x86.c 117 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <trace/events/kvm.h>
  39. #undef TRACE_INCLUDE_FILE
  40. #define CREATE_TRACE_POINTS
  41. #include "trace.h"
  42. #include <asm/uaccess.h>
  43. #include <asm/msr.h>
  44. #include <asm/desc.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/mce.h>
  47. #define MAX_IO_MSRS 256
  48. #define CR0_RESERVED_BITS \
  49. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  50. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  51. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  52. #define CR4_RESERVED_BITS \
  53. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  54. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  55. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  56. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  57. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  58. #define KVM_MAX_MCE_BANKS 32
  59. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  60. /* EFER defaults:
  61. * - enable syscall per default because its emulated by KVM
  62. * - enable LME and LMA per default on 64 bit KVM
  63. */
  64. #ifdef CONFIG_X86_64
  65. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  66. #else
  67. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  68. #endif
  69. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  70. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  71. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  72. struct kvm_cpuid_entry2 __user *entries);
  73. struct kvm_x86_ops *kvm_x86_ops;
  74. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  75. int ignore_msrs = 0;
  76. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  77. struct kvm_stats_debugfs_item debugfs_entries[] = {
  78. { "pf_fixed", VCPU_STAT(pf_fixed) },
  79. { "pf_guest", VCPU_STAT(pf_guest) },
  80. { "tlb_flush", VCPU_STAT(tlb_flush) },
  81. { "invlpg", VCPU_STAT(invlpg) },
  82. { "exits", VCPU_STAT(exits) },
  83. { "io_exits", VCPU_STAT(io_exits) },
  84. { "mmio_exits", VCPU_STAT(mmio_exits) },
  85. { "signal_exits", VCPU_STAT(signal_exits) },
  86. { "irq_window", VCPU_STAT(irq_window_exits) },
  87. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  88. { "halt_exits", VCPU_STAT(halt_exits) },
  89. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  90. { "hypercalls", VCPU_STAT(hypercalls) },
  91. { "request_irq", VCPU_STAT(request_irq_exits) },
  92. { "irq_exits", VCPU_STAT(irq_exits) },
  93. { "host_state_reload", VCPU_STAT(host_state_reload) },
  94. { "efer_reload", VCPU_STAT(efer_reload) },
  95. { "fpu_reload", VCPU_STAT(fpu_reload) },
  96. { "insn_emulation", VCPU_STAT(insn_emulation) },
  97. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  98. { "irq_injections", VCPU_STAT(irq_injections) },
  99. { "nmi_injections", VCPU_STAT(nmi_injections) },
  100. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  101. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  102. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  103. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  104. { "mmu_flooded", VM_STAT(mmu_flooded) },
  105. { "mmu_recycled", VM_STAT(mmu_recycled) },
  106. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  107. { "mmu_unsync", VM_STAT(mmu_unsync) },
  108. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  109. { "largepages", VM_STAT(lpages) },
  110. { NULL }
  111. };
  112. unsigned long segment_base(u16 selector)
  113. {
  114. struct descriptor_table gdt;
  115. struct desc_struct *d;
  116. unsigned long table_base;
  117. unsigned long v;
  118. if (selector == 0)
  119. return 0;
  120. asm("sgdt %0" : "=m"(gdt));
  121. table_base = gdt.base;
  122. if (selector & 4) { /* from ldt */
  123. u16 ldt_selector;
  124. asm("sldt %0" : "=g"(ldt_selector));
  125. table_base = segment_base(ldt_selector);
  126. }
  127. d = (struct desc_struct *)(table_base + (selector & ~7));
  128. v = d->base0 | ((unsigned long)d->base1 << 16) |
  129. ((unsigned long)d->base2 << 24);
  130. #ifdef CONFIG_X86_64
  131. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  132. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  133. #endif
  134. return v;
  135. }
  136. EXPORT_SYMBOL_GPL(segment_base);
  137. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  138. {
  139. if (irqchip_in_kernel(vcpu->kvm))
  140. return vcpu->arch.apic_base;
  141. else
  142. return vcpu->arch.apic_base;
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  145. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  146. {
  147. /* TODO: reserve bits check */
  148. if (irqchip_in_kernel(vcpu->kvm))
  149. kvm_lapic_set_base(vcpu, data);
  150. else
  151. vcpu->arch.apic_base = data;
  152. }
  153. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  154. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  155. {
  156. WARN_ON(vcpu->arch.exception.pending);
  157. vcpu->arch.exception.pending = true;
  158. vcpu->arch.exception.has_error_code = false;
  159. vcpu->arch.exception.nr = nr;
  160. }
  161. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  162. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  163. u32 error_code)
  164. {
  165. ++vcpu->stat.pf_guest;
  166. if (vcpu->arch.exception.pending) {
  167. switch(vcpu->arch.exception.nr) {
  168. case DF_VECTOR:
  169. /* triple fault -> shutdown */
  170. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  171. return;
  172. case PF_VECTOR:
  173. vcpu->arch.exception.nr = DF_VECTOR;
  174. vcpu->arch.exception.error_code = 0;
  175. return;
  176. default:
  177. /* replace previous exception with a new one in a hope
  178. that instruction re-execution will regenerate lost
  179. exception */
  180. vcpu->arch.exception.pending = false;
  181. break;
  182. }
  183. }
  184. vcpu->arch.cr2 = addr;
  185. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  186. }
  187. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  188. {
  189. vcpu->arch.nmi_pending = 1;
  190. }
  191. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  192. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  193. {
  194. WARN_ON(vcpu->arch.exception.pending);
  195. vcpu->arch.exception.pending = true;
  196. vcpu->arch.exception.has_error_code = true;
  197. vcpu->arch.exception.nr = nr;
  198. vcpu->arch.exception.error_code = error_code;
  199. }
  200. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  201. static void __queue_exception(struct kvm_vcpu *vcpu)
  202. {
  203. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  204. vcpu->arch.exception.has_error_code,
  205. vcpu->arch.exception.error_code);
  206. }
  207. /*
  208. * Load the pae pdptrs. Return true is they are all valid.
  209. */
  210. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  211. {
  212. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  213. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  214. int i;
  215. int ret;
  216. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  217. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  218. offset * sizeof(u64), sizeof(pdpte));
  219. if (ret < 0) {
  220. ret = 0;
  221. goto out;
  222. }
  223. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  224. if (is_present_gpte(pdpte[i]) &&
  225. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  226. ret = 0;
  227. goto out;
  228. }
  229. }
  230. ret = 1;
  231. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  232. __set_bit(VCPU_EXREG_PDPTR,
  233. (unsigned long *)&vcpu->arch.regs_avail);
  234. __set_bit(VCPU_EXREG_PDPTR,
  235. (unsigned long *)&vcpu->arch.regs_dirty);
  236. out:
  237. return ret;
  238. }
  239. EXPORT_SYMBOL_GPL(load_pdptrs);
  240. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  241. {
  242. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  243. bool changed = true;
  244. int r;
  245. if (is_long_mode(vcpu) || !is_pae(vcpu))
  246. return false;
  247. if (!test_bit(VCPU_EXREG_PDPTR,
  248. (unsigned long *)&vcpu->arch.regs_avail))
  249. return true;
  250. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  251. if (r < 0)
  252. goto out;
  253. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  254. out:
  255. return changed;
  256. }
  257. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  258. {
  259. if (cr0 & CR0_RESERVED_BITS) {
  260. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  261. cr0, vcpu->arch.cr0);
  262. kvm_inject_gp(vcpu, 0);
  263. return;
  264. }
  265. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  266. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  267. kvm_inject_gp(vcpu, 0);
  268. return;
  269. }
  270. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  271. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  272. "and a clear PE flag\n");
  273. kvm_inject_gp(vcpu, 0);
  274. return;
  275. }
  276. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  277. #ifdef CONFIG_X86_64
  278. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  279. int cs_db, cs_l;
  280. if (!is_pae(vcpu)) {
  281. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  282. "in long mode while PAE is disabled\n");
  283. kvm_inject_gp(vcpu, 0);
  284. return;
  285. }
  286. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  287. if (cs_l) {
  288. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  289. "in long mode while CS.L == 1\n");
  290. kvm_inject_gp(vcpu, 0);
  291. return;
  292. }
  293. } else
  294. #endif
  295. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  296. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  297. "reserved bits\n");
  298. kvm_inject_gp(vcpu, 0);
  299. return;
  300. }
  301. }
  302. kvm_x86_ops->set_cr0(vcpu, cr0);
  303. vcpu->arch.cr0 = cr0;
  304. kvm_mmu_reset_context(vcpu);
  305. return;
  306. }
  307. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  308. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  309. {
  310. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  311. }
  312. EXPORT_SYMBOL_GPL(kvm_lmsw);
  313. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  314. {
  315. unsigned long old_cr4 = vcpu->arch.cr4;
  316. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  317. if (cr4 & CR4_RESERVED_BITS) {
  318. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  319. kvm_inject_gp(vcpu, 0);
  320. return;
  321. }
  322. if (is_long_mode(vcpu)) {
  323. if (!(cr4 & X86_CR4_PAE)) {
  324. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  325. "in long mode\n");
  326. kvm_inject_gp(vcpu, 0);
  327. return;
  328. }
  329. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  330. && ((cr4 ^ old_cr4) & pdptr_bits)
  331. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  332. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  333. kvm_inject_gp(vcpu, 0);
  334. return;
  335. }
  336. if (cr4 & X86_CR4_VMXE) {
  337. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  338. kvm_inject_gp(vcpu, 0);
  339. return;
  340. }
  341. kvm_x86_ops->set_cr4(vcpu, cr4);
  342. vcpu->arch.cr4 = cr4;
  343. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  344. kvm_mmu_reset_context(vcpu);
  345. }
  346. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  347. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  348. {
  349. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  350. kvm_mmu_sync_roots(vcpu);
  351. kvm_mmu_flush_tlb(vcpu);
  352. return;
  353. }
  354. if (is_long_mode(vcpu)) {
  355. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  356. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  357. kvm_inject_gp(vcpu, 0);
  358. return;
  359. }
  360. } else {
  361. if (is_pae(vcpu)) {
  362. if (cr3 & CR3_PAE_RESERVED_BITS) {
  363. printk(KERN_DEBUG
  364. "set_cr3: #GP, reserved bits\n");
  365. kvm_inject_gp(vcpu, 0);
  366. return;
  367. }
  368. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  369. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  370. "reserved bits\n");
  371. kvm_inject_gp(vcpu, 0);
  372. return;
  373. }
  374. }
  375. /*
  376. * We don't check reserved bits in nonpae mode, because
  377. * this isn't enforced, and VMware depends on this.
  378. */
  379. }
  380. /*
  381. * Does the new cr3 value map to physical memory? (Note, we
  382. * catch an invalid cr3 even in real-mode, because it would
  383. * cause trouble later on when we turn on paging anyway.)
  384. *
  385. * A real CPU would silently accept an invalid cr3 and would
  386. * attempt to use it - with largely undefined (and often hard
  387. * to debug) behavior on the guest side.
  388. */
  389. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  390. kvm_inject_gp(vcpu, 0);
  391. else {
  392. vcpu->arch.cr3 = cr3;
  393. vcpu->arch.mmu.new_cr3(vcpu);
  394. }
  395. }
  396. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  397. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  398. {
  399. if (cr8 & CR8_RESERVED_BITS) {
  400. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  401. kvm_inject_gp(vcpu, 0);
  402. return;
  403. }
  404. if (irqchip_in_kernel(vcpu->kvm))
  405. kvm_lapic_set_tpr(vcpu, cr8);
  406. else
  407. vcpu->arch.cr8 = cr8;
  408. }
  409. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  410. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  411. {
  412. if (irqchip_in_kernel(vcpu->kvm))
  413. return kvm_lapic_get_cr8(vcpu);
  414. else
  415. return vcpu->arch.cr8;
  416. }
  417. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  418. static inline u32 bit(int bitno)
  419. {
  420. return 1 << (bitno & 31);
  421. }
  422. /*
  423. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  424. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  425. *
  426. * This list is modified at module load time to reflect the
  427. * capabilities of the host cpu.
  428. */
  429. static u32 msrs_to_save[] = {
  430. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  431. MSR_K6_STAR,
  432. #ifdef CONFIG_X86_64
  433. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  434. #endif
  435. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  436. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  437. };
  438. static unsigned num_msrs_to_save;
  439. static u32 emulated_msrs[] = {
  440. MSR_IA32_MISC_ENABLE,
  441. };
  442. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  443. {
  444. if (efer & efer_reserved_bits) {
  445. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  446. efer);
  447. kvm_inject_gp(vcpu, 0);
  448. return;
  449. }
  450. if (is_paging(vcpu)
  451. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  452. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  453. kvm_inject_gp(vcpu, 0);
  454. return;
  455. }
  456. if (efer & EFER_FFXSR) {
  457. struct kvm_cpuid_entry2 *feat;
  458. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  459. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  460. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  461. kvm_inject_gp(vcpu, 0);
  462. return;
  463. }
  464. }
  465. if (efer & EFER_SVME) {
  466. struct kvm_cpuid_entry2 *feat;
  467. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  468. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  469. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  470. kvm_inject_gp(vcpu, 0);
  471. return;
  472. }
  473. }
  474. kvm_x86_ops->set_efer(vcpu, efer);
  475. efer &= ~EFER_LMA;
  476. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  477. vcpu->arch.shadow_efer = efer;
  478. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  479. kvm_mmu_reset_context(vcpu);
  480. }
  481. void kvm_enable_efer_bits(u64 mask)
  482. {
  483. efer_reserved_bits &= ~mask;
  484. }
  485. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  486. /*
  487. * Writes msr value into into the appropriate "register".
  488. * Returns 0 on success, non-0 otherwise.
  489. * Assumes vcpu_load() was already called.
  490. */
  491. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  492. {
  493. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  494. }
  495. /*
  496. * Adapt set_msr() to msr_io()'s calling convention
  497. */
  498. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  499. {
  500. return kvm_set_msr(vcpu, index, *data);
  501. }
  502. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  503. {
  504. static int version;
  505. struct pvclock_wall_clock wc;
  506. struct timespec now, sys, boot;
  507. if (!wall_clock)
  508. return;
  509. version++;
  510. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  511. /*
  512. * The guest calculates current wall clock time by adding
  513. * system time (updated by kvm_write_guest_time below) to the
  514. * wall clock specified here. guest system time equals host
  515. * system time for us, thus we must fill in host boot time here.
  516. */
  517. now = current_kernel_time();
  518. ktime_get_ts(&sys);
  519. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  520. wc.sec = boot.tv_sec;
  521. wc.nsec = boot.tv_nsec;
  522. wc.version = version;
  523. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  524. version++;
  525. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  526. }
  527. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  528. {
  529. uint32_t quotient, remainder;
  530. /* Don't try to replace with do_div(), this one calculates
  531. * "(dividend << 32) / divisor" */
  532. __asm__ ( "divl %4"
  533. : "=a" (quotient), "=d" (remainder)
  534. : "0" (0), "1" (dividend), "r" (divisor) );
  535. return quotient;
  536. }
  537. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  538. {
  539. uint64_t nsecs = 1000000000LL;
  540. int32_t shift = 0;
  541. uint64_t tps64;
  542. uint32_t tps32;
  543. tps64 = tsc_khz * 1000LL;
  544. while (tps64 > nsecs*2) {
  545. tps64 >>= 1;
  546. shift--;
  547. }
  548. tps32 = (uint32_t)tps64;
  549. while (tps32 <= (uint32_t)nsecs) {
  550. tps32 <<= 1;
  551. shift++;
  552. }
  553. hv_clock->tsc_shift = shift;
  554. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  555. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  556. __func__, tsc_khz, hv_clock->tsc_shift,
  557. hv_clock->tsc_to_system_mul);
  558. }
  559. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  560. static void kvm_write_guest_time(struct kvm_vcpu *v)
  561. {
  562. struct timespec ts;
  563. unsigned long flags;
  564. struct kvm_vcpu_arch *vcpu = &v->arch;
  565. void *shared_kaddr;
  566. unsigned long this_tsc_khz;
  567. if ((!vcpu->time_page))
  568. return;
  569. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  570. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  571. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  572. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  573. }
  574. put_cpu_var(cpu_tsc_khz);
  575. /* Keep irq disabled to prevent changes to the clock */
  576. local_irq_save(flags);
  577. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  578. ktime_get_ts(&ts);
  579. local_irq_restore(flags);
  580. /* With all the info we got, fill in the values */
  581. vcpu->hv_clock.system_time = ts.tv_nsec +
  582. (NSEC_PER_SEC * (u64)ts.tv_sec);
  583. /*
  584. * The interface expects us to write an even number signaling that the
  585. * update is finished. Since the guest won't see the intermediate
  586. * state, we just increase by 2 at the end.
