xfs_log_recover.c 108 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_error.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_log_priv.h"
  42. #include "xfs_buf_item.h"
  43. #include "xfs_log_recover.h"
  44. #include "xfs_extfree_item.h"
  45. #include "xfs_trans_priv.h"
  46. #include "xfs_quota.h"
  47. #include "xfs_rw.h"
  48. #include "xfs_utils.h"
  49. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  50. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  51. STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
  52. xlog_recover_item_t *item);
  53. #if defined(DEBUG)
  54. STATIC void xlog_recover_check_summary(xlog_t *);
  55. #else
  56. #define xlog_recover_check_summary(log)
  57. #endif
  58. /*
  59. * Sector aligned buffer routines for buffer create/read/write/access
  60. */
  61. #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
  62. ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
  63. ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
  64. #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
  65. xfs_buf_t *
  66. xlog_get_bp(
  67. xlog_t *log,
  68. int nbblks)
  69. {
  70. if (nbblks <= 0 || nbblks > log->l_logBBsize) {
  71. xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
  72. XFS_ERROR_REPORT("xlog_get_bp(1)",
  73. XFS_ERRLEVEL_HIGH, log->l_mp);
  74. return NULL;
  75. }
  76. if (log->l_sectbb_log) {
  77. if (nbblks > 1)
  78. nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  79. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  80. }
  81. return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
  82. }
  83. void
  84. xlog_put_bp(
  85. xfs_buf_t *bp)
  86. {
  87. xfs_buf_free(bp);
  88. }
  89. /*
  90. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  91. */
  92. int
  93. xlog_bread(
  94. xlog_t *log,
  95. xfs_daddr_t blk_no,
  96. int nbblks,
  97. xfs_buf_t *bp)
  98. {
  99. int error;
  100. if (nbblks <= 0 || nbblks > log->l_logBBsize) {
  101. xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
  102. XFS_ERROR_REPORT("xlog_bread(1)",
  103. XFS_ERRLEVEL_HIGH, log->l_mp);
  104. return EFSCORRUPTED;
  105. }
  106. if (log->l_sectbb_log) {
  107. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  108. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  109. }
  110. ASSERT(nbblks > 0);
  111. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  112. ASSERT(bp);
  113. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  114. XFS_BUF_READ(bp);
  115. XFS_BUF_BUSY(bp);
  116. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  117. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  118. xfsbdstrat(log->l_mp, bp);
  119. error = xfs_iowait(bp);
  120. if (error)
  121. xfs_ioerror_alert("xlog_bread", log->l_mp,
  122. bp, XFS_BUF_ADDR(bp));
  123. return error;
  124. }
  125. /*
  126. * Write out the buffer at the given block for the given number of blocks.
  127. * The buffer is kept locked across the write and is returned locked.
  128. * This can only be used for synchronous log writes.
  129. */
  130. STATIC int
  131. xlog_bwrite(
  132. xlog_t *log,
  133. xfs_daddr_t blk_no,
  134. int nbblks,
  135. xfs_buf_t *bp)
  136. {
  137. int error;
  138. if (nbblks <= 0 || nbblks > log->l_logBBsize) {
  139. xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
  140. XFS_ERROR_REPORT("xlog_bwrite(1)",
  141. XFS_ERRLEVEL_HIGH, log->l_mp);
  142. return EFSCORRUPTED;
  143. }
  144. if (log->l_sectbb_log) {
  145. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  146. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  147. }
  148. ASSERT(nbblks > 0);
  149. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  150. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  151. XFS_BUF_ZEROFLAGS(bp);
  152. XFS_BUF_BUSY(bp);
  153. XFS_BUF_HOLD(bp);
  154. XFS_BUF_PSEMA(bp, PRIBIO);
  155. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  156. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  157. if ((error = xfs_bwrite(log->l_mp, bp)))
  158. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  159. bp, XFS_BUF_ADDR(bp));
  160. return error;
  161. }
  162. STATIC xfs_caddr_t
  163. xlog_align(
  164. xlog_t *log,
  165. xfs_daddr_t blk_no,
  166. int nbblks,
  167. xfs_buf_t *bp)
  168. {
  169. xfs_caddr_t ptr;
  170. if (!log->l_sectbb_log)
  171. return XFS_BUF_PTR(bp);
  172. ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
  173. ASSERT(XFS_BUF_SIZE(bp) >=
  174. BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
  175. return ptr;
  176. }
  177. #ifdef DEBUG
  178. /*
  179. * dump debug superblock and log record information
  180. */
  181. STATIC void
  182. xlog_header_check_dump(
  183. xfs_mount_t *mp,
  184. xlog_rec_header_t *head)
  185. {
  186. int b;
  187. cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
  188. for (b = 0; b < 16; b++)
  189. cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
  190. cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
  191. cmn_err(CE_DEBUG, " log : uuid = ");
  192. for (b = 0; b < 16; b++)
  193. cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
  194. cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
  195. }
  196. #else
  197. #define xlog_header_check_dump(mp, head)
  198. #endif
  199. /*
  200. * check log record header for recovery
  201. */
  202. STATIC int
  203. xlog_header_check_recover(
  204. xfs_mount_t *mp,
  205. xlog_rec_header_t *head)
  206. {
  207. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  208. /*
  209. * IRIX doesn't write the h_fmt field and leaves it zeroed
  210. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  211. * a dirty log created in IRIX.
  212. */
  213. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  214. xlog_warn(
  215. "XFS: dirty log written in incompatible format - can't recover");
  216. xlog_header_check_dump(mp, head);
  217. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  218. XFS_ERRLEVEL_HIGH, mp);
  219. return XFS_ERROR(EFSCORRUPTED);
  220. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  221. xlog_warn(
  222. "XFS: dirty log entry has mismatched uuid - can't recover");
  223. xlog_header_check_dump(mp, head);
  224. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  225. XFS_ERRLEVEL_HIGH, mp);
  226. return XFS_ERROR(EFSCORRUPTED);
  227. }
  228. return 0;
  229. }
  230. /*
  231. * read the head block of the log and check the header
  232. */
  233. STATIC int
  234. xlog_header_check_mount(
  235. xfs_mount_t *mp,
  236. xlog_rec_header_t *head)
  237. {
  238. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  239. if (uuid_is_nil(&head->h_fs_uuid)) {
  240. /*
  241. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  242. * h_fs_uuid is nil, we assume this log was last mounted
  243. * by IRIX and continue.
  244. */
  245. xlog_warn("XFS: nil uuid in log - IRIX style log");
  246. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  247. xlog_warn("XFS: log has mismatched uuid - can't recover");
  248. xlog_header_check_dump(mp, head);
  249. XFS_ERROR_REPORT("xlog_header_check_mount",
  250. XFS_ERRLEVEL_HIGH, mp);
  251. return XFS_ERROR(EFSCORRUPTED);
  252. }
  253. return 0;
  254. }
  255. STATIC void
  256. xlog_recover_iodone(
  257. struct xfs_buf *bp)
  258. {
  259. if (XFS_BUF_GETERROR(bp)) {
  260. /*
  261. * We're not going to bother about retrying
  262. * this during recovery. One strike!
  263. */
  264. xfs_ioerror_alert("xlog_recover_iodone",
  265. bp->b_mount, bp, XFS_BUF_ADDR(bp));
  266. xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
  267. }
  268. bp->b_mount = NULL;
  269. XFS_BUF_CLR_IODONE_FUNC(bp);
  270. xfs_biodone(bp);
  271. }
  272. /*
  273. * This routine finds (to an approximation) the first block in the physical
  274. * log which contains the given cycle. It uses a binary search algorithm.
  275. * Note that the algorithm can not be perfect because the disk will not
  276. * necessarily be perfect.
