sched.c 248 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  118. /*
  119. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  120. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  121. */
  122. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  123. {
  124. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  125. }
  126. /*
  127. * Each time a sched group cpu_power is changed,
  128. * we must compute its reciprocal value
  129. */
  130. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  131. {
  132. sg->__cpu_power += val;
  133. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  134. }
  135. #endif
  136. static inline int rt_policy(int policy)
  137. {
  138. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  139. return 1;
  140. return 0;
  141. }
  142. static inline int task_has_rt_policy(struct task_struct *p)
  143. {
  144. return rt_policy(p->policy);
  145. }
  146. /*
  147. * This is the priority-queue data structure of the RT scheduling class:
  148. */
  149. struct rt_prio_array {
  150. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  151. struct list_head queue[MAX_RT_PRIO];
  152. };
  153. struct rt_bandwidth {
  154. /* nests inside the rq lock: */
  155. spinlock_t rt_runtime_lock;
  156. ktime_t rt_period;
  157. u64 rt_runtime;
  158. struct hrtimer rt_period_timer;
  159. };
  160. static struct rt_bandwidth def_rt_bandwidth;
  161. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  162. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  163. {
  164. struct rt_bandwidth *rt_b =
  165. container_of(timer, struct rt_bandwidth, rt_period_timer);
  166. ktime_t now;
  167. int overrun;
  168. int idle = 0;
  169. for (;;) {
  170. now = hrtimer_cb_get_time(timer);
  171. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  172. if (!overrun)
  173. break;
  174. idle = do_sched_rt_period_timer(rt_b, overrun);
  175. }
  176. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  177. }
  178. static
  179. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  180. {
  181. rt_b->rt_period = ns_to_ktime(period);
  182. rt_b->rt_runtime = runtime;
  183. spin_lock_init(&rt_b->rt_runtime_lock);
  184. hrtimer_init(&rt_b->rt_period_timer,
  185. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  186. rt_b->rt_period_timer.function = sched_rt_period_timer;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. unsigned long delta;
  202. ktime_t soft, hard;
  203. if (hrtimer_active(&rt_b->rt_period_timer))
  204. break;
  205. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  206. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  207. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  208. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  209. delta = ktime_to_ns(ktime_sub(hard, soft));
  210. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  211. HRTIMER_MODE_ABS, 0);
  212. }
  213. spin_unlock(&rt_b->rt_runtime_lock);
  214. }
  215. #ifdef CONFIG_RT_GROUP_SCHED
  216. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  217. {
  218. hrtimer_cancel(&rt_b->rt_period_timer);
  219. }
  220. #endif
  221. /*
  222. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  223. * detach_destroy_domains and partition_sched_domains.
  224. */
  225. static DEFINE_MUTEX(sched_domains_mutex);
  226. #ifdef CONFIG_GROUP_SCHED
  227. #include <linux/cgroup.h>
  228. struct cfs_rq;
  229. static LIST_HEAD(task_groups);
  230. /* task group related information */
  231. struct task_group {
  232. #ifdef CONFIG_CGROUP_SCHED
  233. struct cgroup_subsys_state css;
  234. #endif
  235. #ifdef CONFIG_USER_SCHED
  236. uid_t uid;
  237. #endif
  238. #ifdef CONFIG_FAIR_GROUP_SCHED
  239. /* schedulable entities of this group on each cpu */
  240. struct sched_entity **se;
  241. /* runqueue "owned" by this group on each cpu */
  242. struct cfs_rq **cfs_rq;
  243. unsigned long shares;
  244. #endif
  245. #ifdef CONFIG_RT_GROUP_SCHED
  246. struct sched_rt_entity **rt_se;
  247. struct rt_rq **rt_rq;
  248. struct rt_bandwidth rt_bandwidth;
  249. #endif
  250. struct rcu_head rcu;
  251. struct list_head list;
  252. struct task_group *parent;
  253. struct list_head siblings;
  254. struct list_head children;
  255. };
  256. #ifdef CONFIG_USER_SCHED
  257. /* Helper function to pass uid information to create_sched_user() */
  258. void set_tg_uid(struct user_struct *user)
  259. {
  260. user->tg->uid = user->uid;
  261. }
  262. /*
  263. * Root task group.
  264. * Every UID task group (including init_task_group aka UID-0) will
  265. * be a child to this group.
  266. */
  267. struct task_group root_task_group;
  268. #ifdef CONFIG_FAIR_GROUP_SCHED
  269. /* Default task group's sched entity on each cpu */
  270. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  271. /* Default task group's cfs_rq on each cpu */
  272. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_FAIR_GROUP_SCHED */
  274. #ifdef CONFIG_RT_GROUP_SCHED
  275. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  276. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  277. #endif /* CONFIG_RT_GROUP_SCHED */
  278. #else /* !CONFIG_USER_SCHED */
  279. #define root_task_group init_task_group
  280. #endif /* CONFIG_USER_SCHED */
  281. /* task_group_lock serializes add/remove of task groups and also changes to
  282. * a task group's cpu shares.
  283. */
  284. static DEFINE_SPINLOCK(task_group_lock);
  285. #ifdef CONFIG_SMP
  286. static int root_task_group_empty(void)
  287. {
  288. return list_empty(&root_task_group.children);
  289. }
  290. #endif
  291. #ifdef CONFIG_FAIR_GROUP_SCHED
  292. #ifdef CONFIG_USER_SCHED
  293. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  294. #else /* !CONFIG_USER_SCHED */
  295. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  296. #endif /* CONFIG_USER_SCHED */
  297. /*
  298. * A weight of 0 or 1 can cause arithmetics problems.
  299. * A weight of a cfs_rq is the sum of weights of which entities
  300. * are queued on this cfs_rq, so a weight of a entity should not be
  301. * too large, so as the shares value of a task group.
  302. * (The default weight is 1024 - so there's no practical
  303. * limitation from this.)
  304. */
  305. #define MIN_SHARES 2
  306. #define MAX_SHARES (1UL << 18)
  307. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  308. #endif
  309. /* Default task group.
  310. * Every task in system belong to this group at bootup.
  311. */
  312. struct task_group init_task_group;
  313. /* return group to which a task belongs */
  314. static inline struct task_group *task_group(struct task_struct *p)
  315. {
  316. struct task_group *tg;
  317. #ifdef CONFIG_USER_SCHED
  318. rcu_read_lock();
  319. tg = __task_cred(p)->user->tg;
  320. rcu_read_unlock();
  321. #elif defined(CONFIG_CGROUP_SCHED)
  322. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  323. struct task_group, css);
  324. #else
  325. tg = &init_task_group;
  326. #endif
  327. return tg;
  328. }
  329. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  330. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  331. {
  332. #ifdef CONFIG_FAIR_GROUP_SCHED
  333. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  334. p->se.parent = task_group(p)->se[cpu];
  335. #endif
  336. #ifdef CONFIG_RT_GROUP_SCHED
  337. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  338. p->rt.parent = task_group(p)->rt_se[cpu];
  339. #endif
  340. }
  341. #else
  342. #ifdef CONFIG_SMP
  343. static int root_task_group_empty(void)
  344. {
  345. return 1;
  346. }
  347. #endif
  348. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  349. static inline struct task_group *task_group(struct task_struct *p)
  350. {
  351. return NULL;
  352. }
  353. #endif /* CONFIG_GROUP_SCHED */
  354. /* CFS-related fields in a runqueue */
  355. struct cfs_rq {
  356. struct load_weight load;
  357. unsigned long nr_running;
  358. u64 exec_clock;
  359. u64 min_vruntime;
  360. struct rb_root tasks_timeline;
  361. struct rb_node *rb_leftmost;
  362. struct list_head tasks;
  363. struct list_head *balance_iterator;
  364. /*
  365. * 'curr' points to currently running entity on this cfs_rq.
  366. * It is set to NULL otherwise (i.e when none are currently running).
  367. */
  368. struct sched_entity *curr, *next, *last;
  369. unsigned int nr_spread_over;
  370. #ifdef CONFIG_FAIR_GROUP_SCHED
  371. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  372. /*
  373. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  374. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  375. * (like users, containers etc.)
  376. *
  377. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  378. * list is used during load balance.
  379. */
  380. struct list_head leaf_cfs_rq_list;
  381. struct task_group *tg; /* group that "owns" this runqueue */
  382. #ifdef CONFIG_SMP
  383. /*
  384. * the part of load.weight contributed by tasks
  385. */
  386. unsigned long task_weight;
  387. /*
  388. * h_load = weight * f(tg)
  389. *
  390. * Where f(tg) is the recursive weight fraction assigned to
  391. * this group.
  392. */
  393. unsigned long h_load;
  394. /*
  395. * this cpu's part of tg->shares
  396. */
  397. unsigned long shares;
  398. /*
  399. * load.weight at the time we set shares
  400. */
  401. unsigned long rq_weight;
  402. #endif
  403. #endif
  404. };
  405. /* Real-Time classes' related field in a runqueue: */
  406. struct rt_rq {
  407. struct rt_prio_array active;
  408. unsigned long rt_nr_running;
  409. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  410. struct {
  411. int curr; /* highest queued rt task prio */
  412. #ifdef CONFIG_SMP
  413. int next; /* next highest */
  414. #endif
  415. } highest_prio;
  416. #endif
  417. #ifdef CONFIG_SMP
  418. unsigned long rt_nr_migratory;
  419. int overloaded;
  420. struct plist_head pushable_tasks;
  421. #endif
  422. int rt_throttled;
  423. u64 rt_time;
  424. u64 rt_runtime;
  425. /* Nests inside the rq lock: */
  426. spinlock_t rt_runtime_lock;
  427. #ifdef CONFIG_RT_GROUP_SCHED
  428. unsigned long rt_nr_boosted;
  429. struct rq *rq;
  430. struct list_head leaf_rt_rq_list;
  431. struct task_group *tg;
  432. struct sched_rt_entity *rt_se;
  433. #endif
  434. };
  435. #ifdef CONFIG_SMP
  436. /*
  437. * We add the notion of a root-domain which will be used to define per-domain
  438. * variables. Each exclusive cpuset essentially defines an island domain by
  439. * fully partitioning the member cpus from any other cpuset. Whenever a new
  440. * exclusive cpuset is created, we also create and attach a new root-domain
  441. * object.
  442. *
  443. */
  444. struct root_domain {
  445. atomic_t refcount;
  446. cpumask_var_t span;
  447. cpumask_var_t online;
  448. /*
  449. * The "RT overload" flag: it gets set if a CPU has more than
  450. * one runnable RT task.
  451. */
  452. cpumask_var_t rto_mask;
  453. atomic_t rto_count;
  454. #ifdef CONFIG_SMP
  455. struct cpupri cpupri;
  456. #endif
  457. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  458. /*
  459. * Preferred wake up cpu nominated by sched_mc balance that will be
  460. * used when most cpus are idle in the system indicating overall very
  461. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  462. */
  463. unsigned int sched_mc_preferred_wakeup_cpu;
  464. #endif
  465. };
  466. /*
  467. * By default the system creates a single root-domain with all cpus as
  468. * members (mimicking the global state we have today).
  469. */
  470. static struct root_domain def_root_domain;
  471. #endif
  472. /*
  473. * This is the main, per-CPU runqueue data structure.
  474. *
  475. * Locking rule: those places that want to lock multiple runqueues
  476. * (such as the load balancing or the thread migration code), lock
  477. * acquire operations must be ordered by ascending &runqueue.
  478. */
  479. struct rq {
  480. /* runqueue lock: */
  481. spinlock_t lock;
  482. /*
  483. * nr_running and cpu_load should be in the same cacheline because
  484. * remote CPUs use both these fields when doing load calculation.
  485. */
  486. unsigned long nr_running;
  487. #define CPU_LOAD_IDX_MAX 5
  488. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  489. #ifdef CONFIG_NO_HZ
  490. unsigned long last_tick_seen;
  491. unsigned char in_nohz_recently;
  492. #endif
  493. /* capture load from *all* tasks on this cpu: */
  494. struct load_weight load;
  495. unsigned long nr_load_updates;
  496. u64 nr_switches;
  497. u64 nr_migrations_in;
  498. struct cfs_rq cfs;
  499. struct rt_rq rt;
  500. #ifdef CONFIG_FAIR_GROUP_SCHED
  501. /* list of leaf cfs_rq on this cpu: */
  502. struct list_head leaf_cfs_rq_list;
  503. #endif
  504. #ifdef CONFIG_RT_GROUP_SCHED
  505. struct list_head leaf_rt_rq_list;
  506. #endif
  507. /*
  508. * This is part of a global counter where only the total sum
  509. * over all CPUs matters. A task can increase this counter on
  510. * one CPU and if it got migrated afterwards it may decrease
  511. * it on another CPU. Always updated under the runqueue lock:
  512. */
  513. unsigned long nr_uninterruptible;
  514. struct task_struct *curr, *idle;
  515. unsigned long next_balance;
  516. struct mm_struct *prev_mm;
  517. u64 clock;
  518. atomic_t nr_iowait;
  519. #ifdef CONFIG_SMP
  520. struct root_domain *rd;
  521. struct sched_domain *sd;
  522. unsigned char idle_at_tick;
  523. /* For active balancing */
  524. int active_balance;
  525. int push_cpu;
  526. /* cpu of this runqueue: */
  527. int cpu;
  528. int online;
  529. unsigned long avg_load_per_task;
  530. struct task_struct *migration_thread;
  531. struct list_head migration_queue;
  532. #endif
  533. #ifdef CONFIG_SCHED_HRTICK
  534. #ifdef CONFIG_SMP
  535. int hrtick_csd_pending;
  536. struct call_single_data hrtick_csd;
  537. #endif
  538. struct hrtimer hrtick_timer;
  539. #endif
  540. #ifdef CONFIG_SCHEDSTATS
  541. /* latency stats */
  542. struct sched_info rq_sched_info;
  543. unsigned long long rq_cpu_time;
  544. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  545. /* sys_sched_yield() stats */
  546. unsigned int yld_count;
  547. /* schedule() stats */
  548. unsigned int sched_switch;
  549. unsigned int sched_count;
  550. unsigned int sched_goidle;
  551. /* try_to_wake_up() stats */
  552. unsigned int ttwu_count;
  553. unsigned int ttwu_local;
  554. /* BKL stats */
  555. unsigned int bkl_count;
  556. #endif
  557. };
  558. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  559. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  560. {
  561. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  562. }
  563. static inline int cpu_of(struct rq *rq)
  564. {
  565. #ifdef CONFIG_SMP
  566. return rq->cpu;
  567. #else
  568. return 0;
  569. #endif
  570. }
  571. /*
  572. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  573. * See detach_destroy_domains: synchronize_sched for details.
  574. *
  575. * The domain tree of any CPU may only be accessed from within
  576. * preempt-disabled sections.
  577. */
  578. #define for_each_domain(cpu, __sd) \
  579. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  580. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  581. #define this_rq() (&__get_cpu_var(runqueues))
  582. #define task_rq(p) cpu_rq(task_cpu(p))
  583. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  584. inline void update_rq_clock(struct rq *rq)
  585. {
  586. rq->clock = sched_clock_cpu(cpu_of(rq));
  587. }
  588. /*
  589. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  590. */
  591. #ifdef CONFIG_SCHED_DEBUG
  592. # define const_debug __read_mostly
  593. #else
  594. # define const_debug static const
  595. #endif
  596. /**
  597. * runqueue_is_locked
  598. *
  599. * Returns true if the current cpu runqueue is locked.
  600. * This interface allows printk to be called with the runqueue lock
  601. * held and know whether or not it is OK to wake up the klogd.
  602. */
  603. int runqueue_is_locked(void)
  604. {
  605. int cpu = get_cpu();
  606. struct rq *rq = cpu_rq(cpu);
  607. int ret;
  608. ret = spin_is_locked(&rq->lock);
  609. put_cpu();
  610. return ret;
  611. }
  612. /*
  613. * Debugging: various feature bits
  614. */
  615. #define SCHED_FEAT(name, enabled) \
  616. __SCHED_FEAT_##name ,
  617. enum {
  618. #include "sched_features.h"
  619. };
  620. #undef SCHED_FEAT
  621. #define SCHED_FEAT(name, enabled) \
  622. (1UL << __SCHED_FEAT_##name) * enabled |
  623. const_debug unsigned int sysctl_sched_features =
  624. #include "sched_features.h"
  625. 0;
  626. #undef SCHED_FEAT
  627. #ifdef CONFIG_SCHED_DEBUG
  628. #define SCHED_FEAT(name, enabled) \
  629. #name ,
  630. static __read_mostly char *sched_feat_names[] = {
  631. #include "sched_features.h"
  632. NULL
  633. };
  634. #undef SCHED_FEAT
  635. static int sched_feat_show(struct seq_file *m, void *v)
  636. {
  637. int i;
  638. for (i = 0; sched_feat_names[i]; i++) {
  639. if (!(sysctl_sched_features & (1UL << i)))
  640. seq_puts(m, "NO_");
  641. seq_printf(m, "%s ", sched_feat_names[i]);
  642. }
  643. seq_puts(m, "\n");
  644. return 0;
  645. }
  646. static ssize_t
  647. sched_feat_write(struct file *filp, const char __user *ubuf,
  648. size_t cnt, loff_t *ppos)
  649. {
  650. char buf[64];
  651. char *cmp = buf;
  652. int neg = 0;
  653. int i;
  654. if (cnt > 63)
  655. cnt = 63;
  656. if (copy_from_user(&buf, ubuf, cnt))
  657. return -EFAULT;
  658. buf[cnt] = 0;
  659. if (strncmp(buf, "NO_", 3) == 0) {
  660. neg = 1;
  661. cmp += 3;
  662. }
  663. for (i = 0; sched_feat_names[i]; i++) {
  664. int len = strlen(sched_feat_names[i]);
  665. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  666. if (neg)
  667. sysctl_sched_features &= ~(1UL << i);
  668. else
  669. sysctl_sched_features |= (1UL << i);
  670. break;
  671. }
  672. }
  673. if (!sched_feat_names[i])
  674. return -EINVAL;
  675. filp->f_pos += cnt;
  676. return cnt;
  677. }
  678. static int sched_feat_open(struct inode *inode, struct file *filp)
  679. {
  680. return single_open(filp, sched_feat_show, NULL);
  681. }
  682. static struct file_operations sched_feat_fops = {
  683. .open = sched_feat_open,
  684. .write = sched_feat_write,
  685. .read = seq_read,
  686. .llseek = seq_lseek,
  687. .release = single_release,
  688. };
  689. static __init int sched_init_debug(void)
  690. {
  691. debugfs_create_file("sched_features", 0644, NULL, NULL,
  692. &sched_feat_fops);
  693. return 0;
  694. }
  695. late_initcall(sched_init_debug);
  696. #endif
  697. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  698. /*
  699. * Number of tasks to iterate in a single balance run.
  700. * Limited because this is done with IRQs disabled.
  701. */
  702. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  703. /*
  704. * ratelimit for updating the group shares.
  705. * default: 0.25ms
  706. */
  707. unsigned int sysctl_sched_shares_ratelimit = 250000;
  708. /*
  709. * Inject some fuzzyness into changing the per-cpu group shares
  710. * this avoids remote rq-locks at the expense of fairness.
  711. * default: 4
  712. */
  713. unsigned int sysctl_sched_shares_thresh = 4;
  714. /*
  715. * period over which we measure -rt task cpu usage in us.
  716. * default: 1s
  717. */
  718. unsigned int sysctl_sched_rt_period = 1000000;
  719. static __read_mostly int scheduler_running;
  720. /*
  721. * part of the period that we allow rt tasks to run in us.
  722. * default: 0.95s
  723. */
  724. int sysctl_sched_rt_runtime = 950000;
  725. static inline u64 global_rt_period(void)
  726. {
  727. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  728. }
  729. static inline u64 global_rt_runtime(void)
  730. {
  731. if (sysctl_sched_rt_runtime < 0)
  732. return RUNTIME_INF;
  733. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  734. }
  735. #ifndef prepare_arch_switch
  736. # define prepare_arch_switch(next) do { } while (0)
  737. #endif
  738. #ifndef finish_arch_switch
  739. # define finish_arch_switch(prev) do { } while (0)
  740. #endif
  741. static inline int task_current(struct rq *rq, struct task_struct *p)
  742. {
  743. return rq->curr == p;
  744. }
  745. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  746. static inline int task_running(struct rq *rq, struct task_struct *p)
  747. {
  748. return task_current(rq, p);
  749. }
  750. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  751. {
  752. }
  753. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  754. {
  755. #ifdef CONFIG_DEBUG_SPINLOCK
  756. /* this is a valid case when another task releases the spinlock */
  757. rq->lock.owner = current;
  758. #endif
  759. /*
  760. * If we are tracking spinlock dependencies then we have to
  761. * fix up the runqueue lock - which gets 'carried over' from
  762. * prev into current:
  763. */
  764. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  765. spin_unlock_irq(&rq->lock);
  766. }
  767. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  768. static inline int task_running(struct rq *rq, struct task_struct *p)
  769. {
  770. #ifdef CONFIG_SMP
  771. return p->oncpu;
  772. #else
  773. return task_current(rq, p);
  774. #endif
  775. }
  776. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  777. {
  778. #ifdef CONFIG_SMP
  779. /*
  780. * We can optimise this out completely for !SMP, because the
  781. * SMP rebalancing from interrupt is the only thing that cares
  782. * here.
  783. */
  784. next->oncpu = 1;
  785. #endif
  786. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  787. spin_unlock_irq(&rq->lock);
  788. #else
  789. spin_unlock(&rq->lock);
  790. #endif
  791. }
  792. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  793. {
  794. #ifdef CONFIG_SMP
  795. /*
  796. * After ->oncpu is cleared, the task can be moved to a different CPU.
  797. * We must ensure this doesn't happen until the switch is completely
  798. * finished.
  799. */
  800. smp_wmb();
  801. prev->oncpu = 0;
  802. #endif
  803. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  804. local_irq_enable();
  805. #endif
  806. }
  807. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  808. /*
  809. * __task_rq_lock - lock the runqueue a given task resides on.
  810. * Must be called interrupts disabled.
  811. */
  812. static inline struct rq *__task_rq_lock(struct task_struct *p)
  813. __acquires(rq->lock)
  814. {
  815. for (;;) {
  816. struct rq *rq = task_rq(p);
  817. spin_lock(&rq->lock);
  818. if (likely(rq == task_rq(p)))
  819. return rq;
  820. spin_unlock(&rq->lock);
  821. }
  822. }
  823. /*
  824. * task_rq_lock - lock the runqueue a given task resides on and disable
  825. * interrupts. Note the ordering: we can safely lookup the task_rq without
  826. * explicitly disabling preemption.
  827. */
  828. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  829. __acquires(rq->lock)
  830. {
  831. struct rq *rq;
  832. for (;;) {
  833. local_irq_save(*flags);
  834. rq = task_rq(p);
  835. spin_lock(&rq->lock);
  836. if (likely(rq == task_rq(p)))
  837. return rq;
  838. spin_unlock_irqrestore(&rq->lock, *flags);
  839. }
  840. }
  841. void task_rq_unlock_wait(struct task_struct *p)
  842. {
  843. struct rq *rq = task_rq(p);
  844. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  845. spin_unlock_wait(&rq->lock);
  846. }
  847. static void __task_rq_unlock(struct rq *rq)
  848. __releases(rq->lock)
  849. {
  850. spin_unlock(&rq->lock);
  851. }
  852. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  853. __releases(rq->lock)
  854. {
  855. spin_unlock_irqrestore(&rq->lock, *flags);
  856. }
  857. /*
  858. * this_rq_lock - lock this runqueue and disable interrupts.
  859. */
  860. static struct rq *this_rq_lock(void)
  861. __acquires(rq->lock)
  862. {
  863. struct rq *rq;
  864. local_irq_disable();
  865. rq = this_rq();
  866. spin_lock(&rq->lock);
  867. return rq;
  868. }
  869. #ifdef CONFIG_SCHED_HRTICK
  870. /*
  871. * Use HR-timers to deliver accurate preemption points.
  872. *
  873. * Its all a bit involved since we cannot program an hrt while holding the
  874. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  875. * reschedule event.
  876. *
  877. * When we get rescheduled we reprogram the hrtick_timer outside of the
  878. * rq->lock.
  879. */
  880. /*
  881. * Use hrtick when:
  882. * - enabled by features
  883. * - hrtimer is actually high res
  884. */
  885. static inline int hrtick_enabled(struct rq *rq)
  886. {
  887. if (!sched_feat(HRTICK))
  888. return 0;
  889. if (!cpu_active(cpu_of(rq)))
  890. return 0;
  891. return hrtimer_is_hres_active(&rq->hrtick_timer);
  892. }
  893. static void hrtick_clear(struct rq *rq)
  894. {
  895. if (hrtimer_active(&rq->hrtick_timer))
  896. hrtimer_cancel(&rq->hrtick_timer);
  897. }
  898. /*
  899. * High-resolution timer tick.
  900. * Runs from hardirq context with interrupts disabled.
  901. */
  902. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  903. {
  904. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  905. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  906. spin_lock(&rq->lock);
  907. update_rq_clock(rq);
  908. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  909. spin_unlock(&rq->lock);
  910. return HRTIMER_NORESTART;
  911. }
  912. #ifdef CONFIG_SMP
  913. /*
  914. * called from hardirq (IPI) context
  915. */
  916. static void __hrtick_start(void *arg)
  917. {
  918. struct rq *rq = arg;
  919. spin_lock(&rq->lock);
  920. hrtimer_restart(&rq->hrtick_timer);
  921. rq->hrtick_csd_pending = 0;
  922. spin_unlock(&rq->lock);
  923. }
  924. /*
  925. * Called to set the hrtick timer state.
  926. *
  927. * called with rq->lock held and irqs disabled
  928. */
  929. static void hrtick_start(struct rq *rq, u64 delay)
  930. {
  931. struct hrtimer *timer = &rq->hrtick_timer;
  932. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  933. hrtimer_set_expires(timer, time);
  934. if (rq == this_rq()) {
  935. hrtimer_restart(timer);
  936. } else if (!rq->hrtick_csd_pending) {
  937. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  938. rq->hrtick_csd_pending = 1;
  939. }
  940. }
  941. static int
  942. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  943. {
  944. int cpu = (int)(long)hcpu;
  945. switch (action) {
  946. case CPU_UP_CANCELED:
  947. case CPU_UP_CANCELED_FROZEN:
  948. case CPU_DOWN_PREPARE:
  949. case CPU_DOWN_PREPARE_FROZEN:
  950. case CPU_DEAD:
  951. case CPU_DEAD_FROZEN:
  952. hrtick_clear(cpu_rq(cpu));
  953. return NOTIFY_OK;
  954. }
  955. return NOTIFY_DONE;
  956. }
  957. static __init void init_hrtick(void)
  958. {
  959. hotcpu_notifier(hotplug_hrtick, 0);
  960. }
  961. #else
  962. /*
  963. * Called to set the hrtick timer state.
  964. *
  965. * called with rq->lock held and irqs disabled
  966. */
  967. static void hrtick_start(struct rq *rq, u64 delay)
  968. {
  969. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  970. HRTIMER_MODE_REL, 0);
  971. }
  972. static inline void init_hrtick(void)
  973. {
  974. }
  975. #endif /* CONFIG_SMP */
  976. static void init_rq_hrtick(struct rq *rq)
  977. {
  978. #ifdef CONFIG_SMP
  979. rq->hrtick_csd_pending = 0;
  980. rq->hrtick_csd.flags = 0;
  981. rq->hrtick_csd.func = __hrtick_start;
  982. rq->hrtick_csd.info = rq;
  983. #endif
  984. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  985. rq->hrtick_timer.function = hrtick;
  986. }
  987. #else /* CONFIG_SCHED_HRTICK */
  988. static inline void hrtick_clear(struct rq *rq)
  989. {
  990. }
  991. static inline void init_rq_hrtick(struct rq *rq)
  992. {
  993. }
  994. static inline void init_hrtick(void)
  995. {
  996. }
  997. #endif /* CONFIG_SCHED_HRTICK */
  998. /*
  999. * resched_task - mark a task 'to be rescheduled now'.
  1000. *
  1001. * On UP this means the setting of the need_resched flag, on SMP it
  1002. * might also involve a cross-CPU call to trigger the scheduler on
  1003. * the target CPU.
  1004. */
  1005. #ifdef CONFIG_SMP
  1006. #ifndef tsk_is_polling
  1007. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1008. #endif
  1009. static void resched_task(struct task_struct *p)
  1010. {
  1011. int cpu;
  1012. assert_spin_locked(&task_rq(p)->lock);
  1013. if (test_tsk_need_resched(p))
  1014. return;
  1015. set_tsk_need_resched(p);
  1016. cpu = task_cpu(p);
  1017. if (cpu == smp_processor_id())
  1018. return;
  1019. /* NEED_RESCHED must be visible before we test polling */
  1020. smp_mb();
  1021. if (!tsk_is_polling(p))
  1022. smp_send_reschedule(cpu);
  1023. }
  1024. static void resched_cpu(int cpu)
  1025. {
  1026. struct rq *rq = cpu_rq(cpu);
  1027. unsigned long flags;
  1028. if (!spin_trylock_irqsave(&rq->lock, flags))
  1029. return;
  1030. resched_task(cpu_curr(cpu));
  1031. spin_unlock_irqrestore(&rq->lock, flags);
  1032. }
  1033. #ifdef CONFIG_NO_HZ
  1034. /*
  1035. * When add_timer_on() enqueues a timer into the timer wheel of an
  1036. * idle CPU then this timer might expire before the next timer event
  1037. * which is scheduled to wake up that CPU. In case of a completely
  1038. * idle system the next event might even be infinite time into the
  1039. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1040. * leaves the inner idle loop so the newly added timer is taken into
  1041. * account when the CPU goes back to idle and evaluates the timer
  1042. * wheel for the next timer event.
  1043. */
  1044. void wake_up_idle_cpu(int cpu)
  1045. {
  1046. struct rq *rq = cpu_rq(cpu);
  1047. if (cpu == smp_processor_id())
  1048. return;
  1049. /*
  1050. * This is safe, as this function is called with the timer
  1051. * wheel base lock of (cpu) held. When the CPU is on the way
  1052. * to idle and has not yet set rq->curr to idle then it will
  1053. * be serialized on the timer wheel base lock and take the new
  1054. * timer into account automatically.
  1055. */
  1056. if (rq->curr != rq->idle)
  1057. return;
  1058. /*
  1059. * We can set TIF_RESCHED on the idle task of the other CPU
  1060. * lockless. The worst case is that the other CPU runs the
  1061. * idle task through an additional NOOP schedule()
  1062. */
  1063. set_tsk_need_resched(rq->idle);
  1064. /* NEED_RESCHED must be visible before we test polling */
  1065. smp_mb();
  1066. if (!tsk_is_polling(rq->idle))
  1067. smp_send_reschedule(cpu);
  1068. }
  1069. #endif /* CONFIG_NO_HZ */
  1070. #else /* !CONFIG_SMP */
  1071. static void resched_task(struct task_struct *p)
  1072. {
  1073. assert_spin_locked(&task_rq(p)->lock);
  1074. set_tsk_need_resched(p);
  1075. }
  1076. #endif /* CONFIG_SMP */
  1077. #if BITS_PER_LONG == 32
  1078. # define WMULT_CONST (~0UL)
  1079. #else
  1080. # define WMULT_CONST (1UL << 32)
  1081. #endif
  1082. #define WMULT_SHIFT 32
  1083. /*
  1084. * Shift right and round:
  1085. */
  1086. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1087. /*
  1088. * delta *= weight / lw
  1089. */
  1090. static unsigned long
  1091. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1092. struct load_weight *lw)
  1093. {
  1094. u64 tmp;
  1095. if (!lw->inv_weight) {
  1096. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1097. lw->inv_weight = 1;
  1098. else
  1099. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1100. / (lw->weight+1);
  1101. }
  1102. tmp = (u64)delta_exec * weight;
  1103. /*
  1104. * Check whether we'd overflow the 64-bit multiplication:
  1105. */
  1106. if (unlikely(tmp > WMULT_CONST))
  1107. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1108. WMULT_SHIFT/2);
  1109. else
  1110. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1111. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1112. }
  1113. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1114. {
  1115. lw->weight += inc;
  1116. lw->inv_weight = 0;
  1117. }
  1118. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1119. {
  1120. lw->weight -= dec;
  1121. lw->inv_weight = 0;
  1122. }
  1123. /*
  1124. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1125. * of tasks with abnormal "nice" values across CPUs the contribution that
  1126. * each task makes to its run queue's load is weighted according to its
  1127. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1128. * scaled version of the new time slice allocation that they receive on time
  1129. * slice expiry etc.
  1130. */
  1131. #define WEIGHT_IDLEPRIO 3
  1132. #define WMULT_IDLEPRIO 1431655765
  1133. /*
  1134. * Nice levels are multiplicative, with a gentle 10% change for every
  1135. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1136. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1137. * that remained on nice 0.
  1138. *
  1139. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1140. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1141. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1142. * If a task goes up by ~10% and another task goes down by ~10% then
  1143. * the relative distance between them is ~25%.)
  1144. */
  1145. static const int prio_to_weight[40] = {
  1146. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1147. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1148. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1149. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1150. /* 0 */ 1024, 820, 655, 526, 423,
  1151. /* 5 */ 335, 272, 215, 172, 137,
  1152. /* 10 */ 110, 87, 70, 56, 45,
  1153. /* 15 */ 36, 29, 23, 18, 15,
  1154. };
  1155. /*
  1156. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1157. *
  1158. * In cases where the weight does not change often, we can use the
  1159. * precalculated inverse to speed up arithmetics by turning divisions
  1160. * into multiplications:
  1161. */
  1162. static const u32 prio_to_wmult[40] = {
  1163. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1164. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1165. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1166. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1167. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1168. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1169. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1170. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1171. };
  1172. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1173. /*
  1174. * runqueue iterator, to support SMP load-balancing between different
  1175. * scheduling classes, without having to expose their internal data
  1176. * structures to the load-balancing proper:
  1177. */
  1178. struct rq_iterator {
  1179. void *arg;
  1180. struct task_struct *(*start)(void *);
  1181. struct task_struct *(*next)(void *);
  1182. };
  1183. #ifdef CONFIG_SMP
  1184. static unsigned long
  1185. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. unsigned long max_load_move, struct sched_domain *sd,
  1187. enum cpu_idle_type idle, int *all_pinned,
  1188. int *this_best_prio, struct rq_iterator *iterator);
  1189. static int
  1190. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1191. struct sched_domain *sd, enum cpu_idle_type idle,
  1192. struct rq_iterator *iterator);
  1193. #endif
  1194. #ifdef CONFIG_CGROUP_CPUACCT
  1195. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1196. #else
  1197. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1198. #endif
  1199. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1200. {
  1201. update_load_add(&rq->load, load);
  1202. }
  1203. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1204. {
  1205. update_load_sub(&rq->load, load);
  1206. }
  1207. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1208. typedef int (*tg_visitor)(struct task_group *, void *);
  1209. /*
  1210. * Iterate the full tree, calling @down when first entering a node and @up when
  1211. * leaving it for the final time.
  1212. */
  1213. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1214. {
  1215. struct task_group *parent, *child;
  1216. int ret;
  1217. rcu_read_lock();
  1218. parent = &root_task_group;
  1219. down:
  1220. ret = (*down)(parent, data);
  1221. if (ret)
  1222. goto out_unlock;
  1223. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1224. parent = child;
  1225. goto down;
  1226. up:
  1227. continue;
  1228. }
  1229. ret = (*up)(parent, data);
  1230. if (ret)
  1231. goto out_unlock;
  1232. child = parent;
  1233. parent = parent->parent;
  1234. if (parent)
  1235. goto up;
  1236. out_unlock:
  1237. rcu_read_unlock();
  1238. return ret;
  1239. }
  1240. static int tg_nop(struct task_group *tg, void *data)
  1241. {
  1242. return 0;
  1243. }
  1244. #endif
  1245. #ifdef CONFIG_SMP
  1246. static unsigned long source_load(int cpu, int type);
  1247. static unsigned long target_load(int cpu, int type);
  1248. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1249. static unsigned long cpu_avg_load_per_task(int cpu)
  1250. {
  1251. struct rq *rq = cpu_rq(cpu);
  1252. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1253. if (nr_running)
  1254. rq->avg_load_per_task = rq->load.weight / nr_running;
  1255. else
  1256. rq->avg_load_per_task = 0;
  1257. return rq->avg_load_per_task;
  1258. }
  1259. #ifdef CONFIG_FAIR_GROUP_SCHED
  1260. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1261. /*
  1262. * Calculate and set the cpu's group shares.