  587. */
  588. vcpu->hv_clock.version += 2;
  589. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  590. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  591. sizeof(vcpu->hv_clock));
  592. kunmap_atomic(shared_kaddr, KM_USER0);
  593. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  594. }
  595. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  596. {
  597. struct kvm_vcpu_arch *vcpu = &v->arch;
  598. if (!vcpu->time_page)
  599. return 0;
  600. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  601. return 1;
  602. }
  603. static bool msr_mtrr_valid(unsigned msr)
  604. {
  605. switch (msr) {
  606. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  607. case MSR_MTRRfix64K_00000:
  608. case MSR_MTRRfix16K_80000:
  609. case MSR_MTRRfix16K_A0000:
  610. case MSR_MTRRfix4K_C0000:
  611. case MSR_MTRRfix4K_C8000:
  612. case MSR_MTRRfix4K_D0000:
  613. case MSR_MTRRfix4K_D8000:
  614. case MSR_MTRRfix4K_E0000:
  615. case MSR_MTRRfix4K_E8000:
  616. case MSR_MTRRfix4K_F0000:
  617. case MSR_MTRRfix4K_F8000:
  618. case MSR_MTRRdefType:
  619. case MSR_IA32_CR_PAT:
  620. return true;
  621. case 0x2f8:
  622. return true;
  623. }
  624. return false;
  625. }
  626. static bool valid_pat_type(unsigned t)
  627. {
  628. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  629. }
  630. static bool valid_mtrr_type(unsigned t)
  631. {
  632. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  633. }
  634. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  635. {
  636. int i;
  637. if (!msr_mtrr_valid(msr))
  638. return false;
  639. if (msr == MSR_IA32_CR_PAT) {
  640. for (i = 0; i < 8; i++)
  641. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  642. return false;
  643. return true;
  644. } else if (msr == MSR_MTRRdefType) {
  645. if (data & ~0xcff)
  646. return false;
  647. return valid_mtrr_type(data & 0xff);
  648. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  649. for (i = 0; i < 8 ; i++)
  650. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  651. return false;
  652. return true;
  653. }
  654. /* variable MTRRs */
  655. return valid_mtrr_type(data & 0xff);
  656. }
  657. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  658. {
  659. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  660. if (!mtrr_valid(vcpu, msr, data))
  661. return 1;
  662. if (msr == MSR_MTRRdefType) {
  663. vcpu->arch.mtrr_state.def_type = data;
  664. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  665. } else if (msr == MSR_MTRRfix64K_00000)
  666. p[0] = data;
  667. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  668. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  669. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  670. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  671. else if (msr == MSR_IA32_CR_PAT)
  672. vcpu->arch.pat = data;
  673. else { /* Variable MTRRs */
  674. int idx, is_mtrr_mask;
  675. u64 *pt;
  676. idx = (msr - 0x200) / 2;
  677. is_mtrr_mask = msr - 0x200 - 2 * idx;
  678. if (!is_mtrr_mask)
  679. pt =
  680. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  681. else
  682. pt =
  683. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  684. *pt = data;
  685. }
  686. kvm_mmu_reset_context(vcpu);
  687. return 0;
  688. }
  689. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  690. {
  691. u64 mcg_cap = vcpu->arch.mcg_cap;
  692. unsigned bank_num = mcg_cap & 0xff;
  693. switch (msr) {
  694. case MSR_IA32_MCG_STATUS:
  695. vcpu->arch.mcg_status = data;
  696. break;
  697. case MSR_IA32_MCG_CTL:
  698. if (!(mcg_cap & MCG_CTL_P))
  699. return 1;
  700. if (data != 0 && data != ~(u64)0)
  701. return -1;
  702. vcpu->arch.mcg_ctl = data;
  703. break;
  704. default:
  705. if (msr >= MSR_IA32_MC0_CTL &&
  706. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  707. u32 offset = msr - MSR_IA32_MC0_CTL;
  708. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  709. if ((offset & 0x3) == 0 &&
  710. data != 0 && data != ~(u64)0)
  711. return -1;
  712. vcpu->arch.mce_banks[offset] = data;
  713. break;
  714. }
  715. return 1;
  716. }
  717. return 0;
  718. }
  719. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  720. {
  721. switch (msr) {
  722. case MSR_EFER:
  723. set_efer(vcpu, data);
  724. break;
  725. case MSR_K7_HWCR:
  726. data &= ~(u64)0x40; /* ignore flush filter disable */
  727. if (data != 0) {
  728. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  729. data);
  730. return 1;
  731. }
  732. break;
  733. case MSR_AMD64_NB_CFG:
  734. break;
  735. case MSR_IA32_DEBUGCTLMSR:
  736. if (!data) {
  737. /* We support the non-activated case already */
  738. break;
  739. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  740. /* Values other than LBR and BTF are vendor-specific,
  741. thus reserved and should throw a #GP */
  742. return 1;
  743. }
  744. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  745. __func__, data);
  746. break;
  747. case MSR_IA32_UCODE_REV:
  748. case MSR_IA32_UCODE_WRITE:
  749. case MSR_VM_HSAVE_PA:
  750. case MSR_AMD64_PATCH_LOADER:
  751. break;
  752. case 0x200 ... 0x2ff:
  753. return set_msr_mtrr(vcpu, msr, data);
  754. case MSR_IA32_APICBASE:
  755. kvm_set_apic_base(vcpu, data);
  756. break;
  757. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  758. return kvm_x2apic_msr_write(vcpu, msr, data);
  759. case MSR_IA32_MISC_ENABLE:
  760. vcpu->arch.ia32_misc_enable_msr = data;
  761. break;
  762. case MSR_KVM_WALL_CLOCK:
  763. vcpu->kvm->arch.wall_clock = data;
  764. kvm_write_wall_clock(vcpu->kvm, data);
  765. break;
  766. case MSR_KVM_SYSTEM_TIME: {
  767. if (vcpu->arch.time_page) {
  768. kvm_release_page_dirty(vcpu->arch.time_page);
  769. vcpu->arch.time_page = NULL;
  770. }
  771. vcpu->arch.time = data;
  772. /* we verify if the enable bit is set... */
  773. if (!(data & 1))
  774. break;
  775. /* ...but clean it before doing the actual write */
  776. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  777. vcpu->arch.time_page =
  778. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  779. if (is_error_page(vcpu->arch.time_page)) {
  780. kvm_release_page_clean(vcpu->arch.time_page);
  781. vcpu->arch.time_page = NULL;
  782. }
  783. kvm_request_guest_time_update(vcpu);
  784. break;
  785. }
  786. case MSR_IA32_MCG_CTL:
  787. case MSR_IA32_MCG_STATUS:
  788. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  789. return set_msr_mce(vcpu, msr, data);
  790. /* Performance counters are not protected by a CPUID bit,
  791. * so we should check all of them in the generic path for the sake of
  792. * cross vendor migration.
  793. * Writing a zero into the event select MSRs disables them,
  794. * which we perfectly emulate ;-). Any other value should be at least
  795. * reported, some guests depend on them.
  796. */
  797. case MSR_P6_EVNTSEL0:
  798. case MSR_P6_EVNTSEL1:
  799. case MSR_K7_EVNTSEL0:
  800. case MSR_K7_EVNTSEL1:
  801. case MSR_K7_EVNTSEL2:
  802. case MSR_K7_EVNTSEL3:
  803. if (data != 0)
  804. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  805. "0x%x data 0x%llx\n", msr, data);
  806. break;
  807. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  808. * so we ignore writes to make it happy.
  809. */
  810. case MSR_P6_PERFCTR0:
  811. case MSR_P6_PERFCTR1:
  812. case MSR_K7_PERFCTR0:
  813. case MSR_K7_PERFCTR1:
  814. case MSR_K7_PERFCTR2:
  815. case MSR_K7_PERFCTR3:
  816. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  817. "0x%x data 0x%llx\n", msr, data);
  818. break;
  819. default:
  820. if (!ignore_msrs) {
  821. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  822. msr, data);
  823. return 1;
  824. } else {
  825. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  826. msr, data);
  827. break;
  828. }
  829. }
  830. return 0;
  831. }
  832. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  833. /*
  834. * Reads an msr value (of 'msr_index') into 'pdata'.
  835. * Returns 0 on success, non-0 otherwise.
  836. * Assumes vcpu_load() was already called.
  837. */
  838. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  839. {
  840. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  841. }
  842. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  843. {
  844. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  845. if (!msr_mtrr_valid(msr))
  846. return 1;
  847. if (msr == MSR_MTRRdefType)
  848. *pdata = vcpu->arch.mtrr_state.def_type +
  849. (vcpu->arch.mtrr_state.enabled << 10);
  850. else if (msr == MSR_MTRRfix64K_00000)
  851. *pdata = p[0];
  852. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  853. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  854. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  855. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  856. else if (msr == MSR_IA32_CR_PAT)
  857. *pdata = vcpu->arch.pat;
  858. else { /* Variable MTRRs */
  859. int idx, is_mtrr_mask;
  860. u64 *pt;
  861. idx = (msr - 0x200) / 2;
  862. is_mtrr_mask = msr - 0x200 - 2 * idx;
  863. if (!is_mtrr_mask)
  864. pt =
  865. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  866. else
  867. pt =
  868. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  869. *pdata = *pt;
  870. }
  871. return 0;
  872. }
  873. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  874. {
  875. u64 data;
  876. u64 mcg_cap = vcpu->arch.mcg_cap;
  877. unsigned bank_num = mcg_cap & 0xff;
  878. switch (msr) {
  879. case MSR_IA32_P5_MC_ADDR:
  880. case MSR_IA32_P5_MC_TYPE:
  881. data = 0;
  882. break;
  883. case MSR_IA32_MCG_CAP:
  884. data = vcpu->arch.mcg_cap;
  885. break;
  886. case MSR_IA32_MCG_CTL:
  887. if (!(mcg_cap & MCG_CTL_P))
  888. return 1;
  889. data = vcpu->arch.mcg_ctl;
  890. break;
  891. case MSR_IA32_MCG_STATUS:
  892. data = vcpu->arch.mcg_status;
  893. break;
  894. default:
  895. if (msr >= MSR_IA32_MC0_CTL &&
  896. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  897. u32 offset = msr - MSR_IA32_MC0_CTL;
  898. data = vcpu->arch.mce_banks[offset];
  899. break;
  900. }
  901. return 1;
  902. }
  903. *pdata = data;
  904. return 0;
  905. }
  906. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  907. {
  908. u64 data;
  909. switch (msr) {
  910. case MSR_IA32_PLATFORM_ID:
  911. case MSR_IA32_UCODE_REV:
  912. case MSR_IA32_EBL_CR_POWERON:
  913. case MSR_IA32_DEBUGCTLMSR:
  914. case MSR_IA32_LASTBRANCHFROMIP:
  915. case MSR_IA32_LASTBRANCHTOIP:
  916. case MSR_IA32_LASTINTFROMIP:
  917. case MSR_IA32_LASTINTTOIP:
  918. case MSR_K8_SYSCFG:
  919. case MSR_K7_HWCR:
  920. case MSR_VM_HSAVE_PA:
  921. case MSR_P6_EVNTSEL0:
  922. case MSR_P6_EVNTSEL1:
  923. case MSR_K7_EVNTSEL0:
  924. case MSR_K8_INT_PENDING_MSG:
  925. case MSR_AMD64_NB_CFG:
  926. data = 0;
  927. break;
  928. case MSR_MTRRcap:
  929. data = 0x500 | KVM_NR_VAR_MTRR;
  930. break;
  931. case 0x200 ... 0x2ff:
  932. return get_msr_mtrr(vcpu, msr, pdata);
  933. case 0xcd: /* fsb frequency */
  934. data = 3;
  935. break;
  936. case MSR_IA32_APICBASE:
  937. data = kvm_get_apic_base(vcpu);
  938. break;
  939. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  940. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  941. break;
  942. case MSR_IA32_MISC_ENABLE:
  943. data = vcpu->arch.ia32_misc_enable_msr;
  944. break;
  945. case MSR_IA32_PERF_STATUS:
  946. /* TSC increment by tick */
  947. data = 1000ULL;
  948. /* CPU multiplier */
  949. data |= (((uint64_t)4ULL) << 40);
  950. break;
  951. case MSR_EFER:
  952. data = vcpu->arch.shadow_efer;
  953. break;
  954. case MSR_KVM_WALL_CLOCK:
  955. data = vcpu->kvm->arch.wall_clock;
  956. break;
  957. case MSR_KVM_SYSTEM_TIME:
  958. data = vcpu->arch.time;
  959. break;
  960. case MSR_IA32_P5_MC_ADDR:
  961. case MSR_IA32_P5_MC_TYPE:
  962. case MSR_IA32_MCG_CAP:
  963. case MSR_IA32_MCG_CTL:
  964. case MSR_IA32_MCG_STATUS:
  965. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  966. return get_msr_mce(vcpu, msr, pdata);
  967. default:
  968. if (!ignore_msrs) {
  969. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  970. return 1;
  971. } else {
  972. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  973. data = 0;
  974. }
  975. break;
  976. }
  977. *pdata = data;
  978. return 0;
  979. }
  980. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  981. /*
  982. * Read or write a bunch of msrs. All parameters are kernel addresses.
  983. *
  984. * @return number of msrs set successfully.
  985. */
  986. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  987. struct kvm_msr_entry *entries,
  988. int (*do_msr)(struct kvm_vcpu *vcpu,
  989. unsigned index, u64 *data))
  990. {
  991. int i;
  992. vcpu_load(vcpu);
  993. down_read(&vcpu->kvm->slots_lock);
  994. for (i = 0; i < msrs->nmsrs; ++i)
  995. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  996. break;
  997. up_read(&vcpu->kvm->slots_lock);
  998. vcpu_put(vcpu);
  999. return i;
  1000. }
  1001. /*
  1002. * Read or write a bunch of msrs. Parameters are user addresses.
  1003. *
  1004. * @return number of msrs set successfully.
