NULL;
  2694. struct cfq_io_context *cic = NULL;
  2695. might_sleep_if(gfp_mask & __GFP_WAIT);
  2696. ioc = current_io_context(gfp_mask, cfqd->queue->node);
  2697. if (!ioc)
  2698. goto err;
  2699. cic = cfq_cic_lookup(cfqd, ioc);
  2700. if (cic)
  2701. goto out;
  2702. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2703. if (cic == NULL)
  2704. goto err;
  2705. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2706. goto err;
  2707. out:
  2708. get_io_context(ioc);
  2709. if (unlikely(cic->changed)) {
  2710. if (test_and_clear_bit(CIC_IOPRIO_CHANGED, &cic->changed))
  2711. changed_ioprio(cic);
  2712. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2713. if (test_and_clear_bit(CIC_CGROUP_CHANGED, &cic->changed))
  2714. changed_cgroup(cic);
  2715. #endif
  2716. }
  2717. return cic;
  2718. err:
  2719. if (cic)
  2720. cfq_cic_free(cic);
  2721. return NULL;
  2722. }
  2723. static void
  2724. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2725. {
  2726. unsigned long elapsed = jiffies - ttime->last_end_request;
  2727. elapsed = min(elapsed, 2UL * slice_idle);
  2728. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2729. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2730. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2731. }
  2732. static void
  2733. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2734. struct cfq_io_context *cic)
  2735. {
  2736. if (cfq_cfqq_sync(cfqq)) {
  2737. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2738. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2739. cfqd->cfq_slice_idle);
  2740. }
  2741. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2742. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  2743. #endif
  2744. }
  2745. static void
  2746. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2747. struct request *rq)
  2748. {
  2749. sector_t sdist = 0;
  2750. sector_t n_sec = blk_rq_sectors(rq);
  2751. if (cfqq->last_request_pos) {
  2752. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2753. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2754. else
  2755. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2756. }
  2757. cfqq->seek_history <<= 1;
  2758. if (blk_queue_nonrot(cfqd->queue))
  2759. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2760. else
  2761. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2762. }
  2763. /*
  2764. * Disable idle window if the process thinks too long or seeks so much that
  2765. * it doesn't matter
  2766. */
  2767. static void
  2768. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2769. struct cfq_io_context *cic)
  2770. {
  2771. int old_idle, enable_idle;
  2772. /*
  2773. * Don't idle for async or idle io prio class
  2774. */
  2775. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2776. return;
  2777. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2778. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2779. cfq_mark_cfqq_deep(cfqq);
  2780. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2781. enable_idle = 0;
  2782. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2783. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2784. enable_idle = 0;
  2785. else if (sample_valid(cic->ttime.ttime_samples)) {
  2786. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2787. enable_idle = 0;
  2788. else
  2789. enable_idle = 1;
  2790. }
  2791. if (old_idle != enable_idle) {
  2792. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2793. if (enable_idle)
  2794. cfq_mark_cfqq_idle_window(cfqq);
  2795. else
  2796. cfq_clear_cfqq_idle_window(cfqq);
  2797. }
  2798. }
  2799. /*
  2800. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2801. * no or if we aren't sure, a 1 will cause a preempt.
  2802. */
  2803. static bool
  2804. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2805. struct request *rq)
  2806. {
  2807. struct cfq_queue *cfqq;
  2808. cfqq = cfqd->active_queue;
  2809. if (!cfqq)
  2810. return false;
  2811. if (cfq_class_idle(new_cfqq))
  2812. return false;
  2813. if (cfq_class_idle(cfqq))
  2814. return true;
  2815. /*
  2816. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2817. */
  2818. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2819. return false;
  2820. /*
  2821. * if the new request is sync, but the currently running queue is
  2822. * not, let the sync request have priority.