  1263. */
  1264. static void
  1265. update_group_shares_cpu(struct task_group *tg, int cpu,
  1266. unsigned long sd_shares, unsigned long sd_rq_weight)
  1267. {
  1268. unsigned long shares;
  1269. unsigned long rq_weight;
  1270. if (!tg->se[cpu])
  1271. return;
  1272. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1273. /*
  1274. * \Sum shares * rq_weight
  1275. * shares = -----------------------
  1276. * \Sum rq_weight
  1277. *
  1278. */
  1279. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1280. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1281. if (abs(shares - tg->se[cpu]->load.weight) >
  1282. sysctl_sched_shares_thresh) {
  1283. struct rq *rq = cpu_rq(cpu);
  1284. unsigned long flags;
  1285. spin_lock_irqsave(&rq->lock, flags);
  1286. tg->cfs_rq[cpu]->shares = shares;
  1287. __set_se_shares(tg->se[cpu], shares);
  1288. spin_unlock_irqrestore(&rq->lock, flags);
  1289. }
  1290. }
  1291. /*
  1292. * Re-compute the task group their per cpu shares over the given domain.
  1293. * This needs to be done in a bottom-up fashion because the rq weight of a
  1294. * parent group depends on the shares of its child groups.
  1295. */
  1296. static int tg_shares_up(struct task_group *tg, void *data)
  1297. {
  1298. unsigned long weight, rq_weight = 0;
  1299. unsigned long shares = 0;
  1300. struct sched_domain *sd = data;
  1301. int i;
  1302. for_each_cpu(i, sched_domain_span(sd)) {
  1303. /*
  1304. * If there are currently no tasks on the cpu pretend there
  1305. * is one of average load so that when a new task gets to
  1306. * run here it will not get delayed by group starvation.
  1307. */
  1308. weight = tg->cfs_rq[i]->load.weight;
  1309. if (!weight)
  1310. weight = NICE_0_LOAD;
  1311. tg->cfs_rq[i]->rq_weight = weight;
  1312. rq_weight += weight;
  1313. shares += tg->cfs_rq[i]->shares;
  1314. }
  1315. if ((!shares && rq_weight) || shares > tg->shares)
  1316. shares = tg->shares;
  1317. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1318. shares = tg->shares;
  1319. for_each_cpu(i, sched_domain_span(sd))
  1320. update_group_shares_cpu(tg, i, shares, rq_weight);
  1321. return 0;
  1322. }
  1323. /*
  1324. * Compute the cpu's hierarchical load factor for each task group.
  1325. * This needs to be done in a top-down fashion because the load of a child
  1326. * group is a fraction of its parents load.
  1327. */
  1328. static int tg_load_down(struct task_group *tg, void *data)
  1329. {
  1330. unsigned long load;
  1331. long cpu = (long)data;
  1332. if (!tg->parent) {
  1333. load = cpu_rq(cpu)->load.weight;
  1334. } else {
  1335. load = tg->parent->cfs_rq[cpu]->h_load;
  1336. load *= tg->cfs_rq[cpu]->shares;
  1337. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1338. }
  1339. tg->cfs_rq[cpu]->h_load = load;
  1340. return 0;
  1341. }
  1342. static void update_shares(struct sched_domain *sd)
  1343. {
  1344. u64 now = cpu_clock(raw_smp_processor_id());
  1345. s64 elapsed = now - sd->last_update;
  1346. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1347. sd->last_update = now;
  1348. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1349. }
  1350. }
  1351. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1352. {
  1353. spin_unlock(&rq->lock);
  1354. update_shares(sd);
  1355. spin_lock(&rq->lock);
  1356. }
  1357. static void update_h_load(long cpu)
  1358. {
  1359. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1360. }
  1361. #else
  1362. static inline void update_shares(struct sched_domain *sd)
  1363. {
  1364. }
  1365. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1366. {
  1367. }
  1368. #endif
  1369. #ifdef CONFIG_PREEMPT
  1370. /*
  1371. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1372. * way at the expense of forcing extra atomic operations in all
  1373. * invocations. This assures that the double_lock is acquired using the
  1374. * same underlying policy as the spinlock_t on this architecture, which
  1375. * reduces latency compared to the unfair variant below. However, it
  1376. * also adds more overhead and therefore may reduce throughput.
  1377. */
  1378. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1379. __releases(this_rq->lock)
  1380. __acquires(busiest->lock)
  1381. __acquires(this_rq->lock)
  1382. {
  1383. spin_unlock(&this_rq->lock);
  1384. double_rq_lock(this_rq, busiest);
  1385. return 1;
  1386. }
  1387. #else
  1388. /*
  1389. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1390. * latency by eliminating extra atomic operations when the locks are
  1391. * already in proper order on entry. This favors lower cpu-ids and will
  1392. * grant the double lock to lower cpus over higher ids under contention,
  1393. * regardless of entry order into the function.
  1394. */
  1395. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1396. __releases(this_rq->lock)
  1397. __acquires(busiest->lock)
  1398. __acquires(this_rq->lock)
  1399. {
  1400. int ret = 0;
  1401. if (unlikely(!spin_trylock(&busiest->lock))) {
  1402. if (busiest < this_rq) {
  1403. spin_unlock(&this_rq->lock);
  1404. spin_lock(&busiest->lock);
  1405. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1406. ret = 1;
  1407. } else
  1408. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1409. }
  1410. return ret;
  1411. }
  1412. #endif /* CONFIG_PREEMPT */
  1413. /*
  1414. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1415. */
  1416. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1417. {
  1418. if (unlikely(!irqs_disabled())) {
  1419. /* printk() doesn't work good under rq->lock */
  1420. spin_unlock(&this_rq->lock);
  1421. BUG_ON(1);
  1422. }
  1423. return _double_lock_balance(this_rq, busiest);
  1424. }
  1425. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1426. __releases(busiest->lock)
  1427. {
  1428. spin_unlock(&busiest->lock);
  1429. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1430. }
  1431. #endif
  1432. #ifdef CONFIG_FAIR_GROUP_SCHED
  1433. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1434. {
  1435. #ifdef CONFIG_SMP
  1436. cfs_rq->shares = shares;
  1437. #endif
  1438. }
  1439. #endif
  1440. #include "sched_stats.h"
  1441. #include "sched_idletask.c"
  1442. #include "sched_fair.c"
  1443. #include "sched_rt.c"
  1444. #ifdef CONFIG_SCHED_DEBUG
  1445. # include "sched_debug.c"
  1446. #endif
  1447. #define sched_class_highest (&rt_sched_class)
  1448. #define for_each_class(class) \
  1449. for (class = sched_class_highest; class; class = class->next)
  1450. static void inc_nr_running(struct rq *rq)
  1451. {
  1452. rq->nr_running++;
  1453. }
  1454. static void dec_nr_running(struct rq *rq)
  1455. {
  1456. rq->nr_running--;
  1457. }
  1458. static void set_load_weight(struct task_struct *p)
  1459. {
  1460. if (task_has_rt_policy(p)) {
  1461. p->se.load.weight = prio_to_weight[0] * 2;
  1462. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1463. return;
  1464. }
  1465. /*
  1466. * SCHED_IDLE tasks get minimal weight:
  1467. */
  1468. if (p->policy == SCHED_IDLE) {
  1469. p->se.load.weight = WEIGHT_IDLEPRIO;
  1470. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1471. return;
  1472. }
  1473. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1474. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1475. }
  1476. static void update_avg(u64 *avg, u64 sample)
  1477. {
  1478. s64 diff = sample - *avg;
  1479. *avg += diff >> 3;
  1480. }
  1481. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1482. {
  1483. if (wakeup)
  1484. p->se.start_runtime = p->se.sum_exec_runtime;
  1485. sched_info_queued(p);
  1486. p->sched_class->enqueue_task(rq, p, wakeup);
  1487. p->se.on_rq = 1;
  1488. }
  1489. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1490. {
  1491. if (sleep) {
  1492. if (p->se.last_wakeup) {
  1493. update_avg(&p->se.avg_overlap,
  1494. p->se.sum_exec_runtime - p->se.last_wakeup);
  1495. p->se.last_wakeup = 0;
  1496. } else {
  1497. update_avg(&p->se.avg_wakeup,
  1498. sysctl_sched_wakeup_granularity);
  1499. }
  1500. }
  1501. sched_info_dequeued(p);
  1502. p->sched_class->dequeue_task(rq, p, sleep);
  1503. p->se.on_rq = 0;
  1504. }
  1505. /*
  1506. * __normal_prio - return the priority that is based on the static prio
  1507. */
  1508. static inline int __normal_prio(struct task_struct *p)
  1509. {
  1510. return p->static_prio;
  1511. }
  1512. /*
  1513. * Calculate the expected normal priority: i.e. priority
  1514. * without taking RT-inheritance into account. Might be
  1515. * boosted by interactivity modifiers. Changes upon fork,
  1516. * setprio syscalls, and whenever the interactivity
  1517. * estimator recalculates.
  1518. */
  1519. static inline int normal_prio(struct task_struct *p)
  1520. {
  1521. int prio;
  1522. if (task_has_rt_policy(p))
  1523. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1524. else
  1525. prio = __normal_prio(p);
  1526. return prio;
  1527. }
  1528. /*
  1529. * Calculate the current priority, i.e. the priority
  1530. * taken into account by the scheduler. This value might
  1531. * be boosted by RT tasks, or might be boosted by
  1532. * interactivity modifiers. Will be RT if the task got
  1533. * RT-boosted. If not then it returns p->normal_prio.
  1534. */
  1535. static int effective_prio(struct task_struct *p)
  1536. {
  1537. p->normal_prio = normal_prio(p);
  1538. /*
  1539. * If we are RT tasks or we were boosted to RT priority,
  1540. * keep the priority unchanged. Otherwise, update priority
  1541. * to the normal priority:
  1542. */
  1543. if (!rt_prio(p->prio))
  1544. return p->normal_prio;
  1545. return p->prio;
  1546. }
  1547. /*
  1548. * activate_task - move a task to the runqueue.
  1549. */
  1550. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1551. {
  1552. if (task_contributes_to_load(p))
  1553. rq->nr_uninterruptible--;
  1554. enqueue_task(rq, p, wakeup);
  1555. inc_nr_running(rq);
  1556. }
  1557. /*
  1558. * deactivate_task - remove a task from the runqueue.
  1559. */
  1560. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1561. {
  1562. if (task_contributes_to_load(p))
  1563. rq->nr_uninterruptible++;
  1564. dequeue_task(rq, p, sleep);
  1565. dec_nr_running(rq);
  1566. }
  1567. /**
  1568. * task_curr - is this task currently executing on a CPU?
  1569. * @p: the task in question.
  1570. */
  1571. inline int task_curr(const struct task_struct *p)
  1572. {
  1573. return cpu_curr(task_cpu(p)) == p;
  1574. }
  1575. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1576. {
  1577. set_task_rq(p, cpu);
  1578. #ifdef CONFIG_SMP
  1579. /*
  1580. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1581. * successfuly executed on another CPU. We must ensure that updates of
  1582. * per-task data have been completed by this moment.
  1583. */
  1584. smp_wmb();
  1585. task_thread_info(p)->cpu = cpu;
  1586. #endif
  1587. }
  1588. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1589. const struct sched_class *prev_class,
  1590. int oldprio, int running)
  1591. {
  1592. if (prev_class != p->sched_class) {
  1593. if (prev_class->switched_from)
  1594. prev_class->switched_from(rq, p, running);
  1595. p->sched_class->switched_to(rq, p, running);
  1596. } else
  1597. p->sched_class->prio_changed(rq, p, oldprio, running);
  1598. }
  1599. #ifdef CONFIG_SMP
  1600. /* Used instead of source_load when we know the type == 0 */
  1601. static unsigned long weighted_cpuload(const int cpu)
  1602. {
  1603. return cpu_rq(cpu)->load.weight;
  1604. }
  1605. /*
  1606. * Is this task likely cache-hot:
  1607. */
  1608. static int
  1609. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1610. {
  1611. s64 delta;
  1612. /*
  1613. * Buddy candidates are cache hot:
  1614. */
  1615. if (sched_feat(CACHE_HOT_BUDDY) &&
  1616. (&p->se == cfs_rq_of(&p->se)->next ||
  1617. &p->se == cfs_rq_of(&p->se)->last))
  1618. return 1;
  1619. if (p->sched_class != &fair_sched_class)
  1620. return 0;
  1621. if (sysctl_sched_migration_cost == -1)
  1622. return 1;
  1623. if (sysctl_sched_migration_cost == 0)
  1624. return 0;
  1625. delta = now - p->se.exec_start;
  1626. return delta < (s64)sysctl_sched_migration_cost;
  1627. }
  1628. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1629. {
  1630. int old_cpu = task_cpu(p);
  1631. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1632. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1633. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1634. u64 clock_offset;
  1635. clock_offset = old_rq->clock - new_rq->clock;
  1636. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1637. #ifdef CONFIG_SCHEDSTATS
  1638. if (p->se.wait_start)
  1639. p->se.wait_start -= clock_offset;
  1640. if (p->se.sleep_start)
  1641. p->se.sleep_start -= clock_offset;
  1642. if (p->se.block_start)
  1643. p->se.block_start -= clock_offset;
  1644. #endif
  1645. if (old_cpu != new_cpu) {
  1646. p->se.nr_migrations++;
  1647. new_rq->nr_migrations_in++;
  1648. #ifdef CONFIG_SCHEDSTATS
  1649. if (task_hot(p, old_rq->clock, NULL))
  1650. schedstat_inc(p, se.nr_forced2_migrations);
  1651. #endif
  1652. }
  1653. p->se.vruntime -= old_cfsrq->min_vruntime -
  1654. new_cfsrq->min_vruntime;
  1655. __set_task_cpu(p, new_cpu);
  1656. }
  1657. struct migration_req {
  1658. struct list_head list;
  1659. struct task_struct *task;
  1660. int dest_cpu;
  1661. struct completion done;
  1662. };
  1663. /*
  1664. * The task's runqueue lock must be held.
  1665. * Returns true if you have to wait for migration thread.
  1666. */
  1667. static int
  1668. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1669. {
  1670. struct rq *rq = task_rq(p);
  1671. /*
  1672. * If the task is not on a runqueue (and not running), then
  1673. * it is sufficient to simply update the task's cpu field.
  1674. */
  1675. if (!p->se.on_rq && !task_running(rq, p)) {
  1676. set_task_cpu(p, dest_cpu);
  1677. return 0;
  1678. }
  1679. init_completion(&req->done);
  1680. req->task = p;
  1681. req->dest_cpu = dest_cpu;
  1682. list_add(&req->list, &rq->migration_queue);
  1683. return 1;
  1684. }
  1685. /*
  1686. * wait_task_inactive - wait for a thread to unschedule.
  1687. *
  1688. * If @match_state is nonzero, it's the @p->state value just checked and
  1689. * not expected to change. If it changes, i.e. @p might have woken up,
  1690. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1691. * we return a positive number (its total switch count). If a second call
  1692. * a short while later returns the same number, the caller can be sure that
  1693. * @p has remained unscheduled the whole time.
  1694. *
  1695. * The caller must ensure that the task *will* unschedule sometime soon,
  1696. * else this function might spin for a *long* time. This function can't
  1697. * be called with interrupts off, or it may introduce deadlock with
  1698. * smp_call_function() if an IPI is sent by the same process we are
  1699. * waiting to become inactive.
  1700. */
  1701. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1702. {
  1703. unsigned long flags;
  1704. int running, on_rq;
  1705. unsigned long ncsw;
  1706. struct rq *rq;
  1707. for (;;) {
  1708. /*
  1709. * We do the initial early heuristics without holding
  1710. * any task-queue locks at all. We'll only try to get
  1711. * the runqueue lock when things look like they will
  1712. * work out!
  1713. */
  1714. rq = task_rq(p);
  1715. /*
  1716. * If the task is actively running on another CPU
  1717. * still, just relax and busy-wait without holding
  1718. * any locks.
  1719. *
  1720. * NOTE! Since we don't hold any locks, it's not
  1721. * even sure that "rq" stays as the right runqueue!
  1722. * But we don't care, since "task_running()" will
  1723. * return false if the runqueue has changed and p
  1724. * is actually now running somewhere else!
  1725. */
  1726. while (task_running(rq, p)) {
  1727. if (match_state && unlikely(p->state != match_state))
  1728. return 0;
  1729. cpu_relax();
  1730. }
  1731. /*
  1732. * Ok, time to look more closely! We need the rq
  1733. * lock now, to be *sure*. If we're wrong, we'll
  1734. * just go back and repeat.
  1735. */
  1736. rq = task_rq_lock(p, &flags);
  1737. trace_sched_wait_task(rq, p);
  1738. running = task_running(rq, p);
  1739. on_rq = p->se.on_rq;
  1740. ncsw = 0;
  1741. if (!match_state || p->state == match_state)
  1742. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1743. task_rq_unlock(rq, &flags);
  1744. /*
  1745. * If it changed from the expected state, bail out now.
  1746. */
  1747. if (unlikely(!ncsw))
  1748. break;
  1749. /*
  1750. * Was it really running after all now that we
  1751. * checked with the proper locks actually held?
  1752. *
  1753. * Oops. Go back and try again..
  1754. */
  1755. if (unlikely(running)) {
  1756. cpu_relax();
  1757. continue;
  1758. }
  1759. /*
  1760. * It's not enough that it's not actively running,
  1761. * it must be off the runqueue _entirely_, and not
  1762. * preempted!
  1763. *
  1764. * So if it was still runnable (but just not actively
  1765. * running right now), it's preempted, and we should
  1766. * yield - it could be a while.
  1767. */
  1768. if (unlikely(on_rq)) {
  1769. schedule_timeout_uninterruptible(1);
  1770. continue;
  1771. }
  1772. /*
  1773. * Ahh, all good. It wasn't running, and it wasn't
  1774. * runnable, which means that it will never become
  1775. * running in the future either. We're all done!
  1776. */
  1777. break;
  1778. }
  1779. return ncsw;
  1780. }
  1781. /***
  1782. * kick_process - kick a running thread to enter/exit the kernel
  1783. * @p: the to-be-kicked thread
  1784. *
  1785. * Cause a process which is running on another CPU to enter
  1786. * kernel-mode, without any delay. (to get signals handled.)
  1787. *
  1788. * NOTE: this function doesnt have to take the runqueue lock,
  1789. * because all it wants to ensure is that the remote task enters
  1790. * the kernel. If the IPI races and the task has been migrated
  1791. * to another CPU then no harm is done and the purpose has been
  1792. * achieved as well.
  1793. */
  1794. void kick_process(struct task_struct *p)
  1795. {
  1796. int cpu;
  1797. preempt_disable();
  1798. cpu = task_cpu(p);
  1799. if ((cpu != smp_processor_id()) && task_curr(p))
  1800. smp_send_reschedule(cpu);
  1801. preempt_enable();
  1802. }
  1803. /*
  1804. * Return a low guess at the load of a migration-source cpu weighted
  1805. * according to the scheduling class and "nice" value.
  1806. *
  1807. * We want to under-estimate the load of migration sources, to
  1808. * balance conservatively.
  1809. */
  1810. static unsigned long source_load(int cpu, int type)
  1811. {
  1812. struct rq *rq = cpu_rq(cpu);
  1813. unsigned long total = weighted_cpuload(cpu);
  1814. if (type == 0 || !sched_feat(LB_BIAS))
  1815. return total;
  1816. return min(rq->cpu_load[type-1], total);
  1817. }
  1818. /*
  1819. * Return a high guess at the load of a migration-target cpu weighted
  1820. * according to the scheduling class and "nice" value.
  1821. */
  1822. static unsigned long target_load(int cpu, int type)
  1823. {
  1824. struct rq *rq = cpu_rq(cpu);
  1825. unsigned long total = weighted_cpuload(cpu);
  1826. if (type == 0 || !sched_feat(LB_BIAS))
  1827. return total;
  1828. return max(rq->cpu_load[type-1], total);
  1829. }
  1830. /*
  1831. * find_idlest_group finds and returns the least busy CPU group within the
  1832. * domain.
  1833. */
  1834. static struct sched_group *
  1835. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1836. {
  1837. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1838. unsigned long min_load = ULONG_MAX, this_load = 0;
  1839. int load_idx = sd->forkexec_idx;
  1840. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1841. do {
  1842. unsigned long load, avg_load;
  1843. int local_group;
  1844. int i;
  1845. /* Skip over this group if it has no CPUs allowed */
  1846. if (!cpumask_intersects(sched_group_cpus(group),
  1847. &p->cpus_allowed))
  1848. continue;
  1849. local_group = cpumask_test_cpu(this_cpu,
  1850. sched_group_cpus(group));
  1851. /* Tally up the load of all CPUs in the group */
  1852. avg_load = 0;
  1853. for_each_cpu(i, sched_group_cpus(group)) {
  1854. /* Bias balancing toward cpus of our domain */
  1855. if (local_group)
  1856. load = source_load(i, load_idx);
  1857. else
  1858. load = target_load(i, load_idx);
  1859. avg_load += load;
  1860. }
  1861. /* Adjust by relative CPU power of the group */
  1862. avg_load = sg_div_cpu_power(group,
  1863. avg_load * SCHED_LOAD_SCALE);
  1864. if (local_group) {
  1865. this_load = avg_load;
  1866. this = group;
  1867. } else if (avg_load < min_load) {
  1868. min_load = avg_load;
  1869. idlest = group;
  1870. }
  1871. } while (group = group->next, group != sd->groups);
  1872. if (!idlest || 100*this_load < imbalance*min_load)
  1873. return NULL;
  1874. return idlest;
  1875. }
  1876. /*
  1877. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1878. */
  1879. static int
  1880. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1881. {
  1882. unsigned long load, min_load = ULONG_MAX;
  1883. int idlest = -1;
  1884. int i;
  1885. /* Traverse only the allowed CPUs */
  1886. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1887. load = weighted_cpuload(i);
  1888. if (load < min_load || (load == min_load && i == this_cpu)) {
  1889. min_load = load;
  1890. idlest = i;
  1891. }
  1892. }
  1893. return idlest;
  1894. }
  1895. /*
  1896. * sched_balance_self: balance the current task (running on cpu) in domains
  1897. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1898. * SD_BALANCE_EXEC.
  1899. *
  1900. * Balance, ie. select the least loaded group.
  1901. *
  1902. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1903. *
  1904. * preempt must be disabled.
  1905. */
  1906. static int sched_balance_self(int cpu, int flag)
  1907. {
  1908. struct task_struct *t = current;
  1909. struct sched_domain *tmp, *sd = NULL;
  1910. for_each_domain(cpu, tmp) {
  1911. /*
  1912. * If power savings logic is enabled for a domain, stop there.
  1913. */
  1914. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1915. break;
  1916. if (tmp->flags & flag)
  1917. sd = tmp;
  1918. }
  1919. if (sd)
  1920. update_shares(sd);
  1921. while (sd) {
  1922. struct sched_group *group;
  1923. int new_cpu, weight;
  1924. if (!(sd->flags & flag)) {
  1925. sd = sd->child;
  1926. continue;
  1927. }
  1928. group = find_idlest_group(sd, t, cpu);
  1929. if (!group) {
  1930. sd = sd->child;
  1931. continue;
  1932. }
  1933. new_cpu = find_idlest_cpu(group, t, cpu);
  1934. if (new_cpu == -1 || new_cpu == cpu) {
  1935. /* Now try balancing at a lower domain level of cpu */
  1936. sd = sd->child;
  1937. continue;
  1938. }
  1939. /* Now try balancing at a lower domain level of new_cpu */
  1940. cpu = new_cpu;
  1941. weight = cpumask_weight(sched_domain_span(sd));
  1942. sd = NULL;
  1943. for_each_domain(cpu, tmp) {
  1944. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1945. break;
  1946. if (tmp->flags & flag)
  1947. sd = tmp;
  1948. }
  1949. /* while loop will break here if sd == NULL */
  1950. }
  1951. return cpu;
  1952. }
  1953. #endif /* CONFIG_SMP */
  1954. /**
  1955. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1956. * @p: the task to evaluate
  1957. * @func: the function to be called
  1958. * @info: the function call argument
  1959. *
  1960. * Calls the function @func when the task is currently running. This might
  1961. * be on the current CPU, which just calls the function directly
  1962. */
  1963. void task_oncpu_function_call(struct task_struct *p,
  1964. void (*func) (void *info), void *info)
  1965. {
  1966. int cpu;
  1967. preempt_disable();
  1968. cpu = task_cpu(p);
  1969. if (task_curr(p))
  1970. smp_call_function_single(cpu, func, info, 1);
  1971. preempt_enable();
  1972. }
  1973. /***
  1974. * try_to_wake_up - wake up a thread
  1975. * @p: the to-be-woken-up thread
  1976. * @state: the mask of task states that can be woken
  1977. * @sync: do a synchronous wakeup?
  1978. *
  1979. * Put it on the run-queue if it's not already there. The "current"
  1980. * thread is always on the run-queue (except when the actual
  1981. * re-schedule is in progress), and as such you're allowed to do
  1982. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1983. * runnable without the overhead of this.
  1984. *
  1985. * returns failure only if the task is already active.
  1986. */
  1987. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1988. {
  1989. int cpu, orig_cpu, this_cpu, success = 0;
  1990. unsigned long flags;
  1991. long old_state;
  1992. struct rq *rq;
  1993. if (!sched_feat(SYNC_WAKEUPS))
  1994. sync = 0;
  1995. #ifdef CONFIG_SMP
  1996. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  1997. struct sched_domain *sd;
  1998. this_cpu = raw_smp_processor_id();
  1999. cpu = task_cpu(p);
  2000. for_each_domain(this_cpu, sd) {
  2001. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2002. update_shares(sd);
  2003. break;
  2004. }
  2005. }
  2006. }
  2007. #endif
  2008. smp_wmb();
  2009. rq = task_rq_lock(p, &flags);
  2010. update_rq_clock(rq);
  2011. old_state = p->state;
  2012. if (!(old_state & state))
  2013. goto out;
  2014. if (p->se.on_rq)
  2015. goto out_running;
  2016. cpu = task_cpu(p);
  2017. orig_cpu = cpu;
  2018. this_cpu = smp_processor_id();
  2019. #ifdef CONFIG_SMP
  2020. if (unlikely(task_running(rq, p)))
  2021. goto out_activate;
  2022. cpu = p->sched_class->select_task_rq(p, sync);
  2023. if (cpu != orig_cpu) {
  2024. set_task_cpu(p, cpu);
  2025. task_rq_unlock(rq, &flags);
  2026. /* might preempt at this point */
  2027. rq = task_rq_lock(p, &flags);
  2028. old_state = p->state;
  2029. if (!(old_state & state))
  2030. goto out;
  2031. if (p->se.on_rq)
  2032. goto out_running;
  2033. this_cpu = smp_processor_id();
  2034. cpu = task_cpu(p);
  2035. }
  2036. #ifdef CONFIG_SCHEDSTATS
  2037. schedstat_inc(rq, ttwu_count);
  2038. if (cpu == this_cpu)
  2039. schedstat_inc(rq, ttwu_local);
  2040. else {
  2041. struct sched_domain *sd;
  2042. for_each_domain(this_cpu, sd) {
  2043. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2044. schedstat_inc(sd, ttwu_wake_remote);
  2045. break;
  2046. }
  2047. }
  2048. }
  2049. #endif /* CONFIG_SCHEDSTATS */
  2050. out_activate:
  2051. #endif /* CONFIG_SMP */
  2052. schedstat_inc(p, se.nr_wakeups);
  2053. if (sync)
  2054. schedstat_inc(p, se.nr_wakeups_sync);
  2055. if (orig_cpu != cpu)
  2056. schedstat_inc(p, se.nr_wakeups_migrate);
  2057. if (cpu == this_cpu)
  2058. schedstat_inc(p, se.nr_wakeups_local);
  2059. else
  2060. schedstat_inc(p, se.nr_wakeups_remote);
  2061. activate_task(rq, p, 1);
  2062. success = 1;
  2063. /*
  2064. * Only attribute actual wakeups done by this task.
  2065. */
  2066. if (!in_interrupt()) {
  2067. struct sched_entity *se = &current->se;
  2068. u64 sample = se->sum_exec_runtime;
  2069. if (se->last_wakeup)
  2070. sample -= se->last_wakeup;
  2071. else
  2072. sample -= se->start_runtime;
  2073. update_avg(&se->avg_wakeup, sample);
  2074. se->last_wakeup = se->sum_exec_runtime;
  2075. }
  2076. out_running:
  2077. trace_sched_wakeup(rq, p, success);
  2078. check_preempt_curr(rq, p, sync);
  2079. p->state = TASK_RUNNING;
  2080. #ifdef CONFIG_SMP
  2081. if (p->sched_class->task_wake_up)
  2082. p->sched_class->task_wake_up(rq, p);
  2083. #endif
  2084. out:
  2085. task_rq_unlock(rq, &flags);
  2086. return success;
  2087. }
  2088. int wake_up_process(struct task_struct *p)
  2089. {
  2090. return try_to_wake_up(p, TASK_ALL, 0);
  2091. }
  2092. EXPORT_SYMBOL(wake_up_process);
  2093. int wake_up_state(struct task_struct *p, unsigned int state)
  2094. {
  2095. return try_to_wake_up(p, state, 0);
  2096. }
  2097. /*
  2098. * Perform scheduler related setup for a newly forked process p.
  2099. * p is forked by current.
  2100. *
  2101. * __sched_fork() is basic setup used by init_idle() too:
  2102. */
  2103. static void __sched_fork(struct task_struct *p)
  2104. {
  2105. p->se.exec_start = 0;
  2106. p->se.sum_exec_runtime = 0;
  2107. p->se.prev_sum_exec_runtime = 0;
  2108. p->se.nr_migrations = 0;
  2109. p->se.last_wakeup = 0;
  2110. p->se.avg_overlap = 0;
  2111. p->se.start_runtime = 0;
  2112. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2113. #ifdef CONFIG_SCHEDSTATS
  2114. p->se.wait_start = 0;
  2115. p->se.sum_sleep_runtime = 0;
  2116. p->se.sleep_start = 0;
  2117. p->se.block_start = 0;
  2118. p->se.sleep_max = 0;
  2119. p->se.block_max = 0;
  2120. p->se.exec_max = 0;
  2121. p->se.slice_max = 0;
  2122. p->se.wait_max = 0;
  2123. #endif
  2124. INIT_LIST_HEAD(&p->rt.run_list);
  2125. p->se.on_rq = 0;
  2126. INIT_LIST_HEAD(&p->se.group_node);
  2127. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2128. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2129. #endif
  2130. /*
  2131. * We mark the process as running here, but have not actually
  2132. * inserted it onto the runqueue yet. This guarantees that
  2133. * nobody will actually run it, and a signal or other external
  2134. * event cannot wake it up and insert it on the runqueue either.
  2135. */
  2136. p->state = TASK_RUNNING;
  2137. }
  2138. /*
  2139. * fork()/clone()-time setup:
  2140. */
  2141. void sched_fork(struct task_struct *p, int clone_flags)
  2142. {
  2143. int cpu = get_cpu();
  2144. __sched_fork(p);
  2145. #ifdef CONFIG_SMP
  2146. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2147. #endif
  2148. set_task_cpu(p, cpu);
  2149. /*
  2150. * Make sure we do not leak PI boosting priority to the child:
  2151. */
  2152. p->prio = current->normal_prio;
  2153. if (!rt_prio(p->prio))
  2154. p->sched_class = &fair_sched_class;
  2155. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2156. if (likely(sched_info_on()))
  2157. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2158. #endif
  2159. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2160. p->oncpu = 0;
  2161. #endif
  2162. #ifdef CONFIG_PREEMPT
  2163. /* Want to start with kernel preemption disabled. */
  2164. task_thread_info(p)->preempt_count = 1;
  2165. #endif
  2166. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2167. put_cpu();
  2168. }
  2169. /*
  2170. * wake_up_new_task - wake up a newly created task for the first time.
  2171. *
  2172. * This function will do some initial scheduler statistics housekeeping
  2173. * that must be done for every newly created context, then puts the task
  2174. * on the runqueue and wakes it.
  2175. */
  2176. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2177. {
  2178. unsigned long flags;
  2179. struct rq *rq;
  2180. rq = task_rq_lock(p, &flags);
  2181. BUG_ON(p->state != TASK_RUNNING);
  2182. update_rq_clock(rq);
  2183. p->prio = effective_prio(p);
  2184. if (!p->sched_class->task_new || !current->se.on_rq) {
  2185. activate_task(rq, p, 0);
  2186. } else {
  2187. /*
  2188. * Let the scheduling class do new task startup
  2189. * management (if any):
  2190. */
  2191. p->sched_class->task_new(rq, p);
  2192. inc_nr_running(rq);
  2193. }
  2194. trace_sched_wakeup_new(rq, p, 1);
  2195. check_preempt_curr(rq, p, 0);
  2196. #ifdef CONFIG_SMP
  2197. if (p->sched_class->task_wake_up)
  2198. p->sched_class->task_wake_up(rq, p);
  2199. #endif
  2200. task_rq_unlock(rq, &flags);
  2201. }
  2202. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2203. /**
  2204. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2205. * @notifier: notifier struct to register
  2206. */
  2207. void preempt_notifier_register(struct preempt_notifier *notifier)
  2208. {
  2209. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2210. }
  2211. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2212. /**
  2213. * preempt_notifier_unregister - no longer interested in preemption notifications
  2214. * @notifier: notifier struct to unregister
  2215. *
  2216. * This is safe to call from within a preemption notifier.
  2217. */
  2218. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2219. {
  2220. hlist_del(&notifier->link);
  2221. }
  2222. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2223. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2224. {
  2225. struct preempt_notifier *notifier;
  2226. struct hlist_node *node;
  2227. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2228. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2229. }
  2230. static void
  2231. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2232. struct task_struct *next)
  2233. {
  2234. struct preempt_notifier *notifier;
  2235. struct hlist_node *node;
  2236. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2237. notifier->ops->sched_out(notifier, next);
  2238. }
  2239. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2240. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2241. {
  2242. }
  2243. static void
  2244. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2245. struct task_struct *next)
  2246. {
  2247. }
  2248. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2249. /**
  2250. * prepare_task_switch - prepare to switch tasks
  2251. * @rq: the runqueue preparing to switch
  2252. * @prev: the current task that is being switched out
  2253. * @next: the task we are going to switch to.
  2254. *
  2255. * This is called with the rq lock held and interrupts off. It must
  2256. * be paired with a subsequent finish_task_switch after the context
  2257. * switch.
  2258. *
  2259. * prepare_task_switch sets up locking and calls architecture specific
  2260. * hooks.
  2261. */
  2262. static inline void
  2263. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2264. struct task_struct *next)
  2265. {
  2266. fire_sched_out_preempt_notifiers(prev, next);
  2267. prepare_lock_switch(rq, next);
  2268. prepare_arch_switch(next);
  2269. }
  2270. /**
  2271. * finish_task_switch - clean up after a task-switch
  2272. * @rq: runqueue associated with task-switch
  2273. * @prev: the thread we just switched away from.
  2274. *
  2275. * finish_task_switch must be called after the context switch, paired
  2276. * with a prepare_task_switch call before the context switch.
  2277. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2278. * and do any other architecture-specific cleanup actions.
  2279. *
  2280. * Note that we may have delayed dropping an mm in context_switch(). If
  2281. * so, we finish that here outside of the runqueue lock. (Doing it
  2282. * with the lock held can cause deadlocks; see schedule() for
  2283. * details.)
  2284. */
  2285. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2286. __releases(rq->lock)
  2287. {
  2288. struct mm_struct *mm = rq->prev_mm;
  2289. long prev_state;
  2290. #ifdef CONFIG_SMP
  2291. int post_schedule = 0;
  2292. if (current->sched_class->needs_post_schedule)
  2293. post_schedule = current->sched_class->needs_post_schedule(rq);
  2294. #endif
  2295. rq->prev_mm = NULL;
  2296. /*
  2297. * A task struct has one reference for the use as "current".
  2298. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2299. * schedule one last time. The schedule call will never return, and
  2300. * the scheduled task must drop that reference.
  2301. * The test for TASK_DEAD must occur while the runqueue locks are
  2302. * still held, otherwise prev could be scheduled on another cpu, die
  2303. * there before we look at prev->state, and then the reference would
  2304. * be dropped twice.
