init.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/slab.h>
  17. #include "ath9k.h"
  18. static char *dev_info = "ath9k";
  19. MODULE_AUTHOR("Atheros Communications");
  20. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  21. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  22. MODULE_LICENSE("Dual BSD/GPL");
  23. static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
  24. module_param_named(debug, ath9k_debug, uint, 0);
  25. MODULE_PARM_DESC(debug, "Debugging mask");
  26. int modparam_nohwcrypt;
  27. module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
  28. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
  29. int led_blink;
  30. module_param_named(blink, led_blink, int, 0444);
  31. MODULE_PARM_DESC(blink, "Enable LED blink on activity");
  32. static int ath9k_btcoex_enable;
  33. module_param_named(btcoex_enable, ath9k_btcoex_enable, int, 0444);
  34. MODULE_PARM_DESC(btcoex_enable, "Enable wifi-BT coexistence");
  35. /* We use the hw_value as an index into our private channel structure */
  36. #define CHAN2G(_freq, _idx) { \
  37. .center_freq = (_freq), \
  38. .hw_value = (_idx), \
  39. .max_power = 20, \
  40. }
  41. #define CHAN5G(_freq, _idx) { \
  42. .band = IEEE80211_BAND_5GHZ, \
  43. .center_freq = (_freq), \
  44. .hw_value = (_idx), \
  45. .max_power = 20, \
  46. }
  47. /* Some 2 GHz radios are actually tunable on 2312-2732
  48. * on 5 MHz steps, we support the channels which we know
  49. * we have calibration data for all cards though to make
  50. * this static */
  51. static const struct ieee80211_channel ath9k_2ghz_chantable[] = {
  52. CHAN2G(2412, 0), /* Channel 1 */
  53. CHAN2G(2417, 1), /* Channel 2 */
  54. CHAN2G(2422, 2), /* Channel 3 */
  55. CHAN2G(2427, 3), /* Channel 4 */
  56. CHAN2G(2432, 4), /* Channel 5 */
  57. CHAN2G(2437, 5), /* Channel 6 */
  58. CHAN2G(2442, 6), /* Channel 7 */
  59. CHAN2G(2447, 7), /* Channel 8 */
  60. CHAN2G(2452, 8), /* Channel 9 */
  61. CHAN2G(2457, 9), /* Channel 10 */
  62. CHAN2G(2462, 10), /* Channel 11 */
  63. CHAN2G(2467, 11), /* Channel 12 */
  64. CHAN2G(2472, 12), /* Channel 13 */
  65. CHAN2G(2484, 13), /* Channel 14 */
  66. };
  67. /* Some 5 GHz radios are actually tunable on XXXX-YYYY
  68. * on 5 MHz steps, we support the channels which we know
  69. * we have calibration data for all cards though to make
  70. * this static */
  71. static const struct ieee80211_channel ath9k_5ghz_chantable[] = {
  72. /* _We_ call this UNII 1 */
  73. CHAN5G(5180, 14), /* Channel 36 */
  74. CHAN5G(5200, 15), /* Channel 40 */
  75. CHAN5G(5220, 16), /* Channel 44 */
  76. CHAN5G(5240, 17), /* Channel 48 */
  77. /* _We_ call this UNII 2 */
  78. CHAN5G(5260, 18), /* Channel 52 */
  79. CHAN5G(5280, 19), /* Channel 56 */
  80. CHAN5G(5300, 20), /* Channel 60 */
  81. CHAN5G(5320, 21), /* Channel 64 */
  82. /* _We_ call this "Middle band" */
  83. CHAN5G(5500, 22), /* Channel 100 */
  84. CHAN5G(5520, 23), /* Channel 104 */
  85. CHAN5G(5540, 24), /* Channel 108 */
  86. CHAN5G(5560, 25), /* Channel 112 */
  87. CHAN5G(5580, 26), /* Channel 116 */
  88. CHAN5G(5600, 27), /* Channel 120 */
  89. CHAN5G(5620, 28), /* Channel 124 */
  90. CHAN5G(5640, 29), /* Channel 128 */
  91. CHAN5G(5660, 30), /* Channel 132 */
  92. CHAN5G(5680, 31), /* Channel 136 */
  93. CHAN5G(5700, 32), /* Channel 140 */
  94. /* _We_ call this UNII 3 */
  95. CHAN5G(5745, 33), /* Channel 149 */
  96. CHAN5G(5765, 34), /* Channel 153 */
  97. CHAN5G(5785, 35), /* Channel 157 */
  98. CHAN5G(5805, 36), /* Channel 161 */
  99. CHAN5G(5825, 37), /* Channel 165 */
  100. };
  101. /* Atheros hardware rate code addition for short premble */
  102. #define SHPCHECK(__hw_rate, __flags) \
  103. ((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
  104. #define RATE(_bitrate, _hw_rate, _flags) { \
  105. .bitrate = (_bitrate), \
  106. .flags = (_flags), \
  107. .hw_value = (_hw_rate), \
  108. .hw_value_short = (SHPCHECK(_hw_rate, _flags)) \
  109. }
  110. static struct ieee80211_rate ath9k_legacy_rates[] = {
  111. RATE(10, 0x1b, 0),
  112. RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE),
  113. RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE),
  114. RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE),
  115. RATE(60, 0x0b, 0),
  116. RATE(90, 0x0f, 0),
  117. RATE(120, 0x0a, 0),