  277. */
  278. STATIC int
  279. xlog_find_cycle_start(
  280. xlog_t *log,
  281. xfs_buf_t *bp,
  282. xfs_daddr_t first_blk,
  283. xfs_daddr_t *last_blk,
  284. uint cycle)
  285. {
  286. xfs_caddr_t offset;
  287. xfs_daddr_t mid_blk;
  288. uint mid_cycle;
  289. int error;
  290. mid_blk = BLK_AVG(first_blk, *last_blk);
  291. while (mid_blk != first_blk && mid_blk != *last_blk) {
  292. if ((error = xlog_bread(log, mid_blk, 1, bp)))
  293. return error;
  294. offset = xlog_align(log, mid_blk, 1, bp);
  295. mid_cycle = xlog_get_cycle(offset);
  296. if (mid_cycle == cycle) {
  297. *last_blk = mid_blk;
  298. /* last_half_cycle == mid_cycle */
  299. } else {
  300. first_blk = mid_blk;
  301. /* first_half_cycle == mid_cycle */
  302. }
  303. mid_blk = BLK_AVG(first_blk, *last_blk);
  304. }
  305. ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
  306. (mid_blk == *last_blk && mid_blk-1 == first_blk));
  307. return 0;
  308. }
  309. /*
  310. * Check that the range of blocks does not contain the cycle number
  311. * given. The scan needs to occur from front to back and the ptr into the
  312. * region must be updated since a later routine will need to perform another
  313. * test. If the region is completely good, we end up returning the same
  314. * last block number.
  315. *
  316. * Set blkno to -1 if we encounter no errors. This is an invalid block number
  317. * since we don't ever expect logs to get this large.
  318. */
  319. STATIC int
  320. xlog_find_verify_cycle(
  321. xlog_t *log,
  322. xfs_daddr_t start_blk,
  323. int nbblks,
  324. uint stop_on_cycle_no,
  325. xfs_daddr_t *new_blk)
  326. {
  327. xfs_daddr_t i, j;
  328. uint cycle;
  329. xfs_buf_t *bp;
  330. xfs_daddr_t bufblks;
  331. xfs_caddr_t buf = NULL;
  332. int error = 0;
  333. bufblks = 1 << ffs(nbblks);
  334. while (!(bp = xlog_get_bp(log, bufblks))) {
  335. /* can't get enough memory to do everything in one big buffer */
  336. bufblks >>= 1;
  337. if (bufblks <= log->l_sectbb_log)
  338. return ENOMEM;
  339. }
  340. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  341. int bcount;
  342. bcount = min(bufblks, (start_blk + nbblks - i));
  343. if ((error = xlog_bread(log, i, bcount, bp)))
  344. goto out;
  345. buf = xlog_align(log, i, bcount, bp);
  346. for (j = 0; j < bcount; j++) {
  347. cycle = xlog_get_cycle(buf);
  348. if (cycle == stop_on_cycle_no) {
  349. *new_blk = i+j;
  350. goto out;
  351. }
  352. buf += BBSIZE;
  353. }
  354. }
  355. *new_blk = -1;
  356. out:
  357. xlog_put_bp(bp);
  358. return error;
  359. }
  360. /*
  361. * Potentially backup over partial log record write.
  362. *
  363. * In the typical case, last_blk is the number of the block directly after
  364. * a good log record. Therefore, we subtract one to get the block number
  365. * of the last block in the given buffer. extra_bblks contains the number
  366. * of blocks we would have read on a previous read. This happens when the
  367. * last log record is split over the end of the physical log.
  368. *
  369. * extra_bblks is the number of blocks potentially verified on a previous
  370. * call to this routine.
  371. */
  372. STATIC int
  373. xlog_find_verify_log_record(
  374. xlog_t *log,
  375. xfs_daddr_t start_blk,
  376. xfs_daddr_t *last_blk,
  377. int extra_bblks)
  378. {
  379. xfs_daddr_t i;
  380. xfs_buf_t *bp;
  381. xfs_caddr_t offset = NULL;
  382. xlog_rec_header_t *head = NULL;
  383. int error = 0;
  384. int smallmem = 0;
  385. int num_blks = *last_blk - start_blk;
  386. int xhdrs;
  387. ASSERT(start_blk != 0 || *last_blk != start_blk);
  388. if (!(bp = xlog_get_bp(log, num_blks))) {
  389. if (!(bp = xlog_get_bp(log, 1)))
  390. return ENOMEM;
  391. smallmem = 1;
  392. } else {
  393. if ((error = xlog_bread(log, start_blk, num_blks, bp)))
  394. goto out;
  395. offset = xlog_align(log, start_blk, num_blks, bp);
  396. offset += ((num_blks - 1) << BBSHIFT);
  397. }
  398. for (i = (*last_blk) - 1; i >= 0; i--) {
  399. if (i < start_blk) {
  400. /* valid log record not found */
  401. xlog_warn(
  402. "XFS: Log inconsistent (didn't find previous header)");
  403. ASSERT(0);
  404. error = XFS_ERROR(EIO);
  405. goto out;
  406. }
  407. if (smallmem) {
  408. if ((error = xlog_bread(log, i, 1, bp)))
  409. goto out;
  410. offset = xlog_align(log, i, 1, bp);
  411. }
  412. head = (xlog_rec_header_t *)offset;
  413. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  414. break;
  415. if (!smallmem)
  416. offset -= BBSIZE;
  417. }
  418. /*
  419. * We hit the beginning of the physical log & still no header. Return
  420. * to caller. If caller can handle a return of -1, then this routine
  421. * will be called again for the end of the physical log.
  422. */
  423. if (i == -1) {
  424. error = -1;
  425. goto out;
  426. }
  427. /*
  428. * We have the final block of the good log (the first block
  429. * of the log record _before_ the head. So we check the uuid.
  430. */
  431. if ((error = xlog_header_check_mount(log->l_mp, head)))
  432. goto out;
  433. /*
  434. * We may have found a log record header before we expected one.
  435. * last_blk will be the 1st block # with a given cycle #. We may end
  436. * up reading an entire log record. In this case, we don't want to
  437. * reset last_blk. Only when last_blk points in the middle of a log
  438. * record do we update last_blk.
  439. */
  440. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  441. uint h_size = be32_to_cpu(head->h_size);
  442. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  443. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  444. xhdrs++;
  445. } else {
  446. xhdrs = 1;
  447. }
  448. if (*last_blk - i + extra_bblks !=
  449. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  450. *last_blk = i;
  451. out:
  452. xlog_put_bp(bp);
  453. return error;
  454. }
  455. /*
  456. * Head is defined to be the point of the log where the next log write
  457. * write could go. This means that incomplete LR writes at the end are
  458. * eliminated when calculating the head. We aren't guaranteed that previous
  459. * LR have complete transactions. We only know that a cycle number of
  460. * current cycle number -1 won't be present in the log if we start writing
  461. * from our current block number.
  462. *
  463. * last_blk contains the block number of the first block with a given
  464. * cycle number.
  465. *
  466. * Return: zero if normal, non-zero if error.
  467. */
  468. STATIC int
  469. xlog_find_head(
  470. xlog_t *log,
  471. xfs_daddr_t *return_head_blk)
  472. {
  473. xfs_buf_t *bp;
  474. xfs_caddr_t offset;
  475. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  476. int num_scan_bblks;
  477. uint first_half_cycle, last_half_cycle;
  478. uint stop_on_cycle;
  479. int error, log_bbnum = log->l_logBBsize;
  480. /* Is the end of the log device zeroed? */
  481. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  482. *return_head_blk = first_blk;
  483. /* Is the whole lot zeroed? */
  484. if (!first_blk) {
  485. /* Linux XFS shouldn't generate totally zeroed logs -
  486. * mkfs etc write a dummy unmount record to a fresh
  487. * log so we can store the uuid in there
  488. */
  489. xlog_warn("XFS: totally zeroed log");
  490. }
  491. return 0;
  492. } else if (error) {
  493. xlog_warn("XFS: empty log check failed");
  494. return error;
  495. }
  496. first_blk = 0; /* get cycle # of 1st block */
  497. bp = xlog_get_bp(log, 1);
  498. if (!bp)
  499. return ENOMEM;
  500. if ((error = xlog_bread(log, 0, 1, bp)))
  501. goto bp_err;
  502. offset = xlog_align(log, 0, 1, bp);
  503. first_half_cycle = xlog_get_cycle(offset);
  504. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  505. if ((error = xlog_bread(log, last_blk, 1, bp)))
  506. goto bp_err;
  507. offset = xlog_align(log, last_blk, 1, bp);
  508. last_half_cycle = xlog_get_cycle(offset);
  509. ASSERT(last_half_cycle != 0);
  510. /*
  511. * If the 1st half cycle number is equal to the last half cycle number,
  512. * then the entire log is stamped with the same cycle number. In this
  513. * case, head_blk can't be set to zero (which makes sense). The below
  514. * math doesn't work out properly with head_blk equal to zero. Instead,
  515. * we set it to log_bbnum which is an invalid block number, but this
  516. * value makes the math correct. If head_blk doesn't changed through
  517. * all the tests below, *head_blk is set to zero at the very end rather
  518. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  519. * in a circular file.
