ieee80211_sta.c 119 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/rtnetlink.h>
  27. #include <net/iw_handler.h>
  28. #include <asm/types.h>
  29. #include <net/mac80211.h>
  30. #include "ieee80211_i.h"
  31. #include "ieee80211_rate.h"
  32. #include "ieee80211_led.h"
  33. #include "mesh.h"
  34. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  35. #define IEEE80211_AUTH_MAX_TRIES 3
  36. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  37. #define IEEE80211_ASSOC_MAX_TRIES 3
  38. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  39. #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
  40. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  41. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  42. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  43. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  44. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  45. #define IEEE80211_PROBE_DELAY (HZ / 33)
  46. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  47. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  48. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  49. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  50. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  51. #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
  52. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  53. #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
  54. #define ERP_INFO_USE_PROTECTION BIT(1)
  55. /* mgmt header + 1 byte action code */
  56. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  57. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  58. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  59. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  60. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  61. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  62. /* next values represent the buffer size for A-MPDU frame.
  63. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  64. #define IEEE80211_MIN_AMPDU_BUF 0x8
  65. #define IEEE80211_MAX_AMPDU_BUF 0x40
  66. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  67. u8 *ssid, size_t ssid_len);
  68. static struct ieee80211_sta_bss *
  69. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  70. u8 *ssid, u8 ssid_len);
  71. static void ieee80211_rx_bss_put(struct net_device *dev,
  72. struct ieee80211_sta_bss *bss);
  73. static int ieee80211_sta_find_ibss(struct net_device *dev,
  74. struct ieee80211_if_sta *ifsta);
  75. static int ieee80211_sta_wep_configured(struct net_device *dev);
  76. static int ieee80211_sta_start_scan(struct net_device *dev,
  77. u8 *ssid, size_t ssid_len);
  78. static int ieee80211_sta_config_auth(struct net_device *dev,
  79. struct ieee80211_if_sta *ifsta);
  80. void ieee802_11_parse_elems(u8 *start, size_t len,
  81. struct ieee802_11_elems *elems)
  82. {
  83. size_t left = len;
  84. u8 *pos = start;
  85. memset(elems, 0, sizeof(*elems));
  86. while (left >= 2) {
  87. u8 id, elen;
  88. id = *pos++;
  89. elen = *pos++;
  90. left -= 2;
  91. if (elen > left)
  92. return;
  93. switch (id) {
  94. case WLAN_EID_SSID:
  95. elems->ssid = pos;
  96. elems->ssid_len = elen;
  97. break;
  98. case WLAN_EID_SUPP_RATES:
  99. elems->supp_rates = pos;
  100. elems->supp_rates_len = elen;
  101. break;
  102. case WLAN_EID_FH_PARAMS:
  103. elems->fh_params = pos;
  104. elems->fh_params_len = elen;
  105. break;
  106. case WLAN_EID_DS_PARAMS:
  107. elems->ds_params = pos;
  108. elems->ds_params_len = elen;
  109. break;
  110. case WLAN_EID_CF_PARAMS:
  111. elems->cf_params = pos;
  112. elems->cf_params_len = elen;
  113. break;
  114. case WLAN_EID_TIM:
  115. elems->tim = pos;
  116. elems->tim_len = elen;
  117. break;
  118. case WLAN_EID_IBSS_PARAMS:
  119. elems->ibss_params = pos;
  120. elems->ibss_params_len = elen;
  121. break;
  122. case WLAN_EID_CHALLENGE:
  123. elems->challenge = pos;
  124. elems->challenge_len = elen;
  125. break;
  126. case WLAN_EID_WPA:
  127. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  128. pos[2] == 0xf2) {
  129. /* Microsoft OUI (00:50:F2) */
  130. if (pos[3] == 1) {
  131. /* OUI Type 1 - WPA IE */
  132. elems->wpa = pos;
  133. elems->wpa_len = elen;
  134. } else if (elen >= 5 && pos[3] == 2) {
  135. if (pos[4] == 0) {
  136. elems->wmm_info = pos;
  137. elems->wmm_info_len = elen;
  138. } else if (pos[4] == 1) {
  139. elems->wmm_param = pos;
  140. elems->wmm_param_len = elen;
  141. }
  142. }
  143. }
  144. break;
  145. case WLAN_EID_RSN:
  146. elems->rsn = pos;
  147. elems->rsn_len = elen;
  148. break;
  149. case WLAN_EID_ERP_INFO:
  150. elems->erp_info = pos;
  151. elems->erp_info_len = elen;
  152. break;
  153. case WLAN_EID_EXT_SUPP_RATES:
  154. elems->ext_supp_rates = pos;
  155. elems->ext_supp_rates_len = elen;
  156. break;
  157. case WLAN_EID_HT_CAPABILITY:
  158. elems->ht_cap_elem = pos;
  159. elems->ht_cap_elem_len = elen;
  160. break;
  161. case WLAN_EID_HT_EXTRA_INFO:
  162. elems->ht_info_elem = pos;
  163. elems->ht_info_elem_len = elen;
  164. break;
  165. case WLAN_EID_MESH_ID:
  166. elems->mesh_id = pos;
  167. elems->mesh_id_len = elen;
  168. break;
  169. case WLAN_EID_MESH_CONFIG:
  170. elems->mesh_config = pos;
  171. elems->mesh_config_len = elen;
  172. break;
  173. case WLAN_EID_PEER_LINK:
  174. elems->peer_link = pos;
  175. elems->peer_link_len = elen;
  176. break;
  177. case WLAN_EID_PREQ:
  178. elems->preq = pos;
  179. elems->preq_len = elen;
  180. break;
  181. case WLAN_EID_PREP:
  182. elems->prep = pos;
  183. elems->prep_len = elen;
  184. break;
  185. case WLAN_EID_PERR:
  186. elems->perr = pos;
  187. elems->perr_len = elen;
  188. break;
  189. default:
  190. break;
  191. }
  192. left -= elen;
  193. pos += elen;
  194. }
  195. }
  196. static int ecw2cw(int ecw)
  197. {
  198. return (1 << ecw) - 1;
  199. }
  200. static void ieee80211_sta_def_wmm_params(struct net_device *dev,
  201. struct ieee80211_sta_bss *bss,
  202. int ibss)
  203. {
  204. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  205. struct ieee80211_local *local = sdata->local;
  206. int i, have_higher_than_11mbit = 0;
  207. /* cf. IEEE 802.11 9.2.12 */
  208. for (i = 0; i < bss->supp_rates_len; i++)
  209. if ((bss->supp_rates[i] & 0x7f) * 5 > 110)
  210. have_higher_than_11mbit = 1;
  211. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  212. have_higher_than_11mbit)
  213. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  214. else
  215. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  216. if (local->ops->conf_tx) {
  217. struct ieee80211_tx_queue_params qparam;
  218. int i;
  219. memset(&qparam, 0, sizeof(qparam));
  220. qparam.aifs = 2;
  221. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  222. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  223. qparam.cw_min = 31;
  224. else
  225. qparam.cw_min = 15;
  226. qparam.cw_max = 1023;
  227. qparam.txop = 0;
  228. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  229. local->ops->conf_tx(local_to_hw(local),
  230. i + IEEE80211_TX_QUEUE_DATA0,
  231. &qparam);
  232. if (ibss) {
  233. /* IBSS uses different parameters for Beacon sending */
  234. qparam.cw_min++;
  235. qparam.cw_min *= 2;
  236. qparam.cw_min--;
  237. local->ops->conf_tx(local_to_hw(local),
  238. IEEE80211_TX_QUEUE_BEACON, &qparam);
  239. }
  240. }
  241. }
  242. static void ieee80211_sta_wmm_params(struct net_device *dev,
  243. struct ieee80211_if_sta *ifsta,
  244. u8 *wmm_param, size_t wmm_param_len)
  245. {
  246. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  247. struct ieee80211_tx_queue_params params;
  248. size_t left;
  249. int count;
  250. u8 *pos;
  251. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  252. return;
  253. count = wmm_param[6] & 0x0f;
  254. if (count == ifsta->wmm_last_param_set)
  255. return;
  256. ifsta->wmm_last_param_set = count;
  257. pos = wmm_param + 8;
  258. left = wmm_param_len - 8;
  259. memset(&params, 0, sizeof(params));
  260. if (!local->ops->conf_tx)
  261. return;
  262. local->wmm_acm = 0;
  263. for (; left >= 4; left -= 4, pos += 4) {
  264. int aci = (pos[0] >> 5) & 0x03;
  265. int acm = (pos[0] >> 4) & 0x01;
  266. int queue;
  267. switch (aci) {
  268. case 1:
  269. queue = IEEE80211_TX_QUEUE_DATA3;
  270. if (acm) {
  271. local->wmm_acm |= BIT(0) | BIT(3);
  272. }
  273. break;
  274. case 2:
  275. queue = IEEE80211_TX_QUEUE_DATA1;
  276. if (acm) {
  277. local->wmm_acm |= BIT(4) | BIT(5);
  278. }
  279. break;
  280. case 3:
  281. queue = IEEE80211_TX_QUEUE_DATA0;
  282. if (acm) {
  283. local->wmm_acm |= BIT(6) | BIT(7);
  284. }
  285. break;
  286. case 0:
  287. default:
  288. queue = IEEE80211_TX_QUEUE_DATA2;
  289. if (acm) {
  290. local->wmm_acm |= BIT(1) | BIT(2);
  291. }
  292. break;
  293. }
  294. params.aifs = pos[0] & 0x0f;
  295. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  296. params.cw_min = ecw2cw(pos[1] & 0x0f);
  297. params.txop = pos[2] | (pos[3] << 8);
  298. #ifdef CONFIG_MAC80211_DEBUG
  299. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  300. "cWmin=%d cWmax=%d txop=%d\n",
  301. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  302. params.cw_max, params.txop);
  303. #endif
  304. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  305. * AC for now) */
  306. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  307. printk(KERN_DEBUG "%s: failed to set TX queue "
  308. "parameters for queue %d\n", dev->name, queue);
  309. }
  310. }
  311. }
  312. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  313. u8 erp_value)
  314. {
  315. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  316. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  317. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  318. bool preamble_mode = (erp_value & WLAN_ERP_BARKER_PREAMBLE) != 0;
  319. DECLARE_MAC_BUF(mac);
  320. u32 changed = 0;
  321. if (use_protection != bss_conf->use_cts_prot) {
  322. if (net_ratelimit()) {
  323. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  324. "%s)\n",
  325. sdata->dev->name,
  326. use_protection ? "enabled" : "disabled",
  327. print_mac(mac, ifsta->bssid));
  328. }
  329. bss_conf->use_cts_prot = use_protection;
  330. changed |= BSS_CHANGED_ERP_CTS_PROT;
  331. }
  332. if (preamble_mode != bss_conf->use_short_preamble) {
  333. if (net_ratelimit()) {
  334. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  335. " (BSSID=%s)\n",
  336. sdata->dev->name,
  337. (preamble_mode == WLAN_ERP_PREAMBLE_SHORT) ?
