ctree.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  24. *root, struct btrfs_path *path, int level);
  25. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_key *ins_key,
  27. struct btrfs_path *path, int data_size, int extend);
  28. static int push_node_left(struct btrfs_trans_handle *trans,
  29. struct btrfs_root *root, struct extent_buffer *dst,
  30. struct extent_buffer *src);
  31. static int balance_node_right(struct btrfs_trans_handle *trans,
  32. struct btrfs_root *root,
  33. struct extent_buffer *dst_buf,
  34. struct extent_buffer *src_buf);
  35. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  36. struct btrfs_path *path, int level, int slot);
  37. inline void btrfs_init_path(struct btrfs_path *p)
  38. {
  39. memset(p, 0, sizeof(*p));
  40. }
  41. struct btrfs_path *btrfs_alloc_path(void)
  42. {
  43. struct btrfs_path *path;
  44. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  45. if (path) {
  46. btrfs_init_path(path);
  47. path->reada = 1;
  48. }
  49. return path;
  50. }
  51. void btrfs_free_path(struct btrfs_path *p)
  52. {
  53. btrfs_release_path(NULL, p);
  54. kmem_cache_free(btrfs_path_cachep, p);
  55. }
  56. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  57. {
  58. int i;
  59. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60. if (!p->nodes[i])
  61. break;
  62. free_extent_buffer(p->nodes[i]);
  63. }
  64. memset(p, 0, sizeof(*p));
  65. }
  66. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  67. struct btrfs_root *root,
  68. struct extent_buffer *buf,
  69. struct extent_buffer **cow_ret, u64 new_root_objectid)
  70. {
  71. struct extent_buffer *cow;
  72. u32 nritems;
  73. int ret = 0;
  74. int level;
  75. struct btrfs_key first_key;
  76. struct btrfs_root *new_root;
  77. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  78. if (!new_root)
  79. return -ENOMEM;
  80. memcpy(new_root, root, sizeof(*new_root));
  81. new_root->root_key.objectid = new_root_objectid;
  82. WARN_ON(root->ref_cows && trans->transid !=
  83. root->fs_info->running_transaction->transid);
  84. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  85. level = btrfs_header_level(buf);
  86. nritems = btrfs_header_nritems(buf);
  87. if (nritems) {
  88. if (level == 0)
  89. btrfs_item_key_to_cpu(buf, &first_key, 0);
  90. else
  91. btrfs_node_key_to_cpu(buf, &first_key, 0);
  92. } else {
  93. first_key.objectid = 0;
  94. }
  95. cow = __btrfs_alloc_free_block(trans, new_root, buf->len,
  96. new_root_objectid,
  97. trans->transid, first_key.objectid,
  98. level, buf->start, 0);
  99. if (IS_ERR(cow)) {
  100. kfree(new_root);
  101. return PTR_ERR(cow);
  102. }
  103. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  104. btrfs_set_header_bytenr(cow, cow->start);
  105. btrfs_set_header_generation(cow, trans->transid);
  106. btrfs_set_header_owner(cow, new_root_objectid);
  107. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  108. ret = btrfs_inc_ref(trans, new_root, buf);
  109. kfree(new_root);
  110. if (ret)
  111. return ret;
  112. btrfs_mark_buffer_dirty(cow);
  113. *cow_ret = cow;
  114. return 0;
  115. }
  116. int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  117. struct btrfs_root *root,
  118. struct extent_buffer *buf,
  119. struct extent_buffer *parent, int parent_slot,
  120. struct extent_buffer **cow_ret,
  121. u64 search_start, u64 empty_size)
  122. {
  123. u64 root_gen;
  124. struct extent_buffer *cow;
  125. u32 nritems;
  126. int ret = 0;
  127. int different_trans = 0;
  128. int level;
  129. struct btrfs_key first_key;
  130. if (root->ref_cows) {
  131. root_gen = trans->transid;
  132. } else {
  133. root_gen = 0;
  134. }
  135. WARN_ON(root->ref_cows && trans->transid !=
  136. root->fs_info->running_transaction->transid);
  137. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  138. level = btrfs_header_level(buf);
  139. nritems = btrfs_header_nritems(buf);
  140. if (nritems) {
  141. if (level == 0)
  142. btrfs_item_key_to_cpu(buf, &first_key, 0);
  143. else
  144. btrfs_node_key_to_cpu(buf, &first_key, 0);
  145. } else {
  146. first_key.objectid = 0;
  147. }
  148. cow = __btrfs_alloc_free_block(trans, root, buf->len,
  149. root->root_key.objectid,
  150. root_gen, first_key.objectid, level,
  151. search_start, empty_size);
  152. if (IS_ERR(cow))
  153. return PTR_ERR(cow);
  154. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  155. btrfs_set_header_bytenr(cow, cow->start);
  156. btrfs_set_header_generation(cow, trans->transid);
  157. btrfs_set_header_owner(cow, root->root_key.objectid);
  158. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  159. if (btrfs_header_generation(buf) != trans->transid) {
  160. different_trans = 1;
  161. ret = btrfs_inc_ref(trans, root, buf);
  162. if (ret)
  163. return ret;
  164. } else {
  165. clean_tree_block(trans, root, buf);
  166. }
  167. if (buf == root->node) {
  168. root_gen = btrfs_header_generation(buf);
  169. root->node = cow;
  170. extent_buffer_get(cow);
  171. if (buf != root->commit_root) {
  172. btrfs_free_extent(trans, root, buf->start,
  173. buf->len, root->root_key.objectid,
  174. root_gen, 0, 0, 1);
  175. }
  176. free_extent_buffer(buf);
  177. } else {
  178. root_gen = btrfs_header_generation(parent);
  179. btrfs_set_node_blockptr(parent, parent_slot,
  180. cow->start);
  181. WARN_ON(trans->transid == 0);
  182. btrfs_set_node_ptr_generation(parent, parent_slot,
  183. trans->transid);
  184. btrfs_mark_buffer_dirty(parent);
  185. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  186. btrfs_free_extent(trans, root, buf->start, buf->len,
  187. btrfs_header_owner(parent), root_gen,
  188. 0, 0, 1);
  189. }
  190. free_extent_buffer(buf);
  191. btrfs_mark_buffer_dirty(cow);
  192. *cow_ret = cow;
  193. return 0;
  194. }
  195. int btrfs_cow_block(struct btrfs_trans_handle *trans,
  196. struct btrfs_root *root, struct extent_buffer *buf,
  197. struct extent_buffer *parent, int parent_slot,
  198. struct extent_buffer **cow_ret)
  199. {
  200. u64 search_start;
  201. u64 header_trans;
  202. int ret;
  203. if (trans->transaction != root->fs_info->running_transaction) {
  204. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  205. root->fs_info->running_transaction->transid);
  206. WARN_ON(1);
  207. }
  208. if (trans->transid != root->fs_info->generation) {
  209. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  210. root->fs_info->generation);
  211. WARN_ON(1);
  212. }
  213. header_trans = btrfs_header_generation(buf);
  214. if (header_trans == trans->transid) {
  215. *cow_ret = buf;
  216. return 0;
  217. }
  218. search_start = buf->start & ~((u64)BTRFS_BLOCK_GROUP_SIZE - 1);
  219. ret = __btrfs_cow_block(trans, root, buf, parent,
  220. parent_slot, cow_ret, search_start, 0);
  221. return ret;
  222. }
  223. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  224. {
  225. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  226. return 1;
  227. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  228. return 1;
  229. return 0;
  230. }
  231. /*
  232. * compare two keys in a memcmp fashion
  233. */
  234. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  235. {
  236. struct btrfs_key k1;
  237. btrfs_disk_key_to_cpu(&k1, disk);
  238. if (k1.objectid > k2->objectid)
  239. return 1;
  240. if (k1.objectid < k2->objectid)
  241. return -1;
  242. if (k1.type > k2->type)
  243. return 1;
  244. if (k1.type < k2->type)
  245. return -1;
  246. if (k1.offset > k2->offset)
  247. return 1;
  248. if (k1.offset < k2->offset)
  249. return -1;
  250. return 0;
  251. }
  252. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  253. struct btrfs_root *root, struct extent_buffer *parent,
  254. int start_slot, int cache_only, u64 *last_ret,
  255. struct btrfs_key *progress)
  256. {
  257. struct extent_buffer *cur;
  258. struct extent_buffer *tmp;
  259. u64 blocknr;
  260. u64 search_start = *last_ret;
  261. u64 last_block = 0;
  262. u64 other;
  263. u32 parent_nritems;
  264. int end_slot;
  265. int i;
  266. int err = 0;
  267. int parent_level;
  268. int uptodate;
  269. u32 blocksize;
  270. int progress_passed = 0;
  271. struct btrfs_disk_key disk_key;
  272. parent_level = btrfs_header_level(parent);
  273. if (cache_only && parent_level != 1)
  274. return 0;
  275. if (trans->transaction != root->fs_info->running_transaction) {
  276. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  277. root->fs_info->running_transaction->transid);
  278. WARN_ON(1);
  279. }
  280. if (trans->transid != root->fs_info->generation) {
  281. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  282. root->fs_info->generation);
  283. WARN_ON(1);
  284. }
  285. parent_nritems = btrfs_header_nritems(parent);
  286. blocksize = btrfs_level_size(root, parent_level - 1);
  287. end_slot = parent_nritems;
  288. if (parent_nritems == 1)
  289. return 0;
  290. for (i = start_slot; i < end_slot; i++) {
  291. int close = 1;
  292. if (!parent->map_token) {
  293. map_extent_buffer(parent,
  294. btrfs_node_key_ptr_offset(i),
  295. sizeof(struct btrfs_key_ptr),
  296. &parent->map_token, &parent->kaddr,
  297. &parent->map_start, &parent->map_len,
  298. KM_USER1);
  299. }
  300. btrfs_node_key(parent, &disk_key, i);
  301. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  302. continue;
  303. progress_passed = 1;
  304. blocknr = btrfs_node_blockptr(parent, i);
  305. if (last_block == 0)
  306. last_block = blocknr;
  307. if (i > 0) {
  308. other = btrfs_node_blockptr(parent, i - 1);
  309. close = close_blocks(blocknr, other, blocksize);
  310. }
  311. if (close && i < end_slot - 2) {
  312. other = btrfs_node_blockptr(parent, i + 1);
  313. close = close_blocks(blocknr, other, blocksize);
  314. }
  315. if (close) {
  316. last_block = blocknr;
  317. continue;
  318. }
  319. if (parent->map_token) {
  320. unmap_extent_buffer(parent, parent->map_token,
  321. KM_USER1);
  322. parent->map_token = NULL;
  323. }
  324. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  325. if (cur)
  326. uptodate = btrfs_buffer_uptodate(cur);
  327. else
  328. uptodate = 0;
  329. if (!cur || !uptodate) {
  330. if (cache_only) {
  331. free_extent_buffer(cur);
  332. continue;
  333. }
  334. if (!cur) {
  335. cur = read_tree_block(root, blocknr,
  336. blocksize);
  337. } else if (!uptodate) {
  338. btrfs_read_buffer(cur);
  339. }
  340. }
  341. if (search_start == 0)
  342. search_start = last_block;
  343. err = __btrfs_cow_block(trans, root, cur, parent, i,
  344. &tmp, search_start,
  345. min(16 * blocksize,
  346. (end_slot - i) * blocksize));
  347. if (err) {
  348. free_extent_buffer(cur);
  349. break;
  350. }
  351. search_start = tmp->start;
  352. last_block = tmp->start;
  353. *last_ret = search_start;
  354. if (parent_level == 1)
  355. btrfs_clear_buffer_defrag(tmp);
  356. free_extent_buffer(tmp);
  357. }
  358. if (parent->map_token) {
  359. unmap_extent_buffer(parent, parent->map_token,
  360. KM_USER1);
  361. parent->map_token = NULL;
  362. }
  363. return err;
  364. }
  365. /*
  366. * The leaf data grows from end-to-front in the node.