  1005. */
  1006. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1007. int (*do_msr)(struct kvm_vcpu *vcpu,
  1008. unsigned index, u64 *data),
  1009. int writeback)
  1010. {
  1011. struct kvm_msrs msrs;
  1012. struct kvm_msr_entry *entries;
  1013. int r, n;
  1014. unsigned size;
  1015. r = -EFAULT;
  1016. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1017. goto out;
  1018. r = -E2BIG;
  1019. if (msrs.nmsrs >= MAX_IO_MSRS)
  1020. goto out;
  1021. r = -ENOMEM;
  1022. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1023. entries = vmalloc(size);
  1024. if (!entries)
  1025. goto out;
  1026. r = -EFAULT;
  1027. if (copy_from_user(entries, user_msrs->entries, size))
  1028. goto out_free;
  1029. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1030. if (r < 0)
  1031. goto out_free;
  1032. r = -EFAULT;
  1033. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1034. goto out_free;
  1035. r = n;
  1036. out_free:
  1037. vfree(entries);
  1038. out:
  1039. return r;
  1040. }
  1041. int kvm_dev_ioctl_check_extension(long ext)
  1042. {
  1043. int r;
  1044. switch (ext) {
  1045. case KVM_CAP_IRQCHIP:
  1046. case KVM_CAP_HLT:
  1047. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1048. case KVM_CAP_SET_TSS_ADDR:
  1049. case KVM_CAP_EXT_CPUID:
  1050. case KVM_CAP_CLOCKSOURCE:
  1051. case KVM_CAP_PIT:
  1052. case KVM_CAP_NOP_IO_DELAY:
  1053. case KVM_CAP_MP_STATE:
  1054. case KVM_CAP_SYNC_MMU:
  1055. case KVM_CAP_REINJECT_CONTROL:
  1056. case KVM_CAP_IRQ_INJECT_STATUS:
  1057. case KVM_CAP_ASSIGN_DEV_IRQ:
  1058. case KVM_CAP_IRQFD:
  1059. case KVM_CAP_PIT2:
  1060. r = 1;
  1061. break;
  1062. case KVM_CAP_COALESCED_MMIO:
  1063. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1064. break;
  1065. case KVM_CAP_VAPIC:
  1066. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1067. break;
  1068. case KVM_CAP_NR_VCPUS:
  1069. r = KVM_MAX_VCPUS;
  1070. break;
  1071. case KVM_CAP_NR_MEMSLOTS:
  1072. r = KVM_MEMORY_SLOTS;
  1073. break;
  1074. case KVM_CAP_PV_MMU:
  1075. r = !tdp_enabled;
  1076. break;
  1077. case KVM_CAP_IOMMU:
  1078. r = iommu_found();
  1079. break;
  1080. case KVM_CAP_MCE:
  1081. r = KVM_MAX_MCE_BANKS;
  1082. break;
  1083. default:
  1084. r = 0;
  1085. break;
  1086. }
  1087. return r;
  1088. }
  1089. long kvm_arch_dev_ioctl(struct file *filp,
  1090. unsigned int ioctl, unsigned long arg)
  1091. {
  1092. void __user *argp = (void __user *)arg;
  1093. long r;
  1094. switch (ioctl) {
  1095. case KVM_GET_MSR_INDEX_LIST: {
  1096. struct kvm_msr_list __user *user_msr_list = argp;
  1097. struct kvm_msr_list msr_list;
  1098. unsigned n;
  1099. r = -EFAULT;
  1100. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1101. goto out;
  1102. n = msr_list.nmsrs;
  1103. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1104. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1105. goto out;
  1106. r = -E2BIG;
  1107. if (n < msr_list.nmsrs)
  1108. goto out;
  1109. r = -EFAULT;
  1110. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1111. num_msrs_to_save * sizeof(u32)))
  1112. goto out;
  1113. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1114. &emulated_msrs,
  1115. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1116. goto out;
  1117. r = 0;
  1118. break;
  1119. }
  1120. case KVM_GET_SUPPORTED_CPUID: {
  1121. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1122. struct kvm_cpuid2 cpuid;
  1123. r = -EFAULT;
  1124. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1125. goto out;
  1126. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1127. cpuid_arg->entries);
  1128. if (r)
  1129. goto out;
  1130. r = -EFAULT;
  1131. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1132. goto out;
  1133. r = 0;
  1134. break;
  1135. }
  1136. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1137. u64 mce_cap;
  1138. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1139. r = -EFAULT;
  1140. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1141. goto out;
  1142. r = 0;
  1143. break;
  1144. }
  1145. default:
  1146. r = -EINVAL;
  1147. }
  1148. out:
  1149. return r;
  1150. }
  1151. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1152. {
  1153. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1154. kvm_request_guest_time_update(vcpu);
  1155. }
  1156. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1157. {
  1158. kvm_x86_ops->vcpu_put(vcpu);
  1159. kvm_put_guest_fpu(vcpu);
  1160. }
  1161. static int is_efer_nx(void)
  1162. {
  1163. unsigned long long efer = 0;
  1164. rdmsrl_safe(MSR_EFER, &efer);
  1165. return efer & EFER_NX;
  1166. }
  1167. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1168. {
  1169. int i;
  1170. struct kvm_cpuid_entry2 *e, *entry;
  1171. entry = NULL;
  1172. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1173. e = &vcpu->arch.cpuid_entries[i];
  1174. if (e->function == 0x80000001) {
  1175. entry = e;
  1176. break;
  1177. }
  1178. }
  1179. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1180. entry->edx &= ~(1 << 20);
  1181. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1182. }
  1183. }
  1184. /* when an old userspace process fills a new kernel module */
  1185. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1186. struct kvm_cpuid *cpuid,
  1187. struct kvm_cpuid_entry __user *entries)
  1188. {
  1189. int r, i;
  1190. struct kvm_cpuid_entry *cpuid_entries;
  1191. r = -E2BIG;
  1192. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1193. goto out;
  1194. r = -ENOMEM;
  1195. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1196. if (!cpuid_entries)
  1197. goto out;
  1198. r = -EFAULT;
  1199. if (copy_from_user(cpuid_entries, entries,
  1200. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1201. goto out_free;
  1202. for (i = 0; i < cpuid->nent; i++) {
  1203. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1204. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1205. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1206. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1207. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1208. vcpu->arch.cpuid_entries[i].index = 0;
  1209. vcpu->arch.cpuid_entries[i].flags = 0;
  1210. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1211. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1212. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1213. }
  1214. vcpu->arch.cpuid_nent = cpuid->nent;
  1215. cpuid_fix_nx_cap(vcpu);
  1216. r = 0;
  1217. kvm_apic_set_version(vcpu);
  1218. out_free:
  1219. vfree(cpuid_entries);
  1220. out:
  1221. return r;
  1222. }
  1223. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1224. struct kvm_cpuid2 *cpuid,
  1225. struct kvm_cpuid_entry2 __user *entries)
  1226. {
  1227. int r;
  1228. r = -E2BIG;
  1229. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1230. goto out;
  1231. r = -EFAULT;
  1232. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1233. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1234. goto out;
  1235. vcpu->arch.cpuid_nent = cpuid->nent;
  1236. kvm_apic_set_version(vcpu);
  1237. return 0;
  1238. out:
  1239. return r;
  1240. }
  1241. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1242. struct kvm_cpuid2 *cpuid,
  1243. struct kvm_cpuid_entry2 __user *entries)
  1244. {
  1245. int r;
  1246. r = -E2BIG;
  1247. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1248. goto out;
  1249. r = -EFAULT;
  1250. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1251. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1252. goto out;
  1253. return 0;
  1254. out:
  1255. cpuid->nent = vcpu->arch.cpuid_nent;
  1256. return r;
  1257. }
  1258. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1259. u32 index)
  1260. {
  1261. entry->function = function;
  1262. entry->index = index;
  1263. cpuid_count(entry->function, entry->index,
  1264. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1265. entry->flags = 0;
  1266. }
  1267. #define F(x) bit(X86_FEATURE_##x)
  1268. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1269. u32 index, int *nent, int maxnent)
  1270. {
  1271. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1272. #ifdef CONFIG_X86_64
  1273. unsigned f_lm = F(LM);
  1274. #else
  1275. unsigned f_lm = 0;
  1276. #endif
  1277. /* cpuid 1.edx */
  1278. const u32 kvm_supported_word0_x86_features =
  1279. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1280. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1281. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1282. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1283. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1284. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1285. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1286. 0 /* HTT, TM, Reserved, PBE */;
  1287. /* cpuid 0x80000001.edx */
  1288. const u32 kvm_supported_word1_x86_features =
  1289. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1290. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1291. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1292. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1293. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1294. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1295. F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
  1296. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1297. /* cpuid 1.ecx */
  1298. const u32 kvm_supported_word4_x86_features =
  1299. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1300. 0 /* DS-CPL, VMX, SMX, EST */ |
  1301. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1302. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1303. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1304. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1305. 0 /* Reserved, XSAVE, OSXSAVE */;
  1306. /* cpuid 0x80000001.ecx */
  1307. const u32 kvm_supported_word6_x86_features =
  1308. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1309. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1310. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1311. 0 /* SKINIT */ | 0 /* WDT */;
  1312. /* all calls to cpuid_count() should be made on the same cpu */
  1313. get_cpu();
  1314. do_cpuid_1_ent(entry, function, index);
  1315. ++*nent;
  1316. switch (function) {
  1317. case 0:
  1318. entry->eax = min(entry->eax, (u32)0xb);
  1319. break;
  1320. case 1:
  1321. entry->edx &= kvm_supported_word0_x86_features;
  1322. entry->ecx &= kvm_supported_word4_x86_features;
  1323. break;
  1324. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1325. * may return different values. This forces us to get_cpu() before
  1326. * issuing the first command, and also to emulate this annoying behavior
  1327. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1328. case 2: {
  1329. int t, times = entry->eax & 0xff;
  1330. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1331. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1332. for (t = 1; t < times && *nent < maxnent; ++t) {
  1333. do_cpuid_1_ent(&entry[t], function, 0);
  1334. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1335. ++*nent;
  1336. }
  1337. break;
  1338. }
  1339. /* function 4 and 0xb have additional index. */
  1340. case 4: {
  1341. int i, cache_type;
  1342. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1343. /* read more entries until cache_type is zero */
  1344. for (i = 1; *nent < maxnent; ++i) {
  1345. cache_type = entry[i - 1].eax & 0x1f;
  1346. if (!cache_type)
  1347. break;
  1348. do_cpuid_1_ent(&entry[i], function, i);
  1349. entry[i].flags |=
  1350. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1351. ++*nent;
  1352. }
  1353. break;
  1354. }
  1355. case 0xb: {
  1356. int i, level_type;
  1357. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1358. /* read more entries until level_type is zero */
  1359. for (i = 1; *nent < maxnent; ++i) {
  1360. level_type = entry[i - 1].ecx & 0xff00;
  1361. if (!level_type)
  1362. break;
  1363. do_cpuid_1_ent(&entry[i], function, i);
  1364. entry[i].flags |=
  1365. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1366. ++*nent;
  1367. }
  1368. break;
  1369. }
  1370. case 0x80000000:
  1371. entry->eax = min(entry->eax, 0x8000001a);
  1372. break;
  1373. case 0x80000001:
  1374. entry->edx &= kvm_supported_word1_x86_features;
  1375. entry->ecx &= kvm_supported_word6_x86_features;
  1376. break;
  1377. }
  1378. put_cpu();
  1379. }
  1380. #undef F
  1381. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1382. struct kvm_cpuid_entry2 __user *entries)
  1383. {
  1384. struct kvm_cpuid_entry2 *cpuid_entries;
  1385. int limit, nent = 0, r = -E2BIG;
  1386. u32 func;
  1387. if (cpuid->nent < 1)
  1388. goto out;
  1389. r = -ENOMEM;
  1390. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1391. if (!cpuid_entries)
  1392. goto out;
  1393. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1394. limit = cpuid_entries[0].eax;
  1395. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1396. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1397. &nent, cpuid->nent);
  1398. r = -E2BIG;
  1399. if (nent >= cpuid->nent)
  1400. goto out_free;
  1401. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1402. limit = cpuid_entries[nent - 1].eax;
  1403. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1404. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1405. &nent, cpuid->nent);
  1406. r = -E2BIG;
  1407. if (nent >= cpuid->nent)
  1408. goto out_free;
  1409. r = -EFAULT;
  1410. if (copy_to_user(entries, cpuid_entries,
  1411. nent * sizeof(struct kvm_cpuid_entry2)))
  1412. goto out_free;
  1413. cpuid->nent = nent;
  1414. r = 0;
  1415. out_free:
  1416. vfree(cpuid_entries);
  1417. out:
  1418. return r;
  1419. }
  1420. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1421. struct kvm_lapic_state *s)
  1422. {
  1423. vcpu_load(vcpu);
  1424. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1425. vcpu_put(vcpu);
  1426. return 0;
  1427. }
  1428. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1429. struct kvm_lapic_state *s)
  1430. {
  1431. vcpu_load(vcpu);
  1432. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1433. kvm_apic_post_state_restore(vcpu);
  1434. vcpu_put(vcpu);
  1435. return 0;
  1436. }
  1437. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1438. struct kvm_interrupt *irq)
  1439. {
  1440. if (irq->irq < 0 || irq->irq >= 256)
  1441. return -EINVAL;
  1442. if (irqchip_in_kernel(vcpu->kvm))
  1443. return -ENXIO;
  1444. vcpu_load(vcpu);
  1445. kvm_queue_interrupt(vcpu, irq->irq, false);
  1446. vcpu_put(vcpu);
  1447. return 0;
  1448. }
  1449. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1450. {
  1451. vcpu_load(vcpu);
  1452. kvm_inject_nmi(vcpu);
  1453. vcpu_put(vcpu);
  1454. return 0;
  1455. }
  1456. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1457. struct kvm_tpr_access_ctl *tac)
  1458. {
  1459. if (tac->flags)
  1460. return -EINVAL;
  1461. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1462. return 0;
  1463. }
  1464. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1465. u64 mcg_cap)
  1466. {
  1467. int r;
  1468. unsigned bank_num = mcg_cap & 0xff, bank;
  1469. r = -EINVAL;
  1470. if (!bank_num)
  1471. goto out;
  1472. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1473. goto out;
  1474. r = 0;
  1475. vcpu->arch.mcg_cap = mcg_cap;
  1476. /* Init IA32_MCG_CTL to all 1s */
  1477. if (mcg_cap & MCG_CTL_P)
  1478. vcpu->arch.mcg_ctl = ~(u64)0;
  1479. /* Init IA32_MCi_CTL to all 1s */
  1480. for (bank = 0; bank < bank_num; bank++)
  1481. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1482. out:
  1483. return r;
  1484. }
  1485. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1486. struct kvm_x86_mce *mce)
  1487. {
  1488. u64 mcg_cap = vcpu->arch.mcg_cap;
  1489. unsigned bank_num = mcg_cap & 0xff;
  1490. u64 *banks = vcpu->arch.mce_banks;
  1491. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1492. return -EINVAL;
  1493. /*
  1494. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1495. * reporting is disabled
  1496. */
  1497. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1498. vcpu->arch.mcg_ctl != ~(u64)0)
  1499. return 0;
  1500. banks += 4 * mce->bank;
  1501. /*
  1502. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1503. * reporting is disabled for the bank
  1504. */
  1505. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1506. return 0;
  1507. if (mce->status & MCI_STATUS_UC) {
  1508. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1509. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1510. printk(KERN_DEBUG "kvm: set_mce: "
  1511. "injects mce exception while "
  1512. "previous one is in progress!\n");
  1513. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1514. return 0;
  1515. }
  1516. if (banks[1] & MCI_STATUS_VAL)
  1517. mce->status |= MCI_STATUS_OVER;
  1518. banks[2] = mce->addr;
  1519. banks[3] = mce->misc;
  1520. vcpu->arch.mcg_status = mce->mcg_status;
  1521. banks[1] = mce->status;
  1522. kvm_queue_exception(vcpu, MC_VECTOR);
  1523. } else if (!(banks[1] & MCI_STATUS_VAL)
  1524. || !(banks[1] & MCI_STATUS_UC)) {
  1525. if (banks[1] & MCI_STATUS_VAL)
  1526. mce->status |= MCI_STATUS_OVER;
  1527. banks[2] = mce->addr;
  1528. banks[3] = mce->misc;
  1529. banks[1] = mce->status;
  1530. } else
  1531. banks[1] |= MCI_STATUS_OVER;
  1532. return 0;
  1533. }
  1534. long kvm_arch_vcpu_ioctl(struct file *filp,
  1535. unsigned int ioctl, unsigned long arg)
  1536. {
  1537. struct kvm_vcpu *vcpu = filp->private_data;
  1538. void __user *argp = (void __user *)arg;
  1539. int r;
  1540. struct kvm_lapic_state *lapic = NULL;
  1541. switch (ioctl) {
  1542. case KVM_GET_LAPIC: {
  1543. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1544. r = -ENOMEM;
  1545. if (!lapic)
  1546. goto out;
  1547. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1548. if (r)
  1549. goto out;
  1550. r = -EFAULT;
  1551. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1552. goto out;
  1553. r = 0;
  1554. break;
  1555. }
  1556. case KVM_SET_LAPIC: {
  1557. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1558. r = -ENOMEM;
  1559. if (!lapic)
  1560. goto out;
  1561. r = -EFAULT;
  1562. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1563. goto out;
  1564. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1565. if (r)
  1566. goto out;
  1567. r = 0;
  1568. break;
  1569. }
  1570. case KVM_INTERRUPT: {
  1571. struct kvm_interrupt irq;
  1572. r = -EFAULT;
  1573. if (copy_from_user(&irq, argp, sizeof irq))
  1574. goto out;
  1575. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1576. if (r)
  1577. goto out;
  1578. r = 0;
  1579. break;
  1580. }
  1581. case KVM_NMI: {
  1582. r = kvm_vcpu_ioctl_nmi(vcpu);
  1583. if (r)
  1584. goto out;
  1585. r = 0;
  1586. break;
  1587. }
  1588. case KVM_SET_CPUID: {
  1589. struct kvm_cpuid __user *cpuid_arg = argp;
  1590. struct kvm_cpuid cpuid;
  1591. r = -EFAULT;
  1592. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1593. goto out;
  1594. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1595. if (r)
  1596. goto out;
  1597. break;
  1598. }
  1599. case KVM_SET_CPUID2: {
  1600. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1601. struct kvm_cpuid2 cpuid;
  1602. r = -EFAULT;
  1603. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1604. goto out;
  1605. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1606. cpuid_arg->entries);
  1607. if (r)
  1608. goto out;
  1609. break;
  1610. }
  1611. case KVM_GET_CPUID2: {
  1612. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1613. struct kvm_cpuid2 cpuid;
  1614. r = -EFAULT;
  1615. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1616. goto out;
  1617. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1618. cpuid_arg->entries);
  1619. if (r)
  1620. goto out;
  1621. r = -EFAULT;
  1622. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1623. goto out;
  1624. r = 0;
  1625. break;
  1626. }
  1627. case KVM_GET_MSRS:
  1628. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1629. break;
  1630. case KVM_SET_MSRS:
  1631. r = msr_io(vcpu, argp, do_set_msr, 0);
  1632. break;
  1633. case KVM_TPR_ACCESS_REPORTING: {
  1634. struct kvm_tpr_access_ctl tac;
  1635. r = -EFAULT;
  1636. if (copy_from_user(&tac, argp, sizeof tac))
  1637. goto out;
  1638. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1639. if (r)
  1640. goto out;
  1641. r = -EFAULT;
  1642. if (copy_to_user(argp, &tac, sizeof tac))
  1643. goto out;
  1644. r = 0;
  1645. break;
  1646. };
  1647. case KVM_SET_VAPIC_ADDR: {
  1648. struct kvm_vapic_addr va;
  1649. r = -EINVAL;
  1650. if (!irqchip_in_kernel(vcpu->kvm))
  1651. goto out;
  1652. r = -EFAULT;
  1653. if (copy_from_user(&va, argp, sizeof va))
  1654. goto out;
  1655. r = 0;
  1656. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1657. break;
  1658. }
  1659. case KVM_X86_SETUP_MCE: {
  1660. u64 mcg_cap;
  1661. r = -EFAULT;
  1662. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1663. goto out;
  1664. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1665. break;
  1666. }
  1667. case KVM_X86_SET_MCE: {
  1668. struct kvm_x86_mce mce;
  1669. r = -EFAULT;
  1670. if (copy_from_user(&mce, argp, sizeof mce))
  1671. goto out;
  1672. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1673. break;
  1674. }
  1675. default:
  1676. r = -EINVAL;
  1677. }
  1678. out:
  1679. kfree(lapic);
  1680. return r;
  1681. }
  1682. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1683. {
  1684. int ret;
  1685. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1686. return -1;
  1687. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1688. return ret;
  1689. }
  1690. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1691. u32 kvm_nr_mmu_pages)
  1692. {
  1693. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1694. return -EINVAL;
  1695. down_write(&kvm->slots_lock);
  1696. spin_lock(&kvm->mmu_lock);
  1697. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1698. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1699. spin_unlock(&kvm->mmu_lock);
  1700. up_write(&kvm->slots_lock);
  1701. return 0;
  1702. }
  1703. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1704. {
  1705. return kvm->arch.n_alloc_mmu_pages;
  1706. }
  1707. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1708. {
  1709. int i;
  1710. struct kvm_mem_alias *alias;
  1711. for (i = 0; i < kvm->arch.naliases; ++i) {
  1712. alias = &kvm->arch.aliases[i];
  1713. if (gfn >= alias->base_gfn
  1714. && gfn < alias->base_gfn + alias->npages)
  1715. return alias->target_gfn + gfn - alias->base_gfn;
  1716. }
  1717. return gfn;
  1718. }
  1719. /*
  1720. * Set a new alias region. Aliases map a portion of physical memory into
  1721. * another portion. This is useful for memory windows, for example the PC
  1722. * VGA region.