  338. "short" : "long",
  339. print_mac(mac, ifsta->bssid));
  340. }
  341. bss_conf->use_short_preamble = preamble_mode;
  342. changed |= BSS_CHANGED_ERP_PREAMBLE;
  343. }
  344. return changed;
  345. }
  346. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  347. struct ieee80211_ht_info *ht_info)
  348. {
  349. if (ht_info == NULL)
  350. return -EINVAL;
  351. memset(ht_info, 0, sizeof(*ht_info));
  352. if (ht_cap_ie) {
  353. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  354. ht_info->ht_supported = 1;
  355. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  356. ht_info->ampdu_factor =
  357. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  358. ht_info->ampdu_density =
  359. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  360. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  361. } else
  362. ht_info->ht_supported = 0;
  363. return 0;
  364. }
  365. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  366. struct ieee80211_ht_addt_info *ht_add_info_ie,
  367. struct ieee80211_ht_bss_info *bss_info)
  368. {
  369. if (bss_info == NULL)
  370. return -EINVAL;
  371. memset(bss_info, 0, sizeof(*bss_info));
  372. if (ht_add_info_ie) {
  373. u16 op_mode;
  374. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  375. bss_info->primary_channel = ht_add_info_ie->control_chan;
  376. bss_info->bss_cap = ht_add_info_ie->ht_param;
  377. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  378. }
  379. return 0;
  380. }
  381. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  382. struct ieee80211_if_sta *ifsta)
  383. {
  384. char *buf;
  385. size_t len;
  386. int i;
  387. union iwreq_data wrqu;
  388. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  389. return;
  390. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  391. ifsta->assocresp_ies_len), GFP_KERNEL);
  392. if (!buf)
  393. return;
  394. len = sprintf(buf, "ASSOCINFO(");
  395. if (ifsta->assocreq_ies) {
  396. len += sprintf(buf + len, "ReqIEs=");
  397. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  398. len += sprintf(buf + len, "%02x",
  399. ifsta->assocreq_ies[i]);
  400. }
  401. }
  402. if (ifsta->assocresp_ies) {
  403. if (ifsta->assocreq_ies)
  404. len += sprintf(buf + len, " ");
  405. len += sprintf(buf + len, "RespIEs=");
  406. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  407. len += sprintf(buf + len, "%02x",
  408. ifsta->assocresp_ies[i]);
  409. }
  410. }
  411. len += sprintf(buf + len, ")");
  412. if (len > IW_CUSTOM_MAX) {
  413. len = sprintf(buf, "ASSOCRESPIE=");
  414. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  415. len += sprintf(buf + len, "%02x",
  416. ifsta->assocresp_ies[i]);
  417. }
  418. }
  419. memset(&wrqu, 0, sizeof(wrqu));
  420. wrqu.data.length = len;
  421. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  422. kfree(buf);
  423. }
  424. static void ieee80211_set_associated(struct net_device *dev,
  425. struct ieee80211_if_sta *ifsta,
  426. bool assoc)
  427. {
  428. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  429. struct ieee80211_local *local = sdata->local;
  430. union iwreq_data wrqu;
  431. u32 changed = BSS_CHANGED_ASSOC;
  432. if (assoc) {
  433. struct ieee80211_sta_bss *bss;
  434. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  435. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  436. return;
  437. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  438. local->hw.conf.channel->center_freq,
  439. ifsta->ssid, ifsta->ssid_len);
  440. if (bss) {
  441. if (bss->has_erp_value)
  442. changed |= ieee80211_handle_erp_ie(
  443. sdata, bss->erp_value);
  444. ieee80211_rx_bss_put(dev, bss);
  445. }
  446. netif_carrier_on(dev);
  447. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  448. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  449. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  450. ieee80211_sta_send_associnfo(dev, ifsta);
  451. } else {
  452. ieee80211_sta_tear_down_BA_sessions(dev, ifsta->bssid);
  453. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  454. netif_carrier_off(dev);
  455. ieee80211_reset_erp_info(dev);
  456. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  457. }
  458. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  459. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  460. ifsta->last_probe = jiffies;
  461. ieee80211_led_assoc(local, assoc);
  462. sdata->bss_conf.assoc = assoc;
  463. ieee80211_bss_info_change_notify(sdata, changed);
  464. }
  465. static void ieee80211_set_disassoc(struct net_device *dev,
  466. struct ieee80211_if_sta *ifsta, int deauth)
  467. {
  468. if (deauth)
  469. ifsta->auth_tries = 0;
  470. ifsta->assoc_tries = 0;
  471. ieee80211_set_associated(dev, ifsta, 0);
  472. }
  473. void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  474. int encrypt)
  475. {
  476. struct ieee80211_sub_if_data *sdata;
  477. struct ieee80211_tx_packet_data *pkt_data;
  478. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  479. skb->dev = sdata->local->mdev;
  480. skb_set_mac_header(skb, 0);
  481. skb_set_network_header(skb, 0);
  482. skb_set_transport_header(skb, 0);
  483. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  484. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  485. pkt_data->ifindex = sdata->dev->ifindex;
  486. if (!encrypt)
  487. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  488. dev_queue_xmit(skb);
  489. }
  490. static void ieee80211_send_auth(struct net_device *dev,
  491. struct ieee80211_if_sta *ifsta,
  492. int transaction, u8 *extra, size_t extra_len,
  493. int encrypt)
  494. {
  495. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  496. struct sk_buff *skb;
  497. struct ieee80211_mgmt *mgmt;
  498. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  499. sizeof(*mgmt) + 6 + extra_len);
  500. if (!skb) {
  501. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  502. "frame\n", dev->name);
  503. return;
  504. }
  505. skb_reserve(skb, local->hw.extra_tx_headroom);
  506. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  507. memset(mgmt, 0, 24 + 6);
  508. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  509. IEEE80211_STYPE_AUTH);
  510. if (encrypt)
  511. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  512. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  513. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  514. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  515. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  516. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  517. ifsta->auth_transaction = transaction + 1;
  518. mgmt->u.auth.status_code = cpu_to_le16(0);
  519. if (extra)
  520. memcpy(skb_put(skb, extra_len), extra, extra_len);
  521. ieee80211_sta_tx(dev, skb, encrypt);
  522. }
  523. static void ieee80211_authenticate(struct net_device *dev,
  524. struct ieee80211_if_sta *ifsta)
  525. {
  526. DECLARE_MAC_BUF(mac);
  527. ifsta->auth_tries++;
  528. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  529. printk(KERN_DEBUG "%s: authentication with AP %s"
  530. " timed out\n",
  531. dev->name, print_mac(mac, ifsta->bssid));
  532. ifsta->state = IEEE80211_DISABLED;
  533. return;
  534. }
  535. ifsta->state = IEEE80211_AUTHENTICATE;
  536. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  537. dev->name, print_mac(mac, ifsta->bssid));
  538. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  539. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  540. }
  541. static void ieee80211_send_assoc(struct net_device *dev,
  542. struct ieee80211_if_sta *ifsta)
  543. {
  544. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  545. struct sk_buff *skb;
  546. struct ieee80211_mgmt *mgmt;
  547. u8 *pos, *ies;
  548. int i, len;
  549. u16 capab;
  550. struct ieee80211_sta_bss *bss;
  551. int wmm = 0;
  552. struct ieee80211_supported_band *sband;
  553. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  554. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  555. ifsta->ssid_len);
  556. if (!skb) {
  557. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  558. "frame\n", dev->name);
  559. return;
  560. }
  561. skb_reserve(skb, local->hw.extra_tx_headroom);
  562. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  563. capab = ifsta->capab;
  564. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  565. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  566. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  567. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  568. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  569. }
  570. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  571. local->hw.conf.channel->center_freq,
  572. ifsta->ssid, ifsta->ssid_len);
  573. if (bss) {
  574. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  575. capab |= WLAN_CAPABILITY_PRIVACY;
  576. if (bss->wmm_ie) {
  577. wmm = 1;
  578. }
  579. ieee80211_rx_bss_put(dev, bss);
  580. }
  581. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  582. memset(mgmt, 0, 24);
  583. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  584. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  585. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  586. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  587. skb_put(skb, 10);
  588. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  589. IEEE80211_STYPE_REASSOC_REQ);
  590. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  591. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  592. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  593. ETH_ALEN);
  594. } else {
  595. skb_put(skb, 4);
  596. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  597. IEEE80211_STYPE_ASSOC_REQ);
  598. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  599. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  600. }
  601. /* SSID */
  602. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  603. *pos++ = WLAN_EID_SSID;
  604. *pos++ = ifsta->ssid_len;
  605. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  606. len = sband->n_bitrates;
  607. if (len > 8)
  608. len = 8;
  609. pos = skb_put(skb, len + 2);
  610. *pos++ = WLAN_EID_SUPP_RATES;
  611. *pos++ = len;
  612. for (i = 0; i < len; i++) {
  613. int rate = sband->bitrates[i].bitrate;
  614. *pos++ = (u8) (rate / 5);
  615. }
  616. if (sband->n_bitrates > len) {
  617. pos = skb_put(skb, sband->n_bitrates - len + 2);
  618. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  619. *pos++ = sband->n_bitrates - len;
  620. for (i = len; i < sband->n_bitrates; i++) {
  621. int rate = sband->bitrates[i].bitrate;
  622. *pos++ = (u8) (rate / 5);
  623. }
  624. }
  625. if (ifsta->extra_ie) {
  626. pos = skb_put(skb, ifsta->extra_ie_len);
  627. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  628. }
  629. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  630. pos = skb_put(skb, 9);
  631. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  632. *pos++ = 7; /* len */
  633. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  634. *pos++ = 0x50;
  635. *pos++ = 0xf2;
  636. *pos++ = 2; /* WME */
  637. *pos++ = 0; /* WME info */
  638. *pos++ = 1; /* WME ver */
  639. *pos++ = 0;
  640. }
  641. /* wmm support is a must to HT */
  642. if (wmm && sband->ht_info.ht_supported) {
  643. __le16 tmp = cpu_to_le16(sband->ht_info.cap);
  644. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  645. *pos++ = WLAN_EID_HT_CAPABILITY;
  646. *pos++ = sizeof(struct ieee80211_ht_cap);
  647. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  648. memcpy(pos, &tmp, sizeof(u16));
  649. pos += sizeof(u16);
  650. /* TODO: needs a define here for << 2 */
  651. *pos++ = sband->ht_info.ampdu_factor |
  652. (sband->ht_info.ampdu_density << 2);
  653. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  654. }
  655. kfree(ifsta->assocreq_ies);
  656. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  657. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  658. if (ifsta->assocreq_ies)
  659. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  660. ieee80211_sta_tx(dev, skb, 0);
  661. }
  662. static void ieee80211_send_deauth(struct net_device *dev,
  663. struct ieee80211_if_sta *ifsta, u16 reason)
  664. {
  665. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  666. struct sk_buff *skb;
  667. struct ieee80211_mgmt *mgmt;
  668. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  669. if (!skb) {
  670. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  671. "frame\n", dev->name);
  672. return;
  673. }
  674. skb_reserve(skb, local->hw.extra_tx_headroom);
  675. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  676. memset(mgmt, 0, 24);
  677. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  678. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  679. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  680. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  681. IEEE80211_STYPE_DEAUTH);
  682. skb_put(skb, 2);
  683. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  684. ieee80211_sta_tx(dev, skb, 0);
  685. }
  686. static void ieee80211_send_disassoc(struct net_device *dev,
  687. struct ieee80211_if_sta *ifsta, u16 reason)
  688. {
  689. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  690. struct sk_buff *skb;
  691. struct ieee80211_mgmt *mgmt;
  692. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  693. if (!skb) {
  694. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  695. "frame\n", dev->name);
  696. return;
  697. }
  698. skb_reserve(skb, local->hw.extra_tx_headroom);
  699. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  700. memset(mgmt, 0, 24);
  701. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  702. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  703. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  704. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  705. IEEE80211_STYPE_DISASSOC);
  706. skb_put(skb, 2);
  707. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  708. ieee80211_sta_tx(dev, skb, 0);
  709. }
  710. static int ieee80211_privacy_mismatch(struct net_device *dev,
  711. struct ieee80211_if_sta *ifsta)
  712. {
  713. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  714. struct ieee80211_sta_bss *bss;
  715. int bss_privacy;
  716. int wep_privacy;
  717. int privacy_invoked;
  718. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  719. return 0;
  720. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  721. local->hw.conf.channel->center_freq,
  722. ifsta->ssid, ifsta->ssid_len);
  723. if (!bss)
  724. return 0;
  725. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  726. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  727. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  728. ieee80211_rx_bss_put(dev, bss);
  729. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  730. return 0;
  731. return 1;
  732. }
  733. static void ieee80211_associate(struct net_device *dev,
  734. struct ieee80211_if_sta *ifsta)
  735. {
  736. DECLARE_MAC_BUF(mac);
  737. ifsta->assoc_tries++;
  738. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  739. printk(KERN_DEBUG "%s: association with AP %s"
  740. " timed out\n",
  741. dev->name, print_mac(mac, ifsta->bssid));
  742. ifsta->state = IEEE80211_DISABLED;
  743. return;
  744. }
  745. ifsta->state = IEEE80211_ASSOCIATE;
  746. printk(KERN_DEBUG "%s: associate with AP %s\n",
  747. dev->name, print_mac(mac, ifsta->bssid));
  748. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  749. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  750. "mixed-cell disabled - abort association\n", dev->name);
  751. ifsta->state = IEEE80211_DISABLED;
  752. return;
  753. }
  754. ieee80211_send_assoc(dev, ifsta);
  755. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  756. }
  757. static void ieee80211_associated(struct net_device *dev,
  758. struct ieee80211_if_sta *ifsta)
  759. {
  760. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  761. struct sta_info *sta;
  762. int disassoc;
  763. DECLARE_MAC_BUF(mac);
  764. /* TODO: start monitoring current AP signal quality and number of
  765. * missed beacons. Scan other channels every now and then and search
  766. * for better APs. */
  767. /* TODO: remove expired BSSes */
  768. ifsta->state = IEEE80211_ASSOCIATED;
  769. rcu_read_lock();
  770. sta = sta_info_get(local, ifsta->bssid);
  771. if (!sta) {
  772. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  773. dev->name, print_mac(mac, ifsta->bssid));
  774. disassoc = 1;
  775. } else {
  776. disassoc = 0;
  777. if (time_after(jiffies,
  778. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  779. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  780. printk(KERN_DEBUG "%s: No ProbeResp from "
  781. "current AP %s - assume out of "
  782. "range\n",
  783. dev->name, print_mac(mac, ifsta->bssid));
  784. disassoc = 1;
  785. sta_info_unlink(&sta);
  786. } else
  787. ieee80211_send_probe_req(dev, ifsta->bssid,
  788. local->scan_ssid,
  789. local->scan_ssid_len);
  790. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  791. } else {
  792. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  793. if (time_after(jiffies, ifsta->last_probe +
  794. IEEE80211_PROBE_INTERVAL)) {
  795. ifsta->last_probe = jiffies;
  796. ieee80211_send_probe_req(dev, ifsta->bssid,
  797. ifsta->ssid,
  798. ifsta->ssid_len);
  799. }
  800. }
  801. }
  802. rcu_read_unlock();
  803. if (disassoc && sta) {
  804. rtnl_lock();
  805. sta_info_destroy(sta);
  806. rtnl_unlock();
  807. }
  808. if (disassoc) {
  809. ifsta->state = IEEE80211_DISABLED;
  810. ieee80211_set_associated(dev, ifsta, 0);
  811. } else {
  812. mod_timer(&ifsta->timer, jiffies +
  813. IEEE80211_MONITORING_INTERVAL);
  814. }
  815. }
  816. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  817. u8 *ssid, size_t ssid_len)
  818. {
  819. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  820. struct ieee80211_supported_band *sband;
  821. struct sk_buff *skb;
  822. struct ieee80211_mgmt *mgmt;
  823. u8 *pos, *supp_rates, *esupp_rates = NULL;
  824. int i;
  825. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  826. if (!skb) {
  827. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  828. "request\n", dev->name);
  829. return;
  830. }
  831. skb_reserve(skb, local->hw.extra_tx_headroom);
  832. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  833. memset(mgmt, 0, 24);
  834. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  835. IEEE80211_STYPE_PROBE_REQ);
  836. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  837. if (dst) {
  838. memcpy(mgmt->da, dst, ETH_ALEN);
  839. memcpy(mgmt->bssid, dst, ETH_ALEN);
  840. } else {
  841. memset(mgmt->da, 0xff, ETH_ALEN);
  842. memset(mgmt->bssid, 0xff, ETH_ALEN);
  843. }
  844. pos = skb_put(skb, 2 + ssid_len);
  845. *pos++ = WLAN_EID_SSID;
  846. *pos++ = ssid_len;
  847. memcpy(pos, ssid, ssid_len);
  848. supp_rates = skb_put(skb, 2);
  849. supp_rates[0] = WLAN_EID_SUPP_RATES;
  850. supp_rates[1] = 0;
  851. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  852. for (i = 0; i < sband->n_bitrates; i++) {
  853. struct ieee80211_rate *rate = &sband->bitrates[i];
  854. if (esupp_rates) {
  855. pos = skb_put(skb, 1);
  856. esupp_rates[1]++;
  857. } else if (supp_rates[1] == 8) {
  858. esupp_rates = skb_put(skb, 3);
  859. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  860. esupp_rates[1] = 1;
  861. pos = &esupp_rates[2];
  862. } else {
  863. pos = skb_put(skb, 1);
  864. supp_rates[1]++;
  865. }
  866. *pos = rate->bitrate / 5;
  867. }
  868. ieee80211_sta_tx(dev, skb, 0);
  869. }
  870. static int ieee80211_sta_wep_configured(struct net_device *dev)
  871. {
  872. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  873. if (!sdata || !sdata->default_key ||
  874. sdata->default_key->conf.alg != ALG_WEP)
  875. return 0;
  876. return 1;
  877. }
  878. static void ieee80211_auth_completed(struct net_device *dev,
  879. struct ieee80211_if_sta *ifsta)
  880. {
  881. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  882. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  883. ieee80211_associate(dev, ifsta);
  884. }
  885. static void ieee80211_auth_challenge(struct net_device *dev,
  886. struct ieee80211_if_sta *ifsta,
  887. struct ieee80211_mgmt *mgmt,
  888. size_t len)
  889. {
  890. u8 *pos;
  891. struct ieee802_11_elems elems;
  892. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  893. pos = mgmt->u.auth.variable;
  894. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  895. if (!elems.challenge) {
  896. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  897. "frame\n", dev->name);
  898. return;
  899. }
  900. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  901. elems.challenge_len + 2, 1);
  902. }
  903. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  904. u8 dialog_token, u16 status, u16 policy,
  905. u16 buf_size, u16 timeout)
  906. {
  907. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  908. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  909. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  910. struct sk_buff *skb;
  911. struct ieee80211_mgmt *mgmt;
  912. u16 capab;