  520. */
  521. if (first_half_cycle == last_half_cycle) {
  522. /*
  523. * In this case we believe that the entire log should have
  524. * cycle number last_half_cycle. We need to scan backwards
  525. * from the end verifying that there are no holes still
  526. * containing last_half_cycle - 1. If we find such a hole,
  527. * then the start of that hole will be the new head. The
  528. * simple case looks like
  529. * x | x ... | x - 1 | x
  530. * Another case that fits this picture would be
  531. * x | x + 1 | x ... | x
  532. * In this case the head really is somewhere at the end of the
  533. * log, as one of the latest writes at the beginning was
  534. * incomplete.
  535. * One more case is
  536. * x | x + 1 | x ... | x - 1 | x
  537. * This is really the combination of the above two cases, and
  538. * the head has to end up at the start of the x-1 hole at the
  539. * end of the log.
  540. *
  541. * In the 256k log case, we will read from the beginning to the
  542. * end of the log and search for cycle numbers equal to x-1.
  543. * We don't worry about the x+1 blocks that we encounter,
  544. * because we know that they cannot be the head since the log
  545. * started with x.
  546. */
  547. head_blk = log_bbnum;
  548. stop_on_cycle = last_half_cycle - 1;
  549. } else {
  550. /*
  551. * In this case we want to find the first block with cycle
  552. * number matching last_half_cycle. We expect the log to be
  553. * some variation on
  554. * x + 1 ... | x ...
  555. * The first block with cycle number x (last_half_cycle) will
  556. * be where the new head belongs. First we do a binary search
  557. * for the first occurrence of last_half_cycle. The binary
  558. * search may not be totally accurate, so then we scan back
  559. * from there looking for occurrences of last_half_cycle before
  560. * us. If that backwards scan wraps around the beginning of
  561. * the log, then we look for occurrences of last_half_cycle - 1
  562. * at the end of the log. The cases we're looking for look
  563. * like
  564. * x + 1 ... | x | x + 1 | x ...
  565. * ^ binary search stopped here
  566. * or
  567. * x + 1 ... | x ... | x - 1 | x
  568. * <---------> less than scan distance
  569. */
  570. stop_on_cycle = last_half_cycle;
  571. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  572. &head_blk, last_half_cycle)))
  573. goto bp_err;
  574. }
  575. /*
  576. * Now validate the answer. Scan back some number of maximum possible
  577. * blocks and make sure each one has the expected cycle number. The
  578. * maximum is determined by the total possible amount of buffering
  579. * in the in-core log. The following number can be made tighter if
  580. * we actually look at the block size of the filesystem.
  581. */
  582. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  583. if (head_blk >= num_scan_bblks) {
  584. /*
  585. * We are guaranteed that the entire check can be performed
  586. * in one buffer.
  587. */
  588. start_blk = head_blk - num_scan_bblks;
  589. if ((error = xlog_find_verify_cycle(log,
  590. start_blk, num_scan_bblks,
  591. stop_on_cycle, &new_blk)))
  592. goto bp_err;
  593. if (new_blk != -1)
  594. head_blk = new_blk;
  595. } else { /* need to read 2 parts of log */
  596. /*
  597. * We are going to scan backwards in the log in two parts.
  598. * First we scan the physical end of the log. In this part
  599. * of the log, we are looking for blocks with cycle number
  600. * last_half_cycle - 1.
  601. * If we find one, then we know that the log starts there, as
  602. * we've found a hole that didn't get written in going around
  603. * the end of the physical log. The simple case for this is
  604. * x + 1 ... | x ... | x - 1 | x
  605. * <---------> less than scan distance
  606. * If all of the blocks at the end of the log have cycle number
  607. * last_half_cycle, then we check the blocks at the start of
  608. * the log looking for occurrences of last_half_cycle. If we
  609. * find one, then our current estimate for the location of the
  610. * first occurrence of last_half_cycle is wrong and we move
  611. * back to the hole we've found. This case looks like
  612. * x + 1 ... | x | x + 1 | x ...
  613. * ^ binary search stopped here
  614. * Another case we need to handle that only occurs in 256k
  615. * logs is
  616. * x + 1 ... | x ... | x+1 | x ...
  617. * ^ binary search stops here
  618. * In a 256k log, the scan at the end of the log will see the
  619. * x + 1 blocks. We need to skip past those since that is
  620. * certainly not the head of the log. By searching for
  621. * last_half_cycle-1 we accomplish that.
  622. */
  623. start_blk = log_bbnum - num_scan_bblks + head_blk;
  624. ASSERT(head_blk <= INT_MAX &&
  625. (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
  626. if ((error = xlog_find_verify_cycle(log, start_blk,
  627. num_scan_bblks - (int)head_blk,
  628. (stop_on_cycle - 1), &new_blk)))
  629. goto bp_err;
  630. if (new_blk != -1) {
  631. head_blk = new_blk;
  632. goto bad_blk;
  633. }
  634. /*
  635. * Scan beginning of log now. The last part of the physical
  636. * log is good. This scan needs to verify that it doesn't find
  637. * the last_half_cycle.
  638. */
  639. start_blk = 0;
  640. ASSERT(head_blk <= INT_MAX);
  641. if ((error = xlog_find_verify_cycle(log,
  642. start_blk, (int)head_blk,
  643. stop_on_cycle, &new_blk)))
  644. goto bp_err;
  645. if (new_blk != -1)
  646. head_blk = new_blk;
  647. }
  648. bad_blk:
  649. /*
  650. * Now we need to make sure head_blk is not pointing to a block in
  651. * the middle of a log record.
  652. */
  653. num_scan_bblks = XLOG_REC_SHIFT(log);
  654. if (head_blk >= num_scan_bblks) {
  655. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  656. /* start ptr at last block ptr before head_blk */
  657. if ((error = xlog_find_verify_log_record(log, start_blk,
  658. &head_blk, 0)) == -1) {
  659. error = XFS_ERROR(EIO);
  660. goto bp_err;
  661. } else if (error)
  662. goto bp_err;
  663. } else {
  664. start_blk = 0;
  665. ASSERT(head_blk <= INT_MAX);
  666. if ((error = xlog_find_verify_log_record(log, start_blk,
  667. &head_blk, 0)) == -1) {
  668. /* We hit the beginning of the log during our search */
  669. start_blk = log_bbnum - num_scan_bblks + head_blk;
  670. new_blk = log_bbnum;
  671. ASSERT(start_blk <= INT_MAX &&
  672. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  673. ASSERT(head_blk <= INT_MAX);
  674. if ((error = xlog_find_verify_log_record(log,
  675. start_blk, &new_blk,
  676. (int)head_blk)) == -1) {
  677. error = XFS_ERROR(EIO);
  678. goto bp_err;
  679. } else if (error)
  680. goto bp_err;
  681. if (new_blk != log_bbnum)
  682. head_blk = new_blk;
  683. } else if (error)
  684. goto bp_err;
  685. }
  686. xlog_put_bp(bp);
  687. if (head_blk == log_bbnum)
  688. *return_head_blk = 0;
  689. else
  690. *return_head_blk = head_blk;
  691. /*
  692. * When returning here, we have a good block number. Bad block
  693. * means that during a previous crash, we didn't have a clean break
  694. * from cycle number N to cycle number N-1. In this case, we need
  695. * to find the first block with cycle number N-1.
  696. */
  697. return 0;
  698. bp_err:
  699. xlog_put_bp(bp);
  700. if (error)
  701. xlog_warn("XFS: failed to find log head");
  702. return error;
  703. }
  704. /*
  705. * Find the sync block number or the tail of the log.
  706. *
  707. * This will be the block number of the last record to have its
  708. * associated buffers synced to disk. Every log record header has
  709. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  710. * to get a sync block number. The only concern is to figure out which
  711. * log record header to believe.
  712. *
  713. * The following algorithm uses the log record header with the largest
  714. * lsn. The entire log record does not need to be valid. We only care
  715. * that the header is valid.
  716. *
  717. * We could speed up search by using current head_blk buffer, but it is not
  718. * available.
