futex.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  23. * enough at me, Linus for the original (flawed) idea, Matthew
  24. * Kirkwood for proof-of-concept implementation.
  25. *
  26. * "The futexes are also cursed."
  27. * "But they come in a choice of three flavours!"
  28. *
  29. * This program is free software; you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation; either version 2 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * This program is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with this program; if not, write to the Free Software
  41. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  42. */
  43. #include <linux/slab.h>
  44. #include <linux/poll.h>
  45. #include <linux/fs.h>
  46. #include <linux/file.h>
  47. #include <linux/jhash.h>
  48. #include <linux/init.h>
  49. #include <linux/futex.h>
  50. #include <linux/mount.h>
  51. #include <linux/pagemap.h>
  52. #include <linux/syscalls.h>
  53. #include <linux/signal.h>
  54. #include <linux/module.h>
  55. #include <linux/magic.h>
  56. #include <linux/pid.h>
  57. #include <linux/nsproxy.h>
  58. #include <asm/futex.h>
  59. #include "rtmutex_common.h"
  60. int __read_mostly futex_cmpxchg_enabled;
  61. #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  62. /*
  63. * Priority Inheritance state:
  64. */
  65. struct futex_pi_state {
  66. /*
  67. * list of 'owned' pi_state instances - these have to be
  68. * cleaned up in do_exit() if the task exits prematurely:
  69. */
  70. struct list_head list;
  71. /*
  72. * The PI object:
  73. */
  74. struct rt_mutex pi_mutex;
  75. struct task_struct *owner;
  76. atomic_t refcount;
  77. union futex_key key;
  78. };
  79. /*
  80. * We use this hashed waitqueue instead of a normal wait_queue_t, so
  81. * we can wake only the relevant ones (hashed queues may be shared).
  82. *
  83. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  84. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  85. * The order of wakup is always to make the first condition true, then
  86. * wake up q->waiter, then make the second condition true.
  87. */
  88. struct futex_q {
  89. struct plist_node list;
  90. /* There can only be a single waiter */
  91. wait_queue_head_t waiter;
  92. /* Which hash list lock to use: */
  93. spinlock_t *lock_ptr;
  94. /* Key which the futex is hashed on: */
  95. union futex_key key;
  96. /* Optional priority inheritance state: */
  97. struct futex_pi_state *pi_state;
  98. struct task_struct *task;
  99. /* Bitset for the optional bitmasked wakeup */
  100. u32 bitset;
  101. };
  102. /*
  103. * Hash buckets are shared by all the futex_keys that hash to the same
  104. * location. Each key may have multiple futex_q structures, one for each task
  105. * waiting on a futex.
  106. */
  107. struct futex_hash_bucket {
  108. spinlock_t lock;
  109. struct plist_head chain;
  110. };
  111. static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
  112. /*
  113. * We hash on the keys returned from get_futex_key (see below).
  114. */
  115. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  116. {
  117. u32 hash = jhash2((u32*)&key->both.word,
  118. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  119. key->both.offset);
  120. return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
  121. }
  122. /*
  123. * Return 1 if two futex_keys are equal, 0 otherwise.
  124. */
  125. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  126. {
  127. return (key1->both.word == key2->both.word
  128. && key1->both.ptr == key2->both.ptr
  129. && key1->both.offset == key2->both.offset);
  130. }
  131. /*
  132. * Take a reference to the resource addressed by a key.
  133. * Can be called while holding spinlocks.
  134. *
  135. */
  136. static void get_futex_key_refs(union futex_key *key)
  137. {
  138. if (!key->both.ptr)
  139. return;
  140. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  141. case FUT_OFF_INODE:
  142. atomic_inc(&key->shared.inode->i_count);
  143. break;
  144. case FUT_OFF_MMSHARED:
  145. atomic_inc(&key->private.mm->mm_count);
  146. break;
  147. }
  148. }
  149. /*
  150. * Drop a reference to the resource addressed by a key.
  151. * The hash bucket spinlock must not be held.
  152. */
  153. static void drop_futex_key_refs(union futex_key *key)
  154. {
  155. if (!key->both.ptr) {
  156. /* If we're here then we tried to put a key we failed to get */
  157. WARN_ON_ONCE(1);
  158. return;
  159. }
  160. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  161. case FUT_OFF_INODE:
  162. iput(key->shared.inode);
  163. break;
  164. case FUT_OFF_MMSHARED:
  165. mmdrop(key->private.mm);
  166. break;
  167. }
  168. }
  169. /**
  170. * get_futex_key - Get parameters which are the keys for a futex.
  171. * @uaddr: virtual address of the futex
  172. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  173. * @key: address where result is stored.
  174. *
  175. * Returns a negative error code or 0
  176. * The key words are stored in *key on success.
  177. *
  178. * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
  179. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  180. * We can usually work out the index without swapping in the page.
  181. *
  182. * lock_page() might sleep, the caller should not hold a spinlock.
  183. */
  184. static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
  185. {
  186. unsigned long address = (unsigned long)uaddr;
  187. struct mm_struct *mm = current->mm;
  188. struct page *page;
  189. int err;
  190. /*
  191. * The futex address must be "naturally" aligned.
  192. */
  193. key->both.offset = address % PAGE_SIZE;
  194. if (unlikely((address % sizeof(u32)) != 0))
  195. return -EINVAL;
  196. address -= key->both.offset;
  197. /*
  198. * PROCESS_PRIVATE futexes are fast.
  199. * As the mm cannot disappear under us and the 'key' only needs
  200. * virtual address, we dont even have to find the underlying vma.
  201. * Note : We do have to check 'uaddr' is a valid user address,
  202. * but access_ok() should be faster than find_vma()
  203. */
  204. if (!fshared) {
  205. if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
  206. return -EFAULT;
  207. key->private.mm = mm;
  208. key->private.address = address;
  209. get_futex_key_refs(key);
  210. return 0;
  211. }
  212. again:
  213. err = get_user_pages_fast(address, 1, 0, &page);
  214. if (err < 0)
  215. return err;
  216. lock_page(page);
  217. if (!page->mapping) {
  218. unlock_page(page);
  219. put_page(page);
  220. goto again;
  221. }
  222. /*
  223. * Private mappings are handled in a simple way.
  224. *
  225. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  226. * it's a read-only handle, it's expected that futexes attach to
  227. * the object not the particular process.