  913. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  914. sizeof(mgmt->u.action.u.addba_resp));
  915. if (!skb) {
  916. printk(KERN_DEBUG "%s: failed to allocate buffer "
  917. "for addba resp frame\n", dev->name);
  918. return;
  919. }
  920. skb_reserve(skb, local->hw.extra_tx_headroom);
  921. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  922. memset(mgmt, 0, 24);
  923. memcpy(mgmt->da, da, ETH_ALEN);
  924. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  925. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  926. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  927. else
  928. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  929. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  930. IEEE80211_STYPE_ACTION);
  931. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  932. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  933. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  934. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  935. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  936. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  937. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  938. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  939. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  940. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  941. ieee80211_sta_tx(dev, skb, 0);
  942. return;
  943. }
  944. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  945. u16 tid, u8 dialog_token, u16 start_seq_num,
  946. u16 agg_size, u16 timeout)
  947. {
  948. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  949. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  950. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  951. struct sk_buff *skb;
  952. struct ieee80211_mgmt *mgmt;
  953. u16 capab;
  954. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  955. sizeof(mgmt->u.action.u.addba_req));
  956. if (!skb) {
  957. printk(KERN_ERR "%s: failed to allocate buffer "
  958. "for addba request frame\n", dev->name);
  959. return;
  960. }
  961. skb_reserve(skb, local->hw.extra_tx_headroom);
  962. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  963. memset(mgmt, 0, 24);
  964. memcpy(mgmt->da, da, ETH_ALEN);
  965. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  966. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  967. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  968. else
  969. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  970. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  971. IEEE80211_STYPE_ACTION);
  972. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  973. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  974. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  975. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  976. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  977. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  978. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  979. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  980. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  981. mgmt->u.action.u.addba_req.start_seq_num =
  982. cpu_to_le16(start_seq_num << 4);
  983. ieee80211_sta_tx(dev, skb, 0);
  984. }
  985. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  986. struct ieee80211_mgmt *mgmt,
  987. size_t len)
  988. {
  989. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  990. struct ieee80211_hw *hw = &local->hw;
  991. struct ieee80211_conf *conf = &hw->conf;
  992. struct sta_info *sta;
  993. struct tid_ampdu_rx *tid_agg_rx;
  994. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  995. u8 dialog_token;
  996. int ret = -EOPNOTSUPP;
  997. DECLARE_MAC_BUF(mac);
  998. rcu_read_lock();
  999. sta = sta_info_get(local, mgmt->sa);
  1000. if (!sta) {
  1001. rcu_read_unlock();
  1002. return;
  1003. }
  1004. /* extract session parameters from addba request frame */
  1005. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  1006. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  1007. start_seq_num =
  1008. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  1009. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  1010. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  1011. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1012. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  1013. status = WLAN_STATUS_REQUEST_DECLINED;
  1014. /* sanity check for incoming parameters:
  1015. * check if configuration can support the BA policy
  1016. * and if buffer size does not exceeds max value */
  1017. if (((ba_policy != 1)
  1018. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  1019. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  1020. status = WLAN_STATUS_INVALID_QOS_PARAM;
  1021. #ifdef CONFIG_MAC80211_HT_DEBUG
  1022. if (net_ratelimit())
  1023. printk(KERN_DEBUG "AddBA Req with bad params from "
  1024. "%s on tid %u. policy %d, buffer size %d\n",
  1025. print_mac(mac, mgmt->sa), tid, ba_policy,
  1026. buf_size);
  1027. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1028. goto end_no_lock;
  1029. }
  1030. /* determine default buffer size */
  1031. if (buf_size == 0) {
  1032. struct ieee80211_supported_band *sband;
  1033. sband = local->hw.wiphy->bands[conf->channel->band];
  1034. buf_size = IEEE80211_MIN_AMPDU_BUF;
  1035. buf_size = buf_size << sband->ht_info.ampdu_factor;
  1036. }
  1037. /* examine state machine */
  1038. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1039. if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_IDLE) {
  1040. #ifdef CONFIG_MAC80211_HT_DEBUG
  1041. if (net_ratelimit())
  1042. printk(KERN_DEBUG "unexpected AddBA Req from "
  1043. "%s on tid %u\n",
  1044. print_mac(mac, mgmt->sa), tid);
  1045. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1046. goto end;
  1047. }
  1048. /* prepare A-MPDU MLME for Rx aggregation */
  1049. sta->ampdu_mlme.tid_rx[tid] =
  1050. kmalloc(sizeof(struct tid_ampdu_rx), GFP_ATOMIC);
  1051. if (!sta->ampdu_mlme.tid_rx[tid]) {
  1052. if (net_ratelimit())
  1053. printk(KERN_ERR "allocate rx mlme to tid %d failed\n",
  1054. tid);
  1055. goto end;
  1056. }
  1057. /* rx timer */
  1058. sta->ampdu_mlme.tid_rx[tid]->session_timer.function =
  1059. sta_rx_agg_session_timer_expired;
  1060. sta->ampdu_mlme.tid_rx[tid]->session_timer.data =
  1061. (unsigned long)&sta->timer_to_tid[tid];
  1062. init_timer(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1063. tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
  1064. /* prepare reordering buffer */
  1065. tid_agg_rx->reorder_buf =
  1066. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  1067. if (!tid_agg_rx->reorder_buf) {
  1068. if (net_ratelimit())
  1069. printk(KERN_ERR "can not allocate reordering buffer "
  1070. "to tid %d\n", tid);
  1071. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1072. goto end;
  1073. }
  1074. memset(tid_agg_rx->reorder_buf, 0,
  1075. buf_size * sizeof(struct sk_buf *));
  1076. if (local->ops->ampdu_action)
  1077. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1078. sta->addr, tid, &start_seq_num);
  1079. #ifdef CONFIG_MAC80211_HT_DEBUG
  1080. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  1081. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1082. if (ret) {
  1083. kfree(tid_agg_rx->reorder_buf);
  1084. kfree(tid_agg_rx);
  1085. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1086. goto end;
  1087. }
  1088. /* change state and send addba resp */
  1089. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_OPERATIONAL;
  1090. tid_agg_rx->dialog_token = dialog_token;
  1091. tid_agg_rx->ssn = start_seq_num;
  1092. tid_agg_rx->head_seq_num = start_seq_num;
  1093. tid_agg_rx->buf_size = buf_size;
  1094. tid_agg_rx->timeout = timeout;
  1095. tid_agg_rx->stored_mpdu_num = 0;
  1096. status = WLAN_STATUS_SUCCESS;
  1097. end:
  1098. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1099. end_no_lock:
  1100. ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
  1101. dialog_token, status, 1, buf_size, timeout);
  1102. rcu_read_unlock();
  1103. }
  1104. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1105. struct ieee80211_mgmt *mgmt,
  1106. size_t len)
  1107. {
  1108. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1109. struct ieee80211_hw *hw = &local->hw;
  1110. struct sta_info *sta;
  1111. u16 capab;
  1112. u16 tid;
  1113. u8 *state;
  1114. rcu_read_lock();
  1115. sta = sta_info_get(local, mgmt->sa);
  1116. if (!sta) {
  1117. rcu_read_unlock();
  1118. return;
  1119. }
  1120. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1121. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1122. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1123. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1124. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1125. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1126. printk(KERN_DEBUG "state not HT_ADDBA_REQUESTED_MSK:"
  1127. "%d\n", *state);
  1128. goto addba_resp_exit;
  1129. }
  1130. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1131. sta->ampdu_mlme.tid_tx[tid]->dialog_token) {
  1132. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1133. #ifdef CONFIG_MAC80211_HT_DEBUG
  1134. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1135. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1136. goto addba_resp_exit;
  1137. }
  1138. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer);
  1139. #ifdef CONFIG_MAC80211_HT_DEBUG
  1140. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1141. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1142. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1143. == WLAN_STATUS_SUCCESS) {
  1144. if (*state & HT_ADDBA_RECEIVED_MSK)
  1145. printk(KERN_DEBUG "double addBA response\n");
  1146. *state |= HT_ADDBA_RECEIVED_MSK;
  1147. sta->ampdu_mlme.addba_req_num[tid] = 0;
  1148. if (*state == HT_AGG_STATE_OPERATIONAL) {
  1149. printk(KERN_DEBUG "Aggregation on for tid %d \n", tid);
  1150. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1151. }
  1152. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1153. printk(KERN_DEBUG "recipient accepted agg: tid %d \n", tid);
  1154. } else {
  1155. printk(KERN_DEBUG "recipient rejected agg: tid %d \n", tid);
  1156. sta->ampdu_mlme.addba_req_num[tid]++;
  1157. /* this will allow the state check in stop_BA_session */
  1158. *state = HT_AGG_STATE_OPERATIONAL;
  1159. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1160. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1161. WLAN_BACK_INITIATOR);
  1162. }
  1163. addba_resp_exit:
  1164. rcu_read_unlock();
  1165. }
  1166. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1167. u16 initiator, u16 reason_code)
  1168. {
  1169. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1170. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1171. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1172. struct sk_buff *skb;
  1173. struct ieee80211_mgmt *mgmt;
  1174. u16 params;
  1175. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1176. sizeof(mgmt->u.action.u.delba));
  1177. if (!skb) {
  1178. printk(KERN_ERR "%s: failed to allocate buffer "
  1179. "for delba frame\n", dev->name);
  1180. return;
  1181. }
  1182. skb_reserve(skb, local->hw.extra_tx_headroom);
  1183. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1184. memset(mgmt, 0, 24);
  1185. memcpy(mgmt->da, da, ETH_ALEN);
  1186. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1187. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1188. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1189. else
  1190. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1191. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1192. IEEE80211_STYPE_ACTION);
  1193. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1194. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1195. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1196. params = (u16)(initiator << 11); /* bit 11 initiator */
  1197. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1198. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1199. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1200. ieee80211_sta_tx(dev, skb, 0);
  1201. }
  1202. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1203. u16 initiator, u16 reason)
  1204. {
  1205. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1206. struct ieee80211_hw *hw = &local->hw;
  1207. struct sta_info *sta;
  1208. int ret, i;
  1209. rcu_read_lock();
  1210. sta = sta_info_get(local, ra);
  1211. if (!sta) {
  1212. rcu_read_unlock();
  1213. return;
  1214. }
  1215. /* check if TID is in operational state */
  1216. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1217. if (sta->ampdu_mlme.tid_state_rx[tid]
  1218. != HT_AGG_STATE_OPERATIONAL) {
  1219. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1220. rcu_read_unlock();
  1221. return;
  1222. }
  1223. sta->ampdu_mlme.tid_state_rx[tid] =
  1224. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1225. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1226. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1227. /* stop HW Rx aggregation. ampdu_action existence
  1228. * already verified in session init so we add the BUG_ON */
  1229. BUG_ON(!local->ops->ampdu_action);
  1230. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1231. ra, tid, NULL);
  1232. if (ret)
  1233. printk(KERN_DEBUG "HW problem - can not stop rx "
  1234. "aggergation for tid %d\n", tid);
  1235. /* shutdown timer has not expired */
  1236. if (initiator != WLAN_BACK_TIMER)
  1237. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1238. /* check if this is a self generated aggregation halt */
  1239. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1240. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1241. /* free the reordering buffer */
  1242. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid]->buf_size; i++) {
  1243. if (sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]) {
  1244. /* release the reordered frames */
  1245. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]);
  1246. sta->ampdu_mlme.tid_rx[tid]->stored_mpdu_num--;
  1247. sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i] = NULL;
  1248. }
  1249. }
  1250. /* free resources */
  1251. kfree(sta->ampdu_mlme.tid_rx[tid]->reorder_buf);
  1252. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1253. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1254. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_IDLE;
  1255. rcu_read_unlock();
  1256. }
  1257. static void ieee80211_sta_process_delba(struct net_device *dev,
  1258. struct ieee80211_mgmt *mgmt, size_t len)
  1259. {
  1260. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1261. struct sta_info *sta;
  1262. u16 tid, params;
  1263. u16 initiator;
  1264. DECLARE_MAC_BUF(mac);
  1265. rcu_read_lock();
  1266. sta = sta_info_get(local, mgmt->sa);
  1267. if (!sta) {
  1268. rcu_read_unlock();
  1269. return;
  1270. }
  1271. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1272. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1273. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1274. #ifdef CONFIG_MAC80211_HT_DEBUG
  1275. if (net_ratelimit())
  1276. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1277. print_mac(mac, mgmt->sa),
  1278. initiator ? "initiator" : "recipient", tid,
  1279. mgmt->u.action.u.delba.reason_code);
  1280. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1281. if (initiator == WLAN_BACK_INITIATOR)
  1282. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1283. WLAN_BACK_INITIATOR, 0);
  1284. else { /* WLAN_BACK_RECIPIENT */
  1285. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1286. sta->ampdu_mlme.tid_state_tx[tid] =
  1287. HT_AGG_STATE_OPERATIONAL;
  1288. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1289. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1290. WLAN_BACK_RECIPIENT);
  1291. }
  1292. rcu_read_unlock();
  1293. }
  1294. /*
  1295. * After sending add Block Ack request we activated a timer until
  1296. * add Block Ack response will arrive from the recipient.
  1297. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1298. */
  1299. void sta_addba_resp_timer_expired(unsigned long data)
  1300. {
  1301. /* not an elegant detour, but there is no choice as the timer passes
  1302. * only one argument, and both sta_info and TID are needed, so init
  1303. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1304. * array gives the sta through container_of */
  1305. u16 tid = *(int *)data;
  1306. struct sta_info *temp_sta = container_of((void *)data,
  1307. struct sta_info, timer_to_tid[tid]);
  1308. struct ieee80211_local *local = temp_sta->local;
  1309. struct ieee80211_hw *hw = &local->hw;
  1310. struct sta_info *sta;
  1311. u8 *state;
  1312. rcu_read_lock();
  1313. sta = sta_info_get(local, temp_sta->addr);
  1314. if (!sta) {
  1315. rcu_read_unlock();
  1316. return;
  1317. }
  1318. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1319. /* check if the TID waits for addBA response */
  1320. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1321. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1322. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1323. *state = HT_AGG_STATE_IDLE;
  1324. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1325. "expecting addBA response there", tid);
  1326. goto timer_expired_exit;
  1327. }
  1328. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1329. /* go through the state check in stop_BA_session */
  1330. *state = HT_AGG_STATE_OPERATIONAL;
  1331. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1332. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1333. WLAN_BACK_INITIATOR);
  1334. timer_expired_exit:
  1335. rcu_read_unlock();
  1336. }
  1337. /*
  1338. * After accepting the AddBA Request we activated a timer,
  1339. * resetting it after each frame that arrives from the originator.
  1340. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1341. */
  1342. void sta_rx_agg_session_timer_expired(unsigned long data)
  1343. {
  1344. /* not an elegant detour, but there is no choice as the timer passes
  1345. * only one argument, and verious sta_info are needed here, so init
  1346. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1347. * array gives the sta through container_of */
  1348. u8 *ptid = (u8 *)data;
  1349. u8 *timer_to_id = ptid - *ptid;
  1350. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1351. timer_to_tid[0]);
  1352. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1353. ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
  1354. (u16)*ptid, WLAN_BACK_TIMER,
  1355. WLAN_REASON_QSTA_TIMEOUT);
  1356. }
  1357. void ieee80211_sta_tear_down_BA_sessions(struct net_device *dev, u8 *addr)
  1358. {
  1359. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1360. int i;
  1361. for (i = 0; i < STA_TID_NUM; i++) {
  1362. ieee80211_stop_tx_ba_session(&local->hw, addr, i,
  1363. WLAN_BACK_INITIATOR);
  1364. ieee80211_sta_stop_rx_ba_session(dev, addr, i,
  1365. WLAN_BACK_RECIPIENT,
  1366. WLAN_REASON_QSTA_LEAVE_QBSS);
  1367. }
  1368. }
  1369. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1370. struct ieee80211_if_sta *ifsta,
  1371. struct ieee80211_mgmt *mgmt,
  1372. size_t len)
  1373. {
  1374. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1375. u16 auth_alg, auth_transaction, status_code;
  1376. DECLARE_MAC_BUF(mac);
  1377. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1378. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1379. printk(KERN_DEBUG "%s: authentication frame received from "
  1380. "%s, but not in authenticate state - ignored\n",
  1381. dev->name, print_mac(mac, mgmt->sa));
  1382. return;
  1383. }
  1384. if (len < 24 + 6) {
  1385. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1386. "received from %s - ignored\n",
  1387. dev->name, len, print_mac(mac, mgmt->sa));
  1388. return;
  1389. }
  1390. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1391. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1392. printk(KERN_DEBUG "%s: authentication frame received from "
  1393. "unknown AP (SA=%s BSSID=%s) - "
  1394. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1395. print_mac(mac, mgmt->bssid));
  1396. return;
  1397. }
  1398. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1399. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1400. printk(KERN_DEBUG "%s: authentication frame received from "
  1401. "unknown BSSID (SA=%s BSSID=%s) - "
  1402. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1403. print_mac(mac, mgmt->bssid));
  1404. return;
  1405. }
  1406. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1407. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1408. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1409. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1410. "transaction=%d status=%d)\n",
  1411. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1412. auth_transaction, status_code);
  1413. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1414. /* IEEE 802.11 standard does not require authentication in IBSS
  1415. * networks and most implementations do not seem to use it.
