process.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860
  1. /* arch/sparc64/kernel/process.c
  2. *
  3. * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <stdarg.h>
  11. #include <linux/errno.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/fs.h>
  17. #include <linux/smp.h>
  18. #include <linux/stddef.h>
  19. #include <linux/ptrace.h>
  20. #include <linux/slab.h>
  21. #include <linux/user.h>
  22. #include <linux/reboot.h>
  23. #include <linux/delay.h>
  24. #include <linux/compat.h>
  25. #include <linux/tick.h>
  26. #include <linux/init.h>
  27. #include <linux/cpu.h>
  28. #include <linux/elfcore.h>
  29. #include <linux/sysrq.h>
  30. #include <asm/oplib.h>
  31. #include <asm/uaccess.h>
  32. #include <asm/system.h>
  33. #include <asm/page.h>
  34. #include <asm/pgalloc.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/processor.h>
  37. #include <asm/pstate.h>
  38. #include <asm/elf.h>
  39. #include <asm/fpumacro.h>
  40. #include <asm/head.h>
  41. #include <asm/cpudata.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/unistd.h>
  44. #include <asm/hypervisor.h>
  45. #include <asm/sstate.h>
  46. #include <asm/reboot.h>
  47. #include <asm/syscalls.h>
  48. #include <asm/irq_regs.h>
  49. #include <asm/smp.h>
  50. static void sparc64_yield(int cpu)
  51. {
  52. if (tlb_type != hypervisor)
  53. return;
  54. clear_thread_flag(TIF_POLLING_NRFLAG);
  55. smp_mb__after_clear_bit();
  56. while (!need_resched() && !cpu_is_offline(cpu)) {
  57. unsigned long pstate;
  58. /* Disable interrupts. */
  59. __asm__ __volatile__(
  60. "rdpr %%pstate, %0\n\t"
  61. "andn %0, %1, %0\n\t"
  62. "wrpr %0, %%g0, %%pstate"
  63. : "=&r" (pstate)
  64. : "i" (PSTATE_IE));
  65. if (!need_resched() && !cpu_is_offline(cpu))
  66. sun4v_cpu_yield();
  67. /* Re-enable interrupts. */
  68. __asm__ __volatile__(
  69. "rdpr %%pstate, %0\n\t"
  70. "or %0, %1, %0\n\t"
  71. "wrpr %0, %%g0, %%pstate"
  72. : "=&r" (pstate)
  73. : "i" (PSTATE_IE));
  74. }
  75. set_thread_flag(TIF_POLLING_NRFLAG);
  76. }
  77. /* The idle loop on sparc64. */
  78. void cpu_idle(void)
  79. {
  80. int cpu = smp_processor_id();
  81. set_thread_flag(TIF_POLLING_NRFLAG);
  82. while(1) {
  83. tick_nohz_stop_sched_tick(1);
  84. while (!need_resched() && !cpu_is_offline(cpu))
  85. sparc64_yield(cpu);
  86. tick_nohz_restart_sched_tick();
  87. preempt_enable_no_resched();
  88. #ifdef CONFIG_HOTPLUG_CPU
  89. if (cpu_is_offline(cpu))
  90. cpu_play_dead();
  91. #endif
  92. schedule();
  93. preempt_disable();
  94. }
  95. }
  96. void machine_halt(void)
  97. {
  98. sstate_halt();
  99. prom_halt();
  100. panic("Halt failed!");
  101. }
  102. void machine_alt_power_off(void)
  103. {
  104. sstate_poweroff();
  105. prom_halt_power_off();
  106. panic("Power-off failed!");
  107. }
  108. void machine_restart(char * cmd)
  109. {
  110. char *p;
  111. sstate_reboot();
  112. p = strchr (reboot_command, '\n');
  113. if (p) *p = 0;
  114. if (cmd)
  115. prom_reboot(cmd);
  116. if (*reboot_command)
  117. prom_reboot(reboot_command);
  118. prom_reboot("");
  119. panic("Reboot failed!");
  120. }
  121. #ifdef CONFIG_COMPAT
  122. static void show_regwindow32(struct pt_regs *regs)
  123. {
  124. struct reg_window32 __user *rw;
  125. struct reg_window32 r_w;
  126. mm_segment_t old_fs;
  127. __asm__ __volatile__ ("flushw");
  128. rw = compat_ptr((unsigned)regs->u_regs[14]);
  129. old_fs = get_fs();
  130. set_fs (USER_DS);
  131. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  132. set_fs (old_fs);
  133. return;
  134. }
  135. set_fs (old_fs);
  136. printk("l0: %08x l1: %08x l2: %08x l3: %08x "
  137. "l4: %08x l5: %08x l6: %08x l7: %08x\n",
  138. r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
  139. r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
  140. printk("i0: %08x i1: %08x i2: %08x i3: %08x "
  141. "i4: %08x i5: %08x i6: %08x i7: %08x\n",
  142. r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
  143. r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
  144. }
  145. #else
