disk-io.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/crc32c.h>
  21. #include <linux/scatterlist.h>
  22. #include <linux/swap.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/writeback.h>
  25. #include <linux/buffer_head.h> // for block_sync_page
  26. #include "ctree.h"
  27. #include "disk-io.h"
  28. #include "transaction.h"
  29. #include "btrfs_inode.h"
  30. #include "print-tree.h"
  31. #if 0
  32. static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
  33. {
  34. if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
  35. printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
  36. (unsigned long long)extent_buffer_blocknr(buf),
  37. (unsigned long long)btrfs_header_blocknr(buf));
  38. return 1;
  39. }
  40. return 0;
  41. }
  42. #endif
  43. static struct extent_map_ops btree_extent_map_ops;
  44. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  45. u64 bytenr, u32 blocksize)
  46. {
  47. struct inode *btree_inode = root->fs_info->btree_inode;
  48. struct extent_buffer *eb;
  49. eb = find_extent_buffer(&BTRFS_I(btree_inode)->extent_tree,
  50. bytenr, blocksize, GFP_NOFS);
  51. return eb;
  52. }
  53. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  54. u64 bytenr, u32 blocksize)
  55. {
  56. struct inode *btree_inode = root->fs_info->btree_inode;
  57. struct extent_buffer *eb;
  58. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->extent_tree,
  59. bytenr, blocksize, NULL, GFP_NOFS);
  60. return eb;
  61. }
  62. struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
  63. size_t page_offset, u64 start, u64 end,
  64. int create)
  65. {
  66. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  67. struct extent_map *em;
  68. int ret;
  69. again:
  70. em = lookup_extent_mapping(em_tree, start, end);
  71. if (em) {
  72. goto out;
  73. }
  74. em = alloc_extent_map(GFP_NOFS);
  75. if (!em) {
  76. em = ERR_PTR(-ENOMEM);
  77. goto out;
  78. }
  79. em->start = 0;
  80. em->end = (i_size_read(inode) & ~((u64)PAGE_CACHE_SIZE -1)) - 1;
  81. em->block_start = 0;
  82. em->block_end = em->end;
  83. em->bdev = inode->i_sb->s_bdev;
  84. ret = add_extent_mapping(em_tree, em);
  85. if (ret == -EEXIST) {
  86. free_extent_map(em);
  87. em = NULL;
  88. goto again;
  89. } else if (ret) {
  90. em = ERR_PTR(ret);
  91. }
  92. out:
  93. return em;
  94. }
  95. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  96. {
  97. return crc32c(seed, data, len);
  98. }
  99. void btrfs_csum_final(u32 crc, char *result)
  100. {
  101. *(__le32 *)result = ~cpu_to_le32(crc);
  102. }
  103. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  104. int verify)
  105. {
  106. char result[BTRFS_CRC32_SIZE];
  107. unsigned long len;
  108. unsigned long cur_len;
  109. unsigned long offset = BTRFS_CSUM_SIZE;
  110. char *map_token = NULL;
  111. char *kaddr;
  112. unsigned long map_start;
  113. unsigned long map_len;
  114. int err;
  115. u32 crc = ~(u32)0;
  116. len = buf->len - offset;
  117. while(len > 0) {
  118. err = map_private_extent_buffer(buf, offset, 32,
  119. &map_token, &kaddr,
  120. &map_start, &map_len, KM_USER0);
  121. if (err) {
  122. printk("failed to map extent buffer! %lu\n",
  123. offset);
  124. return 1;
  125. }
  126. cur_len = min(len, map_len - (offset - map_start));
  127. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  128. crc, cur_len);
  129. len -= cur_len;
  130. offset += cur_len;
  131. unmap_extent_buffer(buf, map_token, KM_USER0);
  132. }
  133. btrfs_csum_final(crc, result);
  134. if (verify) {
  135. int from_this_trans = 0;
  136. if (root->fs_info->running_transaction &&
  137. btrfs_header_generation(buf) ==
  138. root->fs_info->running_transaction->transid)
  139. from_this_trans = 1;
  140. /* FIXME, this is not good */
  141. if (from_this_trans == 0 &&
  142. memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
  143. u32 val;
  144. u32 found = 0;
  145. memcpy(&found, result, BTRFS_CRC32_SIZE);
  146. read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
  147. printk("btrfs: %s checksum verify failed on %llu "
  148. "wanted %X found %X from_this_trans %d\n",
  149. root->fs_info->sb->s_id,