  1416. * However, try to reply to authentication attempts if someone
  1417. * has actually implemented this.
  1418. * TODO: Could implement shared key authentication. */
  1419. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1420. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1421. "frame (alg=%d transaction=%d)\n",
  1422. dev->name, auth_alg, auth_transaction);
  1423. return;
  1424. }
  1425. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1426. }
  1427. if (auth_alg != ifsta->auth_alg ||
  1428. auth_transaction != ifsta->auth_transaction) {
  1429. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1430. "(alg=%d transaction=%d)\n",
  1431. dev->name, auth_alg, auth_transaction);
  1432. return;
  1433. }
  1434. if (status_code != WLAN_STATUS_SUCCESS) {
  1435. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1436. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1437. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1438. u8 algs[3];
  1439. const int num_algs = ARRAY_SIZE(algs);
  1440. int i, pos;
  1441. algs[0] = algs[1] = algs[2] = 0xff;
  1442. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1443. algs[0] = WLAN_AUTH_OPEN;
  1444. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1445. algs[1] = WLAN_AUTH_SHARED_KEY;
  1446. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1447. algs[2] = WLAN_AUTH_LEAP;
  1448. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1449. pos = 0;
  1450. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1451. pos = 1;
  1452. else
  1453. pos = 2;
  1454. for (i = 0; i < num_algs; i++) {
  1455. pos++;
  1456. if (pos >= num_algs)
  1457. pos = 0;
  1458. if (algs[pos] == ifsta->auth_alg ||
  1459. algs[pos] == 0xff)
  1460. continue;
  1461. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1462. !ieee80211_sta_wep_configured(dev))
  1463. continue;
  1464. ifsta->auth_alg = algs[pos];
  1465. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1466. "next try\n",
  1467. dev->name, ifsta->auth_alg);
  1468. break;
  1469. }
  1470. }
  1471. return;
  1472. }
  1473. switch (ifsta->auth_alg) {
  1474. case WLAN_AUTH_OPEN:
  1475. case WLAN_AUTH_LEAP:
  1476. ieee80211_auth_completed(dev, ifsta);
  1477. break;
  1478. case WLAN_AUTH_SHARED_KEY:
  1479. if (ifsta->auth_transaction == 4)
  1480. ieee80211_auth_completed(dev, ifsta);
  1481. else
  1482. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1483. break;
  1484. }
  1485. }
  1486. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1487. struct ieee80211_if_sta *ifsta,
  1488. struct ieee80211_mgmt *mgmt,
  1489. size_t len)
  1490. {
  1491. u16 reason_code;
  1492. DECLARE_MAC_BUF(mac);
  1493. if (len < 24 + 2) {
  1494. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1495. "received from %s - ignored\n",
  1496. dev->name, len, print_mac(mac, mgmt->sa));
  1497. return;
  1498. }
  1499. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1500. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1501. "unknown AP (SA=%s BSSID=%s) - "
  1502. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1503. print_mac(mac, mgmt->bssid));
  1504. return;
  1505. }
  1506. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1507. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1508. " (reason=%d)\n",
  1509. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1510. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1511. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1512. }
  1513. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1514. ifsta->state == IEEE80211_ASSOCIATE ||
  1515. ifsta->state == IEEE80211_ASSOCIATED) {
  1516. ifsta->state = IEEE80211_AUTHENTICATE;
  1517. mod_timer(&ifsta->timer, jiffies +
  1518. IEEE80211_RETRY_AUTH_INTERVAL);
  1519. }
  1520. ieee80211_set_disassoc(dev, ifsta, 1);
  1521. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1522. }
  1523. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1524. struct ieee80211_if_sta *ifsta,
  1525. struct ieee80211_mgmt *mgmt,
  1526. size_t len)
  1527. {
  1528. u16 reason_code;
  1529. DECLARE_MAC_BUF(mac);
  1530. if (len < 24 + 2) {
  1531. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1532. "received from %s - ignored\n",
  1533. dev->name, len, print_mac(mac, mgmt->sa));
  1534. return;
  1535. }
  1536. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1537. printk(KERN_DEBUG "%s: disassociation frame received from "
  1538. "unknown AP (SA=%s BSSID=%s) - "
  1539. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1540. print_mac(mac, mgmt->bssid));
  1541. return;
  1542. }
  1543. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1544. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1545. " (reason=%d)\n",
  1546. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1547. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1548. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1549. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1550. ifsta->state = IEEE80211_ASSOCIATE;
  1551. mod_timer(&ifsta->timer, jiffies +
  1552. IEEE80211_RETRY_AUTH_INTERVAL);
  1553. }
  1554. ieee80211_set_disassoc(dev, ifsta, 0);
  1555. }
  1556. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1557. struct ieee80211_if_sta *ifsta,
  1558. struct ieee80211_mgmt *mgmt,
  1559. size_t len,
  1560. int reassoc)
  1561. {
  1562. struct ieee80211_local *local = sdata->local;
  1563. struct net_device *dev = sdata->dev;
  1564. struct ieee80211_supported_band *sband;
  1565. struct sta_info *sta;
  1566. u64 rates, basic_rates;
  1567. u16 capab_info, status_code, aid;
  1568. struct ieee802_11_elems elems;
  1569. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1570. u8 *pos;
  1571. int i, j;
  1572. DECLARE_MAC_BUF(mac);
  1573. bool have_higher_than_11mbit = false;
  1574. /* AssocResp and ReassocResp have identical structure, so process both
  1575. * of them in this function. */
  1576. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1577. printk(KERN_DEBUG "%s: association frame received from "
  1578. "%s, but not in associate state - ignored\n",
  1579. dev->name, print_mac(mac, mgmt->sa));
  1580. return;
  1581. }
  1582. if (len < 24 + 6) {
  1583. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1584. "received from %s - ignored\n",
  1585. dev->name, len, print_mac(mac, mgmt->sa));
  1586. return;
  1587. }
  1588. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1589. printk(KERN_DEBUG "%s: association frame received from "
  1590. "unknown AP (SA=%s BSSID=%s) - "
  1591. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1592. print_mac(mac, mgmt->bssid));
  1593. return;
  1594. }
  1595. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1596. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1597. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1598. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1599. "status=%d aid=%d)\n",
  1600. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1601. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1602. if (status_code != WLAN_STATUS_SUCCESS) {
  1603. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1604. dev->name, status_code);
  1605. /* if this was a reassociation, ensure we try a "full"
  1606. * association next time. This works around some broken APs
  1607. * which do not correctly reject reassociation requests. */
  1608. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1609. return;
  1610. }
  1611. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1612. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1613. "set\n", dev->name, aid);
  1614. aid &= ~(BIT(15) | BIT(14));
  1615. pos = mgmt->u.assoc_resp.variable;
  1616. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1617. if (!elems.supp_rates) {
  1618. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1619. dev->name);
  1620. return;
  1621. }
  1622. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1623. ifsta->aid = aid;
  1624. ifsta->ap_capab = capab_info;
  1625. kfree(ifsta->assocresp_ies);
  1626. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1627. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1628. if (ifsta->assocresp_ies)
  1629. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1630. rcu_read_lock();
  1631. /* Add STA entry for the AP */
  1632. sta = sta_info_get(local, ifsta->bssid);
  1633. if (!sta) {
  1634. struct ieee80211_sta_bss *bss;
  1635. int err;
  1636. sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
  1637. if (!sta) {
  1638. printk(KERN_DEBUG "%s: failed to alloc STA entry for"
  1639. " the AP\n", dev->name);
  1640. rcu_read_unlock();
  1641. return;
  1642. }
  1643. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1644. local->hw.conf.channel->center_freq,
  1645. ifsta->ssid, ifsta->ssid_len);
  1646. if (bss) {
  1647. sta->last_rssi = bss->rssi;
  1648. sta->last_signal = bss->signal;
  1649. sta->last_noise = bss->noise;
  1650. ieee80211_rx_bss_put(dev, bss);
  1651. }
  1652. err = sta_info_insert(sta);
  1653. if (err) {
  1654. printk(KERN_DEBUG "%s: failed to insert STA entry for"
  1655. " the AP (error %d)\n", dev->name, err);
  1656. rcu_read_unlock();
  1657. return;
  1658. }
  1659. }
  1660. /*
  1661. * FIXME: Do we really need to update the sta_info's information here?
  1662. * We already know about the AP (we found it in our list) so it
  1663. * should already be filled with the right info, no?
  1664. * As is stands, all this is racy because typically we assume
  1665. * the information that is filled in here (except flags) doesn't
  1666. * change while a STA structure is alive. As such, it should move
  1667. * to between the sta_info_alloc() and sta_info_insert() above.
  1668. */
  1669. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
  1670. WLAN_STA_AUTHORIZED;
  1671. rates = 0;
  1672. basic_rates = 0;
  1673. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1674. for (i = 0; i < elems.supp_rates_len; i++) {
  1675. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1676. if (rate > 110)
  1677. have_higher_than_11mbit = true;
  1678. for (j = 0; j < sband->n_bitrates; j++) {
  1679. if (sband->bitrates[j].bitrate == rate)
  1680. rates |= BIT(j);
  1681. if (elems.supp_rates[i] & 0x80)
  1682. basic_rates |= BIT(j);
  1683. }
  1684. }
  1685. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1686. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1687. if (rate > 110)
  1688. have_higher_than_11mbit = true;
  1689. for (j = 0; j < sband->n_bitrates; j++) {
  1690. if (sband->bitrates[j].bitrate == rate)
  1691. rates |= BIT(j);
  1692. if (elems.ext_supp_rates[i] & 0x80)
  1693. basic_rates |= BIT(j);
  1694. }
  1695. }
  1696. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1697. sdata->basic_rates = basic_rates;
  1698. /* cf. IEEE 802.11 9.2.12 */
  1699. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1700. have_higher_than_11mbit)
  1701. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1702. else
  1703. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1704. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
  1705. local->ops->conf_ht) {
  1706. struct ieee80211_ht_bss_info bss_info;
  1707. ieee80211_ht_cap_ie_to_ht_info(
  1708. (struct ieee80211_ht_cap *)
  1709. elems.ht_cap_elem, &sta->ht_info);
  1710. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1711. (struct ieee80211_ht_addt_info *)
  1712. elems.ht_info_elem, &bss_info);
  1713. ieee80211_hw_config_ht(local, 1, &sta->ht_info, &bss_info);
  1714. }
  1715. rate_control_rate_init(sta, local);
  1716. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1717. sta->flags |= WLAN_STA_WME;
  1718. rcu_read_unlock();
  1719. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1720. elems.wmm_param_len);
  1721. } else
  1722. rcu_read_unlock();
  1723. /* set AID, ieee80211_set_associated() will tell the driver */
  1724. bss_conf->aid = aid;
  1725. ieee80211_set_associated(dev, ifsta, 1);
  1726. ieee80211_associated(dev, ifsta);
  1727. }
  1728. /* Caller must hold local->sta_bss_lock */
  1729. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1730. struct ieee80211_sta_bss *bss)
  1731. {
  1732. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1733. u8 hash_idx;
  1734. if (bss_mesh_cfg(bss))
  1735. hash_idx = mesh_id_hash(bss_mesh_id(bss),
  1736. bss_mesh_id_len(bss));
  1737. else
  1738. hash_idx = STA_HASH(bss->bssid);
  1739. bss->hnext = local->sta_bss_hash[hash_idx];
  1740. local->sta_bss_hash[hash_idx] = bss;
  1741. }
  1742. /* Caller must hold local->sta_bss_lock */
  1743. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1744. struct ieee80211_sta_bss *bss)
  1745. {
  1746. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1747. struct ieee80211_sta_bss *b, *prev = NULL;
  1748. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1749. while (b) {
  1750. if (b == bss) {
  1751. if (!prev)
  1752. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1753. bss->hnext;
  1754. else
  1755. prev->hnext = bss->hnext;
  1756. break;
  1757. }
  1758. prev = b;
  1759. b = b->hnext;
  1760. }
  1761. }
  1762. static struct ieee80211_sta_bss *
  1763. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1764. u8 *ssid, u8 ssid_len)
  1765. {
  1766. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1767. struct ieee80211_sta_bss *bss;
  1768. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1769. if (!bss)
  1770. return NULL;
  1771. atomic_inc(&bss->users);
  1772. atomic_inc(&bss->users);
  1773. memcpy(bss->bssid, bssid, ETH_ALEN);
  1774. bss->freq = freq;
  1775. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1776. memcpy(bss->ssid, ssid, ssid_len);
  1777. bss->ssid_len = ssid_len;
  1778. }
  1779. spin_lock_bh(&local->sta_bss_lock);
  1780. /* TODO: order by RSSI? */
  1781. list_add_tail(&bss->list, &local->sta_bss_list);
  1782. __ieee80211_rx_bss_hash_add(dev, bss);
  1783. spin_unlock_bh(&local->sta_bss_lock);
  1784. return bss;
  1785. }
  1786. static struct ieee80211_sta_bss *
  1787. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1788. u8 *ssid, u8 ssid_len)
  1789. {
  1790. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1791. struct ieee80211_sta_bss *bss;
  1792. spin_lock_bh(&local->sta_bss_lock);
  1793. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1794. while (bss) {
  1795. if (!bss_mesh_cfg(bss) &&
  1796. !memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1797. bss->freq == freq &&
  1798. bss->ssid_len == ssid_len &&
  1799. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1800. atomic_inc(&bss->users);
  1801. break;
  1802. }
  1803. bss = bss->hnext;
  1804. }
  1805. spin_unlock_bh(&local->sta_bss_lock);
  1806. return bss;
  1807. }
  1808. #ifdef CONFIG_MAC80211_MESH
  1809. static struct ieee80211_sta_bss *
  1810. ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1811. u8 *mesh_cfg, int freq)
  1812. {
  1813. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1814. struct ieee80211_sta_bss *bss;
  1815. spin_lock_bh(&local->sta_bss_lock);
  1816. bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
  1817. while (bss) {
  1818. if (bss_mesh_cfg(bss) &&
  1819. !memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
  1820. bss->freq == freq &&
  1821. mesh_id_len == bss->mesh_id_len &&
  1822. (mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
  1823. mesh_id_len))) {
  1824. atomic_inc(&bss->users);
  1825. break;
  1826. }
  1827. bss = bss->hnext;
  1828. }
  1829. spin_unlock_bh(&local->sta_bss_lock);
  1830. return bss;
  1831. }
  1832. static struct ieee80211_sta_bss *
  1833. ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1834. u8 *mesh_cfg, int freq)
  1835. {
  1836. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1837. struct ieee80211_sta_bss *bss;
  1838. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1839. if (!bss)
  1840. return NULL;
  1841. bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
  1842. if (!bss->mesh_cfg) {
  1843. kfree(bss);
  1844. return NULL;
  1845. }
  1846. if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
  1847. bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
  1848. if (!bss->mesh_id) {
  1849. kfree(bss->mesh_cfg);
  1850. kfree(bss);
  1851. return NULL;
  1852. }
  1853. memcpy(bss->mesh_id, mesh_id, mesh_id_len);
  1854. }
  1855. atomic_inc(&bss->users);
  1856. atomic_inc(&bss->users);
  1857. memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
  1858. bss->mesh_id_len = mesh_id_len;
  1859. bss->freq = freq;
  1860. spin_lock_bh(&local->sta_bss_lock);
  1861. /* TODO: order by RSSI? */