  228. */
  229. if (PageAnon(page)) {
  230. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  231. key->private.mm = mm;
  232. key->private.address = address;
  233. } else {
  234. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  235. key->shared.inode = page->mapping->host;
  236. key->shared.pgoff = page->index;
  237. }
  238. get_futex_key_refs(key);
  239. unlock_page(page);
  240. put_page(page);
  241. return 0;
  242. }
  243. static inline
  244. void put_futex_key(int fshared, union futex_key *key)
  245. {
  246. drop_futex_key_refs(key);
  247. }
  248. static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
  249. {
  250. u32 curval;
  251. pagefault_disable();
  252. curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
  253. pagefault_enable();
  254. return curval;
  255. }
  256. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  257. {
  258. int ret;
  259. pagefault_disable();
  260. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  261. pagefault_enable();
  262. return ret ? -EFAULT : 0;
  263. }
  264. /*
  265. * PI code:
  266. */
  267. static int refill_pi_state_cache(void)
  268. {
  269. struct futex_pi_state *pi_state;
  270. if (likely(current->pi_state_cache))
  271. return 0;
  272. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  273. if (!pi_state)
  274. return -ENOMEM;
  275. INIT_LIST_HEAD(&pi_state->list);
  276. /* pi_mutex gets initialized later */
  277. pi_state->owner = NULL;
  278. atomic_set(&pi_state->refcount, 1);
  279. pi_state->key = FUTEX_KEY_INIT;
  280. current->pi_state_cache = pi_state;
  281. return 0;
  282. }
  283. static struct futex_pi_state * alloc_pi_state(void)
  284. {
  285. struct futex_pi_state *pi_state = current->pi_state_cache;
  286. WARN_ON(!pi_state);
  287. current->pi_state_cache = NULL;
  288. return pi_state;
  289. }
  290. static void free_pi_state(struct futex_pi_state *pi_state)
  291. {
  292. if (!atomic_dec_and_test(&pi_state->refcount))
  293. return;
  294. /*
  295. * If pi_state->owner is NULL, the owner is most probably dying
  296. * and has cleaned up the pi_state already
  297. */
  298. if (pi_state->owner) {
  299. spin_lock_irq(&pi_state->owner->pi_lock);
  300. list_del_init(&pi_state->list);
  301. spin_unlock_irq(&pi_state->owner->pi_lock);
  302. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  303. }
  304. if (current->pi_state_cache)
  305. kfree(pi_state);
  306. else {
  307. /*
  308. * pi_state->list is already empty.
  309. * clear pi_state->owner.
  310. * refcount is at 0 - put it back to 1.
  311. */
  312. pi_state->owner = NULL;
  313. atomic_set(&pi_state->refcount, 1);
  314. current->pi_state_cache = pi_state;
  315. }
  316. }
  317. /*
  318. * Look up the task based on what TID userspace gave us.
  319. * We dont trust it.
  320. */
  321. static struct task_struct * futex_find_get_task(pid_t pid)
  322. {
  323. struct task_struct *p;
  324. const struct cred *cred = current_cred(), *pcred;
  325. rcu_read_lock();
  326. p = find_task_by_vpid(pid);
  327. if (!p) {
  328. p = ERR_PTR(-ESRCH);
  329. } else {
  330. pcred = __task_cred(p);
  331. if (cred->euid != pcred->euid &&
  332. cred->euid != pcred->uid)
  333. p = ERR_PTR(-ESRCH);
  334. else
  335. get_task_struct(p);
  336. }
  337. rcu_read_unlock();
  338. return p;
  339. }
  340. /*
  341. * This task is holding PI mutexes at exit time => bad.
  342. * Kernel cleans up PI-state, but userspace is likely hosed.
  343. * (Robust-futex cleanup is separate and might save the day for userspace.)
  344. */
  345. void exit_pi_state_list(struct task_struct *curr)
  346. {
  347. struct list_head *next, *head = &curr->pi_state_list;
  348. struct futex_pi_state *pi_state;
  349. struct futex_hash_bucket *hb;
  350. union futex_key key = FUTEX_KEY_INIT;
  351. if (!futex_cmpxchg_enabled)
  352. return;
  353. /*
  354. * We are a ZOMBIE and nobody can enqueue itself on
  355. * pi_state_list anymore, but we have to be careful
  356. * versus waiters unqueueing themselves:
  357. */
  358. spin_lock_irq(&curr->pi_lock);
  359. while (!list_empty(head)) {
  360. next = head->next;
  361. pi_state = list_entry(next, struct futex_pi_state, list);
  362. key = pi_state->key;
  363. hb = hash_futex(&key);
  364. spin_unlock_irq(&curr->pi_lock);
  365. spin_lock(&hb->lock);
  366. spin_lock_irq(&curr->pi_lock);
  367. /*
  368. * We dropped the pi-lock, so re-check whether this
  369. * task still owns the PI-state:
  370. */
  371. if (head->next != next) {
  372. spin_unlock(&hb->lock);
  373. continue;
  374. }
  375. WARN_ON(pi_state->owner != curr);
  376. WARN_ON(list_empty(&pi_state->list));
  377. list_del_init(&pi_state->list);
  378. pi_state->owner = NULL;
  379. spin_unlock_irq(&curr->pi_lock);
  380. rt_mutex_unlock(&pi_state->pi_mutex);
  381. spin_unlock(&hb->lock);
  382. spin_lock_irq(&curr->pi_lock);
  383. }
  384. spin_unlock_irq(&curr->pi_lock);
  385. }
  386. static int
  387. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  388. union futex_key *key, struct futex_pi_state **ps)
  389. {
  390. struct futex_pi_state *pi_state = NULL;
  391. struct futex_q *this, *next;
  392. struct plist_head *head;
  393. struct task_struct *p;
  394. pid_t pid = uval & FUTEX_TID_MASK;
  395. head = &hb->chain;
  396. plist_for_each_entry_safe(this, next, head, list) {
  397. if (match_futex(&this->key, key)) {
  398. /*
  399. * Another waiter already exists - bump up
  400. * the refcount and return its pi_state:
  401. */
  402. pi_state = this->pi_state;
  403. /*
  404. * Userspace might have messed up non PI and PI futexes
  405. */
  406. if (unlikely(!pi_state))
  407. return -EINVAL;
  408. WARN_ON(!atomic_read(&pi_state->refcount));
  409. WARN_ON(pid && pi_state->owner &&
  410. pi_state->owner->pid != pid);
  411. atomic_inc(&pi_state->refcount);
  412. *ps = pi_state;
  413. return 0;
  414. }
  415. }
  416. /*
  417. * We are the first waiter - try to look up the real owner and attach
  418. * the new pi_state to it, but bail out when TID = 0
  419. */
  420. if (!pid)
  421. return -ESRCH;
  422. p = futex_find_get_task(pid);
  423. if (IS_ERR(p))
  424. return PTR_ERR(p);
  425. /*
  426. * We need to look at the task state flags to figure out,
  427. * whether the task is exiting. To protect against the do_exit
  428. * change of the task flags, we do this protected by
  429. * p->pi_lock:
  430. */
  431. spin_lock_irq(&p->pi_lock);
  432. if (unlikely(p->flags & PF_EXITING)) {
  433. /*
  434. * The task is on the way out. When PF_EXITPIDONE is
  435. * set, we know that the task has finished the
  436. * cleanup:
  437. */
  438. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  439. spin_unlock_irq(&p->pi_lock);
  440. put_task_struct(p);
  441. return ret;
  442. }
  443. pi_state = alloc_pi_state();
  444. /*
  445. * Initialize the pi_mutex in locked state and make 'p'
  446. * the owner of it:
  447. */
  448. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  449. /* Store the key for possible exit cleanups: */
  450. pi_state->key = *key;
  451. WARN_ON(!list_empty(&pi_state->list));
  452. list_add(&pi_state->list, &p->pi_state_list);
  453. pi_state->owner = p;
  454. spin_unlock_irq(&p->pi_lock);
  455. put_task_struct(p);
  456. *ps = pi_state;
  457. return 0;
  458. }
  459. /*
  460. * The hash bucket lock must be held when this is called.
  461. * Afterwards, the futex_q must not be accessed.
  462. */
  463. static void wake_futex(struct futex_q *q)
  464. {
  465. plist_del(&q->list, &q->list.plist);
  466. /*
  467. * The lock in wake_up_all() is a crucial memory barrier after the
  468. * plist_del() and also before assigning to q->lock_ptr.
  469. */
  470. wake_up(&q->waiter);
  471. /*
  472. * The waiting task can free the futex_q as soon as this is written,
  473. * without taking any locks. This must come last.