  367. * this returns the address of the start of the last item,
  368. * which is the stop of the leaf data stack
  369. */
  370. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  371. struct extent_buffer *leaf)
  372. {
  373. u32 nr = btrfs_header_nritems(leaf);
  374. if (nr == 0)
  375. return BTRFS_LEAF_DATA_SIZE(root);
  376. return btrfs_item_offset_nr(leaf, nr - 1);
  377. }
  378. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  379. int level)
  380. {
  381. struct extent_buffer *parent = NULL;
  382. struct extent_buffer *node = path->nodes[level];
  383. struct btrfs_disk_key parent_key;
  384. struct btrfs_disk_key node_key;
  385. int parent_slot;
  386. int slot;
  387. struct btrfs_key cpukey;
  388. u32 nritems = btrfs_header_nritems(node);
  389. if (path->nodes[level + 1])
  390. parent = path->nodes[level + 1];
  391. slot = path->slots[level];
  392. BUG_ON(nritems == 0);
  393. if (parent) {
  394. parent_slot = path->slots[level + 1];
  395. btrfs_node_key(parent, &parent_key, parent_slot);
  396. btrfs_node_key(node, &node_key, 0);
  397. BUG_ON(memcmp(&parent_key, &node_key,
  398. sizeof(struct btrfs_disk_key)));
  399. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  400. btrfs_header_bytenr(node));
  401. }
  402. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  403. if (slot != 0) {
  404. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  405. btrfs_node_key(node, &node_key, slot);
  406. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  407. }
  408. if (slot < nritems - 1) {
  409. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  410. btrfs_node_key(node, &node_key, slot);
  411. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  412. }
  413. return 0;
  414. }
  415. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  416. int level)
  417. {
  418. struct extent_buffer *leaf = path->nodes[level];
  419. struct extent_buffer *parent = NULL;
  420. int parent_slot;
  421. struct btrfs_key cpukey;
  422. struct btrfs_disk_key parent_key;
  423. struct btrfs_disk_key leaf_key;
  424. int slot = path->slots[0];
  425. u32 nritems = btrfs_header_nritems(leaf);
  426. if (path->nodes[level + 1])
  427. parent = path->nodes[level + 1];
  428. if (nritems == 0)
  429. return 0;
  430. if (parent) {
  431. parent_slot = path->slots[level + 1];
  432. btrfs_node_key(parent, &parent_key, parent_slot);
  433. btrfs_item_key(leaf, &leaf_key, 0);
  434. BUG_ON(memcmp(&parent_key, &leaf_key,
  435. sizeof(struct btrfs_disk_key)));
  436. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  437. btrfs_header_bytenr(leaf));
  438. }
  439. #if 0
  440. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  441. btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
  442. btrfs_item_key(leaf, &leaf_key, i);
  443. if (comp_keys(&leaf_key, &cpukey) >= 0) {
  444. btrfs_print_leaf(root, leaf);
  445. printk("slot %d offset bad key\n", i);
  446. BUG_ON(1);
  447. }
  448. if (btrfs_item_offset_nr(leaf, i) !=
  449. btrfs_item_end_nr(leaf, i + 1)) {
  450. btrfs_print_leaf(root, leaf);
  451. printk("slot %d offset bad\n", i);
  452. BUG_ON(1);
  453. }
  454. if (i == 0) {
  455. if (btrfs_item_offset_nr(leaf, i) +
  456. btrfs_item_size_nr(leaf, i) !=
  457. BTRFS_LEAF_DATA_SIZE(root)) {
  458. btrfs_print_leaf(root, leaf);
  459. printk("slot %d first offset bad\n", i);
  460. BUG_ON(1);
  461. }
  462. }
  463. }
  464. if (nritems > 0) {
  465. if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
  466. btrfs_print_leaf(root, leaf);
  467. printk("slot %d bad size \n", nritems - 1);
  468. BUG_ON(1);
  469. }
  470. }
  471. #endif
  472. if (slot != 0 && slot < nritems - 1) {
  473. btrfs_item_key(leaf, &leaf_key, slot);
  474. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  475. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  476. btrfs_print_leaf(root, leaf);
  477. printk("slot %d offset bad key\n", slot);
  478. BUG_ON(1);
  479. }
  480. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  481. btrfs_item_end_nr(leaf, slot)) {
  482. btrfs_print_leaf(root, leaf);
  483. printk("slot %d offset bad\n", slot);
  484. BUG_ON(1);
  485. }
  486. }
  487. if (slot < nritems - 1) {
  488. btrfs_item_key(leaf, &leaf_key, slot);
  489. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  490. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  491. if (btrfs_item_offset_nr(leaf, slot) !=
  492. btrfs_item_end_nr(leaf, slot + 1)) {
  493. btrfs_print_leaf(root, leaf);
  494. printk("slot %d offset bad\n", slot);
  495. BUG_ON(1);
  496. }
  497. }
  498. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  499. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  500. return 0;
  501. }
  502. static int noinline check_block(struct btrfs_root *root,
  503. struct btrfs_path *path, int level)
  504. {
  505. return 0;
  506. #if 0
  507. struct extent_buffer *buf = path->nodes[level];
  508. if (memcmp_extent_buffer(buf, root->fs_info->fsid,
  509. (unsigned long)btrfs_header_fsid(buf),
  510. BTRFS_FSID_SIZE)) {
  511. printk("warning bad block %Lu\n", buf->start);
  512. return 1;
  513. }
  514. #endif
  515. if (level == 0)
  516. return check_leaf(root, path, level);
  517. return check_node(root, path, level);
  518. }
  519. /*
  520. * search for key in the extent_buffer. The items start at offset p,
  521. * and they are item_size apart. There are 'max' items in p.
  522. *
  523. * the slot in the array is returned via slot, and it points to
  524. * the place where you would insert key if it is not found in
  525. * the array.
  526. *
  527. * slot may point to max if the key is bigger than all of the keys
  528. */
  529. static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
  530. int item_size, struct btrfs_key *key,
  531. int max, int *slot)
  532. {
  533. int low = 0;
  534. int high = max;
  535. int mid;
  536. int ret;
  537. struct btrfs_disk_key *tmp = NULL;
  538. struct btrfs_disk_key unaligned;
  539. unsigned long offset;
  540. char *map_token = NULL;
  541. char *kaddr = NULL;
  542. unsigned long map_start = 0;
  543. unsigned long map_len = 0;
  544. int err;
  545. while(low < high) {
  546. mid = (low + high) / 2;
  547. offset = p + mid * item_size;
  548. if (!map_token || offset < map_start ||
  549. (offset + sizeof(struct btrfs_disk_key)) >
  550. map_start + map_len) {
  551. if (map_token) {
  552. unmap_extent_buffer(eb, map_token, KM_USER0);
  553. map_token = NULL;
  554. }
  555. err = map_extent_buffer(eb, offset,
  556. sizeof(struct btrfs_disk_key),
  557. &map_token, &kaddr,
  558. &map_start, &map_len, KM_USER0);
  559. if (!err) {
  560. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  561. map_start);
  562. } else {
  563. read_extent_buffer(eb, &unaligned,
  564. offset, sizeof(unaligned));
  565. tmp = &unaligned;
  566. }
  567. } else {
  568. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  569. map_start);
  570. }
  571. ret = comp_keys(tmp, key);
  572. if (ret < 0)
  573. low = mid + 1;
  574. else if (ret > 0)
  575. high = mid;
  576. else {
  577. *slot = mid;
  578. if (map_token)
  579. unmap_extent_buffer(eb, map_token, KM_USER0);
  580. return 0;
  581. }
  582. }
  583. *slot = low;
  584. if (map_token)
  585. unmap_extent_buffer(eb, map_token, KM_USER0);
  586. return 1;
  587. }
  588. /*
  589. * simple bin_search frontend that does the right thing for
  590. * leaves vs nodes
  591. */
  592. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  593. int level, int *slot)
  594. {
  595. if (level == 0) {
  596. return generic_bin_search(eb,
  597. offsetof(struct btrfs_leaf, items),
  598. sizeof(struct btrfs_item),
  599. key, btrfs_header_nritems(eb),
  600. slot);
  601. } else {
  602. return generic_bin_search(eb,
  603. offsetof(struct btrfs_node, ptrs),
  604. sizeof(struct btrfs_key_ptr),
  605. key, btrfs_header_nritems(eb),
  606. slot);
  607. }
  608. return -1;
  609. }
  610. static struct extent_buffer *read_node_slot(struct btrfs_root *root,
  611. struct extent_buffer *parent, int slot)
  612. {
  613. if (slot < 0)
  614. return NULL;
  615. if (slot >= btrfs_header_nritems(parent))
  616. return NULL;
  617. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  618. btrfs_level_size(root, btrfs_header_level(parent) - 1));
  619. }
  620. static int balance_level(struct btrfs_trans_handle *trans,
  621. struct btrfs_root *root,
  622. struct btrfs_path *path, int level)
  623. {
  624. struct extent_buffer *right = NULL;
  625. struct extent_buffer *mid;
  626. struct extent_buffer *left = NULL;
  627. struct extent_buffer *parent = NULL;
  628. int ret = 0;
  629. int wret;
  630. int pslot;
  631. int orig_slot = path->slots[level];
  632. int err_on_enospc = 0;
  633. u64 orig_ptr;
  634. if (level == 0)
  635. return 0;
  636. mid = path->nodes[level];
  637. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  638. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  639. if (level < BTRFS_MAX_LEVEL - 1)
  640. parent = path->nodes[level + 1];
  641. pslot = path->slots[level + 1];
  642. /*
  643. * deal with the case where there is only one pointer in the root
  644. * by promoting the node below to a root
  645. */
  646. if (!parent) {
  647. struct extent_buffer *child;
  648. if (btrfs_header_nritems(mid) != 1)
  649. return 0;
  650. /* promote the child to a root */
  651. child = read_node_slot(root, mid, 0);
  652. BUG_ON(!child);
  653. root->node = child;
  654. path->nodes[level] = NULL;
  655. clean_tree_block(trans, root, mid);
  656. wait_on_tree_block_writeback(root, mid);
  657. /* once for the path */
  658. free_extent_buffer(mid);
  659. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  660. root->root_key.objectid,
  661. btrfs_header_generation(mid), 0, 0, 1);
  662. /* once for the root ptr */
  663. free_extent_buffer(mid);
  664. return ret;
  665. }
  666. if (btrfs_header_nritems(mid) >
  667. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  668. return 0;
  669. if (btrfs_header_nritems(mid) < 2)
  670. err_on_enospc = 1;
  671. left = read_node_slot(root, parent, pslot - 1);
  672. if (left) {
  673. wret = btrfs_cow_block(trans, root, left,
  674. parent, pslot - 1, &left);
  675. if (wret) {
  676. ret = wret;
  677. goto enospc;
  678. }
  679. }
  680. right = read_node_slot(root, parent, pslot + 1);
  681. if (right) {
  682. wret = btrfs_cow_block(trans, root, right,
  683. parent, pslot + 1, &right);
  684. if (wret) {
  685. ret = wret;
  686. goto enospc;
  687. }
  688. }
  689. /* first, try to make some room in the middle buffer */
  690. if (left) {
  691. orig_slot += btrfs_header_nritems(left);
  692. wret = push_node_left(trans, root, left, mid);
  693. if (wret < 0)
  694. ret = wret;
  695. if (btrfs_header_nritems(mid) < 2)
  696. err_on_enospc = 1;
  697. }
  698. /*
  699. * then try to empty the right most buffer into the middle
  700. */
  701. if (right) {
  702. wret = push_node_left(trans, root, mid, right);
  703. if (wret < 0 && wret != -ENOSPC)
  704. ret = wret;
  705. if (btrfs_header_nritems(right) == 0) {
  706. u64 bytenr = right->start;
  707. u64 generation = btrfs_header_generation(parent);
  708. u32 blocksize = right->len;
  709. clean_tree_block(trans, root, right);
  710. wait_on_tree_block_writeback(root, right);
  711. free_extent_buffer(right);
  712. right = NULL;
  713. wret = del_ptr(trans, root, path, level + 1, pslot +
  714. 1);
  715. if (wret)
  716. ret = wret;
  717. wret = btrfs_free_extent(trans, root, bytenr,
  718. blocksize,
  719. btrfs_header_owner(parent),
  720. generation, 0, 0, 1);
  721. if (wret)
  722. ret = wret;
  723. } else {
  724. struct btrfs_disk_key right_key;
  725. btrfs_node_key(right, &right_key, 0);
  726. btrfs_set_node_key(parent, &right_key, pslot + 1);
  727. btrfs_mark_buffer_dirty(parent);
  728. }
  729. }
  730. if (btrfs_header_nritems(mid) == 1) {
  731. /*
  732. * we're not allowed to leave a node with one item in the
  733. * tree during a delete. A deletion from lower in the tree
  734. * could try to delete the only pointer in this node.