  719. */
  720. int
  721. xlog_find_tail(
  722. xlog_t *log,
  723. xfs_daddr_t *head_blk,
  724. xfs_daddr_t *tail_blk)
  725. {
  726. xlog_rec_header_t *rhead;
  727. xlog_op_header_t *op_head;
  728. xfs_caddr_t offset = NULL;
  729. xfs_buf_t *bp;
  730. int error, i, found;
  731. xfs_daddr_t umount_data_blk;
  732. xfs_daddr_t after_umount_blk;
  733. xfs_lsn_t tail_lsn;
  734. int hblks;
  735. found = 0;
  736. /*
  737. * Find previous log record
  738. */
  739. if ((error = xlog_find_head(log, head_blk)))
  740. return error;
  741. bp = xlog_get_bp(log, 1);
  742. if (!bp)
  743. return ENOMEM;
  744. if (*head_blk == 0) { /* special case */
  745. if ((error = xlog_bread(log, 0, 1, bp)))
  746. goto bread_err;
  747. offset = xlog_align(log, 0, 1, bp);
  748. if (xlog_get_cycle(offset) == 0) {
  749. *tail_blk = 0;
  750. /* leave all other log inited values alone */
  751. goto exit;
  752. }
  753. }
  754. /*
  755. * Search backwards looking for log record header block
  756. */
  757. ASSERT(*head_blk < INT_MAX);
  758. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  759. if ((error = xlog_bread(log, i, 1, bp)))
  760. goto bread_err;
  761. offset = xlog_align(log, i, 1, bp);
  762. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  763. found = 1;
  764. break;
  765. }
  766. }
  767. /*
  768. * If we haven't found the log record header block, start looking
  769. * again from the end of the physical log. XXXmiken: There should be
  770. * a check here to make sure we didn't search more than N blocks in
  771. * the previous code.
  772. */
  773. if (!found) {
  774. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  775. if ((error = xlog_bread(log, i, 1, bp)))
  776. goto bread_err;
  777. offset = xlog_align(log, i, 1, bp);
  778. if (XLOG_HEADER_MAGIC_NUM ==
  779. be32_to_cpu(*(__be32 *)offset)) {
  780. found = 2;
  781. break;
  782. }
  783. }
  784. }
  785. if (!found) {
  786. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  787. ASSERT(0);
  788. return XFS_ERROR(EIO);
  789. }
  790. /* find blk_no of tail of log */
  791. rhead = (xlog_rec_header_t *)offset;
  792. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  793. /*
  794. * Reset log values according to the state of the log when we
  795. * crashed. In the case where head_blk == 0, we bump curr_cycle
  796. * one because the next write starts a new cycle rather than
  797. * continuing the cycle of the last good log record. At this
  798. * point we have guaranteed that all partial log records have been
  799. * accounted for. Therefore, we know that the last good log record
  800. * written was complete and ended exactly on the end boundary
  801. * of the physical log.
  802. */
  803. log->l_prev_block = i;
  804. log->l_curr_block = (int)*head_blk;
  805. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  806. if (found == 2)
  807. log->l_curr_cycle++;
  808. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  809. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  810. log->l_grant_reserve_cycle = log->l_curr_cycle;
  811. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  812. log->l_grant_write_cycle = log->l_curr_cycle;
  813. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  814. /*
  815. * Look for unmount record. If we find it, then we know there
  816. * was a clean unmount. Since 'i' could be the last block in
  817. * the physical log, we convert to a log block before comparing
  818. * to the head_blk.
  819. *
  820. * Save the current tail lsn to use to pass to
  821. * xlog_clear_stale_blocks() below. We won't want to clear the
  822. * unmount record if there is one, so we pass the lsn of the
  823. * unmount record rather than the block after it.
  824. */
  825. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  826. int h_size = be32_to_cpu(rhead->h_size);
  827. int h_version = be32_to_cpu(rhead->h_version);
  828. if ((h_version & XLOG_VERSION_2) &&
  829. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  830. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  831. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  832. hblks++;
  833. } else {
  834. hblks = 1;
  835. }
  836. } else {
  837. hblks = 1;
  838. }
  839. after_umount_blk = (i + hblks + (int)
  840. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  841. tail_lsn = log->l_tail_lsn;
  842. if (*head_blk == after_umount_blk &&
  843. be32_to_cpu(rhead->h_num_logops) == 1) {
  844. umount_data_blk = (i + hblks) % log->l_logBBsize;
  845. if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
  846. goto bread_err;
  847. }
  848. offset = xlog_align(log, umount_data_blk, 1, bp);
  849. op_head = (xlog_op_header_t *)offset;
  850. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  851. /*
  852. * Set tail and last sync so that newly written
  853. * log records will point recovery to after the
  854. * current unmount record.
  855. */
  856. log->l_tail_lsn =
  857. xlog_assign_lsn(log->l_curr_cycle,
  858. after_umount_blk);
  859. log->l_last_sync_lsn =
  860. xlog_assign_lsn(log->l_curr_cycle,
  861. after_umount_blk);
  862. *tail_blk = after_umount_blk;
  863. /*
  864. * Note that the unmount was clean. If the unmount
  865. * was not clean, we need to know this to rebuild the
  866. * superblock counters from the perag headers if we
  867. * have a filesystem using non-persistent counters.
  868. */
  869. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  870. }
  871. }
  872. /*
  873. * Make sure that there are no blocks in front of the head
  874. * with the same cycle number as the head. This can happen
  875. * because we allow multiple outstanding log writes concurrently,
  876. * and the later writes might make it out before earlier ones.
  877. *
  878. * We use the lsn from before modifying it so that we'll never
  879. * overwrite the unmount record after a clean unmount.
  880. *
  881. * Do this only if we are going to recover the filesystem
  882. *
  883. * NOTE: This used to say "if (!readonly)"
  884. * However on Linux, we can & do recover a read-only filesystem.
  885. * We only skip recovery if NORECOVERY is specified on mount,
  886. * in which case we would not be here.
  887. *
  888. * But... if the -device- itself is readonly, just skip this.
  889. * We can't recover this device anyway, so it won't matter.
  890. */
  891. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
  892. error = xlog_clear_stale_blocks(log, tail_lsn);
  893. }
  894. bread_err:
  895. exit:
  896. xlog_put_bp(bp);
  897. if (error)
  898. xlog_warn("XFS: failed to locate log tail");
  899. return error;
  900. }
  901. /*
  902. * Is the log zeroed at all?
  903. *
  904. * The last binary search should be changed to perform an X block read
  905. * once X becomes small enough. You can then search linearly through
  906. * the X blocks. This will cut down on the number of reads we need to do.
  907. *
  908. * If the log is partially zeroed, this routine will pass back the blkno
  909. * of the first block with cycle number 0. It won't have a complete LR
  910. * preceding it.
  911. *
  912. * Return:
  913. * 0 => the log is completely written to
  914. * -1 => use *blk_no as the first block of the log
  915. * >0 => error has occurred
  916. */
  917. STATIC int
  918. xlog_find_zeroed(
  919. xlog_t *log,
  920. xfs_daddr_t *blk_no)
  921. {
  922. xfs_buf_t *bp;
  923. xfs_caddr_t offset;
  924. uint first_cycle, last_cycle;
  925. xfs_daddr_t new_blk, last_blk, start_blk;
  926. xfs_daddr_t num_scan_bblks;
  927. int error, log_bbnum = log->l_logBBsize;
  928. *blk_no = 0;
  929. /* check totally zeroed log */
  930. bp = xlog_get_bp(log, 1);
  931. if (!bp)
  932. return ENOMEM;
  933. if ((error = xlog_bread(log, 0, 1, bp)))
  934. goto bp_err;
  935. offset = xlog_align(log, 0, 1, bp);
  936. first_cycle = xlog_get_cycle(offset);
  937. if (first_cycle == 0) { /* completely zeroed log */
  938. *blk_no = 0;
  939. xlog_put_bp(bp);
  940. return -1;
  941. }
  942. /* check partially zeroed log */
  943. if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
  944. goto bp_err;
  945. offset = xlog_align(log, log_bbnum-1, 1, bp);
  946. last_cycle = xlog_get_cycle(offset);
  947. if (last_cycle != 0) { /* log completely written to */
  948. xlog_put_bp(bp);
  949. return 0;
  950. } else if (first_cycle != 1) {
  951. /*
  952. * If the cycle of the last block is zero, the cycle of
  953. * the first block must be 1. If it's not, maybe we're
  954. * not looking at a log... Bail out.