  1723. */
  1724. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1725. struct kvm_memory_alias *alias)
  1726. {
  1727. int r, n;
  1728. struct kvm_mem_alias *p;
  1729. r = -EINVAL;
  1730. /* General sanity checks */
  1731. if (alias->memory_size & (PAGE_SIZE - 1))
  1732. goto out;
  1733. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1734. goto out;
  1735. if (alias->slot >= KVM_ALIAS_SLOTS)
  1736. goto out;
  1737. if (alias->guest_phys_addr + alias->memory_size
  1738. < alias->guest_phys_addr)
  1739. goto out;
  1740. if (alias->target_phys_addr + alias->memory_size
  1741. < alias->target_phys_addr)
  1742. goto out;
  1743. down_write(&kvm->slots_lock);
  1744. spin_lock(&kvm->mmu_lock);
  1745. p = &kvm->arch.aliases[alias->slot];
  1746. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1747. p->npages = alias->memory_size >> PAGE_SHIFT;
  1748. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1749. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1750. if (kvm->arch.aliases[n - 1].npages)
  1751. break;
  1752. kvm->arch.naliases = n;
  1753. spin_unlock(&kvm->mmu_lock);
  1754. kvm_mmu_zap_all(kvm);
  1755. up_write(&kvm->slots_lock);
  1756. return 0;
  1757. out:
  1758. return r;
  1759. }
  1760. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1761. {
  1762. int r;
  1763. r = 0;
  1764. switch (chip->chip_id) {
  1765. case KVM_IRQCHIP_PIC_MASTER:
  1766. memcpy(&chip->chip.pic,
  1767. &pic_irqchip(kvm)->pics[0],
  1768. sizeof(struct kvm_pic_state));
  1769. break;
  1770. case KVM_IRQCHIP_PIC_SLAVE:
  1771. memcpy(&chip->chip.pic,
  1772. &pic_irqchip(kvm)->pics[1],
  1773. sizeof(struct kvm_pic_state));
  1774. break;
  1775. case KVM_IRQCHIP_IOAPIC:
  1776. memcpy(&chip->chip.ioapic,
  1777. ioapic_irqchip(kvm),
  1778. sizeof(struct kvm_ioapic_state));
  1779. break;
  1780. default:
  1781. r = -EINVAL;
  1782. break;
  1783. }
  1784. return r;
  1785. }
  1786. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1787. {
  1788. int r;
  1789. r = 0;
  1790. switch (chip->chip_id) {
  1791. case KVM_IRQCHIP_PIC_MASTER:
  1792. spin_lock(&pic_irqchip(kvm)->lock);
  1793. memcpy(&pic_irqchip(kvm)->pics[0],
  1794. &chip->chip.pic,
  1795. sizeof(struct kvm_pic_state));
  1796. spin_unlock(&pic_irqchip(kvm)->lock);
  1797. break;
  1798. case KVM_IRQCHIP_PIC_SLAVE:
  1799. spin_lock(&pic_irqchip(kvm)->lock);
  1800. memcpy(&pic_irqchip(kvm)->pics[1],
  1801. &chip->chip.pic,
  1802. sizeof(struct kvm_pic_state));
  1803. spin_unlock(&pic_irqchip(kvm)->lock);
  1804. break;
  1805. case KVM_IRQCHIP_IOAPIC:
  1806. mutex_lock(&kvm->irq_lock);
  1807. memcpy(ioapic_irqchip(kvm),
  1808. &chip->chip.ioapic,
  1809. sizeof(struct kvm_ioapic_state));
  1810. mutex_unlock(&kvm->irq_lock);
  1811. break;
  1812. default:
  1813. r = -EINVAL;
  1814. break;
  1815. }
  1816. kvm_pic_update_irq(pic_irqchip(kvm));
  1817. return r;
  1818. }
  1819. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1820. {
  1821. int r = 0;
  1822. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1823. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1824. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1825. return r;
  1826. }
  1827. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1828. {
  1829. int r = 0;
  1830. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1831. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1832. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1833. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1834. return r;
  1835. }
  1836. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1837. struct kvm_reinject_control *control)
  1838. {
  1839. if (!kvm->arch.vpit)
  1840. return -ENXIO;
  1841. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1842. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1843. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1844. return 0;
  1845. }
  1846. /*
  1847. * Get (and clear) the dirty memory log for a memory slot.
  1848. */
  1849. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1850. struct kvm_dirty_log *log)
  1851. {
  1852. int r;
  1853. int n;
  1854. struct kvm_memory_slot *memslot;
  1855. int is_dirty = 0;
  1856. down_write(&kvm->slots_lock);
  1857. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1858. if (r)
  1859. goto out;
  1860. /* If nothing is dirty, don't bother messing with page tables. */
  1861. if (is_dirty) {
  1862. spin_lock(&kvm->mmu_lock);
  1863. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1864. spin_unlock(&kvm->mmu_lock);
  1865. kvm_flush_remote_tlbs(kvm);
  1866. memslot = &kvm->memslots[log->slot];
  1867. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1868. memset(memslot->dirty_bitmap, 0, n);
  1869. }
  1870. r = 0;
  1871. out:
  1872. up_write(&kvm->slots_lock);
  1873. return r;
  1874. }
  1875. long kvm_arch_vm_ioctl(struct file *filp,
  1876. unsigned int ioctl, unsigned long arg)
  1877. {
  1878. struct kvm *kvm = filp->private_data;
  1879. void __user *argp = (void __user *)arg;
  1880. int r = -EINVAL;
  1881. /*
  1882. * This union makes it completely explicit to gcc-3.x
  1883. * that these two variables' stack usage should be
  1884. * combined, not added together.
  1885. */
  1886. union {
  1887. struct kvm_pit_state ps;
  1888. struct kvm_memory_alias alias;
  1889. struct kvm_pit_config pit_config;
  1890. } u;
  1891. switch (ioctl) {
  1892. case KVM_SET_TSS_ADDR:
  1893. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1894. if (r < 0)
  1895. goto out;
  1896. break;
  1897. case KVM_SET_MEMORY_REGION: {
  1898. struct kvm_memory_region kvm_mem;
  1899. struct kvm_userspace_memory_region kvm_userspace_mem;
  1900. r = -EFAULT;
  1901. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1902. goto out;
  1903. kvm_userspace_mem.slot = kvm_mem.slot;
  1904. kvm_userspace_mem.flags = kvm_mem.flags;
  1905. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1906. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1907. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1908. if (r)
  1909. goto out;
  1910. break;
  1911. }
  1912. case KVM_SET_NR_MMU_PAGES:
  1913. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1914. if (r)
  1915. goto out;
  1916. break;
  1917. case KVM_GET_NR_MMU_PAGES:
  1918. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1919. break;
  1920. case KVM_SET_MEMORY_ALIAS:
  1921. r = -EFAULT;
  1922. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1923. goto out;
  1924. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1925. if (r)
  1926. goto out;
  1927. break;
  1928. case KVM_CREATE_IRQCHIP:
  1929. r = -ENOMEM;
  1930. kvm->arch.vpic = kvm_create_pic(kvm);
  1931. if (kvm->arch.vpic) {
  1932. r = kvm_ioapic_init(kvm);
  1933. if (r) {
  1934. kfree(kvm->arch.vpic);
  1935. kvm->arch.vpic = NULL;
  1936. goto out;
  1937. }
  1938. } else
  1939. goto out;
  1940. r = kvm_setup_default_irq_routing(kvm);
  1941. if (r) {
  1942. kfree(kvm->arch.vpic);
  1943. kfree(kvm->arch.vioapic);
  1944. goto out;
  1945. }
  1946. break;
  1947. case KVM_CREATE_PIT:
  1948. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  1949. goto create_pit;
  1950. case KVM_CREATE_PIT2:
  1951. r = -EFAULT;
  1952. if (copy_from_user(&u.pit_config, argp,
  1953. sizeof(struct kvm_pit_config)))
  1954. goto out;
  1955. create_pit:
  1956. down_write(&kvm->slots_lock);
  1957. r = -EEXIST;
  1958. if (kvm->arch.vpit)
  1959. goto create_pit_unlock;
  1960. r = -ENOMEM;
  1961. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  1962. if (kvm->arch.vpit)
  1963. r = 0;
  1964. create_pit_unlock:
  1965. up_write(&kvm->slots_lock);
  1966. break;
  1967. case KVM_IRQ_LINE_STATUS:
  1968. case KVM_IRQ_LINE: {
  1969. struct kvm_irq_level irq_event;
  1970. r = -EFAULT;
  1971. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1972. goto out;
  1973. if (irqchip_in_kernel(kvm)) {
  1974. __s32 status;
  1975. mutex_lock(&kvm->irq_lock);
  1976. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1977. irq_event.irq, irq_event.level);
  1978. mutex_unlock(&kvm->irq_lock);
  1979. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1980. irq_event.status = status;
  1981. if (copy_to_user(argp, &irq_event,
  1982. sizeof irq_event))
  1983. goto out;
  1984. }
  1985. r = 0;
  1986. }
  1987. break;
  1988. }
  1989. case KVM_GET_IRQCHIP: {
  1990. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1991. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1992. r = -ENOMEM;
  1993. if (!chip)
  1994. goto out;
  1995. r = -EFAULT;
  1996. if (copy_from_user(chip, argp, sizeof *chip))
  1997. goto get_irqchip_out;
  1998. r = -ENXIO;
  1999. if (!irqchip_in_kernel(kvm))
  2000. goto get_irqchip_out;
  2001. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2002. if (r)
  2003. goto get_irqchip_out;
  2004. r = -EFAULT;
  2005. if (copy_to_user(argp, chip, sizeof *chip))
  2006. goto get_irqchip_out;
  2007. r = 0;
  2008. get_irqchip_out:
  2009. kfree(chip);
  2010. if (r)
  2011. goto out;
  2012. break;
  2013. }
  2014. case KVM_SET_IRQCHIP: {
  2015. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2016. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2017. r = -ENOMEM;
  2018. if (!chip)
  2019. goto out;
  2020. r = -EFAULT;
  2021. if (copy_from_user(chip, argp, sizeof *chip))
  2022. goto set_irqchip_out;
  2023. r = -ENXIO;
  2024. if (!irqchip_in_kernel(kvm))
  2025. goto set_irqchip_out;
  2026. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2027. if (r)
  2028. goto set_irqchip_out;
  2029. r = 0;
  2030. set_irqchip_out:
  2031. kfree(chip);
  2032. if (r)
  2033. goto out;
  2034. break;
  2035. }
  2036. case KVM_GET_PIT: {
  2037. r = -EFAULT;
  2038. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2039. goto out;
  2040. r = -ENXIO;
  2041. if (!kvm->arch.vpit)
  2042. goto out;
  2043. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2044. if (r)
  2045. goto out;
  2046. r = -EFAULT;
  2047. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2048. goto out;
  2049. r = 0;
  2050. break;
  2051. }
  2052. case KVM_SET_PIT: {
  2053. r = -EFAULT;
  2054. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2055. goto out;
  2056. r = -ENXIO;
  2057. if (!kvm->arch.vpit)
  2058. goto out;
  2059. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2060. if (r)
  2061. goto out;
  2062. r = 0;
  2063. break;
  2064. }
  2065. case KVM_REINJECT_CONTROL: {
  2066. struct kvm_reinject_control control;
  2067. r = -EFAULT;
  2068. if (copy_from_user(&control, argp, sizeof(control)))
  2069. goto out;
  2070. r = kvm_vm_ioctl_reinject(kvm, &control);
  2071. if (r)
  2072. goto out;
  2073. r = 0;
  2074. break;
  2075. }
  2076. default:
  2077. ;
  2078. }
  2079. out:
  2080. return r;
  2081. }
  2082. static void kvm_init_msr_list(void)
  2083. {
  2084. u32 dummy[2];
  2085. unsigned i, j;
  2086. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2087. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2088. continue;
  2089. if (j < i)
  2090. msrs_to_save[j] = msrs_to_save[i];
  2091. j++;
  2092. }
  2093. num_msrs_to_save = j;
  2094. }
  2095. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2096. const void *v)
  2097. {
  2098. if (vcpu->arch.apic &&
  2099. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2100. return 0;
  2101. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2102. }
  2103. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2104. {
  2105. if (vcpu->arch.apic &&
  2106. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2107. return 0;
  2108. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2109. }
  2110. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2111. struct kvm_vcpu *vcpu)
  2112. {
  2113. void *data = val;
  2114. int r = X86EMUL_CONTINUE;
  2115. while (bytes) {
  2116. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2117. unsigned offset = addr & (PAGE_SIZE-1);
  2118. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2119. int ret;
  2120. if (gpa == UNMAPPED_GVA) {
  2121. r = X86EMUL_PROPAGATE_FAULT;
  2122. goto out;
  2123. }
  2124. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2125. if (ret < 0) {
  2126. r = X86EMUL_UNHANDLEABLE;
  2127. goto out;
  2128. }
  2129. bytes -= toread;
  2130. data += toread;
  2131. addr += toread;
  2132. }
  2133. out:
  2134. return r;
  2135. }
  2136. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2137. struct kvm_vcpu *vcpu)
  2138. {
  2139. void *data = val;
  2140. int r = X86EMUL_CONTINUE;
  2141. while (bytes) {
  2142. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2143. unsigned offset = addr & (PAGE_SIZE-1);
  2144. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2145. int ret;
  2146. if (gpa == UNMAPPED_GVA) {
  2147. r = X86EMUL_PROPAGATE_FAULT;
  2148. goto out;
  2149. }
  2150. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2151. if (ret < 0) {
  2152. r = X86EMUL_UNHANDLEABLE;
  2153. goto out;
  2154. }
  2155. bytes -= towrite;
  2156. data += towrite;
  2157. addr += towrite;
  2158. }
  2159. out:
  2160. return r;
  2161. }
  2162. static int emulator_read_emulated(unsigned long addr,
  2163. void *val,
  2164. unsigned int bytes,
  2165. struct kvm_vcpu *vcpu)
  2166. {
  2167. gpa_t gpa;
  2168. if (vcpu->mmio_read_completed) {
  2169. memcpy(val, vcpu->mmio_data, bytes);
  2170. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2171. vcpu->mmio_phys_addr, *(u64 *)val);
  2172. vcpu->mmio_read_completed = 0;
  2173. return X86EMUL_CONTINUE;
  2174. }
  2175. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2176. /* For APIC access vmexit */
  2177. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2178. goto mmio;
  2179. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2180. == X86EMUL_CONTINUE)
  2181. return X86EMUL_CONTINUE;
  2182. if (gpa == UNMAPPED_GVA)
  2183. return X86EMUL_PROPAGATE_FAULT;
  2184. mmio:
  2185. /*
  2186. * Is this MMIO handled locally?