  146. #define show_regwindow32(regs) do { } while (0)
  147. #endif
  148. static void show_regwindow(struct pt_regs *regs)
  149. {
  150. struct reg_window __user *rw;
  151. struct reg_window *rwk;
  152. struct reg_window r_w;
  153. mm_segment_t old_fs;
  154. if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
  155. __asm__ __volatile__ ("flushw");
  156. rw = (struct reg_window __user *)
  157. (regs->u_regs[14] + STACK_BIAS);
  158. rwk = (struct reg_window *)
  159. (regs->u_regs[14] + STACK_BIAS);
  160. if (!(regs->tstate & TSTATE_PRIV)) {
  161. old_fs = get_fs();
  162. set_fs (USER_DS);
  163. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  164. set_fs (old_fs);
  165. return;
  166. }
  167. rwk = &r_w;
  168. set_fs (old_fs);
  169. }
  170. } else {
  171. show_regwindow32(regs);
  172. return;
  173. }
  174. printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
  175. rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
  176. printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
  177. rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
  178. printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
  179. rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
  180. printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
  181. rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
  182. if (regs->tstate & TSTATE_PRIV)
  183. printk("I7: <%pS>\n", (void *) rwk->ins[7]);
  184. }
  185. void show_regs(struct pt_regs *regs)
  186. {
  187. printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
  188. regs->tpc, regs->tnpc, regs->y, print_tainted());
  189. printk("TPC: <%pS>\n", (void *) regs->tpc);
  190. printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
  191. regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
  192. regs->u_regs[3]);
  193. printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
  194. regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
  195. regs->u_regs[7]);
  196. printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
  197. regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
  198. regs->u_regs[11]);
  199. printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
  200. regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
  201. regs->u_regs[15]);
  202. printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
  203. show_regwindow(regs);
  204. }
  205. struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
  206. static DEFINE_SPINLOCK(global_reg_snapshot_lock);
  207. static bool kstack_valid(struct thread_info *tp, struct reg_window *rw)
  208. {
  209. unsigned long thread_base, fp;
  210. thread_base = (unsigned long) tp;
  211. fp = (unsigned long) rw;
  212. if (fp < (thread_base + sizeof(struct thread_info)) ||
  213. fp >= (thread_base + THREAD_SIZE))
  214. return false;
  215. return true;
  216. }
  217. static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
  218. int this_cpu)
  219. {
  220. flushw_all();
  221. global_reg_snapshot[this_cpu].tstate = regs->tstate;
  222. global_reg_snapshot[this_cpu].tpc = regs->tpc;
  223. global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
  224. global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
  225. if (regs->tstate & TSTATE_PRIV) {
  226. struct thread_info *tp = current_thread_info();
  227. struct reg_window *rw;
  228. rw = (struct reg_window *)
  229. (regs->u_regs[UREG_FP] + STACK_BIAS);
  230. if (kstack_valid(tp, rw)) {
  231. global_reg_snapshot[this_cpu].i7 = rw->ins[7];
  232. rw = (struct reg_window *)
  233. (rw->ins[6] + STACK_BIAS);
  234. if (kstack_valid(tp, rw))
  235. global_reg_snapshot[this_cpu].rpc = rw->ins[7];
  236. }
  237. } else {
  238. global_reg_snapshot[this_cpu].i7 = 0;
  239. global_reg_snapshot[this_cpu].rpc = 0;
  240. }
  241. global_reg_snapshot[this_cpu].thread = tp;
  242. }
  243. /* In order to avoid hangs we do not try to synchronize with the
  244. * global register dump client cpus. The last store they make is to
  245. * the thread pointer, so do a short poll waiting for that to become
  246. * non-NULL.