  2305. * Manfred Spraul <manfred@colorfullife.com>
  2306. */
  2307. prev_state = prev->state;
  2308. finish_arch_switch(prev);
  2309. perf_counter_task_sched_in(current, cpu_of(rq));
  2310. finish_lock_switch(rq, prev);
  2311. #ifdef CONFIG_SMP
  2312. if (post_schedule)
  2313. current->sched_class->post_schedule(rq);
  2314. #endif
  2315. fire_sched_in_preempt_notifiers(current);
  2316. if (mm)
  2317. mmdrop(mm);
  2318. if (unlikely(prev_state == TASK_DEAD)) {
  2319. /*
  2320. * Remove function-return probe instances associated with this
  2321. * task and put them back on the free list.
  2322. */
  2323. kprobe_flush_task(prev);
  2324. put_task_struct(prev);
  2325. }
  2326. }
  2327. /**
  2328. * schedule_tail - first thing a freshly forked thread must call.
  2329. * @prev: the thread we just switched away from.
  2330. */
  2331. asmlinkage void schedule_tail(struct task_struct *prev)
  2332. __releases(rq->lock)
  2333. {
  2334. struct rq *rq = this_rq();
  2335. finish_task_switch(rq, prev);
  2336. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2337. /* In this case, finish_task_switch does not reenable preemption */
  2338. preempt_enable();
  2339. #endif
  2340. if (current->set_child_tid)
  2341. put_user(task_pid_vnr(current), current->set_child_tid);
  2342. }
  2343. /*
  2344. * context_switch - switch to the new MM and the new
  2345. * thread's register state.
  2346. */
  2347. static inline void
  2348. context_switch(struct rq *rq, struct task_struct *prev,
  2349. struct task_struct *next)
  2350. {
  2351. struct mm_struct *mm, *oldmm;
  2352. prepare_task_switch(rq, prev, next);
  2353. trace_sched_switch(rq, prev, next);
  2354. mm = next->mm;
  2355. oldmm = prev->active_mm;
  2356. /*
  2357. * For paravirt, this is coupled with an exit in switch_to to
  2358. * combine the page table reload and the switch backend into
  2359. * one hypercall.
  2360. */
  2361. arch_enter_lazy_cpu_mode();
  2362. if (unlikely(!mm)) {
  2363. next->active_mm = oldmm;
  2364. atomic_inc(&oldmm->mm_count);
  2365. enter_lazy_tlb(oldmm, next);
  2366. } else
  2367. switch_mm(oldmm, mm, next);
  2368. if (unlikely(!prev->mm)) {
  2369. prev->active_mm = NULL;
  2370. rq->prev_mm = oldmm;
  2371. }
  2372. /*
  2373. * Since the runqueue lock will be released by the next
  2374. * task (which is an invalid locking op but in the case
  2375. * of the scheduler it's an obvious special-case), so we
  2376. * do an early lockdep release here:
  2377. */
  2378. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2379. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2380. #endif
  2381. /* Here we just switch the register state and the stack. */
  2382. switch_to(prev, next, prev);
  2383. barrier();
  2384. /*
  2385. * this_rq must be evaluated again because prev may have moved
  2386. * CPUs since it called schedule(), thus the 'rq' on its stack
  2387. * frame will be invalid.
  2388. */
  2389. finish_task_switch(this_rq(), prev);
  2390. }
  2391. /*
  2392. * nr_running, nr_uninterruptible and nr_context_switches:
  2393. *
  2394. * externally visible scheduler statistics: current number of runnable
  2395. * threads, current number of uninterruptible-sleeping threads, total
  2396. * number of context switches performed since bootup.
  2397. */
  2398. unsigned long nr_running(void)
  2399. {
  2400. unsigned long i, sum = 0;
  2401. for_each_online_cpu(i)
  2402. sum += cpu_rq(i)->nr_running;
  2403. return sum;
  2404. }
  2405. unsigned long nr_uninterruptible(void)
  2406. {
  2407. unsigned long i, sum = 0;
  2408. for_each_possible_cpu(i)
  2409. sum += cpu_rq(i)->nr_uninterruptible;
  2410. /*
  2411. * Since we read the counters lockless, it might be slightly
  2412. * inaccurate. Do not allow it to go below zero though:
  2413. */
  2414. if (unlikely((long)sum < 0))
  2415. sum = 0;
  2416. return sum;
  2417. }
  2418. unsigned long long nr_context_switches(void)
  2419. {
  2420. int i;
  2421. unsigned long long sum = 0;
  2422. for_each_possible_cpu(i)
  2423. sum += cpu_rq(i)->nr_switches;
  2424. return sum;
  2425. }
  2426. unsigned long nr_iowait(void)
  2427. {
  2428. unsigned long i, sum = 0;
  2429. for_each_possible_cpu(i)
  2430. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2431. return sum;
  2432. }
  2433. unsigned long nr_active(void)
  2434. {
  2435. unsigned long i, running = 0, uninterruptible = 0;
  2436. for_each_online_cpu(i) {
  2437. running += cpu_rq(i)->nr_running;
  2438. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2439. }
  2440. if (unlikely((long)uninterruptible < 0))
  2441. uninterruptible = 0;
  2442. return running + uninterruptible;
  2443. }
  2444. /*
  2445. * Externally visible per-cpu scheduler statistics:
  2446. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2447. */
  2448. u64 cpu_nr_migrations(int cpu)
  2449. {
  2450. return cpu_rq(cpu)->nr_migrations_in;
  2451. }
  2452. /*
  2453. * Update rq->cpu_load[] statistics. This function is usually called every
  2454. * scheduler tick (TICK_NSEC).
  2455. */
  2456. static void update_cpu_load(struct rq *this_rq)
  2457. {
  2458. unsigned long this_load = this_rq->load.weight;
  2459. int i, scale;
  2460. this_rq->nr_load_updates++;
  2461. /* Update our load: */
  2462. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2463. unsigned long old_load, new_load;
  2464. /* scale is effectively 1 << i now, and >> i divides by scale */
  2465. old_load = this_rq->cpu_load[i];
  2466. new_load = this_load;
  2467. /*
  2468. * Round up the averaging division if load is increasing. This
  2469. * prevents us from getting stuck on 9 if the load is 10, for
  2470. * example.
  2471. */
  2472. if (new_load > old_load)
  2473. new_load += scale-1;
  2474. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2475. }
  2476. }
  2477. #ifdef CONFIG_SMP
  2478. /*
  2479. * double_rq_lock - safely lock two runqueues
  2480. *
  2481. * Note this does not disable interrupts like task_rq_lock,
  2482. * you need to do so manually before calling.
  2483. */
  2484. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2485. __acquires(rq1->lock)
  2486. __acquires(rq2->lock)
  2487. {
  2488. BUG_ON(!irqs_disabled());
  2489. if (rq1 == rq2) {
  2490. spin_lock(&rq1->lock);
  2491. __acquire(rq2->lock); /* Fake it out ;) */
  2492. } else {
  2493. if (rq1 < rq2) {
  2494. spin_lock(&rq1->lock);
  2495. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2496. } else {
  2497. spin_lock(&rq2->lock);
  2498. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2499. }
  2500. }
  2501. update_rq_clock(rq1);
  2502. update_rq_clock(rq2);
  2503. }
  2504. /*
  2505. * double_rq_unlock - safely unlock two runqueues
  2506. *
  2507. * Note this does not restore interrupts like task_rq_unlock,
  2508. * you need to do so manually after calling.
  2509. */
  2510. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2511. __releases(rq1->lock)
  2512. __releases(rq2->lock)
  2513. {
  2514. spin_unlock(&rq1->lock);
  2515. if (rq1 != rq2)
  2516. spin_unlock(&rq2->lock);
  2517. else
  2518. __release(rq2->lock);
  2519. }
  2520. /*
  2521. * If dest_cpu is allowed for this process, migrate the task to it.
  2522. * This is accomplished by forcing the cpu_allowed mask to only
  2523. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2524. * the cpu_allowed mask is restored.
  2525. */
  2526. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2527. {
  2528. struct migration_req req;
  2529. unsigned long flags;
  2530. struct rq *rq;
  2531. rq = task_rq_lock(p, &flags);
  2532. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2533. || unlikely(!cpu_active(dest_cpu)))
  2534. goto out;
  2535. /* force the process onto the specified CPU */
  2536. if (migrate_task(p, dest_cpu, &req)) {
  2537. /* Need to wait for migration thread (might exit: take ref). */
  2538. struct task_struct *mt = rq->migration_thread;
  2539. get_task_struct(mt);
  2540. task_rq_unlock(rq, &flags);
  2541. wake_up_process(mt);
  2542. put_task_struct(mt);
  2543. wait_for_completion(&req.done);
  2544. return;
  2545. }
  2546. out:
  2547. task_rq_unlock(rq, &flags);
  2548. }
  2549. /*
  2550. * sched_exec - execve() is a valuable balancing opportunity, because at
  2551. * this point the task has the smallest effective memory and cache footprint.
  2552. */
  2553. void sched_exec(void)
  2554. {
  2555. int new_cpu, this_cpu = get_cpu();
  2556. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2557. put_cpu();
  2558. if (new_cpu != this_cpu)
  2559. sched_migrate_task(current, new_cpu);
  2560. }
  2561. /*
  2562. * pull_task - move a task from a remote runqueue to the local runqueue.
  2563. * Both runqueues must be locked.
  2564. */
  2565. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2566. struct rq *this_rq, int this_cpu)
  2567. {
  2568. deactivate_task(src_rq, p, 0);
  2569. set_task_cpu(p, this_cpu);
  2570. activate_task(this_rq, p, 0);
  2571. /*
  2572. * Note that idle threads have a prio of MAX_PRIO, for this test
  2573. * to be always true for them.
  2574. */
  2575. check_preempt_curr(this_rq, p, 0);
  2576. }
  2577. /*
  2578. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2579. */
  2580. static
  2581. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2582. struct sched_domain *sd, enum cpu_idle_type idle,
  2583. int *all_pinned)
  2584. {
  2585. int tsk_cache_hot = 0;
  2586. /*
  2587. * We do not migrate tasks that are:
  2588. * 1) running (obviously), or
  2589. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2590. * 3) are cache-hot on their current CPU.
  2591. */
  2592. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2593. schedstat_inc(p, se.nr_failed_migrations_affine);
  2594. return 0;
  2595. }
  2596. *all_pinned = 0;
  2597. if (task_running(rq, p)) {
  2598. schedstat_inc(p, se.nr_failed_migrations_running);
  2599. return 0;
  2600. }
  2601. /*
  2602. * Aggressive migration if:
  2603. * 1) task is cache cold, or
  2604. * 2) too many balance attempts have failed.
  2605. */
  2606. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2607. if (!tsk_cache_hot ||
  2608. sd->nr_balance_failed > sd->cache_nice_tries) {
  2609. #ifdef CONFIG_SCHEDSTATS
  2610. if (tsk_cache_hot) {
  2611. schedstat_inc(sd, lb_hot_gained[idle]);
  2612. schedstat_inc(p, se.nr_forced_migrations);
  2613. }
  2614. #endif
  2615. return 1;
  2616. }
  2617. if (tsk_cache_hot) {
  2618. schedstat_inc(p, se.nr_failed_migrations_hot);
  2619. return 0;
  2620. }
  2621. return 1;
  2622. }
  2623. static unsigned long
  2624. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2625. unsigned long max_load_move, struct sched_domain *sd,
  2626. enum cpu_idle_type idle, int *all_pinned,
  2627. int *this_best_prio, struct rq_iterator *iterator)
  2628. {
  2629. int loops = 0, pulled = 0, pinned = 0;
  2630. struct task_struct *p;
  2631. long rem_load_move = max_load_move;
  2632. if (max_load_move == 0)
  2633. goto out;
  2634. pinned = 1;
  2635. /*
  2636. * Start the load-balancing iterator:
  2637. */
  2638. p = iterator->start(iterator->arg);
  2639. next:
  2640. if (!p || loops++ > sysctl_sched_nr_migrate)
  2641. goto out;
  2642. if ((p->se.load.weight >> 1) > rem_load_move ||
  2643. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2644. p = iterator->next(iterator->arg);
  2645. goto next;
  2646. }
  2647. pull_task(busiest, p, this_rq, this_cpu);
  2648. pulled++;
  2649. rem_load_move -= p->se.load.weight;
  2650. #ifdef CONFIG_PREEMPT
  2651. /*
  2652. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2653. * will stop after the first task is pulled to minimize the critical
  2654. * section.
  2655. */
  2656. if (idle == CPU_NEWLY_IDLE)
  2657. goto out;
  2658. #endif
  2659. /*
  2660. * We only want to steal up to the prescribed amount of weighted load.
  2661. */
  2662. if (rem_load_move > 0) {
  2663. if (p->prio < *this_best_prio)
  2664. *this_best_prio = p->prio;
  2665. p = iterator->next(iterator->arg);
  2666. goto next;
  2667. }
  2668. out:
  2669. /*
  2670. * Right now, this is one of only two places pull_task() is called,
  2671. * so we can safely collect pull_task() stats here rather than
  2672. * inside pull_task().
  2673. */
  2674. schedstat_add(sd, lb_gained[idle], pulled);
  2675. if (all_pinned)
  2676. *all_pinned = pinned;
  2677. return max_load_move - rem_load_move;
  2678. }
  2679. /*
  2680. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2681. * this_rq, as part of a balancing operation within domain "sd".
  2682. * Returns 1 if successful and 0 otherwise.
  2683. *
  2684. * Called with both runqueues locked.
  2685. */
  2686. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2687. unsigned long max_load_move,
  2688. struct sched_domain *sd, enum cpu_idle_type idle,
  2689. int *all_pinned)
  2690. {
  2691. const struct sched_class *class = sched_class_highest;
  2692. unsigned long total_load_moved = 0;
  2693. int this_best_prio = this_rq->curr->prio;
  2694. do {
  2695. total_load_moved +=
  2696. class->load_balance(this_rq, this_cpu, busiest,
  2697. max_load_move - total_load_moved,
  2698. sd, idle, all_pinned, &this_best_prio);
  2699. class = class->next;
  2700. #ifdef CONFIG_PREEMPT
  2701. /*
  2702. * NEWIDLE balancing is a source of latency, so preemptible
  2703. * kernels will stop after the first task is pulled to minimize
  2704. * the critical section.
  2705. */
  2706. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2707. break;
  2708. #endif
  2709. } while (class && max_load_move > total_load_moved);
  2710. return total_load_moved > 0;
  2711. }
  2712. static int
  2713. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2714. struct sched_domain *sd, enum cpu_idle_type idle,
  2715. struct rq_iterator *iterator)
  2716. {
  2717. struct task_struct *p = iterator->start(iterator->arg);
  2718. int pinned = 0;
  2719. while (p) {
  2720. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2721. pull_task(busiest, p, this_rq, this_cpu);
  2722. /*
  2723. * Right now, this is only the second place pull_task()
  2724. * is called, so we can safely collect pull_task()
  2725. * stats here rather than inside pull_task().
  2726. */
  2727. schedstat_inc(sd, lb_gained[idle]);
  2728. return 1;
  2729. }
  2730. p = iterator->next(iterator->arg);
  2731. }
  2732. return 0;
  2733. }
  2734. /*
  2735. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2736. * part of active balancing operations within "domain".
  2737. * Returns 1 if successful and 0 otherwise.
  2738. *
  2739. * Called with both runqueues locked.
  2740. */
  2741. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2742. struct sched_domain *sd, enum cpu_idle_type idle)
  2743. {
  2744. const struct sched_class *class;
  2745. for (class = sched_class_highest; class; class = class->next)
  2746. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2747. return 1;
  2748. return 0;
  2749. }
  2750. /********** Helpers for find_busiest_group ************************/
  2751. /*
  2752. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2753. * during load balancing.
  2754. */
  2755. struct sd_lb_stats {
  2756. struct sched_group *busiest; /* Busiest group in this sd */
  2757. struct sched_group *this; /* Local group in this sd */
  2758. unsigned long total_load; /* Total load of all groups in sd */
  2759. unsigned long total_pwr; /* Total power of all groups in sd */
  2760. unsigned long avg_load; /* Average load across all groups in sd */
  2761. /** Statistics of this group */
  2762. unsigned long this_load;
  2763. unsigned long this_load_per_task;
  2764. unsigned long this_nr_running;
  2765. /* Statistics of the busiest group */
  2766. unsigned long max_load;
  2767. unsigned long busiest_load_per_task;
  2768. unsigned long busiest_nr_running;
  2769. int group_imb; /* Is there imbalance in this sd */
  2770. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2771. int power_savings_balance; /* Is powersave balance needed for this sd */
  2772. struct sched_group *group_min; /* Least loaded group in sd */
  2773. struct sched_group *group_leader; /* Group which relieves group_min */
  2774. unsigned long min_load_per_task; /* load_per_task in group_min */
  2775. unsigned long leader_nr_running; /* Nr running of group_leader */
  2776. unsigned long min_nr_running; /* Nr running of group_min */
  2777. #endif
  2778. };
  2779. /*
  2780. * sg_lb_stats - stats of a sched_group required for load_balancing
  2781. */
  2782. struct sg_lb_stats {
  2783. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2784. unsigned long group_load; /* Total load over the CPUs of the group */
  2785. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2786. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2787. unsigned long group_capacity;
  2788. int group_imb; /* Is there an imbalance in the group ? */
  2789. };
  2790. /**
  2791. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2792. * @group: The group whose first cpu is to be returned.
  2793. */
  2794. static inline unsigned int group_first_cpu(struct sched_group *group)
  2795. {
  2796. return cpumask_first(sched_group_cpus(group));
  2797. }
  2798. /**
  2799. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2800. * @sd: The sched_domain whose load_idx is to be obtained.
  2801. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2802. */
  2803. static inline int get_sd_load_idx(struct sched_domain *sd,
  2804. enum cpu_idle_type idle)
  2805. {
  2806. int load_idx;
  2807. switch (idle) {
  2808. case CPU_NOT_IDLE:
  2809. load_idx = sd->busy_idx;
  2810. break;
  2811. case CPU_NEWLY_IDLE:
  2812. load_idx = sd->newidle_idx;
  2813. break;
  2814. default:
  2815. load_idx = sd->idle_idx;
  2816. break;
  2817. }
  2818. return load_idx;
  2819. }
  2820. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2821. /**
  2822. * init_sd_power_savings_stats - Initialize power savings statistics for
  2823. * the given sched_domain, during load balancing.
  2824. *
  2825. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2826. * @sds: Variable containing the statistics for sd.
  2827. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2828. */
  2829. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2830. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2831. {
  2832. /*
  2833. * Busy processors will not participate in power savings
  2834. * balance.
  2835. */
  2836. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2837. sds->power_savings_balance = 0;
  2838. else {
  2839. sds->power_savings_balance = 1;
  2840. sds->min_nr_running = ULONG_MAX;
  2841. sds->leader_nr_running = 0;
  2842. }
  2843. }
  2844. /**
  2845. * update_sd_power_savings_stats - Update the power saving stats for a
  2846. * sched_domain while performing load balancing.
  2847. *
  2848. * @group: sched_group belonging to the sched_domain under consideration.
  2849. * @sds: Variable containing the statistics of the sched_domain
  2850. * @local_group: Does group contain the CPU for which we're performing
  2851. * load balancing ?
  2852. * @sgs: Variable containing the statistics of the group.
  2853. */
  2854. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2855. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2856. {
  2857. if (!sds->power_savings_balance)
  2858. return;
  2859. /*
  2860. * If the local group is idle or completely loaded
  2861. * no need to do power savings balance at this domain
  2862. */
  2863. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2864. !sds->this_nr_running))
  2865. sds->power_savings_balance = 0;
  2866. /*
  2867. * If a group is already running at full capacity or idle,
  2868. * don't include that group in power savings calculations
  2869. */
  2870. if (!sds->power_savings_balance ||
  2871. sgs->sum_nr_running >= sgs->group_capacity ||
  2872. !sgs->sum_nr_running)
  2873. return;
  2874. /*
  2875. * Calculate the group which has the least non-idle load.
  2876. * This is the group from where we need to pick up the load
  2877. * for saving power
  2878. */
  2879. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2880. (sgs->sum_nr_running == sds->min_nr_running &&
  2881. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2882. sds->group_min = group;
  2883. sds->min_nr_running = sgs->sum_nr_running;
  2884. sds->min_load_per_task = sgs->sum_weighted_load /
  2885. sgs->sum_nr_running;
  2886. }
  2887. /*
  2888. * Calculate the group which is almost near its
  2889. * capacity but still has some space to pick up some load
  2890. * from other group and save more power
  2891. */
  2892. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2893. return;
  2894. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2895. (sgs->sum_nr_running == sds->leader_nr_running &&
  2896. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2897. sds->group_leader = group;
  2898. sds->leader_nr_running = sgs->sum_nr_running;
  2899. }
  2900. }
  2901. /**
  2902. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2903. * @sds: Variable containing the statistics of the sched_domain
  2904. * under consideration.
  2905. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2906. * @imbalance: Variable to store the imbalance.
  2907. *
  2908. * Description:
  2909. * Check if we have potential to perform some power-savings balance.
  2910. * If yes, set the busiest group to be the least loaded group in the
  2911. * sched_domain, so that it's CPUs can be put to idle.
  2912. *
  2913. * Returns 1 if there is potential to perform power-savings balance.
  2914. * Else returns 0.
  2915. */
  2916. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2917. int this_cpu, unsigned long *imbalance)
  2918. {
  2919. if (!sds->power_savings_balance)
  2920. return 0;
  2921. if (sds->this != sds->group_leader ||
  2922. sds->group_leader == sds->group_min)
  2923. return 0;
  2924. *imbalance = sds->min_load_per_task;
  2925. sds->busiest = sds->group_min;
  2926. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2927. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2928. group_first_cpu(sds->group_leader);
  2929. }
  2930. return 1;
  2931. }
  2932. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2933. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2934. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2935. {
  2936. return;
  2937. }
  2938. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2939. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2940. {
  2941. return;
  2942. }
  2943. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2944. int this_cpu, unsigned long *imbalance)
  2945. {
  2946. return 0;
  2947. }
  2948. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2949. /**
  2950. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2951. * @group: sched_group whose statistics are to be updated.
  2952. * @this_cpu: Cpu for which load balance is currently performed.
  2953. * @idle: Idle status of this_cpu
  2954. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2955. * @sd_idle: Idle status of the sched_domain containing group.
  2956. * @local_group: Does group contain this_cpu.
  2957. * @cpus: Set of cpus considered for load balancing.
  2958. * @balance: Should we balance.
  2959. * @sgs: variable to hold the statistics for this group.
  2960. */
  2961. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  2962. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2963. int local_group, const struct cpumask *cpus,
  2964. int *balance, struct sg_lb_stats *sgs)
  2965. {
  2966. unsigned long load, max_cpu_load, min_cpu_load;
  2967. int i;
  2968. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2969. unsigned long sum_avg_load_per_task;
  2970. unsigned long avg_load_per_task;
  2971. if (local_group)
  2972. balance_cpu = group_first_cpu(group);
  2973. /* Tally up the load of all CPUs in the group */
  2974. sum_avg_load_per_task = avg_load_per_task = 0;
  2975. max_cpu_load = 0;
  2976. min_cpu_load = ~0UL;
  2977. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2978. struct rq *rq = cpu_rq(i);
  2979. if (*sd_idle && rq->nr_running)
  2980. *sd_idle = 0;
  2981. /* Bias balancing toward cpus of our domain */
  2982. if (local_group) {
  2983. if (idle_cpu(i) && !first_idle_cpu) {
  2984. first_idle_cpu = 1;
  2985. balance_cpu = i;
  2986. }
  2987. load = target_load(i, load_idx);
  2988. } else {
  2989. load = source_load(i, load_idx);
  2990. if (load > max_cpu_load)
  2991. max_cpu_load = load;
  2992. if (min_cpu_load > load)
  2993. min_cpu_load = load;
  2994. }
  2995. sgs->group_load += load;
  2996. sgs->sum_nr_running += rq->nr_running;
  2997. sgs->sum_weighted_load += weighted_cpuload(i);
  2998. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2999. }
  3000. /*
  3001. * First idle cpu or the first cpu(busiest) in this sched group
  3002. * is eligible for doing load balancing at this and above
  3003. * domains. In the newly idle case, we will allow all the cpu's
  3004. * to do the newly idle load balance.
  3005. */
  3006. if (idle != CPU_NEWLY_IDLE && local_group &&
  3007. balance_cpu != this_cpu && balance) {
  3008. *balance = 0;
  3009. return;
  3010. }
  3011. /* Adjust by relative CPU power of the group */
  3012. sgs->avg_load = sg_div_cpu_power(group,
  3013. sgs->group_load * SCHED_LOAD_SCALE);
  3014. /*
  3015. * Consider the group unbalanced when the imbalance is larger
  3016. * than the average weight of two tasks.
  3017. *
  3018. * APZ: with cgroup the avg task weight can vary wildly and
  3019. * might not be a suitable number - should we keep a
  3020. * normalized nr_running number somewhere that negates
  3021. * the hierarchy?
  3022. */
  3023. avg_load_per_task = sg_div_cpu_power(group,
  3024. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3025. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3026. sgs->group_imb = 1;
  3027. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3028. }
  3029. /**
  3030. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3031. * @sd: sched_domain whose statistics are to be updated.
  3032. * @this_cpu: Cpu for which load balance is currently performed.
  3033. * @idle: Idle status of this_cpu
  3034. * @sd_idle: Idle status of the sched_domain containing group.
  3035. * @cpus: Set of cpus considered for load balancing.
  3036. * @balance: Should we balance.
  3037. * @sds: variable to hold the statistics for this sched_domain.
  3038. */
  3039. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3040. enum cpu_idle_type idle, int *sd_idle,
  3041. const struct cpumask *cpus, int *balance,
  3042. struct sd_lb_stats *sds)
  3043. {
  3044. struct sched_group *group = sd->groups;
  3045. struct sg_lb_stats sgs;
  3046. int load_idx;
  3047. init_sd_power_savings_stats(sd, sds, idle);
  3048. load_idx = get_sd_load_idx(sd, idle);
  3049. do {
  3050. int local_group;
  3051. local_group = cpumask_test_cpu(this_cpu,
  3052. sched_group_cpus(group));
  3053. memset(&sgs, 0, sizeof(sgs));
  3054. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3055. local_group, cpus, balance, &sgs);
  3056. if (local_group && balance && !(*balance))
  3057. return;
  3058. sds->total_load += sgs.group_load;
  3059. sds->total_pwr += group->__cpu_power;
  3060. if (local_group) {
  3061. sds->this_load = sgs.avg_load;
  3062. sds->this = group;
  3063. sds->this_nr_running = sgs.sum_nr_running;
  3064. sds->this_load_per_task = sgs.sum_weighted_load;
  3065. } else if (sgs.avg_load > sds->max_load &&
  3066. (sgs.sum_nr_running > sgs.group_capacity ||
  3067. sgs.group_imb)) {
  3068. sds->max_load = sgs.avg_load;
  3069. sds->busiest = group;
  3070. sds->busiest_nr_running = sgs.sum_nr_running;
  3071. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3072. sds->group_imb = sgs.group_imb;
  3073. }
  3074. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3075. group = group->next;
  3076. } while (group != sd->groups);
  3077. }
  3078. /**
  3079. * fix_small_imbalance - Calculate the minor imbalance that exists
  3080. * amongst the groups of a sched_domain, during
  3081. * load balancing.
  3082. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3083. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3084. * @imbalance: Variable to store the imbalance.
  3085. */
  3086. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3087. int this_cpu, unsigned long *imbalance)
  3088. {
  3089. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3090. unsigned int imbn = 2;
  3091. if (sds->this_nr_running) {
  3092. sds->this_load_per_task /= sds->this_nr_running;
  3093. if (sds->busiest_load_per_task >
  3094. sds->this_load_per_task)
  3095. imbn = 1;
  3096. } else
  3097. sds->this_load_per_task =
  3098. cpu_avg_load_per_task(this_cpu);
  3099. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3100. sds->busiest_load_per_task * imbn) {
  3101. *imbalance = sds->busiest_load_per_task;
  3102. return;
  3103. }
  3104. /*
  3105. * OK, we don't have enough imbalance to justify moving tasks,
  3106. * however we may be able to increase total CPU power used by
  3107. * moving them.
  3108. */
  3109. pwr_now += sds->busiest->__cpu_power *
  3110. min(sds->busiest_load_per_task, sds->max_load);
  3111. pwr_now += sds->this->__cpu_power *
  3112. min(sds->this_load_per_task, sds->this_load);
  3113. pwr_now /= SCHED_LOAD_SCALE;
  3114. /* Amount of load we'd subtract */
  3115. tmp = sg_div_cpu_power(sds->busiest,
  3116. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3117. if (sds->max_load > tmp)
  3118. pwr_move += sds->busiest->__cpu_power *
  3119. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3120. /* Amount of load we'd add */
  3121. if (sds->max_load * sds->busiest->__cpu_power <
  3122. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3123. tmp = sg_div_cpu_power(sds->this,
  3124. sds->max_load * sds->busiest->__cpu_power);
  3125. else
  3126. tmp = sg_div_cpu_power(sds->this,
  3127. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3128. pwr_move += sds->this->__cpu_power *
  3129. min(sds->this_load_per_task, sds->this_load + tmp);
  3130. pwr_move /= SCHED_LOAD_SCALE;
  3131. /* Move if we gain throughput */
  3132. if (pwr_move > pwr_now)
  3133. *imbalance = sds->busiest_load_per_task;
  3134. }
  3135. /**
  3136. * calculate_imbalance - Calculate the amount of imbalance present within the
  3137. * groups of a given sched_domain during load balance.
  3138. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3139. * @this_cpu: Cpu for which currently load balance is being performed.
  3140. * @imbalance: The variable to store the imbalance.
  3141. */
  3142. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3143. unsigned long *imbalance)
  3144. {
  3145. unsigned long max_pull;
  3146. /*
  3147. * In the presence of smp nice balancing, certain scenarios can have
  3148. * max load less than avg load(as we skip the groups at or below
  3149. * its cpu_power, while calculating max_load..)
  3150. */
  3151. if (sds->max_load < sds->avg_load) {
  3152. *imbalance = 0;
  3153. return fix_small_imbalance(sds, this_cpu, imbalance);
  3154. }
  3155. /* Don't want to pull so many tasks that a group would go idle */
  3156. max_pull = min(sds->max_load - sds->avg_load,
  3157. sds->max_load - sds->busiest_load_per_task);
  3158. /* How much load to actually move to equalise the imbalance */
  3159. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3160. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3161. / SCHED_LOAD_SCALE;
  3162. /*
  3163. * if *imbalance is less than the average load per runnable task
  3164. * there is no gaurantee that any tasks will be moved so we'll have
  3165. * a think about bumping its value to force at least one task to be
  3166. * moved
  3167. */
  3168. if (*imbalance < sds->busiest_load_per_task)
  3169. return fix_small_imbalance(sds, this_cpu, imbalance);
  3170. }
  3171. /******* find_busiest_group() helpers end here *********************/
  3172. /**
  3173. * find_busiest_group - Returns the busiest group within the sched_domain
  3174. * if there is an imbalance. If there isn't an imbalance, and
  3175. * the user has opted for power-savings, it returns a group whose
  3176. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3177. * such a group exists.
  3178. *
  3179. * Also calculates the amount of weighted load which should be moved
  3180. * to restore balance.
  3181. *
  3182. * @sd: The sched_domain whose busiest group is to be returned.
  3183. * @this_cpu: The cpu for which load balancing is currently being performed.
  3184. * @imbalance: Variable which stores amount of weighted load which should
  3185. * be moved to restore balance/put a group to idle.
  3186. * @idle: The idle status of this_cpu.
  3187. * @sd_idle: The idleness of sd
  3188. * @cpus: The set of CPUs under consideration for load-balancing.
  3189. * @balance: Pointer to a variable indicating if this_cpu
  3190. * is the appropriate cpu to perform load balancing at this_level.
  3191. *
  3192. * Returns: - the busiest group if imbalance exists.
  3193. * - If no imbalance and user has opted for power-savings balance,
  3194. * return the least loaded group whose CPUs can be
  3195. * put to idle by rebalancing its tasks onto our group.
  3196. */
  3197. static struct sched_group *
  3198. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3199. unsigned long *imbalance, enum cpu_idle_type idle,
  3200. int *sd_idle, const struct cpumask *cpus, int *balance)
  3201. {
  3202. struct sd_lb_stats sds;
  3203. memset(&sds, 0, sizeof(sds));
  3204. /*
  3205. * Compute the various statistics relavent for load balancing at
  3206. * this level.
  3207. */
  3208. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3209. balance, &sds);
  3210. /* Cases where imbalance does not exist from POV of this_cpu */
  3211. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3212. * at this level.
  3213. * 2) There is no busy sibling group to pull from.
  3214. * 3) This group is the busiest group.
  3215. * 4) This group is more busy than the avg busieness at this
  3216. * sched_domain.
  3217. * 5) The imbalance is within the specified limit.
  3218. * 6) Any rebalance would lead to ping-pong
  3219. */
  3220. if (balance && !(*balance))
  3221. goto ret;
  3222. if (!sds.busiest || sds.busiest_nr_running == 0)
  3223. goto out_balanced;
  3224. if (sds.this_load >= sds.max_load)
  3225. goto out_balanced;
  3226. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3227. if (sds.this_load >= sds.avg_load)
  3228. goto out_balanced;
  3229. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3230. goto out_balanced;
  3231. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3232. if (sds.group_imb)
  3233. sds.busiest_load_per_task =
  3234. min(sds.busiest_load_per_task, sds.avg_load);
  3235. /*
  3236. * We're trying to get all the cpus to the average_load, so we don't
  3237. * want to push ourselves above the average load, nor do we wish to
  3238. * reduce the max loaded cpu below the average load, as either of these
  3239. * actions would just result in more rebalancing later, and ping-pong
  3240. * tasks around. Thus we look for the minimum possible imbalance.
  3241. * Negative imbalances (*we* are more loaded than anyone else) will
  3242. * be counted as no imbalance for these purposes -- we can't fix that
  3243. * by pulling tasks to us. Be careful of negative numbers as they'll
  3244. * appear as very large values with unsigned longs.
  3245. */
  3246. if (sds.max_load <= sds.busiest_load_per_task)
  3247. goto out_balanced;
  3248. /* Looks like there is an imbalance. Compute it */
  3249. calculate_imbalance(&sds, this_cpu, imbalance);
  3250. return sds.busiest;
  3251. out_balanced:
  3252. /*
  3253. * There is no obvious imbalance. But check if we can do some balancing
  3254. * to save power.
  3255. */
  3256. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3257. return sds.busiest;
  3258. ret:
  3259. *imbalance = 0;
  3260. return NULL;
  3261. }
  3262. /*
  3263. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3264. */
  3265. static struct rq *
  3266. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3267. unsigned long imbalance, const struct cpumask *cpus)
  3268. {
  3269. struct rq *busiest = NULL, *rq;
  3270. unsigned long max_load = 0;
  3271. int i;
  3272. for_each_cpu(i, sched_group_cpus(group)) {
  3273. unsigned long wl;
  3274. if (!cpumask_test_cpu(i, cpus))
  3275. continue;
  3276. rq = cpu_rq(i);
  3277. wl = weighted_cpuload(i);
  3278. if (rq->nr_running == 1 && wl > imbalance)
  3279. continue;
  3280. if (wl > max_load) {
  3281. max_load = wl;
  3282. busiest = rq;
  3283. }
  3284. }
  3285. return busiest;
  3286. }
  3287. /*
  3288. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3289. * so long as it is large enough.
  3290. */
  3291. #define MAX_PINNED_INTERVAL 512
  3292. /* Working cpumask for load_balance and load_balance_newidle. */
  3293. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3294. /*
  3295. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3296. * tasks if there is an imbalance.
  3297. */
  3298. static int load_balance(int this_cpu, struct rq *this_rq,
  3299. struct sched_domain *sd, enum cpu_idle_type idle,
  3300. int *balance)
  3301. {
  3302. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3303. struct sched_group *group;
  3304. unsigned long imbalance;
  3305. struct rq *busiest;
  3306. unsigned long flags;
  3307. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3308. cpumask_setall(cpus);
  3309. /*
  3310. * When power savings policy is enabled for the parent domain, idle
  3311. * sibling can pick up load irrespective of busy siblings. In this case,
  3312. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3313. * portraying it as CPU_NOT_IDLE.