  2187. */
  2188. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2189. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2190. return X86EMUL_CONTINUE;
  2191. }
  2192. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2193. vcpu->mmio_needed = 1;
  2194. vcpu->mmio_phys_addr = gpa;
  2195. vcpu->mmio_size = bytes;
  2196. vcpu->mmio_is_write = 0;
  2197. return X86EMUL_UNHANDLEABLE;
  2198. }
  2199. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2200. const void *val, int bytes)
  2201. {
  2202. int ret;
  2203. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2204. if (ret < 0)
  2205. return 0;
  2206. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2207. return 1;
  2208. }
  2209. static int emulator_write_emulated_onepage(unsigned long addr,
  2210. const void *val,
  2211. unsigned int bytes,
  2212. struct kvm_vcpu *vcpu)
  2213. {
  2214. gpa_t gpa;
  2215. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2216. if (gpa == UNMAPPED_GVA) {
  2217. kvm_inject_page_fault(vcpu, addr, 2);
  2218. return X86EMUL_PROPAGATE_FAULT;
  2219. }
  2220. /* For APIC access vmexit */
  2221. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2222. goto mmio;
  2223. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2224. return X86EMUL_CONTINUE;
  2225. mmio:
  2226. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2227. /*
  2228. * Is this MMIO handled locally?
  2229. */
  2230. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2231. return X86EMUL_CONTINUE;
  2232. vcpu->mmio_needed = 1;
  2233. vcpu->mmio_phys_addr = gpa;
  2234. vcpu->mmio_size = bytes;
  2235. vcpu->mmio_is_write = 1;
  2236. memcpy(vcpu->mmio_data, val, bytes);
  2237. return X86EMUL_CONTINUE;
  2238. }
  2239. int emulator_write_emulated(unsigned long addr,
  2240. const void *val,
  2241. unsigned int bytes,
  2242. struct kvm_vcpu *vcpu)
  2243. {
  2244. /* Crossing a page boundary? */
  2245. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2246. int rc, now;
  2247. now = -addr & ~PAGE_MASK;
  2248. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2249. if (rc != X86EMUL_CONTINUE)
  2250. return rc;
  2251. addr += now;
  2252. val += now;
  2253. bytes -= now;
  2254. }
  2255. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2256. }
  2257. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2258. static int emulator_cmpxchg_emulated(unsigned long addr,
  2259. const void *old,
  2260. const void *new,
  2261. unsigned int bytes,
  2262. struct kvm_vcpu *vcpu)
  2263. {
  2264. static int reported;
  2265. if (!reported) {
  2266. reported = 1;
  2267. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  2268. }
  2269. #ifndef CONFIG_X86_64
  2270. /* guests cmpxchg8b have to be emulated atomically */
  2271. if (bytes == 8) {
  2272. gpa_t gpa;
  2273. struct page *page;
  2274. char *kaddr;
  2275. u64 val;
  2276. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2277. if (gpa == UNMAPPED_GVA ||
  2278. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2279. goto emul_write;
  2280. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2281. goto emul_write;
  2282. val = *(u64 *)new;
  2283. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2284. kaddr = kmap_atomic(page, KM_USER0);
  2285. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2286. kunmap_atomic(kaddr, KM_USER0);
  2287. kvm_release_page_dirty(page);
  2288. }
  2289. emul_write:
  2290. #endif
  2291. return emulator_write_emulated(addr, new, bytes, vcpu);
  2292. }
  2293. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2294. {
  2295. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2296. }
  2297. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2298. {
  2299. kvm_mmu_invlpg(vcpu, address);
  2300. return X86EMUL_CONTINUE;
  2301. }
  2302. int emulate_clts(struct kvm_vcpu *vcpu)
  2303. {
  2304. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2305. return X86EMUL_CONTINUE;
  2306. }
  2307. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2308. {
  2309. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2310. switch (dr) {
  2311. case 0 ... 3:
  2312. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2313. return X86EMUL_CONTINUE;
  2314. default:
  2315. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2316. return X86EMUL_UNHANDLEABLE;
  2317. }
  2318. }
  2319. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2320. {
  2321. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2322. int exception;
  2323. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2324. if (exception) {
  2325. /* FIXME: better handling */
  2326. return X86EMUL_UNHANDLEABLE;
  2327. }
  2328. return X86EMUL_CONTINUE;
  2329. }
  2330. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2331. {
  2332. u8 opcodes[4];
  2333. unsigned long rip = kvm_rip_read(vcpu);
  2334. unsigned long rip_linear;
  2335. if (!printk_ratelimit())
  2336. return;
  2337. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2338. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2339. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2340. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2341. }
  2342. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2343. static struct x86_emulate_ops emulate_ops = {
  2344. .read_std = kvm_read_guest_virt,
  2345. .read_emulated = emulator_read_emulated,
  2346. .write_emulated = emulator_write_emulated,
  2347. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2348. };
  2349. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2350. {
  2351. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2352. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2353. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2354. vcpu->arch.regs_dirty = ~0;
  2355. }
  2356. int emulate_instruction(struct kvm_vcpu *vcpu,
  2357. struct kvm_run *run,
  2358. unsigned long cr2,
  2359. u16 error_code,
  2360. int emulation_type)
  2361. {
  2362. int r, shadow_mask;
  2363. struct decode_cache *c;
  2364. kvm_clear_exception_queue(vcpu);
  2365. vcpu->arch.mmio_fault_cr2 = cr2;
  2366. /*
  2367. * TODO: fix x86_emulate.c to use guest_read/write_register
  2368. * instead of direct ->regs accesses, can save hundred cycles
  2369. * on Intel for instructions that don't read/change RSP, for
  2370. * for example.
  2371. */
  2372. cache_all_regs(vcpu);
  2373. vcpu->mmio_is_write = 0;
  2374. vcpu->arch.pio.string = 0;
  2375. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2376. int cs_db, cs_l;
  2377. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2378. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2379. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2380. vcpu->arch.emulate_ctxt.mode =
  2381. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2382. ? X86EMUL_MODE_REAL : cs_l
  2383. ? X86EMUL_MODE_PROT64 : cs_db
  2384. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2385. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2386. /* Only allow emulation of specific instructions on #UD
  2387. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2388. c = &vcpu->arch.emulate_ctxt.decode;
  2389. if (emulation_type & EMULTYPE_TRAP_UD) {
  2390. if (!c->twobyte)
  2391. return EMULATE_FAIL;
  2392. switch (c->b) {
  2393. case 0x01: /* VMMCALL */
  2394. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2395. return EMULATE_FAIL;
  2396. break;
  2397. case 0x34: /* sysenter */
  2398. case 0x35: /* sysexit */
  2399. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2400. return EMULATE_FAIL;
  2401. break;
  2402. case 0x05: /* syscall */
  2403. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2404. return EMULATE_FAIL;
  2405. break;
  2406. default:
  2407. return EMULATE_FAIL;
  2408. }
  2409. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2410. return EMULATE_FAIL;
  2411. }
  2412. ++vcpu->stat.insn_emulation;
  2413. if (r) {
  2414. ++vcpu->stat.insn_emulation_fail;
  2415. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2416. return EMULATE_DONE;
  2417. return EMULATE_FAIL;
  2418. }
  2419. }
  2420. if (emulation_type & EMULTYPE_SKIP) {
  2421. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2422. return EMULATE_DONE;
  2423. }
  2424. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2425. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2426. if (r == 0)
  2427. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2428. if (vcpu->arch.pio.string)
  2429. return EMULATE_DO_MMIO;
  2430. if ((r || vcpu->mmio_is_write) && run) {
  2431. run->exit_reason = KVM_EXIT_MMIO;
  2432. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2433. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2434. run->mmio.len = vcpu->mmio_size;
  2435. run->mmio.is_write = vcpu->mmio_is_write;
  2436. }
  2437. if (r) {
  2438. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2439. return EMULATE_DONE;
  2440. if (!vcpu->mmio_needed) {
  2441. kvm_report_emulation_failure(vcpu, "mmio");
  2442. return EMULATE_FAIL;
  2443. }
  2444. return EMULATE_DO_MMIO;
  2445. }
  2446. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2447. if (vcpu->mmio_is_write) {
  2448. vcpu->mmio_needed = 0;
  2449. return EMULATE_DO_MMIO;
  2450. }
  2451. return EMULATE_DONE;
  2452. }
  2453. EXPORT_SYMBOL_GPL(emulate_instruction);
  2454. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2455. {
  2456. void *p = vcpu->arch.pio_data;
  2457. gva_t q = vcpu->arch.pio.guest_gva;
  2458. unsigned bytes;
  2459. int ret;
  2460. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2461. if (vcpu->arch.pio.in)
  2462. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2463. else
  2464. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2465. return ret;
  2466. }
  2467. int complete_pio(struct kvm_vcpu *vcpu)
  2468. {
  2469. struct kvm_pio_request *io = &vcpu->arch.pio;
  2470. long delta;
  2471. int r;
  2472. unsigned long val;
  2473. if (!io->string) {
  2474. if (io->in) {
  2475. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2476. memcpy(&val, vcpu->arch.pio_data, io->size);
  2477. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2478. }
  2479. } else {
  2480. if (io->in) {
  2481. r = pio_copy_data(vcpu);
  2482. if (r)
  2483. return r;
  2484. }
  2485. delta = 1;
  2486. if (io->rep) {
  2487. delta *= io->cur_count;
  2488. /*
  2489. * The size of the register should really depend on
  2490. * current address size.
  2491. */
  2492. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2493. val -= delta;
  2494. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2495. }
  2496. if (io->down)
  2497. delta = -delta;
  2498. delta *= io->size;
  2499. if (io->in) {
  2500. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2501. val += delta;
  2502. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2503. } else {
  2504. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2505. val += delta;
  2506. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2507. }
  2508. }
  2509. io->count -= io->cur_count;
  2510. io->cur_count = 0;
  2511. return 0;
  2512. }
  2513. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2514. {
  2515. /* TODO: String I/O for in kernel device */
  2516. int r;
  2517. if (vcpu->arch.pio.in)
  2518. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2519. vcpu->arch.pio.size, pd);
  2520. else
  2521. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2522. vcpu->arch.pio.size, pd);
  2523. return r;
  2524. }
  2525. static int pio_string_write(struct kvm_vcpu *vcpu)
  2526. {
  2527. struct kvm_pio_request *io = &vcpu->arch.pio;
  2528. void *pd = vcpu->arch.pio_data;
  2529. int i, r = 0;
  2530. for (i = 0; i < io->cur_count; i++) {
  2531. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2532. io->port, io->size, pd)) {
  2533. r = -EOPNOTSUPP;
  2534. break;
  2535. }
  2536. pd += io->size;
  2537. }
  2538. return r;
  2539. }
  2540. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2541. int size, unsigned port)
  2542. {
  2543. unsigned long val;
  2544. vcpu->run->exit_reason = KVM_EXIT_IO;
  2545. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2546. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2547. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2548. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2549. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2550. vcpu->arch.pio.in = in;
  2551. vcpu->arch.pio.string = 0;
  2552. vcpu->arch.pio.down = 0;
  2553. vcpu->arch.pio.rep = 0;
  2554. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2555. size, 1);
  2556. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2557. memcpy(vcpu->arch.pio_data, &val, 4);
  2558. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2559. complete_pio(vcpu);
  2560. return 1;
  2561. }
  2562. return 0;
  2563. }
  2564. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2565. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2566. int size, unsigned long count, int down,
  2567. gva_t address, int rep, unsigned port)
  2568. {
  2569. unsigned now, in_page;
  2570. int ret = 0;
  2571. vcpu->run->exit_reason = KVM_EXIT_IO;
  2572. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2573. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2574. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2575. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2576. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2577. vcpu->arch.pio.in = in;
  2578. vcpu->arch.pio.string = 1;
  2579. vcpu->arch.pio.down = down;
  2580. vcpu->arch.pio.rep = rep;
  2581. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2582. size, count);
  2583. if (!count) {
  2584. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2585. return 1;
  2586. }
  2587. if (!down)
  2588. in_page = PAGE_SIZE - offset_in_page(address);
  2589. else
  2590. in_page = offset_in_page(address) + size;
  2591. now = min(count, (unsigned long)in_page / size);
  2592. if (!now)
  2593. now = 1;
  2594. if (down) {
  2595. /*
  2596. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2597. */
  2598. pr_unimpl(vcpu, "guest string pio down\n");
  2599. kvm_inject_gp(vcpu, 0);
  2600. return 1;
  2601. }
  2602. vcpu->run->io.count = now;
  2603. vcpu->arch.pio.cur_count = now;
  2604. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2605. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2606. vcpu->arch.pio.guest_gva = address;
  2607. if (!vcpu->arch.pio.in) {
  2608. /* string PIO write */
  2609. ret = pio_copy_data(vcpu);
  2610. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2611. kvm_inject_gp(vcpu, 0);
  2612. return 1;
  2613. }
  2614. if (ret == 0 && !pio_string_write(vcpu)) {
  2615. complete_pio(vcpu);
  2616. if (vcpu->arch.pio.count == 0)
  2617. ret = 1;
  2618. }
  2619. }
  2620. /* no string PIO read support yet */
  2621. return ret;
  2622. }
  2623. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2624. static void bounce_off(void *info)
  2625. {
  2626. /* nothing */
  2627. }
  2628. static unsigned int ref_freq;
  2629. static unsigned long tsc_khz_ref;
  2630. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2631. void *data)
  2632. {
  2633. struct cpufreq_freqs *freq = data;
  2634. struct kvm *kvm;
  2635. struct kvm_vcpu *vcpu;
  2636. int i, send_ipi = 0;
  2637. if (!ref_freq)
  2638. ref_freq = freq->old;
  2639. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2640. return 0;
  2641. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2642. return 0;
  2643. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2644. spin_lock(&kvm_lock);
  2645. list_for_each_entry(kvm, &vm_list, vm_list) {
  2646. kvm_for_each_vcpu(i, vcpu, kvm) {
  2647. if (vcpu->cpu != freq->cpu)
  2648. continue;
  2649. if (!kvm_request_guest_time_update(vcpu))
  2650. continue;
  2651. if (vcpu->cpu != smp_processor_id())
  2652. send_ipi++;
  2653. }
  2654. }
  2655. spin_unlock(&kvm_lock);
  2656. if (freq->old < freq->new && send_ipi) {
  2657. /*
  2658. * We upscale the frequency. Must make the guest
  2659. * doesn't see old kvmclock values while running with
  2660. * the new frequency, otherwise we risk the guest sees
  2661. * time go backwards.