  474. *
  475. * A memory barrier is required here to prevent the following store to
  476. * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
  477. * end of wake_up() does not prevent this store from moving.
  478. */
  479. smp_wmb();
  480. q->lock_ptr = NULL;
  481. }
  482. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  483. {
  484. struct task_struct *new_owner;
  485. struct futex_pi_state *pi_state = this->pi_state;
  486. u32 curval, newval;
  487. if (!pi_state)
  488. return -EINVAL;
  489. spin_lock(&pi_state->pi_mutex.wait_lock);
  490. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  491. /*
  492. * This happens when we have stolen the lock and the original
  493. * pending owner did not enqueue itself back on the rt_mutex.
  494. * Thats not a tragedy. We know that way, that a lock waiter
  495. * is on the fly. We make the futex_q waiter the pending owner.
  496. */
  497. if (!new_owner)
  498. new_owner = this->task;
  499. /*
  500. * We pass it to the next owner. (The WAITERS bit is always
  501. * kept enabled while there is PI state around. We must also
  502. * preserve the owner died bit.)
  503. */
  504. if (!(uval & FUTEX_OWNER_DIED)) {
  505. int ret = 0;
  506. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  507. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  508. if (curval == -EFAULT)
  509. ret = -EFAULT;
  510. else if (curval != uval)
  511. ret = -EINVAL;
  512. if (ret) {
  513. spin_unlock(&pi_state->pi_mutex.wait_lock);
  514. return ret;
  515. }
  516. }
  517. spin_lock_irq(&pi_state->owner->pi_lock);
  518. WARN_ON(list_empty(&pi_state->list));
  519. list_del_init(&pi_state->list);
  520. spin_unlock_irq(&pi_state->owner->pi_lock);
  521. spin_lock_irq(&new_owner->pi_lock);
  522. WARN_ON(!list_empty(&pi_state->list));
  523. list_add(&pi_state->list, &new_owner->pi_state_list);
  524. pi_state->owner = new_owner;
  525. spin_unlock_irq(&new_owner->pi_lock);
  526. spin_unlock(&pi_state->pi_mutex.wait_lock);
  527. rt_mutex_unlock(&pi_state->pi_mutex);
  528. return 0;
  529. }
  530. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  531. {
  532. u32 oldval;
  533. /*
  534. * There is no waiter, so we unlock the futex. The owner died
  535. * bit has not to be preserved here. We are the owner:
  536. */
  537. oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
  538. if (oldval == -EFAULT)
  539. return oldval;
  540. if (oldval != uval)
  541. return -EAGAIN;
  542. return 0;
  543. }
  544. /*
  545. * Express the locking dependencies for lockdep:
  546. */
  547. static inline void
  548. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  549. {
  550. if (hb1 <= hb2) {
  551. spin_lock(&hb1->lock);
  552. if (hb1 < hb2)
  553. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  554. } else { /* hb1 > hb2 */
  555. spin_lock(&hb2->lock);
  556. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  557. }
  558. }
  559. static inline void
  560. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  561. {
  562. spin_unlock(&hb1->lock);
  563. if (hb1 != hb2)
  564. spin_unlock(&hb2->lock);
  565. }
  566. /*
  567. * Wake up waiters matching bitset queued on this futex (uaddr).
  568. */
  569. static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
  570. {
  571. struct futex_hash_bucket *hb;
  572. struct futex_q *this, *next;
  573. struct plist_head *head;
  574. union futex_key key = FUTEX_KEY_INIT;
  575. int ret;
  576. if (!bitset)
  577. return -EINVAL;
  578. ret = get_futex_key(uaddr, fshared, &key);
  579. if (unlikely(ret != 0))
  580. goto out;
  581. hb = hash_futex(&key);
  582. spin_lock(&hb->lock);
  583. head = &hb->chain;
  584. plist_for_each_entry_safe(this, next, head, list) {
  585. if (match_futex (&this->key, &key)) {
  586. if (this->pi_state) {
  587. ret = -EINVAL;
  588. break;
  589. }
  590. /* Check if one of the bits is set in both bitsets */
  591. if (!(this->bitset & bitset))
  592. continue;
  593. wake_futex(this);
  594. if (++ret >= nr_wake)
  595. break;
  596. }
  597. }
  598. spin_unlock(&hb->lock);
  599. put_futex_key(fshared, &key);
  600. out:
  601. return ret;
  602. }
  603. /*
  604. * Wake up all waiters hashed on the physical page that is mapped
  605. * to this virtual address:
  606. */
  607. static int
  608. futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
  609. int nr_wake, int nr_wake2, int op)
  610. {
  611. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  612. struct futex_hash_bucket *hb1, *hb2;
  613. struct plist_head *head;
  614. struct futex_q *this, *next;
  615. int ret, op_ret;
  616. retry:
  617. ret = get_futex_key(uaddr1, fshared, &key1);
  618. if (unlikely(ret != 0))
  619. goto out;
  620. ret = get_futex_key(uaddr2, fshared, &key2);
  621. if (unlikely(ret != 0))
  622. goto out_put_key1;
  623. hb1 = hash_futex(&key1);
  624. hb2 = hash_futex(&key2);
  625. double_lock_hb(hb1, hb2);
  626. retry_private:
  627. op_ret = futex_atomic_op_inuser(op, uaddr2);
  628. if (unlikely(op_ret < 0)) {
  629. u32 dummy;
  630. double_unlock_hb(hb1, hb2);
  631. #ifndef CONFIG_MMU
  632. /*
  633. * we don't get EFAULT from MMU faults if we don't have an MMU,
  634. * but we might get them from range checking
  635. */
  636. ret = op_ret;
  637. goto out_put_keys;
  638. #endif
  639. if (unlikely(op_ret != -EFAULT)) {
  640. ret = op_ret;
  641. goto out_put_keys;
  642. }
  643. ret = get_user(dummy, uaddr2);
  644. if (ret)
  645. goto out_put_keys;
  646. if (!fshared)
  647. goto retry_private;
  648. put_futex_key(fshared, &key2);
  649. put_futex_key(fshared, &key1);
  650. goto retry;
  651. }
  652. head = &hb1->chain;
  653. plist_for_each_entry_safe(this, next, head, list) {
  654. if (match_futex (&this->key, &key1)) {
  655. wake_futex(this);
  656. if (++ret >= nr_wake)
  657. break;
  658. }
  659. }
  660. if (op_ret > 0) {
  661. head = &hb2->chain;
  662. op_ret = 0;
  663. plist_for_each_entry_safe(this, next, head, list) {
  664. if (match_futex (&this->key, &key2)) {
  665. wake_futex(this);
  666. if (++op_ret >= nr_wake2)
  667. break;
  668. }
  669. }
  670. ret += op_ret;
  671. }
  672. double_unlock_hb(hb1, hb2);
  673. out_put_keys:
  674. put_futex_key(fshared, &key2);
  675. out_put_key1:
  676. put_futex_key(fshared, &key1);
  677. out:
  678. return ret;
  679. }
  680. /*
  681. * Requeue all waiters hashed on one physical page to another
  682. * physical page.