  118. RATE(180, 0x0e, 0),
  119. RATE(240, 0x09, 0),
  120. RATE(360, 0x0d, 0),
  121. RATE(480, 0x08, 0),
  122. RATE(540, 0x0c, 0),
  123. };
  124. static void ath9k_deinit_softc(struct ath_softc *sc);
  125. /*
  126. * Read and write, they both share the same lock. We do this to serialize
  127. * reads and writes on Atheros 802.11n PCI devices only. This is required
  128. * as the FIFO on these devices can only accept sanely 2 requests.
  129. */
  130. static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
  131. {
  132. struct ath_hw *ah = (struct ath_hw *) hw_priv;
  133. struct ath_common *common = ath9k_hw_common(ah);
  134. struct ath_softc *sc = (struct ath_softc *) common->priv;
  135. if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
  136. unsigned long flags;
  137. spin_lock_irqsave(&sc->sc_serial_rw, flags);
  138. iowrite32(val, sc->mem + reg_offset);
  139. spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
  140. } else
  141. iowrite32(val, sc->mem + reg_offset);
  142. }
  143. static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
  144. {
  145. struct ath_hw *ah = (struct ath_hw *) hw_priv;
  146. struct ath_common *common = ath9k_hw_common(ah);
  147. struct ath_softc *sc = (struct ath_softc *) common->priv;
  148. u32 val;
  149. if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
  150. unsigned long flags;
  151. spin_lock_irqsave(&sc->sc_serial_rw, flags);
  152. val = ioread32(sc->mem + reg_offset);
  153. spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
  154. } else
  155. val = ioread32(sc->mem + reg_offset);
  156. return val;
  157. }
  158. static const struct ath_ops ath9k_common_ops = {
  159. .read = ath9k_ioread32,
  160. .write = ath9k_iowrite32,
  161. };
  162. /**************************/
  163. /* Initialization */
  164. /**************************/
  165. static void setup_ht_cap(struct ath_softc *sc,
  166. struct ieee80211_sta_ht_cap *ht_info)
  167. {
  168. struct ath_hw *ah = sc->sc_ah;
  169. struct ath_common *common = ath9k_hw_common(ah);
  170. u8 tx_streams, rx_streams;
  171. int i, max_streams;
  172. ht_info->ht_supported = true;
  173. ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  174. IEEE80211_HT_CAP_SM_PS |
  175. IEEE80211_HT_CAP_SGI_40 |
  176. IEEE80211_HT_CAP_DSSSCCK40;
  177. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_LDPC)
  178. ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
  179. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
  180. ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
  181. ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
  182. ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
  183. if (AR_SREV_9485(ah))
  184. max_streams = 1;
  185. else if (AR_SREV_9300_20_OR_LATER(ah))
  186. max_streams = 3;
  187. else
  188. max_streams = 2;
  189. if (AR_SREV_9280_20_OR_LATER(ah)) {
  190. if (max_streams >= 2)
  191. ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
  192. ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
  193. }
  194. /* set up supported mcs set */
  195. memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
  196. tx_streams = ath9k_cmn_count_streams(common->tx_chainmask, max_streams);
  197. rx_streams = ath9k_cmn_count_streams(common->rx_chainmask, max_streams);
  198. ath_dbg(common, ATH_DBG_CONFIG,
  199. "TX streams %d, RX streams: %d\n",
  200. tx_streams, rx_streams);
  201. if (tx_streams != rx_streams) {
  202. ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
  203. ht_info->mcs.tx_params |= ((tx_streams - 1) <<
  204. IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
  205. }
  206. for (i = 0; i < rx_streams; i++)
  207. ht_info->mcs.rx_mask[i] = 0xff;
  208. ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
  209. }
  210. static int ath9k_reg_notifier(struct wiphy *wiphy,
  211. struct regulatory_request *request)
  212. {
  213. struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
  214. struct ath_wiphy *aphy = hw->priv;
  215. struct ath_softc *sc = aphy->sc;
  216. struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah);
  217. return ath_reg_notifier_apply(wiphy, request, reg);
  218. }
  219. /*
  220. * This function will allocate both the DMA descriptor structure, and the
  221. * buffers it contains. These are used to contain the descriptors used
  222. * by the system.