  955. */
  956. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  957. return XFS_ERROR(EINVAL);
  958. }
  959. /* we have a partially zeroed log */
  960. last_blk = log_bbnum-1;
  961. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  962. goto bp_err;
  963. /*
  964. * Validate the answer. Because there is no way to guarantee that
  965. * the entire log is made up of log records which are the same size,
  966. * we scan over the defined maximum blocks. At this point, the maximum
  967. * is not chosen to mean anything special. XXXmiken
  968. */
  969. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  970. ASSERT(num_scan_bblks <= INT_MAX);
  971. if (last_blk < num_scan_bblks)
  972. num_scan_bblks = last_blk;
  973. start_blk = last_blk - num_scan_bblks;
  974. /*
  975. * We search for any instances of cycle number 0 that occur before
  976. * our current estimate of the head. What we're trying to detect is
  977. * 1 ... | 0 | 1 | 0...
  978. * ^ binary search ends here
  979. */
  980. if ((error = xlog_find_verify_cycle(log, start_blk,
  981. (int)num_scan_bblks, 0, &new_blk)))
  982. goto bp_err;
  983. if (new_blk != -1)
  984. last_blk = new_blk;
  985. /*
  986. * Potentially backup over partial log record write. We don't need
  987. * to search the end of the log because we know it is zero.
  988. */
  989. if ((error = xlog_find_verify_log_record(log, start_blk,
  990. &last_blk, 0)) == -1) {
  991. error = XFS_ERROR(EIO);
  992. goto bp_err;
  993. } else if (error)
  994. goto bp_err;
  995. *blk_no = last_blk;
  996. bp_err:
  997. xlog_put_bp(bp);
  998. if (error)
  999. return error;
  1000. return -1;
  1001. }
  1002. /*
  1003. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1004. * to initialize a buffer full of empty log record headers and write
  1005. * them into the log.
  1006. */
  1007. STATIC void
  1008. xlog_add_record(
  1009. xlog_t *log,
  1010. xfs_caddr_t buf,
  1011. int cycle,
  1012. int block,
  1013. int tail_cycle,
  1014. int tail_block)
  1015. {
  1016. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1017. memset(buf, 0, BBSIZE);
  1018. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1019. recp->h_cycle = cpu_to_be32(cycle);
  1020. recp->h_version = cpu_to_be32(
  1021. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1022. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1023. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1024. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1025. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1026. }
  1027. STATIC int
  1028. xlog_write_log_records(
  1029. xlog_t *log,
  1030. int cycle,
  1031. int start_block,
  1032. int blocks,
  1033. int tail_cycle,
  1034. int tail_block)
  1035. {
  1036. xfs_caddr_t offset;
  1037. xfs_buf_t *bp;
  1038. int balign, ealign;
  1039. int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  1040. int end_block = start_block + blocks;
  1041. int bufblks;
  1042. int error = 0;
  1043. int i, j = 0;
  1044. bufblks = 1 << ffs(blocks);
  1045. while (!(bp = xlog_get_bp(log, bufblks))) {
  1046. bufblks >>= 1;
  1047. if (bufblks <= log->l_sectbb_log)
  1048. return ENOMEM;
  1049. }
  1050. /* We may need to do a read at the start to fill in part of
  1051. * the buffer in the starting sector not covered by the first
  1052. * write below.
  1053. */
  1054. balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
  1055. if (balign != start_block) {
  1056. if ((error = xlog_bread(log, start_block, 1, bp))) {
  1057. xlog_put_bp(bp);
  1058. return error;
  1059. }
  1060. j = start_block - balign;
  1061. }
  1062. for (i = start_block; i < end_block; i += bufblks) {
  1063. int bcount, endcount;
  1064. bcount = min(bufblks, end_block - start_block);
  1065. endcount = bcount - j;
  1066. /* We may need to do a read at the end to fill in part of
  1067. * the buffer in the final sector not covered by the write.
  1068. * If this is the same sector as the above read, skip it.
  1069. */
  1070. ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
  1071. if (j == 0 && (start_block + endcount > ealign)) {
  1072. offset = XFS_BUF_PTR(bp);
  1073. balign = BBTOB(ealign - start_block);
  1074. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1075. BBTOB(sectbb));
  1076. if (!error)
  1077. error = xlog_bread(log, ealign, sectbb, bp);
  1078. if (!error)
  1079. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1080. if (error)
  1081. break;
  1082. }
  1083. offset = xlog_align(log, start_block, endcount, bp);
  1084. for (; j < endcount; j++) {
  1085. xlog_add_record(log, offset, cycle, i+j,
  1086. tail_cycle, tail_block);
  1087. offset += BBSIZE;
  1088. }
  1089. error = xlog_bwrite(log, start_block, endcount, bp);
  1090. if (error)
  1091. break;
  1092. start_block += endcount;
  1093. j = 0;
  1094. }
  1095. xlog_put_bp(bp);
  1096. return error;
  1097. }
  1098. /*
  1099. * This routine is called to blow away any incomplete log writes out
  1100. * in front of the log head. We do this so that we won't become confused
  1101. * if we come up, write only a little bit more, and then crash again.
  1102. * If we leave the partial log records out there, this situation could
  1103. * cause us to think those partial writes are valid blocks since they
  1104. * have the current cycle number. We get rid of them by overwriting them
  1105. * with empty log records with the old cycle number rather than the
  1106. * current one.
  1107. *
  1108. * The tail lsn is passed in rather than taken from
  1109. * the log so that we will not write over the unmount record after a
  1110. * clean unmount in a 512 block log. Doing so would leave the log without
  1111. * any valid log records in it until a new one was written. If we crashed
  1112. * during that time we would not be able to recover.
  1113. */
  1114. STATIC int
  1115. xlog_clear_stale_blocks(
  1116. xlog_t *log,
  1117. xfs_lsn_t tail_lsn)
  1118. {
  1119. int tail_cycle, head_cycle;
  1120. int tail_block, head_block;
  1121. int tail_distance, max_distance;
  1122. int distance;
  1123. int error;
  1124. tail_cycle = CYCLE_LSN(tail_lsn);
  1125. tail_block = BLOCK_LSN(tail_lsn);
  1126. head_cycle = log->l_curr_cycle;
  1127. head_block = log->l_curr_block;
  1128. /*
  1129. * Figure out the distance between the new head of the log
  1130. * and the tail. We want to write over any blocks beyond the
  1131. * head that we may have written just before the crash, but
  1132. * we don't want to overwrite the tail of the log.
  1133. */
  1134. if (head_cycle == tail_cycle) {
  1135. /*
  1136. * The tail is behind the head in the physical log,
  1137. * so the distance from the head to the tail is the
  1138. * distance from the head to the end of the log plus
  1139. * the distance from the beginning of the log to the
  1140. * tail.
  1141. */
  1142. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1143. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1144. XFS_ERRLEVEL_LOW, log->l_mp);
  1145. return XFS_ERROR(EFSCORRUPTED);
  1146. }
  1147. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1148. } else {
  1149. /*
  1150. * The head is behind the tail in the physical log,
  1151. * so the distance from the head to the tail is just
  1152. * the tail block minus the head block.
  1153. */
  1154. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1155. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1156. XFS_ERRLEVEL_LOW, log->l_mp);
  1157. return XFS_ERROR(EFSCORRUPTED);
  1158. }
  1159. tail_distance = tail_block - head_block;
  1160. }
  1161. /*
  1162. * If the head is right up against the tail, we can't clear
  1163. * anything.
  1164. */
  1165. if (tail_distance <= 0) {
  1166. ASSERT(tail_distance == 0);
  1167. return 0;
  1168. }
  1169. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1170. /*
  1171. * Take the smaller of the maximum amount of outstanding I/O
  1172. * we could have and the distance to the tail to clear out.
  1173. * We take the smaller so that we don't overwrite the tail and
  1174. * we don't waste all day writing from the head to the tail
  1175. * for no reason.
  1176. */
  1177. max_distance = MIN(max_distance, tail_distance);
  1178. if ((head_block + max_distance) <= log->l_logBBsize) {
  1179. /*
  1180. * We can stomp all the blocks we need to without
  1181. * wrapping around the end of the log. Just do it
  1182. * in a single write. Use the cycle number of the
  1183. * current cycle minus one so that the log will look like:
  1184. * n ... | n - 1 ...