  2662. *
  2663. * In case we update the frequency for another cpu
  2664. * (which might be in guest context) send an interrupt
  2665. * to kick the cpu out of guest context. Next time
  2666. * guest context is entered kvmclock will be updated,
  2667. * so the guest will not see stale values.
  2668. */
  2669. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2670. }
  2671. return 0;
  2672. }
  2673. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2674. .notifier_call = kvmclock_cpufreq_notifier
  2675. };
  2676. int kvm_arch_init(void *opaque)
  2677. {
  2678. int r, cpu;
  2679. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2680. if (kvm_x86_ops) {
  2681. printk(KERN_ERR "kvm: already loaded the other module\n");
  2682. r = -EEXIST;
  2683. goto out;
  2684. }
  2685. if (!ops->cpu_has_kvm_support()) {
  2686. printk(KERN_ERR "kvm: no hardware support\n");
  2687. r = -EOPNOTSUPP;
  2688. goto out;
  2689. }
  2690. if (ops->disabled_by_bios()) {
  2691. printk(KERN_ERR "kvm: disabled by bios\n");
  2692. r = -EOPNOTSUPP;
  2693. goto out;
  2694. }
  2695. r = kvm_mmu_module_init();
  2696. if (r)
  2697. goto out;
  2698. kvm_init_msr_list();
  2699. kvm_x86_ops = ops;
  2700. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2701. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2702. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2703. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2704. for_each_possible_cpu(cpu)
  2705. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2706. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2707. tsc_khz_ref = tsc_khz;
  2708. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2709. CPUFREQ_TRANSITION_NOTIFIER);
  2710. }
  2711. return 0;
  2712. out:
  2713. return r;
  2714. }
  2715. void kvm_arch_exit(void)
  2716. {
  2717. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2718. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2719. CPUFREQ_TRANSITION_NOTIFIER);
  2720. kvm_x86_ops = NULL;
  2721. kvm_mmu_module_exit();
  2722. }
  2723. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2724. {
  2725. ++vcpu->stat.halt_exits;
  2726. if (irqchip_in_kernel(vcpu->kvm)) {
  2727. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2728. return 1;
  2729. } else {
  2730. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2731. return 0;
  2732. }
  2733. }
  2734. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2735. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2736. unsigned long a1)
  2737. {
  2738. if (is_long_mode(vcpu))
  2739. return a0;
  2740. else
  2741. return a0 | ((gpa_t)a1 << 32);
  2742. }
  2743. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2744. {
  2745. unsigned long nr, a0, a1, a2, a3, ret;
  2746. int r = 1;
  2747. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2748. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2749. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2750. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2751. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2752. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  2753. if (!is_long_mode(vcpu)) {
  2754. nr &= 0xFFFFFFFF;
  2755. a0 &= 0xFFFFFFFF;
  2756. a1 &= 0xFFFFFFFF;
  2757. a2 &= 0xFFFFFFFF;
  2758. a3 &= 0xFFFFFFFF;
  2759. }
  2760. switch (nr) {
  2761. case KVM_HC_VAPIC_POLL_IRQ:
  2762. ret = 0;
  2763. break;
  2764. case KVM_HC_MMU_OP:
  2765. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2766. break;
  2767. default:
  2768. ret = -KVM_ENOSYS;
  2769. break;
  2770. }
  2771. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2772. ++vcpu->stat.hypercalls;
  2773. return r;
  2774. }
  2775. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2776. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2777. {
  2778. char instruction[3];
  2779. int ret = 0;
  2780. unsigned long rip = kvm_rip_read(vcpu);
  2781. /*
  2782. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2783. * to ensure that the updated hypercall appears atomically across all
  2784. * VCPUs.
  2785. */
  2786. kvm_mmu_zap_all(vcpu->kvm);
  2787. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2788. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2789. != X86EMUL_CONTINUE)
  2790. ret = -EFAULT;
  2791. return ret;
  2792. }
  2793. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2794. {
  2795. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2796. }
  2797. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2798. {
  2799. struct descriptor_table dt = { limit, base };
  2800. kvm_x86_ops->set_gdt(vcpu, &dt);
  2801. }
  2802. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2803. {
  2804. struct descriptor_table dt = { limit, base };
  2805. kvm_x86_ops->set_idt(vcpu, &dt);
  2806. }
  2807. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2808. unsigned long *rflags)
  2809. {
  2810. kvm_lmsw(vcpu, msw);
  2811. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2812. }
  2813. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2814. {
  2815. unsigned long value;
  2816. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2817. switch (cr) {
  2818. case 0:
  2819. value = vcpu->arch.cr0;
  2820. break;
  2821. case 2:
  2822. value = vcpu->arch.cr2;
  2823. break;
  2824. case 3:
  2825. value = vcpu->arch.cr3;
  2826. break;
  2827. case 4:
  2828. value = vcpu->arch.cr4;
  2829. break;
  2830. case 8:
  2831. value = kvm_get_cr8(vcpu);
  2832. break;
  2833. default:
  2834. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2835. return 0;
  2836. }
  2837. return value;
  2838. }
  2839. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2840. unsigned long *rflags)
  2841. {
  2842. switch (cr) {
  2843. case 0:
  2844. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2845. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2846. break;
  2847. case 2:
  2848. vcpu->arch.cr2 = val;
  2849. break;
  2850. case 3:
  2851. kvm_set_cr3(vcpu, val);
  2852. break;
  2853. case 4:
  2854. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2855. break;
  2856. case 8:
  2857. kvm_set_cr8(vcpu, val & 0xfUL);
  2858. break;
  2859. default:
  2860. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2861. }
  2862. }
  2863. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2864. {
  2865. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2866. int j, nent = vcpu->arch.cpuid_nent;
  2867. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2868. /* when no next entry is found, the current entry[i] is reselected */
  2869. for (j = i + 1; ; j = (j + 1) % nent) {
  2870. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2871. if (ej->function == e->function) {
  2872. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2873. return j;
  2874. }
  2875. }
  2876. return 0; /* silence gcc, even though control never reaches here */
  2877. }
  2878. /* find an entry with matching function, matching index (if needed), and that
  2879. * should be read next (if it's stateful) */
  2880. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2881. u32 function, u32 index)
  2882. {
  2883. if (e->function != function)
  2884. return 0;
  2885. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2886. return 0;
  2887. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2888. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2889. return 0;
  2890. return 1;
  2891. }
  2892. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2893. u32 function, u32 index)
  2894. {
  2895. int i;
  2896. struct kvm_cpuid_entry2 *best = NULL;
  2897. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2898. struct kvm_cpuid_entry2 *e;
  2899. e = &vcpu->arch.cpuid_entries[i];
  2900. if (is_matching_cpuid_entry(e, function, index)) {
  2901. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2902. move_to_next_stateful_cpuid_entry(vcpu, i);
  2903. best = e;
  2904. break;
  2905. }
  2906. /*
  2907. * Both basic or both extended?
  2908. */
  2909. if (((e->function ^ function) & 0x80000000) == 0)
  2910. if (!best || e->function > best->function)
  2911. best = e;
  2912. }
  2913. return best;
  2914. }
  2915. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  2916. {
  2917. struct kvm_cpuid_entry2 *best;
  2918. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  2919. if (best)
  2920. return best->eax & 0xff;
  2921. return 36;
  2922. }
  2923. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2924. {
  2925. u32 function, index;
  2926. struct kvm_cpuid_entry2 *best;
  2927. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2928. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2929. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2930. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2931. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2932. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2933. best = kvm_find_cpuid_entry(vcpu, function, index);
  2934. if (best) {
  2935. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2936. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2937. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2938. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2939. }
  2940. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2941. trace_kvm_cpuid(function,
  2942. kvm_register_read(vcpu, VCPU_REGS_RAX),
  2943. kvm_register_read(vcpu, VCPU_REGS_RBX),
  2944. kvm_register_read(vcpu, VCPU_REGS_RCX),
  2945. kvm_register_read(vcpu, VCPU_REGS_RDX));
  2946. }
  2947. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2948. /*
  2949. * Check if userspace requested an interrupt window, and that the
  2950. * interrupt window is open.
  2951. *
  2952. * No need to exit to userspace if we already have an interrupt queued.
  2953. */
  2954. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2955. struct kvm_run *kvm_run)
  2956. {
  2957. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  2958. kvm_run->request_interrupt_window &&
  2959. kvm_arch_interrupt_allowed(vcpu));
  2960. }
  2961. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2962. struct kvm_run *kvm_run)
  2963. {
  2964. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2965. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2966. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2967. if (irqchip_in_kernel(vcpu->kvm))
  2968. kvm_run->ready_for_interrupt_injection = 1;
  2969. else
  2970. kvm_run->ready_for_interrupt_injection =
  2971. kvm_arch_interrupt_allowed(vcpu) &&
  2972. !kvm_cpu_has_interrupt(vcpu) &&
  2973. !kvm_event_needs_reinjection(vcpu);
  2974. }
  2975. static void vapic_enter(struct kvm_vcpu *vcpu)
  2976. {
  2977. struct kvm_lapic *apic = vcpu->arch.apic;
  2978. struct page *page;
  2979. if (!apic || !apic->vapic_addr)
  2980. return;
  2981. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2982. vcpu->arch.apic->vapic_page = page;
  2983. }
  2984. static void vapic_exit(struct kvm_vcpu *vcpu)
  2985. {
  2986. struct kvm_lapic *apic = vcpu->arch.apic;
  2987. if (!apic || !apic->vapic_addr)
  2988. return;
  2989. down_read(&vcpu->kvm->slots_lock);
  2990. kvm_release_page_dirty(apic->vapic_page);
  2991. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2992. up_read(&vcpu->kvm->slots_lock);
  2993. }
  2994. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  2995. {
  2996. int max_irr, tpr;
  2997. if (!kvm_x86_ops->update_cr8_intercept)
  2998. return;
  2999. if (!vcpu->arch.apic->vapic_addr)
  3000. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3001. else
  3002. max_irr = -1;
  3003. if (max_irr != -1)
  3004. max_irr >>= 4;
  3005. tpr = kvm_lapic_get_cr8(vcpu);
  3006. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3007. }
  3008. static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3009. {
  3010. /* try to reinject previous events if any */
  3011. if (vcpu->arch.nmi_injected) {
  3012. kvm_x86_ops->set_nmi(vcpu);
  3013. return;
  3014. }
  3015. if (vcpu->arch.interrupt.pending) {
  3016. kvm_x86_ops->set_irq(vcpu);
  3017. return;
  3018. }
  3019. /* try to inject new event if pending */
  3020. if (vcpu->arch.nmi_pending) {
  3021. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3022. vcpu->arch.nmi_pending = false;
  3023. vcpu->arch.nmi_injected = true;
  3024. kvm_x86_ops->set_nmi(vcpu);
  3025. }
  3026. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3027. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3028. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3029. false);
  3030. kvm_x86_ops->set_irq(vcpu);
  3031. }
  3032. }
  3033. }
  3034. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3035. {
  3036. int r;
  3037. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3038. kvm_run->request_interrupt_window;
  3039. if (vcpu->requests)
  3040. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3041. kvm_mmu_unload(vcpu);
  3042. r = kvm_mmu_reload(vcpu);
  3043. if (unlikely(r))
  3044. goto out;
  3045. if (vcpu->requests) {
  3046. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3047. __kvm_migrate_timers(vcpu);
  3048. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3049. kvm_write_guest_time(vcpu);
  3050. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3051. kvm_mmu_sync_roots(vcpu);
  3052. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3053. kvm_x86_ops->tlb_flush(vcpu);
  3054. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3055. &vcpu->requests)) {
  3056. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3057. r = 0;
  3058. goto out;
  3059. }
  3060. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3061. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  3062. r = 0;
  3063. goto out;
  3064. }
  3065. }
  3066. preempt_disable();
  3067. kvm_x86_ops->prepare_guest_switch(vcpu);
  3068. kvm_load_guest_fpu(vcpu);
  3069. local_irq_disable();
  3070. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3071. smp_mb__after_clear_bit();
  3072. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3073. local_irq_enable();
  3074. preempt_enable();
  3075. r = 1;
  3076. goto out;
  3077. }
  3078. if (vcpu->arch.exception.pending)
  3079. __queue_exception(vcpu);
  3080. else
  3081. inject_pending_irq(vcpu, kvm_run);
  3082. /* enable NMI/IRQ window open exits if needed */
  3083. if (vcpu->arch.nmi_pending)
  3084. kvm_x86_ops->enable_nmi_window(vcpu);
  3085. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3086. kvm_x86_ops->enable_irq_window(vcpu);
  3087. if (kvm_lapic_enabled(vcpu)) {
  3088. update_cr8_intercept(vcpu);
  3089. kvm_lapic_sync_to_vapic(vcpu);
  3090. }
  3091. up_read(&vcpu->kvm->slots_lock);
  3092. kvm_guest_enter();
  3093. get_debugreg(vcpu->arch.host_dr6, 6);
  3094. get_debugreg(vcpu->arch.host_dr7, 7);
  3095. if (unlikely(vcpu->arch.switch_db_regs)) {
  3096. get_debugreg(vcpu->arch.host_db[0], 0);
  3097. get_debugreg(vcpu->arch.host_db[1], 1);
  3098. get_debugreg(vcpu->arch.host_db[2], 2);
  3099. get_debugreg(vcpu->arch.host_db[3], 3);
  3100. set_debugreg(0, 7);
  3101. set_debugreg(vcpu->arch.eff_db[0], 0);
  3102. set_debugreg(vcpu->arch.eff_db[1], 1);
  3103. set_debugreg(vcpu->arch.eff_db[2], 2);
  3104. set_debugreg(vcpu->arch.eff_db[3], 3);
  3105. }
  3106. trace_kvm_entry(vcpu->vcpu_id);
  3107. kvm_x86_ops->run(vcpu, kvm_run);
  3108. if (unlikely(vcpu->arch.switch_db_regs)) {
  3109. set_debugreg(0, 7);
  3110. set_debugreg(vcpu->arch.host_db[0], 0);
  3111. set_debugreg(vcpu->arch.host_db[1], 1);
  3112. set_debugreg(vcpu->arch.host_db[2], 2);
  3113. set_debugreg(vcpu->arch.host_db[3], 3);
  3114. }
  3115. set_debugreg(vcpu->arch.host_dr6, 6);
  3116. set_debugreg(vcpu->arch.host_dr7, 7);
  3117. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3118. local_irq_enable();
  3119. ++vcpu->stat.exits;
  3120. /*
  3121. * We must have an instruction between local_irq_enable() and
  3122. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3123. * the interrupt shadow. The stat.exits increment will do nicely.