  150. buf->start, val, found, from_this_trans);
  151. return 1;
  152. }
  153. } else {
  154. write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
  155. }
  156. return 0;
  157. }
  158. int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  159. {
  160. struct extent_map_tree *tree;
  161. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  162. u64 found_start;
  163. int found_level;
  164. unsigned long len;
  165. struct extent_buffer *eb;
  166. tree = &BTRFS_I(page->mapping->host)->extent_tree;
  167. if (page->private == EXTENT_PAGE_PRIVATE)
  168. goto out;
  169. if (!page->private)
  170. goto out;
  171. len = page->private >> 2;
  172. if (len == 0) {
  173. WARN_ON(1);
  174. }
  175. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  176. read_extent_buffer_pages(tree, eb, start + PAGE_CACHE_SIZE, 1);
  177. found_start = btrfs_header_bytenr(eb);
  178. if (found_start != start) {
  179. printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
  180. start, found_start, len);
  181. }
  182. found_level = btrfs_header_level(eb);
  183. csum_tree_block(root, eb, 0);
  184. free_extent_buffer(eb);
  185. out:
  186. return 0;
  187. }
  188. static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
  189. {
  190. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  191. csum_dirty_buffer(root, page);
  192. return 0;
  193. }
  194. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  195. {
  196. struct extent_map_tree *tree;
  197. tree = &BTRFS_I(page->mapping->host)->extent_tree;
  198. return extent_write_full_page(tree, page, btree_get_extent, wbc);
  199. }
  200. static int btree_writepages(struct address_space *mapping,
  201. struct writeback_control *wbc)
  202. {
  203. struct extent_map_tree *tree;
  204. tree = &BTRFS_I(mapping->host)->extent_tree;
  205. if (wbc->sync_mode == WB_SYNC_NONE) {
  206. u64 num_dirty;
  207. u64 start = 0;
  208. unsigned long thresh = 96 * 1024 * 1024;
  209. if (wbc->for_kupdate)
  210. return 0;
  211. if (current_is_pdflush()) {
  212. thresh = 96 * 1024 * 1024;
  213. } else {
  214. thresh = 8 * 1024 * 1024;
  215. }
  216. num_dirty = count_range_bits(tree, &start, (u64)-1,
  217. thresh, EXTENT_DIRTY);
  218. if (num_dirty < thresh) {
  219. return 0;
  220. }
  221. }
  222. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  223. }
  224. int btree_readpage(struct file *file, struct page *page)
  225. {
  226. struct extent_map_tree *tree;
  227. tree = &BTRFS_I(page->mapping->host)->extent_tree;
  228. return extent_read_full_page(tree, page, btree_get_extent);
  229. }
  230. static int btree_releasepage(struct page *page, gfp_t unused_gfp_flags)
  231. {
  232. struct extent_map_tree *tree;
  233. int ret;
  234. tree = &BTRFS_I(page->mapping->host)->extent_tree;
  235. ret = try_release_extent_mapping(tree, page);
  236. if (ret == 1) {
  237. ClearPagePrivate(page);
  238. set_page_private(page, 0);
  239. page_cache_release(page);
  240. }
  241. return ret;
  242. }
  243. static void btree_invalidatepage(struct page *page, unsigned long offset)
  244. {
  245. struct extent_map_tree *tree;
  246. tree = &BTRFS_I(page->mapping->host)->extent_tree;
  247. extent_invalidatepage(tree, page, offset);
  248. btree_releasepage(page, GFP_NOFS);
  249. }
  250. #if 0
  251. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  252. {
  253. struct buffer_head *bh;
  254. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  255. struct buffer_head *head;
  256. if (!page_has_buffers(page)) {
  257. create_empty_buffers(page, root->fs_info->sb->s_blocksize,
  258. (1 << BH_Dirty)|(1 << BH_Uptodate));
  259. }
  260. head = page_buffers(page);
  261. bh = head;
  262. do {
  263. if (buffer_dirty(bh))
  264. csum_tree_block(root, bh, 0);
  265. bh = bh->b_this_page;
  266. } while (bh != head);
  267. return block_write_full_page(page, btree_get_block, wbc);
  268. }
  269. #endif
  270. static struct address_space_operations btree_aops = {
  271. .readpage = btree_readpage,
  272. .writepage = btree_writepage,
  273. .writepages = btree_writepages,
  274. .releasepage = btree_releasepage,
  275. .invalidatepage = btree_invalidatepage,