  2823. */
  2824. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2825. return true;
  2826. if (new_cfqq->cfqg != cfqq->cfqg)
  2827. return false;
  2828. if (cfq_slice_used(cfqq))
  2829. return true;
  2830. /* Allow preemption only if we are idling on sync-noidle tree */
  2831. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2832. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2833. new_cfqq->service_tree->count == 2 &&
  2834. RB_EMPTY_ROOT(&cfqq->sort_list))
  2835. return true;
  2836. /*
  2837. * So both queues are sync. Let the new request get disk time if
  2838. * it's a metadata request and the current queue is doing regular IO.
  2839. */
  2840. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  2841. return true;
  2842. /*
  2843. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2844. */
  2845. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2846. return true;
  2847. /* An idle queue should not be idle now for some reason */
  2848. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2849. return true;
  2850. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2851. return false;
  2852. /*
  2853. * if this request is as-good as one we would expect from the
  2854. * current cfqq, let it preempt
  2855. */
  2856. if (cfq_rq_close(cfqd, cfqq, rq))
  2857. return true;
  2858. return false;
  2859. }
  2860. /*
  2861. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2862. * let it have half of its nominal slice.
  2863. */
  2864. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2865. {
  2866. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2867. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2868. cfq_slice_expired(cfqd, 1);
  2869. /*
  2870. * workload type is changed, don't save slice, otherwise preempt
  2871. * doesn't happen
  2872. */
  2873. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2874. cfqq->cfqg->saved_workload_slice = 0;
  2875. /*
  2876. * Put the new queue at the front of the of the current list,
  2877. * so we know that it will be selected next.
  2878. */
  2879. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2880. cfq_service_tree_add(cfqd, cfqq, 1);
  2881. cfqq->slice_end = 0;
  2882. cfq_mark_cfqq_slice_new(cfqq);
  2883. }
  2884. /*
  2885. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2886. * something we should do about it
  2887. */
  2888. static void
  2889. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2890. struct request *rq)
  2891. {
  2892. struct cfq_io_context *cic = RQ_CIC(rq);
  2893. cfqd->rq_queued++;
  2894. if (rq->cmd_flags & REQ_PRIO)
  2895. cfqq->prio_pending++;
  2896. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2897. cfq_update_io_seektime(cfqd, cfqq, rq);
  2898. cfq_update_idle_window(cfqd, cfqq, cic);
  2899. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2900. if (cfqq == cfqd->active_queue) {
  2901. /*
  2902. * Remember that we saw a request from this process, but
  2903. * don't start queuing just yet. Otherwise we risk seeing lots
  2904. * of tiny requests, because we disrupt the normal plugging
  2905. * and merging. If the request is already larger than a single
  2906. * page, let it rip immediately. For that case we assume that
  2907. * merging is already done. Ditto for a busy system that
  2908. * has other work pending, don't risk delaying until the
  2909. * idle timer unplug to continue working.
  2910. */
  2911. if (cfq_cfqq_wait_request(cfqq)) {
  2912. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2913. cfqd->busy_queues > 1) {
  2914. cfq_del_timer(cfqd, cfqq);
  2915. cfq_clear_cfqq_wait_request(cfqq);
  2916. __blk_run_queue(cfqd->queue);
  2917. } else {
  2918. cfq_blkiocg_update_idle_time_stats(
  2919. &cfqq->cfqg->blkg);
  2920. cfq_mark_cfqq_must_dispatch(cfqq);
  2921. }
  2922. }
  2923. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2924. /*
  2925. * not the active queue - expire current slice if it is
  2926. * idle and has expired it's mean thinktime or this new queue
  2927. * has some old slice time left and is of higher priority or
  2928. * this new queue is RT and the current one is BE
  2929. */
  2930. cfq_preempt_queue(cfqd, cfqq);
  2931. __blk_run_queue(cfqd->queue);
  2932. }
  2933. }
  2934. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2935. {
  2936. struct cfq_data *cfqd = q->elevator->elevator_data;
  2937. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2938. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2939. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2940. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2941. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2942. cfq_add_rq_rb(rq);
  2943. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2944. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2945. rq_is_sync(rq));
  2946. cfq_rq_enqueued(cfqd, cfqq, rq);
  2947. }
  2948. /*
  2949. * Update hw_tag based on peak queue depth over 50 samples under
  2950. * sufficient load.