  223. */
  224. int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
  225. struct list_head *head, const char *name,
  226. int nbuf, int ndesc, bool is_tx)
  227. {
  228. #define DS2PHYS(_dd, _ds) \
  229. ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
  230. #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
  231. #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
  232. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  233. u8 *ds;
  234. struct ath_buf *bf;
  235. int i, bsize, error, desc_len;
  236. ath_dbg(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
  237. name, nbuf, ndesc);
  238. INIT_LIST_HEAD(head);
  239. if (is_tx)
  240. desc_len = sc->sc_ah->caps.tx_desc_len;
  241. else
  242. desc_len = sizeof(struct ath_desc);
  243. /* ath_desc must be a multiple of DWORDs */
  244. if ((desc_len % 4) != 0) {
  245. ath_err(common, "ath_desc not DWORD aligned\n");
  246. BUG_ON((desc_len % 4) != 0);
  247. error = -ENOMEM;
  248. goto fail;
  249. }
  250. dd->dd_desc_len = desc_len * nbuf * ndesc;
  251. /*
  252. * Need additional DMA memory because we can't use
  253. * descriptors that cross the 4K page boundary. Assume
  254. * one skipped descriptor per 4K page.
  255. */
  256. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  257. u32 ndesc_skipped =
  258. ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
  259. u32 dma_len;
  260. while (ndesc_skipped) {
  261. dma_len = ndesc_skipped * desc_len;
  262. dd->dd_desc_len += dma_len;
  263. ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
  264. }
  265. }
  266. /* allocate descriptors */
  267. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  268. &dd->dd_desc_paddr, GFP_KERNEL);
  269. if (dd->dd_desc == NULL) {
  270. error = -ENOMEM;
  271. goto fail;
  272. }
  273. ds = (u8 *) dd->dd_desc;
  274. ath_dbg(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
  275. name, ds, (u32) dd->dd_desc_len,
  276. ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
  277. /* allocate buffers */
  278. bsize = sizeof(struct ath_buf) * nbuf;
  279. bf = kzalloc(bsize, GFP_KERNEL);
  280. if (bf == NULL) {
  281. error = -ENOMEM;
  282. goto fail2;
  283. }
  284. dd->dd_bufptr = bf;
  285. for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
  286. bf->bf_desc = ds;
  287. bf->bf_daddr = DS2PHYS(dd, ds);
  288. if (!(sc->sc_ah->caps.hw_caps &
  289. ATH9K_HW_CAP_4KB_SPLITTRANS)) {
  290. /*
  291. * Skip descriptor addresses which can cause 4KB
  292. * boundary crossing (addr + length) with a 32 dword
  293. * descriptor fetch.
  294. */
  295. while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
  296. BUG_ON((caddr_t) bf->bf_desc >=
  297. ((caddr_t) dd->dd_desc +
  298. dd->dd_desc_len));
  299. ds += (desc_len * ndesc);
  300. bf->bf_desc = ds;
  301. bf->bf_daddr = DS2PHYS(dd, ds);
  302. }
  303. }
  304. list_add_tail(&bf->list, head);
  305. }
  306. return 0;
  307. fail2:
  308. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  309. dd->dd_desc_paddr);
  310. fail:
  311. memset(dd, 0, sizeof(*dd));
  312. return error;
  313. #undef ATH_DESC_4KB_BOUND_CHECK
  314. #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
  315. #undef DS2PHYS
  316. }
  317. static void ath9k_init_crypto(struct ath_softc *sc)
  318. {
  319. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  320. int i = 0;
  321. /* Get the hardware key cache size. */
  322. common->keymax = sc->sc_ah->caps.keycache_size;
  323. if (common->keymax > ATH_KEYMAX) {
  324. ath_dbg(common, ATH_DBG_ANY,
  325. "Warning, using only %u entries in %u key cache\n",
  326. ATH_KEYMAX, common->keymax);
  327. common->keymax = ATH_KEYMAX;
  328. }
  329. /*
  330. * Reset the key cache since some parts do not
  331. * reset the contents on initial power up.