  683. */
  684. static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
  685. int nr_wake, int nr_requeue, u32 *cmpval)
  686. {
  687. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  688. struct futex_hash_bucket *hb1, *hb2;
  689. struct plist_head *head1;
  690. struct futex_q *this, *next;
  691. int ret, drop_count = 0;
  692. retry:
  693. ret = get_futex_key(uaddr1, fshared, &key1);
  694. if (unlikely(ret != 0))
  695. goto out;
  696. ret = get_futex_key(uaddr2, fshared, &key2);
  697. if (unlikely(ret != 0))
  698. goto out_put_key1;
  699. hb1 = hash_futex(&key1);
  700. hb2 = hash_futex(&key2);
  701. retry_private:
  702. double_lock_hb(hb1, hb2);
  703. if (likely(cmpval != NULL)) {
  704. u32 curval;
  705. ret = get_futex_value_locked(&curval, uaddr1);
  706. if (unlikely(ret)) {
  707. double_unlock_hb(hb1, hb2);
  708. ret = get_user(curval, uaddr1);
  709. if (ret)
  710. goto out_put_keys;
  711. if (!fshared)
  712. goto retry_private;
  713. put_futex_key(fshared, &key2);
  714. put_futex_key(fshared, &key1);
  715. goto retry;
  716. }
  717. if (curval != *cmpval) {
  718. ret = -EAGAIN;
  719. goto out_unlock;
  720. }
  721. }
  722. head1 = &hb1->chain;
  723. plist_for_each_entry_safe(this, next, head1, list) {
  724. if (!match_futex (&this->key, &key1))
  725. continue;
  726. if (++ret <= nr_wake) {
  727. wake_futex(this);
  728. } else {
  729. /*
  730. * If key1 and key2 hash to the same bucket, no need to
  731. * requeue.
  732. */
  733. if (likely(head1 != &hb2->chain)) {
  734. plist_del(&this->list, &hb1->chain);
  735. plist_add(&this->list, &hb2->chain);
  736. this->lock_ptr = &hb2->lock;
  737. #ifdef CONFIG_DEBUG_PI_LIST
  738. this->list.plist.lock = &hb2->lock;
  739. #endif
  740. }
  741. this->key = key2;
  742. get_futex_key_refs(&key2);
  743. drop_count++;
  744. if (ret - nr_wake >= nr_requeue)
  745. break;
  746. }
  747. }
  748. out_unlock:
  749. double_unlock_hb(hb1, hb2);
  750. /* drop_futex_key_refs() must be called outside the spinlocks. */
  751. while (--drop_count >= 0)
  752. drop_futex_key_refs(&key1);
  753. out_put_keys:
  754. put_futex_key(fshared, &key2);
  755. out_put_key1:
  756. put_futex_key(fshared, &key1);
  757. out:
  758. return ret;
  759. }
  760. /* The key must be already stored in q->key. */
  761. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  762. {
  763. struct futex_hash_bucket *hb;
  764. init_waitqueue_head(&q->waiter);
  765. get_futex_key_refs(&q->key);
  766. hb = hash_futex(&q->key);
  767. q->lock_ptr = &hb->lock;
  768. spin_lock(&hb->lock);
  769. return hb;
  770. }
  771. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  772. {
  773. int prio;
  774. /*
  775. * The priority used to register this element is
  776. * - either the real thread-priority for the real-time threads
  777. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  778. * - or MAX_RT_PRIO for non-RT threads.
  779. * Thus, all RT-threads are woken first in priority order, and
  780. * the others are woken last, in FIFO order.
  781. */
  782. prio = min(current->normal_prio, MAX_RT_PRIO);
  783. plist_node_init(&q->list, prio);
  784. #ifdef CONFIG_DEBUG_PI_LIST
  785. q->list.plist.lock = &hb->lock;
  786. #endif
  787. plist_add(&q->list, &hb->chain);
  788. q->task = current;
  789. spin_unlock(&hb->lock);
  790. }
  791. static inline void
  792. queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
  793. {
  794. spin_unlock(&hb->lock);
  795. drop_futex_key_refs(&q->key);
  796. }
  797. /*
  798. * queue_me and unqueue_me must be called as a pair, each
  799. * exactly once. They are called with the hashed spinlock held.
  800. */
  801. /* Return 1 if we were still queued (ie. 0 means we were woken) */
  802. static int unqueue_me(struct futex_q *q)
  803. {
  804. spinlock_t *lock_ptr;
  805. int ret = 0;
  806. /* In the common case we don't take the spinlock, which is nice. */
  807. retry:
  808. lock_ptr = q->lock_ptr;
  809. barrier();
  810. if (lock_ptr != NULL) {
  811. spin_lock(lock_ptr);
  812. /*
  813. * q->lock_ptr can change between reading it and
  814. * spin_lock(), causing us to take the wrong lock. This
  815. * corrects the race condition.
  816. *
  817. * Reasoning goes like this: if we have the wrong lock,
  818. * q->lock_ptr must have changed (maybe several times)
  819. * between reading it and the spin_lock(). It can
  820. * change again after the spin_lock() but only if it was
  821. * already changed before the spin_lock(). It cannot,
  822. * however, change back to the original value. Therefore
  823. * we can detect whether we acquired the correct lock.
  824. */
  825. if (unlikely(lock_ptr != q->lock_ptr)) {
  826. spin_unlock(lock_ptr);
  827. goto retry;
  828. }
  829. WARN_ON(plist_node_empty(&q->list));
  830. plist_del(&q->list, &q->list.plist);
  831. BUG_ON(q->pi_state);
  832. spin_unlock(lock_ptr);
  833. ret = 1;
  834. }
  835. drop_futex_key_refs(&q->key);
  836. return ret;
  837. }
  838. /*
  839. * PI futexes can not be requeued and must remove themself from the
  840. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  841. * and dropped here.
  842. */
  843. static void unqueue_me_pi(struct futex_q *q)
  844. {
  845. WARN_ON(plist_node_empty(&q->list));
  846. plist_del(&q->list, &q->list.plist);
  847. BUG_ON(!q->pi_state);
  848. free_pi_state(q->pi_state);
  849. q->pi_state = NULL;
  850. spin_unlock(q->lock_ptr);
  851. drop_futex_key_refs(&q->key);
  852. }
  853. /*
  854. * Fixup the pi_state owner with the new owner.
  855. *
  856. * Must be called with hash bucket lock held and mm->sem held for non
  857. * private futexes.
  858. */
  859. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  860. struct task_struct *newowner, int fshared)
  861. {
  862. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  863. struct futex_pi_state *pi_state = q->pi_state;
  864. struct task_struct *oldowner = pi_state->owner;
  865. u32 uval, curval, newval;
  866. int ret;
  867. /* Owner died? */
  868. if (!pi_state->owner)
  869. newtid |= FUTEX_OWNER_DIED;
  870. /*
  871. * We are here either because we stole the rtmutex from the
  872. * pending owner or we are the pending owner which failed to
  873. * get the rtmutex. We have to replace the pending owner TID
  874. * in the user space variable. This must be atomic as we have
  875. * to preserve the owner died bit here.
  876. *
  877. * Note: We write the user space value _before_ changing the pi_state
  878. * because we can fault here. Imagine swapped out pages or a fork
  879. * that marked all the anonymous memory readonly for cow.
  880. *
  881. * Modifying pi_state _before_ the user space value would
  882. * leave the pi_state in an inconsistent state when we fault
  883. * here, because we need to drop the hash bucket lock to
  884. * handle the fault. This might be observed in the PID check
  885. * in lookup_pi_state.
  886. */
  887. retry:
  888. if (get_futex_value_locked(&uval, uaddr))
  889. goto handle_fault;
  890. while (1) {
  891. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  892. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  893. if (curval == -EFAULT)
  894. goto handle_fault;
  895. if (curval == uval)
  896. break;
  897. uval = curval;
  898. }
  899. /*
  900. * We fixed up user space. Now we need to fix the pi_state
  901. * itself.