  735. * So, pull some keys from the left.
  736. * There has to be a left pointer at this point because
  737. * otherwise we would have pulled some pointers from the
  738. * right
  739. */
  740. BUG_ON(!left);
  741. wret = balance_node_right(trans, root, mid, left);
  742. if (wret < 0) {
  743. ret = wret;
  744. goto enospc;
  745. }
  746. BUG_ON(wret == 1);
  747. }
  748. if (btrfs_header_nritems(mid) == 0) {
  749. /* we've managed to empty the middle node, drop it */
  750. u64 root_gen = btrfs_header_generation(parent);
  751. u64 bytenr = mid->start;
  752. u32 blocksize = mid->len;
  753. clean_tree_block(trans, root, mid);
  754. wait_on_tree_block_writeback(root, mid);
  755. free_extent_buffer(mid);
  756. mid = NULL;
  757. wret = del_ptr(trans, root, path, level + 1, pslot);
  758. if (wret)
  759. ret = wret;
  760. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  761. btrfs_header_owner(parent),
  762. root_gen, 0, 0, 1);
  763. if (wret)
  764. ret = wret;
  765. } else {
  766. /* update the parent key to reflect our changes */
  767. struct btrfs_disk_key mid_key;
  768. btrfs_node_key(mid, &mid_key, 0);
  769. btrfs_set_node_key(parent, &mid_key, pslot);
  770. btrfs_mark_buffer_dirty(parent);
  771. }
  772. /* update the path */
  773. if (left) {
  774. if (btrfs_header_nritems(left) > orig_slot) {
  775. extent_buffer_get(left);
  776. path->nodes[level] = left;
  777. path->slots[level + 1] -= 1;
  778. path->slots[level] = orig_slot;
  779. if (mid)
  780. free_extent_buffer(mid);
  781. } else {
  782. orig_slot -= btrfs_header_nritems(left);
  783. path->slots[level] = orig_slot;
  784. }
  785. }
  786. /* double check we haven't messed things up */
  787. check_block(root, path, level);
  788. if (orig_ptr !=
  789. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  790. BUG();
  791. enospc:
  792. if (right)
  793. free_extent_buffer(right);
  794. if (left)
  795. free_extent_buffer(left);
  796. return ret;
  797. }
  798. /* returns zero if the push worked, non-zero otherwise */
  799. static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
  800. struct btrfs_root *root,
  801. struct btrfs_path *path, int level)
  802. {
  803. struct extent_buffer *right = NULL;
  804. struct extent_buffer *mid;
  805. struct extent_buffer *left = NULL;
  806. struct extent_buffer *parent = NULL;
  807. int ret = 0;
  808. int wret;
  809. int pslot;
  810. int orig_slot = path->slots[level];
  811. u64 orig_ptr;
  812. if (level == 0)
  813. return 1;
  814. mid = path->nodes[level];
  815. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  816. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  817. if (level < BTRFS_MAX_LEVEL - 1)
  818. parent = path->nodes[level + 1];
  819. pslot = path->slots[level + 1];
  820. if (!parent)
  821. return 1;
  822. left = read_node_slot(root, parent, pslot - 1);
  823. /* first, try to make some room in the middle buffer */
  824. if (left) {
  825. u32 left_nr;
  826. left_nr = btrfs_header_nritems(left);
  827. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  828. wret = 1;
  829. } else {
  830. ret = btrfs_cow_block(trans, root, left, parent,
  831. pslot - 1, &left);
  832. if (ret)
  833. wret = 1;
  834. else {
  835. wret = push_node_left(trans, root,
  836. left, mid);
  837. }
  838. }
  839. if (wret < 0)
  840. ret = wret;
  841. if (wret == 0) {
  842. struct btrfs_disk_key disk_key;
  843. orig_slot += left_nr;
  844. btrfs_node_key(mid, &disk_key, 0);
  845. btrfs_set_node_key(parent, &disk_key, pslot);
  846. btrfs_mark_buffer_dirty(parent);
  847. if (btrfs_header_nritems(left) > orig_slot) {
  848. path->nodes[level] = left;
  849. path->slots[level + 1] -= 1;
  850. path->slots[level] = orig_slot;
  851. free_extent_buffer(mid);
  852. } else {
  853. orig_slot -=
  854. btrfs_header_nritems(left);
  855. path->slots[level] = orig_slot;
  856. free_extent_buffer(left);
  857. }
  858. return 0;
  859. }
  860. free_extent_buffer(left);
  861. }
  862. right= read_node_slot(root, parent, pslot + 1);
  863. /*
  864. * then try to empty the right most buffer into the middle
  865. */
  866. if (right) {
  867. u32 right_nr;
  868. right_nr = btrfs_header_nritems(right);
  869. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  870. wret = 1;
  871. } else {
  872. ret = btrfs_cow_block(trans, root, right,
  873. parent, pslot + 1,
  874. &right);
  875. if (ret)
  876. wret = 1;
  877. else {
  878. wret = balance_node_right(trans, root,
  879. right, mid);
  880. }
  881. }
  882. if (wret < 0)
  883. ret = wret;
  884. if (wret == 0) {
  885. struct btrfs_disk_key disk_key;
  886. btrfs_node_key(right, &disk_key, 0);
  887. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  888. btrfs_mark_buffer_dirty(parent);
  889. if (btrfs_header_nritems(mid) <= orig_slot) {
  890. path->nodes[level] = right;
  891. path->slots[level + 1] += 1;
  892. path->slots[level] = orig_slot -
  893. btrfs_header_nritems(mid);
  894. free_extent_buffer(mid);
  895. } else {
  896. free_extent_buffer(right);
  897. }
  898. return 0;
  899. }
  900. free_extent_buffer(right);
  901. }
  902. return 1;
  903. }
  904. /*
  905. * readahead one full node of leaves
  906. */
  907. static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
  908. int level, int slot, u64 objectid)
  909. {
  910. struct extent_buffer *node;
  911. struct btrfs_disk_key disk_key;
  912. u32 nritems;
  913. u64 search;
  914. u64 lowest_read;
  915. u64 highest_read;
  916. u64 nread = 0;
  917. int direction = path->reada;
  918. struct extent_buffer *eb;
  919. u32 nr;
  920. u32 blocksize;
  921. u32 nscan = 0;
  922. if (level != 1)
  923. return;
  924. if (!path->nodes[level])
  925. return;
  926. node = path->nodes[level];
  927. search = btrfs_node_blockptr(node, slot);
  928. blocksize = btrfs_level_size(root, level - 1);
  929. eb = btrfs_find_tree_block(root, search, blocksize);
  930. if (eb) {
  931. free_extent_buffer(eb);
  932. return;
  933. }
  934. highest_read = search;
  935. lowest_read = search;
  936. nritems = btrfs_header_nritems(node);
  937. nr = slot;
  938. while(1) {
  939. if (direction < 0) {
  940. if (nr == 0)
  941. break;
  942. nr--;
  943. } else if (direction > 0) {
  944. nr++;
  945. if (nr >= nritems)
  946. break;
  947. }
  948. if (path->reada < 0 && objectid) {
  949. btrfs_node_key(node, &disk_key, nr);
  950. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  951. break;
  952. }
  953. search = btrfs_node_blockptr(node, nr);
  954. if ((search >= lowest_read && search <= highest_read) ||
  955. (search < lowest_read && lowest_read - search <= 32768) ||
  956. (search > highest_read && search - highest_read <= 32768)) {
  957. readahead_tree_block(root, search, blocksize);
  958. nread += blocksize;
  959. }
  960. nscan++;
  961. if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32))
  962. break;
  963. if(nread > (1024 * 1024) || nscan > 128)
  964. break;
  965. if (search < lowest_read)
  966. lowest_read = search;
  967. if (search > highest_read)
  968. highest_read = search;
  969. }
  970. }
  971. /*
  972. * look for key in the tree. path is filled in with nodes along the way
  973. * if key is found, we return zero and you can find the item in the leaf
  974. * level of the path (level 0)
  975. *
  976. * If the key isn't found, the path points to the slot where it should
  977. * be inserted, and 1 is returned. If there are other errors during the
  978. * search a negative error number is returned.