  1185. */
  1186. error = xlog_write_log_records(log, (head_cycle - 1),
  1187. head_block, max_distance, tail_cycle,
  1188. tail_block);
  1189. if (error)
  1190. return error;
  1191. } else {
  1192. /*
  1193. * We need to wrap around the end of the physical log in
  1194. * order to clear all the blocks. Do it in two separate
  1195. * I/Os. The first write should be from the head to the
  1196. * end of the physical log, and it should use the current
  1197. * cycle number minus one just like above.
  1198. */
  1199. distance = log->l_logBBsize - head_block;
  1200. error = xlog_write_log_records(log, (head_cycle - 1),
  1201. head_block, distance, tail_cycle,
  1202. tail_block);
  1203. if (error)
  1204. return error;
  1205. /*
  1206. * Now write the blocks at the start of the physical log.
  1207. * This writes the remainder of the blocks we want to clear.
  1208. * It uses the current cycle number since we're now on the
  1209. * same cycle as the head so that we get:
  1210. * n ... n ... | n - 1 ...
  1211. * ^^^^^ blocks we're writing
  1212. */
  1213. distance = max_distance - (log->l_logBBsize - head_block);
  1214. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1215. tail_cycle, tail_block);
  1216. if (error)
  1217. return error;
  1218. }
  1219. return 0;
  1220. }
  1221. /******************************************************************************
  1222. *
  1223. * Log recover routines
  1224. *
  1225. ******************************************************************************
  1226. */
  1227. STATIC xlog_recover_t *
  1228. xlog_recover_find_tid(
  1229. xlog_recover_t *q,
  1230. xlog_tid_t tid)
  1231. {
  1232. xlog_recover_t *p = q;
  1233. while (p != NULL) {
  1234. if (p->r_log_tid == tid)
  1235. break;
  1236. p = p->r_next;
  1237. }
  1238. return p;
  1239. }
  1240. STATIC void
  1241. xlog_recover_put_hashq(
  1242. xlog_recover_t **q,
  1243. xlog_recover_t *trans)
  1244. {
  1245. trans->r_next = *q;
  1246. *q = trans;
  1247. }
  1248. STATIC void
  1249. xlog_recover_add_item(
  1250. xlog_recover_item_t **itemq)
  1251. {
  1252. xlog_recover_item_t *item;
  1253. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1254. xlog_recover_insert_item_backq(itemq, item);
  1255. }
  1256. STATIC int
  1257. xlog_recover_add_to_cont_trans(
  1258. xlog_recover_t *trans,
  1259. xfs_caddr_t dp,
  1260. int len)
  1261. {
  1262. xlog_recover_item_t *item;
  1263. xfs_caddr_t ptr, old_ptr;
  1264. int old_len;
  1265. item = trans->r_itemq;
  1266. if (item == NULL) {
  1267. /* finish copying rest of trans header */
  1268. xlog_recover_add_item(&trans->r_itemq);
  1269. ptr = (xfs_caddr_t) &trans->r_theader +
  1270. sizeof(xfs_trans_header_t) - len;
  1271. memcpy(ptr, dp, len); /* d, s, l */
  1272. return 0;
  1273. }
  1274. item = item->ri_prev;
  1275. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1276. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1277. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1278. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1279. item->ri_buf[item->ri_cnt-1].i_len += len;
  1280. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1281. return 0;
  1282. }
  1283. /*
  1284. * The next region to add is the start of a new region. It could be
  1285. * a whole region or it could be the first part of a new region. Because
  1286. * of this, the assumption here is that the type and size fields of all
  1287. * format structures fit into the first 32 bits of the structure.
  1288. *
  1289. * This works because all regions must be 32 bit aligned. Therefore, we
  1290. * either have both fields or we have neither field. In the case we have
  1291. * neither field, the data part of the region is zero length. We only have
  1292. * a log_op_header and can throw away the header since a new one will appear
  1293. * later. If we have at least 4 bytes, then we can determine how many regions
  1294. * will appear in the current log item.
  1295. */
  1296. STATIC int
  1297. xlog_recover_add_to_trans(
  1298. xlog_recover_t *trans,
  1299. xfs_caddr_t dp,
  1300. int len)
  1301. {
  1302. xfs_inode_log_format_t *in_f; /* any will do */
  1303. xlog_recover_item_t *item;
  1304. xfs_caddr_t ptr;
  1305. if (!len)
  1306. return 0;
  1307. item = trans->r_itemq;
  1308. if (item == NULL) {
  1309. /* we need to catch log corruptions here */
  1310. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1311. xlog_warn("XFS: xlog_recover_add_to_trans: "
  1312. "bad header magic number");
  1313. ASSERT(0);
  1314. return XFS_ERROR(EIO);
  1315. }
  1316. if (len == sizeof(xfs_trans_header_t))
  1317. xlog_recover_add_item(&trans->r_itemq);
  1318. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1319. return 0;
  1320. }
  1321. ptr = kmem_alloc(len, KM_SLEEP);
  1322. memcpy(ptr, dp, len);
  1323. in_f = (xfs_inode_log_format_t *)ptr;
  1324. if (item->ri_prev->ri_total != 0 &&
  1325. item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
  1326. xlog_recover_add_item(&trans->r_itemq);
  1327. }
  1328. item = trans->r_itemq;
  1329. item = item->ri_prev;
  1330. if (item->ri_total == 0) { /* first region to be added */
  1331. item->ri_total = in_f->ilf_size;
  1332. ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
  1333. item->ri_buf = kmem_zalloc((item->ri_total *
  1334. sizeof(xfs_log_iovec_t)), KM_SLEEP);
  1335. }
  1336. ASSERT(item->ri_total > item->ri_cnt);
  1337. /* Description region is ri_buf[0] */
  1338. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1339. item->ri_buf[item->ri_cnt].i_len = len;
  1340. item->ri_cnt++;
  1341. return 0;
  1342. }
  1343. STATIC void
  1344. xlog_recover_new_tid(
  1345. xlog_recover_t **q,
  1346. xlog_tid_t tid,
  1347. xfs_lsn_t lsn)
  1348. {
  1349. xlog_recover_t *trans;
  1350. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1351. trans->r_log_tid = tid;
  1352. trans->r_lsn = lsn;
  1353. xlog_recover_put_hashq(q, trans);
  1354. }
  1355. STATIC int
  1356. xlog_recover_unlink_tid(
  1357. xlog_recover_t **q,
  1358. xlog_recover_t *trans)
  1359. {
  1360. xlog_recover_t *tp;
  1361. int found = 0;
  1362. ASSERT(trans != NULL);
  1363. if (trans == *q) {
  1364. *q = (*q)->r_next;
  1365. } else {
  1366. tp = *q;
  1367. while (tp) {
  1368. if (tp->r_next == trans) {
  1369. found = 1;
  1370. break;
  1371. }
  1372. tp = tp->r_next;
  1373. }
  1374. if (!found) {
  1375. xlog_warn(
  1376. "XFS: xlog_recover_unlink_tid: trans not found");
  1377. ASSERT(0);
  1378. return XFS_ERROR(EIO);
  1379. }
  1380. tp->r_next = tp->r_next->r_next;
  1381. }
  1382. return 0;
  1383. }
  1384. STATIC void
  1385. xlog_recover_insert_item_backq(
  1386. xlog_recover_item_t **q,
  1387. xlog_recover_item_t *item)
  1388. {
  1389. if (*q == NULL) {
  1390. item->ri_prev = item->ri_next = item;
  1391. *q = item;
  1392. } else {
  1393. item->ri_next = *q;
  1394. item->ri_prev = (*q)->ri_prev;
  1395. (*q)->ri_prev = item;
  1396. item->ri_prev->ri_next = item;
  1397. }
  1398. }
  1399. STATIC void
  1400. xlog_recover_insert_item_frontq(
  1401. xlog_recover_item_t **q,
  1402. xlog_recover_item_t *item)
  1403. {
  1404. xlog_recover_insert_item_backq(q, item);
  1405. *q = item;
  1406. }
  1407. STATIC int
  1408. xlog_recover_reorder_trans(
  1409. xlog_recover_t *trans)
  1410. {
  1411. xlog_recover_item_t *first_item, *itemq, *itemq_next;
  1412. xfs_buf_log_format_t *buf_f;
  1413. ushort flags = 0;
  1414. first_item = itemq = trans->r_itemq;
  1415. trans->r_itemq = NULL;
  1416. do {
  1417. itemq_next = itemq->ri_next;
  1418. buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
  1419. switch (ITEM_TYPE(itemq)) {
  1420. case XFS_LI_BUF:
  1421. flags = buf_f->blf_flags;
  1422. if (!(flags & XFS_BLI_CANCEL)) {
  1423. xlog_recover_insert_item_frontq(&trans->r_itemq,
  1424. itemq);
  1425. break;
  1426. }
  1427. case XFS_LI_INODE:
  1428. case XFS_LI_DQUOT:
  1429. case XFS_LI_QUOTAOFF:
  1430. case XFS_LI_EFD:
  1431. case XFS_LI_EFI:
  1432. xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
  1433. break;
  1434. default:
  1435. xlog_warn(
  1436. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1437. ASSERT(0);
  1438. return XFS_ERROR(EIO);
  1439. }
  1440. itemq = itemq_next;
  1441. } while (first_item != itemq);
  1442. return 0;
  1443. }
  1444. /*
  1445. * Build up the table of buf cancel records so that we don't replay
  1446. * cancelled data in the second pass. For buffer records that are
  1447. * not cancel records, there is nothing to do here so we just return.