  2951. */
  2952. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2953. {
  2954. struct cfq_queue *cfqq = cfqd->active_queue;
  2955. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2956. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2957. if (cfqd->hw_tag == 1)
  2958. return;
  2959. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2960. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2961. return;
  2962. /*
  2963. * If active queue hasn't enough requests and can idle, cfq might not
  2964. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2965. * case
  2966. */
  2967. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2968. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2969. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2970. return;
  2971. if (cfqd->hw_tag_samples++ < 50)
  2972. return;
  2973. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2974. cfqd->hw_tag = 1;
  2975. else
  2976. cfqd->hw_tag = 0;
  2977. }
  2978. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2979. {
  2980. struct cfq_io_context *cic = cfqd->active_cic;
  2981. /* If the queue already has requests, don't wait */
  2982. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2983. return false;
  2984. /* If there are other queues in the group, don't wait */
  2985. if (cfqq->cfqg->nr_cfqq > 1)
  2986. return false;
  2987. /* the only queue in the group, but think time is big */
  2988. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  2989. return false;
  2990. if (cfq_slice_used(cfqq))
  2991. return true;
  2992. /* if slice left is less than think time, wait busy */
  2993. if (cic && sample_valid(cic->ttime.ttime_samples)
  2994. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  2995. return true;
  2996. /*
  2997. * If think times is less than a jiffy than ttime_mean=0 and above
  2998. * will not be true. It might happen that slice has not expired yet
  2999. * but will expire soon (4-5 ns) during select_queue(). To cover the
  3000. * case where think time is less than a jiffy, mark the queue wait
  3001. * busy if only 1 jiffy is left in the slice.
  3002. */
  3003. if (cfqq->slice_end - jiffies == 1)
  3004. return true;
  3005. return false;
  3006. }
  3007. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  3008. {
  3009. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3010. struct cfq_data *cfqd = cfqq->cfqd;
  3011. const int sync = rq_is_sync(rq);
  3012. unsigned long now;
  3013. now = jiffies;
  3014. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  3015. !!(rq->cmd_flags & REQ_NOIDLE));
  3016. cfq_update_hw_tag(cfqd);
  3017. WARN_ON(!cfqd->rq_in_driver);
  3018. WARN_ON(!cfqq->dispatched);
  3019. cfqd->rq_in_driver--;
  3020. cfqq->dispatched--;
  3021. (RQ_CFQG(rq))->dispatched--;
  3022. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  3023. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  3024. rq_data_dir(rq), rq_is_sync(rq));
  3025. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  3026. if (sync) {
  3027. struct cfq_rb_root *service_tree;
  3028. RQ_CIC(rq)->ttime.last_end_request = now;
  3029. if (cfq_cfqq_on_rr(cfqq))
  3030. service_tree = cfqq->service_tree;
  3031. else
  3032. service_tree = service_tree_for(cfqq->cfqg,
  3033. cfqq_prio(cfqq), cfqq_type(cfqq));
  3034. service_tree->ttime.last_end_request = now;
  3035. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  3036. cfqd->last_delayed_sync = now;
  3037. }
  3038. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3039. cfqq->cfqg->ttime.last_end_request = now;
  3040. #endif
  3041. /*
  3042. * If this is the active queue, check if it needs to be expired,
  3043. * or if we want to idle in case it has no pending requests.
  3044. */
  3045. if (cfqd->active_queue == cfqq) {
  3046. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  3047. if (cfq_cfqq_slice_new(cfqq)) {
  3048. cfq_set_prio_slice(cfqd, cfqq);
  3049. cfq_clear_cfqq_slice_new(cfqq);
  3050. }
  3051. /*
  3052. * Should we wait for next request to come in before we expire
  3053. * the queue.