  3314. */
  3315. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3316. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3317. sd_idle = 1;
  3318. schedstat_inc(sd, lb_count[idle]);
  3319. redo:
  3320. update_shares(sd);
  3321. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3322. cpus, balance);
  3323. if (*balance == 0)
  3324. goto out_balanced;
  3325. if (!group) {
  3326. schedstat_inc(sd, lb_nobusyg[idle]);
  3327. goto out_balanced;
  3328. }
  3329. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3330. if (!busiest) {
  3331. schedstat_inc(sd, lb_nobusyq[idle]);
  3332. goto out_balanced;
  3333. }
  3334. BUG_ON(busiest == this_rq);
  3335. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3336. ld_moved = 0;
  3337. if (busiest->nr_running > 1) {
  3338. /*
  3339. * Attempt to move tasks. If find_busiest_group has found
  3340. * an imbalance but busiest->nr_running <= 1, the group is
  3341. * still unbalanced. ld_moved simply stays zero, so it is
  3342. * correctly treated as an imbalance.
  3343. */
  3344. local_irq_save(flags);
  3345. double_rq_lock(this_rq, busiest);
  3346. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3347. imbalance, sd, idle, &all_pinned);
  3348. double_rq_unlock(this_rq, busiest);
  3349. local_irq_restore(flags);
  3350. /*
  3351. * some other cpu did the load balance for us.
  3352. */
  3353. if (ld_moved && this_cpu != smp_processor_id())
  3354. resched_cpu(this_cpu);
  3355. /* All tasks on this runqueue were pinned by CPU affinity */
  3356. if (unlikely(all_pinned)) {
  3357. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3358. if (!cpumask_empty(cpus))
  3359. goto redo;
  3360. goto out_balanced;
  3361. }
  3362. }
  3363. if (!ld_moved) {
  3364. schedstat_inc(sd, lb_failed[idle]);
  3365. sd->nr_balance_failed++;
  3366. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3367. spin_lock_irqsave(&busiest->lock, flags);
  3368. /* don't kick the migration_thread, if the curr
  3369. * task on busiest cpu can't be moved to this_cpu
  3370. */
  3371. if (!cpumask_test_cpu(this_cpu,
  3372. &busiest->curr->cpus_allowed)) {
  3373. spin_unlock_irqrestore(&busiest->lock, flags);
  3374. all_pinned = 1;
  3375. goto out_one_pinned;
  3376. }
  3377. if (!busiest->active_balance) {
  3378. busiest->active_balance = 1;
  3379. busiest->push_cpu = this_cpu;
  3380. active_balance = 1;
  3381. }
  3382. spin_unlock_irqrestore(&busiest->lock, flags);
  3383. if (active_balance)
  3384. wake_up_process(busiest->migration_thread);
  3385. /*
  3386. * We've kicked active balancing, reset the failure
  3387. * counter.
  3388. */
  3389. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3390. }
  3391. } else
  3392. sd->nr_balance_failed = 0;
  3393. if (likely(!active_balance)) {
  3394. /* We were unbalanced, so reset the balancing interval */
  3395. sd->balance_interval = sd->min_interval;
  3396. } else {
  3397. /*
  3398. * If we've begun active balancing, start to back off. This
  3399. * case may not be covered by the all_pinned logic if there
  3400. * is only 1 task on the busy runqueue (because we don't call
  3401. * move_tasks).
  3402. */
  3403. if (sd->balance_interval < sd->max_interval)
  3404. sd->balance_interval *= 2;
  3405. }
  3406. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3407. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3408. ld_moved = -1;
  3409. goto out;
  3410. out_balanced:
  3411. schedstat_inc(sd, lb_balanced[idle]);
  3412. sd->nr_balance_failed = 0;
  3413. out_one_pinned:
  3414. /* tune up the balancing interval */
  3415. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3416. (sd->balance_interval < sd->max_interval))
  3417. sd->balance_interval *= 2;
  3418. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3419. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3420. ld_moved = -1;
  3421. else
  3422. ld_moved = 0;
  3423. out:
  3424. if (ld_moved)
  3425. update_shares(sd);
  3426. return ld_moved;
  3427. }
  3428. /*
  3429. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3430. * tasks if there is an imbalance.
  3431. *
  3432. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3433. * this_rq is locked.
  3434. */
  3435. static int
  3436. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3437. {
  3438. struct sched_group *group;
  3439. struct rq *busiest = NULL;
  3440. unsigned long imbalance;
  3441. int ld_moved = 0;
  3442. int sd_idle = 0;
  3443. int all_pinned = 0;
  3444. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3445. cpumask_setall(cpus);
  3446. /*
  3447. * When power savings policy is enabled for the parent domain, idle
  3448. * sibling can pick up load irrespective of busy siblings. In this case,
  3449. * let the state of idle sibling percolate up as IDLE, instead of
  3450. * portraying it as CPU_NOT_IDLE.
  3451. */
  3452. if (sd->flags & SD_SHARE_CPUPOWER &&
  3453. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3454. sd_idle = 1;
  3455. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3456. redo:
  3457. update_shares_locked(this_rq, sd);
  3458. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3459. &sd_idle, cpus, NULL);
  3460. if (!group) {
  3461. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3462. goto out_balanced;
  3463. }
  3464. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3465. if (!busiest) {
  3466. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3467. goto out_balanced;
  3468. }
  3469. BUG_ON(busiest == this_rq);
  3470. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3471. ld_moved = 0;
  3472. if (busiest->nr_running > 1) {
  3473. /* Attempt to move tasks */
  3474. double_lock_balance(this_rq, busiest);
  3475. /* this_rq->clock is already updated */
  3476. update_rq_clock(busiest);
  3477. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3478. imbalance, sd, CPU_NEWLY_IDLE,
  3479. &all_pinned);
  3480. double_unlock_balance(this_rq, busiest);
  3481. if (unlikely(all_pinned)) {
  3482. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3483. if (!cpumask_empty(cpus))
  3484. goto redo;
  3485. }
  3486. }
  3487. if (!ld_moved) {
  3488. int active_balance = 0;
  3489. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3490. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3491. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3492. return -1;
  3493. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3494. return -1;
  3495. if (sd->nr_balance_failed++ < 2)
  3496. return -1;
  3497. /*
  3498. * The only task running in a non-idle cpu can be moved to this
  3499. * cpu in an attempt to completely freeup the other CPU
  3500. * package. The same method used to move task in load_balance()
  3501. * have been extended for load_balance_newidle() to speedup
  3502. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3503. *
  3504. * The package power saving logic comes from
  3505. * find_busiest_group(). If there are no imbalance, then
  3506. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3507. * f_b_g() will select a group from which a running task may be
  3508. * pulled to this cpu in order to make the other package idle.
  3509. * If there is no opportunity to make a package idle and if
  3510. * there are no imbalance, then f_b_g() will return NULL and no
  3511. * action will be taken in load_balance_newidle().
  3512. *
  3513. * Under normal task pull operation due to imbalance, there
  3514. * will be more than one task in the source run queue and
  3515. * move_tasks() will succeed. ld_moved will be true and this
  3516. * active balance code will not be triggered.
  3517. */
  3518. /* Lock busiest in correct order while this_rq is held */
  3519. double_lock_balance(this_rq, busiest);
  3520. /*
  3521. * don't kick the migration_thread, if the curr
  3522. * task on busiest cpu can't be moved to this_cpu
  3523. */
  3524. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3525. double_unlock_balance(this_rq, busiest);
  3526. all_pinned = 1;
  3527. return ld_moved;
  3528. }
  3529. if (!busiest->active_balance) {
  3530. busiest->active_balance = 1;
  3531. busiest->push_cpu = this_cpu;
  3532. active_balance = 1;
  3533. }
  3534. double_unlock_balance(this_rq, busiest);
  3535. /*
  3536. * Should not call ttwu while holding a rq->lock
  3537. */
  3538. spin_unlock(&this_rq->lock);
  3539. if (active_balance)
  3540. wake_up_process(busiest->migration_thread);
  3541. spin_lock(&this_rq->lock);
  3542. } else
  3543. sd->nr_balance_failed = 0;
  3544. update_shares_locked(this_rq, sd);
  3545. return ld_moved;
  3546. out_balanced:
  3547. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3548. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3549. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3550. return -1;
  3551. sd->nr_balance_failed = 0;
  3552. return 0;
  3553. }
  3554. /*
  3555. * idle_balance is called by schedule() if this_cpu is about to become
  3556. * idle. Attempts to pull tasks from other CPUs.
  3557. */
  3558. static void idle_balance(int this_cpu, struct rq *this_rq)
  3559. {
  3560. struct sched_domain *sd;
  3561. int pulled_task = 0;
  3562. unsigned long next_balance = jiffies + HZ;
  3563. for_each_domain(this_cpu, sd) {
  3564. unsigned long interval;
  3565. if (!(sd->flags & SD_LOAD_BALANCE))
  3566. continue;
  3567. if (sd->flags & SD_BALANCE_NEWIDLE)
  3568. /* If we've pulled tasks over stop searching: */
  3569. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3570. sd);
  3571. interval = msecs_to_jiffies(sd->balance_interval);
  3572. if (time_after(next_balance, sd->last_balance + interval))
  3573. next_balance = sd->last_balance + interval;
  3574. if (pulled_task)
  3575. break;
  3576. }
  3577. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3578. /*
  3579. * We are going idle. next_balance may be set based on
  3580. * a busy processor. So reset next_balance.
  3581. */
  3582. this_rq->next_balance = next_balance;
  3583. }
  3584. }
  3585. /*
  3586. * active_load_balance is run by migration threads. It pushes running tasks
  3587. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3588. * running on each physical CPU where possible, and avoids physical /
  3589. * logical imbalances.
  3590. *
  3591. * Called with busiest_rq locked.
  3592. */
  3593. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3594. {
  3595. int target_cpu = busiest_rq->push_cpu;
  3596. struct sched_domain *sd;
  3597. struct rq *target_rq;
  3598. /* Is there any task to move? */
  3599. if (busiest_rq->nr_running <= 1)
  3600. return;
  3601. target_rq = cpu_rq(target_cpu);
  3602. /*
  3603. * This condition is "impossible", if it occurs
  3604. * we need to fix it. Originally reported by
  3605. * Bjorn Helgaas on a 128-cpu setup.
  3606. */
  3607. BUG_ON(busiest_rq == target_rq);
  3608. /* move a task from busiest_rq to target_rq */
  3609. double_lock_balance(busiest_rq, target_rq);
  3610. update_rq_clock(busiest_rq);
  3611. update_rq_clock(target_rq);
  3612. /* Search for an sd spanning us and the target CPU. */
  3613. for_each_domain(target_cpu, sd) {
  3614. if ((sd->flags & SD_LOAD_BALANCE) &&
  3615. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3616. break;
  3617. }
  3618. if (likely(sd)) {
  3619. schedstat_inc(sd, alb_count);
  3620. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3621. sd, CPU_IDLE))
  3622. schedstat_inc(sd, alb_pushed);
  3623. else
  3624. schedstat_inc(sd, alb_failed);
  3625. }
  3626. double_unlock_balance(busiest_rq, target_rq);
  3627. }
  3628. #ifdef CONFIG_NO_HZ
  3629. static struct {
  3630. atomic_t load_balancer;
  3631. cpumask_var_t cpu_mask;
  3632. } nohz ____cacheline_aligned = {
  3633. .load_balancer = ATOMIC_INIT(-1),
  3634. };
  3635. /*
  3636. * This routine will try to nominate the ilb (idle load balancing)
  3637. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3638. * load balancing on behalf of all those cpus. If all the cpus in the system
  3639. * go into this tickless mode, then there will be no ilb owner (as there is
  3640. * no need for one) and all the cpus will sleep till the next wakeup event
  3641. * arrives...
  3642. *
  3643. * For the ilb owner, tick is not stopped. And this tick will be used
  3644. * for idle load balancing. ilb owner will still be part of
  3645. * nohz.cpu_mask..
  3646. *
  3647. * While stopping the tick, this cpu will become the ilb owner if there
  3648. * is no other owner. And will be the owner till that cpu becomes busy
  3649. * or if all cpus in the system stop their ticks at which point
  3650. * there is no need for ilb owner.
  3651. *
  3652. * When the ilb owner becomes busy, it nominates another owner, during the
  3653. * next busy scheduler_tick()
  3654. */
  3655. int select_nohz_load_balancer(int stop_tick)
  3656. {
  3657. int cpu = smp_processor_id();
  3658. if (stop_tick) {
  3659. cpu_rq(cpu)->in_nohz_recently = 1;
  3660. if (!cpu_active(cpu)) {
  3661. if (atomic_read(&nohz.load_balancer) != cpu)
  3662. return 0;
  3663. /*
  3664. * If we are going offline and still the leader,
  3665. * give up!
  3666. */
  3667. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3668. BUG();
  3669. return 0;
  3670. }
  3671. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3672. /* time for ilb owner also to sleep */
  3673. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3674. if (atomic_read(&nohz.load_balancer) == cpu)
  3675. atomic_set(&nohz.load_balancer, -1);
  3676. return 0;
  3677. }
  3678. if (atomic_read(&nohz.load_balancer) == -1) {
  3679. /* make me the ilb owner */
  3680. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3681. return 1;
  3682. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3683. return 1;
  3684. } else {
  3685. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3686. return 0;
  3687. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3688. if (atomic_read(&nohz.load_balancer) == cpu)
  3689. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3690. BUG();
  3691. }
  3692. return 0;
  3693. }
  3694. #endif
  3695. static DEFINE_SPINLOCK(balancing);
  3696. /*
  3697. * It checks each scheduling domain to see if it is due to be balanced,
  3698. * and initiates a balancing operation if so.
  3699. *
  3700. * Balancing parameters are set up in arch_init_sched_domains.
  3701. */
  3702. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3703. {
  3704. int balance = 1;
  3705. struct rq *rq = cpu_rq(cpu);
  3706. unsigned long interval;
  3707. struct sched_domain *sd;
  3708. /* Earliest time when we have to do rebalance again */
  3709. unsigned long next_balance = jiffies + 60*HZ;
  3710. int update_next_balance = 0;
  3711. int need_serialize;
  3712. for_each_domain(cpu, sd) {
  3713. if (!(sd->flags & SD_LOAD_BALANCE))
  3714. continue;
  3715. interval = sd->balance_interval;
  3716. if (idle != CPU_IDLE)
  3717. interval *= sd->busy_factor;
  3718. /* scale ms to jiffies */
  3719. interval = msecs_to_jiffies(interval);
  3720. if (unlikely(!interval))
  3721. interval = 1;
  3722. if (interval > HZ*NR_CPUS/10)
  3723. interval = HZ*NR_CPUS/10;
  3724. need_serialize = sd->flags & SD_SERIALIZE;
  3725. if (need_serialize) {
  3726. if (!spin_trylock(&balancing))
  3727. goto out;
  3728. }
  3729. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3730. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3731. /*
  3732. * We've pulled tasks over so either we're no
  3733. * longer idle, or one of our SMT siblings is
  3734. * not idle.
  3735. */
  3736. idle = CPU_NOT_IDLE;
  3737. }
  3738. sd->last_balance = jiffies;
  3739. }
  3740. if (need_serialize)
  3741. spin_unlock(&balancing);
  3742. out:
  3743. if (time_after(next_balance, sd->last_balance + interval)) {
  3744. next_balance = sd->last_balance + interval;
  3745. update_next_balance = 1;
  3746. }
  3747. /*
  3748. * Stop the load balance at this level. There is another
  3749. * CPU in our sched group which is doing load balancing more
  3750. * actively.
  3751. */
  3752. if (!balance)
  3753. break;
  3754. }
  3755. /*
  3756. * next_balance will be updated only when there is a need.
  3757. * When the cpu is attached to null domain for ex, it will not be
  3758. * updated.
  3759. */
  3760. if (likely(update_next_balance))
  3761. rq->next_balance = next_balance;
  3762. }
  3763. /*
  3764. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3765. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3766. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3767. */
  3768. static void run_rebalance_domains(struct softirq_action *h)
  3769. {
  3770. int this_cpu = smp_processor_id();
  3771. struct rq *this_rq = cpu_rq(this_cpu);
  3772. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3773. CPU_IDLE : CPU_NOT_IDLE;
  3774. rebalance_domains(this_cpu, idle);
  3775. #ifdef CONFIG_NO_HZ
  3776. /*
  3777. * If this cpu is the owner for idle load balancing, then do the
  3778. * balancing on behalf of the other idle cpus whose ticks are
  3779. * stopped.
  3780. */
  3781. if (this_rq->idle_at_tick &&
  3782. atomic_read(&nohz.load_balancer) == this_cpu) {
  3783. struct rq *rq;
  3784. int balance_cpu;
  3785. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3786. if (balance_cpu == this_cpu)
  3787. continue;
  3788. /*
  3789. * If this cpu gets work to do, stop the load balancing
  3790. * work being done for other cpus. Next load
  3791. * balancing owner will pick it up.
  3792. */
  3793. if (need_resched())
  3794. break;
  3795. rebalance_domains(balance_cpu, CPU_IDLE);
  3796. rq = cpu_rq(balance_cpu);
  3797. if (time_after(this_rq->next_balance, rq->next_balance))
  3798. this_rq->next_balance = rq->next_balance;
  3799. }
  3800. }
  3801. #endif
  3802. }
  3803. static inline int on_null_domain(int cpu)
  3804. {
  3805. return !rcu_dereference(cpu_rq(cpu)->sd);
  3806. }
  3807. /*
  3808. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3809. *
  3810. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3811. * idle load balancing owner or decide to stop the periodic load balancing,
  3812. * if the whole system is idle.
  3813. */
  3814. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3815. {
  3816. #ifdef CONFIG_NO_HZ
  3817. /*
  3818. * If we were in the nohz mode recently and busy at the current
  3819. * scheduler tick, then check if we need to nominate new idle
  3820. * load balancer.
  3821. */
  3822. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3823. rq->in_nohz_recently = 0;
  3824. if (atomic_read(&nohz.load_balancer) == cpu) {
  3825. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3826. atomic_set(&nohz.load_balancer, -1);
  3827. }
  3828. if (atomic_read(&nohz.load_balancer) == -1) {
  3829. /*
  3830. * simple selection for now: Nominate the
  3831. * first cpu in the nohz list to be the next
  3832. * ilb owner.
  3833. *
  3834. * TBD: Traverse the sched domains and nominate
  3835. * the nearest cpu in the nohz.cpu_mask.
  3836. */
  3837. int ilb = cpumask_first(nohz.cpu_mask);
  3838. if (ilb < nr_cpu_ids)
  3839. resched_cpu(ilb);
  3840. }
  3841. }
  3842. /*
  3843. * If this cpu is idle and doing idle load balancing for all the
  3844. * cpus with ticks stopped, is it time for that to stop?
  3845. */
  3846. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3847. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3848. resched_cpu(cpu);
  3849. return;
  3850. }
  3851. /*
  3852. * If this cpu is idle and the idle load balancing is done by
  3853. * someone else, then no need raise the SCHED_SOFTIRQ
  3854. */
  3855. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3856. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3857. return;
  3858. #endif
  3859. /* Don't need to rebalance while attached to NULL domain */
  3860. if (time_after_eq(jiffies, rq->next_balance) &&
  3861. likely(!on_null_domain(cpu)))
  3862. raise_softirq(SCHED_SOFTIRQ);
  3863. }
  3864. #else /* CONFIG_SMP */
  3865. /*
  3866. * on UP we do not need to balance between CPUs:
  3867. */
  3868. static inline void idle_balance(int cpu, struct rq *rq)
  3869. {
  3870. }
  3871. #endif
  3872. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3873. EXPORT_PER_CPU_SYMBOL(kstat);
  3874. /*
  3875. * Return any ns on the sched_clock that have not yet been banked in
  3876. * @p in case that task is currently running.
  3877. */
  3878. unsigned long long __task_delta_exec(struct task_struct *p, int update)
  3879. {
  3880. s64 delta_exec;
  3881. struct rq *rq;
  3882. rq = task_rq(p);
  3883. WARN_ON_ONCE(!runqueue_is_locked());
  3884. WARN_ON_ONCE(!task_current(rq, p));
  3885. if (update)
  3886. update_rq_clock(rq);
  3887. delta_exec = rq->clock - p->se.exec_start;
  3888. WARN_ON_ONCE(delta_exec < 0);
  3889. return delta_exec;
  3890. }
  3891. /*
  3892. * Return any ns on the sched_clock that have not yet been banked in
  3893. * @p in case that task is currently running.
  3894. */
  3895. unsigned long long task_delta_exec(struct task_struct *p)
  3896. {
  3897. unsigned long flags;
  3898. struct rq *rq;
  3899. u64 ns = 0;
  3900. rq = task_rq_lock(p, &flags);
  3901. if (task_current(rq, p)) {
  3902. u64 delta_exec;
  3903. update_rq_clock(rq);
  3904. delta_exec = rq->clock - p->se.exec_start;
  3905. if ((s64)delta_exec > 0)
  3906. ns = delta_exec;
  3907. }
  3908. task_rq_unlock(rq, &flags);
  3909. return ns;
  3910. }
  3911. /*
  3912. * Account user cpu time to a process.
  3913. * @p: the process that the cpu time gets accounted to
  3914. * @cputime: the cpu time spent in user space since the last update
  3915. * @cputime_scaled: cputime scaled by cpu frequency
  3916. */
  3917. void account_user_time(struct task_struct *p, cputime_t cputime,
  3918. cputime_t cputime_scaled)
  3919. {
  3920. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3921. cputime64_t tmp;
  3922. /* Add user time to process. */
  3923. p->utime = cputime_add(p->utime, cputime);
  3924. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3925. account_group_user_time(p, cputime);
  3926. /* Add user time to cpustat. */
  3927. tmp = cputime_to_cputime64(cputime);
  3928. if (TASK_NICE(p) > 0)
  3929. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3930. else
  3931. cpustat->user = cputime64_add(cpustat->user, tmp);
  3932. /* Account for user time used */
  3933. acct_update_integrals(p);
  3934. }
  3935. /*
  3936. * Account guest cpu time to a process.
  3937. * @p: the process that the cpu time gets accounted to
  3938. * @cputime: the cpu time spent in virtual machine since the last update
  3939. * @cputime_scaled: cputime scaled by cpu frequency
  3940. */
  3941. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3942. cputime_t cputime_scaled)
  3943. {
  3944. cputime64_t tmp;
  3945. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3946. tmp = cputime_to_cputime64(cputime);
  3947. /* Add guest time to process. */
  3948. p->utime = cputime_add(p->utime, cputime);
  3949. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3950. account_group_user_time(p, cputime);
  3951. p->gtime = cputime_add(p->gtime, cputime);
  3952. /* Add guest time to cpustat. */
  3953. cpustat->user = cputime64_add(cpustat->user, tmp);
  3954. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3955. }
  3956. /*
  3957. * Account system cpu time to a process.
  3958. * @p: the process that the cpu time gets accounted to
  3959. * @hardirq_offset: the offset to subtract from hardirq_count()
  3960. * @cputime: the cpu time spent in kernel space since the last update
  3961. * @cputime_scaled: cputime scaled by cpu frequency
  3962. */
  3963. void account_system_time(struct task_struct *p, int hardirq_offset,
  3964. cputime_t cputime, cputime_t cputime_scaled)
  3965. {
  3966. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3967. cputime64_t tmp;
  3968. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3969. account_guest_time(p, cputime, cputime_scaled);
  3970. return;
  3971. }
  3972. /* Add system time to process. */
  3973. p->stime = cputime_add(p->stime, cputime);
  3974. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3975. account_group_system_time(p, cputime);
  3976. /* Add system time to cpustat. */
  3977. tmp = cputime_to_cputime64(cputime);
  3978. if (hardirq_count() - hardirq_offset)
  3979. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3980. else if (softirq_count())
  3981. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3982. else
  3983. cpustat->system = cputime64_add(cpustat->system, tmp);
  3984. /* Account for system time used */
  3985. acct_update_integrals(p);
  3986. }
  3987. /*
  3988. * Account for involuntary wait time.
  3989. * @steal: the cpu time spent in involuntary wait
  3990. */
  3991. void account_steal_time(cputime_t cputime)
  3992. {
  3993. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3994. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3995. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3996. }
  3997. /*
  3998. * Account for idle time.
  3999. * @cputime: the cpu time spent in idle wait
  4000. */
  4001. void account_idle_time(cputime_t cputime)
  4002. {
  4003. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4004. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4005. struct rq *rq = this_rq();
  4006. if (atomic_read(&rq->nr_iowait) > 0)
  4007. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4008. else
  4009. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4010. }
  4011. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4012. /*
  4013. * Account a single tick of cpu time.
  4014. * @p: the process that the cpu time gets accounted to
  4015. * @user_tick: indicates if the tick is a user or a system tick
  4016. */
  4017. void account_process_tick(struct task_struct *p, int user_tick)
  4018. {
  4019. cputime_t one_jiffy = jiffies_to_cputime(1);
  4020. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4021. struct rq *rq = this_rq();
  4022. if (user_tick)
  4023. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4024. else if (p != rq->idle)
  4025. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4026. one_jiffy_scaled);
  4027. else
  4028. account_idle_time(one_jiffy);
  4029. }
  4030. /*
  4031. * Account multiple ticks of steal time.
  4032. * @p: the process from which the cpu time has been stolen
  4033. * @ticks: number of stolen ticks
  4034. */
  4035. void account_steal_ticks(unsigned long ticks)
  4036. {
  4037. account_steal_time(jiffies_to_cputime(ticks));
  4038. }
  4039. /*
  4040. * Account multiple ticks of idle time.
  4041. * @ticks: number of stolen ticks
  4042. */
  4043. void account_idle_ticks(unsigned long ticks)
  4044. {
  4045. account_idle_time(jiffies_to_cputime(ticks));
  4046. }
  4047. #endif
  4048. /*
  4049. * Use precise platform statistics if available:
  4050. */
  4051. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4052. cputime_t task_utime(struct task_struct *p)
  4053. {
  4054. return p->utime;
  4055. }
  4056. cputime_t task_stime(struct task_struct *p)
  4057. {
  4058. return p->stime;
  4059. }
  4060. #else
  4061. cputime_t task_utime(struct task_struct *p)
  4062. {
  4063. clock_t utime = cputime_to_clock_t(p->utime),
  4064. total = utime + cputime_to_clock_t(p->stime);
  4065. u64 temp;
  4066. /*
  4067. * Use CFS's precise accounting:
  4068. */
  4069. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4070. if (total) {
  4071. temp *= utime;
  4072. do_div(temp, total);
  4073. }
  4074. utime = (clock_t)temp;
  4075. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4076. return p->prev_utime;
  4077. }
  4078. cputime_t task_stime(struct task_struct *p)
  4079. {
  4080. clock_t stime;
  4081. /*
  4082. * Use CFS's precise accounting. (we subtract utime from
  4083. * the total, to make sure the total observed by userspace
  4084. * grows monotonically - apps rely on that):
  4085. */
  4086. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4087. cputime_to_clock_t(task_utime(p));
  4088. if (stime >= 0)
  4089. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4090. return p->prev_stime;
  4091. }
  4092. #endif
  4093. inline cputime_t task_gtime(struct task_struct *p)
  4094. {
  4095. return p->gtime;
  4096. }
  4097. /*
  4098. * This function gets called by the timer code, with HZ frequency.
  4099. * We call it with interrupts disabled.
  4100. *
  4101. * It also gets called by the fork code, when changing the parent's
  4102. * timeslices.
  4103. */
  4104. void scheduler_tick(void)
  4105. {
  4106. int cpu = smp_processor_id();
  4107. struct rq *rq = cpu_rq(cpu);
  4108. struct task_struct *curr = rq->curr;
  4109. sched_clock_tick();
  4110. spin_lock(&rq->lock);
  4111. update_rq_clock(rq);
  4112. update_cpu_load(rq);
  4113. curr->sched_class->task_tick(rq, curr, 0);
  4114. perf_counter_task_tick(curr, cpu);
  4115. spin_unlock(&rq->lock);
  4116. #ifdef CONFIG_SMP
  4117. rq->idle_at_tick = idle_cpu(cpu);
  4118. trigger_load_balance(rq, cpu);
  4119. #endif
  4120. }
  4121. unsigned long get_parent_ip(unsigned long addr)
  4122. {
  4123. if (in_lock_functions(addr)) {
  4124. addr = CALLER_ADDR2;
  4125. if (in_lock_functions(addr))
  4126. addr = CALLER_ADDR3;
  4127. }
  4128. return addr;
  4129. }
  4130. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4131. defined(CONFIG_PREEMPT_TRACER))
  4132. void __kprobes add_preempt_count(int val)
  4133. {
  4134. #ifdef CONFIG_DEBUG_PREEMPT
  4135. /*
  4136. * Underflow?
  4137. */
  4138. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4139. return;
  4140. #endif
  4141. preempt_count() += val;
  4142. #ifdef CONFIG_DEBUG_PREEMPT
  4143. /*
  4144. * Spinlock count overflowing soon?
  4145. */
  4146. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4147. PREEMPT_MASK - 10);
  4148. #endif
  4149. if (preempt_count() == val)
  4150. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4151. }
  4152. EXPORT_SYMBOL(add_preempt_count);
  4153. void __kprobes sub_preempt_count(int val)
  4154. {
  4155. #ifdef CONFIG_DEBUG_PREEMPT
  4156. /*
  4157. * Underflow?
  4158. */
  4159. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4160. return;
  4161. /*
  4162. * Is the spinlock portion underflowing?
  4163. */
  4164. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4165. !(preempt_count() & PREEMPT_MASK)))
  4166. return;
  4167. #endif
  4168. if (preempt_count() == val)
  4169. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4170. preempt_count() -= val;
  4171. }
  4172. EXPORT_SYMBOL(sub_preempt_count);
  4173. #endif
  4174. /*
  4175. * Print scheduling while atomic bug:
  4176. */
  4177. static noinline void __schedule_bug(struct task_struct *prev)
  4178. {
  4179. struct pt_regs *regs = get_irq_regs();
  4180. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4181. prev->comm, prev->pid, preempt_count());
  4182. debug_show_held_locks(prev);
  4183. print_modules();
  4184. if (irqs_disabled())
  4185. print_irqtrace_events(prev);
  4186. if (regs)
  4187. show_regs(regs);
  4188. else
  4189. dump_stack();
  4190. }
  4191. /*
  4192. * Various schedule()-time debugging checks and statistics:
  4193. */
  4194. static inline void schedule_debug(struct task_struct *prev)
  4195. {
  4196. /*
  4197. * Test if we are atomic. Since do_exit() needs to call into
  4198. * schedule() atomically, we ignore that path for now.
  4199. * Otherwise, whine if we are scheduling when we should not be.
  4200. */
  4201. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4202. __schedule_bug(prev);
  4203. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4204. schedstat_inc(this_rq(), sched_count);
  4205. #ifdef CONFIG_SCHEDSTATS
  4206. if (unlikely(prev->lock_depth >= 0)) {
  4207. schedstat_inc(this_rq(), bkl_count);
  4208. schedstat_inc(prev, sched_info.bkl_count);
  4209. }
  4210. #endif
  4211. }
  4212. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4213. {
  4214. if (prev->state == TASK_RUNNING) {
  4215. u64 runtime = prev->se.sum_exec_runtime;
  4216. runtime -= prev->se.prev_sum_exec_runtime;
  4217. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4218. /*
  4219. * In order to avoid avg_overlap growing stale when we are
  4220. * indeed overlapping and hence not getting put to sleep, grow
  4221. * the avg_overlap on preemption.
  4222. *
  4223. * We use the average preemption runtime because that
  4224. * correlates to the amount of cache footprint a task can
  4225. * build up.
  4226. */
  4227. update_avg(&prev->se.avg_overlap, runtime);
  4228. }
  4229. prev->sched_class->put_prev_task(rq, prev);
  4230. }
  4231. /*
  4232. * Pick up the highest-prio task:
  4233. */
  4234. static inline struct task_struct *
  4235. pick_next_task(struct rq *rq)
  4236. {
  4237. const struct sched_class *class;
  4238. struct task_struct *p;
  4239. /*
  4240. * Optimization: we know that if all tasks are in
  4241. * the fair class we can call that function directly:
  4242. */
  4243. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4244. p = fair_sched_class.pick_next_task(rq);
  4245. if (likely(p))
  4246. return p;
  4247. }
  4248. class = sched_class_highest;
  4249. for ( ; ; ) {
  4250. p = class->pick_next_task(rq);
  4251. if (p)
  4252. return p;
  4253. /*
  4254. * Will never be NULL as the idle class always
  4255. * returns a non-NULL p:
  4256. */
  4257. class = class->next;
  4258. }
  4259. }
  4260. /*
  4261. * schedule() is the main scheduler function.
  4262. */
  4263. asmlinkage void __sched __schedule(void)
  4264. {
  4265. struct task_struct *prev, *next;
  4266. unsigned long *switch_count;
  4267. struct rq *rq;
  4268. int cpu;
  4269. cpu = smp_processor_id();
  4270. rq = cpu_rq(cpu);
  4271. rcu_qsctr_inc(cpu);
  4272. prev = rq->curr;
  4273. switch_count = &prev->nivcsw;
  4274. release_kernel_lock(prev);
  4275. need_resched_nonpreemptible:
  4276. schedule_debug(prev);
  4277. if (sched_feat(HRTICK))
  4278. hrtick_clear(rq);
  4279. spin_lock_irq(&rq->lock);
  4280. update_rq_clock(rq);
  4281. clear_tsk_need_resched(prev);
  4282. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4283. if (unlikely(signal_pending_state(prev->state, prev)))
  4284. prev->state = TASK_RUNNING;
  4285. else
  4286. deactivate_task(rq, prev, 1);
  4287. switch_count = &prev->nvcsw;
  4288. }
  4289. #ifdef CONFIG_SMP
  4290. if (prev->sched_class->pre_schedule)
  4291. prev->sched_class->pre_schedule(rq, prev);
  4292. #endif
  4293. if (unlikely(!rq->nr_running))
  4294. idle_balance(cpu, rq);
  4295. put_prev_task(rq, prev);
  4296. next = pick_next_task(rq);
  4297. if (likely(prev != next)) {
  4298. sched_info_switch(prev, next);
  4299. perf_counter_task_sched_out(prev, cpu);
  4300. rq->nr_switches++;
  4301. rq->curr = next;
  4302. ++*switch_count;
  4303. context_switch(rq, prev, next); /* unlocks the rq */
  4304. /*
  4305. * the context switch might have flipped the stack from under
  4306. * us, hence refresh the local variables.
  4307. */
  4308. cpu = smp_processor_id();
  4309. rq = cpu_rq(cpu);
  4310. } else
  4311. spin_unlock_irq(&rq->lock);
  4312. if (unlikely(reacquire_kernel_lock(current) < 0))
  4313. goto need_resched_nonpreemptible;
  4314. }
  4315. asmlinkage void __sched schedule(void)
  4316. {
  4317. need_resched:
  4318. preempt_disable();
  4319. __schedule();
  4320. preempt_enable_no_resched();
  4321. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  4322. goto need_resched;
  4323. }
  4324. EXPORT_SYMBOL(schedule);
  4325. #ifdef CONFIG_SMP
  4326. /*
  4327. * Look out! "owner" is an entirely speculative pointer
  4328. * access and not reliable.
  4329. */
  4330. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4331. {
  4332. unsigned int cpu;
  4333. struct rq *rq;
  4334. if (!sched_feat(OWNER_SPIN))
  4335. return 0;
  4336. #ifdef CONFIG_DEBUG_PAGEALLOC
  4337. /*
  4338. * Need to access the cpu field knowing that
  4339. * DEBUG_PAGEALLOC could have unmapped it if
  4340. * the mutex owner just released it and exited.
  4341. */
  4342. if (probe_kernel_address(&owner->cpu, cpu))
  4343. goto out;
  4344. #else
  4345. cpu = owner->cpu;
  4346. #endif
  4347. /*
  4348. * Even if the access succeeded (likely case),
  4349. * the cpu field may no longer be valid.
  4350. */
  4351. if (cpu >= nr_cpumask_bits)
  4352. goto out;
  4353. /*
  4354. * We need to validate that we can do a
  4355. * get_cpu() and that we have the percpu area.
  4356. */
  4357. if (!cpu_online(cpu))
  4358. goto out;
  4359. rq = cpu_rq(cpu);
  4360. for (;;) {
  4361. /*
  4362. * Owner changed, break to re-assess state.
  4363. */
  4364. if (lock->owner != owner)
  4365. break;
  4366. /*
  4367. * Is that owner really running on that cpu?
  4368. */
  4369. if (task_thread_info(rq->curr) != owner || need_resched())
  4370. return 0;
  4371. cpu_relax();
  4372. }
  4373. out:
  4374. return 1;
  4375. }
  4376. #endif
  4377. #ifdef CONFIG_PREEMPT
  4378. /*
  4379. * this is the entry point to schedule() from in-kernel preemption
  4380. * off of preempt_enable. Kernel preemptions off return from interrupt
  4381. * occur there and call schedule directly.