  1448. *
  1449. * If we get a cancel record which is already in the table, this indicates
  1450. * that the buffer was cancelled multiple times. In order to ensure
  1451. * that during pass 2 we keep the record in the table until we reach its
  1452. * last occurrence in the log, we keep a reference count in the cancel
  1453. * record in the table to tell us how many times we expect to see this
  1454. * record during the second pass.
  1455. */
  1456. STATIC void
  1457. xlog_recover_do_buffer_pass1(
  1458. xlog_t *log,
  1459. xfs_buf_log_format_t *buf_f)
  1460. {
  1461. xfs_buf_cancel_t *bcp;
  1462. xfs_buf_cancel_t *nextp;
  1463. xfs_buf_cancel_t *prevp;
  1464. xfs_buf_cancel_t **bucket;
  1465. xfs_daddr_t blkno = 0;
  1466. uint len = 0;
  1467. ushort flags = 0;
  1468. switch (buf_f->blf_type) {
  1469. case XFS_LI_BUF:
  1470. blkno = buf_f->blf_blkno;
  1471. len = buf_f->blf_len;
  1472. flags = buf_f->blf_flags;
  1473. break;
  1474. }
  1475. /*
  1476. * If this isn't a cancel buffer item, then just return.
  1477. */
  1478. if (!(flags & XFS_BLI_CANCEL))
  1479. return;
  1480. /*
  1481. * Insert an xfs_buf_cancel record into the hash table of
  1482. * them. If there is already an identical record, bump
  1483. * its reference count.
  1484. */
  1485. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1486. XLOG_BC_TABLE_SIZE];
  1487. /*
  1488. * If the hash bucket is empty then just insert a new record into
  1489. * the bucket.
  1490. */
  1491. if (*bucket == NULL) {
  1492. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1493. KM_SLEEP);
  1494. bcp->bc_blkno = blkno;
  1495. bcp->bc_len = len;
  1496. bcp->bc_refcount = 1;
  1497. bcp->bc_next = NULL;
  1498. *bucket = bcp;
  1499. return;
  1500. }
  1501. /*
  1502. * The hash bucket is not empty, so search for duplicates of our
  1503. * record. If we find one them just bump its refcount. If not
  1504. * then add us at the end of the list.
  1505. */
  1506. prevp = NULL;
  1507. nextp = *bucket;
  1508. while (nextp != NULL) {
  1509. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1510. nextp->bc_refcount++;
  1511. return;
  1512. }
  1513. prevp = nextp;
  1514. nextp = nextp->bc_next;
  1515. }
  1516. ASSERT(prevp != NULL);
  1517. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1518. KM_SLEEP);
  1519. bcp->bc_blkno = blkno;
  1520. bcp->bc_len = len;
  1521. bcp->bc_refcount = 1;
  1522. bcp->bc_next = NULL;
  1523. prevp->bc_next = bcp;
  1524. }
  1525. /*
  1526. * Check to see whether the buffer being recovered has a corresponding
  1527. * entry in the buffer cancel record table. If it does then return 1
  1528. * so that it will be cancelled, otherwise return 0. If the buffer is
  1529. * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
  1530. * the refcount on the entry in the table and remove it from the table
  1531. * if this is the last reference.
  1532. *
  1533. * We remove the cancel record from the table when we encounter its
  1534. * last occurrence in the log so that if the same buffer is re-used
  1535. * again after its last cancellation we actually replay the changes
  1536. * made at that point.
  1537. */
  1538. STATIC int
  1539. xlog_check_buffer_cancelled(
  1540. xlog_t *log,
  1541. xfs_daddr_t blkno,
  1542. uint len,
  1543. ushort flags)
  1544. {
  1545. xfs_buf_cancel_t *bcp;
  1546. xfs_buf_cancel_t *prevp;
  1547. xfs_buf_cancel_t **bucket;
  1548. if (log->l_buf_cancel_table == NULL) {
  1549. /*
  1550. * There is nothing in the table built in pass one,
  1551. * so this buffer must not be cancelled.
  1552. */
  1553. ASSERT(!(flags & XFS_BLI_CANCEL));
  1554. return 0;
  1555. }
  1556. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1557. XLOG_BC_TABLE_SIZE];
  1558. bcp = *bucket;
  1559. if (bcp == NULL) {
  1560. /*
  1561. * There is no corresponding entry in the table built
  1562. * in pass one, so this buffer has not been cancelled.
  1563. */
  1564. ASSERT(!(flags & XFS_BLI_CANCEL));
  1565. return 0;
  1566. }
  1567. /*
  1568. * Search for an entry in the buffer cancel table that
  1569. * matches our buffer.
  1570. */
  1571. prevp = NULL;
  1572. while (bcp != NULL) {
  1573. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1574. /*
  1575. * We've go a match, so return 1 so that the
  1576. * recovery of this buffer is cancelled.
  1577. * If this buffer is actually a buffer cancel
  1578. * log item, then decrement the refcount on the
  1579. * one in the table and remove it if this is the
  1580. * last reference.
  1581. */
  1582. if (flags & XFS_BLI_CANCEL) {
  1583. bcp->bc_refcount--;
  1584. if (bcp->bc_refcount == 0) {
  1585. if (prevp == NULL) {
  1586. *bucket = bcp->bc_next;
  1587. } else {
  1588. prevp->bc_next = bcp->bc_next;
  1589. }
  1590. kmem_free(bcp);
  1591. }
  1592. }
  1593. return 1;
  1594. }
  1595. prevp = bcp;
  1596. bcp = bcp->bc_next;
  1597. }
  1598. /*
  1599. * We didn't find a corresponding entry in the table, so
  1600. * return 0 so that the buffer is NOT cancelled.
  1601. */
  1602. ASSERT(!(flags & XFS_BLI_CANCEL));
  1603. return 0;
  1604. }
  1605. STATIC int
  1606. xlog_recover_do_buffer_pass2(
  1607. xlog_t *log,
  1608. xfs_buf_log_format_t *buf_f)
  1609. {
  1610. xfs_daddr_t blkno = 0;
  1611. ushort flags = 0;
  1612. uint len = 0;
  1613. switch (buf_f->blf_type) {
  1614. case XFS_LI_BUF:
  1615. blkno = buf_f->blf_blkno;
  1616. flags = buf_f->blf_flags;
  1617. len = buf_f->blf_len;
  1618. break;
  1619. }
  1620. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1621. }
  1622. /*
  1623. * Perform recovery for a buffer full of inodes. In these buffers,
  1624. * the only data which should be recovered is that which corresponds
  1625. * to the di_next_unlinked pointers in the on disk inode structures.
  1626. * The rest of the data for the inodes is always logged through the
  1627. * inodes themselves rather than the inode buffer and is recovered
  1628. * in xlog_recover_do_inode_trans().