  979. *
  980. * if ins_len > 0, nodes and leaves will be split as we walk down the
  981. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  982. * possible)
  983. */
  984. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  985. *root, struct btrfs_key *key, struct btrfs_path *p, int
  986. ins_len, int cow)
  987. {
  988. struct extent_buffer *b;
  989. u64 bytenr;
  990. u64 ptr_gen;
  991. int slot;
  992. int ret;
  993. int level;
  994. int should_reada = p->reada;
  995. u8 lowest_level = 0;
  996. lowest_level = p->lowest_level;
  997. WARN_ON(lowest_level && ins_len);
  998. WARN_ON(p->nodes[0] != NULL);
  999. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  1000. again:
  1001. b = root->node;
  1002. extent_buffer_get(b);
  1003. while (b) {
  1004. level = btrfs_header_level(b);
  1005. if (cow) {
  1006. int wret;
  1007. wret = btrfs_cow_block(trans, root, b,
  1008. p->nodes[level + 1],
  1009. p->slots[level + 1],
  1010. &b);
  1011. if (wret) {
  1012. free_extent_buffer(b);
  1013. return wret;
  1014. }
  1015. }
  1016. BUG_ON(!cow && ins_len);
  1017. if (level != btrfs_header_level(b))
  1018. WARN_ON(1);
  1019. level = btrfs_header_level(b);
  1020. p->nodes[level] = b;
  1021. ret = check_block(root, p, level);
  1022. if (ret)
  1023. return -1;
  1024. ret = bin_search(b, key, level, &slot);
  1025. if (level != 0) {
  1026. if (ret && slot > 0)
  1027. slot -= 1;
  1028. p->slots[level] = slot;
  1029. if (ins_len > 0 && btrfs_header_nritems(b) >=
  1030. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1031. int sret = split_node(trans, root, p, level);
  1032. BUG_ON(sret > 0);
  1033. if (sret)
  1034. return sret;
  1035. b = p->nodes[level];
  1036. slot = p->slots[level];
  1037. } else if (ins_len < 0) {
  1038. int sret = balance_level(trans, root, p,
  1039. level);
  1040. if (sret)
  1041. return sret;
  1042. b = p->nodes[level];
  1043. if (!b) {
  1044. btrfs_release_path(NULL, p);
  1045. goto again;
  1046. }
  1047. slot = p->slots[level];
  1048. BUG_ON(btrfs_header_nritems(b) == 1);
  1049. }
  1050. /* this is only true while dropping a snapshot */
  1051. if (level == lowest_level)
  1052. break;
  1053. bytenr = btrfs_node_blockptr(b, slot);
  1054. ptr_gen = btrfs_node_ptr_generation(b, slot);
  1055. if (should_reada)
  1056. reada_for_search(root, p, level, slot,
  1057. key->objectid);
  1058. b = read_tree_block(root, bytenr,
  1059. btrfs_level_size(root, level - 1));
  1060. if (ptr_gen != btrfs_header_generation(b)) {
  1061. printk("block %llu bad gen wanted %llu "
  1062. "found %llu\n",
  1063. (unsigned long long)b->start,
  1064. (unsigned long long)ptr_gen,
  1065. (unsigned long long)btrfs_header_generation(b));
  1066. }
  1067. } else {
  1068. p->slots[level] = slot;
  1069. if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
  1070. sizeof(struct btrfs_item) + ins_len) {
  1071. int sret = split_leaf(trans, root, key,
  1072. p, ins_len, ret == 0);
  1073. BUG_ON(sret > 0);
  1074. if (sret)
  1075. return sret;
  1076. }
  1077. return ret;
  1078. }
  1079. }
  1080. return 1;
  1081. }
  1082. /*
  1083. * adjust the pointers going up the tree, starting at level
  1084. * making sure the right key of each node is points to 'key'.
  1085. * This is used after shifting pointers to the left, so it stops
  1086. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1087. * higher levels
  1088. *
  1089. * If this fails to write a tree block, it returns -1, but continues
  1090. * fixing up the blocks in ram so the tree is consistent.
  1091. */
  1092. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1093. struct btrfs_root *root, struct btrfs_path *path,
  1094. struct btrfs_disk_key *key, int level)
  1095. {
  1096. int i;
  1097. int ret = 0;
  1098. struct extent_buffer *t;
  1099. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1100. int tslot = path->slots[i];
  1101. if (!path->nodes[i])
  1102. break;
  1103. t = path->nodes[i];
  1104. btrfs_set_node_key(t, key, tslot);
  1105. btrfs_mark_buffer_dirty(path->nodes[i]);
  1106. if (tslot != 0)
  1107. break;
  1108. }
  1109. return ret;
  1110. }
  1111. /*
  1112. * try to push data from one node into the next node left in the
  1113. * tree.
  1114. *
  1115. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1116. * error, and > 0 if there was no room in the left hand block.
  1117. */
  1118. static int push_node_left(struct btrfs_trans_handle *trans,
  1119. struct btrfs_root *root, struct extent_buffer *dst,
  1120. struct extent_buffer *src)
  1121. {
  1122. int push_items = 0;
  1123. int src_nritems;
  1124. int dst_nritems;
  1125. int ret = 0;
  1126. src_nritems = btrfs_header_nritems(src);
  1127. dst_nritems = btrfs_header_nritems(dst);
  1128. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1129. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1130. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1131. if (push_items <= 0) {
  1132. return 1;
  1133. }
  1134. if (src_nritems < push_items)
  1135. push_items = src_nritems;
  1136. copy_extent_buffer(dst, src,
  1137. btrfs_node_key_ptr_offset(dst_nritems),
  1138. btrfs_node_key_ptr_offset(0),
  1139. push_items * sizeof(struct btrfs_key_ptr));
  1140. if (push_items < src_nritems) {
  1141. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1142. btrfs_node_key_ptr_offset(push_items),
  1143. (src_nritems - push_items) *
  1144. sizeof(struct btrfs_key_ptr));
  1145. }
  1146. btrfs_set_header_nritems(src, src_nritems - push_items);
  1147. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1148. btrfs_mark_buffer_dirty(src);
  1149. btrfs_mark_buffer_dirty(dst);
  1150. return ret;
  1151. }
  1152. /*
  1153. * try to push data from one node into the next node right in the
  1154. * tree.
  1155. *
  1156. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1157. * error, and > 0 if there was no room in the right hand block.
  1158. *
  1159. * this will only push up to 1/2 the contents of the left node over
  1160. */
  1161. static int balance_node_right(struct btrfs_trans_handle *trans,
  1162. struct btrfs_root *root,
  1163. struct extent_buffer *dst,
  1164. struct extent_buffer *src)
  1165. {
  1166. int push_items = 0;
  1167. int max_push;
  1168. int src_nritems;
  1169. int dst_nritems;
  1170. int ret = 0;
  1171. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1172. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1173. src_nritems = btrfs_header_nritems(src);
  1174. dst_nritems = btrfs_header_nritems(dst);
  1175. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1176. if (push_items <= 0)
  1177. return 1;
  1178. max_push = src_nritems / 2 + 1;
  1179. /* don't try to empty the node */
  1180. if (max_push >= src_nritems)
  1181. return 1;
  1182. if (max_push < push_items)
  1183. push_items = max_push;
  1184. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1185. btrfs_node_key_ptr_offset(0),
  1186. (dst_nritems) *
  1187. sizeof(struct btrfs_key_ptr));
  1188. copy_extent_buffer(dst, src,
  1189. btrfs_node_key_ptr_offset(0),
  1190. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1191. push_items * sizeof(struct btrfs_key_ptr));
  1192. btrfs_set_header_nritems(src, src_nritems - push_items);
  1193. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1194. btrfs_mark_buffer_dirty(src);
  1195. btrfs_mark_buffer_dirty(dst);
  1196. return ret;
  1197. }
  1198. /*
  1199. * helper function to insert a new root level in the tree.
  1200. * A new node is allocated, and a single item is inserted to
  1201. * point to the existing root
  1202. *
  1203. * returns zero on success or < 0 on failure.
  1204. */
  1205. static int noinline insert_new_root(struct btrfs_trans_handle *trans,
  1206. struct btrfs_root *root,
  1207. struct btrfs_path *path, int level)
  1208. {
  1209. u64 root_gen;
  1210. u64 lower_gen;
  1211. struct extent_buffer *lower;
  1212. struct extent_buffer *c;
  1213. struct btrfs_disk_key lower_key;
  1214. BUG_ON(path->nodes[level]);
  1215. BUG_ON(path->nodes[level-1] != root->node);
  1216. if (root->ref_cows)
  1217. root_gen = trans->transid;
  1218. else
  1219. root_gen = 0;
  1220. lower = path->nodes[level-1];
  1221. if (level == 1)
  1222. btrfs_item_key(lower, &lower_key, 0);
  1223. else
  1224. btrfs_node_key(lower, &lower_key, 0);
  1225. c = __btrfs_alloc_free_block(trans, root, root->nodesize,
  1226. root->root_key.objectid,
  1227. root_gen, lower_key.objectid, level,
  1228. root->node->start, 0);
  1229. if (IS_ERR(c))
  1230. return PTR_ERR(c);
  1231. memset_extent_buffer(c, 0, 0, root->nodesize);
  1232. btrfs_set_header_nritems(c, 1);
  1233. btrfs_set_header_level(c, level);
  1234. btrfs_set_header_bytenr(c, c->start);
  1235. btrfs_set_header_generation(c, trans->transid);
  1236. btrfs_set_header_owner(c, root->root_key.objectid);
  1237. write_extent_buffer(c, root->fs_info->fsid,
  1238. (unsigned long)btrfs_header_fsid(c),
  1239. BTRFS_FSID_SIZE);
  1240. btrfs_set_node_key(c, &lower_key, 0);
  1241. btrfs_set_node_blockptr(c, 0, lower->start);
  1242. lower_gen = btrfs_header_generation(lower);
  1243. WARN_ON(lower_gen == 0);
  1244. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1245. btrfs_mark_buffer_dirty(c);
  1246. /* the super has an extra ref to root->node */
  1247. free_extent_buffer(root->node);
  1248. root->node = c;
  1249. extent_buffer_get(c);
  1250. path->nodes[level] = c;
  1251. path->slots[level] = 0;
  1252. if (root->ref_cows && lower_gen != trans->transid) {
  1253. struct btrfs_path *back_path = btrfs_alloc_path();
  1254. int ret;
  1255. ret = btrfs_insert_extent_backref(trans,
  1256. root->fs_info->extent_root,
  1257. path, lower->start,
  1258. root->root_key.objectid,
  1259. trans->transid, 0, 0);
  1260. BUG_ON(ret);
  1261. btrfs_free_path(back_path);
  1262. }
  1263. return 0;
  1264. }
  1265. /*
  1266. * worker function to insert a single pointer in a node.
  1267. * the node should have enough room for the pointer already
  1268. *
  1269. * slot and level indicate where you want the key to go, and
  1270. * blocknr is the block the key points to.