  332. */
  333. for (i = 0; i < common->keymax; i++)
  334. ath_hw_keyreset(common, (u16) i);
  335. /*
  336. * Check whether the separate key cache entries
  337. * are required to handle both tx+rx MIC keys.
  338. * With split mic keys the number of stations is limited
  339. * to 27 otherwise 59.
  340. */
  341. if (sc->sc_ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA)
  342. common->crypt_caps |= ATH_CRYPT_CAP_MIC_COMBINED;
  343. }
  344. static int ath9k_init_btcoex(struct ath_softc *sc)
  345. {
  346. struct ath_txq *txq;
  347. int r;
  348. switch (sc->sc_ah->btcoex_hw.scheme) {
  349. case ATH_BTCOEX_CFG_NONE:
  350. break;
  351. case ATH_BTCOEX_CFG_2WIRE:
  352. ath9k_hw_btcoex_init_2wire(sc->sc_ah);
  353. break;
  354. case ATH_BTCOEX_CFG_3WIRE:
  355. ath9k_hw_btcoex_init_3wire(sc->sc_ah);
  356. r = ath_init_btcoex_timer(sc);
  357. if (r)
  358. return -1;
  359. txq = sc->tx.txq_map[WME_AC_BE];
  360. ath9k_hw_init_btcoex_hw(sc->sc_ah, txq->axq_qnum);
  361. sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
  362. break;
  363. default:
  364. WARN_ON(1);
  365. break;
  366. }
  367. return 0;
  368. }
  369. static int ath9k_init_queues(struct ath_softc *sc)
  370. {
  371. int i = 0;
  372. sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah);
  373. sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
  374. sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
  375. ath_cabq_update(sc);
  376. for (i = 0; i < WME_NUM_AC; i++)
  377. sc->tx.txq_map[i] = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, i);
  378. return 0;
  379. }
  380. static int ath9k_init_channels_rates(struct ath_softc *sc)
  381. {
  382. void *channels;
  383. BUILD_BUG_ON(ARRAY_SIZE(ath9k_2ghz_chantable) +
  384. ARRAY_SIZE(ath9k_5ghz_chantable) !=
  385. ATH9K_NUM_CHANNELS);
  386. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ) {
  387. channels = kmemdup(ath9k_2ghz_chantable,
  388. sizeof(ath9k_2ghz_chantable), GFP_KERNEL);
  389. if (!channels)
  390. return -ENOMEM;
  391. sc->sbands[IEEE80211_BAND_2GHZ].channels = channels;
  392. sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
  393. sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
  394. ARRAY_SIZE(ath9k_2ghz_chantable);
  395. sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates;
  396. sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates =
  397. ARRAY_SIZE(ath9k_legacy_rates);
  398. }
  399. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ) {
  400. channels = kmemdup(ath9k_5ghz_chantable,
  401. sizeof(ath9k_5ghz_chantable), GFP_KERNEL);
  402. if (!channels) {
  403. if (sc->sbands[IEEE80211_BAND_2GHZ].channels)
  404. kfree(sc->sbands[IEEE80211_BAND_2GHZ].channels);
  405. return -ENOMEM;
  406. }
  407. sc->sbands[IEEE80211_BAND_5GHZ].channels = channels;
  408. sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
  409. sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
  410. ARRAY_SIZE(ath9k_5ghz_chantable);
  411. sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
  412. ath9k_legacy_rates + 4;
  413. sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates =
  414. ARRAY_SIZE(ath9k_legacy_rates) - 4;
  415. }
  416. return 0;
  417. }
  418. static void ath9k_init_misc(struct ath_softc *sc)
  419. {
  420. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  421. int i = 0;
  422. setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
  423. sc->config.txpowlimit = ATH_TXPOWER_MAX;
  424. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  425. sc->sc_flags |= SC_OP_TXAGGR;
  426. sc->sc_flags |= SC_OP_RXAGGR;
  427. }
  428. common->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
  429. common->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