  4382. */
  4383. asmlinkage void __sched preempt_schedule(void)
  4384. {
  4385. struct thread_info *ti = current_thread_info();
  4386. /*
  4387. * If there is a non-zero preempt_count or interrupts are disabled,
  4388. * we do not want to preempt the current task. Just return..
  4389. */
  4390. if (likely(ti->preempt_count || irqs_disabled()))
  4391. return;
  4392. do {
  4393. add_preempt_count(PREEMPT_ACTIVE);
  4394. schedule();
  4395. sub_preempt_count(PREEMPT_ACTIVE);
  4396. /*
  4397. * Check again in case we missed a preemption opportunity
  4398. * between schedule and now.
  4399. */
  4400. barrier();
  4401. } while (need_resched());
  4402. }
  4403. EXPORT_SYMBOL(preempt_schedule);
  4404. /*
  4405. * this is the entry point to schedule() from kernel preemption
  4406. * off of irq context.
  4407. * Note, that this is called and return with irqs disabled. This will
  4408. * protect us against recursive calling from irq.
  4409. */
  4410. asmlinkage void __sched preempt_schedule_irq(void)
  4411. {
  4412. struct thread_info *ti = current_thread_info();
  4413. /* Catch callers which need to be fixed */
  4414. BUG_ON(ti->preempt_count || !irqs_disabled());
  4415. do {
  4416. add_preempt_count(PREEMPT_ACTIVE);
  4417. local_irq_enable();
  4418. schedule();
  4419. local_irq_disable();
  4420. sub_preempt_count(PREEMPT_ACTIVE);
  4421. /*
  4422. * Check again in case we missed a preemption opportunity
  4423. * between schedule and now.
  4424. */
  4425. barrier();
  4426. } while (need_resched());
  4427. }
  4428. #endif /* CONFIG_PREEMPT */
  4429. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4430. void *key)
  4431. {
  4432. return try_to_wake_up(curr->private, mode, sync);
  4433. }
  4434. EXPORT_SYMBOL(default_wake_function);
  4435. /*
  4436. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4437. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4438. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4439. *
  4440. * There are circumstances in which we can try to wake a task which has already
  4441. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4442. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4443. */
  4444. void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4445. int nr_exclusive, int sync, void *key)
  4446. {
  4447. wait_queue_t *curr, *next;
  4448. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4449. unsigned flags = curr->flags;
  4450. if (curr->func(curr, mode, sync, key) &&
  4451. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4452. break;
  4453. }
  4454. }
  4455. /**
  4456. * __wake_up - wake up threads blocked on a waitqueue.
  4457. * @q: the waitqueue
  4458. * @mode: which threads
  4459. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4460. * @key: is directly passed to the wakeup function
  4461. */
  4462. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4463. int nr_exclusive, void *key)
  4464. {
  4465. unsigned long flags;
  4466. spin_lock_irqsave(&q->lock, flags);
  4467. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4468. spin_unlock_irqrestore(&q->lock, flags);
  4469. }
  4470. EXPORT_SYMBOL(__wake_up);
  4471. /*
  4472. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4473. */
  4474. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4475. {
  4476. __wake_up_common(q, mode, 1, 0, NULL);
  4477. }
  4478. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4479. {
  4480. __wake_up_common(q, mode, 1, 0, key);
  4481. }
  4482. /**
  4483. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4484. * @q: the waitqueue
  4485. * @mode: which threads
  4486. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4487. * @key: opaque value to be passed to wakeup targets
  4488. *
  4489. * The sync wakeup differs that the waker knows that it will schedule
  4490. * away soon, so while the target thread will be woken up, it will not
  4491. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4492. * with each other. This can prevent needless bouncing between CPUs.
  4493. *
  4494. * On UP it can prevent extra preemption.
  4495. */
  4496. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4497. int nr_exclusive, void *key)
  4498. {
  4499. unsigned long flags;
  4500. int sync = 1;
  4501. if (unlikely(!q))
  4502. return;
  4503. if (unlikely(!nr_exclusive))
  4504. sync = 0;
  4505. spin_lock_irqsave(&q->lock, flags);
  4506. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4507. spin_unlock_irqrestore(&q->lock, flags);
  4508. }
  4509. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4510. /*
  4511. * __wake_up_sync - see __wake_up_sync_key()
  4512. */
  4513. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4514. {
  4515. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4516. }
  4517. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4518. /**
  4519. * complete: - signals a single thread waiting on this completion
  4520. * @x: holds the state of this particular completion
  4521. *
  4522. * This will wake up a single thread waiting on this completion. Threads will be
  4523. * awakened in the same order in which they were queued.
  4524. *
  4525. * See also complete_all(), wait_for_completion() and related routines.
  4526. */
  4527. void complete(struct completion *x)
  4528. {
  4529. unsigned long flags;
  4530. spin_lock_irqsave(&x->wait.lock, flags);
  4531. x->done++;
  4532. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4533. spin_unlock_irqrestore(&x->wait.lock, flags);
  4534. }
  4535. EXPORT_SYMBOL(complete);
  4536. /**
  4537. * complete_all: - signals all threads waiting on this completion
  4538. * @x: holds the state of this particular completion
  4539. *
  4540. * This will wake up all threads waiting on this particular completion event.
  4541. */
  4542. void complete_all(struct completion *x)
  4543. {
  4544. unsigned long flags;
  4545. spin_lock_irqsave(&x->wait.lock, flags);
  4546. x->done += UINT_MAX/2;
  4547. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4548. spin_unlock_irqrestore(&x->wait.lock, flags);
  4549. }
  4550. EXPORT_SYMBOL(complete_all);
  4551. static inline long __sched
  4552. do_wait_for_common(struct completion *x, long timeout, int state)
  4553. {
  4554. if (!x->done) {
  4555. DECLARE_WAITQUEUE(wait, current);
  4556. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4557. __add_wait_queue_tail(&x->wait, &wait);
  4558. do {
  4559. if (signal_pending_state(state, current)) {
  4560. timeout = -ERESTARTSYS;
  4561. break;
  4562. }
  4563. __set_current_state(state);
  4564. spin_unlock_irq(&x->wait.lock);
  4565. timeout = schedule_timeout(timeout);
  4566. spin_lock_irq(&x->wait.lock);
  4567. } while (!x->done && timeout);
  4568. __remove_wait_queue(&x->wait, &wait);
  4569. if (!x->done)
  4570. return timeout;
  4571. }
  4572. x->done--;
  4573. return timeout ?: 1;
  4574. }
  4575. static long __sched
  4576. wait_for_common(struct completion *x, long timeout, int state)
  4577. {
  4578. might_sleep();
  4579. spin_lock_irq(&x->wait.lock);
  4580. timeout = do_wait_for_common(x, timeout, state);
  4581. spin_unlock_irq(&x->wait.lock);
  4582. return timeout;
  4583. }
  4584. /**
  4585. * wait_for_completion: - waits for completion of a task
  4586. * @x: holds the state of this particular completion
  4587. *
  4588. * This waits to be signaled for completion of a specific task. It is NOT
  4589. * interruptible and there is no timeout.
  4590. *
  4591. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4592. * and interrupt capability. Also see complete().
  4593. */
  4594. void __sched wait_for_completion(struct completion *x)
  4595. {
  4596. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4597. }
  4598. EXPORT_SYMBOL(wait_for_completion);
  4599. /**
  4600. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4601. * @x: holds the state of this particular completion
  4602. * @timeout: timeout value in jiffies
  4603. *
  4604. * This waits for either a completion of a specific task to be signaled or for a
  4605. * specified timeout to expire. The timeout is in jiffies. It is not
  4606. * interruptible.
  4607. */
  4608. unsigned long __sched
  4609. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4610. {
  4611. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4612. }
  4613. EXPORT_SYMBOL(wait_for_completion_timeout);
  4614. /**
  4615. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4616. * @x: holds the state of this particular completion
  4617. *
  4618. * This waits for completion of a specific task to be signaled. It is
  4619. * interruptible.
  4620. */
  4621. int __sched wait_for_completion_interruptible(struct completion *x)
  4622. {
  4623. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4624. if (t == -ERESTARTSYS)
  4625. return t;
  4626. return 0;
  4627. }
  4628. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4629. /**
  4630. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4631. * @x: holds the state of this particular completion
  4632. * @timeout: timeout value in jiffies
  4633. *
  4634. * This waits for either a completion of a specific task to be signaled or for a
  4635. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4636. */
  4637. unsigned long __sched
  4638. wait_for_completion_interruptible_timeout(struct completion *x,
  4639. unsigned long timeout)
  4640. {
  4641. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4642. }
  4643. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4644. /**
  4645. * wait_for_completion_killable: - waits for completion of a task (killable)
  4646. * @x: holds the state of this particular completion
  4647. *
  4648. * This waits to be signaled for completion of a specific task. It can be
  4649. * interrupted by a kill signal.
  4650. */
  4651. int __sched wait_for_completion_killable(struct completion *x)
  4652. {
  4653. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4654. if (t == -ERESTARTSYS)
  4655. return t;
  4656. return 0;
  4657. }
  4658. EXPORT_SYMBOL(wait_for_completion_killable);
  4659. /**
  4660. * try_wait_for_completion - try to decrement a completion without blocking
  4661. * @x: completion structure
  4662. *
  4663. * Returns: 0 if a decrement cannot be done without blocking
  4664. * 1 if a decrement succeeded.
  4665. *
  4666. * If a completion is being used as a counting completion,
  4667. * attempt to decrement the counter without blocking. This
  4668. * enables us to avoid waiting if the resource the completion
  4669. * is protecting is not available.
  4670. */
  4671. bool try_wait_for_completion(struct completion *x)
  4672. {
  4673. int ret = 1;
  4674. spin_lock_irq(&x->wait.lock);
  4675. if (!x->done)
  4676. ret = 0;
  4677. else
  4678. x->done--;
  4679. spin_unlock_irq(&x->wait.lock);
  4680. return ret;
  4681. }
  4682. EXPORT_SYMBOL(try_wait_for_completion);
  4683. /**
  4684. * completion_done - Test to see if a completion has any waiters
  4685. * @x: completion structure
  4686. *
  4687. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4688. * 1 if there are no waiters.
  4689. *
  4690. */
  4691. bool completion_done(struct completion *x)
  4692. {
  4693. int ret = 1;
  4694. spin_lock_irq(&x->wait.lock);
  4695. if (!x->done)
  4696. ret = 0;
  4697. spin_unlock_irq(&x->wait.lock);
  4698. return ret;
  4699. }
  4700. EXPORT_SYMBOL(completion_done);
  4701. static long __sched
  4702. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4703. {
  4704. unsigned long flags;
  4705. wait_queue_t wait;
  4706. init_waitqueue_entry(&wait, current);
  4707. __set_current_state(state);
  4708. spin_lock_irqsave(&q->lock, flags);
  4709. __add_wait_queue(q, &wait);
  4710. spin_unlock(&q->lock);
  4711. timeout = schedule_timeout(timeout);
  4712. spin_lock_irq(&q->lock);
  4713. __remove_wait_queue(q, &wait);
  4714. spin_unlock_irqrestore(&q->lock, flags);
  4715. return timeout;
  4716. }
  4717. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4718. {
  4719. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4720. }
  4721. EXPORT_SYMBOL(interruptible_sleep_on);
  4722. long __sched
  4723. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4724. {
  4725. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4726. }
  4727. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4728. void __sched sleep_on(wait_queue_head_t *q)
  4729. {
  4730. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4731. }
  4732. EXPORT_SYMBOL(sleep_on);
  4733. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4734. {
  4735. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4736. }
  4737. EXPORT_SYMBOL(sleep_on_timeout);
  4738. #ifdef CONFIG_RT_MUTEXES
  4739. /*
  4740. * rt_mutex_setprio - set the current priority of a task
  4741. * @p: task
  4742. * @prio: prio value (kernel-internal form)
  4743. *
  4744. * This function changes the 'effective' priority of a task. It does
  4745. * not touch ->normal_prio like __setscheduler().
  4746. *
  4747. * Used by the rt_mutex code to implement priority inheritance logic.
  4748. */
  4749. void rt_mutex_setprio(struct task_struct *p, int prio)
  4750. {
  4751. unsigned long flags;
  4752. int oldprio, on_rq, running;
  4753. struct rq *rq;
  4754. const struct sched_class *prev_class = p->sched_class;
  4755. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4756. rq = task_rq_lock(p, &flags);
  4757. update_rq_clock(rq);
  4758. oldprio = p->prio;
  4759. on_rq = p->se.on_rq;
  4760. running = task_current(rq, p);
  4761. if (on_rq)
  4762. dequeue_task(rq, p, 0);
  4763. if (running)
  4764. p->sched_class->put_prev_task(rq, p);
  4765. if (rt_prio(prio))
  4766. p->sched_class = &rt_sched_class;
  4767. else
  4768. p->sched_class = &fair_sched_class;
  4769. p->prio = prio;
  4770. if (running)
  4771. p->sched_class->set_curr_task(rq);
  4772. if (on_rq) {
  4773. enqueue_task(rq, p, 0);
  4774. check_class_changed(rq, p, prev_class, oldprio, running);
  4775. }
  4776. task_rq_unlock(rq, &flags);
  4777. }
  4778. #endif
  4779. void set_user_nice(struct task_struct *p, long nice)
  4780. {
  4781. int old_prio, delta, on_rq;
  4782. unsigned long flags;
  4783. struct rq *rq;
  4784. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4785. return;
  4786. /*
  4787. * We have to be careful, if called from sys_setpriority(),
  4788. * the task might be in the middle of scheduling on another CPU.
  4789. */
  4790. rq = task_rq_lock(p, &flags);
  4791. update_rq_clock(rq);
  4792. /*
  4793. * The RT priorities are set via sched_setscheduler(), but we still
  4794. * allow the 'normal' nice value to be set - but as expected
  4795. * it wont have any effect on scheduling until the task is
  4796. * SCHED_FIFO/SCHED_RR:
  4797. */
  4798. if (task_has_rt_policy(p)) {
  4799. p->static_prio = NICE_TO_PRIO(nice);
  4800. goto out_unlock;
  4801. }
  4802. on_rq = p->se.on_rq;
  4803. if (on_rq)
  4804. dequeue_task(rq, p, 0);
  4805. p->static_prio = NICE_TO_PRIO(nice);
  4806. set_load_weight(p);
  4807. old_prio = p->prio;
  4808. p->prio = effective_prio(p);
  4809. delta = p->prio - old_prio;
  4810. if (on_rq) {
  4811. enqueue_task(rq, p, 0);
  4812. /*
  4813. * If the task increased its priority or is running and
  4814. * lowered its priority, then reschedule its CPU:
  4815. */
  4816. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4817. resched_task(rq->curr);
  4818. }
  4819. out_unlock:
  4820. task_rq_unlock(rq, &flags);
  4821. }
  4822. EXPORT_SYMBOL(set_user_nice);
  4823. /*
  4824. * can_nice - check if a task can reduce its nice value
  4825. * @p: task
  4826. * @nice: nice value
  4827. */
  4828. int can_nice(const struct task_struct *p, const int nice)
  4829. {
  4830. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4831. int nice_rlim = 20 - nice;
  4832. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4833. capable(CAP_SYS_NICE));
  4834. }
  4835. #ifdef __ARCH_WANT_SYS_NICE
  4836. /*
  4837. * sys_nice - change the priority of the current process.
  4838. * @increment: priority increment
  4839. *
  4840. * sys_setpriority is a more generic, but much slower function that
  4841. * does similar things.
  4842. */
  4843. SYSCALL_DEFINE1(nice, int, increment)
  4844. {
  4845. long nice, retval;
  4846. /*
  4847. * Setpriority might change our priority at the same moment.
  4848. * We don't have to worry. Conceptually one call occurs first
  4849. * and we have a single winner.
  4850. */
  4851. if (increment < -40)
  4852. increment = -40;
  4853. if (increment > 40)
  4854. increment = 40;
  4855. nice = TASK_NICE(current) + increment;
  4856. if (nice < -20)
  4857. nice = -20;
  4858. if (nice > 19)
  4859. nice = 19;
  4860. if (increment < 0 && !can_nice(current, nice))
  4861. return -EPERM;
  4862. retval = security_task_setnice(current, nice);
  4863. if (retval)
  4864. return retval;
  4865. set_user_nice(current, nice);
  4866. return 0;
  4867. }
  4868. #endif
  4869. /**
  4870. * task_prio - return the priority value of a given task.
  4871. * @p: the task in question.
  4872. *
  4873. * This is the priority value as seen by users in /proc.
  4874. * RT tasks are offset by -200. Normal tasks are centered
  4875. * around 0, value goes from -16 to +15.
  4876. */
  4877. int task_prio(const struct task_struct *p)
  4878. {
  4879. return p->prio - MAX_RT_PRIO;
  4880. }
  4881. /**
  4882. * task_nice - return the nice value of a given task.
  4883. * @p: the task in question.
  4884. */
  4885. int task_nice(const struct task_struct *p)
  4886. {
  4887. return TASK_NICE(p);
  4888. }
  4889. EXPORT_SYMBOL(task_nice);
  4890. /**
  4891. * idle_cpu - is a given cpu idle currently?
  4892. * @cpu: the processor in question.
  4893. */
  4894. int idle_cpu(int cpu)
  4895. {
  4896. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4897. }
  4898. /**
  4899. * idle_task - return the idle task for a given cpu.
  4900. * @cpu: the processor in question.
  4901. */
  4902. struct task_struct *idle_task(int cpu)
  4903. {
  4904. return cpu_rq(cpu)->idle;
  4905. }
  4906. /**
  4907. * find_process_by_pid - find a process with a matching PID value.
  4908. * @pid: the pid in question.
  4909. */
  4910. static struct task_struct *find_process_by_pid(pid_t pid)
  4911. {
  4912. return pid ? find_task_by_vpid(pid) : current;
  4913. }
  4914. /* Actually do priority change: must hold rq lock. */
  4915. static void
  4916. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4917. {
  4918. BUG_ON(p->se.on_rq);
  4919. p->policy = policy;
  4920. switch (p->policy) {
  4921. case SCHED_NORMAL:
  4922. case SCHED_BATCH:
  4923. case SCHED_IDLE:
  4924. p->sched_class = &fair_sched_class;
  4925. break;
  4926. case SCHED_FIFO:
  4927. case SCHED_RR:
  4928. p->sched_class = &rt_sched_class;
  4929. break;
  4930. }
  4931. p->rt_priority = prio;
  4932. p->normal_prio = normal_prio(p);
  4933. /* we are holding p->pi_lock already */
  4934. p->prio = rt_mutex_getprio(p);
  4935. set_load_weight(p);
  4936. }
  4937. /*
  4938. * check the target process has a UID that matches the current process's
  4939. */
  4940. static bool check_same_owner(struct task_struct *p)
  4941. {
  4942. const struct cred *cred = current_cred(), *pcred;
  4943. bool match;
  4944. rcu_read_lock();
  4945. pcred = __task_cred(p);
  4946. match = (cred->euid == pcred->euid ||
  4947. cred->euid == pcred->uid);
  4948. rcu_read_unlock();
  4949. return match;
  4950. }
  4951. static int __sched_setscheduler(struct task_struct *p, int policy,
  4952. struct sched_param *param, bool user)
  4953. {
  4954. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4955. unsigned long flags;
  4956. const struct sched_class *prev_class = p->sched_class;
  4957. struct rq *rq;
  4958. /* may grab non-irq protected spin_locks */
  4959. BUG_ON(in_interrupt());
  4960. recheck:
  4961. /* double check policy once rq lock held */
  4962. if (policy < 0)
  4963. policy = oldpolicy = p->policy;
  4964. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4965. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4966. policy != SCHED_IDLE)
  4967. return -EINVAL;
  4968. /*
  4969. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4970. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4971. * SCHED_BATCH and SCHED_IDLE is 0.
  4972. */
  4973. if (param->sched_priority < 0 ||
  4974. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4975. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4976. return -EINVAL;
  4977. if (rt_policy(policy) != (param->sched_priority != 0))
  4978. return -EINVAL;
  4979. /*
  4980. * Allow unprivileged RT tasks to decrease priority:
  4981. */
  4982. if (user && !capable(CAP_SYS_NICE)) {
  4983. if (rt_policy(policy)) {
  4984. unsigned long rlim_rtprio;
  4985. if (!lock_task_sighand(p, &flags))
  4986. return -ESRCH;
  4987. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4988. unlock_task_sighand(p, &flags);
  4989. /* can't set/change the rt policy */
  4990. if (policy != p->policy && !rlim_rtprio)
  4991. return -EPERM;
  4992. /* can't increase priority */
  4993. if (param->sched_priority > p->rt_priority &&
  4994. param->sched_priority > rlim_rtprio)
  4995. return -EPERM;
  4996. }
  4997. /*
  4998. * Like positive nice levels, dont allow tasks to
  4999. * move out of SCHED_IDLE either:
  5000. */
  5001. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5002. return -EPERM;
  5003. /* can't change other user's priorities */
  5004. if (!check_same_owner(p))
  5005. return -EPERM;
  5006. }
  5007. if (user) {
  5008. #ifdef CONFIG_RT_GROUP_SCHED
  5009. /*
  5010. * Do not allow realtime tasks into groups that have no runtime
  5011. * assigned.
  5012. */
  5013. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5014. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5015. return -EPERM;
  5016. #endif
  5017. retval = security_task_setscheduler(p, policy, param);
  5018. if (retval)
  5019. return retval;
  5020. }
  5021. /*
  5022. * make sure no PI-waiters arrive (or leave) while we are
  5023. * changing the priority of the task:
  5024. */
  5025. spin_lock_irqsave(&p->pi_lock, flags);
  5026. /*
  5027. * To be able to change p->policy safely, the apropriate
  5028. * runqueue lock must be held.
  5029. */
  5030. rq = __task_rq_lock(p);
  5031. /* recheck policy now with rq lock held */
  5032. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5033. policy = oldpolicy = -1;
  5034. __task_rq_unlock(rq);
  5035. spin_unlock_irqrestore(&p->pi_lock, flags);
  5036. goto recheck;
  5037. }
  5038. update_rq_clock(rq);
  5039. on_rq = p->se.on_rq;
  5040. running = task_current(rq, p);
  5041. if (on_rq)
  5042. deactivate_task(rq, p, 0);
  5043. if (running)
  5044. p->sched_class->put_prev_task(rq, p);
  5045. oldprio = p->prio;
  5046. __setscheduler(rq, p, policy, param->sched_priority);
  5047. if (running)
  5048. p->sched_class->set_curr_task(rq);
  5049. if (on_rq) {
  5050. activate_task(rq, p, 0);
  5051. check_class_changed(rq, p, prev_class, oldprio, running);
  5052. }
  5053. __task_rq_unlock(rq);
  5054. spin_unlock_irqrestore(&p->pi_lock, flags);
  5055. rt_mutex_adjust_pi(p);
  5056. return 0;
  5057. }
  5058. /**
  5059. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5060. * @p: the task in question.
  5061. * @policy: new policy.
  5062. * @param: structure containing the new RT priority.
  5063. *
  5064. * NOTE that the task may be already dead.
  5065. */
  5066. int sched_setscheduler(struct task_struct *p, int policy,
  5067. struct sched_param *param)
  5068. {
  5069. return __sched_setscheduler(p, policy, param, true);
  5070. }
  5071. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5072. /**
  5073. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5074. * @p: the task in question.
  5075. * @policy: new policy.
  5076. * @param: structure containing the new RT priority.
  5077. *
  5078. * Just like sched_setscheduler, only don't bother checking if the
  5079. * current context has permission. For example, this is needed in
  5080. * stop_machine(): we create temporary high priority worker threads,
  5081. * but our caller might not have that capability.
  5082. */
  5083. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5084. struct sched_param *param)
  5085. {
  5086. return __sched_setscheduler(p, policy, param, false);
  5087. }
  5088. static int
  5089. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5090. {
  5091. struct sched_param lparam;
  5092. struct task_struct *p;
  5093. int retval;
  5094. if (!param || pid < 0)
  5095. return -EINVAL;
  5096. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5097. return -EFAULT;
  5098. rcu_read_lock();
  5099. retval = -ESRCH;
  5100. p = find_process_by_pid(pid);
  5101. if (p != NULL)
  5102. retval = sched_setscheduler(p, policy, &lparam);
  5103. rcu_read_unlock();
  5104. return retval;
  5105. }
  5106. /**
  5107. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5108. * @pid: the pid in question.
  5109. * @policy: new policy.
  5110. * @param: structure containing the new RT priority.
  5111. */
  5112. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5113. struct sched_param __user *, param)
  5114. {
  5115. /* negative values for policy are not valid */
  5116. if (policy < 0)
  5117. return -EINVAL;
  5118. return do_sched_setscheduler(pid, policy, param);
  5119. }
  5120. /**
  5121. * sys_sched_setparam - set/change the RT priority of a thread
  5122. * @pid: the pid in question.
  5123. * @param: structure containing the new RT priority.
  5124. */
  5125. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5126. {
  5127. return do_sched_setscheduler(pid, -1, param);
  5128. }
  5129. /**
  5130. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5131. * @pid: the pid in question.
  5132. */
  5133. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5134. {
  5135. struct task_struct *p;
  5136. int retval;
  5137. if (pid < 0)
  5138. return -EINVAL;
  5139. retval = -ESRCH;
  5140. read_lock(&tasklist_lock);
  5141. p = find_process_by_pid(pid);
  5142. if (p) {
  5143. retval = security_task_getscheduler(p);
  5144. if (!retval)
  5145. retval = p->policy;
  5146. }
  5147. read_unlock(&tasklist_lock);
  5148. return retval;
  5149. }
  5150. /**
  5151. * sys_sched_getscheduler - get the RT priority of a thread
  5152. * @pid: the pid in question.
  5153. * @param: structure containing the RT priority.
  5154. */
  5155. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5156. {
  5157. struct sched_param lp;
  5158. struct task_struct *p;
  5159. int retval;
  5160. if (!param || pid < 0)
  5161. return -EINVAL;
  5162. read_lock(&tasklist_lock);
  5163. p = find_process_by_pid(pid);
  5164. retval = -ESRCH;
  5165. if (!p)
  5166. goto out_unlock;
  5167. retval = security_task_getscheduler(p);
  5168. if (retval)
  5169. goto out_unlock;
  5170. lp.sched_priority = p->rt_priority;
  5171. read_unlock(&tasklist_lock);
  5172. /*
  5173. * This one might sleep, we cannot do it with a spinlock held ...
  5174. */
  5175. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5176. return retval;
  5177. out_unlock:
  5178. read_unlock(&tasklist_lock);
  5179. return retval;
  5180. }
  5181. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5182. {
  5183. cpumask_var_t cpus_allowed, new_mask;
  5184. struct task_struct *p;
  5185. int retval;
  5186. get_online_cpus();
  5187. read_lock(&tasklist_lock);
  5188. p = find_process_by_pid(pid);
  5189. if (!p) {
  5190. read_unlock(&tasklist_lock);
  5191. put_online_cpus();
  5192. return -ESRCH;
  5193. }
  5194. /*
  5195. * It is not safe to call set_cpus_allowed with the
  5196. * tasklist_lock held. We will bump the task_struct's
  5197. * usage count and then drop tasklist_lock.
  5198. */
  5199. get_task_struct(p);
  5200. read_unlock(&tasklist_lock);
  5201. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5202. retval = -ENOMEM;
  5203. goto out_put_task;
  5204. }
  5205. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5206. retval = -ENOMEM;
  5207. goto out_free_cpus_allowed;
  5208. }
  5209. retval = -EPERM;
  5210. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5211. goto out_unlock;
  5212. retval = security_task_setscheduler(p, 0, NULL);
  5213. if (retval)
  5214. goto out_unlock;
  5215. cpuset_cpus_allowed(p, cpus_allowed);
  5216. cpumask_and(new_mask, in_mask, cpus_allowed);
  5217. again:
  5218. retval = set_cpus_allowed_ptr(p, new_mask);
  5219. if (!retval) {
  5220. cpuset_cpus_allowed(p, cpus_allowed);
  5221. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5222. /*
  5223. * We must have raced with a concurrent cpuset
  5224. * update. Just reset the cpus_allowed to the
  5225. * cpuset's cpus_allowed
  5226. */
  5227. cpumask_copy(new_mask, cpus_allowed);
  5228. goto again;
  5229. }
  5230. }
  5231. out_unlock:
  5232. free_cpumask_var(new_mask);
  5233. out_free_cpus_allowed:
  5234. free_cpumask_var(cpus_allowed);
  5235. out_put_task:
  5236. put_task_struct(p);
  5237. put_online_cpus();
  5238. return retval;
  5239. }
  5240. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5241. struct cpumask *new_mask)
  5242. {
  5243. if (len < cpumask_size())
  5244. cpumask_clear(new_mask);
  5245. else if (len > cpumask_size())
  5246. len = cpumask_size();
  5247. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5248. }
  5249. /**
  5250. * sys_sched_setaffinity - set the cpu affinity of a process
  5251. * @pid: pid of the process
  5252. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5253. * @user_mask_ptr: user-space pointer to the new cpu mask
  5254. */
  5255. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5256. unsigned long __user *, user_mask_ptr)
  5257. {
  5258. cpumask_var_t new_mask;
  5259. int retval;
  5260. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5261. return -ENOMEM;
  5262. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5263. if (retval == 0)
  5264. retval = sched_setaffinity(pid, new_mask);
  5265. free_cpumask_var(new_mask);
  5266. return retval;
  5267. }
  5268. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5269. {
  5270. struct task_struct *p;
  5271. int retval;
  5272. get_online_cpus();
  5273. read_lock(&tasklist_lock);
  5274. retval = -ESRCH;
  5275. p = find_process_by_pid(pid);
  5276. if (!p)
  5277. goto out_unlock;
  5278. retval = security_task_getscheduler(p);
  5279. if (retval)
  5280. goto out_unlock;
  5281. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5282. out_unlock:
  5283. read_unlock(&tasklist_lock);
  5284. put_online_cpus();
  5285. return retval;
  5286. }
  5287. /**
  5288. * sys_sched_getaffinity - get the cpu affinity of a process
  5289. * @pid: pid of the process
  5290. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5291. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5292. */
  5293. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5294. unsigned long __user *, user_mask_ptr)
  5295. {
  5296. int ret;
  5297. cpumask_var_t mask;
  5298. if (len < cpumask_size())
  5299. return -EINVAL;
  5300. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5301. return -ENOMEM;
  5302. ret = sched_getaffinity(pid, mask);
  5303. if (ret == 0) {
  5304. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5305. ret = -EFAULT;
  5306. else
  5307. ret = cpumask_size();
  5308. }
  5309. free_cpumask_var(mask);
  5310. return ret;
  5311. }
  5312. /**
  5313. * sys_sched_yield - yield the current processor to other threads.
  5314. *
  5315. * This function yields the current CPU to other tasks. If there are no
  5316. * other threads running on this CPU then this function will return.
  5317. */
  5318. SYSCALL_DEFINE0(sched_yield)
  5319. {
  5320. struct rq *rq = this_rq_lock();
  5321. schedstat_inc(rq, yld_count);
  5322. current->sched_class->yield_task(rq);
  5323. /*
  5324. * Since we are going to call schedule() anyway, there's
  5325. * no need to preempt or enable interrupts:
  5326. */
  5327. __release(rq->lock);
  5328. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5329. _raw_spin_unlock(&rq->lock);
  5330. preempt_enable_no_resched();
  5331. schedule();
  5332. return 0;
  5333. }
  5334. static void __cond_resched(void)
  5335. {
  5336. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5337. __might_sleep(__FILE__, __LINE__);
  5338. #endif
  5339. /*
  5340. * The BKS might be reacquired before we have dropped
  5341. * PREEMPT_ACTIVE, which could trigger a second
  5342. * cond_resched() call.
  5343. */
  5344. do {
  5345. add_preempt_count(PREEMPT_ACTIVE);
  5346. schedule();
  5347. sub_preempt_count(PREEMPT_ACTIVE);
  5348. } while (need_resched());
  5349. }
  5350. int __sched _cond_resched(void)
  5351. {
  5352. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5353. system_state == SYSTEM_RUNNING) {
  5354. __cond_resched();
  5355. return 1;
  5356. }
  5357. return 0;
  5358. }
  5359. EXPORT_SYMBOL(_cond_resched);
  5360. /*
  5361. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5362. * call schedule, and on return reacquire the lock.
  5363. *
  5364. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5365. * operations here to prevent schedule() from being called twice (once via
  5366. * spin_unlock(), once by hand).
  5367. */
  5368. int cond_resched_lock(spinlock_t *lock)
  5369. {
  5370. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5371. int ret = 0;
  5372. if (spin_needbreak(lock) || resched) {
  5373. spin_unlock(lock);
  5374. if (resched && need_resched())
  5375. __cond_resched();
  5376. else
  5377. cpu_relax();
  5378. ret = 1;
  5379. spin_lock(lock);
  5380. }
  5381. return ret;
  5382. }
  5383. EXPORT_SYMBOL(cond_resched_lock);
  5384. int __sched cond_resched_softirq(void)
  5385. {
  5386. BUG_ON(!in_softirq());
  5387. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5388. local_bh_enable();
  5389. __cond_resched();
  5390. local_bh_disable();
  5391. return 1;
  5392. }
  5393. return 0;
  5394. }
  5395. EXPORT_SYMBOL(cond_resched_softirq);
  5396. /**
  5397. * yield - yield the current processor to other threads.
  5398. *
  5399. * This is a shortcut for kernel-space yielding - it marks the
  5400. * thread runnable and calls sys_sched_yield().
  5401. */
  5402. void __sched yield(void)
  5403. {
  5404. set_current_state(TASK_RUNNING);
  5405. sys_sched_yield();
  5406. }
  5407. EXPORT_SYMBOL(yield);
  5408. /*
  5409. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5410. * that process accounting knows that this is a task in IO wait state.
  5411. *
  5412. * But don't do that if it is a deliberate, throttling IO wait (this task
  5413. * has set its backing_dev_info: the queue against which it should throttle)
  5414. */
  5415. void __sched io_schedule(void)
  5416. {
  5417. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5418. delayacct_blkio_start();
  5419. atomic_inc(&rq->nr_iowait);
  5420. schedule();
  5421. atomic_dec(&rq->nr_iowait);
  5422. delayacct_blkio_end();
  5423. }
  5424. EXPORT_SYMBOL(io_schedule);
  5425. long __sched io_schedule_timeout(long timeout)
  5426. {
  5427. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5428. long ret;
  5429. delayacct_blkio_start();
  5430. atomic_inc(&rq->nr_iowait);
  5431. ret = schedule_timeout(timeout);
  5432. atomic_dec(&rq->nr_iowait);
  5433. delayacct_blkio_end();
  5434. return ret;
  5435. }
  5436. /**
  5437. * sys_sched_get_priority_max - return maximum RT priority.
  5438. * @policy: scheduling class.
  5439. *
  5440. * this syscall returns the maximum rt_priority that can be used
  5441. * by a given scheduling class.
  5442. */
  5443. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5444. {
  5445. int ret = -EINVAL;
  5446. switch (policy) {
  5447. case SCHED_FIFO:
  5448. case SCHED_RR:
  5449. ret = MAX_USER_RT_PRIO-1;
  5450. break;
  5451. case SCHED_NORMAL:
  5452. case SCHED_BATCH:
  5453. case SCHED_IDLE:
  5454. ret = 0;
  5455. break;
  5456. }
  5457. return ret;
  5458. }
  5459. /**
  5460. * sys_sched_get_priority_min - return minimum RT priority.
  5461. * @policy: scheduling class.
  5462. *
  5463. * this syscall returns the minimum rt_priority that can be used
  5464. * by a given scheduling class.
  5465. */
  5466. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5467. {
  5468. int ret = -EINVAL;
  5469. switch (policy) {
  5470. case SCHED_FIFO:
  5471. case SCHED_RR:
  5472. ret = 1;
  5473. break;
  5474. case SCHED_NORMAL:
  5475. case SCHED_BATCH:
  5476. case SCHED_IDLE:
  5477. ret = 0;
  5478. }
  5479. return ret;
  5480. }
  5481. /**
  5482. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5483. * @pid: pid of the process.
  5484. * @interval: userspace pointer to the timeslice value.
  5485. *
  5486. * this syscall writes the default timeslice value of a given process
  5487. * into the user-space timespec buffer. A value of '0' means infinity.