  247. */
  248. static void __global_reg_poll(struct global_reg_snapshot *gp)
  249. {
  250. int limit = 0;
  251. while (!gp->thread && ++limit < 100) {
  252. barrier();
  253. udelay(1);
  254. }
  255. }
  256. void __trigger_all_cpu_backtrace(void)
  257. {
  258. struct thread_info *tp = current_thread_info();
  259. struct pt_regs *regs = get_irq_regs();
  260. unsigned long flags;
  261. int this_cpu, cpu;
  262. if (!regs)
  263. regs = tp->kregs;
  264. spin_lock_irqsave(&global_reg_snapshot_lock, flags);
  265. memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
  266. this_cpu = raw_smp_processor_id();
  267. __global_reg_self(tp, regs, this_cpu);
  268. smp_fetch_global_regs();
  269. for_each_online_cpu(cpu) {
  270. struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
  271. struct thread_info *tp;
  272. __global_reg_poll(gp);
  273. tp = gp->thread;
  274. printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
  275. (cpu == this_cpu ? '*' : ' '), cpu,
  276. gp->tstate, gp->tpc, gp->tnpc,
  277. ((tp && tp->task) ? tp->task->comm : "NULL"),
  278. ((tp && tp->task) ? tp->task->pid : -1));
  279. if (gp->tstate & TSTATE_PRIV) {
  280. printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
  281. (void *) gp->tpc,
  282. (void *) gp->o7,
  283. (void *) gp->i7,
  284. (void *) gp->rpc);
  285. } else {
  286. printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
  287. gp->tpc, gp->o7, gp->i7, gp->rpc);
  288. }
  289. }
  290. memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
  291. spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
  292. }
  293. #ifdef CONFIG_MAGIC_SYSRQ
  294. static void sysrq_handle_globreg(int key, struct tty_struct *tty)
  295. {
  296. __trigger_all_cpu_backtrace();
  297. }
  298. static struct sysrq_key_op sparc_globalreg_op = {
  299. .handler = sysrq_handle_globreg,
  300. .help_msg = "Globalregs",
  301. .action_msg = "Show Global CPU Regs",
  302. };
  303. static int __init sparc_globreg_init(void)
  304. {
  305. return register_sysrq_key('y', &sparc_globalreg_op);
  306. }
  307. core_initcall(sparc_globreg_init);
  308. #endif
  309. unsigned long thread_saved_pc(struct task_struct *tsk)
  310. {
  311. struct thread_info *ti = task_thread_info(tsk);
  312. unsigned long ret = 0xdeadbeefUL;
  313. if (ti && ti->ksp) {
  314. unsigned long *sp;
  315. sp = (unsigned long *)(ti->ksp + STACK_BIAS);
  316. if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
  317. sp[14]) {
  318. unsigned long *fp;
  319. fp = (unsigned long *)(sp[14] + STACK_BIAS);
  320. if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
  321. ret = fp[15];
  322. }
  323. }
  324. return ret;
  325. }
  326. /* Free current thread data structures etc.. */
  327. void exit_thread(void)
  328. {
  329. struct thread_info *t = current_thread_info();
  330. if (t->utraps) {
  331. if (t->utraps[0] < 2)
  332. kfree (t->utraps);
  333. else
  334. t->utraps[0]--;
  335. }
  336. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  337. t->user_cntd0 = t->user_cntd1 = NULL;
  338. t->pcr_reg = 0;
  339. write_pcr(0);
  340. }
  341. }
  342. void flush_thread(void)
  343. {
  344. struct thread_info *t = current_thread_info();
  345. struct mm_struct *mm;
  346. if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
  347. clear_ti_thread_flag(t, TIF_ABI_PENDING);
  348. if (test_ti_thread_flag(t, TIF_32BIT))
  349. clear_ti_thread_flag(t, TIF_32BIT);
  350. else
  351. set_ti_thread_flag(t, TIF_32BIT);