  276. .sync_page = block_sync_page,
  277. };
  278. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
  279. {
  280. struct extent_buffer *buf = NULL;
  281. struct inode *btree_inode = root->fs_info->btree_inode;
  282. int ret = 0;
  283. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  284. if (!buf)
  285. return 0;
  286. read_extent_buffer_pages(&BTRFS_I(btree_inode)->extent_tree,
  287. buf, 0, 0);
  288. free_extent_buffer(buf);
  289. return ret;
  290. }
  291. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  292. u32 blocksize)
  293. {
  294. struct extent_buffer *buf = NULL;
  295. struct inode *btree_inode = root->fs_info->btree_inode;
  296. struct extent_map_tree *extent_tree;
  297. u64 end;
  298. int ret;
  299. extent_tree = &BTRFS_I(btree_inode)->extent_tree;
  300. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  301. if (!buf)
  302. return NULL;
  303. read_extent_buffer_pages(&BTRFS_I(btree_inode)->extent_tree,
  304. buf, 0, 1);
  305. if (buf->flags & EXTENT_CSUM)
  306. return buf;
  307. end = buf->start + PAGE_CACHE_SIZE - 1;
  308. if (test_range_bit(extent_tree, buf->start, end, EXTENT_CSUM, 1)) {
  309. buf->flags |= EXTENT_CSUM;
  310. return buf;
  311. }
  312. lock_extent(extent_tree, buf->start, end, GFP_NOFS);
  313. if (test_range_bit(extent_tree, buf->start, end, EXTENT_CSUM, 1)) {
  314. buf->flags |= EXTENT_CSUM;
  315. goto out_unlock;
  316. }
  317. ret = csum_tree_block(root, buf, 1);
  318. set_extent_bits(extent_tree, buf->start, end, EXTENT_CSUM, GFP_NOFS);
  319. buf->flags |= EXTENT_CSUM;
  320. out_unlock:
  321. unlock_extent(extent_tree, buf->start, end, GFP_NOFS);
  322. return buf;
  323. }
  324. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  325. struct extent_buffer *buf)
  326. {
  327. struct inode *btree_inode = root->fs_info->btree_inode;
  328. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->extent_tree, buf);
  329. return 0;
  330. }
  331. int wait_on_tree_block_writeback(struct btrfs_root *root,
  332. struct extent_buffer *buf)
  333. {
  334. struct inode *btree_inode = root->fs_info->btree_inode;
  335. wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->extent_tree,
  336. buf);
  337. return 0;
  338. }
  339. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  340. u32 stripesize, struct btrfs_root *root,
  341. struct btrfs_fs_info *fs_info,
  342. u64 objectid)
  343. {
  344. root->node = NULL;
  345. root->inode = NULL;
  346. root->commit_root = NULL;
  347. root->sectorsize = sectorsize;
  348. root->nodesize = nodesize;
  349. root->leafsize = leafsize;
  350. root->stripesize = stripesize;
  351. root->ref_cows = 0;
  352. root->fs_info = fs_info;
  353. root->objectid = objectid;
  354. root->last_trans = 0;
  355. root->highest_inode = 0;
  356. root->last_inode_alloc = 0;
  357. root->name = NULL;
  358. root->in_sysfs = 0;
  359. memset(&root->root_key, 0, sizeof(root->root_key));
  360. memset(&root->root_item, 0, sizeof(root->root_item));
  361. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  362. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  363. init_completion(&root->kobj_unregister);
  364. root->defrag_running = 0;
  365. root->defrag_level = 0;
  366. root->root_key.objectid = objectid;
  367. return 0;
  368. }
  369. static int find_and_setup_root(struct btrfs_root *tree_root,
  370. struct btrfs_fs_info *fs_info,
  371. u64 objectid,
  372. struct btrfs_root *root)
  373. {
  374. int ret;
  375. u32 blocksize;
  376. __setup_root(tree_root->nodesize, tree_root->leafsize,
  377. tree_root->sectorsize, tree_root->stripesize,
  378. root, fs_info, objectid);
  379. ret = btrfs_find_last_root(tree_root, objectid,
  380. &root->root_item, &root->root_key);
  381. BUG_ON(ret);
  382. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  383. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  384. blocksize);
  385. BUG_ON(!root->node);
  386. return 0;
  387. }
  388. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
  389. struct btrfs_key *location)
  390. {
  391. struct btrfs_root *root;
  392. struct btrfs_root *tree_root = fs_info->tree_root;