  5488. */
  5489. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5490. struct timespec __user *, interval)
  5491. {
  5492. struct task_struct *p;
  5493. unsigned int time_slice;
  5494. int retval;
  5495. struct timespec t;
  5496. if (pid < 0)
  5497. return -EINVAL;
  5498. retval = -ESRCH;
  5499. read_lock(&tasklist_lock);
  5500. p = find_process_by_pid(pid);
  5501. if (!p)
  5502. goto out_unlock;
  5503. retval = security_task_getscheduler(p);
  5504. if (retval)
  5505. goto out_unlock;
  5506. /*
  5507. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5508. * tasks that are on an otherwise idle runqueue:
  5509. */
  5510. time_slice = 0;
  5511. if (p->policy == SCHED_RR) {
  5512. time_slice = DEF_TIMESLICE;
  5513. } else if (p->policy != SCHED_FIFO) {
  5514. struct sched_entity *se = &p->se;
  5515. unsigned long flags;
  5516. struct rq *rq;
  5517. rq = task_rq_lock(p, &flags);
  5518. if (rq->cfs.load.weight)
  5519. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5520. task_rq_unlock(rq, &flags);
  5521. }
  5522. read_unlock(&tasklist_lock);
  5523. jiffies_to_timespec(time_slice, &t);
  5524. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5525. return retval;
  5526. out_unlock:
  5527. read_unlock(&tasklist_lock);
  5528. return retval;
  5529. }
  5530. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5531. void sched_show_task(struct task_struct *p)
  5532. {
  5533. unsigned long free = 0;
  5534. unsigned state;
  5535. state = p->state ? __ffs(p->state) + 1 : 0;
  5536. printk(KERN_INFO "%-13.13s %c", p->comm,
  5537. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5538. #if BITS_PER_LONG == 32
  5539. if (state == TASK_RUNNING)
  5540. printk(KERN_CONT " running ");
  5541. else
  5542. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5543. #else
  5544. if (state == TASK_RUNNING)
  5545. printk(KERN_CONT " running task ");
  5546. else
  5547. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5548. #endif
  5549. #ifdef CONFIG_DEBUG_STACK_USAGE
  5550. free = stack_not_used(p);
  5551. #endif
  5552. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5553. task_pid_nr(p), task_pid_nr(p->real_parent));
  5554. show_stack(p, NULL);
  5555. }
  5556. void show_state_filter(unsigned long state_filter)
  5557. {
  5558. struct task_struct *g, *p;
  5559. #if BITS_PER_LONG == 32
  5560. printk(KERN_INFO
  5561. " task PC stack pid father\n");
  5562. #else
  5563. printk(KERN_INFO
  5564. " task PC stack pid father\n");
  5565. #endif
  5566. read_lock(&tasklist_lock);
  5567. do_each_thread(g, p) {
  5568. /*
  5569. * reset the NMI-timeout, listing all files on a slow
  5570. * console might take alot of time:
  5571. */
  5572. touch_nmi_watchdog();
  5573. if (!state_filter || (p->state & state_filter))
  5574. sched_show_task(p);
  5575. } while_each_thread(g, p);
  5576. touch_all_softlockup_watchdogs();
  5577. #ifdef CONFIG_SCHED_DEBUG
  5578. sysrq_sched_debug_show();
  5579. #endif
  5580. read_unlock(&tasklist_lock);
  5581. /*
  5582. * Only show locks if all tasks are dumped:
  5583. */
  5584. if (state_filter == -1)
  5585. debug_show_all_locks();
  5586. }
  5587. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5588. {
  5589. idle->sched_class = &idle_sched_class;
  5590. }
  5591. /**
  5592. * init_idle - set up an idle thread for a given CPU
  5593. * @idle: task in question
  5594. * @cpu: cpu the idle task belongs to
  5595. *
  5596. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5597. * flag, to make booting more robust.
  5598. */
  5599. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5600. {
  5601. struct rq *rq = cpu_rq(cpu);
  5602. unsigned long flags;
  5603. spin_lock_irqsave(&rq->lock, flags);
  5604. __sched_fork(idle);
  5605. idle->se.exec_start = sched_clock();
  5606. idle->prio = idle->normal_prio = MAX_PRIO;
  5607. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5608. __set_task_cpu(idle, cpu);
  5609. rq->curr = rq->idle = idle;
  5610. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5611. idle->oncpu = 1;
  5612. #endif
  5613. spin_unlock_irqrestore(&rq->lock, flags);
  5614. /* Set the preempt count _outside_ the spinlocks! */
  5615. #if defined(CONFIG_PREEMPT)
  5616. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5617. #else
  5618. task_thread_info(idle)->preempt_count = 0;
  5619. #endif
  5620. /*
  5621. * The idle tasks have their own, simple scheduling class:
  5622. */
  5623. idle->sched_class = &idle_sched_class;
  5624. ftrace_graph_init_task(idle);
  5625. }
  5626. /*
  5627. * In a system that switches off the HZ timer nohz_cpu_mask
  5628. * indicates which cpus entered this state. This is used
  5629. * in the rcu update to wait only for active cpus. For system
  5630. * which do not switch off the HZ timer nohz_cpu_mask should
  5631. * always be CPU_BITS_NONE.
  5632. */
  5633. cpumask_var_t nohz_cpu_mask;
  5634. /*
  5635. * Increase the granularity value when there are more CPUs,
  5636. * because with more CPUs the 'effective latency' as visible
  5637. * to users decreases. But the relationship is not linear,
  5638. * so pick a second-best guess by going with the log2 of the
  5639. * number of CPUs.
  5640. *
  5641. * This idea comes from the SD scheduler of Con Kolivas:
  5642. */
  5643. static inline void sched_init_granularity(void)
  5644. {
  5645. unsigned int factor = 1 + ilog2(num_online_cpus());
  5646. const unsigned long limit = 200000000;
  5647. sysctl_sched_min_granularity *= factor;
  5648. if (sysctl_sched_min_granularity > limit)
  5649. sysctl_sched_min_granularity = limit;
  5650. sysctl_sched_latency *= factor;
  5651. if (sysctl_sched_latency > limit)
  5652. sysctl_sched_latency = limit;
  5653. sysctl_sched_wakeup_granularity *= factor;
  5654. sysctl_sched_shares_ratelimit *= factor;
  5655. }
  5656. #ifdef CONFIG_SMP
  5657. /*
  5658. * This is how migration works:
  5659. *
  5660. * 1) we queue a struct migration_req structure in the source CPU's
  5661. * runqueue and wake up that CPU's migration thread.
  5662. * 2) we down() the locked semaphore => thread blocks.
  5663. * 3) migration thread wakes up (implicitly it forces the migrated
  5664. * thread off the CPU)
  5665. * 4) it gets the migration request and checks whether the migrated
  5666. * task is still in the wrong runqueue.
  5667. * 5) if it's in the wrong runqueue then the migration thread removes
  5668. * it and puts it into the right queue.
  5669. * 6) migration thread up()s the semaphore.
  5670. * 7) we wake up and the migration is done.
  5671. */
  5672. /*
  5673. * Change a given task's CPU affinity. Migrate the thread to a
  5674. * proper CPU and schedule it away if the CPU it's executing on
  5675. * is removed from the allowed bitmask.
  5676. *
  5677. * NOTE: the caller must have a valid reference to the task, the
  5678. * task must not exit() & deallocate itself prematurely. The
  5679. * call is not atomic; no spinlocks may be held.
  5680. */
  5681. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5682. {
  5683. struct migration_req req;
  5684. unsigned long flags;
  5685. struct rq *rq;
  5686. int ret = 0;
  5687. rq = task_rq_lock(p, &flags);
  5688. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5689. ret = -EINVAL;
  5690. goto out;
  5691. }
  5692. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5693. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5694. ret = -EINVAL;
  5695. goto out;
  5696. }
  5697. if (p->sched_class->set_cpus_allowed)
  5698. p->sched_class->set_cpus_allowed(p, new_mask);
  5699. else {
  5700. cpumask_copy(&p->cpus_allowed, new_mask);
  5701. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5702. }
  5703. /* Can the task run on the task's current CPU? If so, we're done */
  5704. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5705. goto out;
  5706. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5707. /* Need help from migration thread: drop lock and wait. */
  5708. task_rq_unlock(rq, &flags);
  5709. wake_up_process(rq->migration_thread);
  5710. wait_for_completion(&req.done);
  5711. tlb_migrate_finish(p->mm);
  5712. return 0;
  5713. }
  5714. out:
  5715. task_rq_unlock(rq, &flags);
  5716. return ret;
  5717. }
  5718. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5719. /*
  5720. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5721. * this because either it can't run here any more (set_cpus_allowed()
  5722. * away from this CPU, or CPU going down), or because we're
  5723. * attempting to rebalance this task on exec (sched_exec).
  5724. *
  5725. * So we race with normal scheduler movements, but that's OK, as long
  5726. * as the task is no longer on this CPU.
  5727. *
  5728. * Returns non-zero if task was successfully migrated.
  5729. */
  5730. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5731. {
  5732. struct rq *rq_dest, *rq_src;
  5733. int ret = 0, on_rq;
  5734. if (unlikely(!cpu_active(dest_cpu)))
  5735. return ret;
  5736. rq_src = cpu_rq(src_cpu);
  5737. rq_dest = cpu_rq(dest_cpu);
  5738. double_rq_lock(rq_src, rq_dest);
  5739. /* Already moved. */
  5740. if (task_cpu(p) != src_cpu)
  5741. goto done;
  5742. /* Affinity changed (again). */
  5743. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5744. goto fail;
  5745. on_rq = p->se.on_rq;
  5746. if (on_rq)
  5747. deactivate_task(rq_src, p, 0);
  5748. set_task_cpu(p, dest_cpu);
  5749. if (on_rq) {
  5750. activate_task(rq_dest, p, 0);
  5751. check_preempt_curr(rq_dest, p, 0);
  5752. }
  5753. done:
  5754. ret = 1;
  5755. fail:
  5756. double_rq_unlock(rq_src, rq_dest);
  5757. return ret;
  5758. }
  5759. /*
  5760. * migration_thread - this is a highprio system thread that performs
  5761. * thread migration by bumping thread off CPU then 'pushing' onto
  5762. * another runqueue.
  5763. */
  5764. static int migration_thread(void *data)
  5765. {
  5766. int cpu = (long)data;
  5767. struct rq *rq;
  5768. rq = cpu_rq(cpu);
  5769. BUG_ON(rq->migration_thread != current);
  5770. set_current_state(TASK_INTERRUPTIBLE);
  5771. while (!kthread_should_stop()) {
  5772. struct migration_req *req;
  5773. struct list_head *head;
  5774. spin_lock_irq(&rq->lock);
  5775. if (cpu_is_offline(cpu)) {
  5776. spin_unlock_irq(&rq->lock);
  5777. goto wait_to_die;
  5778. }
  5779. if (rq->active_balance) {
  5780. active_load_balance(rq, cpu);
  5781. rq->active_balance = 0;
  5782. }
  5783. head = &rq->migration_queue;
  5784. if (list_empty(head)) {
  5785. spin_unlock_irq(&rq->lock);
  5786. schedule();
  5787. set_current_state(TASK_INTERRUPTIBLE);
  5788. continue;
  5789. }
  5790. req = list_entry(head->next, struct migration_req, list);
  5791. list_del_init(head->next);
  5792. spin_unlock(&rq->lock);
  5793. __migrate_task(req->task, cpu, req->dest_cpu);
  5794. local_irq_enable();
  5795. complete(&req->done);
  5796. }
  5797. __set_current_state(TASK_RUNNING);
  5798. return 0;
  5799. wait_to_die:
  5800. /* Wait for kthread_stop */
  5801. set_current_state(TASK_INTERRUPTIBLE);
  5802. while (!kthread_should_stop()) {
  5803. schedule();
  5804. set_current_state(TASK_INTERRUPTIBLE);
  5805. }
  5806. __set_current_state(TASK_RUNNING);
  5807. return 0;
  5808. }
  5809. #ifdef CONFIG_HOTPLUG_CPU
  5810. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5811. {
  5812. int ret;
  5813. local_irq_disable();
  5814. ret = __migrate_task(p, src_cpu, dest_cpu);
  5815. local_irq_enable();
  5816. return ret;
  5817. }
  5818. /*
  5819. * Figure out where task on dead CPU should go, use force if necessary.
  5820. */
  5821. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5822. {
  5823. int dest_cpu;
  5824. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5825. again:
  5826. /* Look for allowed, online CPU in same node. */
  5827. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5828. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5829. goto move;
  5830. /* Any allowed, online CPU? */
  5831. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5832. if (dest_cpu < nr_cpu_ids)
  5833. goto move;
  5834. /* No more Mr. Nice Guy. */
  5835. if (dest_cpu >= nr_cpu_ids) {
  5836. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5837. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5838. /*
  5839. * Don't tell them about moving exiting tasks or
  5840. * kernel threads (both mm NULL), since they never
  5841. * leave kernel.
  5842. */
  5843. if (p->mm && printk_ratelimit()) {
  5844. printk(KERN_INFO "process %d (%s) no "
  5845. "longer affine to cpu%d\n",
  5846. task_pid_nr(p), p->comm, dead_cpu);
  5847. }
  5848. }
  5849. move:
  5850. /* It can have affinity changed while we were choosing. */
  5851. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5852. goto again;
  5853. }
  5854. /*
  5855. * While a dead CPU has no uninterruptible tasks queued at this point,
  5856. * it might still have a nonzero ->nr_uninterruptible counter, because
  5857. * for performance reasons the counter is not stricly tracking tasks to
  5858. * their home CPUs. So we just add the counter to another CPU's counter,
  5859. * to keep the global sum constant after CPU-down:
  5860. */
  5861. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5862. {
  5863. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5864. unsigned long flags;
  5865. local_irq_save(flags);
  5866. double_rq_lock(rq_src, rq_dest);
  5867. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5868. rq_src->nr_uninterruptible = 0;
  5869. double_rq_unlock(rq_src, rq_dest);
  5870. local_irq_restore(flags);
  5871. }
  5872. /* Run through task list and migrate tasks from the dead cpu. */
  5873. static void migrate_live_tasks(int src_cpu)
  5874. {
  5875. struct task_struct *p, *t;
  5876. read_lock(&tasklist_lock);
  5877. do_each_thread(t, p) {
  5878. if (p == current)
  5879. continue;
  5880. if (task_cpu(p) == src_cpu)
  5881. move_task_off_dead_cpu(src_cpu, p);
  5882. } while_each_thread(t, p);
  5883. read_unlock(&tasklist_lock);
  5884. }
  5885. /*
  5886. * Schedules idle task to be the next runnable task on current CPU.
  5887. * It does so by boosting its priority to highest possible.
  5888. * Used by CPU offline code.
  5889. */
  5890. void sched_idle_next(void)
  5891. {
  5892. int this_cpu = smp_processor_id();
  5893. struct rq *rq = cpu_rq(this_cpu);
  5894. struct task_struct *p = rq->idle;
  5895. unsigned long flags;
  5896. /* cpu has to be offline */
  5897. BUG_ON(cpu_online(this_cpu));
  5898. /*
  5899. * Strictly not necessary since rest of the CPUs are stopped by now
  5900. * and interrupts disabled on the current cpu.
  5901. */
  5902. spin_lock_irqsave(&rq->lock, flags);
  5903. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5904. update_rq_clock(rq);
  5905. activate_task(rq, p, 0);
  5906. spin_unlock_irqrestore(&rq->lock, flags);
  5907. }
  5908. /*
  5909. * Ensures that the idle task is using init_mm right before its cpu goes
  5910. * offline.
  5911. */
  5912. void idle_task_exit(void)
  5913. {
  5914. struct mm_struct *mm = current->active_mm;
  5915. BUG_ON(cpu_online(smp_processor_id()));
  5916. if (mm != &init_mm)
  5917. switch_mm(mm, &init_mm, current);
  5918. mmdrop(mm);
  5919. }
  5920. /* called under rq->lock with disabled interrupts */
  5921. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5922. {
  5923. struct rq *rq = cpu_rq(dead_cpu);
  5924. /* Must be exiting, otherwise would be on tasklist. */
  5925. BUG_ON(!p->exit_state);
  5926. /* Cannot have done final schedule yet: would have vanished. */
  5927. BUG_ON(p->state == TASK_DEAD);
  5928. get_task_struct(p);
  5929. /*
  5930. * Drop lock around migration; if someone else moves it,
  5931. * that's OK. No task can be added to this CPU, so iteration is
  5932. * fine.
  5933. */
  5934. spin_unlock_irq(&rq->lock);
  5935. move_task_off_dead_cpu(dead_cpu, p);
  5936. spin_lock_irq(&rq->lock);
  5937. put_task_struct(p);
  5938. }
  5939. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5940. static void migrate_dead_tasks(unsigned int dead_cpu)
  5941. {
  5942. struct rq *rq = cpu_rq(dead_cpu);
  5943. struct task_struct *next;
  5944. for ( ; ; ) {
  5945. if (!rq->nr_running)
  5946. break;
  5947. update_rq_clock(rq);
  5948. next = pick_next_task(rq);
  5949. if (!next)
  5950. break;
  5951. next->sched_class->put_prev_task(rq, next);
  5952. migrate_dead(dead_cpu, next);
  5953. }
  5954. }
  5955. #endif /* CONFIG_HOTPLUG_CPU */
  5956. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5957. static struct ctl_table sd_ctl_dir[] = {
  5958. {
  5959. .procname = "sched_domain",
  5960. .mode = 0555,
  5961. },
  5962. {0, },
  5963. };
  5964. static struct ctl_table sd_ctl_root[] = {
  5965. {
  5966. .ctl_name = CTL_KERN,
  5967. .procname = "kernel",
  5968. .mode = 0555,
  5969. .child = sd_ctl_dir,
  5970. },
  5971. {0, },
  5972. };
  5973. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5974. {
  5975. struct ctl_table *entry =
  5976. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5977. return entry;
  5978. }
  5979. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5980. {
  5981. struct ctl_table *entry;
  5982. /*
  5983. * In the intermediate directories, both the child directory and
  5984. * procname are dynamically allocated and could fail but the mode
  5985. * will always be set. In the lowest directory the names are
  5986. * static strings and all have proc handlers.
  5987. */
  5988. for (entry = *tablep; entry->mode; entry++) {
  5989. if (entry->child)
  5990. sd_free_ctl_entry(&entry->child);
  5991. if (entry->proc_handler == NULL)
  5992. kfree(entry->procname);
  5993. }
  5994. kfree(*tablep);
  5995. *tablep = NULL;
  5996. }
  5997. static void
  5998. set_table_entry(struct ctl_table *entry,
  5999. const char *procname, void *data, int maxlen,
  6000. mode_t mode, proc_handler *proc_handler)
  6001. {
  6002. entry->procname = procname;
  6003. entry->data = data;
  6004. entry->maxlen = maxlen;
  6005. entry->mode = mode;
  6006. entry->proc_handler = proc_handler;
  6007. }
  6008. static struct ctl_table *
  6009. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6010. {
  6011. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6012. if (table == NULL)
  6013. return NULL;
  6014. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6015. sizeof(long), 0644, proc_doulongvec_minmax);
  6016. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6017. sizeof(long), 0644, proc_doulongvec_minmax);
  6018. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6019. sizeof(int), 0644, proc_dointvec_minmax);
  6020. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6021. sizeof(int), 0644, proc_dointvec_minmax);
  6022. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6023. sizeof(int), 0644, proc_dointvec_minmax);
  6024. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6025. sizeof(int), 0644, proc_dointvec_minmax);
  6026. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6027. sizeof(int), 0644, proc_dointvec_minmax);
  6028. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6029. sizeof(int), 0644, proc_dointvec_minmax);
  6030. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6031. sizeof(int), 0644, proc_dointvec_minmax);
  6032. set_table_entry(&table[9], "cache_nice_tries",
  6033. &sd->cache_nice_tries,
  6034. sizeof(int), 0644, proc_dointvec_minmax);
  6035. set_table_entry(&table[10], "flags", &sd->flags,
  6036. sizeof(int), 0644, proc_dointvec_minmax);
  6037. set_table_entry(&table[11], "name", sd->name,
  6038. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6039. /* &table[12] is terminator */
  6040. return table;
  6041. }
  6042. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6043. {
  6044. struct ctl_table *entry, *table;
  6045. struct sched_domain *sd;
  6046. int domain_num = 0, i;
  6047. char buf[32];
  6048. for_each_domain(cpu, sd)
  6049. domain_num++;
  6050. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6051. if (table == NULL)
  6052. return NULL;
  6053. i = 0;
  6054. for_each_domain(cpu, sd) {
  6055. snprintf(buf, 32, "domain%d", i);
  6056. entry->procname = kstrdup(buf, GFP_KERNEL);
  6057. entry->mode = 0555;
  6058. entry->child = sd_alloc_ctl_domain_table(sd);
  6059. entry++;
  6060. i++;
  6061. }
  6062. return table;
  6063. }
  6064. static struct ctl_table_header *sd_sysctl_header;
  6065. static void register_sched_domain_sysctl(void)
  6066. {
  6067. int i, cpu_num = num_online_cpus();
  6068. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6069. char buf[32];
  6070. WARN_ON(sd_ctl_dir[0].child);
  6071. sd_ctl_dir[0].child = entry;
  6072. if (entry == NULL)
  6073. return;
  6074. for_each_online_cpu(i) {
  6075. snprintf(buf, 32, "cpu%d", i);
  6076. entry->procname = kstrdup(buf, GFP_KERNEL);
  6077. entry->mode = 0555;
  6078. entry->child = sd_alloc_ctl_cpu_table(i);
  6079. entry++;
  6080. }
  6081. WARN_ON(sd_sysctl_header);
  6082. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6083. }
  6084. /* may be called multiple times per register */
  6085. static void unregister_sched_domain_sysctl(void)
  6086. {
  6087. if (sd_sysctl_header)
  6088. unregister_sysctl_table(sd_sysctl_header);
  6089. sd_sysctl_header = NULL;
  6090. if (sd_ctl_dir[0].child)
  6091. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6092. }
  6093. #else
  6094. static void register_sched_domain_sysctl(void)
  6095. {
  6096. }
  6097. static void unregister_sched_domain_sysctl(void)
  6098. {
  6099. }
  6100. #endif
  6101. static void set_rq_online(struct rq *rq)
  6102. {
  6103. if (!rq->online) {
  6104. const struct sched_class *class;
  6105. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6106. rq->online = 1;
  6107. for_each_class(class) {
  6108. if (class->rq_online)
  6109. class->rq_online(rq);
  6110. }
  6111. }
  6112. }
  6113. static void set_rq_offline(struct rq *rq)
  6114. {
  6115. if (rq->online) {
  6116. const struct sched_class *class;
  6117. for_each_class(class) {
  6118. if (class->rq_offline)
  6119. class->rq_offline(rq);
  6120. }
  6121. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6122. rq->online = 0;
  6123. }
  6124. }
  6125. /*
  6126. * migration_call - callback that gets triggered when a CPU is added.
  6127. * Here we can start up the necessary migration thread for the new CPU.
  6128. */
  6129. static int __cpuinit
  6130. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6131. {
  6132. struct task_struct *p;
  6133. int cpu = (long)hcpu;
  6134. unsigned long flags;
  6135. struct rq *rq;
  6136. switch (action) {
  6137. case CPU_UP_PREPARE:
  6138. case CPU_UP_PREPARE_FROZEN:
  6139. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6140. if (IS_ERR(p))
  6141. return NOTIFY_BAD;
  6142. kthread_bind(p, cpu);
  6143. /* Must be high prio: stop_machine expects to yield to it. */
  6144. rq = task_rq_lock(p, &flags);
  6145. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6146. task_rq_unlock(rq, &flags);
  6147. cpu_rq(cpu)->migration_thread = p;
  6148. break;
  6149. case CPU_ONLINE:
  6150. case CPU_ONLINE_FROZEN:
  6151. /* Strictly unnecessary, as first user will wake it. */
  6152. wake_up_process(cpu_rq(cpu)->migration_thread);
  6153. /* Update our root-domain */
  6154. rq = cpu_rq(cpu);
  6155. spin_lock_irqsave(&rq->lock, flags);
  6156. if (rq->rd) {
  6157. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6158. set_rq_online(rq);
  6159. }
  6160. spin_unlock_irqrestore(&rq->lock, flags);
  6161. break;
  6162. #ifdef CONFIG_HOTPLUG_CPU
  6163. case CPU_UP_CANCELED:
  6164. case CPU_UP_CANCELED_FROZEN:
  6165. if (!cpu_rq(cpu)->migration_thread)
  6166. break;
  6167. /* Unbind it from offline cpu so it can run. Fall thru. */
  6168. kthread_bind(cpu_rq(cpu)->migration_thread,
  6169. cpumask_any(cpu_online_mask));
  6170. kthread_stop(cpu_rq(cpu)->migration_thread);
  6171. cpu_rq(cpu)->migration_thread = NULL;
  6172. break;
  6173. case CPU_DEAD:
  6174. case CPU_DEAD_FROZEN:
  6175. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6176. migrate_live_tasks(cpu);
  6177. rq = cpu_rq(cpu);
  6178. kthread_stop(rq->migration_thread);
  6179. rq->migration_thread = NULL;
  6180. /* Idle task back to normal (off runqueue, low prio) */
  6181. spin_lock_irq(&rq->lock);
  6182. update_rq_clock(rq);
  6183. deactivate_task(rq, rq->idle, 0);
  6184. rq->idle->static_prio = MAX_PRIO;
  6185. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6186. rq->idle->sched_class = &idle_sched_class;
  6187. migrate_dead_tasks(cpu);
  6188. spin_unlock_irq(&rq->lock);
  6189. cpuset_unlock();
  6190. migrate_nr_uninterruptible(rq);
  6191. BUG_ON(rq->nr_running != 0);
  6192. /*
  6193. * No need to migrate the tasks: it was best-effort if
  6194. * they didn't take sched_hotcpu_mutex. Just wake up
  6195. * the requestors.
  6196. */
  6197. spin_lock_irq(&rq->lock);
  6198. while (!list_empty(&rq->migration_queue)) {
  6199. struct migration_req *req;
  6200. req = list_entry(rq->migration_queue.next,
  6201. struct migration_req, list);
  6202. list_del_init(&req->list);
  6203. spin_unlock_irq(&rq->lock);
  6204. complete(&req->done);
  6205. spin_lock_irq(&rq->lock);
  6206. }
  6207. spin_unlock_irq(&rq->lock);
  6208. break;
  6209. case CPU_DYING:
  6210. case CPU_DYING_FROZEN:
  6211. /* Update our root-domain */
  6212. rq = cpu_rq(cpu);
  6213. spin_lock_irqsave(&rq->lock, flags);
  6214. if (rq->rd) {
  6215. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6216. set_rq_offline(rq);
  6217. }
  6218. spin_unlock_irqrestore(&rq->lock, flags);
  6219. break;
  6220. #endif
  6221. }
  6222. return NOTIFY_OK;
  6223. }
  6224. /* Register at highest priority so that task migration (migrate_all_tasks)
  6225. * happens before everything else.
  6226. */
  6227. static struct notifier_block __cpuinitdata migration_notifier = {
  6228. .notifier_call = migration_call,
  6229. .priority = 10
  6230. };
  6231. static int __init migration_init(void)
  6232. {
  6233. void *cpu = (void *)(long)smp_processor_id();
  6234. int err;
  6235. /* Start one for the boot CPU: */
  6236. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6237. BUG_ON(err == NOTIFY_BAD);
  6238. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6239. register_cpu_notifier(&migration_notifier);
  6240. return err;
  6241. }
  6242. early_initcall(migration_init);
  6243. #endif
  6244. #ifdef CONFIG_SMP
  6245. #ifdef CONFIG_SCHED_DEBUG
  6246. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6247. struct cpumask *groupmask)
  6248. {
  6249. struct sched_group *group = sd->groups;
  6250. char str[256];
  6251. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6252. cpumask_clear(groupmask);
  6253. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6254. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6255. printk("does not load-balance\n");
  6256. if (sd->parent)
  6257. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6258. " has parent");
  6259. return -1;
  6260. }
  6261. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6262. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6263. printk(KERN_ERR "ERROR: domain->span does not contain "
  6264. "CPU%d\n", cpu);
  6265. }
  6266. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6267. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6268. " CPU%d\n", cpu);
  6269. }
  6270. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6271. do {
  6272. if (!group) {
  6273. printk("\n");
  6274. printk(KERN_ERR "ERROR: group is NULL\n");
  6275. break;
  6276. }
  6277. if (!group->__cpu_power) {
  6278. printk(KERN_CONT "\n");
  6279. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6280. "set\n");
  6281. break;
  6282. }
  6283. if (!cpumask_weight(sched_group_cpus(group))) {
  6284. printk(KERN_CONT "\n");
  6285. printk(KERN_ERR "ERROR: empty group\n");
  6286. break;
  6287. }
  6288. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6289. printk(KERN_CONT "\n");
  6290. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6291. break;
  6292. }
  6293. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6294. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6295. printk(KERN_CONT " %s", str);
  6296. group = group->next;
  6297. } while (group != sd->groups);
  6298. printk(KERN_CONT "\n");
  6299. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6300. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6301. if (sd->parent &&
  6302. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6303. printk(KERN_ERR "ERROR: parent span is not a superset "
  6304. "of domain->span\n");
  6305. return 0;
  6306. }
  6307. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6308. {
  6309. cpumask_var_t groupmask;
  6310. int level = 0;
  6311. if (!sd) {
  6312. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6313. return;
  6314. }
  6315. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6316. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6317. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6318. return;
  6319. }
  6320. for (;;) {
  6321. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6322. break;
  6323. level++;
  6324. sd = sd->parent;
  6325. if (!sd)
  6326. break;
  6327. }
  6328. free_cpumask_var(groupmask);
  6329. }
  6330. #else /* !CONFIG_SCHED_DEBUG */
  6331. # define sched_domain_debug(sd, cpu) do { } while (0)
  6332. #endif /* CONFIG_SCHED_DEBUG */
  6333. static int sd_degenerate(struct sched_domain *sd)
  6334. {
  6335. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6336. return 1;
  6337. /* Following flags need at least 2 groups */
  6338. if (sd->flags & (SD_LOAD_BALANCE |
  6339. SD_BALANCE_NEWIDLE |
  6340. SD_BALANCE_FORK |
  6341. SD_BALANCE_EXEC |
  6342. SD_SHARE_CPUPOWER |
  6343. SD_SHARE_PKG_RESOURCES)) {
  6344. if (sd->groups != sd->groups->next)
  6345. return 0;
  6346. }
  6347. /* Following flags don't use groups */
  6348. if (sd->flags & (SD_WAKE_IDLE |
  6349. SD_WAKE_AFFINE |
  6350. SD_WAKE_BALANCE))
  6351. return 0;
  6352. return 1;
  6353. }
  6354. static int
  6355. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6356. {
  6357. unsigned long cflags = sd->flags, pflags = parent->flags;
  6358. if (sd_degenerate(parent))
  6359. return 1;
  6360. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6361. return 0;
  6362. /* Does parent contain flags not in child? */
  6363. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6364. if (cflags & SD_WAKE_AFFINE)
  6365. pflags &= ~SD_WAKE_BALANCE;
  6366. /* Flags needing groups don't count if only 1 group in parent */
  6367. if (parent->groups == parent->groups->next) {
  6368. pflags &= ~(SD_LOAD_BALANCE |
  6369. SD_BALANCE_NEWIDLE |
  6370. SD_BALANCE_FORK |
  6371. SD_BALANCE_EXEC |
  6372. SD_SHARE_CPUPOWER |
  6373. SD_SHARE_PKG_RESOURCES);
  6374. if (nr_node_ids == 1)
  6375. pflags &= ~SD_SERIALIZE;
  6376. }
  6377. if (~cflags & pflags)
  6378. return 0;
  6379. return 1;
  6380. }
  6381. static void free_rootdomain(struct root_domain *rd)
  6382. {
  6383. cpupri_cleanup(&rd->cpupri);
  6384. free_cpumask_var(rd->rto_mask);
  6385. free_cpumask_var(rd->online);
  6386. free_cpumask_var(rd->span);
  6387. kfree(rd);
  6388. }
  6389. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6390. {
  6391. struct root_domain *old_rd = NULL;
  6392. unsigned long flags;
  6393. spin_lock_irqsave(&rq->lock, flags);
  6394. if (rq->rd) {
  6395. old_rd = rq->rd;
  6396. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6397. set_rq_offline(rq);
  6398. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6399. /*
  6400. * If we dont want to free the old_rt yet then
  6401. * set old_rd to NULL to skip the freeing later
  6402. * in this function:
  6403. */
  6404. if (!atomic_dec_and_test(&old_rd->refcount))
  6405. old_rd = NULL;
  6406. }
  6407. atomic_inc(&rd->refcount);
  6408. rq->rd = rd;
  6409. cpumask_set_cpu(rq->cpu, rd->span);
  6410. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6411. set_rq_online(rq);
  6412. spin_unlock_irqrestore(&rq->lock, flags);
  6413. if (old_rd)
  6414. free_rootdomain(old_rd);
  6415. }
  6416. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6417. {
  6418. memset(rd, 0, sizeof(*rd));
  6419. if (bootmem) {
  6420. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6421. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6422. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6423. cpupri_init(&rd->cpupri, true);
  6424. return 0;
  6425. }
  6426. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6427. goto out;
  6428. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6429. goto free_span;
  6430. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6431. goto free_online;
  6432. if (cpupri_init(&rd->cpupri, false) != 0)
  6433. goto free_rto_mask;
  6434. return 0;
  6435. free_rto_mask:
  6436. free_cpumask_var(rd->rto_mask);
  6437. free_online:
  6438. free_cpumask_var(rd->online);
  6439. free_span:
  6440. free_cpumask_var(rd->span);
  6441. out:
  6442. return -ENOMEM;
  6443. }
  6444. static void init_defrootdomain(void)
  6445. {
  6446. init_rootdomain(&def_root_domain, true);
  6447. atomic_set(&def_root_domain.refcount, 1);
  6448. }
  6449. static struct root_domain *alloc_rootdomain(void)
  6450. {
  6451. struct root_domain *rd;
  6452. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6453. if (!rd)
  6454. return NULL;
  6455. if (init_rootdomain(rd, false) != 0) {
  6456. kfree(rd);
  6457. return NULL;
  6458. }
  6459. return rd;
  6460. }
  6461. /*
  6462. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6463. * hold the hotplug lock.
  6464. */
  6465. static void
  6466. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6467. {
  6468. struct rq *rq = cpu_rq(cpu);
  6469. struct sched_domain *tmp;
  6470. /* Remove the sched domains which do not contribute to scheduling. */
  6471. for (tmp = sd; tmp; ) {
  6472. struct sched_domain *parent = tmp->parent;
  6473. if (!parent)
  6474. break;
  6475. if (sd_parent_degenerate(tmp, parent)) {
  6476. tmp->parent = parent->parent;
  6477. if (parent->parent)
  6478. parent->parent->child = tmp;
  6479. } else
  6480. tmp = tmp->parent;
  6481. }
  6482. if (sd && sd_degenerate(sd)) {
  6483. sd = sd->parent;
  6484. if (sd)
  6485. sd->child = NULL;
  6486. }
  6487. sched_domain_debug(sd, cpu);
  6488. rq_attach_root(rq, rd);
  6489. rcu_assign_pointer(rq->sd, sd);
  6490. }
  6491. /* cpus with isolated domains */
  6492. static cpumask_var_t cpu_isolated_map;
  6493. /* Setup the mask of cpus configured for isolated domains */
  6494. static int __init isolated_cpu_setup(char *str)
  6495. {
  6496. cpulist_parse(str, cpu_isolated_map);
  6497. return 1;
  6498. }
  6499. __setup("isolcpus=", isolated_cpu_setup);
  6500. /*
  6501. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6502. * to a function which identifies what group(along with sched group) a CPU
  6503. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6504. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6505. *
  6506. * init_sched_build_groups will build a circular linked list of the groups
  6507. * covered by the given span, and will set each group's ->cpumask correctly,
  6508. * and ->cpu_power to 0.