  3124. * But we need to prevent reordering, hence this barrier():
  3125. */
  3126. barrier();
  3127. kvm_guest_exit();
  3128. preempt_enable();
  3129. down_read(&vcpu->kvm->slots_lock);
  3130. /*
  3131. * Profile KVM exit RIPs:
  3132. */
  3133. if (unlikely(prof_on == KVM_PROFILING)) {
  3134. unsigned long rip = kvm_rip_read(vcpu);
  3135. profile_hit(KVM_PROFILING, (void *)rip);
  3136. }
  3137. kvm_lapic_sync_from_vapic(vcpu);
  3138. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  3139. out:
  3140. return r;
  3141. }
  3142. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3143. {
  3144. int r;
  3145. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3146. pr_debug("vcpu %d received sipi with vector # %x\n",
  3147. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3148. kvm_lapic_reset(vcpu);
  3149. r = kvm_arch_vcpu_reset(vcpu);
  3150. if (r)
  3151. return r;
  3152. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3153. }
  3154. down_read(&vcpu->kvm->slots_lock);
  3155. vapic_enter(vcpu);
  3156. r = 1;
  3157. while (r > 0) {
  3158. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3159. r = vcpu_enter_guest(vcpu, kvm_run);
  3160. else {
  3161. up_read(&vcpu->kvm->slots_lock);
  3162. kvm_vcpu_block(vcpu);
  3163. down_read(&vcpu->kvm->slots_lock);
  3164. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3165. {
  3166. switch(vcpu->arch.mp_state) {
  3167. case KVM_MP_STATE_HALTED:
  3168. vcpu->arch.mp_state =
  3169. KVM_MP_STATE_RUNNABLE;
  3170. case KVM_MP_STATE_RUNNABLE:
  3171. break;
  3172. case KVM_MP_STATE_SIPI_RECEIVED:
  3173. default:
  3174. r = -EINTR;
  3175. break;
  3176. }
  3177. }
  3178. }
  3179. if (r <= 0)
  3180. break;
  3181. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3182. if (kvm_cpu_has_pending_timer(vcpu))
  3183. kvm_inject_pending_timer_irqs(vcpu);
  3184. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  3185. r = -EINTR;
  3186. kvm_run->exit_reason = KVM_EXIT_INTR;
  3187. ++vcpu->stat.request_irq_exits;
  3188. }
  3189. if (signal_pending(current)) {
  3190. r = -EINTR;
  3191. kvm_run->exit_reason = KVM_EXIT_INTR;
  3192. ++vcpu->stat.signal_exits;
  3193. }
  3194. if (need_resched()) {
  3195. up_read(&vcpu->kvm->slots_lock);
  3196. kvm_resched(vcpu);
  3197. down_read(&vcpu->kvm->slots_lock);
  3198. }
  3199. }
  3200. up_read(&vcpu->kvm->slots_lock);
  3201. post_kvm_run_save(vcpu, kvm_run);
  3202. vapic_exit(vcpu);
  3203. return r;
  3204. }
  3205. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3206. {
  3207. int r;
  3208. sigset_t sigsaved;
  3209. vcpu_load(vcpu);
  3210. if (vcpu->sigset_active)
  3211. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3212. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3213. kvm_vcpu_block(vcpu);
  3214. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3215. r = -EAGAIN;
  3216. goto out;
  3217. }
  3218. /* re-sync apic's tpr */
  3219. if (!irqchip_in_kernel(vcpu->kvm))
  3220. kvm_set_cr8(vcpu, kvm_run->cr8);
  3221. if (vcpu->arch.pio.cur_count) {
  3222. r = complete_pio(vcpu);
  3223. if (r)
  3224. goto out;
  3225. }
  3226. #if CONFIG_HAS_IOMEM
  3227. if (vcpu->mmio_needed) {
  3228. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3229. vcpu->mmio_read_completed = 1;
  3230. vcpu->mmio_needed = 0;
  3231. down_read(&vcpu->kvm->slots_lock);
  3232. r = emulate_instruction(vcpu, kvm_run,
  3233. vcpu->arch.mmio_fault_cr2, 0,
  3234. EMULTYPE_NO_DECODE);
  3235. up_read(&vcpu->kvm->slots_lock);
  3236. if (r == EMULATE_DO_MMIO) {
  3237. /*
  3238. * Read-modify-write. Back to userspace.
  3239. */
  3240. r = 0;
  3241. goto out;
  3242. }
  3243. }
  3244. #endif
  3245. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3246. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3247. kvm_run->hypercall.ret);
  3248. r = __vcpu_run(vcpu, kvm_run);
  3249. out:
  3250. if (vcpu->sigset_active)
  3251. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3252. vcpu_put(vcpu);
  3253. return r;
  3254. }
  3255. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3256. {
  3257. vcpu_load(vcpu);
  3258. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3259. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3260. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3261. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3262. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3263. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3264. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3265. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3266. #ifdef CONFIG_X86_64
  3267. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3268. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3269. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3270. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3271. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3272. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3273. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3274. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3275. #endif
  3276. regs->rip = kvm_rip_read(vcpu);
  3277. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3278. /*
  3279. * Don't leak debug flags in case they were set for guest debugging
  3280. */
  3281. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3282. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3283. vcpu_put(vcpu);
  3284. return 0;
  3285. }
  3286. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3287. {
  3288. vcpu_load(vcpu);
  3289. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3290. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3291. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3292. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3293. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3294. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3295. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3296. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3297. #ifdef CONFIG_X86_64
  3298. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3299. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3300. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3301. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3302. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3303. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3304. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3305. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3306. #endif
  3307. kvm_rip_write(vcpu, regs->rip);
  3308. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3309. vcpu->arch.exception.pending = false;
  3310. vcpu_put(vcpu);
  3311. return 0;
  3312. }
  3313. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3314. struct kvm_segment *var, int seg)
  3315. {
  3316. kvm_x86_ops->get_segment(vcpu, var, seg);
  3317. }
  3318. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3319. {
  3320. struct kvm_segment cs;
  3321. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3322. *db = cs.db;
  3323. *l = cs.l;
  3324. }
  3325. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3326. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3327. struct kvm_sregs *sregs)
  3328. {
  3329. struct descriptor_table dt;
  3330. vcpu_load(vcpu);
  3331. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3332. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3333. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3334. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3335. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3336. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3337. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3338. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3339. kvm_x86_ops->get_idt(vcpu, &dt);
  3340. sregs->idt.limit = dt.limit;
  3341. sregs->idt.base = dt.base;
  3342. kvm_x86_ops->get_gdt(vcpu, &dt);
  3343. sregs->gdt.limit = dt.limit;
  3344. sregs->gdt.base = dt.base;
  3345. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3346. sregs->cr0 = vcpu->arch.cr0;
  3347. sregs->cr2 = vcpu->arch.cr2;
  3348. sregs->cr3 = vcpu->arch.cr3;
  3349. sregs->cr4 = vcpu->arch.cr4;
  3350. sregs->cr8 = kvm_get_cr8(vcpu);
  3351. sregs->efer = vcpu->arch.shadow_efer;
  3352. sregs->apic_base = kvm_get_apic_base(vcpu);
  3353. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3354. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3355. set_bit(vcpu->arch.interrupt.nr,
  3356. (unsigned long *)sregs->interrupt_bitmap);
  3357. vcpu_put(vcpu);
  3358. return 0;
  3359. }
  3360. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3361. struct kvm_mp_state *mp_state)
  3362. {
  3363. vcpu_load(vcpu);
  3364. mp_state->mp_state = vcpu->arch.mp_state;
  3365. vcpu_put(vcpu);
  3366. return 0;
  3367. }
  3368. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3369. struct kvm_mp_state *mp_state)
  3370. {
  3371. vcpu_load(vcpu);
  3372. vcpu->arch.mp_state = mp_state->mp_state;
  3373. vcpu_put(vcpu);
  3374. return 0;
  3375. }
  3376. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3377. struct kvm_segment *var, int seg)
  3378. {
  3379. kvm_x86_ops->set_segment(vcpu, var, seg);
  3380. }
  3381. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3382. struct kvm_segment *kvm_desct)
  3383. {
  3384. kvm_desct->base = seg_desc->base0;
  3385. kvm_desct->base |= seg_desc->base1 << 16;
  3386. kvm_desct->base |= seg_desc->base2 << 24;
  3387. kvm_desct->limit = seg_desc->limit0;
  3388. kvm_desct->limit |= seg_desc->limit << 16;
  3389. if (seg_desc->g) {
  3390. kvm_desct->limit <<= 12;
  3391. kvm_desct->limit |= 0xfff;
  3392. }
  3393. kvm_desct->selector = selector;
  3394. kvm_desct->type = seg_desc->type;
  3395. kvm_desct->present = seg_desc->p;
  3396. kvm_desct->dpl = seg_desc->dpl;
  3397. kvm_desct->db = seg_desc->d;
  3398. kvm_desct->s = seg_desc->s;
  3399. kvm_desct->l = seg_desc->l;
  3400. kvm_desct->g = seg_desc->g;
  3401. kvm_desct->avl = seg_desc->avl;
  3402. if (!selector)
  3403. kvm_desct->unusable = 1;
  3404. else
  3405. kvm_desct->unusable = 0;
  3406. kvm_desct->padding = 0;
  3407. }
  3408. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3409. u16 selector,
  3410. struct descriptor_table *dtable)
  3411. {
  3412. if (selector & 1 << 2) {
  3413. struct kvm_segment kvm_seg;
  3414. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3415. if (kvm_seg.unusable)
  3416. dtable->limit = 0;
  3417. else
  3418. dtable->limit = kvm_seg.limit;
  3419. dtable->base = kvm_seg.base;
  3420. }
  3421. else
  3422. kvm_x86_ops->get_gdt(vcpu, dtable);
  3423. }
  3424. /* allowed just for 8 bytes segments */
  3425. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3426. struct desc_struct *seg_desc)
  3427. {
  3428. gpa_t gpa;
  3429. struct descriptor_table dtable;
  3430. u16 index = selector >> 3;
  3431. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3432. if (dtable.limit < index * 8 + 7) {
  3433. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3434. return 1;
  3435. }
  3436. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3437. gpa += index * 8;
  3438. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3439. }
  3440. /* allowed just for 8 bytes segments */
  3441. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3442. struct desc_struct *seg_desc)
  3443. {
  3444. gpa_t gpa;
  3445. struct descriptor_table dtable;
  3446. u16 index = selector >> 3;
  3447. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3448. if (dtable.limit < index * 8 + 7)
  3449. return 1;
  3450. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3451. gpa += index * 8;
  3452. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3453. }
  3454. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3455. struct desc_struct *seg_desc)
  3456. {
  3457. u32 base_addr;
  3458. base_addr = seg_desc->base0;
  3459. base_addr |= (seg_desc->base1 << 16);
  3460. base_addr |= (seg_desc->base2 << 24);
  3461. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3462. }
  3463. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3464. {
  3465. struct kvm_segment kvm_seg;
  3466. kvm_get_segment(vcpu, &kvm_seg, seg);
  3467. return kvm_seg.selector;
  3468. }
  3469. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3470. u16 selector,
  3471. struct kvm_segment *kvm_seg)
  3472. {
  3473. struct desc_struct seg_desc;
  3474. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3475. return 1;
  3476. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3477. return 0;
  3478. }
  3479. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3480. {
  3481. struct kvm_segment segvar = {
  3482. .base = selector << 4,
  3483. .limit = 0xffff,
  3484. .selector = selector,
  3485. .type = 3,
  3486. .present = 1,
  3487. .dpl = 3,
  3488. .db = 0,
  3489. .s = 1,
  3490. .l = 0,
  3491. .g = 0,
  3492. .avl = 0,
  3493. .unusable = 0,
  3494. };
  3495. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3496. return 0;
  3497. }
  3498. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3499. int type_bits, int seg)
  3500. {
  3501. struct kvm_segment kvm_seg;
  3502. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3503. return kvm_load_realmode_segment(vcpu, selector, seg);
  3504. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3505. return 1;
  3506. kvm_seg.type |= type_bits;
  3507. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3508. seg != VCPU_SREG_LDTR)
  3509. if (!kvm_seg.s)
  3510. kvm_seg.unusable = 1;
  3511. kvm_set_segment(vcpu, &kvm_seg, seg);
  3512. return 0;
  3513. }
  3514. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3515. struct tss_segment_32 *tss)
  3516. {
  3517. tss->cr3 = vcpu->arch.cr3;
  3518. tss->eip = kvm_rip_read(vcpu);
  3519. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3520. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3521. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3522. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3523. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3524. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3525. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3526. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3527. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3528. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3529. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3530. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3531. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3532. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3533. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3534. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3535. }
  3536. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3537. struct tss_segment_32 *tss)
  3538. {
  3539. kvm_set_cr3(vcpu, tss->cr3);
  3540. kvm_rip_write(vcpu, tss->eip);
  3541. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3542. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3543. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3544. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3545. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3546. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3547. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3548. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3549. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3550. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3551. return 1;
  3552. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3553. return 1;
  3554. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3555. return 1;
  3556. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3557. return 1;
  3558. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3559. return 1;
  3560. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3561. return 1;
  3562. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3563. return 1;
  3564. return 0;
  3565. }
  3566. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3567. struct tss_segment_16 *tss)
  3568. {
  3569. tss->ip = kvm_rip_read(vcpu);
  3570. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3571. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3572. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3573. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3574. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3575. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3576. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3577. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3578. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3579. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3580. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3581. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3582. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3583. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3584. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3585. }
  3586. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3587. struct tss_segment_16 *tss)
  3588. {
  3589. kvm_rip_write(vcpu, tss->ip);
  3590. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3591. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3592. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3593. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3594. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3595. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3596. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3597. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3598. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3599. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3600. return 1;
  3601. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3602. return 1;
  3603. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3604. return 1;
  3605. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3606. return 1;
  3607. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3608. return 1;
  3609. return 0;
  3610. }
  3611. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3612. u16 old_tss_sel, u32 old_tss_base,
  3613. struct desc_struct *nseg_desc)
  3614. {
  3615. struct tss_segment_16 tss_segment_16;
  3616. int ret = 0;
  3617. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3618. sizeof tss_segment_16))
  3619. goto out;
  3620. save_state_to_tss16(vcpu, &tss_segment_16);
  3621. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3622. sizeof tss_segment_16))
  3623. goto out;
  3624. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3625. &tss_segment_16, sizeof tss_segment_16))
  3626. goto out;
  3627. if (old_tss_sel != 0xffff) {
  3628. tss_segment_16.prev_task_link = old_tss_sel;
  3629. if (kvm_write_guest(vcpu->kvm,
  3630. get_tss_base_addr(vcpu, nseg_desc),
  3631. &tss_segment_16.prev_task_link,
  3632. sizeof tss_segment_16.prev_task_link))
  3633. goto out;
  3634. }
  3635. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3636. goto out;
  3637. ret = 1;
  3638. out:
  3639. return ret;
  3640. }
  3641. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3642. u16 old_tss_sel, u32 old_tss_base,
  3643. struct desc_struct *nseg_desc)
  3644. {
  3645. struct tss_segment_32 tss_segment_32;
  3646. int ret = 0;
  3647. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3648. sizeof tss_segment_32))
  3649. goto out;
  3650. save_state_to_tss32(vcpu, &tss_segment_32);
  3651. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3652. sizeof tss_segment_32))
  3653. goto out;
  3654. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3655. &tss_segment_32, sizeof tss_segment_32))
  3656. goto out;
  3657. if (old_tss_sel != 0xffff) {
  3658. tss_segment_32.prev_task_link = old_tss_sel;
  3659. if (kvm_write_guest(vcpu->kvm,
  3660. get_tss_base_addr(vcpu, nseg_desc),
  3661. &tss_segment_32.prev_task_link,
  3662. sizeof tss_segment_32.prev_task_link))
  3663. goto out;
  3664. }
  3665. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3666. goto out;
  3667. ret = 1;
  3668. out:
  3669. return ret;
  3670. }
  3671. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3672. {
  3673. struct kvm_segment tr_seg;
  3674. struct desc_struct cseg_desc;
  3675. struct desc_struct nseg_desc;
  3676. int ret = 0;
  3677. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3678. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3679. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3680. /* FIXME: Handle errors. Failure to read either TSS or their
  3681. * descriptors should generate a pagefault.