  430. ath9k_hw_set_diversity(sc->sc_ah, true);
  431. sc->rx.defant = ath9k_hw_getdefantenna(sc->sc_ah);
  432. memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
  433. sc->beacon.slottime = ATH9K_SLOT_TIME_9;
  434. for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
  435. sc->beacon.bslot[i] = NULL;
  436. sc->beacon.bslot_aphy[i] = NULL;
  437. }
  438. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
  439. sc->ant_comb.count = ATH_ANT_DIV_COMB_INIT_COUNT;
  440. }
  441. static int ath9k_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid,
  442. const struct ath_bus_ops *bus_ops)
  443. {
  444. struct ath_hw *ah = NULL;
  445. struct ath_common *common;
  446. int ret = 0, i;
  447. int csz = 0;
  448. ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
  449. if (!ah)
  450. return -ENOMEM;
  451. ah->hw_version.devid = devid;
  452. ah->hw_version.subsysid = subsysid;
  453. sc->sc_ah = ah;
  454. if (!sc->dev->platform_data)
  455. ah->ah_flags |= AH_USE_EEPROM;
  456. common = ath9k_hw_common(ah);
  457. common->ops = &ath9k_common_ops;
  458. common->bus_ops = bus_ops;
  459. common->ah = ah;
  460. common->hw = sc->hw;
  461. common->priv = sc;
  462. common->debug_mask = ath9k_debug;
  463. common->btcoex_enabled = ath9k_btcoex_enable == 1;
  464. spin_lock_init(&common->cc_lock);
  465. spin_lock_init(&sc->wiphy_lock);
  466. spin_lock_init(&sc->sc_serial_rw);
  467. spin_lock_init(&sc->sc_pm_lock);
  468. mutex_init(&sc->mutex);
  469. tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
  470. tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
  471. (unsigned long)sc);
  472. /*
  473. * Cache line size is used to size and align various
  474. * structures used to communicate with the hardware.
  475. */
  476. ath_read_cachesize(common, &csz);
  477. common->cachelsz = csz << 2; /* convert to bytes */
  478. /* Initializes the hardware for all supported chipsets */
  479. ret = ath9k_hw_init(ah);
  480. if (ret)
  481. goto err_hw;
  482. ret = ath9k_init_queues(sc);
  483. if (ret)
  484. goto err_queues;
  485. ret = ath9k_init_btcoex(sc);
  486. if (ret)
  487. goto err_btcoex;
  488. ret = ath9k_init_channels_rates(sc);
  489. if (ret)
  490. goto err_btcoex;
  491. ath9k_init_crypto(sc);
  492. ath9k_init_misc(sc);
  493. return 0;
  494. err_btcoex:
  495. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  496. if (ATH_TXQ_SETUP(sc, i))
  497. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  498. err_queues:
  499. ath9k_hw_deinit(ah);
  500. err_hw:
  501. tasklet_kill(&sc->intr_tq);
  502. tasklet_kill(&sc->bcon_tasklet);
  503. kfree(ah);
  504. sc->sc_ah = NULL;
  505. return ret;
  506. }
  507. static void ath9k_init_band_txpower(struct ath_softc *sc, int band)
  508. {
  509. struct ieee80211_supported_band *sband;
  510. struct ieee80211_channel *chan;
  511. struct ath_hw *ah = sc->sc_ah;
  512. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  513. int i;
  514. sband = &sc->sbands[band];
  515. for (i = 0; i < sband->n_channels; i++) {
  516. chan = &sband->channels[i];
  517. ah->curchan = &ah->channels[chan->hw_value];
  518. ath9k_cmn_update_ichannel(ah->curchan, chan, NL80211_CHAN_HT20);
  519. ath9k_hw_set_txpowerlimit(ah, MAX_RATE_POWER, true);
  520. chan->max_power = reg->max_power_level / 2;
  521. }
  522. }
  523. static void ath9k_init_txpower_limits(struct ath_softc *sc)
  524. {
  525. struct ath_hw *ah = sc->sc_ah;
  526. struct ath9k_channel *curchan = ah->curchan;
  527. if (ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
  528. ath9k_init_band_txpower(sc, IEEE80211_BAND_2GHZ);
  529. if (ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
  530. ath9k_init_band_txpower(sc, IEEE80211_BAND_5GHZ);
  531. ah->curchan = curchan;