  1271. *
  1272. * returns zero on success and < 0 on any error
  1273. */
  1274. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1275. *root, struct btrfs_path *path, struct btrfs_disk_key
  1276. *key, u64 bytenr, int slot, int level)
  1277. {
  1278. struct extent_buffer *lower;
  1279. int nritems;
  1280. BUG_ON(!path->nodes[level]);
  1281. lower = path->nodes[level];
  1282. nritems = btrfs_header_nritems(lower);
  1283. if (slot > nritems)
  1284. BUG();
  1285. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1286. BUG();
  1287. if (slot != nritems) {
  1288. memmove_extent_buffer(lower,
  1289. btrfs_node_key_ptr_offset(slot + 1),
  1290. btrfs_node_key_ptr_offset(slot),
  1291. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1292. }
  1293. btrfs_set_node_key(lower, key, slot);
  1294. btrfs_set_node_blockptr(lower, slot, bytenr);
  1295. WARN_ON(trans->transid == 0);
  1296. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1297. btrfs_set_header_nritems(lower, nritems + 1);
  1298. btrfs_mark_buffer_dirty(lower);
  1299. return 0;
  1300. }
  1301. /*
  1302. * split the node at the specified level in path in two.
  1303. * The path is corrected to point to the appropriate node after the split
  1304. *
  1305. * Before splitting this tries to make some room in the node by pushing
  1306. * left and right, if either one works, it returns right away.
  1307. *
  1308. * returns 0 on success and < 0 on failure
  1309. */
  1310. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  1311. *root, struct btrfs_path *path, int level)
  1312. {
  1313. u64 root_gen;
  1314. struct extent_buffer *c;
  1315. struct extent_buffer *split;
  1316. struct btrfs_disk_key disk_key;
  1317. int mid;
  1318. int ret;
  1319. int wret;
  1320. u32 c_nritems;
  1321. c = path->nodes[level];
  1322. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1323. if (c == root->node) {
  1324. /* trying to split the root, lets make a new one */
  1325. ret = insert_new_root(trans, root, path, level + 1);
  1326. if (ret)
  1327. return ret;
  1328. } else {
  1329. ret = push_nodes_for_insert(trans, root, path, level);
  1330. c = path->nodes[level];
  1331. if (!ret && btrfs_header_nritems(c) <
  1332. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  1333. return 0;
  1334. if (ret < 0)
  1335. return ret;
  1336. }
  1337. c_nritems = btrfs_header_nritems(c);
  1338. if (root->ref_cows)
  1339. root_gen = trans->transid;
  1340. else
  1341. root_gen = 0;
  1342. btrfs_node_key(c, &disk_key, 0);
  1343. split = __btrfs_alloc_free_block(trans, root, root->nodesize,
  1344. root->root_key.objectid,
  1345. root_gen,
  1346. btrfs_disk_key_objectid(&disk_key),
  1347. level, c->start, 0);
  1348. if (IS_ERR(split))
  1349. return PTR_ERR(split);
  1350. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1351. btrfs_set_header_level(split, btrfs_header_level(c));
  1352. btrfs_set_header_bytenr(split, split->start);
  1353. btrfs_set_header_generation(split, trans->transid);
  1354. btrfs_set_header_owner(split, root->root_key.objectid);
  1355. write_extent_buffer(split, root->fs_info->fsid,
  1356. (unsigned long)btrfs_header_fsid(split),
  1357. BTRFS_FSID_SIZE);
  1358. mid = (c_nritems + 1) / 2;
  1359. copy_extent_buffer(split, c,
  1360. btrfs_node_key_ptr_offset(0),
  1361. btrfs_node_key_ptr_offset(mid),
  1362. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1363. btrfs_set_header_nritems(split, c_nritems - mid);
  1364. btrfs_set_header_nritems(c, mid);
  1365. ret = 0;
  1366. btrfs_mark_buffer_dirty(c);
  1367. btrfs_mark_buffer_dirty(split);
  1368. btrfs_node_key(split, &disk_key, 0);
  1369. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1370. path->slots[level + 1] + 1,
  1371. level + 1);
  1372. if (wret)
  1373. ret = wret;
  1374. if (path->slots[level] >= mid) {
  1375. path->slots[level] -= mid;
  1376. free_extent_buffer(c);
  1377. path->nodes[level] = split;
  1378. path->slots[level + 1] += 1;
  1379. } else {
  1380. free_extent_buffer(split);
  1381. }
  1382. return ret;
  1383. }
  1384. /*
  1385. * how many bytes are required to store the items in a leaf. start
  1386. * and nr indicate which items in the leaf to check. This totals up the
  1387. * space used both by the item structs and the item data
  1388. */
  1389. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1390. {
  1391. int data_len;
  1392. int nritems = btrfs_header_nritems(l);
  1393. int end = min(nritems, start + nr) - 1;
  1394. if (!nr)
  1395. return 0;
  1396. data_len = btrfs_item_end_nr(l, start);
  1397. data_len = data_len - btrfs_item_offset_nr(l, end);
  1398. data_len += sizeof(struct btrfs_item) * nr;
  1399. WARN_ON(data_len < 0);
  1400. return data_len;
  1401. }
  1402. /*
  1403. * The space between the end of the leaf items and
  1404. * the start of the leaf data. IOW, how much room
  1405. * the leaf has left for both items and data
  1406. */
  1407. int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
  1408. {
  1409. int nritems = btrfs_header_nritems(leaf);
  1410. int ret;
  1411. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1412. if (ret < 0) {
  1413. printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
  1414. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1415. leaf_space_used(leaf, 0, nritems), nritems);
  1416. }
  1417. return ret;
  1418. }
  1419. /*
  1420. * push some data in the path leaf to the right, trying to free up at
  1421. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1422. *
  1423. * returns 1 if the push failed because the other node didn't have enough
  1424. * room, 0 if everything worked out and < 0 if there were major errors.
  1425. */
  1426. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1427. *root, struct btrfs_path *path, int data_size,
  1428. int empty)
  1429. {
  1430. struct extent_buffer *left = path->nodes[0];
  1431. struct extent_buffer *right;
  1432. struct extent_buffer *upper;
  1433. struct btrfs_disk_key disk_key;
  1434. int slot;
  1435. u32 i;
  1436. int free_space;
  1437. int push_space = 0;
  1438. int push_items = 0;
  1439. struct btrfs_item *item;
  1440. u32 left_nritems;
  1441. u32 nr;
  1442. u32 right_nritems;
  1443. u32 data_end;
  1444. u32 this_item_size;
  1445. int ret;
  1446. slot = path->slots[1];
  1447. if (!path->nodes[1]) {
  1448. return 1;
  1449. }
  1450. upper = path->nodes[1];
  1451. if (slot >= btrfs_header_nritems(upper) - 1)
  1452. return 1;
  1453. right = read_tree_block(root, btrfs_node_blockptr(upper, slot + 1),
  1454. root->leafsize);
  1455. free_space = btrfs_leaf_free_space(root, right);
  1456. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1457. free_extent_buffer(right);
  1458. return 1;
  1459. }
  1460. /* cow and double check */
  1461. ret = btrfs_cow_block(trans, root, right, upper,
  1462. slot + 1, &right);
  1463. if (ret) {
  1464. free_extent_buffer(right);
  1465. return 1;
  1466. }
  1467. free_space = btrfs_leaf_free_space(root, right);
  1468. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1469. free_extent_buffer(right);
  1470. return 1;
  1471. }
  1472. left_nritems = btrfs_header_nritems(left);
  1473. if (left_nritems == 0) {
  1474. free_extent_buffer(right);
  1475. return 1;
  1476. }
  1477. if (empty)
  1478. nr = 0;
  1479. else
  1480. nr = 1;
  1481. i = left_nritems - 1;
  1482. while (i >= nr) {
  1483. item = btrfs_item_nr(left, i);
  1484. if (path->slots[0] == i)
  1485. push_space += data_size + sizeof(*item);
  1486. if (!left->map_token) {
  1487. map_extent_buffer(left, (unsigned long)item,
  1488. sizeof(struct btrfs_item),
  1489. &left->map_token, &left->kaddr,
  1490. &left->map_start, &left->map_len,
  1491. KM_USER1);
  1492. }
  1493. this_item_size = btrfs_item_size(left, item);
  1494. if (this_item_size + sizeof(*item) + push_space > free_space)
  1495. break;
  1496. push_items++;
  1497. push_space += this_item_size + sizeof(*item);
  1498. if (i == 0)
  1499. break;
  1500. i--;
  1501. }
  1502. if (left->map_token) {
  1503. unmap_extent_buffer(left, left->map_token, KM_USER1);
  1504. left->map_token = NULL;
  1505. }
  1506. if (push_items == 0) {
  1507. free_extent_buffer(right);
  1508. return 1;
  1509. }
  1510. if (!empty && push_items == left_nritems)
  1511. WARN_ON(1);
  1512. /* push left to right */
  1513. right_nritems = btrfs_header_nritems(right);
  1514. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  1515. push_space -= leaf_data_end(root, left);
  1516. /* make room in the right data area */
  1517. data_end = leaf_data_end(root, right);
  1518. memmove_extent_buffer(right,
  1519. btrfs_leaf_data(right) + data_end - push_space,
  1520. btrfs_leaf_data(right) + data_end,
  1521. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  1522. /* copy from the left data area */
  1523. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  1524. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1525. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1526. push_space);
  1527. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  1528. btrfs_item_nr_offset(0),
  1529. right_nritems * sizeof(struct btrfs_item));
  1530. /* copy the items from left to right */
  1531. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  1532. btrfs_item_nr_offset(left_nritems - push_items),
  1533. push_items * sizeof(struct btrfs_item));
  1534. /* update the item pointers */
  1535. right_nritems += push_items;
  1536. btrfs_set_header_nritems(right, right_nritems);
  1537. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1538. for (i = 0; i < right_nritems; i++) {
  1539. item = btrfs_item_nr(right, i);
  1540. if (!right->map_token) {
  1541. map_extent_buffer(right, (unsigned long)item,
  1542. sizeof(struct btrfs_item),
  1543. &right->map_token, &right->kaddr,
  1544. &right->map_start, &right->map_len,
  1545. KM_USER1);
  1546. }
  1547. push_space -= btrfs_item_size(right, item);
  1548. btrfs_set_item_offset(right, item, push_space);
  1549. }
  1550. if (right->map_token) {
  1551. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1552. right->map_token = NULL;
  1553. }
  1554. left_nritems -= push_items;
  1555. btrfs_set_header_nritems(left, left_nritems);
  1556. if (left_nritems)
  1557. btrfs_mark_buffer_dirty(left);
  1558. btrfs_mark_buffer_dirty(right);
  1559. btrfs_item_key(right, &disk_key, 0);
  1560. btrfs_set_node_key(upper, &disk_key, slot + 1);
  1561. btrfs_mark_buffer_dirty(upper);
  1562. /* then fixup the leaf pointer in the path */
  1563. if (path->slots[0] >= left_nritems) {
  1564. path->slots[0] -= left_nritems;
  1565. free_extent_buffer(path->nodes[0]);
  1566. path->nodes[0] = right;