  1862. list_add_tail(&bss->list, &local->sta_bss_list);
  1863. __ieee80211_rx_bss_hash_add(dev, bss);
  1864. spin_unlock_bh(&local->sta_bss_lock);
  1865. return bss;
  1866. }
  1867. #endif
  1868. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1869. {
  1870. kfree(bss->wpa_ie);
  1871. kfree(bss->rsn_ie);
  1872. kfree(bss->wmm_ie);
  1873. kfree(bss->ht_ie);
  1874. kfree(bss_mesh_id(bss));
  1875. kfree(bss_mesh_cfg(bss));
  1876. kfree(bss);
  1877. }
  1878. static void ieee80211_rx_bss_put(struct net_device *dev,
  1879. struct ieee80211_sta_bss *bss)
  1880. {
  1881. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1882. if (!atomic_dec_and_test(&bss->users))
  1883. return;
  1884. spin_lock_bh(&local->sta_bss_lock);
  1885. __ieee80211_rx_bss_hash_del(dev, bss);
  1886. list_del(&bss->list);
  1887. spin_unlock_bh(&local->sta_bss_lock);
  1888. ieee80211_rx_bss_free(bss);
  1889. }
  1890. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1891. {
  1892. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1893. spin_lock_init(&local->sta_bss_lock);
  1894. INIT_LIST_HEAD(&local->sta_bss_list);
  1895. }
  1896. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1897. {
  1898. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1899. struct ieee80211_sta_bss *bss, *tmp;
  1900. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1901. ieee80211_rx_bss_put(dev, bss);
  1902. }
  1903. static int ieee80211_sta_join_ibss(struct net_device *dev,
  1904. struct ieee80211_if_sta *ifsta,
  1905. struct ieee80211_sta_bss *bss)
  1906. {
  1907. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1908. int res, rates, i, j;
  1909. struct sk_buff *skb;
  1910. struct ieee80211_mgmt *mgmt;
  1911. struct ieee80211_tx_control control;
  1912. struct rate_selection ratesel;
  1913. u8 *pos;
  1914. struct ieee80211_sub_if_data *sdata;
  1915. struct ieee80211_supported_band *sband;
  1916. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1917. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1918. /* Remove possible STA entries from other IBSS networks. */
  1919. sta_info_flush_delayed(sdata);
  1920. if (local->ops->reset_tsf) {
  1921. /* Reset own TSF to allow time synchronization work. */
  1922. local->ops->reset_tsf(local_to_hw(local));
  1923. }
  1924. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  1925. res = ieee80211_if_config(dev);
  1926. if (res)
  1927. return res;
  1928. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  1929. sdata->drop_unencrypted = bss->capability &
  1930. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  1931. res = ieee80211_set_freq(local, bss->freq);
  1932. if (local->oper_channel->flags & IEEE80211_CHAN_NO_IBSS) {
  1933. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  1934. "%d MHz\n", dev->name, local->oper_channel->center_freq);
  1935. return -1;
  1936. }
  1937. /* Set beacon template */
  1938. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  1939. do {
  1940. if (!skb)
  1941. break;
  1942. skb_reserve(skb, local->hw.extra_tx_headroom);
  1943. mgmt = (struct ieee80211_mgmt *)
  1944. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  1945. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  1946. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1947. IEEE80211_STYPE_BEACON);
  1948. memset(mgmt->da, 0xff, ETH_ALEN);
  1949. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1950. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1951. mgmt->u.beacon.beacon_int =
  1952. cpu_to_le16(local->hw.conf.beacon_int);
  1953. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  1954. pos = skb_put(skb, 2 + ifsta->ssid_len);
  1955. *pos++ = WLAN_EID_SSID;
  1956. *pos++ = ifsta->ssid_len;
  1957. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  1958. rates = bss->supp_rates_len;
  1959. if (rates > 8)
  1960. rates = 8;
  1961. pos = skb_put(skb, 2 + rates);
  1962. *pos++ = WLAN_EID_SUPP_RATES;
  1963. *pos++ = rates;
  1964. memcpy(pos, bss->supp_rates, rates);
  1965. if (bss->band == IEEE80211_BAND_2GHZ) {
  1966. pos = skb_put(skb, 2 + 1);
  1967. *pos++ = WLAN_EID_DS_PARAMS;
  1968. *pos++ = 1;
  1969. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  1970. }
  1971. pos = skb_put(skb, 2 + 2);
  1972. *pos++ = WLAN_EID_IBSS_PARAMS;
  1973. *pos++ = 2;
  1974. /* FIX: set ATIM window based on scan results */
  1975. *pos++ = 0;
  1976. *pos++ = 0;
  1977. if (bss->supp_rates_len > 8) {
  1978. rates = bss->supp_rates_len - 8;
  1979. pos = skb_put(skb, 2 + rates);
  1980. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  1981. *pos++ = rates;
  1982. memcpy(pos, &bss->supp_rates[8], rates);
  1983. }
  1984. memset(&control, 0, sizeof(control));
  1985. rate_control_get_rate(dev, sband, skb, &ratesel);
  1986. if (!ratesel.rate) {
  1987. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  1988. "for IBSS beacon\n", dev->name);
  1989. break;
  1990. }
  1991. control.vif = &sdata->vif;
  1992. control.tx_rate = ratesel.rate;
  1993. if (sdata->bss_conf.use_short_preamble &&
  1994. ratesel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
  1995. control.flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
  1996. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  1997. control.flags |= IEEE80211_TXCTL_NO_ACK;
  1998. control.retry_limit = 1;
  1999. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  2000. if (ifsta->probe_resp) {
  2001. mgmt = (struct ieee80211_mgmt *)
  2002. ifsta->probe_resp->data;
  2003. mgmt->frame_control =
  2004. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2005. IEEE80211_STYPE_PROBE_RESP);
  2006. } else {
  2007. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  2008. "template for IBSS\n", dev->name);
  2009. }
  2010. if (local->ops->beacon_update &&
  2011. local->ops->beacon_update(local_to_hw(local),
  2012. skb, &control) == 0) {
  2013. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  2014. "template\n", dev->name);
  2015. skb = NULL;
  2016. }
  2017. rates = 0;
  2018. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2019. for (i = 0; i < bss->supp_rates_len; i++) {
  2020. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2021. for (j = 0; j < sband->n_bitrates; j++)
  2022. if (sband->bitrates[j].bitrate == bitrate)
  2023. rates |= BIT(j);
  2024. }
  2025. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  2026. ieee80211_sta_def_wmm_params(dev, bss, 1);
  2027. } while (0);
  2028. if (skb) {
  2029. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2030. "template\n", dev->name);
  2031. dev_kfree_skb(skb);
  2032. }
  2033. ifsta->state = IEEE80211_IBSS_JOINED;
  2034. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2035. ieee80211_rx_bss_put(dev, bss);
  2036. return res;
  2037. }
  2038. u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
  2039. struct ieee802_11_elems *elems,
  2040. enum ieee80211_band band)
  2041. {
  2042. struct ieee80211_supported_band *sband;
  2043. struct ieee80211_rate *bitrates;
  2044. size_t num_rates;
  2045. u64 supp_rates;
  2046. int i, j;
  2047. sband = local->hw.wiphy->bands[band];
  2048. if (!sband) {
  2049. WARN_ON(1);
  2050. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2051. }
  2052. bitrates = sband->bitrates;
  2053. num_rates = sband->n_bitrates;
  2054. supp_rates = 0;
  2055. for (i = 0; i < elems->supp_rates_len +
  2056. elems->ext_supp_rates_len; i++) {
  2057. u8 rate = 0;
  2058. int own_rate;
  2059. if (i < elems->supp_rates_len)
  2060. rate = elems->supp_rates[i];
  2061. else if (elems->ext_supp_rates)
  2062. rate = elems->ext_supp_rates
  2063. [i - elems->supp_rates_len];
  2064. own_rate = 5 * (rate & 0x7f);
  2065. for (j = 0; j < num_rates; j++)
  2066. if (bitrates[j].bitrate == own_rate)
  2067. supp_rates |= BIT(j);
  2068. }
  2069. return supp_rates;
  2070. }
  2071. static void ieee80211_rx_bss_info(struct net_device *dev,
  2072. struct ieee80211_mgmt *mgmt,
  2073. size_t len,
  2074. struct ieee80211_rx_status *rx_status,
  2075. int beacon)
  2076. {
  2077. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2078. struct ieee802_11_elems elems;
  2079. size_t baselen;
  2080. int freq, clen;
  2081. struct ieee80211_sta_bss *bss;
  2082. struct sta_info *sta;
  2083. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2084. u64 beacon_timestamp, rx_timestamp;
  2085. struct ieee80211_channel *channel;
  2086. DECLARE_MAC_BUF(mac);
  2087. DECLARE_MAC_BUF(mac2);
  2088. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  2089. return; /* ignore ProbeResp to foreign address */
  2090. #if 0
  2091. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  2092. dev->name, beacon ? "Beacon" : "Probe Response",
  2093. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  2094. #endif
  2095. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2096. if (baselen > len)
  2097. return;
  2098. beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  2099. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2100. if (ieee80211_vif_is_mesh(&sdata->vif) && elems.mesh_id &&
  2101. elems.mesh_config && mesh_matches_local(&elems, dev)) {
  2102. u64 rates = ieee80211_sta_get_rates(local, &elems,
  2103. rx_status->band);
  2104. mesh_neighbour_update(mgmt->sa, rates, dev,
  2105. mesh_peer_accepts_plinks(&elems, dev));
  2106. }
  2107. rcu_read_lock();
  2108. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  2109. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  2110. (sta = sta_info_get(local, mgmt->sa))) {
  2111. u64 prev_rates;
  2112. u64 supp_rates = ieee80211_sta_get_rates(local, &elems,
  2113. rx_status->band);
  2114. prev_rates = sta->supp_rates[rx_status->band];
  2115. sta->supp_rates[rx_status->band] &= supp_rates;
  2116. if (sta->supp_rates[rx_status->band] == 0) {
  2117. /* No matching rates - this should not really happen.
  2118. * Make sure that at least one rate is marked
  2119. * supported to avoid issues with TX rate ctrl. */
  2120. sta->supp_rates[rx_status->band] =
  2121. sdata->u.sta.supp_rates_bits[rx_status->band];
  2122. }
  2123. if (sta->supp_rates[rx_status->band] != prev_rates) {
  2124. printk(KERN_DEBUG "%s: updated supp_rates set for "
  2125. "%s based on beacon info (0x%llx & 0x%llx -> "
  2126. "0x%llx)\n",
  2127. dev->name, print_mac(mac, sta->addr),
  2128. (unsigned long long) prev_rates,
  2129. (unsigned long long) supp_rates,
  2130. (unsigned long long) sta->supp_rates[rx_status->band]);
  2131. }
  2132. }
  2133. rcu_read_unlock();
  2134. if (elems.ds_params && elems.ds_params_len == 1)
  2135. freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
  2136. else
  2137. freq = rx_status->freq;
  2138. channel = ieee80211_get_channel(local->hw.wiphy, freq);
  2139. if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
  2140. return;
  2141. #ifdef CONFIG_MAC80211_MESH
  2142. if (elems.mesh_config)
  2143. bss = ieee80211_rx_mesh_bss_get(dev, elems.mesh_id,
  2144. elems.mesh_id_len, elems.mesh_config, freq);
  2145. else
  2146. #endif
  2147. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  2148. elems.ssid, elems.ssid_len);
  2149. if (!bss) {
  2150. #ifdef CONFIG_MAC80211_MESH
  2151. if (elems.mesh_config)
  2152. bss = ieee80211_rx_mesh_bss_add(dev, elems.mesh_id,
  2153. elems.mesh_id_len, elems.mesh_config, freq);
  2154. else
  2155. #endif
  2156. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  2157. elems.ssid, elems.ssid_len);
  2158. if (!bss)
  2159. return;
  2160. } else {
  2161. #if 0
  2162. /* TODO: order by RSSI? */
  2163. spin_lock_bh(&local->sta_bss_lock);
  2164. list_move_tail(&bss->list, &local->sta_bss_list);
  2165. spin_unlock_bh(&local->sta_bss_lock);
  2166. #endif
  2167. }
  2168. bss->band = rx_status->band;
  2169. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2170. bss->probe_resp && beacon) {
  2171. /* STA mode:
  2172. * Do not allow beacon to override data from Probe Response. */
  2173. ieee80211_rx_bss_put(dev, bss);
  2174. return;
  2175. }
  2176. /* save the ERP value so that it is available at association time */
  2177. if (elems.erp_info && elems.erp_info_len >= 1) {
  2178. bss->erp_value = elems.erp_info[0];
  2179. bss->has_erp_value = 1;
  2180. }
  2181. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  2182. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  2183. bss->supp_rates_len = 0;
  2184. if (elems.supp_rates) {
  2185. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2186. if (clen > elems.supp_rates_len)
  2187. clen = elems.supp_rates_len;
  2188. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  2189. clen);
  2190. bss->supp_rates_len += clen;
  2191. }
  2192. if (elems.ext_supp_rates) {
  2193. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2194. if (clen > elems.ext_supp_rates_len)
  2195. clen = elems.ext_supp_rates_len;
  2196. memcpy(&bss->supp_rates[bss->supp_rates_len],
  2197. elems.ext_supp_rates, clen);
  2198. bss->supp_rates_len += clen;
  2199. }
  2200. if (elems.wpa &&
  2201. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  2202. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  2203. kfree(bss->wpa_ie);
  2204. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  2205. if (bss->wpa_ie) {
  2206. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  2207. bss->wpa_ie_len = elems.wpa_len + 2;
  2208. } else
  2209. bss->wpa_ie_len = 0;
  2210. } else if (!elems.wpa && bss->wpa_ie) {
  2211. kfree(bss->wpa_ie);
  2212. bss->wpa_ie = NULL;
  2213. bss->wpa_ie_len = 0;
  2214. }
  2215. if (elems.rsn &&
  2216. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  2217. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  2218. kfree(bss->rsn_ie);
  2219. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  2220. if (bss->rsn_ie) {
  2221. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  2222. bss->rsn_ie_len = elems.rsn_len + 2;
  2223. } else
  2224. bss->rsn_ie_len = 0;
  2225. } else if (!elems.rsn && bss->rsn_ie) {
  2226. kfree(bss->rsn_ie);
  2227. bss->rsn_ie = NULL;
  2228. bss->rsn_ie_len = 0;
  2229. }
  2230. if (elems.wmm_param &&
  2231. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  2232. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  2233. kfree(bss->wmm_ie);
  2234. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  2235. if (bss->wmm_ie) {
  2236. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  2237. elems.wmm_param_len + 2);
  2238. bss->wmm_ie_len = elems.wmm_param_len + 2;
  2239. } else
  2240. bss->wmm_ie_len = 0;
  2241. } else if (!elems.wmm_param && bss->wmm_ie) {
  2242. kfree(bss->wmm_ie);
  2243. bss->wmm_ie = NULL;
  2244. bss->wmm_ie_len = 0;
  2245. }
  2246. if (elems.ht_cap_elem &&
  2247. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  2248. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  2249. kfree(bss->ht_ie);
  2250. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  2251. if (bss->ht_ie) {
  2252. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  2253. elems.ht_cap_elem_len + 2);
  2254. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  2255. } else
  2256. bss->ht_ie_len = 0;
  2257. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  2258. kfree(bss->ht_ie);
  2259. bss->ht_ie = NULL;
  2260. bss->ht_ie_len = 0;
  2261. }
  2262. bss->timestamp = beacon_timestamp;
  2263. bss->last_update = jiffies;
  2264. bss->rssi = rx_status->ssi;
  2265. bss->signal = rx_status->signal;
  2266. bss->noise = rx_status->noise;
  2267. if (!beacon)
  2268. bss->probe_resp++;
  2269. /* check if we need to merge IBSS */
  2270. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  2271. !local->sta_sw_scanning && !local->sta_hw_scanning &&
  2272. bss->capability & WLAN_CAPABILITY_IBSS &&
  2273. bss->freq == local->oper_channel->center_freq &&
  2274. elems.ssid_len == sdata->u.sta.ssid_len &&
  2275. memcmp(elems.ssid, sdata->u.sta.ssid, sdata->u.sta.ssid_len) == 0) {
  2276. if (rx_status->flag & RX_FLAG_TSFT) {
  2277. /* in order for correct IBSS merging we need mactime
  2278. *
  2279. * since mactime is defined as the time the first data
  2280. * symbol of the frame hits the PHY, and the timestamp
  2281. * of the beacon is defined as "the time that the data
  2282. * symbol containing the first bit of the timestamp is
  2283. * transmitted to the PHY plus the transmitting STA’s
  2284. * delays through its local PHY from the MAC-PHY
  2285. * interface to its interface with the WM"
  2286. * (802.11 11.1.2) - equals the time this bit arrives at
  2287. * the receiver - we have to take into account the
  2288. * offset between the two.