  352. }
  353. mm = t->task->mm;
  354. if (mm)
  355. tsb_context_switch(mm);
  356. set_thread_wsaved(0);
  357. /* Turn off performance counters if on. */
  358. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  359. t->user_cntd0 = t->user_cntd1 = NULL;
  360. t->pcr_reg = 0;
  361. write_pcr(0);
  362. }
  363. /* Clear FPU register state. */
  364. t->fpsaved[0] = 0;
  365. if (get_thread_current_ds() != ASI_AIUS)
  366. set_fs(USER_DS);
  367. }
  368. /* It's a bit more tricky when 64-bit tasks are involved... */
  369. static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
  370. {
  371. unsigned long fp, distance, rval;
  372. if (!(test_thread_flag(TIF_32BIT))) {
  373. csp += STACK_BIAS;
  374. psp += STACK_BIAS;
  375. __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
  376. fp += STACK_BIAS;
  377. } else
  378. __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
  379. /* Now 8-byte align the stack as this is mandatory in the
  380. * Sparc ABI due to how register windows work. This hides
  381. * the restriction from thread libraries etc. -DaveM
  382. */
  383. csp &= ~7UL;
  384. distance = fp - psp;
  385. rval = (csp - distance);
  386. if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
  387. rval = 0;
  388. else if (test_thread_flag(TIF_32BIT)) {
  389. if (put_user(((u32)csp),
  390. &(((struct reg_window32 __user *)rval)->ins[6])))
  391. rval = 0;
  392. } else {
  393. if (put_user(((u64)csp - STACK_BIAS),
  394. &(((struct reg_window __user *)rval)->ins[6])))
  395. rval = 0;
  396. else
  397. rval = rval - STACK_BIAS;
  398. }
  399. return rval;
  400. }
  401. /* Standard stuff. */
  402. static inline void shift_window_buffer(int first_win, int last_win,
  403. struct thread_info *t)
  404. {
  405. int i;
  406. for (i = first_win; i < last_win; i++) {
  407. t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
  408. memcpy(&t->reg_window[i], &t->reg_window[i+1],
  409. sizeof(struct reg_window));
  410. }
  411. }
  412. void synchronize_user_stack(void)
  413. {
  414. struct thread_info *t = current_thread_info();
  415. unsigned long window;
  416. flush_user_windows();
  417. if ((window = get_thread_wsaved()) != 0) {
  418. int winsize = sizeof(struct reg_window);
  419. int bias = 0;
  420. if (test_thread_flag(TIF_32BIT))
  421. winsize = sizeof(struct reg_window32);
  422. else
  423. bias = STACK_BIAS;
  424. window -= 1;
  425. do {
  426. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  427. struct reg_window *rwin = &t->reg_window[window];
  428. if (!copy_to_user((char __user *)sp, rwin, winsize)) {
  429. shift_window_buffer(window, get_thread_wsaved() - 1, t);
  430. set_thread_wsaved(get_thread_wsaved() - 1);
  431. }
  432. } while (window--);
  433. }
  434. }
  435. static void stack_unaligned(unsigned long sp)
  436. {
  437. siginfo_t info;
  438. info.si_signo = SIGBUS;
  439. info.si_errno = 0;
  440. info.si_code = BUS_ADRALN;
  441. info.si_addr = (void __user *) sp;
  442. info.si_trapno = 0;
  443. force_sig_info(SIGBUS, &info, current);
  444. }
  445. void fault_in_user_windows(void)
  446. {
  447. struct thread_info *t = current_thread_info();
  448. unsigned long window;
  449. int winsize = sizeof(struct reg_window);
  450. int bias = 0;
  451. if (test_thread_flag(TIF_32BIT))
  452. winsize = sizeof(struct reg_window32);
  453. else
  454. bias = STACK_BIAS;
  455. flush_user_windows();
  456. window = get_thread_wsaved();
  457. if (likely(window != 0)) {
  458. window -= 1;