  532. }
  533. void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
  534. {
  535. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  536. hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
  537. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  538. IEEE80211_HW_SIGNAL_DBM |
  539. IEEE80211_HW_SUPPORTS_PS |
  540. IEEE80211_HW_PS_NULLFUNC_STACK |
  541. IEEE80211_HW_SPECTRUM_MGMT |
  542. IEEE80211_HW_REPORTS_TX_ACK_STATUS |
  543. IEEE80211_HW_NEED_DTIM_PERIOD;
  544. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  545. hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
  546. if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
  547. hw->flags |= IEEE80211_HW_MFP_CAPABLE;
  548. hw->wiphy->interface_modes =
  549. BIT(NL80211_IFTYPE_P2P_GO) |
  550. BIT(NL80211_IFTYPE_P2P_CLIENT) |
  551. BIT(NL80211_IFTYPE_AP) |
  552. BIT(NL80211_IFTYPE_WDS) |
  553. BIT(NL80211_IFTYPE_STATION) |
  554. BIT(NL80211_IFTYPE_ADHOC) |
  555. BIT(NL80211_IFTYPE_MESH_POINT);
  556. if (AR_SREV_5416(sc->sc_ah))
  557. hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
  558. hw->queues = 4;
  559. hw->max_rates = 4;
  560. hw->channel_change_time = 5000;
  561. hw->max_listen_interval = 10;
  562. hw->max_rate_tries = 10;
  563. hw->sta_data_size = sizeof(struct ath_node);
  564. hw->vif_data_size = sizeof(struct ath_vif);
  565. #ifdef CONFIG_ATH9K_RATE_CONTROL
  566. hw->rate_control_algorithm = "ath9k_rate_control";
  567. #endif
  568. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
  569. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  570. &sc->sbands[IEEE80211_BAND_2GHZ];
  571. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
  572. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  573. &sc->sbands[IEEE80211_BAND_5GHZ];
  574. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  575. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
  576. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
  577. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
  578. setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
  579. }
  580. SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
  581. }
  582. int ath9k_init_device(u16 devid, struct ath_softc *sc, u16 subsysid,
  583. const struct ath_bus_ops *bus_ops)
  584. {
  585. struct ieee80211_hw *hw = sc->hw;
  586. struct ath_wiphy *aphy = hw->priv;
  587. struct ath_common *common;
  588. struct ath_hw *ah;
  589. int error = 0;
  590. struct ath_regulatory *reg;
  591. /* Bring up device */
  592. error = ath9k_init_softc(devid, sc, subsysid, bus_ops);
  593. if (error != 0)
  594. goto error_init;
  595. ah = sc->sc_ah;
  596. common = ath9k_hw_common(ah);
  597. ath9k_set_hw_capab(sc, hw);
  598. /* Initialize regulatory */
  599. error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
  600. ath9k_reg_notifier);
  601. if (error)
  602. goto error_regd;
  603. reg = &common->regulatory;
  604. /* Setup TX DMA */
  605. error = ath_tx_init(sc, ATH_TXBUF);
  606. if (error != 0)
  607. goto error_tx;
  608. /* Setup RX DMA */
  609. error = ath_rx_init(sc, ATH_RXBUF);
  610. if (error != 0)
  611. goto error_rx;
  612. ath9k_init_txpower_limits(sc);
  613. /* Register with mac80211 */
  614. error = ieee80211_register_hw(hw);
  615. if (error)
  616. goto error_register;
  617. error = ath9k_init_debug(ah);
  618. if (error) {
  619. ath_err(common, "Unable to create debugfs files\n");
  620. goto error_world;
  621. }
  622. /* Handle world regulatory */
  623. if (!ath_is_world_regd(reg)) {
  624. error = regulatory_hint(hw->wiphy, reg->alpha2);
  625. if (error)
  626. goto error_world;
  627. }
  628. INIT_WORK(&sc->hw_check_work, ath_hw_check);
  629. INIT_WORK(&sc->paprd_work, ath_paprd_calibrate);