  3054. */
  3055. if (cfq_should_wait_busy(cfqd, cfqq)) {
  3056. unsigned long extend_sl = cfqd->cfq_slice_idle;
  3057. if (!cfqd->cfq_slice_idle)
  3058. extend_sl = cfqd->cfq_group_idle;
  3059. cfqq->slice_end = jiffies + extend_sl;
  3060. cfq_mark_cfqq_wait_busy(cfqq);
  3061. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  3062. }
  3063. /*
  3064. * Idling is not enabled on:
  3065. * - expired queues
  3066. * - idle-priority queues
  3067. * - async queues
  3068. * - queues with still some requests queued
  3069. * - when there is a close cooperator
  3070. */
  3071. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  3072. cfq_slice_expired(cfqd, 1);
  3073. else if (sync && cfqq_empty &&
  3074. !cfq_close_cooperator(cfqd, cfqq)) {
  3075. cfq_arm_slice_timer(cfqd);
  3076. }
  3077. }
  3078. if (!cfqd->rq_in_driver)
  3079. cfq_schedule_dispatch(cfqd);
  3080. }
  3081. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3082. {
  3083. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3084. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3085. return ELV_MQUEUE_MUST;
  3086. }
  3087. return ELV_MQUEUE_MAY;
  3088. }
  3089. static int cfq_may_queue(struct request_queue *q, int rw)
  3090. {
  3091. struct cfq_data *cfqd = q->elevator->elevator_data;
  3092. struct task_struct *tsk = current;
  3093. struct cfq_io_context *cic;
  3094. struct cfq_queue *cfqq;
  3095. /*
  3096. * don't force setup of a queue from here, as a call to may_queue
  3097. * does not necessarily imply that a request actually will be queued.
  3098. * so just lookup a possibly existing queue, or return 'may queue'
  3099. * if that fails
  3100. */
  3101. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3102. if (!cic)
  3103. return ELV_MQUEUE_MAY;
  3104. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3105. if (cfqq) {
  3106. cfq_init_prio_data(cfqq, cic->ioc);
  3107. return __cfq_may_queue(cfqq);
  3108. }
  3109. return ELV_MQUEUE_MAY;
  3110. }
  3111. /*
  3112. * queue lock held here
  3113. */
  3114. static void cfq_put_request(struct request *rq)
  3115. {
  3116. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3117. if (cfqq) {
  3118. const int rw = rq_data_dir(rq);
  3119. BUG_ON(!cfqq->allocated[rw]);
  3120. cfqq->allocated[rw]--;
  3121. put_io_context(RQ_CIC(rq)->ioc);
  3122. rq->elevator_private[0] = NULL;
  3123. rq->elevator_private[1] = NULL;
  3124. /* Put down rq reference on cfqg */
  3125. cfq_put_cfqg(RQ_CFQG(rq));
  3126. rq->elevator_private[2] = NULL;
  3127. cfq_put_queue(cfqq);
  3128. }
  3129. }
  3130. static struct cfq_queue *
  3131. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3132. struct cfq_queue *cfqq)
  3133. {
  3134. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3135. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3136. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3137. cfq_put_queue(cfqq);
  3138. return cic_to_cfqq(cic, 1);
  3139. }
  3140. /*
  3141. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3142. * was the last process referring to said cfqq.
  3143. */
  3144. static struct cfq_queue *
  3145. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3146. {
  3147. if (cfqq_process_refs(cfqq) == 1) {
  3148. cfqq->pid = current->pid;
  3149. cfq_clear_cfqq_coop(cfqq);
  3150. cfq_clear_cfqq_split_coop(cfqq);
  3151. return cfqq;
  3152. }
  3153. cic_set_cfqq(cic, NULL, 1);
  3154. cfq_put_cooperator(cfqq);
  3155. cfq_put_queue(cfqq);
  3156. return NULL;
  3157. }
  3158. /*
  3159. * Allocate cfq data structures associated with this request.