  2289. * e.g: at 1 MBit that means mactime is 192 usec earlier
  2290. * (=24 bytes * 8 usecs/byte) than the beacon timestamp.
  2291. */
  2292. int rate = local->hw.wiphy->bands[rx_status->band]->
  2293. bitrates[rx_status->rate_idx].bitrate;
  2294. rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
  2295. } else if (local && local->ops && local->ops->get_tsf)
  2296. /* second best option: get current TSF */
  2297. rx_timestamp = local->ops->get_tsf(local_to_hw(local));
  2298. else
  2299. /* can't merge without knowing the TSF */
  2300. rx_timestamp = -1LLU;
  2301. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2302. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  2303. "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
  2304. print_mac(mac, mgmt->sa),
  2305. print_mac(mac2, mgmt->bssid),
  2306. (unsigned long long)rx_timestamp,
  2307. (unsigned long long)beacon_timestamp,
  2308. (unsigned long long)(rx_timestamp - beacon_timestamp),
  2309. jiffies);
  2310. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2311. if (beacon_timestamp > rx_timestamp) {
  2312. #ifndef CONFIG_MAC80211_IBSS_DEBUG
  2313. if (net_ratelimit())
  2314. #endif
  2315. printk(KERN_DEBUG "%s: beacon TSF higher than "
  2316. "local TSF - IBSS merge with BSSID %s\n",
  2317. dev->name, print_mac(mac, mgmt->bssid));
  2318. ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
  2319. ieee80211_ibss_add_sta(dev, NULL,
  2320. mgmt->bssid, mgmt->sa);
  2321. }
  2322. }
  2323. ieee80211_rx_bss_put(dev, bss);
  2324. }
  2325. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  2326. struct ieee80211_mgmt *mgmt,
  2327. size_t len,
  2328. struct ieee80211_rx_status *rx_status)
  2329. {
  2330. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  2331. }
  2332. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  2333. struct ieee80211_mgmt *mgmt,
  2334. size_t len,
  2335. struct ieee80211_rx_status *rx_status)
  2336. {
  2337. struct ieee80211_sub_if_data *sdata;
  2338. struct ieee80211_if_sta *ifsta;
  2339. size_t baselen;
  2340. struct ieee802_11_elems elems;
  2341. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2342. struct ieee80211_conf *conf = &local->hw.conf;
  2343. u32 changed = 0;
  2344. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  2345. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2346. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2347. return;
  2348. ifsta = &sdata->u.sta;
  2349. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  2350. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  2351. return;
  2352. /* Process beacon from the current BSS */
  2353. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2354. if (baselen > len)
  2355. return;
  2356. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2357. if (elems.erp_info && elems.erp_info_len >= 1)
  2358. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  2359. if (elems.ht_cap_elem && elems.ht_info_elem &&
  2360. elems.wmm_param && local->ops->conf_ht &&
  2361. conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  2362. struct ieee80211_ht_bss_info bss_info;
  2363. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  2364. (struct ieee80211_ht_addt_info *)
  2365. elems.ht_info_elem, &bss_info);
  2366. /* check if AP changed bss inforamation */
  2367. if ((conf->ht_bss_conf.primary_channel !=
  2368. bss_info.primary_channel) ||
  2369. (conf->ht_bss_conf.bss_cap != bss_info.bss_cap) ||
  2370. (conf->ht_bss_conf.bss_op_mode != bss_info.bss_op_mode))
  2371. ieee80211_hw_config_ht(local, 1, &conf->ht_conf,
  2372. &bss_info);
  2373. }
  2374. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  2375. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2376. elems.wmm_param_len);
  2377. }
  2378. ieee80211_bss_info_change_notify(sdata, changed);
  2379. }
  2380. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2381. struct ieee80211_if_sta *ifsta,
  2382. struct ieee80211_mgmt *mgmt,
  2383. size_t len,
  2384. struct ieee80211_rx_status *rx_status)
  2385. {
  2386. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2387. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2388. int tx_last_beacon;
  2389. struct sk_buff *skb;
  2390. struct ieee80211_mgmt *resp;
  2391. u8 *pos, *end;
  2392. DECLARE_MAC_BUF(mac);
  2393. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2394. DECLARE_MAC_BUF(mac2);
  2395. DECLARE_MAC_BUF(mac3);
  2396. #endif
  2397. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2398. ifsta->state != IEEE80211_IBSS_JOINED ||
  2399. len < 24 + 2 || !ifsta->probe_resp)
  2400. return;
  2401. if (local->ops->tx_last_beacon)
  2402. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2403. else
  2404. tx_last_beacon = 1;
  2405. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2406. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2407. "%s (tx_last_beacon=%d)\n",
  2408. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2409. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2410. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2411. if (!tx_last_beacon)
  2412. return;
  2413. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2414. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2415. return;
  2416. end = ((u8 *) mgmt) + len;
  2417. pos = mgmt->u.probe_req.variable;
  2418. if (pos[0] != WLAN_EID_SSID ||
  2419. pos + 2 + pos[1] > end) {
  2420. if (net_ratelimit()) {
  2421. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2422. "from %s\n",
  2423. dev->name, print_mac(mac, mgmt->sa));
  2424. }
  2425. return;
  2426. }
  2427. if (pos[1] != 0 &&
  2428. (pos[1] != ifsta->ssid_len ||
  2429. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2430. /* Ignore ProbeReq for foreign SSID */
  2431. return;
  2432. }
  2433. /* Reply with ProbeResp */
  2434. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2435. if (!skb)
  2436. return;
  2437. resp = (struct ieee80211_mgmt *) skb->data;
  2438. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2439. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2440. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2441. dev->name, print_mac(mac, resp->da));
  2442. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2443. ieee80211_sta_tx(dev, skb, 0);
  2444. }
  2445. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2446. struct ieee80211_if_sta *ifsta,
  2447. struct ieee80211_mgmt *mgmt,
  2448. size_t len,
  2449. struct ieee80211_rx_status *rx_status)
  2450. {
  2451. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2452. if (len < IEEE80211_MIN_ACTION_SIZE)
  2453. return;
  2454. switch (mgmt->u.action.category) {
  2455. case WLAN_CATEGORY_BACK:
  2456. switch (mgmt->u.action.u.addba_req.action_code) {
  2457. case WLAN_ACTION_ADDBA_REQ:
  2458. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2459. sizeof(mgmt->u.action.u.addba_req)))
  2460. break;
  2461. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2462. break;
  2463. case WLAN_ACTION_ADDBA_RESP:
  2464. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2465. sizeof(mgmt->u.action.u.addba_resp)))
  2466. break;
  2467. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2468. break;
  2469. case WLAN_ACTION_DELBA:
  2470. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2471. sizeof(mgmt->u.action.u.delba)))
  2472. break;
  2473. ieee80211_sta_process_delba(dev, mgmt, len);
  2474. break;
  2475. default:
  2476. if (net_ratelimit())
  2477. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  2478. dev->name);
  2479. break;
  2480. }
  2481. break;
  2482. case PLINK_CATEGORY:
  2483. if (ieee80211_vif_is_mesh(&sdata->vif))
  2484. mesh_rx_plink_frame(dev, mgmt, len, rx_status);
  2485. break;
  2486. case MESH_PATH_SEL_CATEGORY:
  2487. if (ieee80211_vif_is_mesh(&sdata->vif))
  2488. mesh_rx_path_sel_frame(dev, mgmt, len);
  2489. break;
  2490. default:
  2491. if (net_ratelimit())
  2492. printk(KERN_DEBUG "%s: Rx unknown action frame - "
  2493. "category=%d\n", dev->name, mgmt->u.action.category);
  2494. break;
  2495. }
  2496. }
  2497. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2498. struct ieee80211_rx_status *rx_status)
  2499. {
  2500. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2501. struct ieee80211_sub_if_data *sdata;
  2502. struct ieee80211_if_sta *ifsta;
  2503. struct ieee80211_mgmt *mgmt;
  2504. u16 fc;
  2505. if (skb->len < 24)
  2506. goto fail;
  2507. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2508. ifsta = &sdata->u.sta;
  2509. mgmt = (struct ieee80211_mgmt *) skb->data;
  2510. fc = le16_to_cpu(mgmt->frame_control);
  2511. switch (fc & IEEE80211_FCTL_STYPE) {
  2512. case IEEE80211_STYPE_PROBE_REQ:
  2513. case IEEE80211_STYPE_PROBE_RESP:
  2514. case IEEE80211_STYPE_BEACON:
  2515. case IEEE80211_STYPE_ACTION:
  2516. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2517. case IEEE80211_STYPE_AUTH:
  2518. case IEEE80211_STYPE_ASSOC_RESP:
  2519. case IEEE80211_STYPE_REASSOC_RESP:
  2520. case IEEE80211_STYPE_DEAUTH:
  2521. case IEEE80211_STYPE_DISASSOC:
  2522. skb_queue_tail(&ifsta->skb_queue, skb);
  2523. queue_work(local->hw.workqueue, &ifsta->work);
  2524. return;
  2525. default:
  2526. printk(KERN_DEBUG "%s: received unknown management frame - "
  2527. "stype=%d\n", dev->name,
  2528. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2529. break;
  2530. }
  2531. fail:
  2532. kfree_skb(skb);
  2533. }
  2534. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2535. struct sk_buff *skb)
  2536. {
  2537. struct ieee80211_rx_status *rx_status;
  2538. struct ieee80211_sub_if_data *sdata;
  2539. struct ieee80211_if_sta *ifsta;
  2540. struct ieee80211_mgmt *mgmt;
  2541. u16 fc;
  2542. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2543. ifsta = &sdata->u.sta;
  2544. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2545. mgmt = (struct ieee80211_mgmt *) skb->data;
  2546. fc = le16_to_cpu(mgmt->frame_control);
  2547. switch (fc & IEEE80211_FCTL_STYPE) {
  2548. case IEEE80211_STYPE_PROBE_REQ:
  2549. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2550. rx_status);
  2551. break;
  2552. case IEEE80211_STYPE_PROBE_RESP:
  2553. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2554. break;
  2555. case IEEE80211_STYPE_BEACON:
  2556. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2557. break;
  2558. case IEEE80211_STYPE_AUTH:
  2559. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2560. break;
  2561. case IEEE80211_STYPE_ASSOC_RESP:
  2562. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2563. break;
  2564. case IEEE80211_STYPE_REASSOC_RESP:
  2565. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2566. break;
  2567. case IEEE80211_STYPE_DEAUTH:
  2568. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2569. break;
  2570. case IEEE80211_STYPE_DISASSOC:
  2571. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2572. break;
  2573. case IEEE80211_STYPE_ACTION:
  2574. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
  2575. break;
  2576. }
  2577. kfree_skb(skb);
  2578. }
  2579. ieee80211_rx_result
  2580. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2581. struct ieee80211_rx_status *rx_status)
  2582. {
  2583. struct ieee80211_mgmt *mgmt;
  2584. u16 fc;
  2585. if (skb->len < 2)
  2586. return RX_DROP_UNUSABLE;
  2587. mgmt = (struct ieee80211_mgmt *) skb->data;
  2588. fc = le16_to_cpu(mgmt->frame_control);
  2589. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2590. return RX_CONTINUE;
  2591. if (skb->len < 24)
  2592. return RX_DROP_MONITOR;
  2593. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2594. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2595. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2596. skb->len, rx_status);
  2597. dev_kfree_skb(skb);
  2598. return RX_QUEUED;
  2599. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2600. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2601. rx_status);
  2602. dev_kfree_skb(skb);
  2603. return RX_QUEUED;
  2604. }
  2605. }
  2606. return RX_CONTINUE;
  2607. }
  2608. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2609. {
  2610. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2611. int active = 0;
  2612. struct sta_info *sta;
  2613. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2614. rcu_read_lock();
  2615. list_for_each_entry_rcu(sta, &local->sta_list, list) {
  2616. if (sta->sdata == sdata &&
  2617. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2618. jiffies)) {
  2619. active++;
  2620. break;
  2621. }
  2622. }
  2623. rcu_read_unlock();
  2624. return active;
  2625. }
  2626. static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
  2627. {
  2628. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2629. struct sta_info *sta, *tmp;
  2630. LIST_HEAD(tmp_list);
  2631. DECLARE_MAC_BUF(mac);
  2632. unsigned long flags;
  2633. spin_lock_irqsave(&local->sta_lock, flags);
  2634. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2635. if (time_after(jiffies, sta->last_rx + exp_time)) {
  2636. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2637. dev->name, print_mac(mac, sta->addr));
  2638. sta_info_unlink(&sta);
  2639. if (sta)
  2640. list_add(&sta->list, &tmp_list);
  2641. }
  2642. spin_unlock_irqrestore(&local->sta_lock, flags);
  2643. synchronize_rcu();
  2644. rtnl_lock();
  2645. list_for_each_entry_safe(sta, tmp, &tmp_list, list)
  2646. sta_info_destroy(sta);
  2647. rtnl_unlock();
  2648. }
  2649. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2650. struct ieee80211_if_sta *ifsta)
  2651. {
  2652. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2653. ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
  2654. if (ieee80211_sta_active_ibss(dev))
  2655. return;
  2656. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2657. "IBSS networks with same SSID (merge)\n", dev->name);
  2658. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2659. }
  2660. #ifdef CONFIG_MAC80211_MESH
  2661. static void ieee80211_mesh_housekeeping(struct net_device *dev,
  2662. struct ieee80211_if_sta *ifsta)
  2663. {
  2664. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2665. bool free_plinks;
  2666. ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
  2667. mesh_path_expire(dev);
  2668. free_plinks = mesh_plink_availables(sdata);
  2669. if (free_plinks != sdata->u.sta.accepting_plinks)
  2670. ieee80211_if_config_beacon(dev);
  2671. mod_timer(&ifsta->timer, jiffies +
  2672. IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
  2673. }
  2674. void ieee80211_start_mesh(struct net_device *dev)
  2675. {
  2676. struct ieee80211_if_sta *ifsta;
  2677. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2678. ifsta = &sdata->u.sta;
  2679. ifsta->state = IEEE80211_MESH_UP;
  2680. ieee80211_sta_timer((unsigned long)sdata);
  2681. }
  2682. #endif
  2683. void ieee80211_sta_timer(unsigned long data)
  2684. {
  2685. struct ieee80211_sub_if_data *sdata =
  2686. (struct ieee80211_sub_if_data *) data;
  2687. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2688. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2689. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2690. queue_work(local->hw.workqueue, &ifsta->work);
  2691. }
  2692. void ieee80211_sta_work(struct work_struct *work)
  2693. {
  2694. struct ieee80211_sub_if_data *sdata =
  2695. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2696. struct net_device *dev = sdata->dev;
  2697. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2698. struct ieee80211_if_sta *ifsta;
  2699. struct sk_buff *skb;
  2700. if (!netif_running(dev))
  2701. return;
  2702. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2703. return;
  2704. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2705. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2706. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT) {
  2707. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2708. "(type=%d)\n", dev->name, sdata->vif.type);
  2709. return;
  2710. }
  2711. ifsta = &sdata->u.sta;
  2712. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2713. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2714. #ifdef CONFIG_MAC80211_MESH
  2715. if (ifsta->preq_queue_len &&
  2716. time_after(jiffies,
  2717. ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
  2718. mesh_path_start_discovery(dev);
  2719. #endif
  2720. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2721. ifsta->state != IEEE80211_ASSOCIATE &&
  2722. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2723. if (ifsta->scan_ssid_len)
  2724. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2725. else
  2726. ieee80211_sta_start_scan(dev, NULL, 0);
  2727. return;
  2728. }
  2729. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2730. if (ieee80211_sta_config_auth(dev, ifsta))
  2731. return;
  2732. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2733. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2734. return;
  2735. switch (ifsta->state) {
  2736. case IEEE80211_DISABLED:
  2737. break;
  2738. case IEEE80211_AUTHENTICATE:
  2739. ieee80211_authenticate(dev, ifsta);
  2740. break;
  2741. case IEEE80211_ASSOCIATE:
  2742. ieee80211_associate(dev, ifsta);
  2743. break;
  2744. case IEEE80211_ASSOCIATED:
  2745. ieee80211_associated(dev, ifsta);
  2746. break;
  2747. case IEEE80211_IBSS_SEARCH:
  2748. ieee80211_sta_find_ibss(dev, ifsta);
  2749. break;
  2750. case IEEE80211_IBSS_JOINED:
  2751. ieee80211_sta_merge_ibss(dev, ifsta);