  393. struct btrfs_path *path;
  394. struct extent_buffer *l;
  395. u64 highest_inode;
  396. u32 blocksize;
  397. int ret = 0;
  398. root = kzalloc(sizeof(*root), GFP_NOFS);
  399. if (!root)
  400. return ERR_PTR(-ENOMEM);
  401. if (location->offset == (u64)-1) {
  402. ret = find_and_setup_root(tree_root, fs_info,
  403. location->objectid, root);
  404. if (ret) {
  405. kfree(root);
  406. return ERR_PTR(ret);
  407. }
  408. goto insert;
  409. }
  410. __setup_root(tree_root->nodesize, tree_root->leafsize,
  411. tree_root->sectorsize, tree_root->stripesize,
  412. root, fs_info, location->objectid);
  413. path = btrfs_alloc_path();
  414. BUG_ON(!path);
  415. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  416. if (ret != 0) {
  417. if (ret > 0)
  418. ret = -ENOENT;
  419. goto out;
  420. }
  421. l = path->nodes[0];
  422. read_extent_buffer(l, &root->root_item,
  423. btrfs_item_ptr_offset(l, path->slots[0]),
  424. sizeof(root->root_item));
  425. memcpy(&root->root_key, location, sizeof(*location));
  426. ret = 0;
  427. out:
  428. btrfs_release_path(root, path);
  429. btrfs_free_path(path);
  430. if (ret) {
  431. kfree(root);
  432. return ERR_PTR(ret);
  433. }
  434. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  435. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  436. blocksize);
  437. BUG_ON(!root->node);
  438. insert:
  439. root->ref_cows = 1;
  440. ret = btrfs_find_highest_inode(root, &highest_inode);
  441. if (ret == 0) {
  442. root->highest_inode = highest_inode;
  443. root->last_inode_alloc = highest_inode;
  444. }
  445. return root;
  446. }
  447. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  448. u64 root_objectid)
  449. {
  450. struct btrfs_root *root;
  451. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  452. return fs_info->tree_root;
  453. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  454. return fs_info->extent_root;
  455. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  456. (unsigned long)root_objectid);
  457. return root;
  458. }
  459. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  460. struct btrfs_key *location)
  461. {
  462. struct btrfs_root *root;
  463. int ret;
  464. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  465. return fs_info->tree_root;
  466. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  467. return fs_info->extent_root;
  468. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  469. (unsigned long)location->objectid);
  470. if (root)
  471. return root;
  472. root = btrfs_read_fs_root_no_radix(fs_info, location);
  473. if (IS_ERR(root))
  474. return root;
  475. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  476. (unsigned long)root->root_key.objectid,
  477. root);
  478. if (ret) {
  479. free_extent_buffer(root->node);
  480. kfree(root);
  481. return ERR_PTR(ret);
  482. }
  483. ret = btrfs_find_dead_roots(fs_info->tree_root,
  484. root->root_key.objectid, root);
  485. BUG_ON(ret);
  486. return root;
  487. }
  488. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  489. struct btrfs_key *location,
  490. const char *name, int namelen)
  491. {
  492. struct btrfs_root *root;
  493. int ret;
  494. root = btrfs_read_fs_root_no_name(fs_info, location);
  495. if (!root)
  496. return NULL;
  497. if (root->in_sysfs)
  498. return root;
  499. ret = btrfs_set_root_name(root, name, namelen);
  500. if (ret) {
  501. free_extent_buffer(root->node);
  502. kfree(root);
  503. return ERR_PTR(ret);
  504. }
  505. ret = btrfs_sysfs_add_root(root);
  506. if (ret) {
  507. free_extent_buffer(root->node);
  508. kfree(root->name);
  509. kfree(root);
  510. return ERR_PTR(ret);
  511. }
  512. root->in_sysfs = 1;
  513. return root;
  514. }
  515. #if 0
  516. static int add_hasher(struct btrfs_fs_info *info, char *type) {
  517. struct btrfs_hasher *hasher;
  518. hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
  519. if (!hasher)
  520. return -ENOMEM;
  521. hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
  522. if (!hasher->hash_tfm) {
  523. kfree(hasher);
  524. return -EINVAL;
  525. }
  526. spin_lock(&info->hash_lock);