  1567. path->slots[1] += 1;
  1568. } else {
  1569. free_extent_buffer(right);
  1570. }
  1571. return 0;
  1572. }
  1573. /*
  1574. * push some data in the path leaf to the left, trying to free up at
  1575. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1576. */
  1577. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1578. *root, struct btrfs_path *path, int data_size,
  1579. int empty)
  1580. {
  1581. struct btrfs_disk_key disk_key;
  1582. struct extent_buffer *right = path->nodes[0];
  1583. struct extent_buffer *left;
  1584. int slot;
  1585. int i;
  1586. int free_space;
  1587. int push_space = 0;
  1588. int push_items = 0;
  1589. struct btrfs_item *item;
  1590. u32 old_left_nritems;
  1591. u32 right_nritems;
  1592. u32 nr;
  1593. int ret = 0;
  1594. int wret;
  1595. u32 this_item_size;
  1596. u32 old_left_item_size;
  1597. slot = path->slots[1];
  1598. if (slot == 0)
  1599. return 1;
  1600. if (!path->nodes[1])
  1601. return 1;
  1602. right_nritems = btrfs_header_nritems(right);
  1603. if (right_nritems == 0) {
  1604. return 1;
  1605. }
  1606. left = read_tree_block(root, btrfs_node_blockptr(path->nodes[1],
  1607. slot - 1), root->leafsize);
  1608. free_space = btrfs_leaf_free_space(root, left);
  1609. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1610. free_extent_buffer(left);
  1611. return 1;
  1612. }
  1613. /* cow and double check */
  1614. ret = btrfs_cow_block(trans, root, left,
  1615. path->nodes[1], slot - 1, &left);
  1616. if (ret) {
  1617. /* we hit -ENOSPC, but it isn't fatal here */
  1618. free_extent_buffer(left);
  1619. return 1;
  1620. }
  1621. free_space = btrfs_leaf_free_space(root, left);
  1622. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1623. free_extent_buffer(left);
  1624. return 1;
  1625. }
  1626. if (empty)
  1627. nr = right_nritems;
  1628. else
  1629. nr = right_nritems - 1;
  1630. for (i = 0; i < nr; i++) {
  1631. item = btrfs_item_nr(right, i);
  1632. if (!right->map_token) {
  1633. map_extent_buffer(right, (unsigned long)item,
  1634. sizeof(struct btrfs_item),
  1635. &right->map_token, &right->kaddr,
  1636. &right->map_start, &right->map_len,
  1637. KM_USER1);
  1638. }
  1639. if (path->slots[0] == i)
  1640. push_space += data_size + sizeof(*item);
  1641. this_item_size = btrfs_item_size(right, item);
  1642. if (this_item_size + sizeof(*item) + push_space > free_space)
  1643. break;
  1644. push_items++;
  1645. push_space += this_item_size + sizeof(*item);
  1646. }
  1647. if (right->map_token) {
  1648. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1649. right->map_token = NULL;
  1650. }
  1651. if (push_items == 0) {
  1652. free_extent_buffer(left);
  1653. return 1;
  1654. }
  1655. if (!empty && push_items == btrfs_header_nritems(right))
  1656. WARN_ON(1);
  1657. /* push data from right to left */
  1658. copy_extent_buffer(left, right,
  1659. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  1660. btrfs_item_nr_offset(0),
  1661. push_items * sizeof(struct btrfs_item));
  1662. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1663. btrfs_item_offset_nr(right, push_items -1);
  1664. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  1665. leaf_data_end(root, left) - push_space,
  1666. btrfs_leaf_data(right) +
  1667. btrfs_item_offset_nr(right, push_items - 1),
  1668. push_space);
  1669. old_left_nritems = btrfs_header_nritems(left);
  1670. BUG_ON(old_left_nritems < 0);
  1671. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  1672. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1673. u32 ioff;
  1674. item = btrfs_item_nr(left, i);
  1675. if (!left->map_token) {
  1676. map_extent_buffer(left, (unsigned long)item,
  1677. sizeof(struct btrfs_item),
  1678. &left->map_token, &left->kaddr,
  1679. &left->map_start, &left->map_len,
  1680. KM_USER1);
  1681. }
  1682. ioff = btrfs_item_offset(left, item);
  1683. btrfs_set_item_offset(left, item,
  1684. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  1685. }
  1686. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  1687. if (left->map_token) {
  1688. unmap_extent_buffer(left, left->map_token, KM_USER1);
  1689. left->map_token = NULL;
  1690. }
  1691. /* fixup right node */
  1692. if (push_items > right_nritems) {
  1693. printk("push items %d nr %u\n", push_items, right_nritems);
  1694. WARN_ON(1);
  1695. }
  1696. if (push_items < right_nritems) {
  1697. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  1698. leaf_data_end(root, right);
  1699. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  1700. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1701. btrfs_leaf_data(right) +
  1702. leaf_data_end(root, right), push_space);
  1703. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  1704. btrfs_item_nr_offset(push_items),
  1705. (btrfs_header_nritems(right) - push_items) *
  1706. sizeof(struct btrfs_item));
  1707. }
  1708. right_nritems -= push_items;
  1709. btrfs_set_header_nritems(right, right_nritems);
  1710. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1711. for (i = 0; i < right_nritems; i++) {
  1712. item = btrfs_item_nr(right, i);
  1713. if (!right->map_token) {
  1714. map_extent_buffer(right, (unsigned long)item,
  1715. sizeof(struct btrfs_item),
  1716. &right->map_token, &right->kaddr,
  1717. &right->map_start, &right->map_len,
  1718. KM_USER1);
  1719. }
  1720. push_space = push_space - btrfs_item_size(right, item);
  1721. btrfs_set_item_offset(right, item, push_space);
  1722. }
  1723. if (right->map_token) {
  1724. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1725. right->map_token = NULL;
  1726. }
  1727. btrfs_mark_buffer_dirty(left);
  1728. if (right_nritems)
  1729. btrfs_mark_buffer_dirty(right);
  1730. btrfs_item_key(right, &disk_key, 0);
  1731. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1732. if (wret)
  1733. ret = wret;
  1734. /* then fixup the leaf pointer in the path */
  1735. if (path->slots[0] < push_items) {
  1736. path->slots[0] += old_left_nritems;
  1737. free_extent_buffer(path->nodes[0]);
  1738. path->nodes[0] = left;
  1739. path->slots[1] -= 1;
  1740. } else {
  1741. free_extent_buffer(left);
  1742. path->slots[0] -= push_items;
  1743. }
  1744. BUG_ON(path->slots[0] < 0);
  1745. return ret;
  1746. }
  1747. /*
  1748. * split the path's leaf in two, making sure there is at least data_size
  1749. * available for the resulting leaf level of the path.
  1750. *
  1751. * returns 0 if all went well and < 0 on failure.
  1752. */
  1753. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1754. *root, struct btrfs_key *ins_key,
  1755. struct btrfs_path *path, int data_size, int extend)
  1756. {
  1757. u64 root_gen;
  1758. struct extent_buffer *l;
  1759. u32 nritems;
  1760. int mid;
  1761. int slot;
  1762. struct extent_buffer *right;
  1763. int space_needed = data_size + sizeof(struct btrfs_item);
  1764. int data_copy_size;
  1765. int rt_data_off;
  1766. int i;
  1767. int ret = 0;
  1768. int wret;
  1769. int double_split;
  1770. int num_doubles = 0;
  1771. struct btrfs_disk_key disk_key;
  1772. if (extend)
  1773. space_needed = data_size;
  1774. if (root->ref_cows)
  1775. root_gen = trans->transid;
  1776. else
  1777. root_gen = 0;
  1778. /* first try to make some room by pushing left and right */
  1779. if (ins_key->type != BTRFS_DIR_ITEM_KEY) {
  1780. wret = push_leaf_right(trans, root, path, data_size, 0);
  1781. if (wret < 0) {
  1782. return wret;
  1783. }
  1784. if (wret) {
  1785. wret = push_leaf_left(trans, root, path, data_size, 0);
  1786. if (wret < 0)
  1787. return wret;
  1788. }
  1789. l = path->nodes[0];
  1790. /* did the pushes work? */
  1791. if (btrfs_leaf_free_space(root, l) >= space_needed)
  1792. return 0;
  1793. }
  1794. if (!path->nodes[1]) {
  1795. ret = insert_new_root(trans, root, path, 1);
  1796. if (ret)
  1797. return ret;
  1798. }
  1799. again:
  1800. double_split = 0;
  1801. l = path->nodes[0];
  1802. slot = path->slots[0];
  1803. nritems = btrfs_header_nritems(l);
  1804. mid = (nritems + 1)/ 2;
  1805. btrfs_item_key(l, &disk_key, 0);
  1806. right = __btrfs_alloc_free_block(trans, root, root->leafsize,
  1807. root->root_key.objectid,
  1808. root_gen, disk_key.objectid, 0,
  1809. l->start, 0);
  1810. if (IS_ERR(right))
  1811. return PTR_ERR(right);
  1812. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  1813. btrfs_set_header_bytenr(right, right->start);
  1814. btrfs_set_header_generation(right, trans->transid);
  1815. btrfs_set_header_owner(right, root->root_key.objectid);
  1816. btrfs_set_header_level(right, 0);
  1817. write_extent_buffer(right, root->fs_info->fsid,
  1818. (unsigned long)btrfs_header_fsid(right),
  1819. BTRFS_FSID_SIZE);
  1820. if (mid <= slot) {
  1821. if (nritems == 1 ||
  1822. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1823. BTRFS_LEAF_DATA_SIZE(root)) {
  1824. if (slot >= nritems) {
  1825. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1826. btrfs_set_header_nritems(right, 0);
  1827. wret = insert_ptr(trans, root, path,
  1828. &disk_key, right->start,
  1829. path->slots[1] + 1, 1);
  1830. if (wret)
  1831. ret = wret;
  1832. free_extent_buffer(path->nodes[0]);
  1833. path->nodes[0] = right;
  1834. path->slots[0] = 0;
  1835. path->slots[1] += 1;
  1836. return ret;
  1837. }
  1838. mid = slot;
  1839. if (mid != nritems &&
  1840. leaf_space_used(l, mid, nritems - mid) +
  1841. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  1842. double_split = 1;
  1843. }
  1844. }
  1845. } else {
  1846. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1847. BTRFS_LEAF_DATA_SIZE(root)) {
  1848. if (!extend && slot == 0) {
  1849. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1850. btrfs_set_header_nritems(right, 0);
  1851. wret = insert_ptr(trans, root, path,
  1852. &disk_key,
  1853. right->start,
  1854. path->slots[1], 1);
  1855. if (wret)
  1856. ret = wret;
  1857. free_extent_buffer(path->nodes[0]);
  1858. path->nodes[0] = right;
  1859. path->slots[0] = 0;
  1860. if (path->slots[1] == 0) {
  1861. wret = fixup_low_keys(trans, root,
  1862. path, &disk_key, 1);
  1863. if (wret)
  1864. ret = wret;
  1865. }
  1866. return ret;
  1867. } else if (extend && slot == 0) {
  1868. mid = 1;
  1869. } else {
  1870. mid = slot;
  1871. if (mid != nritems &&
  1872. leaf_space_used(l, mid, nritems - mid) +
  1873. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  1874. double_split = 1;
  1875. }
  1876. }
  1877. }
  1878. }
  1879. nritems = nritems - mid;
  1880. btrfs_set_header_nritems(right, nritems);