  6509. */
  6510. static void
  6511. init_sched_build_groups(const struct cpumask *span,
  6512. const struct cpumask *cpu_map,
  6513. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6514. struct sched_group **sg,
  6515. struct cpumask *tmpmask),
  6516. struct cpumask *covered, struct cpumask *tmpmask)
  6517. {
  6518. struct sched_group *first = NULL, *last = NULL;
  6519. int i;
  6520. cpumask_clear(covered);
  6521. for_each_cpu(i, span) {
  6522. struct sched_group *sg;
  6523. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6524. int j;
  6525. if (cpumask_test_cpu(i, covered))
  6526. continue;
  6527. cpumask_clear(sched_group_cpus(sg));
  6528. sg->__cpu_power = 0;
  6529. for_each_cpu(j, span) {
  6530. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6531. continue;
  6532. cpumask_set_cpu(j, covered);
  6533. cpumask_set_cpu(j, sched_group_cpus(sg));
  6534. }
  6535. if (!first)
  6536. first = sg;
  6537. if (last)
  6538. last->next = sg;
  6539. last = sg;
  6540. }
  6541. last->next = first;
  6542. }
  6543. #define SD_NODES_PER_DOMAIN 16
  6544. #ifdef CONFIG_NUMA
  6545. /**
  6546. * find_next_best_node - find the next node to include in a sched_domain
  6547. * @node: node whose sched_domain we're building
  6548. * @used_nodes: nodes already in the sched_domain
  6549. *
  6550. * Find the next node to include in a given scheduling domain. Simply
  6551. * finds the closest node not already in the @used_nodes map.
  6552. *
  6553. * Should use nodemask_t.
  6554. */
  6555. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6556. {
  6557. int i, n, val, min_val, best_node = 0;
  6558. min_val = INT_MAX;
  6559. for (i = 0; i < nr_node_ids; i++) {
  6560. /* Start at @node */
  6561. n = (node + i) % nr_node_ids;
  6562. if (!nr_cpus_node(n))
  6563. continue;
  6564. /* Skip already used nodes */
  6565. if (node_isset(n, *used_nodes))
  6566. continue;
  6567. /* Simple min distance search */
  6568. val = node_distance(node, n);
  6569. if (val < min_val) {
  6570. min_val = val;
  6571. best_node = n;
  6572. }
  6573. }
  6574. node_set(best_node, *used_nodes);
  6575. return best_node;
  6576. }
  6577. /**
  6578. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6579. * @node: node whose cpumask we're constructing
  6580. * @span: resulting cpumask
  6581. *
  6582. * Given a node, construct a good cpumask for its sched_domain to span. It
  6583. * should be one that prevents unnecessary balancing, but also spreads tasks
  6584. * out optimally.
  6585. */
  6586. static void sched_domain_node_span(int node, struct cpumask *span)
  6587. {
  6588. nodemask_t used_nodes;
  6589. int i;
  6590. cpumask_clear(span);
  6591. nodes_clear(used_nodes);
  6592. cpumask_or(span, span, cpumask_of_node(node));
  6593. node_set(node, used_nodes);
  6594. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6595. int next_node = find_next_best_node(node, &used_nodes);
  6596. cpumask_or(span, span, cpumask_of_node(next_node));
  6597. }
  6598. }
  6599. #endif /* CONFIG_NUMA */
  6600. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6601. /*
  6602. * The cpus mask in sched_group and sched_domain hangs off the end.
  6603. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6604. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6605. */
  6606. struct static_sched_group {
  6607. struct sched_group sg;
  6608. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6609. };
  6610. struct static_sched_domain {
  6611. struct sched_domain sd;
  6612. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6613. };
  6614. /*
  6615. * SMT sched-domains:
  6616. */
  6617. #ifdef CONFIG_SCHED_SMT
  6618. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6619. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6620. static int
  6621. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6622. struct sched_group **sg, struct cpumask *unused)
  6623. {
  6624. if (sg)
  6625. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6626. return cpu;
  6627. }
  6628. #endif /* CONFIG_SCHED_SMT */
  6629. /*
  6630. * multi-core sched-domains:
  6631. */
  6632. #ifdef CONFIG_SCHED_MC
  6633. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6634. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6635. #endif /* CONFIG_SCHED_MC */
  6636. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6637. static int
  6638. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6639. struct sched_group **sg, struct cpumask *mask)
  6640. {
  6641. int group;
  6642. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6643. group = cpumask_first(mask);
  6644. if (sg)
  6645. *sg = &per_cpu(sched_group_core, group).sg;
  6646. return group;
  6647. }
  6648. #elif defined(CONFIG_SCHED_MC)
  6649. static int
  6650. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6651. struct sched_group **sg, struct cpumask *unused)
  6652. {
  6653. if (sg)
  6654. *sg = &per_cpu(sched_group_core, cpu).sg;
  6655. return cpu;
  6656. }
  6657. #endif
  6658. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6659. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6660. static int
  6661. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6662. struct sched_group **sg, struct cpumask *mask)
  6663. {
  6664. int group;
  6665. #ifdef CONFIG_SCHED_MC
  6666. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6667. group = cpumask_first(mask);
  6668. #elif defined(CONFIG_SCHED_SMT)
  6669. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6670. group = cpumask_first(mask);
  6671. #else
  6672. group = cpu;
  6673. #endif
  6674. if (sg)
  6675. *sg = &per_cpu(sched_group_phys, group).sg;
  6676. return group;
  6677. }
  6678. #ifdef CONFIG_NUMA
  6679. /*
  6680. * The init_sched_build_groups can't handle what we want to do with node
  6681. * groups, so roll our own. Now each node has its own list of groups which
  6682. * gets dynamically allocated.
  6683. */
  6684. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6685. static struct sched_group ***sched_group_nodes_bycpu;
  6686. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6687. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6688. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6689. struct sched_group **sg,
  6690. struct cpumask *nodemask)
  6691. {
  6692. int group;
  6693. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6694. group = cpumask_first(nodemask);
  6695. if (sg)
  6696. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6697. return group;
  6698. }
  6699. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6700. {
  6701. struct sched_group *sg = group_head;
  6702. int j;
  6703. if (!sg)
  6704. return;
  6705. do {
  6706. for_each_cpu(j, sched_group_cpus(sg)) {
  6707. struct sched_domain *sd;
  6708. sd = &per_cpu(phys_domains, j).sd;
  6709. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6710. /*
  6711. * Only add "power" once for each
  6712. * physical package.
  6713. */
  6714. continue;
  6715. }
  6716. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6717. }
  6718. sg = sg->next;
  6719. } while (sg != group_head);
  6720. }
  6721. #endif /* CONFIG_NUMA */
  6722. #ifdef CONFIG_NUMA
  6723. /* Free memory allocated for various sched_group structures */
  6724. static void free_sched_groups(const struct cpumask *cpu_map,
  6725. struct cpumask *nodemask)
  6726. {
  6727. int cpu, i;
  6728. for_each_cpu(cpu, cpu_map) {
  6729. struct sched_group **sched_group_nodes
  6730. = sched_group_nodes_bycpu[cpu];
  6731. if (!sched_group_nodes)
  6732. continue;
  6733. for (i = 0; i < nr_node_ids; i++) {
  6734. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6735. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6736. if (cpumask_empty(nodemask))
  6737. continue;
  6738. if (sg == NULL)
  6739. continue;
  6740. sg = sg->next;
  6741. next_sg:
  6742. oldsg = sg;
  6743. sg = sg->next;
  6744. kfree(oldsg);
  6745. if (oldsg != sched_group_nodes[i])
  6746. goto next_sg;
  6747. }
  6748. kfree(sched_group_nodes);
  6749. sched_group_nodes_bycpu[cpu] = NULL;
  6750. }
  6751. }
  6752. #else /* !CONFIG_NUMA */
  6753. static void free_sched_groups(const struct cpumask *cpu_map,
  6754. struct cpumask *nodemask)
  6755. {
  6756. }
  6757. #endif /* CONFIG_NUMA */
  6758. /*
  6759. * Initialize sched groups cpu_power.
  6760. *
  6761. * cpu_power indicates the capacity of sched group, which is used while
  6762. * distributing the load between different sched groups in a sched domain.
  6763. * Typically cpu_power for all the groups in a sched domain will be same unless
  6764. * there are asymmetries in the topology. If there are asymmetries, group
  6765. * having more cpu_power will pickup more load compared to the group having
  6766. * less cpu_power.
  6767. *
  6768. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6769. * the maximum number of tasks a group can handle in the presence of other idle
  6770. * or lightly loaded groups in the same sched domain.
  6771. */
  6772. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6773. {
  6774. struct sched_domain *child;
  6775. struct sched_group *group;
  6776. WARN_ON(!sd || !sd->groups);
  6777. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6778. return;
  6779. child = sd->child;
  6780. sd->groups->__cpu_power = 0;
  6781. /*
  6782. * For perf policy, if the groups in child domain share resources
  6783. * (for example cores sharing some portions of the cache hierarchy
  6784. * or SMT), then set this domain groups cpu_power such that each group
  6785. * can handle only one task, when there are other idle groups in the
  6786. * same sched domain.
  6787. */
  6788. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6789. (child->flags &
  6790. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6791. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6792. return;
  6793. }
  6794. /*
  6795. * add cpu_power of each child group to this groups cpu_power
  6796. */
  6797. group = child->groups;
  6798. do {
  6799. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6800. group = group->next;
  6801. } while (group != child->groups);
  6802. }
  6803. /*
  6804. * Initializers for schedule domains
  6805. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6806. */
  6807. #ifdef CONFIG_SCHED_DEBUG
  6808. # define SD_INIT_NAME(sd, type) sd->name = #type
  6809. #else
  6810. # define SD_INIT_NAME(sd, type) do { } while (0)
  6811. #endif
  6812. #define SD_INIT(sd, type) sd_init_##type(sd)
  6813. #define SD_INIT_FUNC(type) \
  6814. static noinline void sd_init_##type(struct sched_domain *sd) \
  6815. { \
  6816. memset(sd, 0, sizeof(*sd)); \
  6817. *sd = SD_##type##_INIT; \
  6818. sd->level = SD_LV_##type; \
  6819. SD_INIT_NAME(sd, type); \
  6820. }
  6821. SD_INIT_FUNC(CPU)
  6822. #ifdef CONFIG_NUMA
  6823. SD_INIT_FUNC(ALLNODES)
  6824. SD_INIT_FUNC(NODE)
  6825. #endif
  6826. #ifdef CONFIG_SCHED_SMT
  6827. SD_INIT_FUNC(SIBLING)
  6828. #endif
  6829. #ifdef CONFIG_SCHED_MC
  6830. SD_INIT_FUNC(MC)
  6831. #endif
  6832. static int default_relax_domain_level = -1;
  6833. static int __init setup_relax_domain_level(char *str)
  6834. {
  6835. unsigned long val;
  6836. val = simple_strtoul(str, NULL, 0);
  6837. if (val < SD_LV_MAX)
  6838. default_relax_domain_level = val;
  6839. return 1;
  6840. }
  6841. __setup("relax_domain_level=", setup_relax_domain_level);
  6842. static void set_domain_attribute(struct sched_domain *sd,
  6843. struct sched_domain_attr *attr)
  6844. {
  6845. int request;
  6846. if (!attr || attr->relax_domain_level < 0) {
  6847. if (default_relax_domain_level < 0)
  6848. return;
  6849. else
  6850. request = default_relax_domain_level;
  6851. } else
  6852. request = attr->relax_domain_level;
  6853. if (request < sd->level) {
  6854. /* turn off idle balance on this domain */
  6855. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6856. } else {
  6857. /* turn on idle balance on this domain */
  6858. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6859. }
  6860. }
  6861. /*
  6862. * Build sched domains for a given set of cpus and attach the sched domains
  6863. * to the individual cpus
  6864. */
  6865. static int __build_sched_domains(const struct cpumask *cpu_map,
  6866. struct sched_domain_attr *attr)
  6867. {
  6868. int i, err = -ENOMEM;
  6869. struct root_domain *rd;
  6870. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6871. tmpmask;
  6872. #ifdef CONFIG_NUMA
  6873. cpumask_var_t domainspan, covered, notcovered;
  6874. struct sched_group **sched_group_nodes = NULL;
  6875. int sd_allnodes = 0;
  6876. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6877. goto out;
  6878. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6879. goto free_domainspan;
  6880. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6881. goto free_covered;
  6882. #endif
  6883. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6884. goto free_notcovered;
  6885. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6886. goto free_nodemask;
  6887. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6888. goto free_this_sibling_map;
  6889. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6890. goto free_this_core_map;
  6891. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6892. goto free_send_covered;
  6893. #ifdef CONFIG_NUMA
  6894. /*
  6895. * Allocate the per-node list of sched groups
  6896. */
  6897. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6898. GFP_KERNEL);
  6899. if (!sched_group_nodes) {
  6900. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6901. goto free_tmpmask;
  6902. }
  6903. #endif
  6904. rd = alloc_rootdomain();
  6905. if (!rd) {
  6906. printk(KERN_WARNING "Cannot alloc root domain\n");
  6907. goto free_sched_groups;
  6908. }
  6909. #ifdef CONFIG_NUMA
  6910. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6911. #endif
  6912. /*
  6913. * Set up domains for cpus specified by the cpu_map.
  6914. */
  6915. for_each_cpu(i, cpu_map) {
  6916. struct sched_domain *sd = NULL, *p;
  6917. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6918. #ifdef CONFIG_NUMA
  6919. if (cpumask_weight(cpu_map) >
  6920. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6921. sd = &per_cpu(allnodes_domains, i).sd;
  6922. SD_INIT(sd, ALLNODES);
  6923. set_domain_attribute(sd, attr);
  6924. cpumask_copy(sched_domain_span(sd), cpu_map);
  6925. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6926. p = sd;
  6927. sd_allnodes = 1;
  6928. } else
  6929. p = NULL;
  6930. sd = &per_cpu(node_domains, i).sd;
  6931. SD_INIT(sd, NODE);
  6932. set_domain_attribute(sd, attr);
  6933. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6934. sd->parent = p;
  6935. if (p)
  6936. p->child = sd;
  6937. cpumask_and(sched_domain_span(sd),
  6938. sched_domain_span(sd), cpu_map);
  6939. #endif
  6940. p = sd;
  6941. sd = &per_cpu(phys_domains, i).sd;
  6942. SD_INIT(sd, CPU);
  6943. set_domain_attribute(sd, attr);
  6944. cpumask_copy(sched_domain_span(sd), nodemask);
  6945. sd->parent = p;
  6946. if (p)
  6947. p->child = sd;
  6948. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6949. #ifdef CONFIG_SCHED_MC
  6950. p = sd;
  6951. sd = &per_cpu(core_domains, i).sd;
  6952. SD_INIT(sd, MC);
  6953. set_domain_attribute(sd, attr);
  6954. cpumask_and(sched_domain_span(sd), cpu_map,
  6955. cpu_coregroup_mask(i));
  6956. sd->parent = p;
  6957. p->child = sd;
  6958. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6959. #endif
  6960. #ifdef CONFIG_SCHED_SMT
  6961. p = sd;
  6962. sd = &per_cpu(cpu_domains, i).sd;
  6963. SD_INIT(sd, SIBLING);
  6964. set_domain_attribute(sd, attr);
  6965. cpumask_and(sched_domain_span(sd),
  6966. topology_thread_cpumask(i), cpu_map);
  6967. sd->parent = p;
  6968. p->child = sd;
  6969. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6970. #endif
  6971. }
  6972. #ifdef CONFIG_SCHED_SMT
  6973. /* Set up CPU (sibling) groups */
  6974. for_each_cpu(i, cpu_map) {
  6975. cpumask_and(this_sibling_map,
  6976. topology_thread_cpumask(i), cpu_map);
  6977. if (i != cpumask_first(this_sibling_map))
  6978. continue;
  6979. init_sched_build_groups(this_sibling_map, cpu_map,
  6980. &cpu_to_cpu_group,
  6981. send_covered, tmpmask);
  6982. }
  6983. #endif
  6984. #ifdef CONFIG_SCHED_MC
  6985. /* Set up multi-core groups */
  6986. for_each_cpu(i, cpu_map) {
  6987. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  6988. if (i != cpumask_first(this_core_map))
  6989. continue;
  6990. init_sched_build_groups(this_core_map, cpu_map,
  6991. &cpu_to_core_group,
  6992. send_covered, tmpmask);
  6993. }
  6994. #endif
  6995. /* Set up physical groups */
  6996. for (i = 0; i < nr_node_ids; i++) {
  6997. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6998. if (cpumask_empty(nodemask))
  6999. continue;
  7000. init_sched_build_groups(nodemask, cpu_map,
  7001. &cpu_to_phys_group,
  7002. send_covered, tmpmask);
  7003. }
  7004. #ifdef CONFIG_NUMA
  7005. /* Set up node groups */
  7006. if (sd_allnodes) {
  7007. init_sched_build_groups(cpu_map, cpu_map,
  7008. &cpu_to_allnodes_group,
  7009. send_covered, tmpmask);
  7010. }
  7011. for (i = 0; i < nr_node_ids; i++) {
  7012. /* Set up node groups */
  7013. struct sched_group *sg, *prev;
  7014. int j;
  7015. cpumask_clear(covered);
  7016. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7017. if (cpumask_empty(nodemask)) {
  7018. sched_group_nodes[i] = NULL;
  7019. continue;
  7020. }
  7021. sched_domain_node_span(i, domainspan);
  7022. cpumask_and(domainspan, domainspan, cpu_map);
  7023. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7024. GFP_KERNEL, i);
  7025. if (!sg) {
  7026. printk(KERN_WARNING "Can not alloc domain group for "
  7027. "node %d\n", i);
  7028. goto error;
  7029. }
  7030. sched_group_nodes[i] = sg;
  7031. for_each_cpu(j, nodemask) {
  7032. struct sched_domain *sd;
  7033. sd = &per_cpu(node_domains, j).sd;
  7034. sd->groups = sg;
  7035. }
  7036. sg->__cpu_power = 0;
  7037. cpumask_copy(sched_group_cpus(sg), nodemask);
  7038. sg->next = sg;
  7039. cpumask_or(covered, covered, nodemask);
  7040. prev = sg;
  7041. for (j = 0; j < nr_node_ids; j++) {
  7042. int n = (i + j) % nr_node_ids;
  7043. cpumask_complement(notcovered, covered);
  7044. cpumask_and(tmpmask, notcovered, cpu_map);
  7045. cpumask_and(tmpmask, tmpmask, domainspan);
  7046. if (cpumask_empty(tmpmask))
  7047. break;
  7048. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7049. if (cpumask_empty(tmpmask))
  7050. continue;
  7051. sg = kmalloc_node(sizeof(struct sched_group) +
  7052. cpumask_size(),
  7053. GFP_KERNEL, i);
  7054. if (!sg) {
  7055. printk(KERN_WARNING
  7056. "Can not alloc domain group for node %d\n", j);
  7057. goto error;
  7058. }
  7059. sg->__cpu_power = 0;
  7060. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7061. sg->next = prev->next;
  7062. cpumask_or(covered, covered, tmpmask);
  7063. prev->next = sg;
  7064. prev = sg;
  7065. }
  7066. }
  7067. #endif
  7068. /* Calculate CPU power for physical packages and nodes */
  7069. #ifdef CONFIG_SCHED_SMT
  7070. for_each_cpu(i, cpu_map) {
  7071. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7072. init_sched_groups_power(i, sd);
  7073. }
  7074. #endif
  7075. #ifdef CONFIG_SCHED_MC
  7076. for_each_cpu(i, cpu_map) {
  7077. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7078. init_sched_groups_power(i, sd);
  7079. }
  7080. #endif
  7081. for_each_cpu(i, cpu_map) {
  7082. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7083. init_sched_groups_power(i, sd);
  7084. }
  7085. #ifdef CONFIG_NUMA
  7086. for (i = 0; i < nr_node_ids; i++)
  7087. init_numa_sched_groups_power(sched_group_nodes[i]);
  7088. if (sd_allnodes) {
  7089. struct sched_group *sg;
  7090. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7091. tmpmask);
  7092. init_numa_sched_groups_power(sg);
  7093. }
  7094. #endif
  7095. /* Attach the domains */
  7096. for_each_cpu(i, cpu_map) {
  7097. struct sched_domain *sd;
  7098. #ifdef CONFIG_SCHED_SMT
  7099. sd = &per_cpu(cpu_domains, i).sd;
  7100. #elif defined(CONFIG_SCHED_MC)
  7101. sd = &per_cpu(core_domains, i).sd;
  7102. #else
  7103. sd = &per_cpu(phys_domains, i).sd;
  7104. #endif
  7105. cpu_attach_domain(sd, rd, i);
  7106. }
  7107. err = 0;
  7108. free_tmpmask:
  7109. free_cpumask_var(tmpmask);
  7110. free_send_covered:
  7111. free_cpumask_var(send_covered);
  7112. free_this_core_map:
  7113. free_cpumask_var(this_core_map);
  7114. free_this_sibling_map:
  7115. free_cpumask_var(this_sibling_map);
  7116. free_nodemask:
  7117. free_cpumask_var(nodemask);
  7118. free_notcovered:
  7119. #ifdef CONFIG_NUMA
  7120. free_cpumask_var(notcovered);
  7121. free_covered:
  7122. free_cpumask_var(covered);
  7123. free_domainspan:
  7124. free_cpumask_var(domainspan);
  7125. out:
  7126. #endif
  7127. return err;
  7128. free_sched_groups:
  7129. #ifdef CONFIG_NUMA
  7130. kfree(sched_group_nodes);
  7131. #endif
  7132. goto free_tmpmask;
  7133. #ifdef CONFIG_NUMA
  7134. error:
  7135. free_sched_groups(cpu_map, tmpmask);
  7136. free_rootdomain(rd);
  7137. goto free_tmpmask;
  7138. #endif
  7139. }
  7140. static int build_sched_domains(const struct cpumask *cpu_map)
  7141. {
  7142. return __build_sched_domains(cpu_map, NULL);
  7143. }
  7144. static struct cpumask *doms_cur; /* current sched domains */
  7145. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7146. static struct sched_domain_attr *dattr_cur;
  7147. /* attribues of custom domains in 'doms_cur' */
  7148. /*
  7149. * Special case: If a kmalloc of a doms_cur partition (array of
  7150. * cpumask) fails, then fallback to a single sched domain,
  7151. * as determined by the single cpumask fallback_doms.
  7152. */
  7153. static cpumask_var_t fallback_doms;
  7154. /*
  7155. * arch_update_cpu_topology lets virtualized architectures update the
  7156. * cpu core maps. It is supposed to return 1 if the topology changed
  7157. * or 0 if it stayed the same.
  7158. */
  7159. int __attribute__((weak)) arch_update_cpu_topology(void)
  7160. {
  7161. return 0;
  7162. }
  7163. /*
  7164. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7165. * For now this just excludes isolated cpus, but could be used to
  7166. * exclude other special cases in the future.
  7167. */
  7168. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7169. {
  7170. int err;
  7171. arch_update_cpu_topology();
  7172. ndoms_cur = 1;
  7173. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7174. if (!doms_cur)
  7175. doms_cur = fallback_doms;
  7176. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7177. dattr_cur = NULL;
  7178. err = build_sched_domains(doms_cur);
  7179. register_sched_domain_sysctl();
  7180. return err;
  7181. }
  7182. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7183. struct cpumask *tmpmask)
  7184. {
  7185. free_sched_groups(cpu_map, tmpmask);
  7186. }
  7187. /*
  7188. * Detach sched domains from a group of cpus specified in cpu_map
  7189. * These cpus will now be attached to the NULL domain
  7190. */
  7191. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7192. {
  7193. /* Save because hotplug lock held. */
  7194. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7195. int i;
  7196. for_each_cpu(i, cpu_map)
  7197. cpu_attach_domain(NULL, &def_root_domain, i);
  7198. synchronize_sched();
  7199. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7200. }
  7201. /* handle null as "default" */
  7202. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7203. struct sched_domain_attr *new, int idx_new)
  7204. {
  7205. struct sched_domain_attr tmp;
  7206. /* fast path */
  7207. if (!new && !cur)
  7208. return 1;
  7209. tmp = SD_ATTR_INIT;
  7210. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7211. new ? (new + idx_new) : &tmp,
  7212. sizeof(struct sched_domain_attr));
  7213. }
  7214. /*
  7215. * Partition sched domains as specified by the 'ndoms_new'
  7216. * cpumasks in the array doms_new[] of cpumasks. This compares
  7217. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7218. * It destroys each deleted domain and builds each new domain.
  7219. *
  7220. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7221. * The masks don't intersect (don't overlap.) We should setup one
  7222. * sched domain for each mask. CPUs not in any of the cpumasks will
  7223. * not be load balanced. If the same cpumask appears both in the
  7224. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7225. * it as it is.
  7226. *
  7227. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7228. * ownership of it and will kfree it when done with it. If the caller
  7229. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7230. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7231. * the single partition 'fallback_doms', it also forces the domains
  7232. * to be rebuilt.
  7233. *
  7234. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7235. * ndoms_new == 0 is a special case for destroying existing domains,
  7236. * and it will not create the default domain.
  7237. *
  7238. * Call with hotplug lock held
  7239. */
  7240. /* FIXME: Change to struct cpumask *doms_new[] */
  7241. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7242. struct sched_domain_attr *dattr_new)
  7243. {
  7244. int i, j, n;
  7245. int new_topology;
  7246. mutex_lock(&sched_domains_mutex);
  7247. /* always unregister in case we don't destroy any domains */
  7248. unregister_sched_domain_sysctl();
  7249. /* Let architecture update cpu core mappings. */
  7250. new_topology = arch_update_cpu_topology();
  7251. n = doms_new ? ndoms_new : 0;
  7252. /* Destroy deleted domains */
  7253. for (i = 0; i < ndoms_cur; i++) {
  7254. for (j = 0; j < n && !new_topology; j++) {
  7255. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7256. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7257. goto match1;
  7258. }
  7259. /* no match - a current sched domain not in new doms_new[] */
  7260. detach_destroy_domains(doms_cur + i);
  7261. match1:
  7262. ;
  7263. }
  7264. if (doms_new == NULL) {
  7265. ndoms_cur = 0;
  7266. doms_new = fallback_doms;
  7267. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7268. WARN_ON_ONCE(dattr_new);
  7269. }
  7270. /* Build new domains */
  7271. for (i = 0; i < ndoms_new; i++) {
  7272. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7273. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7274. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7275. goto match2;
  7276. }
  7277. /* no match - add a new doms_new */
  7278. __build_sched_domains(doms_new + i,
  7279. dattr_new ? dattr_new + i : NULL);
  7280. match2:
  7281. ;
  7282. }
  7283. /* Remember the new sched domains */
  7284. if (doms_cur != fallback_doms)
  7285. kfree(doms_cur);
  7286. kfree(dattr_cur); /* kfree(NULL) is safe */
  7287. doms_cur = doms_new;
  7288. dattr_cur = dattr_new;
  7289. ndoms_cur = ndoms_new;
  7290. register_sched_domain_sysctl();
  7291. mutex_unlock(&sched_domains_mutex);
  7292. }
  7293. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7294. static void arch_reinit_sched_domains(void)
  7295. {
  7296. get_online_cpus();
  7297. /* Destroy domains first to force the rebuild */
  7298. partition_sched_domains(0, NULL, NULL);
  7299. rebuild_sched_domains();
  7300. put_online_cpus();
  7301. }
  7302. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7303. {
  7304. unsigned int level = 0;
  7305. if (sscanf(buf, "%u", &level) != 1)
  7306. return -EINVAL;
  7307. /*
  7308. * level is always be positive so don't check for
  7309. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7310. * What happens on 0 or 1 byte write,
  7311. * need to check for count as well?
  7312. */
  7313. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7314. return -EINVAL;
  7315. if (smt)
  7316. sched_smt_power_savings = level;
  7317. else
  7318. sched_mc_power_savings = level;
  7319. arch_reinit_sched_domains();
  7320. return count;
  7321. }
  7322. #ifdef CONFIG_SCHED_MC
  7323. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7324. char *page)
  7325. {
  7326. return sprintf(page, "%u\n", sched_mc_power_savings);
  7327. }
  7328. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7329. const char *buf, size_t count)
  7330. {
  7331. return sched_power_savings_store(buf, count, 0);
  7332. }
  7333. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7334. sched_mc_power_savings_show,
  7335. sched_mc_power_savings_store);
  7336. #endif
  7337. #ifdef CONFIG_SCHED_SMT
  7338. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7339. char *page)
  7340. {
  7341. return sprintf(page, "%u\n", sched_smt_power_savings);
  7342. }
  7343. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7344. const char *buf, size_t count)
  7345. {
  7346. return sched_power_savings_store(buf, count, 1);
  7347. }
  7348. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7349. sched_smt_power_savings_show,
  7350. sched_smt_power_savings_store);
  7351. #endif
  7352. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7353. {
  7354. int err = 0;
  7355. #ifdef CONFIG_SCHED_SMT
  7356. if (smt_capable())
  7357. err = sysfs_create_file(&cls->kset.kobj,
  7358. &attr_sched_smt_power_savings.attr);
  7359. #endif
  7360. #ifdef CONFIG_SCHED_MC
  7361. if (!err && mc_capable())
  7362. err = sysfs_create_file(&cls->kset.kobj,
  7363. &attr_sched_mc_power_savings.attr);
  7364. #endif
  7365. return err;
  7366. }
  7367. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7368. #ifndef CONFIG_CPUSETS
  7369. /*
  7370. * Add online and remove offline CPUs from the scheduler domains.
  7371. * When cpusets are enabled they take over this function.
  7372. */
  7373. static int update_sched_domains(struct notifier_block *nfb,
  7374. unsigned long action, void *hcpu)
  7375. {
  7376. switch (action) {
  7377. case CPU_ONLINE:
  7378. case CPU_ONLINE_FROZEN:
  7379. case CPU_DEAD:
  7380. case CPU_DEAD_FROZEN:
  7381. partition_sched_domains(1, NULL, NULL);
  7382. return NOTIFY_OK;
  7383. default:
  7384. return NOTIFY_DONE;
  7385. }
  7386. }
  7387. #endif
  7388. static int update_runtime(struct notifier_block *nfb,
  7389. unsigned long action, void *hcpu)
  7390. {
  7391. int cpu = (int)(long)hcpu;
  7392. switch (action) {
  7393. case CPU_DOWN_PREPARE:
  7394. case CPU_DOWN_PREPARE_FROZEN:
  7395. disable_runtime(cpu_rq(cpu));
  7396. return NOTIFY_OK;
  7397. case CPU_DOWN_FAILED:
  7398. case CPU_DOWN_FAILED_FROZEN:
  7399. case CPU_ONLINE:
  7400. case CPU_ONLINE_FROZEN:
  7401. enable_runtime(cpu_rq(cpu));
  7402. return NOTIFY_OK;
  7403. default:
  7404. return NOTIFY_DONE;
  7405. }
  7406. }
  7407. void __init sched_init_smp(void)
  7408. {
  7409. cpumask_var_t non_isolated_cpus;
  7410. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7411. #if defined(CONFIG_NUMA)
  7412. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7413. GFP_KERNEL);
  7414. BUG_ON(sched_group_nodes_bycpu == NULL);
  7415. #endif
  7416. get_online_cpus();
  7417. mutex_lock(&sched_domains_mutex);
  7418. arch_init_sched_domains(cpu_online_mask);
  7419. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7420. if (cpumask_empty(non_isolated_cpus))
  7421. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7422. mutex_unlock(&sched_domains_mutex);
  7423. put_online_cpus();
  7424. #ifndef CONFIG_CPUSETS
  7425. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7426. hotcpu_notifier(update_sched_domains, 0);
  7427. #endif
  7428. /* RT runtime code needs to handle some hotplug events */
  7429. hotcpu_notifier(update_runtime, 0);
  7430. init_hrtick();
  7431. /* Move init over to a non-isolated CPU */
  7432. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7433. BUG();
  7434. sched_init_granularity();
  7435. free_cpumask_var(non_isolated_cpus);
  7436. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7437. init_sched_rt_class();
  7438. }
  7439. #else
  7440. void __init sched_init_smp(void)
  7441. {
  7442. sched_init_granularity();
  7443. }
  7444. #endif /* CONFIG_SMP */
  7445. int in_sched_functions(unsigned long addr)
  7446. {
  7447. return in_lock_functions(addr) ||
  7448. (addr >= (unsigned long)__sched_text_start
  7449. && addr < (unsigned long)__sched_text_end);
  7450. }
  7451. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7452. {
  7453. cfs_rq->tasks_timeline = RB_ROOT;
  7454. INIT_LIST_HEAD(&cfs_rq->tasks);
  7455. #ifdef CONFIG_FAIR_GROUP_SCHED
  7456. cfs_rq->rq = rq;
  7457. #endif
  7458. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7459. }
  7460. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7461. {
  7462. struct rt_prio_array *array;
  7463. int i;
  7464. array = &rt_rq->active;
  7465. for (i = 0; i < MAX_RT_PRIO; i++) {
  7466. INIT_LIST_HEAD(array->queue + i);
  7467. __clear_bit(i, array->bitmap);
  7468. }
  7469. /* delimiter for bitsearch: */
  7470. __set_bit(MAX_RT_PRIO, array->bitmap);
  7471. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7472. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7473. #ifdef CONFIG_SMP
  7474. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7475. #endif
  7476. #endif
  7477. #ifdef CONFIG_SMP
  7478. rt_rq->rt_nr_migratory = 0;
  7479. rt_rq->overloaded = 0;
  7480. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7481. #endif
  7482. rt_rq->rt_time = 0;
  7483. rt_rq->rt_throttled = 0;
  7484. rt_rq->rt_runtime = 0;
  7485. spin_lock_init(&rt_rq->rt_runtime_lock);
  7486. #ifdef CONFIG_RT_GROUP_SCHED
  7487. rt_rq->rt_nr_boosted = 0;
  7488. rt_rq->rq = rq;
  7489. #endif
  7490. }
  7491. #ifdef CONFIG_FAIR_GROUP_SCHED
  7492. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7493. struct sched_entity *se, int cpu, int add,
  7494. struct sched_entity *parent)
  7495. {
  7496. struct rq *rq = cpu_rq(cpu);
  7497. tg->cfs_rq[cpu] = cfs_rq;
  7498. init_cfs_rq(cfs_rq, rq);
  7499. cfs_rq->tg = tg;
  7500. if (add)
  7501. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7502. tg->se[cpu] = se;
  7503. /* se could be NULL for init_task_group */
  7504. if (!se)
  7505. return;
  7506. if (!parent)
  7507. se->cfs_rq = &rq->cfs;
  7508. else
  7509. se->cfs_rq = parent->my_q;
  7510. se->my_q = cfs_rq;
  7511. se->load.weight = tg->shares;
  7512. se->load.inv_weight = 0;
  7513. se->parent = parent;
  7514. }
  7515. #endif
  7516. #ifdef CONFIG_RT_GROUP_SCHED
  7517. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7518. struct sched_rt_entity *rt_se, int cpu, int add,
  7519. struct sched_rt_entity *parent)
  7520. {
  7521. struct rq *rq = cpu_rq(cpu);
  7522. tg->rt_rq[cpu] = rt_rq;
  7523. init_rt_rq(rt_rq, rq);
  7524. rt_rq->tg = tg;
  7525. rt_rq->rt_se = rt_se;
  7526. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7527. if (add)
  7528. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7529. tg->rt_se[cpu] = rt_se;
  7530. if (!rt_se)
  7531. return;
  7532. if (!parent)
  7533. rt_se->rt_rq = &rq->rt;
  7534. else
  7535. rt_se->rt_rq = parent->my_q;
  7536. rt_se->my_q = rt_rq;
  7537. rt_se->parent = parent;
  7538. INIT_LIST_HEAD(&rt_se->run_list);
  7539. }
  7540. #endif
  7541. void __init sched_init(void)
  7542. {
  7543. int i, j;
  7544. unsigned long alloc_size = 0, ptr;
  7545. #ifdef CONFIG_FAIR_GROUP_SCHED
  7546. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7547. #endif
  7548. #ifdef CONFIG_RT_GROUP_SCHED
  7549. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7550. #endif
  7551. #ifdef CONFIG_USER_SCHED
  7552. alloc_size *= 2;
  7553. #endif
  7554. #ifdef CONFIG_CPUMASK_OFFSTACK
  7555. alloc_size += num_possible_cpus() * cpumask_size();
  7556. #endif
  7557. /*
  7558. * As sched_init() is called before page_alloc is setup,
  7559. * we use alloc_bootmem().