  902. */
  903. if (pi_state->owner != NULL) {
  904. spin_lock_irq(&pi_state->owner->pi_lock);
  905. WARN_ON(list_empty(&pi_state->list));
  906. list_del_init(&pi_state->list);
  907. spin_unlock_irq(&pi_state->owner->pi_lock);
  908. }
  909. pi_state->owner = newowner;
  910. spin_lock_irq(&newowner->pi_lock);
  911. WARN_ON(!list_empty(&pi_state->list));
  912. list_add(&pi_state->list, &newowner->pi_state_list);
  913. spin_unlock_irq(&newowner->pi_lock);
  914. return 0;
  915. /*
  916. * To handle the page fault we need to drop the hash bucket
  917. * lock here. That gives the other task (either the pending
  918. * owner itself or the task which stole the rtmutex) the
  919. * chance to try the fixup of the pi_state. So once we are
  920. * back from handling the fault we need to check the pi_state
  921. * after reacquiring the hash bucket lock and before trying to
  922. * do another fixup. When the fixup has been done already we
  923. * simply return.
  924. */
  925. handle_fault:
  926. spin_unlock(q->lock_ptr);
  927. ret = get_user(uval, uaddr);
  928. spin_lock(q->lock_ptr);
  929. /*
  930. * Check if someone else fixed it for us:
  931. */
  932. if (pi_state->owner != oldowner)
  933. return 0;
  934. if (ret)
  935. return ret;
  936. goto retry;
  937. }
  938. /*
  939. * In case we must use restart_block to restart a futex_wait,
  940. * we encode in the 'flags' shared capability
  941. */
  942. #define FLAGS_SHARED 0x01
  943. #define FLAGS_CLOCKRT 0x02
  944. static long futex_wait_restart(struct restart_block *restart);
  945. static int futex_wait(u32 __user *uaddr, int fshared,
  946. u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
  947. {
  948. struct task_struct *curr = current;
  949. struct restart_block *restart;
  950. DECLARE_WAITQUEUE(wait, curr);
  951. struct futex_hash_bucket *hb;
  952. struct futex_q q;
  953. u32 uval;
  954. int ret;
  955. struct hrtimer_sleeper t;
  956. int rem = 0;
  957. if (!bitset)
  958. return -EINVAL;
  959. q.pi_state = NULL;
  960. q.bitset = bitset;
  961. retry:
  962. q.key = FUTEX_KEY_INIT;
  963. ret = get_futex_key(uaddr, fshared, &q.key);
  964. if (unlikely(ret != 0))
  965. goto out;
  966. retry_private:
  967. hb = queue_lock(&q);
  968. /*
  969. * Access the page AFTER the hash-bucket is locked.
  970. * Order is important:
  971. *
  972. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  973. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  974. *
  975. * The basic logical guarantee of a futex is that it blocks ONLY
  976. * if cond(var) is known to be true at the time of blocking, for
  977. * any cond. If we queued after testing *uaddr, that would open
  978. * a race condition where we could block indefinitely with
  979. * cond(var) false, which would violate the guarantee.
  980. *
  981. * A consequence is that futex_wait() can return zero and absorb
  982. * a wakeup when *uaddr != val on entry to the syscall. This is
  983. * rare, but normal.
  984. *
  985. * For shared futexes, we hold the mmap semaphore, so the mapping
  986. * cannot have changed since we looked it up in get_futex_key.
  987. */
  988. ret = get_futex_value_locked(&uval, uaddr);
  989. if (unlikely(ret)) {
  990. queue_unlock(&q, hb);
  991. ret = get_user(uval, uaddr);
  992. if (ret)
  993. goto out_put_key;
  994. if (!fshared)
  995. goto retry_private;
  996. put_futex_key(fshared, &q.key);
  997. goto retry;
  998. }
  999. ret = -EWOULDBLOCK;
  1000. if (unlikely(uval != val)) {
  1001. queue_unlock(&q, hb);
  1002. goto out_put_key;
  1003. }
  1004. /* Only actually queue if *uaddr contained val. */
  1005. queue_me(&q, hb);
  1006. /*
  1007. * There might have been scheduling since the queue_me(), as we
  1008. * cannot hold a spinlock across the get_user() in case it
  1009. * faults, and we cannot just set TASK_INTERRUPTIBLE state when
  1010. * queueing ourselves into the futex hash. This code thus has to
  1011. * rely on the futex_wake() code removing us from hash when it
  1012. * wakes us up.
  1013. */
  1014. /* add_wait_queue is the barrier after __set_current_state. */
  1015. __set_current_state(TASK_INTERRUPTIBLE);
  1016. add_wait_queue(&q.waiter, &wait);
  1017. /*
  1018. * !plist_node_empty() is safe here without any lock.
  1019. * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
  1020. */
  1021. if (likely(!plist_node_empty(&q.list))) {
  1022. if (!abs_time)
  1023. schedule();
  1024. else {
  1025. hrtimer_init_on_stack(&t.timer,
  1026. clockrt ? CLOCK_REALTIME :
  1027. CLOCK_MONOTONIC,
  1028. HRTIMER_MODE_ABS);
  1029. hrtimer_init_sleeper(&t, current);
  1030. hrtimer_set_expires_range_ns(&t.timer, *abs_time,
  1031. current->timer_slack_ns);
  1032. hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
  1033. if (!hrtimer_active(&t.timer))
  1034. t.task = NULL;
  1035. /*
  1036. * the timer could have already expired, in which
  1037. * case current would be flagged for rescheduling.
  1038. * Don't bother calling schedule.
  1039. */
  1040. if (likely(t.task))
  1041. schedule();
  1042. hrtimer_cancel(&t.timer);
  1043. /* Flag if a timeout occured */
  1044. rem = (t.task == NULL);
  1045. destroy_hrtimer_on_stack(&t.timer);
  1046. }
  1047. }
  1048. __set_current_state(TASK_RUNNING);
  1049. /*
  1050. * NOTE: we don't remove ourselves from the waitqueue because
  1051. * we are the only user of it.
  1052. */
  1053. /* If we were woken (and unqueued), we succeeded, whatever. */
  1054. ret = 0;
  1055. if (!unqueue_me(&q))
  1056. goto out_put_key;
  1057. ret = -ETIMEDOUT;
  1058. if (rem)
  1059. goto out_put_key;
  1060. /*
  1061. * We expect signal_pending(current), but another thread may
  1062. * have handled it for us already.
  1063. */
  1064. ret = -ERESTARTSYS;
  1065. if (!abs_time)
  1066. goto out_put_key;
  1067. restart = &current_thread_info()->restart_block;
  1068. restart->fn = futex_wait_restart;
  1069. restart->futex.uaddr = (u32 *)uaddr;
  1070. restart->futex.val = val;
  1071. restart->futex.time = abs_time->tv64;
  1072. restart->futex.bitset = bitset;
  1073. restart->futex.flags = 0;
  1074. if (fshared)
  1075. restart->futex.flags |= FLAGS_SHARED;
  1076. if (clockrt)
  1077. restart->futex.flags |= FLAGS_CLOCKRT;
  1078. ret = -ERESTART_RESTARTBLOCK;
  1079. out_put_key:
  1080. put_futex_key(fshared, &q.key);
  1081. out:
  1082. return ret;
  1083. }
  1084. static long futex_wait_restart(struct restart_block *restart)
  1085. {
  1086. u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
  1087. int fshared = 0;
  1088. ktime_t t;
  1089. t.tv64 = restart->futex.time;
  1090. restart->fn = do_no_restart_syscall;
  1091. if (restart->futex.flags & FLAGS_SHARED)
  1092. fshared = 1;
  1093. return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
  1094. restart->futex.bitset,
  1095. restart->futex.flags & FLAGS_CLOCKRT);
  1096. }
  1097. /*
  1098. * Userspace tried a 0 -> TID atomic transition of the futex value
  1099. * and failed. The kernel side here does the whole locking operation:
  1100. * if there are waiters then it will block, it does PI, etc. (Due to
  1101. * races the kernel might see a 0 value of the futex too.)