  3160. */
  3161. static int
  3162. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3163. {
  3164. struct cfq_data *cfqd = q->elevator->elevator_data;
  3165. struct cfq_io_context *cic;
  3166. const int rw = rq_data_dir(rq);
  3167. const bool is_sync = rq_is_sync(rq);
  3168. struct cfq_queue *cfqq;
  3169. unsigned long flags;
  3170. might_sleep_if(gfp_mask & __GFP_WAIT);
  3171. cic = cfq_get_io_context(cfqd, gfp_mask);
  3172. spin_lock_irqsave(q->queue_lock, flags);
  3173. if (!cic)
  3174. goto queue_fail;
  3175. new_queue:
  3176. cfqq = cic_to_cfqq(cic, is_sync);
  3177. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3178. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3179. cic_set_cfqq(cic, cfqq, is_sync);
  3180. } else {
  3181. /*
  3182. * If the queue was seeky for too long, break it apart.
  3183. */
  3184. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3185. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3186. cfqq = split_cfqq(cic, cfqq);
  3187. if (!cfqq)
  3188. goto new_queue;
  3189. }
  3190. /*
  3191. * Check to see if this queue is scheduled to merge with
  3192. * another, closely cooperating queue. The merging of
  3193. * queues happens here as it must be done in process context.
  3194. * The reference on new_cfqq was taken in merge_cfqqs.
  3195. */
  3196. if (cfqq->new_cfqq)
  3197. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3198. }
  3199. cfqq->allocated[rw]++;
  3200. cfqq->ref++;
  3201. rq->elevator_private[0] = cic;
  3202. rq->elevator_private[1] = cfqq;
  3203. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3204. spin_unlock_irqrestore(q->queue_lock, flags);
  3205. return 0;
  3206. queue_fail:
  3207. cfq_schedule_dispatch(cfqd);
  3208. spin_unlock_irqrestore(q->queue_lock, flags);
  3209. cfq_log(cfqd, "set_request fail");
  3210. return 1;
  3211. }
  3212. static void cfq_kick_queue(struct work_struct *work)
  3213. {
  3214. struct cfq_data *cfqd =
  3215. container_of(work, struct cfq_data, unplug_work);
  3216. struct request_queue *q = cfqd->queue;
  3217. spin_lock_irq(q->queue_lock);
  3218. __blk_run_queue(cfqd->queue);
  3219. spin_unlock_irq(q->queue_lock);
  3220. }
  3221. /*
  3222. * Timer running if the active_queue is currently idling inside its time slice
  3223. */
  3224. static void cfq_idle_slice_timer(unsigned long data)
  3225. {
  3226. struct cfq_data *cfqd = (struct cfq_data *) data;
  3227. struct cfq_queue *cfqq;
  3228. unsigned long flags;
  3229. int timed_out = 1;
  3230. cfq_log(cfqd, "idle timer fired");
  3231. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3232. cfqq = cfqd->active_queue;
  3233. if (cfqq) {
  3234. timed_out = 0;
  3235. /*
  3236. * We saw a request before the queue expired, let it through
  3237. */
  3238. if (cfq_cfqq_must_dispatch(cfqq))
  3239. goto out_kick;
  3240. /*
  3241. * expired
  3242. */
  3243. if (cfq_slice_used(cfqq))
  3244. goto expire;
  3245. /*
  3246. * only expire and reinvoke request handler, if there are
  3247. * other queues with pending requests
  3248. */
  3249. if (!cfqd->busy_queues)
  3250. goto out_cont;
  3251. /*
  3252. * not expired and it has a request pending, let it dispatch
  3253. */
  3254. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3255. goto out_kick;
  3256. /*
  3257. * Queue depth flag is reset only when the idle didn't succeed
  3258. */
  3259. cfq_clear_cfqq_deep(cfqq);
  3260. }
  3261. expire:
  3262. cfq_slice_expired(cfqd, timed_out);
  3263. out_kick:
  3264. cfq_schedule_dispatch(cfqd);
  3265. out_cont:
  3266. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3267. }
  3268. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3269. {
  3270. del_timer_sync(&cfqd->idle_slice_timer);
  3271. cancel_work_sync(&cfqd->unplug_work);
  3272. }
  3273. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3274. {
  3275. int i;
  3276. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3277. if (cfqd->async_cfqq[0][i])
  3278. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3279. if (cfqd->async_cfqq[1][i])
  3280. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3281. }
  3282. if (cfqd->async_idle_cfqq)
  3283. cfq_put_queue(cfqd->async_idle_cfqq);
  3284. }
  3285. static void cfq_exit_queue(struct elevator_queue *e)
  3286. {
  3287. struct cfq_data *cfqd = e->elevator_data;
  3288. struct request_queue *q = cfqd->queue;
  3289. bool wait = false;
  3290. cfq_shutdown_timer_wq(cfqd);
  3291. spin_lock_irq(q->queue_lock);
  3292. if (cfqd->active_queue)
  3293. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3294. while (!list_empty(&cfqd->cic_list)) {
  3295. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3296. struct cfq_io_context,
  3297. queue_list);
  3298. cfq_exit_cic(cic);
  3299. }
  3300. cfq_put_async_queues(cfqd);
  3301. cfq_release_cfq_groups(cfqd);
  3302. /*
  3303. * If there are groups which we could not unlink from blkcg list,
  3304. * wait for a rcu period for them to be freed.