  1881. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  1882. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  1883. btrfs_item_nr_offset(mid),
  1884. nritems * sizeof(struct btrfs_item));
  1885. copy_extent_buffer(right, l,
  1886. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1887. data_copy_size, btrfs_leaf_data(l) +
  1888. leaf_data_end(root, l), data_copy_size);
  1889. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1890. btrfs_item_end_nr(l, mid);
  1891. for (i = 0; i < nritems; i++) {
  1892. struct btrfs_item *item = btrfs_item_nr(right, i);
  1893. u32 ioff;
  1894. if (!right->map_token) {
  1895. map_extent_buffer(right, (unsigned long)item,
  1896. sizeof(struct btrfs_item),
  1897. &right->map_token, &right->kaddr,
  1898. &right->map_start, &right->map_len,
  1899. KM_USER1);
  1900. }
  1901. ioff = btrfs_item_offset(right, item);
  1902. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  1903. }
  1904. if (right->map_token) {
  1905. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1906. right->map_token = NULL;
  1907. }
  1908. btrfs_set_header_nritems(l, mid);
  1909. ret = 0;
  1910. btrfs_item_key(right, &disk_key, 0);
  1911. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  1912. path->slots[1] + 1, 1);
  1913. if (wret)
  1914. ret = wret;
  1915. btrfs_mark_buffer_dirty(right);
  1916. btrfs_mark_buffer_dirty(l);
  1917. BUG_ON(path->slots[0] != slot);
  1918. if (mid <= slot) {
  1919. free_extent_buffer(path->nodes[0]);
  1920. path->nodes[0] = right;
  1921. path->slots[0] -= mid;
  1922. path->slots[1] += 1;
  1923. } else
  1924. free_extent_buffer(right);
  1925. BUG_ON(path->slots[0] < 0);
  1926. if (double_split) {
  1927. BUG_ON(num_doubles != 0);
  1928. num_doubles++;
  1929. goto again;
  1930. }
  1931. return ret;
  1932. }
  1933. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1934. struct btrfs_root *root,
  1935. struct btrfs_path *path,
  1936. u32 new_size, int from_end)
  1937. {
  1938. int ret = 0;
  1939. int slot;
  1940. int slot_orig;
  1941. struct extent_buffer *leaf;
  1942. struct btrfs_item *item;
  1943. u32 nritems;
  1944. unsigned int data_end;
  1945. unsigned int old_data_start;
  1946. unsigned int old_size;
  1947. unsigned int size_diff;
  1948. int i;
  1949. slot_orig = path->slots[0];
  1950. leaf = path->nodes[0];
  1951. slot = path->slots[0];
  1952. old_size = btrfs_item_size_nr(leaf, slot);
  1953. if (old_size == new_size)
  1954. return 0;
  1955. nritems = btrfs_header_nritems(leaf);
  1956. data_end = leaf_data_end(root, leaf);
  1957. old_data_start = btrfs_item_offset_nr(leaf, slot);
  1958. size_diff = old_size - new_size;
  1959. BUG_ON(slot < 0);
  1960. BUG_ON(slot >= nritems);
  1961. /*
  1962. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1963. */
  1964. /* first correct the data pointers */
  1965. for (i = slot; i < nritems; i++) {
  1966. u32 ioff;
  1967. item = btrfs_item_nr(leaf, i);
  1968. if (!leaf->map_token) {
  1969. map_extent_buffer(leaf, (unsigned long)item,
  1970. sizeof(struct btrfs_item),
  1971. &leaf->map_token, &leaf->kaddr,
  1972. &leaf->map_start, &leaf->map_len,
  1973. KM_USER1);
  1974. }
  1975. ioff = btrfs_item_offset(leaf, item);
  1976. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  1977. }
  1978. if (leaf->map_token) {
  1979. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  1980. leaf->map_token = NULL;
  1981. }
  1982. /* shift the data */
  1983. if (from_end) {
  1984. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1985. data_end + size_diff, btrfs_leaf_data(leaf) +
  1986. data_end, old_data_start + new_size - data_end);
  1987. } else {
  1988. struct btrfs_disk_key disk_key;
  1989. u64 offset;
  1990. btrfs_item_key(leaf, &disk_key, slot);
  1991. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  1992. unsigned long ptr;
  1993. struct btrfs_file_extent_item *fi;
  1994. fi = btrfs_item_ptr(leaf, slot,
  1995. struct btrfs_file_extent_item);
  1996. fi = (struct btrfs_file_extent_item *)(
  1997. (unsigned long)fi - size_diff);
  1998. if (btrfs_file_extent_type(leaf, fi) ==
  1999. BTRFS_FILE_EXTENT_INLINE) {
  2000. ptr = btrfs_item_ptr_offset(leaf, slot);
  2001. memmove_extent_buffer(leaf, ptr,
  2002. (unsigned long)fi,
  2003. offsetof(struct btrfs_file_extent_item,
  2004. disk_bytenr));
  2005. }
  2006. }
  2007. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2008. data_end + size_diff, btrfs_leaf_data(leaf) +
  2009. data_end, old_data_start - data_end);
  2010. offset = btrfs_disk_key_offset(&disk_key);
  2011. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2012. btrfs_set_item_key(leaf, &disk_key, slot);
  2013. if (slot == 0)
  2014. fixup_low_keys(trans, root, path, &disk_key, 1);
  2015. }
  2016. item = btrfs_item_nr(leaf, slot);
  2017. btrfs_set_item_size(leaf, item, new_size);
  2018. btrfs_mark_buffer_dirty(leaf);
  2019. ret = 0;
  2020. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2021. btrfs_print_leaf(root, leaf);
  2022. BUG();
  2023. }
  2024. return ret;
  2025. }
  2026. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2027. struct btrfs_root *root, struct btrfs_path *path,
  2028. u32 data_size)
  2029. {
  2030. int ret = 0;
  2031. int slot;
  2032. int slot_orig;
  2033. struct extent_buffer *leaf;
  2034. struct btrfs_item *item;
  2035. u32 nritems;
  2036. unsigned int data_end;
  2037. unsigned int old_data;
  2038. unsigned int old_size;
  2039. int i;
  2040. slot_orig = path->slots[0];
  2041. leaf = path->nodes[0];
  2042. nritems = btrfs_header_nritems(leaf);
  2043. data_end = leaf_data_end(root, leaf);
  2044. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2045. btrfs_print_leaf(root, leaf);
  2046. BUG();
  2047. }
  2048. slot = path->slots[0];
  2049. old_data = btrfs_item_end_nr(leaf, slot);
  2050. BUG_ON(slot < 0);
  2051. if (slot >= nritems) {
  2052. btrfs_print_leaf(root, leaf);
  2053. printk("slot %d too large, nritems %d\n", slot, nritems);
  2054. BUG_ON(1);
  2055. }
  2056. /*
  2057. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2058. */
  2059. /* first correct the data pointers */
  2060. for (i = slot; i < nritems; i++) {
  2061. u32 ioff;
  2062. item = btrfs_item_nr(leaf, i);
  2063. if (!leaf->map_token) {
  2064. map_extent_buffer(leaf, (unsigned long)item,
  2065. sizeof(struct btrfs_item),
  2066. &leaf->map_token, &leaf->kaddr,
  2067. &leaf->map_start, &leaf->map_len,
  2068. KM_USER1);
  2069. }
  2070. ioff = btrfs_item_offset(leaf, item);
  2071. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2072. }
  2073. if (leaf->map_token) {
  2074. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2075. leaf->map_token = NULL;
  2076. }
  2077. /* shift the data */
  2078. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2079. data_end - data_size, btrfs_leaf_data(leaf) +
  2080. data_end, old_data - data_end);
  2081. data_end = old_data;
  2082. old_size = btrfs_item_size_nr(leaf, slot);
  2083. item = btrfs_item_nr(leaf, slot);
  2084. btrfs_set_item_size(leaf, item, old_size + data_size);
  2085. btrfs_mark_buffer_dirty(leaf);
  2086. ret = 0;
  2087. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2088. btrfs_print_leaf(root, leaf);
  2089. BUG();
  2090. }
  2091. return ret;
  2092. }
  2093. /*
  2094. * Given a key and some data, insert an item into the tree.
  2095. * This does all the path init required, making room in the tree if needed.
  2096. */
  2097. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
  2098. struct btrfs_root *root,
  2099. struct btrfs_path *path,
  2100. struct btrfs_key *cpu_key, u32 data_size)
  2101. {
  2102. struct extent_buffer *leaf;
  2103. struct btrfs_item *item;
  2104. int ret = 0;
  2105. int slot;
  2106. int slot_orig;
  2107. u32 nritems;
  2108. unsigned int data_end;
  2109. struct btrfs_disk_key disk_key;
  2110. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2111. /* create a root if there isn't one */
  2112. if (!root->node)
  2113. BUG();
  2114. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  2115. if (ret == 0) {
  2116. return -EEXIST;
  2117. }
  2118. if (ret < 0)
  2119. goto out;
  2120. slot_orig = path->slots[0];
  2121. leaf = path->nodes[0];
  2122. nritems = btrfs_header_nritems(leaf);
  2123. data_end = leaf_data_end(root, leaf);
  2124. if (btrfs_leaf_free_space(root, leaf) <
  2125. sizeof(struct btrfs_item) + data_size) {
  2126. btrfs_print_leaf(root, leaf);
  2127. printk("not enough freespace need %u have %d\n",
  2128. data_size, btrfs_leaf_free_space(root, leaf));
  2129. BUG();
  2130. }
  2131. slot = path->slots[0];
  2132. BUG_ON(slot < 0);
  2133. if (slot != nritems) {
  2134. int i;
  2135. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2136. if (old_data < data_end) {
  2137. btrfs_print_leaf(root, leaf);
  2138. printk("slot %d old_data %d data_end %d\n",
  2139. slot, old_data, data_end);
  2140. BUG_ON(1);
  2141. }
  2142. /*
  2143. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2144. */
  2145. /* first correct the data pointers */
  2146. WARN_ON(leaf->map_token);
  2147. for (i = slot; i < nritems; i++) {
  2148. u32 ioff;
  2149. item = btrfs_item_nr(leaf, i);
  2150. if (!leaf->map_token) {
  2151. map_extent_buffer(leaf, (unsigned long)item,
  2152. sizeof(struct btrfs_item),
  2153. &leaf->map_token, &leaf->kaddr,
  2154. &leaf->map_start, &leaf->map_len,
  2155. KM_USER1);
  2156. }
  2157. ioff = btrfs_item_offset(leaf, item);
  2158. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2159. }
  2160. if (leaf->map_token) {
  2161. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2162. leaf->map_token = NULL;
  2163. }
  2164. /* shift the items */
  2165. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2166. btrfs_item_nr_offset(slot),
  2167. (nritems - slot) * sizeof(struct btrfs_item));
  2168. /* shift the data */
  2169. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2170. data_end - data_size, btrfs_leaf_data(leaf) +
  2171. data_end, old_data - data_end);
  2172. data_end = old_data;
  2173. }
  2174. /* setup the item for the new data */
  2175. btrfs_set_item_key(leaf, &disk_key, slot);
  2176. item = btrfs_item_nr(leaf, slot);
  2177. btrfs_set_item_offset(leaf, item, data_end - data_size);
  2178. btrfs_set_item_size(leaf, item, data_size);
  2179. btrfs_set_header_nritems(leaf, nritems + 1);
  2180. btrfs_mark_buffer_dirty(leaf);
  2181. ret = 0;
  2182. if (slot == 0)
  2183. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2184. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2185. btrfs_print_leaf(root, leaf);
  2186. BUG();
  2187. }
  2188. out:
  2189. return ret;
  2190. }
  2191. /*
  2192. * Given a key and some data, insert an item into the tree.