  1102. */
  1103. static int futex_lock_pi(u32 __user *uaddr, int fshared,
  1104. int detect, ktime_t *time, int trylock)
  1105. {
  1106. struct hrtimer_sleeper timeout, *to = NULL;
  1107. struct task_struct *curr = current;
  1108. struct futex_hash_bucket *hb;
  1109. u32 uval, newval, curval;
  1110. struct futex_q q;
  1111. int ret, lock_taken, ownerdied = 0;
  1112. if (refill_pi_state_cache())
  1113. return -ENOMEM;
  1114. if (time) {
  1115. to = &timeout;
  1116. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  1117. HRTIMER_MODE_ABS);
  1118. hrtimer_init_sleeper(to, current);
  1119. hrtimer_set_expires(&to->timer, *time);
  1120. }
  1121. q.pi_state = NULL;
  1122. retry:
  1123. q.key = FUTEX_KEY_INIT;
  1124. ret = get_futex_key(uaddr, fshared, &q.key);
  1125. if (unlikely(ret != 0))
  1126. goto out;
  1127. retry_private:
  1128. hb = queue_lock(&q);
  1129. retry_locked:
  1130. ret = lock_taken = 0;
  1131. /*
  1132. * To avoid races, we attempt to take the lock here again
  1133. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  1134. * the locks. It will most likely not succeed.
  1135. */
  1136. newval = task_pid_vnr(current);
  1137. curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
  1138. if (unlikely(curval == -EFAULT))
  1139. goto uaddr_faulted;
  1140. /*
  1141. * Detect deadlocks. In case of REQUEUE_PI this is a valid
  1142. * situation and we return success to user space.
  1143. */
  1144. if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
  1145. ret = -EDEADLK;
  1146. goto out_unlock_put_key;
  1147. }
  1148. /*
  1149. * Surprise - we got the lock. Just return to userspace:
  1150. */
  1151. if (unlikely(!curval))
  1152. goto out_unlock_put_key;
  1153. uval = curval;
  1154. /*
  1155. * Set the WAITERS flag, so the owner will know it has someone
  1156. * to wake at next unlock
  1157. */
  1158. newval = curval | FUTEX_WAITERS;
  1159. /*
  1160. * There are two cases, where a futex might have no owner (the
  1161. * owner TID is 0): OWNER_DIED. We take over the futex in this
  1162. * case. We also do an unconditional take over, when the owner
  1163. * of the futex died.
  1164. *
  1165. * This is safe as we are protected by the hash bucket lock !
  1166. */
  1167. if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
  1168. /* Keep the OWNER_DIED bit */
  1169. newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
  1170. ownerdied = 0;
  1171. lock_taken = 1;
  1172. }
  1173. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  1174. if (unlikely(curval == -EFAULT))
  1175. goto uaddr_faulted;
  1176. if (unlikely(curval != uval))
  1177. goto retry_locked;
  1178. /*
  1179. * We took the lock due to owner died take over.
  1180. */
  1181. if (unlikely(lock_taken))
  1182. goto out_unlock_put_key;
  1183. /*
  1184. * We dont have the lock. Look up the PI state (or create it if
  1185. * we are the first waiter):
  1186. */
  1187. ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
  1188. if (unlikely(ret)) {
  1189. switch (ret) {
  1190. case -EAGAIN:
  1191. /*
  1192. * Task is exiting and we just wait for the
  1193. * exit to complete.
  1194. */
  1195. queue_unlock(&q, hb);
  1196. put_futex_key(fshared, &q.key);
  1197. cond_resched();
  1198. goto retry;
  1199. case -ESRCH:
  1200. /*
  1201. * No owner found for this futex. Check if the
  1202. * OWNER_DIED bit is set to figure out whether
  1203. * this is a robust futex or not.
  1204. */
  1205. if (get_futex_value_locked(&curval, uaddr))
  1206. goto uaddr_faulted;
  1207. /*
  1208. * We simply start over in case of a robust
  1209. * futex. The code above will take the futex
  1210. * and return happy.
  1211. */
  1212. if (curval & FUTEX_OWNER_DIED) {
  1213. ownerdied = 1;
  1214. goto retry_locked;
  1215. }
  1216. default:
  1217. goto out_unlock_put_key;
  1218. }
  1219. }
  1220. /*
  1221. * Only actually queue now that the atomic ops are done:
  1222. */
  1223. queue_me(&q, hb);
  1224. WARN_ON(!q.pi_state);
  1225. /*
  1226. * Block on the PI mutex:
  1227. */
  1228. if (!trylock)
  1229. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  1230. else {
  1231. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  1232. /* Fixup the trylock return value: */
  1233. ret = ret ? 0 : -EWOULDBLOCK;
  1234. }
  1235. spin_lock(q.lock_ptr);
  1236. if (!ret) {
  1237. /*
  1238. * Got the lock. We might not be the anticipated owner
  1239. * if we did a lock-steal - fix up the PI-state in
  1240. * that case:
  1241. */
  1242. if (q.pi_state->owner != curr)
  1243. ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
  1244. } else {
  1245. /*
  1246. * Catch the rare case, where the lock was released
  1247. * when we were on the way back before we locked the
  1248. * hash bucket.
  1249. */
  1250. if (q.pi_state->owner == curr) {
  1251. /*
  1252. * Try to get the rt_mutex now. This might
  1253. * fail as some other task acquired the
  1254. * rt_mutex after we removed ourself from the
  1255. * rt_mutex waiters list.
  1256. */
  1257. if (rt_mutex_trylock(&q.pi_state->pi_mutex))
  1258. ret = 0;
  1259. else {
  1260. /*
  1261. * pi_state is incorrect, some other
  1262. * task did a lock steal and we
  1263. * returned due to timeout or signal
  1264. * without taking the rt_mutex. Too
  1265. * late. We can access the
  1266. * rt_mutex_owner without locking, as
  1267. * the other task is now blocked on
  1268. * the hash bucket lock. Fix the state
  1269. * up.
  1270. */
  1271. struct task_struct *owner;
  1272. int res;
  1273. owner = rt_mutex_owner(&q.pi_state->pi_mutex);
  1274. res = fixup_pi_state_owner(uaddr, &q, owner,
  1275. fshared);
  1276. /* propagate -EFAULT, if the fixup failed */
  1277. if (res)
  1278. ret = res;
  1279. }
  1280. } else {
  1281. /*
  1282. * Paranoia check. If we did not take the lock
  1283. * in the trylock above, then we should not be
  1284. * the owner of the rtmutex, neither the real
  1285. * nor the pending one:
  1286. */
  1287. if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
  1288. printk(KERN_ERR "futex_lock_pi: ret = %d "
  1289. "pi-mutex: %p pi-state %p\n", ret,
  1290. q.pi_state->pi_mutex.owner,
  1291. q.pi_state->owner);
  1292. }
  1293. }
  1294. /*
  1295. * If fixup_pi_state_owner() faulted and was unable to handle the
  1296. * fault, unlock it and return the fault to userspace.