  527. list_add(&hasher->list, &info->hashers);
  528. spin_unlock(&info->hash_lock);
  529. return 0;
  530. }
  531. #endif
  532. struct btrfs_root *open_ctree(struct super_block *sb)
  533. {
  534. u32 sectorsize;
  535. u32 nodesize;
  536. u32 leafsize;
  537. u32 blocksize;
  538. u32 stripesize;
  539. struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
  540. GFP_NOFS);
  541. struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
  542. GFP_NOFS);
  543. struct btrfs_fs_info *fs_info = kmalloc(sizeof(*fs_info),
  544. GFP_NOFS);
  545. int ret;
  546. int err = -EIO;
  547. struct btrfs_super_block *disk_super;
  548. if (!extent_root || !tree_root || !fs_info) {
  549. err = -ENOMEM;
  550. goto fail;
  551. }
  552. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  553. INIT_LIST_HEAD(&fs_info->trans_list);
  554. INIT_LIST_HEAD(&fs_info->dead_roots);
  555. INIT_LIST_HEAD(&fs_info->hashers);
  556. spin_lock_init(&fs_info->hash_lock);
  557. spin_lock_init(&fs_info->delalloc_lock);
  558. memset(&fs_info->super_kobj, 0, sizeof(fs_info->super_kobj));
  559. init_completion(&fs_info->kobj_unregister);
  560. sb_set_blocksize(sb, 4096);
  561. fs_info->running_transaction = NULL;
  562. fs_info->last_trans_committed = 0;
  563. fs_info->tree_root = tree_root;
  564. fs_info->extent_root = extent_root;
  565. fs_info->sb = sb;
  566. fs_info->mount_opt = 0;
  567. fs_info->max_extent = (u64)-1;
  568. fs_info->delalloc_bytes = 0;
  569. fs_info->btree_inode = new_inode(sb);
  570. fs_info->btree_inode->i_ino = 1;
  571. fs_info->btree_inode->i_nlink = 1;
  572. fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
  573. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  574. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  575. fs_info->btree_inode->i_mapping,
  576. GFP_NOFS);
  577. BTRFS_I(fs_info->btree_inode)->extent_tree.ops = &btree_extent_map_ops;
  578. extent_map_tree_init(&fs_info->free_space_cache,
  579. fs_info->btree_inode->i_mapping, GFP_NOFS);
  580. extent_map_tree_init(&fs_info->block_group_cache,
  581. fs_info->btree_inode->i_mapping, GFP_NOFS);
  582. extent_map_tree_init(&fs_info->pinned_extents,
  583. fs_info->btree_inode->i_mapping, GFP_NOFS);
  584. extent_map_tree_init(&fs_info->pending_del,
  585. fs_info->btree_inode->i_mapping, GFP_NOFS);
  586. extent_map_tree_init(&fs_info->extent_ins,
  587. fs_info->btree_inode->i_mapping, GFP_NOFS);
  588. fs_info->do_barriers = 1;
  589. fs_info->closing = 0;
  590. fs_info->total_pinned = 0;
  591. #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
  592. INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
  593. #else
  594. INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
  595. #endif
  596. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  597. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  598. sizeof(struct btrfs_key));
  599. insert_inode_hash(fs_info->btree_inode);
  600. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  601. mutex_init(&fs_info->trans_mutex);
  602. mutex_init(&fs_info->fs_mutex);
  603. #if 0
  604. ret = add_hasher(fs_info, "crc32c");
  605. if (ret) {
  606. printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
  607. err = -ENOMEM;
  608. goto fail_iput;
  609. }
  610. #endif
  611. __setup_root(512, 512, 512, 512, tree_root,
  612. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  613. fs_info->sb_buffer = read_tree_block(tree_root,
  614. BTRFS_SUPER_INFO_OFFSET,
  615. 512);
  616. if (!fs_info->sb_buffer)
  617. goto fail_iput;
  618. read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0,
  619. sizeof(fs_info->super_copy));
  620. read_extent_buffer(fs_info->sb_buffer, fs_info->fsid,
  621. (unsigned long)btrfs_super_fsid(fs_info->sb_buffer),
  622. BTRFS_FSID_SIZE);
  623. disk_super = &fs_info->super_copy;
  624. if (!btrfs_super_root(disk_super))
  625. goto fail_sb_buffer;
  626. nodesize = btrfs_super_nodesize(disk_super);
  627. leafsize = btrfs_super_leafsize(disk_super);
  628. sectorsize = btrfs_super_sectorsize(disk_super);
  629. stripesize = btrfs_super_stripesize(disk_super);
  630. tree_root->nodesize = nodesize;
  631. tree_root->leafsize = leafsize;