  7560. */
  7561. if (alloc_size) {
  7562. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7563. #ifdef CONFIG_FAIR_GROUP_SCHED
  7564. init_task_group.se = (struct sched_entity **)ptr;
  7565. ptr += nr_cpu_ids * sizeof(void **);
  7566. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7567. ptr += nr_cpu_ids * sizeof(void **);
  7568. #ifdef CONFIG_USER_SCHED
  7569. root_task_group.se = (struct sched_entity **)ptr;
  7570. ptr += nr_cpu_ids * sizeof(void **);
  7571. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7572. ptr += nr_cpu_ids * sizeof(void **);
  7573. #endif /* CONFIG_USER_SCHED */
  7574. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7575. #ifdef CONFIG_RT_GROUP_SCHED
  7576. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7577. ptr += nr_cpu_ids * sizeof(void **);
  7578. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7579. ptr += nr_cpu_ids * sizeof(void **);
  7580. #ifdef CONFIG_USER_SCHED
  7581. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7582. ptr += nr_cpu_ids * sizeof(void **);
  7583. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7584. ptr += nr_cpu_ids * sizeof(void **);
  7585. #endif /* CONFIG_USER_SCHED */
  7586. #endif /* CONFIG_RT_GROUP_SCHED */
  7587. #ifdef CONFIG_CPUMASK_OFFSTACK
  7588. for_each_possible_cpu(i) {
  7589. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7590. ptr += cpumask_size();
  7591. }
  7592. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7593. }
  7594. #ifdef CONFIG_SMP
  7595. init_defrootdomain();
  7596. #endif
  7597. init_rt_bandwidth(&def_rt_bandwidth,
  7598. global_rt_period(), global_rt_runtime());
  7599. #ifdef CONFIG_RT_GROUP_SCHED
  7600. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7601. global_rt_period(), global_rt_runtime());
  7602. #ifdef CONFIG_USER_SCHED
  7603. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7604. global_rt_period(), RUNTIME_INF);
  7605. #endif /* CONFIG_USER_SCHED */
  7606. #endif /* CONFIG_RT_GROUP_SCHED */
  7607. #ifdef CONFIG_GROUP_SCHED
  7608. list_add(&init_task_group.list, &task_groups);
  7609. INIT_LIST_HEAD(&init_task_group.children);
  7610. #ifdef CONFIG_USER_SCHED
  7611. INIT_LIST_HEAD(&root_task_group.children);
  7612. init_task_group.parent = &root_task_group;
  7613. list_add(&init_task_group.siblings, &root_task_group.children);
  7614. #endif /* CONFIG_USER_SCHED */
  7615. #endif /* CONFIG_GROUP_SCHED */
  7616. for_each_possible_cpu(i) {
  7617. struct rq *rq;
  7618. rq = cpu_rq(i);
  7619. spin_lock_init(&rq->lock);
  7620. rq->nr_running = 0;
  7621. init_cfs_rq(&rq->cfs, rq);
  7622. init_rt_rq(&rq->rt, rq);
  7623. #ifdef CONFIG_FAIR_GROUP_SCHED
  7624. init_task_group.shares = init_task_group_load;
  7625. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7626. #ifdef CONFIG_CGROUP_SCHED
  7627. /*
  7628. * How much cpu bandwidth does init_task_group get?
  7629. *
  7630. * In case of task-groups formed thr' the cgroup filesystem, it
  7631. * gets 100% of the cpu resources in the system. This overall
  7632. * system cpu resource is divided among the tasks of
  7633. * init_task_group and its child task-groups in a fair manner,
  7634. * based on each entity's (task or task-group's) weight
  7635. * (se->load.weight).
  7636. *
  7637. * In other words, if init_task_group has 10 tasks of weight
  7638. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7639. * then A0's share of the cpu resource is:
  7640. *
  7641. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7642. *
  7643. * We achieve this by letting init_task_group's tasks sit
  7644. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7645. */
  7646. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7647. #elif defined CONFIG_USER_SCHED
  7648. root_task_group.shares = NICE_0_LOAD;
  7649. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7650. /*
  7651. * In case of task-groups formed thr' the user id of tasks,
  7652. * init_task_group represents tasks belonging to root user.
  7653. * Hence it forms a sibling of all subsequent groups formed.
  7654. * In this case, init_task_group gets only a fraction of overall
  7655. * system cpu resource, based on the weight assigned to root
  7656. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7657. * by letting tasks of init_task_group sit in a separate cfs_rq
  7658. * (init_cfs_rq) and having one entity represent this group of
  7659. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7660. */
  7661. init_tg_cfs_entry(&init_task_group,
  7662. &per_cpu(init_cfs_rq, i),
  7663. &per_cpu(init_sched_entity, i), i, 1,
  7664. root_task_group.se[i]);
  7665. #endif
  7666. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7667. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7668. #ifdef CONFIG_RT_GROUP_SCHED
  7669. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7670. #ifdef CONFIG_CGROUP_SCHED
  7671. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7672. #elif defined CONFIG_USER_SCHED
  7673. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7674. init_tg_rt_entry(&init_task_group,
  7675. &per_cpu(init_rt_rq, i),
  7676. &per_cpu(init_sched_rt_entity, i), i, 1,
  7677. root_task_group.rt_se[i]);
  7678. #endif
  7679. #endif
  7680. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7681. rq->cpu_load[j] = 0;
  7682. #ifdef CONFIG_SMP
  7683. rq->sd = NULL;
  7684. rq->rd = NULL;
  7685. rq->active_balance = 0;
  7686. rq->next_balance = jiffies;
  7687. rq->push_cpu = 0;
  7688. rq->cpu = i;
  7689. rq->online = 0;
  7690. rq->migration_thread = NULL;
  7691. INIT_LIST_HEAD(&rq->migration_queue);
  7692. rq_attach_root(rq, &def_root_domain);
  7693. #endif
  7694. init_rq_hrtick(rq);
  7695. atomic_set(&rq->nr_iowait, 0);
  7696. }
  7697. set_load_weight(&init_task);
  7698. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7699. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7700. #endif
  7701. #ifdef CONFIG_SMP
  7702. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7703. #endif
  7704. #ifdef CONFIG_RT_MUTEXES
  7705. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7706. #endif
  7707. /*
  7708. * The boot idle thread does lazy MMU switching as well:
  7709. */
  7710. atomic_inc(&init_mm.mm_count);
  7711. enter_lazy_tlb(&init_mm, current);
  7712. /*
  7713. * Make us the idle thread. Technically, schedule() should not be
  7714. * called from this thread, however somewhere below it might be,
  7715. * but because we are the idle thread, we just pick up running again
  7716. * when this runqueue becomes "idle".
  7717. */
  7718. init_idle(current, smp_processor_id());
  7719. /*
  7720. * During early bootup we pretend to be a normal task:
  7721. */
  7722. current->sched_class = &fair_sched_class;
  7723. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7724. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7725. #ifdef CONFIG_SMP
  7726. #ifdef CONFIG_NO_HZ
  7727. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7728. #endif
  7729. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7730. #endif /* SMP */
  7731. scheduler_running = 1;
  7732. }
  7733. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7734. void __might_sleep(char *file, int line)
  7735. {
  7736. #ifdef in_atomic
  7737. static unsigned long prev_jiffy; /* ratelimiting */
  7738. if ((!in_atomic() && !irqs_disabled()) ||
  7739. system_state != SYSTEM_RUNNING || oops_in_progress)
  7740. return;
  7741. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7742. return;
  7743. prev_jiffy = jiffies;
  7744. printk(KERN_ERR
  7745. "BUG: sleeping function called from invalid context at %s:%d\n",
  7746. file, line);
  7747. printk(KERN_ERR
  7748. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7749. in_atomic(), irqs_disabled(),
  7750. current->pid, current->comm);
  7751. debug_show_held_locks(current);
  7752. if (irqs_disabled())
  7753. print_irqtrace_events(current);
  7754. dump_stack();
  7755. #endif
  7756. }
  7757. EXPORT_SYMBOL(__might_sleep);
  7758. #endif
  7759. #ifdef CONFIG_MAGIC_SYSRQ
  7760. static void normalize_task(struct rq *rq, struct task_struct *p)
  7761. {
  7762. int on_rq;
  7763. update_rq_clock(rq);
  7764. on_rq = p->se.on_rq;
  7765. if (on_rq)
  7766. deactivate_task(rq, p, 0);
  7767. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7768. if (on_rq) {
  7769. activate_task(rq, p, 0);
  7770. resched_task(rq->curr);
  7771. }
  7772. }
  7773. void normalize_rt_tasks(void)
  7774. {
  7775. struct task_struct *g, *p;
  7776. unsigned long flags;
  7777. struct rq *rq;
  7778. read_lock_irqsave(&tasklist_lock, flags);
  7779. do_each_thread(g, p) {
  7780. /*
  7781. * Only normalize user tasks:
  7782. */
  7783. if (!p->mm)
  7784. continue;
  7785. p->se.exec_start = 0;
  7786. #ifdef CONFIG_SCHEDSTATS
  7787. p->se.wait_start = 0;
  7788. p->se.sleep_start = 0;
  7789. p->se.block_start = 0;
  7790. #endif
  7791. if (!rt_task(p)) {
  7792. /*
  7793. * Renice negative nice level userspace
  7794. * tasks back to 0:
  7795. */
  7796. if (TASK_NICE(p) < 0 && p->mm)
  7797. set_user_nice(p, 0);
  7798. continue;
  7799. }
  7800. spin_lock(&p->pi_lock);
  7801. rq = __task_rq_lock(p);
  7802. normalize_task(rq, p);
  7803. __task_rq_unlock(rq);
  7804. spin_unlock(&p->pi_lock);
  7805. } while_each_thread(g, p);
  7806. read_unlock_irqrestore(&tasklist_lock, flags);
  7807. }
  7808. #endif /* CONFIG_MAGIC_SYSRQ */
  7809. #ifdef CONFIG_IA64
  7810. /*
  7811. * These functions are only useful for the IA64 MCA handling.
  7812. *
  7813. * They can only be called when the whole system has been
  7814. * stopped - every CPU needs to be quiescent, and no scheduling
  7815. * activity can take place. Using them for anything else would
  7816. * be a serious bug, and as a result, they aren't even visible
  7817. * under any other configuration.
  7818. */
  7819. /**
  7820. * curr_task - return the current task for a given cpu.
  7821. * @cpu: the processor in question.
  7822. *
  7823. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7824. */
  7825. struct task_struct *curr_task(int cpu)
  7826. {
  7827. return cpu_curr(cpu);
  7828. }
  7829. /**
  7830. * set_curr_task - set the current task for a given cpu.
  7831. * @cpu: the processor in question.
  7832. * @p: the task pointer to set.
  7833. *
  7834. * Description: This function must only be used when non-maskable interrupts
  7835. * are serviced on a separate stack. It allows the architecture to switch the
  7836. * notion of the current task on a cpu in a non-blocking manner. This function
  7837. * must be called with all CPU's synchronized, and interrupts disabled, the
  7838. * and caller must save the original value of the current task (see
  7839. * curr_task() above) and restore that value before reenabling interrupts and
  7840. * re-starting the system.
  7841. *
  7842. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7843. */
  7844. void set_curr_task(int cpu, struct task_struct *p)
  7845. {
  7846. cpu_curr(cpu) = p;
  7847. }
  7848. #endif
  7849. #ifdef CONFIG_FAIR_GROUP_SCHED
  7850. static void free_fair_sched_group(struct task_group *tg)
  7851. {
  7852. int i;
  7853. for_each_possible_cpu(i) {
  7854. if (tg->cfs_rq)
  7855. kfree(tg->cfs_rq[i]);
  7856. if (tg->se)
  7857. kfree(tg->se[i]);
  7858. }
  7859. kfree(tg->cfs_rq);
  7860. kfree(tg->se);
  7861. }
  7862. static
  7863. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7864. {
  7865. struct cfs_rq *cfs_rq;
  7866. struct sched_entity *se;
  7867. struct rq *rq;
  7868. int i;
  7869. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7870. if (!tg->cfs_rq)
  7871. goto err;
  7872. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7873. if (!tg->se)
  7874. goto err;
  7875. tg->shares = NICE_0_LOAD;
  7876. for_each_possible_cpu(i) {
  7877. rq = cpu_rq(i);
  7878. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7879. GFP_KERNEL, cpu_to_node(i));
  7880. if (!cfs_rq)
  7881. goto err;
  7882. se = kzalloc_node(sizeof(struct sched_entity),
  7883. GFP_KERNEL, cpu_to_node(i));
  7884. if (!se)
  7885. goto err;
  7886. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7887. }
  7888. return 1;
  7889. err:
  7890. return 0;
  7891. }
  7892. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7893. {
  7894. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7895. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7896. }
  7897. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7898. {
  7899. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7900. }
  7901. #else /* !CONFG_FAIR_GROUP_SCHED */
  7902. static inline void free_fair_sched_group(struct task_group *tg)
  7903. {
  7904. }
  7905. static inline
  7906. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7907. {
  7908. return 1;
  7909. }
  7910. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7911. {
  7912. }
  7913. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7914. {
  7915. }
  7916. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7917. #ifdef CONFIG_RT_GROUP_SCHED
  7918. static void free_rt_sched_group(struct task_group *tg)
  7919. {
  7920. int i;
  7921. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7922. for_each_possible_cpu(i) {
  7923. if (tg->rt_rq)
  7924. kfree(tg->rt_rq[i]);
  7925. if (tg->rt_se)
  7926. kfree(tg->rt_se[i]);
  7927. }
  7928. kfree(tg->rt_rq);
  7929. kfree(tg->rt_se);
  7930. }
  7931. static
  7932. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7933. {
  7934. struct rt_rq *rt_rq;
  7935. struct sched_rt_entity *rt_se;
  7936. struct rq *rq;
  7937. int i;
  7938. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7939. if (!tg->rt_rq)
  7940. goto err;
  7941. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7942. if (!tg->rt_se)
  7943. goto err;
  7944. init_rt_bandwidth(&tg->rt_bandwidth,
  7945. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7946. for_each_possible_cpu(i) {
  7947. rq = cpu_rq(i);
  7948. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7949. GFP_KERNEL, cpu_to_node(i));
  7950. if (!rt_rq)
  7951. goto err;
  7952. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7953. GFP_KERNEL, cpu_to_node(i));
  7954. if (!rt_se)
  7955. goto err;
  7956. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7957. }
  7958. return 1;
  7959. err:
  7960. return 0;
  7961. }
  7962. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7963. {
  7964. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7965. &cpu_rq(cpu)->leaf_rt_rq_list);
  7966. }
  7967. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7968. {
  7969. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7970. }
  7971. #else /* !CONFIG_RT_GROUP_SCHED */
  7972. static inline void free_rt_sched_group(struct task_group *tg)
  7973. {
  7974. }
  7975. static inline
  7976. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7977. {
  7978. return 1;
  7979. }
  7980. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7981. {
  7982. }
  7983. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7984. {
  7985. }
  7986. #endif /* CONFIG_RT_GROUP_SCHED */
  7987. #ifdef CONFIG_GROUP_SCHED
  7988. static void free_sched_group(struct task_group *tg)
  7989. {
  7990. free_fair_sched_group(tg);
  7991. free_rt_sched_group(tg);
  7992. kfree(tg);
  7993. }
  7994. /* allocate runqueue etc for a new task group */
  7995. struct task_group *sched_create_group(struct task_group *parent)
  7996. {
  7997. struct task_group *tg;
  7998. unsigned long flags;
  7999. int i;
  8000. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8001. if (!tg)
  8002. return ERR_PTR(-ENOMEM);
  8003. if (!alloc_fair_sched_group(tg, parent))
  8004. goto err;
  8005. if (!alloc_rt_sched_group(tg, parent))
  8006. goto err;
  8007. spin_lock_irqsave(&task_group_lock, flags);
  8008. for_each_possible_cpu(i) {
  8009. register_fair_sched_group(tg, i);
  8010. register_rt_sched_group(tg, i);
  8011. }
  8012. list_add_rcu(&tg->list, &task_groups);
  8013. WARN_ON(!parent); /* root should already exist */
  8014. tg->parent = parent;
  8015. INIT_LIST_HEAD(&tg->children);
  8016. list_add_rcu(&tg->siblings, &parent->children);
  8017. spin_unlock_irqrestore(&task_group_lock, flags);
  8018. return tg;
  8019. err:
  8020. free_sched_group(tg);
  8021. return ERR_PTR(-ENOMEM);
  8022. }
  8023. /* rcu callback to free various structures associated with a task group */
  8024. static void free_sched_group_rcu(struct rcu_head *rhp)
  8025. {
  8026. /* now it should be safe to free those cfs_rqs */
  8027. free_sched_group(container_of(rhp, struct task_group, rcu));
  8028. }
  8029. /* Destroy runqueue etc associated with a task group */
  8030. void sched_destroy_group(struct task_group *tg)
  8031. {
  8032. unsigned long flags;
  8033. int i;
  8034. spin_lock_irqsave(&task_group_lock, flags);
  8035. for_each_possible_cpu(i) {
  8036. unregister_fair_sched_group(tg, i);
  8037. unregister_rt_sched_group(tg, i);
  8038. }
  8039. list_del_rcu(&tg->list);
  8040. list_del_rcu(&tg->siblings);
  8041. spin_unlock_irqrestore(&task_group_lock, flags);
  8042. /* wait for possible concurrent references to cfs_rqs complete */
  8043. call_rcu(&tg->rcu, free_sched_group_rcu);
  8044. }
  8045. /* change task's runqueue when it moves between groups.
  8046. * The caller of this function should have put the task in its new group
  8047. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8048. * reflect its new group.
  8049. */
  8050. void sched_move_task(struct task_struct *tsk)
  8051. {
  8052. int on_rq, running;
  8053. unsigned long flags;
  8054. struct rq *rq;
  8055. rq = task_rq_lock(tsk, &flags);
  8056. update_rq_clock(rq);
  8057. running = task_current(rq, tsk);
  8058. on_rq = tsk->se.on_rq;
  8059. if (on_rq)
  8060. dequeue_task(rq, tsk, 0);
  8061. if (unlikely(running))
  8062. tsk->sched_class->put_prev_task(rq, tsk);
  8063. set_task_rq(tsk, task_cpu(tsk));
  8064. #ifdef CONFIG_FAIR_GROUP_SCHED
  8065. if (tsk->sched_class->moved_group)
  8066. tsk->sched_class->moved_group(tsk);
  8067. #endif
  8068. if (unlikely(running))
  8069. tsk->sched_class->set_curr_task(rq);
  8070. if (on_rq)
  8071. enqueue_task(rq, tsk, 0);
  8072. task_rq_unlock(rq, &flags);
  8073. }
  8074. #endif /* CONFIG_GROUP_SCHED */
  8075. #ifdef CONFIG_FAIR_GROUP_SCHED
  8076. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8077. {
  8078. struct cfs_rq *cfs_rq = se->cfs_rq;
  8079. int on_rq;
  8080. on_rq = se->on_rq;
  8081. if (on_rq)
  8082. dequeue_entity(cfs_rq, se, 0);
  8083. se->load.weight = shares;
  8084. se->load.inv_weight = 0;
  8085. if (on_rq)
  8086. enqueue_entity(cfs_rq, se, 0);
  8087. }
  8088. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8089. {
  8090. struct cfs_rq *cfs_rq = se->cfs_rq;
  8091. struct rq *rq = cfs_rq->rq;
  8092. unsigned long flags;
  8093. spin_lock_irqsave(&rq->lock, flags);
  8094. __set_se_shares(se, shares);
  8095. spin_unlock_irqrestore(&rq->lock, flags);
  8096. }
  8097. static DEFINE_MUTEX(shares_mutex);
  8098. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8099. {
  8100. int i;
  8101. unsigned long flags;
  8102. /*
  8103. * We can't change the weight of the root cgroup.
  8104. */
  8105. if (!tg->se[0])
  8106. return -EINVAL;
  8107. if (shares < MIN_SHARES)
  8108. shares = MIN_SHARES;
  8109. else if (shares > MAX_SHARES)
  8110. shares = MAX_SHARES;
  8111. mutex_lock(&shares_mutex);
  8112. if (tg->shares == shares)
  8113. goto done;
  8114. spin_lock_irqsave(&task_group_lock, flags);
  8115. for_each_possible_cpu(i)
  8116. unregister_fair_sched_group(tg, i);
  8117. list_del_rcu(&tg->siblings);
  8118. spin_unlock_irqrestore(&task_group_lock, flags);
  8119. /* wait for any ongoing reference to this group to finish */
  8120. synchronize_sched();
  8121. /*
  8122. * Now we are free to modify the group's share on each cpu
  8123. * w/o tripping rebalance_share or load_balance_fair.
  8124. */
  8125. tg->shares = shares;
  8126. for_each_possible_cpu(i) {
  8127. /*
  8128. * force a rebalance
  8129. */
  8130. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8131. set_se_shares(tg->se[i], shares);
  8132. }
  8133. /*
  8134. * Enable load balance activity on this group, by inserting it back on
  8135. * each cpu's rq->leaf_cfs_rq_list.
  8136. */
  8137. spin_lock_irqsave(&task_group_lock, flags);
  8138. for_each_possible_cpu(i)
  8139. register_fair_sched_group(tg, i);
  8140. list_add_rcu(&tg->siblings, &tg->parent->children);
  8141. spin_unlock_irqrestore(&task_group_lock, flags);
  8142. done:
  8143. mutex_unlock(&shares_mutex);
  8144. return 0;
  8145. }
  8146. unsigned long sched_group_shares(struct task_group *tg)
  8147. {
  8148. return tg->shares;
  8149. }
  8150. #endif
  8151. #ifdef CONFIG_RT_GROUP_SCHED
  8152. /*
  8153. * Ensure that the real time constraints are schedulable.
  8154. */
  8155. static DEFINE_MUTEX(rt_constraints_mutex);
  8156. static unsigned long to_ratio(u64 period, u64 runtime)
  8157. {
  8158. if (runtime == RUNTIME_INF)
  8159. return 1ULL << 20;
  8160. return div64_u64(runtime << 20, period);
  8161. }
  8162. /* Must be called with tasklist_lock held */
  8163. static inline int tg_has_rt_tasks(struct task_group *tg)
  8164. {
  8165. struct task_struct *g, *p;
  8166. do_each_thread(g, p) {
  8167. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8168. return 1;
  8169. } while_each_thread(g, p);
  8170. return 0;
  8171. }
  8172. struct rt_schedulable_data {
  8173. struct task_group *tg;
  8174. u64 rt_period;
  8175. u64 rt_runtime;
  8176. };
  8177. static int tg_schedulable(struct task_group *tg, void *data)
  8178. {
  8179. struct rt_schedulable_data *d = data;
  8180. struct task_group *child;
  8181. unsigned long total, sum = 0;
  8182. u64 period, runtime;
  8183. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8184. runtime = tg->rt_bandwidth.rt_runtime;
  8185. if (tg == d->tg) {
  8186. period = d->rt_period;
  8187. runtime = d->rt_runtime;
  8188. }
  8189. #ifdef CONFIG_USER_SCHED
  8190. if (tg == &root_task_group) {
  8191. period = global_rt_period();
  8192. runtime = global_rt_runtime();
  8193. }
  8194. #endif
  8195. /*
  8196. * Cannot have more runtime than the period.
  8197. */
  8198. if (runtime > period && runtime != RUNTIME_INF)
  8199. return -EINVAL;
  8200. /*
  8201. * Ensure we don't starve existing RT tasks.
  8202. */
  8203. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8204. return -EBUSY;
  8205. total = to_ratio(period, runtime);
  8206. /*
  8207. * Nobody can have more than the global setting allows.
  8208. */
  8209. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8210. return -EINVAL;
  8211. /*
  8212. * The sum of our children's runtime should not exceed our own.
  8213. */
  8214. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8215. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8216. runtime = child->rt_bandwidth.rt_runtime;
  8217. if (child == d->tg) {
  8218. period = d->rt_period;
  8219. runtime = d->rt_runtime;
  8220. }
  8221. sum += to_ratio(period, runtime);
  8222. }
  8223. if (sum > total)
  8224. return -EINVAL;
  8225. return 0;
  8226. }
  8227. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8228. {
  8229. struct rt_schedulable_data data = {
  8230. .tg = tg,
  8231. .rt_period = period,
  8232. .rt_runtime = runtime,
  8233. };
  8234. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8235. }
  8236. static int tg_set_bandwidth(struct task_group *tg,
  8237. u64 rt_period, u64 rt_runtime)
  8238. {
  8239. int i, err = 0;
  8240. mutex_lock(&rt_constraints_mutex);
  8241. read_lock(&tasklist_lock);
  8242. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8243. if (err)
  8244. goto unlock;
  8245. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8246. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8247. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8248. for_each_possible_cpu(i) {
  8249. struct rt_rq *rt_rq = tg->rt_rq[i];
  8250. spin_lock(&rt_rq->rt_runtime_lock);
  8251. rt_rq->rt_runtime = rt_runtime;
  8252. spin_unlock(&rt_rq->rt_runtime_lock);
  8253. }
  8254. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8255. unlock:
  8256. read_unlock(&tasklist_lock);
  8257. mutex_unlock(&rt_constraints_mutex);
  8258. return err;
  8259. }
  8260. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8261. {
  8262. u64 rt_runtime, rt_period;
  8263. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8264. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8265. if (rt_runtime_us < 0)
  8266. rt_runtime = RUNTIME_INF;
  8267. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8268. }
  8269. long sched_group_rt_runtime(struct task_group *tg)
  8270. {
  8271. u64 rt_runtime_us;
  8272. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8273. return -1;
  8274. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8275. do_div(rt_runtime_us, NSEC_PER_USEC);
  8276. return rt_runtime_us;
  8277. }
  8278. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8279. {
  8280. u64 rt_runtime, rt_period;
  8281. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8282. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8283. if (rt_period == 0)
  8284. return -EINVAL;
  8285. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8286. }
  8287. long sched_group_rt_period(struct task_group *tg)
  8288. {
  8289. u64 rt_period_us;
  8290. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8291. do_div(rt_period_us, NSEC_PER_USEC);
  8292. return rt_period_us;
  8293. }
  8294. static int sched_rt_global_constraints(void)
  8295. {
  8296. u64 runtime, period;
  8297. int ret = 0;
  8298. if (sysctl_sched_rt_period <= 0)
  8299. return -EINVAL;
  8300. runtime = global_rt_runtime();
  8301. period = global_rt_period();
  8302. /*
  8303. * Sanity check on the sysctl variables.
  8304. */
  8305. if (runtime > period && runtime != RUNTIME_INF)
  8306. return -EINVAL;
  8307. mutex_lock(&rt_constraints_mutex);
  8308. read_lock(&tasklist_lock);
  8309. ret = __rt_schedulable(NULL, 0, 0);
  8310. read_unlock(&tasklist_lock);
  8311. mutex_unlock(&rt_constraints_mutex);
  8312. return ret;
  8313. }
  8314. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8315. {
  8316. /* Don't accept realtime tasks when there is no way for them to run */
  8317. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8318. return 0;
  8319. return 1;
  8320. }
  8321. #else /* !CONFIG_RT_GROUP_SCHED */
  8322. static int sched_rt_global_constraints(void)
  8323. {
  8324. unsigned long flags;
  8325. int i;
  8326. if (sysctl_sched_rt_period <= 0)
  8327. return -EINVAL;
  8328. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8329. for_each_possible_cpu(i) {
  8330. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8331. spin_lock(&rt_rq->rt_runtime_lock);
  8332. rt_rq->rt_runtime = global_rt_runtime();
  8333. spin_unlock(&rt_rq->rt_runtime_lock);
  8334. }
  8335. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8336. return 0;
  8337. }
  8338. #endif /* CONFIG_RT_GROUP_SCHED */
  8339. int sched_rt_handler(struct ctl_table *table, int write,
  8340. struct file *filp, void __user *buffer, size_t *lenp,
  8341. loff_t *ppos)
  8342. {
  8343. int ret;
  8344. int old_period, old_runtime;
  8345. static DEFINE_MUTEX(mutex);
  8346. mutex_lock(&mutex);
  8347. old_period = sysctl_sched_rt_period;
  8348. old_runtime = sysctl_sched_rt_runtime;
  8349. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8350. if (!ret && write) {
  8351. ret = sched_rt_global_constraints();
  8352. if (ret) {
  8353. sysctl_sched_rt_period = old_period;
  8354. sysctl_sched_rt_runtime = old_runtime;
  8355. } else {
  8356. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8357. def_rt_bandwidth.rt_period =
  8358. ns_to_ktime(global_rt_period());
  8359. }
  8360. }
  8361. mutex_unlock(&mutex);
  8362. return ret;
  8363. }
  8364. #ifdef CONFIG_CGROUP_SCHED
  8365. /* return corresponding task_group object of a cgroup */
  8366. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8367. {
  8368. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8369. struct task_group, css);
  8370. }
  8371. static struct cgroup_subsys_state *
  8372. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8373. {
  8374. struct task_group *tg, *parent;
  8375. if (!cgrp->parent) {
  8376. /* This is early initialization for the top cgroup */
  8377. return &init_task_group.css;
  8378. }
  8379. parent = cgroup_tg(cgrp->parent);
  8380. tg = sched_create_group(parent);
  8381. if (IS_ERR(tg))
  8382. return ERR_PTR(-ENOMEM);
  8383. return &tg->css;
  8384. }
  8385. static void
  8386. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8387. {
  8388. struct task_group *tg = cgroup_tg(cgrp);
  8389. sched_destroy_group(tg);
  8390. }
  8391. static int
  8392. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8393. struct task_struct *tsk)
  8394. {
  8395. #ifdef CONFIG_RT_GROUP_SCHED
  8396. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8397. return -EINVAL;
  8398. #else
  8399. /* We don't support RT-tasks being in separate groups */
  8400. if (tsk->sched_class != &fair_sched_class)
  8401. return -EINVAL;
  8402. #endif
  8403. return 0;
  8404. }
  8405. static void
  8406. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8407. struct cgroup *old_cont, struct task_struct *tsk)
  8408. {
  8409. sched_move_task(tsk);
  8410. }
  8411. #ifdef CONFIG_FAIR_GROUP_SCHED
  8412. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8413. u64 shareval)
  8414. {
  8415. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8416. }
  8417. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8418. {
  8419. struct task_group *tg = cgroup_tg(cgrp);
  8420. return (u64) tg->shares;
  8421. }
  8422. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8423. #ifdef CONFIG_RT_GROUP_SCHED
  8424. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8425. s64 val)
  8426. {
  8427. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8428. }
  8429. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8430. {
  8431. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8432. }
  8433. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8434. u64 rt_period_us)
  8435. {
  8436. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8437. }
  8438. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8439. {
  8440. return sched_group_rt_period(cgroup_tg(cgrp));
  8441. }
  8442. #endif /* CONFIG_RT_GROUP_SCHED */
  8443. static struct cftype cpu_files[] = {
  8444. #ifdef CONFIG_FAIR_GROUP_SCHED
  8445. {
  8446. .name = "shares",
  8447. .read_u64 = cpu_shares_read_u64,
  8448. .write_u64 = cpu_shares_write_u64,
  8449. },
  8450. #endif
  8451. #ifdef CONFIG_RT_GROUP_SCHED
  8452. {
  8453. .name = "rt_runtime_us",
  8454. .read_s64 = cpu_rt_runtime_read,
  8455. .write_s64 = cpu_rt_runtime_write,
  8456. },
  8457. {
  8458. .name = "rt_period_us",
  8459. .read_u64 = cpu_rt_period_read_uint,
  8460. .write_u64 = cpu_rt_period_write_uint,
  8461. },
  8462. #endif
  8463. };
  8464. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8465. {
  8466. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8467. }
  8468. struct cgroup_subsys cpu_cgroup_subsys = {
  8469. .name = "cpu",
  8470. .create = cpu_cgroup_create,
  8471. .destroy = cpu_cgroup_destroy,
  8472. .can_attach = cpu_cgroup_can_attach,
  8473. .attach = cpu_cgroup_attach,
  8474. .populate = cpu_cgroup_populate,
  8475. .subsys_id = cpu_cgroup_subsys_id,
  8476. .early_init = 1,
  8477. };
  8478. #endif /* CONFIG_CGROUP_SCHED */
  8479. #ifdef CONFIG_CGROUP_CPUACCT
  8480. /*
  8481. * CPU accounting code for task groups.
  8482. *
  8483. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8484. * (balbir@in.ibm.com).
  8485. */
  8486. /* track cpu usage of a group of tasks and its child groups */
  8487. struct cpuacct {
  8488. struct cgroup_subsys_state css;
  8489. /* cpuusage holds pointer to a u64-type object on every cpu */
  8490. u64 *cpuusage;
  8491. struct cpuacct *parent;
  8492. };
  8493. struct cgroup_subsys cpuacct_subsys;
  8494. /* return cpu accounting group corresponding to this container */
  8495. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8496. {
  8497. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8498. struct cpuacct, css);
  8499. }
  8500. /* return cpu accounting group to which this task belongs */
  8501. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8502. {
  8503. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8504. struct cpuacct, css);
  8505. }
  8506. /* create a new cpu accounting group */
  8507. static struct cgroup_subsys_state *cpuacct_create(
  8508. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8509. {
  8510. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8511. if (!ca)
  8512. return ERR_PTR(-ENOMEM);
  8513. ca->cpuusage = alloc_percpu(u64);
  8514. if (!ca->cpuusage) {
  8515. kfree(ca);
  8516. return ERR_PTR(-ENOMEM);
  8517. }
  8518. if (cgrp->parent)
  8519. ca->parent = cgroup_ca(cgrp->parent);
  8520. return &ca->css;
  8521. }
  8522. /* destroy an existing cpu accounting group */
  8523. static void
  8524. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8525. {
  8526. struct cpuacct *ca = cgroup_ca(cgrp);
  8527. free_percpu(ca->cpuusage);
  8528. kfree(ca);
  8529. }
  8530. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8531. {
  8532. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8533. u64 data;
  8534. #ifndef CONFIG_64BIT
  8535. /*
  8536. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8537. */
  8538. spin_lock_irq(&cpu_rq(cpu)->lock);
  8539. data = *cpuusage;
  8540. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8541. #else
  8542. data = *cpuusage;
  8543. #endif
  8544. return data;
  8545. }
  8546. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8547. {
  8548. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8549. #ifndef CONFIG_64BIT
  8550. /*
  8551. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8552. */
  8553. spin_lock_irq(&cpu_rq(cpu)->lock);
  8554. *cpuusage = val;
  8555. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8556. #else
  8557. *cpuusage = val;
  8558. #endif
  8559. }
  8560. /* return total cpu usage (in nanoseconds) of a group */
  8561. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8562. {
  8563. struct cpuacct *ca = cgroup_ca(cgrp);
  8564. u64 totalcpuusage = 0;
  8565. int i;
  8566. for_each_present_cpu(i)
  8567. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8568. return totalcpuusage;
  8569. }
  8570. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8571. u64 reset)
  8572. {
  8573. struct cpuacct *ca = cgroup_ca(cgrp);
  8574. int err = 0;
  8575. int i;
  8576. if (reset) {
  8577. err = -EINVAL;
  8578. goto out;
  8579. }
  8580. for_each_present_cpu(i)
  8581. cpuacct_cpuusage_write(ca, i, 0);
  8582. out:
  8583. return err;
  8584. }
  8585. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8586. struct seq_file *m)
  8587. {
  8588. struct cpuacct *ca = cgroup_ca(cgroup);
  8589. u64 percpu;
  8590. int i;
  8591. for_each_present_cpu(i) {
  8592. percpu = cpuacct_cpuusage_read(ca, i);
  8593. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8594. }
  8595. seq_printf(m, "\n");
  8596. return 0;
  8597. }
  8598. static struct cftype files[] = {
  8599. {
  8600. .name = "usage",
  8601. .read_u64 = cpuusage_read,
  8602. .write_u64 = cpuusage_write,
  8603. },
  8604. {
  8605. .name = "usage_percpu",
  8606. .read_seq_string = cpuacct_percpu_seq_read,
  8607. },
  8608. };
  8609. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8610. {
  8611. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8612. }
  8613. /*
  8614. * charge this task's execution time to its accounting group.
  8615. *
  8616. * called with rq->lock held.
  8617. */
  8618. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8619. {
  8620. struct cpuacct *ca;
  8621. int cpu;
  8622. if (unlikely(!cpuacct_subsys.active))
  8623. return;
  8624. cpu = task_cpu(tsk);
  8625. ca = task_ca(tsk);
  8626. for (; ca; ca = ca->parent) {
  8627. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8628. *cpuusage += cputime;
  8629. }
  8630. }
  8631. struct cgroup_subsys cpuacct_subsys = {
  8632. .name = "cpuacct",
  8633. .create = cpuacct_create,
  8634. .destroy = cpuacct_destroy,
  8635. .populate = cpuacct_populate,
  8636. .subsys_id = cpuacct_subsys_id,
  8637. };
  8638. #endif /* CONFIG_CGROUP_CPUACCT */