  459. do {
  460. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  461. struct reg_window *rwin = &t->reg_window[window];
  462. if (unlikely(sp & 0x7UL))
  463. stack_unaligned(sp);
  464. if (unlikely(copy_to_user((char __user *)sp,
  465. rwin, winsize)))
  466. goto barf;
  467. } while (window--);
  468. }
  469. set_thread_wsaved(0);
  470. return;
  471. barf:
  472. set_thread_wsaved(window + 1);
  473. do_exit(SIGILL);
  474. }
  475. asmlinkage long sparc_do_fork(unsigned long clone_flags,
  476. unsigned long stack_start,
  477. struct pt_regs *regs,
  478. unsigned long stack_size)
  479. {
  480. int __user *parent_tid_ptr, *child_tid_ptr;
  481. unsigned long orig_i1 = regs->u_regs[UREG_I1];
  482. long ret;
  483. #ifdef CONFIG_COMPAT
  484. if (test_thread_flag(TIF_32BIT)) {
  485. parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
  486. child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
  487. } else
  488. #endif
  489. {
  490. parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
  491. child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
  492. }
  493. ret = do_fork(clone_flags, stack_start,
  494. regs, stack_size,
  495. parent_tid_ptr, child_tid_ptr);
  496. /* If we get an error and potentially restart the system
  497. * call, we're screwed because copy_thread() clobbered
  498. * the parent's %o1. So detect that case and restore it
  499. * here.
  500. */
  501. if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
  502. regs->u_regs[UREG_I1] = orig_i1;
  503. return ret;
  504. }
  505. /* Copy a Sparc thread. The fork() return value conventions
  506. * under SunOS are nothing short of bletcherous:
  507. * Parent --> %o0 == childs pid, %o1 == 0
  508. * Child --> %o0 == parents pid, %o1 == 1
  509. */
  510. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  511. unsigned long unused,
  512. struct task_struct *p, struct pt_regs *regs)
  513. {
  514. struct thread_info *t = task_thread_info(p);
  515. struct sparc_stackf *parent_sf;
  516. unsigned long child_stack_sz;
  517. char *child_trap_frame;
  518. int kernel_thread;
  519. kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
  520. parent_sf = ((struct sparc_stackf *) regs) - 1;
  521. /* Calculate offset to stack_frame & pt_regs */
  522. child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
  523. (kernel_thread ? STACKFRAME_SZ : 0));
  524. child_trap_frame = (task_stack_page(p) +
  525. (THREAD_SIZE - child_stack_sz));
  526. memcpy(child_trap_frame, parent_sf, child_stack_sz);
  527. t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
  528. (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
  529. (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
  530. t->new_child = 1;
  531. t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
  532. t->kregs = (struct pt_regs *) (child_trap_frame +
  533. sizeof(struct sparc_stackf));
  534. t->fpsaved[0] = 0;
  535. if (kernel_thread) {
  536. struct sparc_stackf *child_sf = (struct sparc_stackf *)
  537. (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
  538. /* Zero terminate the stack backtrace. */
  539. child_sf->fp = NULL;
  540. t->kregs->u_regs[UREG_FP] =
  541. ((unsigned long) child_sf) - STACK_BIAS;
  542. /* Special case, if we are spawning a kernel thread from
  543. * a userspace task (usermode helper, NFS or similar), we
  544. * must disable performance counters in the child because
  545. * the address space and protection realm are changing.