  2193. * This does all the path init required, making room in the tree if needed.
  2194. */
  2195. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  2196. *root, struct btrfs_key *cpu_key, void *data, u32
  2197. data_size)
  2198. {
  2199. int ret = 0;
  2200. struct btrfs_path *path;
  2201. struct extent_buffer *leaf;
  2202. unsigned long ptr;
  2203. path = btrfs_alloc_path();
  2204. BUG_ON(!path);
  2205. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  2206. if (!ret) {
  2207. leaf = path->nodes[0];
  2208. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2209. write_extent_buffer(leaf, data, ptr, data_size);
  2210. btrfs_mark_buffer_dirty(leaf);
  2211. }
  2212. btrfs_free_path(path);
  2213. return ret;
  2214. }
  2215. /*
  2216. * delete the pointer from a given node.
  2217. *
  2218. * If the delete empties a node, the node is removed from the tree,
  2219. * continuing all the way the root if required. The root is converted into
  2220. * a leaf if all the nodes are emptied.
  2221. */
  2222. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2223. struct btrfs_path *path, int level, int slot)
  2224. {
  2225. struct extent_buffer *parent = path->nodes[level];
  2226. u32 nritems;
  2227. int ret = 0;
  2228. int wret;
  2229. nritems = btrfs_header_nritems(parent);
  2230. if (slot != nritems -1) {
  2231. memmove_extent_buffer(parent,
  2232. btrfs_node_key_ptr_offset(slot),
  2233. btrfs_node_key_ptr_offset(slot + 1),
  2234. sizeof(struct btrfs_key_ptr) *
  2235. (nritems - slot - 1));
  2236. }
  2237. nritems--;
  2238. btrfs_set_header_nritems(parent, nritems);
  2239. if (nritems == 0 && parent == root->node) {
  2240. BUG_ON(btrfs_header_level(root->node) != 1);
  2241. /* just turn the root into a leaf and break */
  2242. btrfs_set_header_level(root->node, 0);
  2243. } else if (slot == 0) {
  2244. struct btrfs_disk_key disk_key;
  2245. btrfs_node_key(parent, &disk_key, 0);
  2246. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  2247. if (wret)
  2248. ret = wret;
  2249. }
  2250. btrfs_mark_buffer_dirty(parent);
  2251. return ret;
  2252. }
  2253. /*
  2254. * delete the item at the leaf level in path. If that empties
  2255. * the leaf, remove it from the tree
  2256. */
  2257. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2258. struct btrfs_path *path)
  2259. {
  2260. int slot;
  2261. struct extent_buffer *leaf;
  2262. struct btrfs_item *item;
  2263. int doff;
  2264. int dsize;
  2265. int ret = 0;
  2266. int wret;
  2267. u32 nritems;
  2268. leaf = path->nodes[0];
  2269. slot = path->slots[0];
  2270. doff = btrfs_item_offset_nr(leaf, slot);
  2271. dsize = btrfs_item_size_nr(leaf, slot);
  2272. nritems = btrfs_header_nritems(leaf);
  2273. if (slot != nritems - 1) {
  2274. int i;
  2275. int data_end = leaf_data_end(root, leaf);
  2276. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2277. data_end + dsize,
  2278. btrfs_leaf_data(leaf) + data_end,
  2279. doff - data_end);
  2280. for (i = slot + 1; i < nritems; i++) {
  2281. u32 ioff;
  2282. item = btrfs_item_nr(leaf, i);
  2283. if (!leaf->map_token) {
  2284. map_extent_buffer(leaf, (unsigned long)item,
  2285. sizeof(struct btrfs_item),
  2286. &leaf->map_token, &leaf->kaddr,
  2287. &leaf->map_start, &leaf->map_len,
  2288. KM_USER1);
  2289. }
  2290. ioff = btrfs_item_offset(leaf, item);
  2291. btrfs_set_item_offset(leaf, item, ioff + dsize);
  2292. }
  2293. if (leaf->map_token) {
  2294. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2295. leaf->map_token = NULL;
  2296. }
  2297. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  2298. btrfs_item_nr_offset(slot + 1),
  2299. sizeof(struct btrfs_item) *
  2300. (nritems - slot - 1));
  2301. }
  2302. btrfs_set_header_nritems(leaf, nritems - 1);
  2303. nritems--;
  2304. /* delete the leaf if we've emptied it */
  2305. if (nritems == 0) {
  2306. if (leaf == root->node) {
  2307. btrfs_set_header_level(leaf, 0);
  2308. } else {
  2309. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  2310. clean_tree_block(trans, root, leaf);
  2311. wait_on_tree_block_writeback(root, leaf);
  2312. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  2313. if (wret)
  2314. ret = wret;
  2315. wret = btrfs_free_extent(trans, root,
  2316. leaf->start, leaf->len,
  2317. btrfs_header_owner(path->nodes[1]),
  2318. root_gen, 0, 0, 1);
  2319. if (wret)
  2320. ret = wret;
  2321. }
  2322. } else {
  2323. int used = leaf_space_used(leaf, 0, nritems);
  2324. if (slot == 0) {
  2325. struct btrfs_disk_key disk_key;
  2326. btrfs_item_key(leaf, &disk_key, 0);
  2327. wret = fixup_low_keys(trans, root, path,
  2328. &disk_key, 1);
  2329. if (wret)
  2330. ret = wret;
  2331. }
  2332. /* delete the leaf if it is mostly empty */
  2333. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  2334. /* push_leaf_left fixes the path.
  2335. * make sure the path still points to our leaf
  2336. * for possible call to del_ptr below
  2337. */
  2338. slot = path->slots[1];
  2339. extent_buffer_get(leaf);
  2340. wret = push_leaf_right(trans, root, path, 1, 1);
  2341. if (wret < 0 && wret != -ENOSPC)
  2342. ret = wret;
  2343. if (path->nodes[0] == leaf &&
  2344. btrfs_header_nritems(leaf)) {
  2345. wret = push_leaf_left(trans, root, path, 1, 1);
  2346. if (wret < 0 && wret != -ENOSPC)
  2347. ret = wret;
  2348. }
  2349. if (btrfs_header_nritems(leaf) == 0) {
  2350. u64 root_gen;
  2351. u64 bytenr = leaf->start;
  2352. u32 blocksize = leaf->len;
  2353. root_gen = btrfs_header_generation(
  2354. path->nodes[1]);
  2355. clean_tree_block(trans, root, leaf);
  2356. wait_on_tree_block_writeback(root, leaf);
  2357. wret = del_ptr(trans, root, path, 1, slot);
  2358. if (wret)
  2359. ret = wret;
  2360. free_extent_buffer(leaf);
  2361. wret = btrfs_free_extent(trans, root, bytenr,
  2362. blocksize,
  2363. btrfs_header_owner(path->nodes[1]),
  2364. root_gen, 0, 0, 1);
  2365. if (wret)
  2366. ret = wret;
  2367. } else {
  2368. btrfs_mark_buffer_dirty(leaf);
  2369. free_extent_buffer(leaf);
  2370. }
  2371. } else {
  2372. btrfs_mark_buffer_dirty(leaf);
  2373. }
  2374. }
  2375. return ret;
  2376. }
  2377. /*
  2378. * walk up the tree as far as required to find the previous leaf.
  2379. * returns 0 if it found something or 1 if there are no lesser leaves.
  2380. * returns < 0 on io errors.
  2381. */
  2382. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2383. {
  2384. u64 bytenr;
  2385. int slot;
  2386. int level = 1;
  2387. struct extent_buffer *c;
  2388. struct extent_buffer *next = NULL;
  2389. while(level < BTRFS_MAX_LEVEL) {
  2390. if (!path->nodes[level])
  2391. return 1;
  2392. slot = path->slots[level];
  2393. c = path->nodes[level];
  2394. if (slot == 0) {
  2395. level++;
  2396. if (level == BTRFS_MAX_LEVEL)
  2397. return 1;
  2398. continue;
  2399. }
  2400. slot--;
  2401. bytenr = btrfs_node_blockptr(c, slot);
  2402. if (next)
  2403. free_extent_buffer(next);
  2404. next = read_tree_block(root, bytenr,
  2405. btrfs_level_size(root, level - 1));
  2406. break;
  2407. }
  2408. path->slots[level] = slot;
  2409. while(1) {
  2410. level--;
  2411. c = path->nodes[level];
  2412. free_extent_buffer(c);
  2413. slot = btrfs_header_nritems(next);
  2414. if (slot != 0)
  2415. slot--;
  2416. path->nodes[level] = next;
  2417. path->slots[level] = slot;
  2418. if (!level)
  2419. break;
  2420. next = read_tree_block(root, btrfs_node_blockptr(next, slot),
  2421. btrfs_level_size(root, level - 1));
  2422. }
  2423. return 0;
  2424. }
  2425. /*
  2426. * walk up the tree as far as required to find the next leaf.
  2427. * returns 0 if it found something or 1 if there are no greater leaves.
  2428. * returns < 0 on io errors.
  2429. */
  2430. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2431. {
  2432. int slot;
  2433. int level = 1;
  2434. u64 bytenr;
  2435. struct extent_buffer *c;
  2436. struct extent_buffer *next = NULL;
  2437. while(level < BTRFS_MAX_LEVEL) {
  2438. if (!path->nodes[level])
  2439. return 1;
  2440. slot = path->slots[level] + 1;
  2441. c = path->nodes[level];
  2442. if (slot >= btrfs_header_nritems(c)) {
  2443. level++;
  2444. if (level == BTRFS_MAX_LEVEL)
  2445. return 1;
  2446. continue;
  2447. }
  2448. bytenr = btrfs_node_blockptr(c, slot);
  2449. if (next)
  2450. free_extent_buffer(next);
  2451. if (path->reada)
  2452. reada_for_search(root, path, level, slot, 0);
  2453. next = read_tree_block(root, bytenr,
  2454. btrfs_level_size(root, level -1));
  2455. break;
  2456. }
  2457. path->slots[level] = slot;
  2458. while(1) {
  2459. level--;
  2460. c = path->nodes[level];
  2461. free_extent_buffer(c);
  2462. path->nodes[level] = next;
  2463. path->slots[level] = 0;
  2464. if (!level)
  2465. break;
  2466. if (path->reada)
  2467. reada_for_search(root, path, level, 0, 0);
  2468. next = read_tree_block(root, btrfs_node_blockptr(next, 0),
  2469. btrfs_level_size(root, level - 1));
  2470. }
  2471. return 0;
  2472. }