  2752. break;
  2753. #ifdef CONFIG_MAC80211_MESH
  2754. case IEEE80211_MESH_UP:
  2755. ieee80211_mesh_housekeeping(dev, ifsta);
  2756. break;
  2757. #endif
  2758. default:
  2759. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2760. ifsta->state);
  2761. break;
  2762. }
  2763. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2764. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2765. "mixed-cell disabled - disassociate\n", dev->name);
  2766. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2767. ieee80211_set_disassoc(dev, ifsta, 0);
  2768. }
  2769. }
  2770. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2771. struct ieee80211_if_sta *ifsta)
  2772. {
  2773. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2774. if (local->ops->reset_tsf) {
  2775. /* Reset own TSF to allow time synchronization work. */
  2776. local->ops->reset_tsf(local_to_hw(local));
  2777. }
  2778. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2779. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2780. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2781. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2782. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2783. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2784. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2785. else
  2786. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2787. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2788. ifsta->auth_alg);
  2789. ifsta->auth_transaction = -1;
  2790. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2791. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2792. netif_carrier_off(dev);
  2793. }
  2794. void ieee80211_sta_req_auth(struct net_device *dev,
  2795. struct ieee80211_if_sta *ifsta)
  2796. {
  2797. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2798. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2799. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2800. return;
  2801. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2802. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2803. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2804. IEEE80211_STA_AUTO_SSID_SEL))) {
  2805. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2806. queue_work(local->hw.workqueue, &ifsta->work);
  2807. }
  2808. }
  2809. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2810. const char *ssid, int ssid_len)
  2811. {
  2812. int tmp, hidden_ssid;
  2813. if (ssid_len == ifsta->ssid_len &&
  2814. !memcmp(ifsta->ssid, ssid, ssid_len))
  2815. return 1;
  2816. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2817. return 0;
  2818. hidden_ssid = 1;
  2819. tmp = ssid_len;
  2820. while (tmp--) {
  2821. if (ssid[tmp] != '\0') {
  2822. hidden_ssid = 0;
  2823. break;
  2824. }
  2825. }
  2826. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2827. return 1;
  2828. if (ssid_len == 1 && ssid[0] == ' ')
  2829. return 1;
  2830. return 0;
  2831. }
  2832. static int ieee80211_sta_config_auth(struct net_device *dev,
  2833. struct ieee80211_if_sta *ifsta)
  2834. {
  2835. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2836. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2837. struct ieee80211_sta_bss *bss, *selected = NULL;
  2838. int top_rssi = 0, freq;
  2839. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2840. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2841. ifsta->state = IEEE80211_AUTHENTICATE;
  2842. ieee80211_sta_reset_auth(dev, ifsta);
  2843. return 0;
  2844. }
  2845. spin_lock_bh(&local->sta_bss_lock);
  2846. freq = local->oper_channel->center_freq;
  2847. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2848. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2849. continue;
  2850. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2851. !!sdata->default_key)
  2852. continue;
  2853. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2854. bss->freq != freq)
  2855. continue;
  2856. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2857. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2858. continue;
  2859. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2860. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2861. continue;
  2862. if (!selected || top_rssi < bss->rssi) {
  2863. selected = bss;
  2864. top_rssi = bss->rssi;
  2865. }
  2866. }
  2867. if (selected)
  2868. atomic_inc(&selected->users);
  2869. spin_unlock_bh(&local->sta_bss_lock);
  2870. if (selected) {
  2871. ieee80211_set_freq(local, selected->freq);
  2872. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2873. ieee80211_sta_set_ssid(dev, selected->ssid,
  2874. selected->ssid_len);
  2875. ieee80211_sta_set_bssid(dev, selected->bssid);
  2876. ieee80211_sta_def_wmm_params(dev, selected, 0);
  2877. ieee80211_rx_bss_put(dev, selected);
  2878. ifsta->state = IEEE80211_AUTHENTICATE;
  2879. ieee80211_sta_reset_auth(dev, ifsta);
  2880. return 0;
  2881. } else {
  2882. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2883. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2884. ieee80211_sta_start_scan(dev, NULL, 0);
  2885. else
  2886. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2887. ifsta->ssid_len);
  2888. ifsta->state = IEEE80211_AUTHENTICATE;
  2889. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2890. } else
  2891. ifsta->state = IEEE80211_DISABLED;
  2892. }
  2893. return -1;
  2894. }
  2895. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2896. struct ieee80211_if_sta *ifsta)
  2897. {
  2898. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2899. struct ieee80211_sta_bss *bss;
  2900. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2901. struct ieee80211_supported_band *sband;
  2902. u8 bssid[ETH_ALEN], *pos;
  2903. int i;
  2904. DECLARE_MAC_BUF(mac);
  2905. #if 0
  2906. /* Easier testing, use fixed BSSID. */
  2907. memset(bssid, 0xfe, ETH_ALEN);
  2908. #else
  2909. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2910. * own MAC address to make sure that devices that do not have proper
  2911. * random number generator get different BSSID. */
  2912. get_random_bytes(bssid, ETH_ALEN);
  2913. for (i = 0; i < ETH_ALEN; i++)
  2914. bssid[i] ^= dev->dev_addr[i];
  2915. bssid[0] &= ~0x01;
  2916. bssid[0] |= 0x02;
  2917. #endif
  2918. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2919. dev->name, print_mac(mac, bssid));
  2920. bss = ieee80211_rx_bss_add(dev, bssid,
  2921. local->hw.conf.channel->center_freq,
  2922. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2923. if (!bss)
  2924. return -ENOMEM;
  2925. bss->band = local->hw.conf.channel->band;
  2926. sband = local->hw.wiphy->bands[bss->band];
  2927. if (local->hw.conf.beacon_int == 0)
  2928. local->hw.conf.beacon_int = 10000;
  2929. bss->beacon_int = local->hw.conf.beacon_int;
  2930. bss->last_update = jiffies;
  2931. bss->capability = WLAN_CAPABILITY_IBSS;
  2932. if (sdata->default_key) {
  2933. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2934. } else
  2935. sdata->drop_unencrypted = 0;
  2936. bss->supp_rates_len = sband->n_bitrates;
  2937. pos = bss->supp_rates;
  2938. for (i = 0; i < sband->n_bitrates; i++) {
  2939. int rate = sband->bitrates[i].bitrate;
  2940. *pos++ = (u8) (rate / 5);
  2941. }
  2942. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2943. }
  2944. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2945. struct ieee80211_if_sta *ifsta)
  2946. {
  2947. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2948. struct ieee80211_sta_bss *bss;
  2949. int found = 0;
  2950. u8 bssid[ETH_ALEN];
  2951. int active_ibss;
  2952. DECLARE_MAC_BUF(mac);
  2953. DECLARE_MAC_BUF(mac2);
  2954. if (ifsta->ssid_len == 0)
  2955. return -EINVAL;
  2956. active_ibss = ieee80211_sta_active_ibss(dev);
  2957. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2958. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2959. dev->name, active_ibss);
  2960. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2961. spin_lock_bh(&local->sta_bss_lock);
  2962. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2963. if (ifsta->ssid_len != bss->ssid_len ||
  2964. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2965. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2966. continue;
  2967. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2968. printk(KERN_DEBUG " bssid=%s found\n",
  2969. print_mac(mac, bss->bssid));
  2970. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2971. memcpy(bssid, bss->bssid, ETH_ALEN);
  2972. found = 1;
  2973. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2974. break;
  2975. }
  2976. spin_unlock_bh(&local->sta_bss_lock);
  2977. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2978. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2979. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2980. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2981. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2982. (bss = ieee80211_rx_bss_get(dev, bssid,
  2983. local->hw.conf.channel->center_freq,
  2984. ifsta->ssid, ifsta->ssid_len))) {
  2985. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2986. " based on configured SSID\n",
  2987. dev->name, print_mac(mac, bssid));
  2988. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2989. }
  2990. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2991. printk(KERN_DEBUG " did not try to join ibss\n");
  2992. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2993. /* Selected IBSS not found in current scan results - try to scan */
  2994. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  2995. !ieee80211_sta_active_ibss(dev)) {
  2996. mod_timer(&ifsta->timer, jiffies +
  2997. IEEE80211_IBSS_MERGE_INTERVAL);
  2998. } else if (time_after(jiffies, local->last_scan_completed +
  2999. IEEE80211_SCAN_INTERVAL)) {
  3000. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  3001. "join\n", dev->name);
  3002. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  3003. ifsta->ssid_len);
  3004. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  3005. int interval = IEEE80211_SCAN_INTERVAL;
  3006. if (time_after(jiffies, ifsta->ibss_join_req +
  3007. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  3008. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  3009. (!(local->oper_channel->flags &
  3010. IEEE80211_CHAN_NO_IBSS)))
  3011. return ieee80211_sta_create_ibss(dev, ifsta);
  3012. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  3013. printk(KERN_DEBUG "%s: IBSS not allowed on"
  3014. " %d MHz\n", dev->name,
  3015. local->hw.conf.channel->center_freq);
  3016. }
  3017. /* No IBSS found - decrease scan interval and continue
  3018. * scanning. */
  3019. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  3020. }
  3021. ifsta->state = IEEE80211_IBSS_SEARCH;
  3022. mod_timer(&ifsta->timer, jiffies + interval);
  3023. return 0;
  3024. }
  3025. return 0;
  3026. }
  3027. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  3028. {
  3029. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3030. struct ieee80211_if_sta *ifsta;
  3031. if (len > IEEE80211_MAX_SSID_LEN)
  3032. return -EINVAL;
  3033. ifsta = &sdata->u.sta;
  3034. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  3035. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  3036. memcpy(ifsta->ssid, ssid, len);
  3037. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  3038. ifsta->ssid_len = len;
  3039. if (len)
  3040. ifsta->flags |= IEEE80211_STA_SSID_SET;
  3041. else
  3042. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  3043. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3044. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  3045. ifsta->ibss_join_req = jiffies;
  3046. ifsta->state = IEEE80211_IBSS_SEARCH;
  3047. return ieee80211_sta_find_ibss(dev, ifsta);
  3048. }
  3049. return 0;
  3050. }
  3051. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  3052. {
  3053. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3054. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3055. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  3056. *len = ifsta->ssid_len;
  3057. return 0;
  3058. }
  3059. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  3060. {
  3061. struct ieee80211_sub_if_data *sdata;
  3062. struct ieee80211_if_sta *ifsta;
  3063. int res;
  3064. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3065. ifsta = &sdata->u.sta;
  3066. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  3067. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  3068. res = ieee80211_if_config(dev);
  3069. if (res) {
  3070. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  3071. "the low-level driver\n", dev->name);
  3072. return res;
  3073. }
  3074. }
  3075. if (is_valid_ether_addr(bssid))
  3076. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  3077. else
  3078. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  3079. return 0;
  3080. }
  3081. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  3082. struct ieee80211_sub_if_data *sdata,
  3083. int powersave)
  3084. {
  3085. struct sk_buff *skb;
  3086. struct ieee80211_hdr *nullfunc;
  3087. u16 fc;
  3088. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  3089. if (!skb) {
  3090. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  3091. "frame\n", sdata->dev->name);
  3092. return;
  3093. }
  3094. skb_reserve(skb, local->hw.extra_tx_headroom);
  3095. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  3096. memset(nullfunc, 0, 24);
  3097. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  3098. IEEE80211_FCTL_TODS;
  3099. if (powersave)
  3100. fc |= IEEE80211_FCTL_PM;
  3101. nullfunc->frame_control = cpu_to_le16(fc);
  3102. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  3103. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  3104. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  3105. ieee80211_sta_tx(sdata->dev, skb, 0);
  3106. }
  3107. static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
  3108. {
  3109. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  3110. ieee80211_vif_is_mesh(&sdata->vif))
  3111. ieee80211_sta_timer((unsigned long)sdata);
  3112. }
  3113. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  3114. {
  3115. struct ieee80211_local *local = hw_to_local(hw);
  3116. struct net_device *dev = local->scan_dev;
  3117. struct ieee80211_sub_if_data *sdata;
  3118. union iwreq_data wrqu;
  3119. local->last_scan_completed = jiffies;
  3120. memset(&wrqu, 0, sizeof(wrqu));
  3121. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  3122. if (local->sta_hw_scanning) {
  3123. local->sta_hw_scanning = 0;
  3124. if (ieee80211_hw_config(local))
  3125. printk(KERN_DEBUG "%s: failed to restore operational "
  3126. "channel after scan\n", dev->name);
  3127. /* Restart STA timer for HW scan case */
  3128. rcu_read_lock();
  3129. list_for_each_entry_rcu(sdata, &local->interfaces, list)
  3130. ieee80211_restart_sta_timer(sdata);
  3131. rcu_read_unlock();
  3132. goto done;
  3133. }
  3134. local->sta_sw_scanning = 0;
  3135. if (ieee80211_hw_config(local))
  3136. printk(KERN_DEBUG "%s: failed to restore operational "
  3137. "channel after scan\n", dev->name);
  3138. netif_tx_lock_bh(local->mdev);
  3139. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  3140. local->ops->configure_filter(local_to_hw(local),
  3141. FIF_BCN_PRBRESP_PROMISC,
  3142. &local->filter_flags,
  3143. local->mdev->mc_count,
  3144. local->mdev->mc_list);
  3145. netif_tx_unlock_bh(local->mdev);
  3146. rcu_read_lock();
  3147. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3148. /* No need to wake the master device. */
  3149. if (sdata->dev == local->mdev)
  3150. continue;
  3151. /* Tell AP we're back */
  3152. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3153. sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  3154. ieee80211_send_nullfunc(local, sdata, 0);
  3155. ieee80211_restart_sta_timer(sdata);
  3156. netif_wake_queue(sdata->dev);
  3157. }
  3158. rcu_read_unlock();
  3159. done:
  3160. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3161. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  3162. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3163. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  3164. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  3165. !ieee80211_sta_active_ibss(dev)))
  3166. ieee80211_sta_find_ibss(dev, ifsta);
  3167. }
  3168. }
  3169. EXPORT_SYMBOL(ieee80211_scan_completed);
  3170. void ieee80211_sta_scan_work(struct work_struct *work)
  3171. {
  3172. struct ieee80211_local *local =
  3173. container_of(work, struct ieee80211_local, scan_work.work);
  3174. struct net_device *dev = local->scan_dev;
  3175. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3176. struct ieee80211_supported_band *sband;
  3177. struct ieee80211_channel *chan;
  3178. int skip;
  3179. unsigned long next_delay = 0;
  3180. if (!local->sta_sw_scanning)
  3181. return;
  3182. switch (local->scan_state) {
  3183. case SCAN_SET_CHANNEL:
  3184. /*
  3185. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  3186. * after we successfully scanned the last channel of the last
  3187. * band (and the last band is supported by the hw)
  3188. */
  3189. if (local->scan_band < IEEE80211_NUM_BANDS)
  3190. sband = local->hw.wiphy->bands[local->scan_band];
  3191. else
  3192. sband = NULL;
  3193. /*
  3194. * If we are at an unsupported band and have more bands
  3195. * left to scan, advance to the next supported one.