  546. */
  547. if (t->flags & _TIF_PERFCTR) {
  548. t->user_cntd0 = t->user_cntd1 = NULL;
  549. t->pcr_reg = 0;
  550. t->flags &= ~_TIF_PERFCTR;
  551. }
  552. t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
  553. t->kregs->u_regs[UREG_G6] = (unsigned long) t;
  554. t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
  555. } else {
  556. if (t->flags & _TIF_32BIT) {
  557. sp &= 0x00000000ffffffffUL;
  558. regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
  559. }
  560. t->kregs->u_regs[UREG_FP] = sp;
  561. t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
  562. if (sp != regs->u_regs[UREG_FP]) {
  563. unsigned long csp;
  564. csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
  565. if (!csp)
  566. return -EFAULT;
  567. t->kregs->u_regs[UREG_FP] = csp;
  568. }
  569. if (t->utraps)
  570. t->utraps[0]++;
  571. }
  572. /* Set the return value for the child. */
  573. t->kregs->u_regs[UREG_I0] = current->pid;
  574. t->kregs->u_regs[UREG_I1] = 1;
  575. /* Set the second return value for the parent. */
  576. regs->u_regs[UREG_I1] = 0;
  577. if (clone_flags & CLONE_SETTLS)
  578. t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
  579. return 0;
  580. }
  581. /*
  582. * This is the mechanism for creating a new kernel thread.
  583. *
  584. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  585. * who haven't done an "execve()") should use this: it will work within
  586. * a system call from a "real" process, but the process memory space will
  587. * not be freed until both the parent and the child have exited.
  588. */
  589. pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  590. {
  591. long retval;
  592. /* If the parent runs before fn(arg) is called by the child,
  593. * the input registers of this function can be clobbered.
  594. * So we stash 'fn' and 'arg' into global registers which
  595. * will not be modified by the parent.
  596. */
  597. __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
  598. "mov %5, %%g3\n\t" /* Save ARG into global */
  599. "mov %1, %%g1\n\t" /* Clone syscall nr. */
  600. "mov %2, %%o0\n\t" /* Clone flags. */
  601. "mov 0, %%o1\n\t" /* usp arg == 0 */
  602. "t 0x6d\n\t" /* Linux/Sparc clone(). */
  603. "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
  604. " mov %%o0, %0\n\t"
  605. "jmpl %%g2, %%o7\n\t" /* Call the function. */
  606. " mov %%g3, %%o0\n\t" /* Set arg in delay. */
  607. "mov %3, %%g1\n\t"
  608. "t 0x6d\n\t" /* Linux/Sparc exit(). */
  609. /* Notreached by child. */
  610. "1:" :
  611. "=r" (retval) :
  612. "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
  613. "i" (__NR_exit), "r" (fn), "r" (arg) :
  614. "g1", "g2", "g3", "o0", "o1", "memory", "cc");
  615. return retval;
  616. }
  617. typedef struct {
  618. union {
  619. unsigned int pr_regs[32];
  620. unsigned long pr_dregs[16];
  621. } pr_fr;
  622. unsigned int __unused;
  623. unsigned int pr_fsr;
  624. unsigned char pr_qcnt;
  625. unsigned char pr_q_entrysize;
  626. unsigned char pr_en;
  627. unsigned int pr_q[64];
  628. } elf_fpregset_t32;
  629. /*
  630. * fill in the fpu structure for a core dump.