  3305. */
  3306. if (cfqd->nr_blkcg_linked_grps)
  3307. wait = true;
  3308. spin_unlock_irq(q->queue_lock);
  3309. cfq_shutdown_timer_wq(cfqd);
  3310. /*
  3311. * Wait for cfqg->blkg->key accessors to exit their grace periods.
  3312. * Do this wait only if there are other unlinked groups out
  3313. * there. This can happen if cgroup deletion path claimed the
  3314. * responsibility of cleaning up a group before queue cleanup code
  3315. * get to the group.
  3316. *
  3317. * Do not call synchronize_rcu() unconditionally as there are drivers
  3318. * which create/delete request queue hundreds of times during scan/boot
  3319. * and synchronize_rcu() can take significant time and slow down boot.
  3320. */
  3321. if (wait)
  3322. synchronize_rcu();
  3323. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3324. /* Free up per cpu stats for root group */
  3325. free_percpu(cfqd->root_group.blkg.stats_cpu);
  3326. #endif
  3327. kfree(cfqd);
  3328. }
  3329. static void *cfq_init_queue(struct request_queue *q)
  3330. {
  3331. struct cfq_data *cfqd;
  3332. int i, j;
  3333. struct cfq_group *cfqg;
  3334. struct cfq_rb_root *st;
  3335. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3336. if (!cfqd)
  3337. return NULL;
  3338. /* Init root service tree */
  3339. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3340. /* Init root group */
  3341. cfqg = &cfqd->root_group;
  3342. for_each_cfqg_st(cfqg, i, j, st)
  3343. *st = CFQ_RB_ROOT;
  3344. RB_CLEAR_NODE(&cfqg->rb_node);
  3345. /* Give preference to root group over other groups */
  3346. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3347. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3348. /*
  3349. * Set root group reference to 2. One reference will be dropped when
  3350. * all groups on cfqd->cfqg_list are being deleted during queue exit.
  3351. * Other reference will remain there as we don't want to delete this
  3352. * group as it is statically allocated and gets destroyed when
  3353. * throtl_data goes away.
  3354. */
  3355. cfqg->ref = 2;
  3356. if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
  3357. kfree(cfqg);
  3358. kfree(cfqd);
  3359. return NULL;
  3360. }
  3361. rcu_read_lock();
  3362. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3363. (void *)cfqd, 0);
  3364. rcu_read_unlock();
  3365. cfqd->nr_blkcg_linked_grps++;
  3366. /* Add group on cfqd->cfqg_list */
  3367. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  3368. #endif
  3369. /*
  3370. * Not strictly needed (since RB_ROOT just clears the node and we
  3371. * zeroed cfqd on alloc), but better be safe in case someone decides
  3372. * to add magic to the rb code
  3373. */
  3374. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3375. cfqd->prio_trees[i] = RB_ROOT;
  3376. /*
  3377. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3378. * Grab a permanent reference to it, so that the normal code flow
  3379. * will not attempt to free it.