  1297. */
  1298. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  1299. rt_mutex_unlock(&q.pi_state->pi_mutex);
  1300. /* Unqueue and drop the lock */
  1301. unqueue_me_pi(&q);
  1302. if (to)
  1303. destroy_hrtimer_on_stack(&to->timer);
  1304. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  1305. out_unlock_put_key:
  1306. queue_unlock(&q, hb);
  1307. out_put_key:
  1308. put_futex_key(fshared, &q.key);
  1309. out:
  1310. if (to)
  1311. destroy_hrtimer_on_stack(&to->timer);
  1312. return ret;
  1313. uaddr_faulted:
  1314. /*
  1315. * We have to r/w *(int __user *)uaddr, and we have to modify it
  1316. * atomically. Therefore, if we continue to fault after get_user()
  1317. * below, we need to handle the fault ourselves, while still holding
  1318. * the mmap_sem. This can occur if the uaddr is under contention as
  1319. * we have to drop the mmap_sem in order to call get_user().
  1320. */
  1321. queue_unlock(&q, hb);
  1322. ret = get_user(uval, uaddr);
  1323. if (ret)
  1324. goto out_put_key;
  1325. if (!fshared)
  1326. goto retry_private;
  1327. put_futex_key(fshared, &q.key);
  1328. goto retry;
  1329. }
  1330. /*
  1331. * Userspace attempted a TID -> 0 atomic transition, and failed.
  1332. * This is the in-kernel slowpath: we look up the PI state (if any),
  1333. * and do the rt-mutex unlock.
  1334. */
  1335. static int futex_unlock_pi(u32 __user *uaddr, int fshared)
  1336. {
  1337. struct futex_hash_bucket *hb;
  1338. struct futex_q *this, *next;
  1339. u32 uval;
  1340. struct plist_head *head;
  1341. union futex_key key = FUTEX_KEY_INIT;
  1342. int ret;
  1343. retry:
  1344. if (get_user(uval, uaddr))
  1345. return -EFAULT;
  1346. /*
  1347. * We release only a lock we actually own:
  1348. */
  1349. if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
  1350. return -EPERM;
  1351. ret = get_futex_key(uaddr, fshared, &key);
  1352. if (unlikely(ret != 0))
  1353. goto out;
  1354. hb = hash_futex(&key);
  1355. spin_lock(&hb->lock);
  1356. /*
  1357. * To avoid races, try to do the TID -> 0 atomic transition
  1358. * again. If it succeeds then we can return without waking
  1359. * anyone else up:
  1360. */
  1361. if (!(uval & FUTEX_OWNER_DIED))
  1362. uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
  1363. if (unlikely(uval == -EFAULT))
  1364. goto pi_faulted;
  1365. /*
  1366. * Rare case: we managed to release the lock atomically,
  1367. * no need to wake anyone else up:
  1368. */
  1369. if (unlikely(uval == task_pid_vnr(current)))
  1370. goto out_unlock;
  1371. /*
  1372. * Ok, other tasks may need to be woken up - check waiters
  1373. * and do the wakeup if necessary:
  1374. */
  1375. head = &hb->chain;
  1376. plist_for_each_entry_safe(this, next, head, list) {
  1377. if (!match_futex (&this->key, &key))
  1378. continue;
  1379. ret = wake_futex_pi(uaddr, uval, this);
  1380. /*
  1381. * The atomic access to the futex value
  1382. * generated a pagefault, so retry the
  1383. * user-access and the wakeup:
  1384. */
  1385. if (ret == -EFAULT)
  1386. goto pi_faulted;
  1387. goto out_unlock;
  1388. }
  1389. /*
  1390. * No waiters - kernel unlocks the futex:
  1391. */
  1392. if (!(uval & FUTEX_OWNER_DIED)) {
  1393. ret = unlock_futex_pi(uaddr, uval);
  1394. if (ret == -EFAULT)
  1395. goto pi_faulted;
  1396. }
  1397. out_unlock:
  1398. spin_unlock(&hb->lock);
  1399. put_futex_key(fshared, &key);
  1400. out:
  1401. return ret;
  1402. pi_faulted:
  1403. /*
  1404. * We have to r/w *(int __user *)uaddr, and we have to modify it
  1405. * atomically. Therefore, if we continue to fault after get_user()
  1406. * below, we need to handle the fault ourselves, while still holding
  1407. * the mmap_sem. This can occur if the uaddr is under contention as
  1408. * we have to drop the mmap_sem in order to call get_user().
  1409. */
  1410. spin_unlock(&hb->lock);
  1411. put_futex_key(fshared, &key);
  1412. ret = get_user(uval, uaddr);
  1413. if (!ret)
  1414. goto retry;
  1415. return ret;
  1416. }
  1417. /*
  1418. * Support for robust futexes: the kernel cleans up held futexes at
  1419. * thread exit time.
  1420. *
  1421. * Implementation: user-space maintains a per-thread list of locks it
  1422. * is holding. Upon do_exit(), the kernel carefully walks this list,
  1423. * and marks all locks that are owned by this thread with the
  1424. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  1425. * always manipulated with the lock held, so the list is private and
  1426. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  1427. * field, to allow the kernel to clean up if the thread dies after
  1428. * acquiring the lock, but just before it could have added itself to
  1429. * the list. There can only be one such pending lock.
  1430. */
  1431. /**
  1432. * sys_set_robust_list - set the robust-futex list head of a task
  1433. * @head: pointer to the list-head
  1434. * @len: length of the list-head, as userspace expects
  1435. */
  1436. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  1437. size_t, len)
  1438. {
  1439. if (!futex_cmpxchg_enabled)
  1440. return -ENOSYS;
  1441. /*
  1442. * The kernel knows only one size for now:
  1443. */
  1444. if (unlikely(len != sizeof(*head)))
  1445. return -EINVAL;
  1446. current->robust_list = head;
  1447. return 0;
  1448. }
  1449. /**
  1450. * sys_get_robust_list - get the robust-futex list head of a task
  1451. * @pid: pid of the process [zero for current task]
  1452. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  1453. * @len_ptr: pointer to a length field, the kernel fills in the header size
  1454. */
  1455. SYSCALL_DEFINE3(get_robust_list, int, pid,
  1456. struct robust_list_head __user * __user *, head_ptr,
  1457. size_t __user *, len_ptr)
  1458. {
  1459. struct robust_list_head __user *head;
  1460. unsigned long ret;
  1461. const struct cred *cred = current_cred(), *pcred;
  1462. if (!futex_cmpxchg_enabled)
  1463. return -ENOSYS;
  1464. if (!pid)
  1465. head = current->robust_list;
  1466. else {
  1467. struct task_struct *p;
  1468. ret = -ESRCH;
  1469. rcu_read_lock();
  1470. p = find_task_by_vpid(pid);
  1471. if (!p)
  1472. goto err_unlock;
  1473. ret = -EPERM;
  1474. pcred = __task_cred(p);
  1475. if (cred->euid != pcred->euid &&
  1476. cred->euid != pcred->uid &&
  1477. !capable(CAP_SYS_PTRACE))
  1478. goto err_unlock;
  1479. head = p->robust_list;
  1480. rcu_read_unlock();
  1481. }
  1482. if (put_user(sizeof(*head), len_ptr))
  1483. return -EFAULT;
  1484. return put_user(head, head_ptr);
  1485. err_unlock:
  1486. rcu_read_unlock();
  1487. return ret;
  1488. }
  1489. /*
  1490. * Process a futex-list entry, check whether it's owned by the
  1491. * dying task, and do notification if so:
  1492. */
  1493. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  1494. {
  1495. u32 uval, nval, mval;
  1496. retry:
  1497. if (get_user(uval, uaddr))
  1498. return -1;
  1499. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  1500. /*
  1501. * Ok, this dying thread is truly holding a futex
  1502. * of interest. Set the OWNER_DIED bit atomically
  1503. * via cmpxchg, and if the value had FUTEX_WAITERS
  1504. * set, wake up a waiter (if any). (We have to do a
  1505. * futex_wake() even if OWNER_DIED is already set -
  1506. * to handle the rare but possible case of recursive
  1507. * thread-death.) The rest of the cleanup is done in
  1508. * userspace.