  3682. */
  3683. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3684. goto out;
  3685. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3686. goto out;
  3687. if (reason != TASK_SWITCH_IRET) {
  3688. int cpl;
  3689. cpl = kvm_x86_ops->get_cpl(vcpu);
  3690. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3691. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3692. return 1;
  3693. }
  3694. }
  3695. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3696. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3697. return 1;
  3698. }
  3699. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3700. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3701. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3702. }
  3703. if (reason == TASK_SWITCH_IRET) {
  3704. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3705. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3706. }
  3707. /* set back link to prev task only if NT bit is set in eflags
  3708. note that old_tss_sel is not used afetr this point */
  3709. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3710. old_tss_sel = 0xffff;
  3711. /* set back link to prev task only if NT bit is set in eflags
  3712. note that old_tss_sel is not used afetr this point */
  3713. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3714. old_tss_sel = 0xffff;
  3715. if (nseg_desc.type & 8)
  3716. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3717. old_tss_base, &nseg_desc);
  3718. else
  3719. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3720. old_tss_base, &nseg_desc);
  3721. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3722. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3723. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3724. }
  3725. if (reason != TASK_SWITCH_IRET) {
  3726. nseg_desc.type |= (1 << 1);
  3727. save_guest_segment_descriptor(vcpu, tss_selector,
  3728. &nseg_desc);
  3729. }
  3730. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3731. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3732. tr_seg.type = 11;
  3733. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3734. out:
  3735. return ret;
  3736. }
  3737. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3738. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3739. struct kvm_sregs *sregs)
  3740. {
  3741. int mmu_reset_needed = 0;
  3742. int pending_vec, max_bits;
  3743. struct descriptor_table dt;
  3744. vcpu_load(vcpu);
  3745. dt.limit = sregs->idt.limit;
  3746. dt.base = sregs->idt.base;
  3747. kvm_x86_ops->set_idt(vcpu, &dt);
  3748. dt.limit = sregs->gdt.limit;
  3749. dt.base = sregs->gdt.base;
  3750. kvm_x86_ops->set_gdt(vcpu, &dt);
  3751. vcpu->arch.cr2 = sregs->cr2;
  3752. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3753. vcpu->arch.cr3 = sregs->cr3;
  3754. kvm_set_cr8(vcpu, sregs->cr8);
  3755. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3756. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3757. kvm_set_apic_base(vcpu, sregs->apic_base);
  3758. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3759. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3760. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3761. vcpu->arch.cr0 = sregs->cr0;
  3762. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3763. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3764. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3765. load_pdptrs(vcpu, vcpu->arch.cr3);
  3766. if (mmu_reset_needed)
  3767. kvm_mmu_reset_context(vcpu);
  3768. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3769. pending_vec = find_first_bit(
  3770. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3771. if (pending_vec < max_bits) {
  3772. kvm_queue_interrupt(vcpu, pending_vec, false);
  3773. pr_debug("Set back pending irq %d\n", pending_vec);
  3774. if (irqchip_in_kernel(vcpu->kvm))
  3775. kvm_pic_clear_isr_ack(vcpu->kvm);
  3776. }
  3777. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3778. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3779. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3780. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3781. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3782. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3783. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3784. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3785. /* Older userspace won't unhalt the vcpu on reset. */
  3786. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  3787. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3788. !(vcpu->arch.cr0 & X86_CR0_PE))
  3789. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3790. vcpu_put(vcpu);
  3791. return 0;
  3792. }
  3793. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3794. struct kvm_guest_debug *dbg)
  3795. {
  3796. int i, r;
  3797. vcpu_load(vcpu);
  3798. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3799. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3800. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3801. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3802. vcpu->arch.switch_db_regs =
  3803. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3804. } else {
  3805. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3806. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3807. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3808. }
  3809. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3810. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3811. kvm_queue_exception(vcpu, DB_VECTOR);
  3812. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3813. kvm_queue_exception(vcpu, BP_VECTOR);
  3814. vcpu_put(vcpu);
  3815. return r;
  3816. }
  3817. /*
  3818. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3819. * we have asm/x86/processor.h
  3820. */
  3821. struct fxsave {
  3822. u16 cwd;
  3823. u16 swd;
  3824. u16 twd;
  3825. u16 fop;
  3826. u64 rip;
  3827. u64 rdp;
  3828. u32 mxcsr;
  3829. u32 mxcsr_mask;
  3830. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3831. #ifdef CONFIG_X86_64
  3832. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3833. #else
  3834. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3835. #endif
  3836. };
  3837. /*
  3838. * Translate a guest virtual address to a guest physical address.
  3839. */
  3840. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3841. struct kvm_translation *tr)
  3842. {
  3843. unsigned long vaddr = tr->linear_address;
  3844. gpa_t gpa;
  3845. vcpu_load(vcpu);
  3846. down_read(&vcpu->kvm->slots_lock);
  3847. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3848. up_read(&vcpu->kvm->slots_lock);
  3849. tr->physical_address = gpa;
  3850. tr->valid = gpa != UNMAPPED_GVA;
  3851. tr->writeable = 1;
  3852. tr->usermode = 0;
  3853. vcpu_put(vcpu);
  3854. return 0;
  3855. }
  3856. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3857. {
  3858. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3859. vcpu_load(vcpu);
  3860. memcpy(fpu->fpr, fxsave->st_space, 128);
  3861. fpu->fcw = fxsave->cwd;
  3862. fpu->fsw = fxsave->swd;
  3863. fpu->ftwx = fxsave->twd;
  3864. fpu->last_opcode = fxsave->fop;
  3865. fpu->last_ip = fxsave->rip;
  3866. fpu->last_dp = fxsave->rdp;
  3867. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3868. vcpu_put(vcpu);
  3869. return 0;
  3870. }
  3871. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3872. {
  3873. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3874. vcpu_load(vcpu);
  3875. memcpy(fxsave->st_space, fpu->fpr, 128);
  3876. fxsave->cwd = fpu->fcw;
  3877. fxsave->swd = fpu->fsw;
  3878. fxsave->twd = fpu->ftwx;
  3879. fxsave->fop = fpu->last_opcode;
  3880. fxsave->rip = fpu->last_ip;
  3881. fxsave->rdp = fpu->last_dp;
  3882. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3883. vcpu_put(vcpu);
  3884. return 0;
  3885. }
  3886. void fx_init(struct kvm_vcpu *vcpu)
  3887. {
  3888. unsigned after_mxcsr_mask;
  3889. /*
  3890. * Touch the fpu the first time in non atomic context as if
  3891. * this is the first fpu instruction the exception handler
  3892. * will fire before the instruction returns and it'll have to
  3893. * allocate ram with GFP_KERNEL.
  3894. */
  3895. if (!used_math())
  3896. kvm_fx_save(&vcpu->arch.host_fx_image);
  3897. /* Initialize guest FPU by resetting ours and saving into guest's */
  3898. preempt_disable();
  3899. kvm_fx_save(&vcpu->arch.host_fx_image);
  3900. kvm_fx_finit();
  3901. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3902. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3903. preempt_enable();
  3904. vcpu->arch.cr0 |= X86_CR0_ET;
  3905. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3906. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3907. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3908. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3909. }
  3910. EXPORT_SYMBOL_GPL(fx_init);
  3911. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3912. {
  3913. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3914. return;
  3915. vcpu->guest_fpu_loaded = 1;
  3916. kvm_fx_save(&vcpu->arch.host_fx_image);
  3917. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3918. }
  3919. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3920. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3921. {
  3922. if (!vcpu->guest_fpu_loaded)
  3923. return;
  3924. vcpu->guest_fpu_loaded = 0;
  3925. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3926. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3927. ++vcpu->stat.fpu_reload;
  3928. }
  3929. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3930. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3931. {
  3932. if (vcpu->arch.time_page) {
  3933. kvm_release_page_dirty(vcpu->arch.time_page);
  3934. vcpu->arch.time_page = NULL;
  3935. }
  3936. kvm_x86_ops->vcpu_free(vcpu);
  3937. }
  3938. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3939. unsigned int id)
  3940. {
  3941. return kvm_x86_ops->vcpu_create(kvm, id);
  3942. }
  3943. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3944. {
  3945. int r;
  3946. /* We do fxsave: this must be aligned. */
  3947. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3948. vcpu->arch.mtrr_state.have_fixed = 1;
  3949. vcpu_load(vcpu);
  3950. r = kvm_arch_vcpu_reset(vcpu);
  3951. if (r == 0)
  3952. r = kvm_mmu_setup(vcpu);
  3953. vcpu_put(vcpu);
  3954. if (r < 0)
  3955. goto free_vcpu;
  3956. return 0;
  3957. free_vcpu:
  3958. kvm_x86_ops->vcpu_free(vcpu);
  3959. return r;
  3960. }
  3961. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3962. {
  3963. vcpu_load(vcpu);
  3964. kvm_mmu_unload(vcpu);
  3965. vcpu_put(vcpu);
  3966. kvm_x86_ops->vcpu_free(vcpu);
  3967. }
  3968. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3969. {
  3970. vcpu->arch.nmi_pending = false;
  3971. vcpu->arch.nmi_injected = false;
  3972. vcpu->arch.switch_db_regs = 0;
  3973. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3974. vcpu->arch.dr6 = DR6_FIXED_1;
  3975. vcpu->arch.dr7 = DR7_FIXED_1;
  3976. return kvm_x86_ops->vcpu_reset(vcpu);
  3977. }
  3978. void kvm_arch_hardware_enable(void *garbage)
  3979. {
  3980. kvm_x86_ops->hardware_enable(garbage);
  3981. }
  3982. void kvm_arch_hardware_disable(void *garbage)
  3983. {
  3984. kvm_x86_ops->hardware_disable(garbage);
  3985. }
  3986. int kvm_arch_hardware_setup(void)
  3987. {
  3988. return kvm_x86_ops->hardware_setup();
  3989. }
  3990. void kvm_arch_hardware_unsetup(void)
  3991. {
  3992. kvm_x86_ops->hardware_unsetup();
  3993. }
  3994. void kvm_arch_check_processor_compat(void *rtn)
  3995. {
  3996. kvm_x86_ops->check_processor_compatibility(rtn);
  3997. }
  3998. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3999. {
  4000. struct page *page;
  4001. struct kvm *kvm;
  4002. int r;
  4003. BUG_ON(vcpu->kvm == NULL);
  4004. kvm = vcpu->kvm;
  4005. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4006. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4007. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4008. else
  4009. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4010. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4011. if (!page) {
  4012. r = -ENOMEM;
  4013. goto fail;
  4014. }
  4015. vcpu->arch.pio_data = page_address(page);
  4016. r = kvm_mmu_create(vcpu);
  4017. if (r < 0)
  4018. goto fail_free_pio_data;
  4019. if (irqchip_in_kernel(kvm)) {
  4020. r = kvm_create_lapic(vcpu);
  4021. if (r < 0)
  4022. goto fail_mmu_destroy;
  4023. }
  4024. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4025. GFP_KERNEL);
  4026. if (!vcpu->arch.mce_banks) {
  4027. r = -ENOMEM;
  4028. goto fail_mmu_destroy;
  4029. }
  4030. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4031. return 0;
  4032. fail_mmu_destroy:
  4033. kvm_mmu_destroy(vcpu);
  4034. fail_free_pio_data:
  4035. free_page((unsigned long)vcpu->arch.pio_data);
  4036. fail:
  4037. return r;
  4038. }
  4039. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4040. {
  4041. kvm_free_lapic(vcpu);
  4042. down_read(&vcpu->kvm->slots_lock);
  4043. kvm_mmu_destroy(vcpu);
  4044. up_read(&vcpu->kvm->slots_lock);
  4045. free_page((unsigned long)vcpu->arch.pio_data);
  4046. }
  4047. struct kvm *kvm_arch_create_vm(void)
  4048. {
  4049. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4050. if (!kvm)
  4051. return ERR_PTR(-ENOMEM);
  4052. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4053. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4054. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4055. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4056. rdtscll(kvm->arch.vm_init_tsc);
  4057. return kvm;
  4058. }
  4059. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4060. {
  4061. vcpu_load(vcpu);
  4062. kvm_mmu_unload(vcpu);
  4063. vcpu_put(vcpu);
  4064. }
  4065. static void kvm_free_vcpus(struct kvm *kvm)
  4066. {
  4067. unsigned int i;
  4068. struct kvm_vcpu *vcpu;
  4069. /*
  4070. * Unpin any mmu pages first.
  4071. */
  4072. kvm_for_each_vcpu(i, vcpu, kvm)
  4073. kvm_unload_vcpu_mmu(vcpu);
  4074. kvm_for_each_vcpu(i, vcpu, kvm)
  4075. kvm_arch_vcpu_free(vcpu);
  4076. mutex_lock(&kvm->lock);
  4077. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4078. kvm->vcpus[i] = NULL;
  4079. atomic_set(&kvm->online_vcpus, 0);
  4080. mutex_unlock(&kvm->lock);
  4081. }
  4082. void kvm_arch_sync_events(struct kvm *kvm)
  4083. {
  4084. kvm_free_all_assigned_devices(kvm);
  4085. }
  4086. void kvm_arch_destroy_vm(struct kvm *kvm)
  4087. {
  4088. kvm_iommu_unmap_guest(kvm);
  4089. kvm_free_pit(kvm);
  4090. kfree(kvm->arch.vpic);
  4091. kfree(kvm->arch.vioapic);
  4092. kvm_free_vcpus(kvm);
  4093. kvm_free_physmem(kvm);
  4094. if (kvm->arch.apic_access_page)
  4095. put_page(kvm->arch.apic_access_page);
  4096. if (kvm->arch.ept_identity_pagetable)
  4097. put_page(kvm->arch.ept_identity_pagetable);
  4098. kfree(kvm);
  4099. }
  4100. int kvm_arch_set_memory_region(struct kvm *kvm,
  4101. struct kvm_userspace_memory_region *mem,
  4102. struct kvm_memory_slot old,
  4103. int user_alloc)
  4104. {
  4105. int npages = mem->memory_size >> PAGE_SHIFT;
  4106. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4107. /*To keep backward compatibility with older userspace,
  4108. *x86 needs to hanlde !user_alloc case.
  4109. */
  4110. if (!user_alloc) {
  4111. if (npages && !old.rmap) {
  4112. unsigned long userspace_addr;
  4113. down_write(&current->mm->mmap_sem);
  4114. userspace_addr = do_mmap(NULL, 0,
  4115. npages * PAGE_SIZE,
  4116. PROT_READ | PROT_WRITE,
  4117. MAP_PRIVATE | MAP_ANONYMOUS,
  4118. 0);
  4119. up_write(&current->mm->mmap_sem);
  4120. if (IS_ERR((void *)userspace_addr))
  4121. return PTR_ERR((void *)userspace_addr);
  4122. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4123. spin_lock(&kvm->mmu_lock);
  4124. memslot->userspace_addr = userspace_addr;
  4125. spin_unlock(&kvm->mmu_lock);
  4126. } else {
  4127. if (!old.user_alloc && old.rmap) {
  4128. int ret;
  4129. down_write(&current->mm->mmap_sem);
  4130. ret = do_munmap(current->mm, old.userspace_addr,
  4131. old.npages * PAGE_SIZE);
  4132. up_write(&current->mm->mmap_sem);
  4133. if (ret < 0)
  4134. printk(KERN_WARNING
  4135. "kvm_vm_ioctl_set_memory_region: "
  4136. "failed to munmap memory\n");
  4137. }
  4138. }
  4139. }
  4140. spin_lock(&kvm->mmu_lock);
  4141. if (!kvm->arch.n_requested_mmu_pages) {
  4142. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4143. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4144. }
  4145. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4146. spin_unlock(&kvm->mmu_lock);
  4147. kvm_flush_remote_tlbs(kvm);
  4148. return 0;
  4149. }
  4150. void kvm_arch_flush_shadow(struct kvm *kvm)
  4151. {
  4152. kvm_mmu_zap_all(kvm);
  4153. kvm_reload_remote_mmus(kvm);
  4154. }
  4155. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4156. {
  4157. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4158. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4159. || vcpu->arch.nmi_pending;
  4160. }
  4161. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4162. {
  4163. int me;
  4164. int cpu = vcpu->cpu;
  4165. if (waitqueue_active(&vcpu->wq)) {
  4166. wake_up_interruptible(&vcpu->wq);
  4167. ++vcpu->stat.halt_wakeup;
  4168. }
  4169. me = get_cpu();
  4170. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4171. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4172. smp_send_reschedule(cpu);
  4173. put_cpu();
  4174. }
  4175. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4176. {
  4177. return kvm_x86_ops->interrupt_allowed(vcpu);
  4178. }
  4179. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4180. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4181. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4182. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4183. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);