  3380. */
  3381. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3382. cfqd->oom_cfqq.ref++;
  3383. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3384. INIT_LIST_HEAD(&cfqd->cic_list);
  3385. cfqd->queue = q;
  3386. init_timer(&cfqd->idle_slice_timer);
  3387. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3388. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3389. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3390. cfqd->cfq_quantum = cfq_quantum;
  3391. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3392. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3393. cfqd->cfq_back_max = cfq_back_max;
  3394. cfqd->cfq_back_penalty = cfq_back_penalty;
  3395. cfqd->cfq_slice[0] = cfq_slice_async;
  3396. cfqd->cfq_slice[1] = cfq_slice_sync;
  3397. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3398. cfqd->cfq_slice_idle = cfq_slice_idle;
  3399. cfqd->cfq_group_idle = cfq_group_idle;
  3400. cfqd->cfq_latency = 1;
  3401. cfqd->hw_tag = -1;
  3402. /*
  3403. * we optimistically start assuming sync ops weren't delayed in last
  3404. * second, in order to have larger depth for async operations.
  3405. */
  3406. cfqd->last_delayed_sync = jiffies - HZ;
  3407. return cfqd;
  3408. }
  3409. static void cfq_slab_kill(void)
  3410. {
  3411. /*
  3412. * Caller already ensured that pending RCU callbacks are completed,
  3413. * so we should have no busy allocations at this point.
  3414. */
  3415. if (cfq_pool)
  3416. kmem_cache_destroy(cfq_pool);
  3417. if (cfq_ioc_pool)
  3418. kmem_cache_destroy(cfq_ioc_pool);
  3419. }
  3420. static int __init cfq_slab_setup(void)
  3421. {
  3422. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3423. if (!cfq_pool)
  3424. goto fail;
  3425. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3426. if (!cfq_ioc_pool)
  3427. goto fail;
  3428. return 0;
  3429. fail:
  3430. cfq_slab_kill();
  3431. return -ENOMEM;
  3432. }
  3433. /*
  3434. * sysfs parts below -->
  3435. */
  3436. static ssize_t
  3437. cfq_var_show(unsigned int var, char *page)
  3438. {
  3439. return sprintf(page, "%d\n", var);
  3440. }
  3441. static ssize_t
  3442. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3443. {
  3444. char *p = (char *) page;
  3445. *var = simple_strtoul(p, &p, 10);
  3446. return count;
  3447. }
  3448. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3449. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3450. { \
  3451. struct cfq_data *cfqd = e->elevator_data; \
  3452. unsigned int __data = __VAR; \
  3453. if (__CONV) \
  3454. __data = jiffies_to_msecs(__data); \
  3455. return cfq_var_show(__data, (page)); \
  3456. }
  3457. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3458. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3459. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3460. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3461. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3462. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3463. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3464. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3465. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3466. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3467. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3468. #undef SHOW_FUNCTION
  3469. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3470. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3471. { \
  3472. struct cfq_data *cfqd = e->elevator_data; \
  3473. unsigned int __data; \
  3474. int ret = cfq_var_store(&__data, (page), count); \
  3475. if (__data < (MIN)) \
  3476. __data = (MIN); \
  3477. else if (__data > (MAX)) \
  3478. __data = (MAX); \
  3479. if (__CONV) \
  3480. *(__PTR) = msecs_to_jiffies(__data); \
  3481. else \
  3482. *(__PTR) = __data; \
  3483. return ret; \
  3484. }
  3485. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3486. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3487. UINT_MAX, 1);