  3196. */
  3197. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  3198. local->scan_band++;
  3199. sband = local->hw.wiphy->bands[local->scan_band];
  3200. local->scan_channel_idx = 0;
  3201. }
  3202. /* if no more bands/channels left, complete scan */
  3203. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  3204. ieee80211_scan_completed(local_to_hw(local));
  3205. return;
  3206. }
  3207. skip = 0;
  3208. chan = &sband->channels[local->scan_channel_idx];
  3209. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  3210. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3211. chan->flags & IEEE80211_CHAN_NO_IBSS))
  3212. skip = 1;
  3213. if (!skip) {
  3214. local->scan_channel = chan;
  3215. if (ieee80211_hw_config(local)) {
  3216. printk(KERN_DEBUG "%s: failed to set freq to "
  3217. "%d MHz for scan\n", dev->name,
  3218. chan->center_freq);
  3219. skip = 1;
  3220. }
  3221. }
  3222. /* advance state machine to next channel/band */
  3223. local->scan_channel_idx++;
  3224. if (local->scan_channel_idx >= sband->n_channels) {
  3225. /*
  3226. * scan_band may end up == IEEE80211_NUM_BANDS, but
  3227. * we'll catch that case above and complete the scan
  3228. * if that is the case.
  3229. */
  3230. local->scan_band++;
  3231. local->scan_channel_idx = 0;
  3232. }
  3233. if (skip)
  3234. break;
  3235. next_delay = IEEE80211_PROBE_DELAY +
  3236. usecs_to_jiffies(local->hw.channel_change_time);
  3237. local->scan_state = SCAN_SEND_PROBE;
  3238. break;
  3239. case SCAN_SEND_PROBE:
  3240. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  3241. local->scan_state = SCAN_SET_CHANNEL;
  3242. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  3243. break;
  3244. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  3245. local->scan_ssid_len);
  3246. next_delay = IEEE80211_CHANNEL_TIME;
  3247. break;
  3248. }
  3249. if (local->sta_sw_scanning)
  3250. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3251. next_delay);
  3252. }
  3253. static int ieee80211_sta_start_scan(struct net_device *dev,
  3254. u8 *ssid, size_t ssid_len)
  3255. {
  3256. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3257. struct ieee80211_sub_if_data *sdata;
  3258. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  3259. return -EINVAL;
  3260. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  3261. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  3262. * BSSID: MACAddress
  3263. * SSID
  3264. * ScanType: ACTIVE, PASSIVE
  3265. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  3266. * a Probe frame during active scanning
  3267. * ChannelList
  3268. * MinChannelTime (>= ProbeDelay), in TU
  3269. * MaxChannelTime: (>= MinChannelTime), in TU
  3270. */
  3271. /* MLME-SCAN.confirm
  3272. * BSSDescriptionSet
  3273. * ResultCode: SUCCESS, INVALID_PARAMETERS
  3274. */
  3275. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3276. if (local->scan_dev == dev)
  3277. return 0;
  3278. return -EBUSY;
  3279. }
  3280. if (local->ops->hw_scan) {
  3281. int rc = local->ops->hw_scan(local_to_hw(local),
  3282. ssid, ssid_len);
  3283. if (!rc) {
  3284. local->sta_hw_scanning = 1;
  3285. local->scan_dev = dev;
  3286. }
  3287. return rc;
  3288. }
  3289. local->sta_sw_scanning = 1;
  3290. rcu_read_lock();
  3291. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3292. /* Don't stop the master interface, otherwise we can't transmit
  3293. * probes! */
  3294. if (sdata->dev == local->mdev)
  3295. continue;
  3296. netif_stop_queue(sdata->dev);
  3297. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3298. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3299. ieee80211_send_nullfunc(local, sdata, 1);
  3300. }
  3301. rcu_read_unlock();
  3302. if (ssid) {
  3303. local->scan_ssid_len = ssid_len;
  3304. memcpy(local->scan_ssid, ssid, ssid_len);
  3305. } else
  3306. local->scan_ssid_len = 0;
  3307. local->scan_state = SCAN_SET_CHANNEL;
  3308. local->scan_channel_idx = 0;
  3309. local->scan_band = IEEE80211_BAND_2GHZ;
  3310. local->scan_dev = dev;
  3311. netif_tx_lock_bh(local->mdev);
  3312. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3313. local->ops->configure_filter(local_to_hw(local),
  3314. FIF_BCN_PRBRESP_PROMISC,
  3315. &local->filter_flags,
  3316. local->mdev->mc_count,
  3317. local->mdev->mc_list);
  3318. netif_tx_unlock_bh(local->mdev);
  3319. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3320. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3321. IEEE80211_CHANNEL_TIME);
  3322. return 0;
  3323. }
  3324. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3325. {
  3326. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3327. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3328. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3329. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3330. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3331. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3332. if (local->scan_dev == dev)
  3333. return 0;
  3334. return -EBUSY;
  3335. }
  3336. ifsta->scan_ssid_len = ssid_len;
  3337. if (ssid_len)
  3338. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3339. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3340. queue_work(local->hw.workqueue, &ifsta->work);
  3341. return 0;
  3342. }
  3343. static char *
  3344. ieee80211_sta_scan_result(struct net_device *dev,
  3345. struct ieee80211_sta_bss *bss,
  3346. char *current_ev, char *end_buf)
  3347. {
  3348. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3349. struct iw_event iwe;
  3350. if (time_after(jiffies,
  3351. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3352. return current_ev;
  3353. memset(&iwe, 0, sizeof(iwe));
  3354. iwe.cmd = SIOCGIWAP;
  3355. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3356. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3357. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3358. IW_EV_ADDR_LEN);
  3359. memset(&iwe, 0, sizeof(iwe));
  3360. iwe.cmd = SIOCGIWESSID;
  3361. if (bss_mesh_cfg(bss)) {
  3362. iwe.u.data.length = bss_mesh_id_len(bss);
  3363. iwe.u.data.flags = 1;
  3364. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3365. bss_mesh_id(bss));
  3366. } else {
  3367. iwe.u.data.length = bss->ssid_len;
  3368. iwe.u.data.flags = 1;
  3369. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3370. bss->ssid);
  3371. }
  3372. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
  3373. || bss_mesh_cfg(bss)) {
  3374. memset(&iwe, 0, sizeof(iwe));
  3375. iwe.cmd = SIOCGIWMODE;
  3376. if (bss_mesh_cfg(bss))
  3377. iwe.u.mode = IW_MODE_MESH;
  3378. else if (bss->capability & WLAN_CAPABILITY_ESS)
  3379. iwe.u.mode = IW_MODE_MASTER;
  3380. else
  3381. iwe.u.mode = IW_MODE_ADHOC;
  3382. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3383. IW_EV_UINT_LEN);
  3384. }
  3385. memset(&iwe, 0, sizeof(iwe));
  3386. iwe.cmd = SIOCGIWFREQ;
  3387. iwe.u.freq.m = bss->freq;
  3388. iwe.u.freq.e = 6;
  3389. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3390. IW_EV_FREQ_LEN);
  3391. memset(&iwe, 0, sizeof(iwe));
  3392. iwe.cmd = SIOCGIWFREQ;
  3393. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3394. iwe.u.freq.e = 0;
  3395. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3396. IW_EV_FREQ_LEN);
  3397. memset(&iwe, 0, sizeof(iwe));
  3398. iwe.cmd = IWEVQUAL;
  3399. iwe.u.qual.qual = bss->signal;
  3400. iwe.u.qual.level = bss->rssi;
  3401. iwe.u.qual.noise = bss->noise;
  3402. iwe.u.qual.updated = local->wstats_flags;
  3403. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3404. IW_EV_QUAL_LEN);
  3405. memset(&iwe, 0, sizeof(iwe));
  3406. iwe.cmd = SIOCGIWENCODE;
  3407. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3408. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3409. else
  3410. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3411. iwe.u.data.length = 0;
  3412. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  3413. if (bss && bss->wpa_ie) {
  3414. memset(&iwe, 0, sizeof(iwe));
  3415. iwe.cmd = IWEVGENIE;
  3416. iwe.u.data.length = bss->wpa_ie_len;
  3417. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3418. bss->wpa_ie);
  3419. }
  3420. if (bss && bss->rsn_ie) {
  3421. memset(&iwe, 0, sizeof(iwe));
  3422. iwe.cmd = IWEVGENIE;
  3423. iwe.u.data.length = bss->rsn_ie_len;
  3424. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3425. bss->rsn_ie);
  3426. }
  3427. if (bss && bss->supp_rates_len > 0) {
  3428. /* display all supported rates in readable format */
  3429. char *p = current_ev + IW_EV_LCP_LEN;
  3430. int i;
  3431. memset(&iwe, 0, sizeof(iwe));
  3432. iwe.cmd = SIOCGIWRATE;
  3433. /* Those two flags are ignored... */
  3434. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3435. for (i = 0; i < bss->supp_rates_len; i++) {
  3436. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3437. 0x7f) * 500000);
  3438. p = iwe_stream_add_value(current_ev, p,
  3439. end_buf, &iwe, IW_EV_PARAM_LEN);
  3440. }
  3441. current_ev = p;
  3442. }
  3443. if (bss) {
  3444. char *buf;
  3445. buf = kmalloc(30, GFP_ATOMIC);
  3446. if (buf) {
  3447. memset(&iwe, 0, sizeof(iwe));
  3448. iwe.cmd = IWEVCUSTOM;
  3449. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3450. iwe.u.data.length = strlen(buf);
  3451. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3452. &iwe, buf);
  3453. kfree(buf);
  3454. }
  3455. }
  3456. if (bss_mesh_cfg(bss)) {
  3457. char *buf;
  3458. u8 *cfg = bss_mesh_cfg(bss);
  3459. buf = kmalloc(50, GFP_ATOMIC);
  3460. if (buf) {
  3461. memset(&iwe, 0, sizeof(iwe));
  3462. iwe.cmd = IWEVCUSTOM;
  3463. sprintf(buf, "Mesh network (version %d)", cfg[0]);
  3464. iwe.u.data.length = strlen(buf);
  3465. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3466. &iwe, buf);
  3467. sprintf(buf, "Path Selection Protocol ID: "
  3468. "0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
  3469. cfg[4]);
  3470. iwe.u.data.length = strlen(buf);
  3471. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3472. &iwe, buf);
  3473. sprintf(buf, "Path Selection Metric ID: "
  3474. "0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
  3475. cfg[8]);
  3476. iwe.u.data.length = strlen(buf);
  3477. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3478. &iwe, buf);
  3479. sprintf(buf, "Congestion Control Mode ID: "
  3480. "0x%02X%02X%02X%02X", cfg[9], cfg[10],
  3481. cfg[11], cfg[12]);
  3482. iwe.u.data.length = strlen(buf);
  3483. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3484. &iwe, buf);
  3485. sprintf(buf, "Channel Precedence: "
  3486. "0x%02X%02X%02X%02X", cfg[13], cfg[14],
  3487. cfg[15], cfg[16]);
  3488. iwe.u.data.length = strlen(buf);
  3489. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3490. &iwe, buf);
  3491. kfree(buf);
  3492. }
  3493. }
  3494. return current_ev;
  3495. }
  3496. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3497. {
  3498. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3499. char *current_ev = buf;
  3500. char *end_buf = buf + len;
  3501. struct ieee80211_sta_bss *bss;
  3502. spin_lock_bh(&local->sta_bss_lock);
  3503. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3504. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3505. spin_unlock_bh(&local->sta_bss_lock);
  3506. return -E2BIG;
  3507. }
  3508. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3509. end_buf);
  3510. }
  3511. spin_unlock_bh(&local->sta_bss_lock);
  3512. return current_ev - buf;
  3513. }
  3514. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3515. {
  3516. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3517. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3518. kfree(ifsta->extra_ie);
  3519. if (len == 0) {
  3520. ifsta->extra_ie = NULL;
  3521. ifsta->extra_ie_len = 0;
  3522. return 0;
  3523. }
  3524. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3525. if (!ifsta->extra_ie) {
  3526. ifsta->extra_ie_len = 0;
  3527. return -ENOMEM;
  3528. }
  3529. memcpy(ifsta->extra_ie, ie, len);
  3530. ifsta->extra_ie_len = len;
  3531. return 0;
  3532. }
  3533. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3534. struct sk_buff *skb, u8 *bssid,
  3535. u8 *addr)
  3536. {
  3537. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3538. struct sta_info *sta;
  3539. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3540. DECLARE_MAC_BUF(mac);
  3541. /* TODO: Could consider removing the least recently used entry and
  3542. * allow new one to be added. */
  3543. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3544. if (net_ratelimit()) {
  3545. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3546. "entry %s\n", dev->name, print_mac(mac, addr));
  3547. }
  3548. return NULL;
  3549. }
  3550. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3551. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3552. sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
  3553. if (!sta)
  3554. return NULL;
  3555. sta->flags |= WLAN_STA_AUTHORIZED;
  3556. sta->supp_rates[local->hw.conf.channel->band] =
  3557. sdata->u.sta.supp_rates_bits[local->hw.conf.channel->band];
  3558. rate_control_rate_init(sta, local);
  3559. if (sta_info_insert(sta))
  3560. return NULL;
  3561. return sta;
  3562. }
  3563. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3564. {
  3565. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3566. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3567. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3568. dev->name, reason);
  3569. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3570. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3571. return -EINVAL;
  3572. ieee80211_send_deauth(dev, ifsta, reason);
  3573. ieee80211_set_disassoc(dev, ifsta, 1);
  3574. return 0;
  3575. }
  3576. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3577. {
  3578. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3579. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3580. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3581. dev->name, reason);
  3582. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3583. return -EINVAL;
  3584. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3585. return -1;
  3586. ieee80211_send_disassoc(dev, ifsta, reason);
  3587. ieee80211_set_disassoc(dev, ifsta, 0);
  3588. return 0;
  3589. }