  1509. */
  1510. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  1511. nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
  1512. if (nval == -EFAULT)
  1513. return -1;
  1514. if (nval != uval)
  1515. goto retry;
  1516. /*
  1517. * Wake robust non-PI futexes here. The wakeup of
  1518. * PI futexes happens in exit_pi_state():
  1519. */
  1520. if (!pi && (uval & FUTEX_WAITERS))
  1521. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  1522. }
  1523. return 0;
  1524. }
  1525. /*
  1526. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  1527. */
  1528. static inline int fetch_robust_entry(struct robust_list __user **entry,
  1529. struct robust_list __user * __user *head,
  1530. int *pi)
  1531. {
  1532. unsigned long uentry;
  1533. if (get_user(uentry, (unsigned long __user *)head))
  1534. return -EFAULT;
  1535. *entry = (void __user *)(uentry & ~1UL);
  1536. *pi = uentry & 1;
  1537. return 0;
  1538. }
  1539. /*
  1540. * Walk curr->robust_list (very carefully, it's a userspace list!)
  1541. * and mark any locks found there dead, and notify any waiters.
  1542. *
  1543. * We silently return on any sign of list-walking problem.
  1544. */
  1545. void exit_robust_list(struct task_struct *curr)
  1546. {
  1547. struct robust_list_head __user *head = curr->robust_list;
  1548. struct robust_list __user *entry, *next_entry, *pending;
  1549. unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
  1550. unsigned long futex_offset;
  1551. int rc;
  1552. if (!futex_cmpxchg_enabled)
  1553. return;
  1554. /*
  1555. * Fetch the list head (which was registered earlier, via
  1556. * sys_set_robust_list()):
  1557. */
  1558. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  1559. return;
  1560. /*
  1561. * Fetch the relative futex offset:
  1562. */
  1563. if (get_user(futex_offset, &head->futex_offset))
  1564. return;
  1565. /*
  1566. * Fetch any possibly pending lock-add first, and handle it
  1567. * if it exists:
  1568. */
  1569. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  1570. return;
  1571. next_entry = NULL; /* avoid warning with gcc */
  1572. while (entry != &head->list) {
  1573. /*
  1574. * Fetch the next entry in the list before calling
  1575. * handle_futex_death:
  1576. */
  1577. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  1578. /*
  1579. * A pending lock might already be on the list, so
  1580. * don't process it twice:
  1581. */
  1582. if (entry != pending)
  1583. if (handle_futex_death((void __user *)entry + futex_offset,
  1584. curr, pi))
  1585. return;
  1586. if (rc)
  1587. return;
  1588. entry = next_entry;
  1589. pi = next_pi;
  1590. /*
  1591. * Avoid excessively long or circular lists:
  1592. */
  1593. if (!--limit)
  1594. break;
  1595. cond_resched();
  1596. }
  1597. if (pending)
  1598. handle_futex_death((void __user *)pending + futex_offset,
  1599. curr, pip);
  1600. }
  1601. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  1602. u32 __user *uaddr2, u32 val2, u32 val3)
  1603. {
  1604. int clockrt, ret = -ENOSYS;
  1605. int cmd = op & FUTEX_CMD_MASK;
  1606. int fshared = 0;
  1607. if (!(op & FUTEX_PRIVATE_FLAG))
  1608. fshared = 1;
  1609. clockrt = op & FUTEX_CLOCK_REALTIME;
  1610. if (clockrt && cmd != FUTEX_WAIT_BITSET)
  1611. return -ENOSYS;
  1612. switch (cmd) {
  1613. case FUTEX_WAIT:
  1614. val3 = FUTEX_BITSET_MATCH_ANY;
  1615. case FUTEX_WAIT_BITSET:
  1616. ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
  1617. break;
  1618. case FUTEX_WAKE:
  1619. val3 = FUTEX_BITSET_MATCH_ANY;
  1620. case FUTEX_WAKE_BITSET:
  1621. ret = futex_wake(uaddr, fshared, val, val3);
  1622. break;
  1623. case FUTEX_REQUEUE:
  1624. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
  1625. break;
  1626. case FUTEX_CMP_REQUEUE:
  1627. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
  1628. break;
  1629. case FUTEX_WAKE_OP:
  1630. ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
  1631. break;
  1632. case FUTEX_LOCK_PI:
  1633. if (futex_cmpxchg_enabled)
  1634. ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
  1635. break;
  1636. case FUTEX_UNLOCK_PI:
  1637. if (futex_cmpxchg_enabled)
  1638. ret = futex_unlock_pi(uaddr, fshared);
  1639. break;
  1640. case FUTEX_TRYLOCK_PI:
  1641. if (futex_cmpxchg_enabled)
  1642. ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
  1643. break;
  1644. default:
  1645. ret = -ENOSYS;
  1646. }
  1647. return ret;
  1648. }
  1649. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  1650. struct timespec __user *, utime, u32 __user *, uaddr2,
  1651. u32, val3)
  1652. {
  1653. struct timespec ts;
  1654. ktime_t t, *tp = NULL;
  1655. u32 val2 = 0;
  1656. int cmd = op & FUTEX_CMD_MASK;
  1657. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  1658. cmd == FUTEX_WAIT_BITSET)) {
  1659. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  1660. return -EFAULT;
  1661. if (!timespec_valid(&ts))
  1662. return -EINVAL;
  1663. t = timespec_to_ktime(ts);
  1664. if (cmd == FUTEX_WAIT)
  1665. t = ktime_add_safe(ktime_get(), t);
  1666. tp = &t;
  1667. }
  1668. /*
  1669. * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
  1670. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  1671. */
  1672. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  1673. cmd == FUTEX_WAKE_OP)
  1674. val2 = (u32) (unsigned long) utime;
  1675. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  1676. }
  1677. static int __init futex_init(void)
  1678. {
  1679. u32 curval;
  1680. int i;
  1681. /*
  1682. * This will fail and we want it. Some arch implementations do
  1683. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  1684. * functionality. We want to know that before we call in any
  1685. * of the complex code paths. Also we want to prevent
  1686. * registration of robust lists in that case. NULL is
  1687. * guaranteed to fault and we get -EFAULT on functional
  1688. * implementation, the non functional ones will return
  1689. * -ENOSYS.
  1690. */
  1691. curval = cmpxchg_futex_value_locked(NULL, 0, 0);
  1692. if (curval == -EFAULT)
  1693. futex_cmpxchg_enabled = 1;
  1694. for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
  1695. plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
  1696. spin_lock_init(&futex_queues[i].lock);
  1697. }
  1698. return 0;
  1699. }
  1700. __initcall(futex_init);