  632. tree_root->sectorsize = sectorsize;
  633. tree_root->stripesize = stripesize;
  634. sb_set_blocksize(sb, sectorsize);
  635. i_size_write(fs_info->btree_inode,
  636. btrfs_super_total_bytes(disk_super));
  637. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  638. sizeof(disk_super->magic))) {
  639. printk("btrfs: valid FS not found on %s\n", sb->s_id);
  640. goto fail_sb_buffer;
  641. }
  642. blocksize = btrfs_level_size(tree_root,
  643. btrfs_super_root_level(disk_super));
  644. tree_root->node = read_tree_block(tree_root,
  645. btrfs_super_root(disk_super),
  646. blocksize);
  647. if (!tree_root->node)
  648. goto fail_sb_buffer;
  649. mutex_lock(&fs_info->fs_mutex);
  650. ret = find_and_setup_root(tree_root, fs_info,
  651. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  652. if (ret) {
  653. mutex_unlock(&fs_info->fs_mutex);
  654. goto fail_tree_root;
  655. }
  656. btrfs_read_block_groups(extent_root);
  657. fs_info->generation = btrfs_super_generation(disk_super) + 1;
  658. mutex_unlock(&fs_info->fs_mutex);
  659. return tree_root;
  660. fail_tree_root:
  661. free_extent_buffer(tree_root->node);
  662. fail_sb_buffer:
  663. free_extent_buffer(fs_info->sb_buffer);
  664. fail_iput:
  665. iput(fs_info->btree_inode);
  666. fail:
  667. kfree(extent_root);
  668. kfree(tree_root);
  669. kfree(fs_info);
  670. return ERR_PTR(err);
  671. }
  672. int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
  673. *root)
  674. {
  675. int ret;
  676. struct extent_buffer *super = root->fs_info->sb_buffer;
  677. struct inode *btree_inode = root->fs_info->btree_inode;
  678. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->extent_tree, super);
  679. ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping,
  680. super->start, super->len);
  681. return ret;
  682. }
  683. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  684. {
  685. radix_tree_delete(&fs_info->fs_roots_radix,
  686. (unsigned long)root->root_key.objectid);
  687. btrfs_sysfs_del_root(root);
  688. if (root->inode)
  689. iput(root->inode);
  690. if (root->node)
  691. free_extent_buffer(root->node);
  692. if (root->commit_root)
  693. free_extent_buffer(root->commit_root);
  694. if (root->name)
  695. kfree(root->name);
  696. kfree(root);
  697. return 0;
  698. }
  699. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  700. {
  701. int ret;
  702. struct btrfs_root *gang[8];
  703. int i;
  704. while(1) {
  705. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  706. (void **)gang, 0,
  707. ARRAY_SIZE(gang));
  708. if (!ret)
  709. break;
  710. for (i = 0; i < ret; i++)
  711. btrfs_free_fs_root(fs_info, gang[i]);
  712. }
  713. return 0;
  714. }
  715. int close_ctree(struct btrfs_root *root)
  716. {
  717. int ret;
  718. struct btrfs_trans_handle *trans;
  719. struct btrfs_fs_info *fs_info = root->fs_info;
  720. fs_info->closing = 1;
  721. btrfs_transaction_flush_work(root);
  722. mutex_lock(&fs_info->fs_mutex);
  723. btrfs_defrag_dirty_roots(root->fs_info);
  724. trans = btrfs_start_transaction(root, 1);
  725. ret = btrfs_commit_transaction(trans, root);
  726. /* run commit again to drop the original snapshot */
  727. trans = btrfs_start_transaction(root, 1);
  728. btrfs_commit_transaction(trans, root);
  729. ret = btrfs_write_and_wait_transaction(NULL, root);
  730. BUG_ON(ret);
  731. write_ctree_super(NULL, root);
  732. mutex_unlock(&fs_info->fs_mutex);
  733. if (fs_info->extent_root->node)
  734. free_extent_buffer(fs_info->extent_root->node);
  735. if (fs_info->tree_root->node)
  736. free_extent_buffer(fs_info->tree_root->node);
  737. free_extent_buffer(fs_info->sb_buffer);
  738. btrfs_free_block_groups(root->fs_info);
  739. del_fs_roots(fs_info);
  740. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  741. extent_map_tree_empty_lru(&fs_info->free_space_cache);
  742. extent_map_tree_empty_lru(&fs_info->block_group_cache);
  743. extent_map_tree_empty_lru(&fs_info->pinned_extents);
  744. extent_map_tree_empty_lru(&fs_info->pending_del);
  745. extent_map_tree_empty_lru(&fs_info->extent_ins);