  630. INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
  631. INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
  632. sc->wiphy_scheduler_int = msecs_to_jiffies(500);
  633. aphy->last_rssi = ATH_RSSI_DUMMY_MARKER;
  634. ath_init_leds(sc);
  635. ath_start_rfkill_poll(sc);
  636. pm_qos_add_request(&sc->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
  637. PM_QOS_DEFAULT_VALUE);
  638. return 0;
  639. error_world:
  640. ieee80211_unregister_hw(hw);
  641. error_register:
  642. ath_rx_cleanup(sc);
  643. error_rx:
  644. ath_tx_cleanup(sc);
  645. error_tx:
  646. /* Nothing */
  647. error_regd:
  648. ath9k_deinit_softc(sc);
  649. error_init:
  650. return error;
  651. }
  652. /*****************************/
  653. /* De-Initialization */
  654. /*****************************/
  655. static void ath9k_deinit_softc(struct ath_softc *sc)
  656. {
  657. int i = 0;
  658. if (sc->sbands[IEEE80211_BAND_2GHZ].channels)
  659. kfree(sc->sbands[IEEE80211_BAND_2GHZ].channels);
  660. if (sc->sbands[IEEE80211_BAND_5GHZ].channels)
  661. kfree(sc->sbands[IEEE80211_BAND_5GHZ].channels);
  662. if ((sc->btcoex.no_stomp_timer) &&
  663. sc->sc_ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
  664. ath_gen_timer_free(sc->sc_ah, sc->btcoex.no_stomp_timer);
  665. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  666. if (ATH_TXQ_SETUP(sc, i))
  667. ath_tx_cleanupq(sc, &sc->tx.txq[i]);
  668. ath9k_hw_deinit(sc->sc_ah);
  669. tasklet_kill(&sc->intr_tq);
  670. tasklet_kill(&sc->bcon_tasklet);
  671. kfree(sc->sc_ah);
  672. sc->sc_ah = NULL;
  673. }
  674. void ath9k_deinit_device(struct ath_softc *sc)
  675. {
  676. struct ieee80211_hw *hw = sc->hw;
  677. int i = 0;
  678. ath9k_ps_wakeup(sc);
  679. wiphy_rfkill_stop_polling(sc->hw->wiphy);
  680. ath_deinit_leds(sc);
  681. for (i = 0; i < sc->num_sec_wiphy; i++) {
  682. struct ath_wiphy *aphy = sc->sec_wiphy[i];
  683. if (aphy == NULL)
  684. continue;
  685. sc->sec_wiphy[i] = NULL;
  686. ieee80211_unregister_hw(aphy->hw);
  687. ieee80211_free_hw(aphy->hw);
  688. }
  689. ieee80211_unregister_hw(hw);
  690. pm_qos_remove_request(&sc->pm_qos_req);
  691. ath_rx_cleanup(sc);
  692. ath_tx_cleanup(sc);
  693. ath9k_deinit_softc(sc);
  694. kfree(sc->sec_wiphy);
  695. }
  696. void ath_descdma_cleanup(struct ath_softc *sc,
  697. struct ath_descdma *dd,
  698. struct list_head *head)
  699. {
  700. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  701. dd->dd_desc_paddr);
  702. INIT_LIST_HEAD(head);
  703. kfree(dd->dd_bufptr);
  704. memset(dd, 0, sizeof(*dd));
  705. }
  706. /************************/
  707. /* Module Hooks */
  708. /************************/
  709. static int __init ath9k_init(void)
  710. {
  711. int error;
  712. /* Register rate control algorithm */
  713. error = ath_rate_control_register();
  714. if (error != 0) {
  715. printk(KERN_ERR
  716. "ath9k: Unable to register rate control "
  717. "algorithm: %d\n",
  718. error);
  719. goto err_out;
  720. }
  721. error = ath_pci_init();
  722. if (error < 0) {
  723. printk(KERN_ERR
  724. "ath9k: No PCI devices found, driver not installed.\n");
  725. error = -ENODEV;
  726. goto err_rate_unregister;
  727. }
  728. error = ath_ahb_init();
  729. if (error < 0) {
  730. error = -ENODEV;
  731. goto err_pci_exit;
  732. }
  733. return 0;
  734. err_pci_exit:
  735. ath_pci_exit();
  736. err_rate_unregister:
  737. ath_rate_control_unregister();
  738. err_out:
  739. return error;
  740. }
  741. module_init(ath9k_init);
  742. static void __exit ath9k_exit(void)
  743. {
  744. ath_ahb_exit();
  745. ath_pci_exit();
  746. ath_rate_control_unregister();
  747. printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
  748. }
  749. module_exit(ath9k_exit);