  631. */
  632. int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
  633. {
  634. unsigned long *kfpregs = current_thread_info()->fpregs;
  635. unsigned long fprs = current_thread_info()->fpsaved[0];
  636. if (test_thread_flag(TIF_32BIT)) {
  637. elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
  638. if (fprs & FPRS_DL)
  639. memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
  640. sizeof(unsigned int) * 32);
  641. else
  642. memset(&fpregs32->pr_fr.pr_regs[0], 0,
  643. sizeof(unsigned int) * 32);
  644. fpregs32->pr_qcnt = 0;
  645. fpregs32->pr_q_entrysize = 8;
  646. memset(&fpregs32->pr_q[0], 0,
  647. (sizeof(unsigned int) * 64));
  648. if (fprs & FPRS_FEF) {
  649. fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
  650. fpregs32->pr_en = 1;
  651. } else {
  652. fpregs32->pr_fsr = 0;
  653. fpregs32->pr_en = 0;
  654. }
  655. } else {
  656. if(fprs & FPRS_DL)
  657. memcpy(&fpregs->pr_regs[0], kfpregs,
  658. sizeof(unsigned int) * 32);
  659. else
  660. memset(&fpregs->pr_regs[0], 0,
  661. sizeof(unsigned int) * 32);
  662. if(fprs & FPRS_DU)
  663. memcpy(&fpregs->pr_regs[16], kfpregs+16,
  664. sizeof(unsigned int) * 32);
  665. else
  666. memset(&fpregs->pr_regs[16], 0,
  667. sizeof(unsigned int) * 32);
  668. if(fprs & FPRS_FEF) {
  669. fpregs->pr_fsr = current_thread_info()->xfsr[0];
  670. fpregs->pr_gsr = current_thread_info()->gsr[0];
  671. } else {
  672. fpregs->pr_fsr = fpregs->pr_gsr = 0;
  673. }
  674. fpregs->pr_fprs = fprs;
  675. }
  676. return 1;
  677. }
  678. /*
  679. * sparc_execve() executes a new program after the asm stub has set
  680. * things up for us. This should basically do what I want it to.
  681. */
  682. asmlinkage int sparc_execve(struct pt_regs *regs)
  683. {
  684. int error, base = 0;
  685. char *filename;
  686. /* User register window flush is done by entry.S */
  687. /* Check for indirect call. */
  688. if (regs->u_regs[UREG_G1] == 0)
  689. base = 1;
  690. filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
  691. error = PTR_ERR(filename);
  692. if (IS_ERR(filename))
  693. goto out;
  694. error = do_execve(filename,
  695. (char __user * __user *)
  696. regs->u_regs[base + UREG_I1],
  697. (char __user * __user *)
  698. regs->u_regs[base + UREG_I2], regs);
  699. putname(filename);
  700. if (!error) {
  701. fprs_write(0);
  702. current_thread_info()->xfsr[0] = 0;
  703. current_thread_info()->fpsaved[0] = 0;
  704. regs->tstate &= ~TSTATE_PEF;
  705. }
  706. out:
  707. return error;
  708. }
  709. unsigned long get_wchan(struct task_struct *task)
  710. {
  711. unsigned long pc, fp, bias = 0;
  712. unsigned long thread_info_base;
  713. struct reg_window *rw;
  714. unsigned long ret = 0;
  715. int count = 0;
  716. if (!task || task == current ||
  717. task->state == TASK_RUNNING)
  718. goto out;
  719. thread_info_base = (unsigned long) task_stack_page(task);
  720. bias = STACK_BIAS;
  721. fp = task_thread_info(task)->ksp + bias;
  722. do {
  723. /* Bogus frame pointer? */
  724. if (fp < (thread_info_base + sizeof(struct thread_info)) ||
  725. fp >= (thread_info_base + THREAD_SIZE))
  726. break;
  727. rw = (struct reg_window *) fp;
  728. pc = rw->ins[7];
  729. if (!in_sched_functions(pc)) {
  730. ret = pc;
  731. goto out;
  732. }
  733. fp = rw->ins[6] + bias;
  734. } while (++count < 16);
  735. out:
  736. return ret;
  737. }