  746. extent_map_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  747. truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
  748. iput(fs_info->btree_inode);
  749. #if 0
  750. while(!list_empty(&fs_info->hashers)) {
  751. struct btrfs_hasher *hasher;
  752. hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
  753. hashers);
  754. list_del(&hasher->hashers);
  755. crypto_free_hash(&fs_info->hash_tfm);
  756. kfree(hasher);
  757. }
  758. #endif
  759. kfree(fs_info->extent_root);
  760. kfree(fs_info->tree_root);
  761. return 0;
  762. }
  763. int btrfs_buffer_uptodate(struct extent_buffer *buf)
  764. {
  765. struct inode *btree_inode = buf->first_page->mapping->host;
  766. return extent_buffer_uptodate(&BTRFS_I(btree_inode)->extent_tree, buf);
  767. }
  768. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  769. {
  770. struct inode *btree_inode = buf->first_page->mapping->host;
  771. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->extent_tree,
  772. buf);
  773. }
  774. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  775. {
  776. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  777. u64 transid = btrfs_header_generation(buf);
  778. struct inode *btree_inode = root->fs_info->btree_inode;
  779. if (transid != root->fs_info->generation) {
  780. printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
  781. (unsigned long long)buf->start,
  782. transid, root->fs_info->generation);
  783. WARN_ON(1);
  784. }
  785. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->extent_tree, buf);
  786. }
  787. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  788. {
  789. balance_dirty_pages_ratelimited_nr(
  790. root->fs_info->btree_inode->i_mapping, 1);
  791. }
  792. void btrfs_set_buffer_defrag(struct extent_buffer *buf)
  793. {
  794. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  795. struct inode *btree_inode = root->fs_info->btree_inode;
  796. set_extent_bits(&BTRFS_I(btree_inode)->extent_tree, buf->start,
  797. buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
  798. }
  799. void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
  800. {
  801. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  802. struct inode *btree_inode = root->fs_info->btree_inode;
  803. set_extent_bits(&BTRFS_I(btree_inode)->extent_tree, buf->start,
  804. buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
  805. GFP_NOFS);
  806. }
  807. int btrfs_buffer_defrag(struct extent_buffer *buf)
  808. {
  809. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  810. struct inode *btree_inode = root->fs_info->btree_inode;
  811. return test_range_bit(&BTRFS_I(btree_inode)->extent_tree,
  812. buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
  813. }
  814. int btrfs_buffer_defrag_done(struct extent_buffer *buf)
  815. {
  816. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  817. struct inode *btree_inode = root->fs_info->btree_inode;
  818. return test_range_bit(&BTRFS_I(btree_inode)->extent_tree,
  819. buf->start, buf->start + buf->len - 1,
  820. EXTENT_DEFRAG_DONE, 0);
  821. }
  822. int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
  823. {
  824. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  825. struct inode *btree_inode = root->fs_info->btree_inode;
  826. return clear_extent_bits(&BTRFS_I(btree_inode)->extent_tree,
  827. buf->start, buf->start + buf->len - 1,
  828. EXTENT_DEFRAG_DONE, GFP_NOFS);
  829. }
  830. int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
  831. {
  832. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  833. struct inode *btree_inode = root->fs_info->btree_inode;
  834. return clear_extent_bits(&BTRFS_I(btree_inode)->extent_tree,
  835. buf->start, buf->start + buf->len - 1,
  836. EXTENT_DEFRAG, GFP_NOFS);
  837. }
  838. int btrfs_read_buffer(struct extent_buffer *buf)
  839. {
  840. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  841. struct inode *btree_inode = root->fs_info->btree_inode;
  842. return read_extent_buffer_pages(&BTRFS_I(btree_inode)->extent_tree,
  843. buf, 0, 1);
  844. }
  845. static struct extent_map_ops btree_extent_map_ops = {
  846. .writepage_io_hook = btree_writepage_io_hook,
  847. };