  3488. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3489. UINT_MAX, 1);
  3490. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3491. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3492. UINT_MAX, 0);
  3493. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3494. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3495. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3496. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3497. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3498. UINT_MAX, 0);
  3499. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3500. #undef STORE_FUNCTION
  3501. #define CFQ_ATTR(name) \
  3502. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3503. static struct elv_fs_entry cfq_attrs[] = {
  3504. CFQ_ATTR(quantum),
  3505. CFQ_ATTR(fifo_expire_sync),
  3506. CFQ_ATTR(fifo_expire_async),
  3507. CFQ_ATTR(back_seek_max),
  3508. CFQ_ATTR(back_seek_penalty),
  3509. CFQ_ATTR(slice_sync),
  3510. CFQ_ATTR(slice_async),
  3511. CFQ_ATTR(slice_async_rq),
  3512. CFQ_ATTR(slice_idle),
  3513. CFQ_ATTR(group_idle),
  3514. CFQ_ATTR(low_latency),
  3515. __ATTR_NULL
  3516. };
  3517. static struct elevator_type iosched_cfq = {
  3518. .ops = {
  3519. .elevator_merge_fn = cfq_merge,
  3520. .elevator_merged_fn = cfq_merged_request,
  3521. .elevator_merge_req_fn = cfq_merged_requests,
  3522. .elevator_allow_merge_fn = cfq_allow_merge,
  3523. .elevator_bio_merged_fn = cfq_bio_merged,
  3524. .elevator_dispatch_fn = cfq_dispatch_requests,
  3525. .elevator_add_req_fn = cfq_insert_request,
  3526. .elevator_activate_req_fn = cfq_activate_request,
  3527. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3528. .elevator_completed_req_fn = cfq_completed_request,
  3529. .elevator_former_req_fn = elv_rb_former_request,
  3530. .elevator_latter_req_fn = elv_rb_latter_request,
  3531. .elevator_set_req_fn = cfq_set_request,
  3532. .elevator_put_req_fn = cfq_put_request,
  3533. .elevator_may_queue_fn = cfq_may_queue,
  3534. .elevator_init_fn = cfq_init_queue,
  3535. .elevator_exit_fn = cfq_exit_queue,
  3536. .trim = cfq_free_io_context,
  3537. },
  3538. .elevator_attrs = cfq_attrs,
  3539. .elevator_name = "cfq",
  3540. .elevator_owner = THIS_MODULE,
  3541. };
  3542. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3543. static struct blkio_policy_type blkio_policy_cfq = {
  3544. .ops = {
  3545. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3546. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3547. },
  3548. .plid = BLKIO_POLICY_PROP,
  3549. };
  3550. #else
  3551. static struct blkio_policy_type blkio_policy_cfq;
  3552. #endif
  3553. static int __init cfq_init(void)
  3554. {
  3555. /*
  3556. * could be 0 on HZ < 1000 setups
  3557. */
  3558. if (!cfq_slice_async)
  3559. cfq_slice_async = 1;
  3560. if (!cfq_slice_idle)
  3561. cfq_slice_idle = 1;
  3562. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3563. if (!cfq_group_idle)
  3564. cfq_group_idle = 1;
  3565. #else
  3566. cfq_group_idle = 0;
  3567. #endif
  3568. if (cfq_slab_setup())
  3569. return -ENOMEM;
  3570. elv_register(&iosched_cfq);
  3571. blkio_policy_register(&blkio_policy_cfq);
  3572. return 0;
  3573. }
  3574. static void __exit cfq_exit(void)
  3575. {
  3576. DECLARE_COMPLETION_ONSTACK(all_gone);
  3577. blkio_policy_unregister(&blkio_policy_cfq);
  3578. elv_unregister(&iosched_cfq);
  3579. ioc_gone = &all_gone;
  3580. /* ioc_gone's update must be visible before reading ioc_count */
  3581. smp_wmb();
  3582. /*
  3583. * this also protects us from entering cfq_slab_kill() with
  3584. * pending RCU callbacks
  3585. */
  3586. if (elv_ioc_count_read(cfq_ioc_count))
  3587. wait_for_completion(&all_gone);
  3588. cfq_slab_kill();
  3589. }
  3590. module_init(cfq_init);
  3591. module_exit(cfq_exit);
  3592. MODULE_AUTHOR("Jens Axboe");
  3593. MODULE_LICENSE("GPL");
  3594. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");