  1629. *
  1630. * The only time when buffers full of inodes are fully recovered is
  1631. * when the buffer is full of newly allocated inodes. In this case
  1632. * the buffer will not be marked as an inode buffer and so will be
  1633. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1634. */
  1635. STATIC int
  1636. xlog_recover_do_inode_buffer(
  1637. xfs_mount_t *mp,
  1638. xlog_recover_item_t *item,
  1639. xfs_buf_t *bp,
  1640. xfs_buf_log_format_t *buf_f)
  1641. {
  1642. int i;
  1643. int item_index;
  1644. int bit;
  1645. int nbits;
  1646. int reg_buf_offset;
  1647. int reg_buf_bytes;
  1648. int next_unlinked_offset;
  1649. int inodes_per_buf;
  1650. xfs_agino_t *logged_nextp;
  1651. xfs_agino_t *buffer_nextp;
  1652. unsigned int *data_map = NULL;
  1653. unsigned int map_size = 0;
  1654. switch (buf_f->blf_type) {
  1655. case XFS_LI_BUF:
  1656. data_map = buf_f->blf_data_map;
  1657. map_size = buf_f->blf_map_size;
  1658. break;
  1659. }
  1660. /*
  1661. * Set the variables corresponding to the current region to
  1662. * 0 so that we'll initialize them on the first pass through
  1663. * the loop.
  1664. */
  1665. reg_buf_offset = 0;
  1666. reg_buf_bytes = 0;
  1667. bit = 0;
  1668. nbits = 0;
  1669. item_index = 0;
  1670. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1671. for (i = 0; i < inodes_per_buf; i++) {
  1672. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1673. offsetof(xfs_dinode_t, di_next_unlinked);
  1674. while (next_unlinked_offset >=
  1675. (reg_buf_offset + reg_buf_bytes)) {
  1676. /*
  1677. * The next di_next_unlinked field is beyond
  1678. * the current logged region. Find the next
  1679. * logged region that contains or is beyond
  1680. * the current di_next_unlinked field.
  1681. */
  1682. bit += nbits;
  1683. bit = xfs_next_bit(data_map, map_size, bit);
  1684. /*
  1685. * If there are no more logged regions in the
  1686. * buffer, then we're done.
  1687. */
  1688. if (bit == -1) {
  1689. return 0;
  1690. }
  1691. nbits = xfs_contig_bits(data_map, map_size,
  1692. bit);
  1693. ASSERT(nbits > 0);
  1694. reg_buf_offset = bit << XFS_BLI_SHIFT;
  1695. reg_buf_bytes = nbits << XFS_BLI_SHIFT;
  1696. item_index++;
  1697. }
  1698. /*
  1699. * If the current logged region starts after the current
  1700. * di_next_unlinked field, then move on to the next
  1701. * di_next_unlinked field.
  1702. */
  1703. if (next_unlinked_offset < reg_buf_offset) {
  1704. continue;
  1705. }
  1706. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1707. ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
  1708. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1709. /*
  1710. * The current logged region contains a copy of the
  1711. * current di_next_unlinked field. Extract its value
  1712. * and copy it to the buffer copy.
  1713. */
  1714. logged_nextp = (xfs_agino_t *)
  1715. ((char *)(item->ri_buf[item_index].i_addr) +
  1716. (next_unlinked_offset - reg_buf_offset));
  1717. if (unlikely(*logged_nextp == 0)) {
  1718. xfs_fs_cmn_err(CE_ALERT, mp,
  1719. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1720. item, bp);
  1721. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1722. XFS_ERRLEVEL_LOW, mp);
  1723. return XFS_ERROR(EFSCORRUPTED);
  1724. }
  1725. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1726. next_unlinked_offset);
  1727. *buffer_nextp = *logged_nextp;
  1728. }
  1729. return 0;
  1730. }
  1731. /*
  1732. * Perform a 'normal' buffer recovery. Each logged region of the
  1733. * buffer should be copied over the corresponding region in the
  1734. * given buffer. The bitmap in the buf log format structure indicates
  1735. * where to place the logged data.
  1736. */
  1737. /*ARGSUSED*/
  1738. STATIC void
  1739. xlog_recover_do_reg_buffer(
  1740. xlog_recover_item_t *item,
  1741. xfs_buf_t *bp,
  1742. xfs_buf_log_format_t *buf_f)
  1743. {
  1744. int i;
  1745. int bit;
  1746. int nbits;
  1747. unsigned int *data_map = NULL;
  1748. unsigned int map_size = 0;
  1749. int error;
  1750. switch (buf_f->blf_type) {
  1751. case XFS_LI_BUF:
  1752. data_map = buf_f->blf_data_map;
  1753. map_size = buf_f->blf_map_size;
  1754. break;
  1755. }
  1756. bit = 0;
  1757. i = 1; /* 0 is the buf format structure */
  1758. while (1) {
  1759. bit = xfs_next_bit(data_map, map_size, bit);
  1760. if (bit == -1)
  1761. break;
  1762. nbits = xfs_contig_bits(data_map, map_size, bit);
  1763. ASSERT(nbits > 0);
  1764. ASSERT(item->ri_buf[i].i_addr != NULL);
  1765. ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
  1766. ASSERT(XFS_BUF_COUNT(bp) >=
  1767. ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
  1768. /*
  1769. * Do a sanity check if this is a dquot buffer. Just checking
  1770. * the first dquot in the buffer should do. XXXThis is
  1771. * probably a good thing to do for other buf types also.
  1772. */
  1773. error = 0;
  1774. if (buf_f->blf_flags &
  1775. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  1776. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1777. item->ri_buf[i].i_addr,
  1778. -1, 0, XFS_QMOPT_DOWARN,
  1779. "dquot_buf_recover");
  1780. }
  1781. if (!error)
  1782. memcpy(xfs_buf_offset(bp,
  1783. (uint)bit << XFS_BLI_SHIFT), /* dest */
  1784. item->ri_buf[i].i_addr, /* source */
  1785. nbits<<XFS_BLI_SHIFT); /* length */
  1786. i++;
  1787. bit += nbits;
  1788. }
  1789. /* Shouldn't be any more regions */
  1790. ASSERT(i == item->ri_total);
  1791. }
  1792. /*
  1793. * Do some primitive error checking on ondisk dquot data structures.
  1794. */
  1795. int
  1796. xfs_qm_dqcheck(
  1797. xfs_disk_dquot_t *ddq,
  1798. xfs_dqid_t id,
  1799. uint type, /* used only when IO_dorepair is true */
  1800. uint flags,
  1801. char *str)
  1802. {
  1803. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1804. int errs = 0;
  1805. /*
  1806. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1807. * 1. If we crash while deleting the quotainode(s), and those blks got
  1808. * used for user data. This is because we take the path of regular
  1809. * file deletion; however, the size field of quotainodes is never
  1810. * updated, so all the tricks that we play in itruncate_finish
  1811. * don't quite matter.
  1812. *
  1813. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1814. * But the allocation will be replayed so we'll end up with an
  1815. * uninitialized quota block.
  1816. *
  1817. * This is all fine; things are still consistent, and we haven't lost
  1818. * any quota information. Just don't complain about bad dquot blks.
  1819. */
  1820. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1821. if (flags & XFS_QMOPT_DOWARN)
  1822. cmn_err(CE_ALERT,
  1823. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1824. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1825. errs++;
  1826. }
  1827. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1828. if (flags & XFS_QMOPT_DOWARN)
  1829. cmn_err(CE_ALERT,
  1830. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1831. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1832. errs++;
  1833. }
  1834. if (ddq->d_flags != XFS_DQ_USER &&
  1835. ddq->d_flags != XFS_DQ_PROJ &&
  1836. ddq->d_flags != XFS_DQ_GROUP) {
  1837. if (flags & XFS_QMOPT_DOWARN)
  1838. cmn_err(CE_ALERT,
  1839. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1840. str, id, ddq->d_flags);
  1841. errs++;
  1842. }
  1843. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1844. if (flags & XFS_QMOPT_DOWARN)
  1845. cmn_err(CE_ALERT,
  1846. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1847. "0x%x expected, found id 0x%x",
  1848. str, ddq, id, be32_to_cpu(ddq->d_id));
  1849. errs++;
  1850. }
  1851. if (!errs && ddq->d_id) {
  1852. if (ddq->d_blk_softlimit &&
  1853. be64_to_cpu(ddq->d_bcount) >=
  1854. be64_to_cpu(ddq->d_blk_softlimit)) {
  1855. if (!ddq->d_btimer) {
  1856. if (flags & XFS_QMOPT_DOWARN)
  1857. cmn_err(CE_ALERT,
  1858. "%s : Dquot ID 0x%x (0x%p) "
  1859. "BLK TIMER NOT STARTED",
  1860. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1861. errs++;
  1862. }
  1863. }
  1864. if (ddq->d_ino_softlimit &&
  1865. be64_to_cpu(ddq->d_icount) >=
  1866. be64_to_cpu(ddq->d_ino_softlimit)) {
  1867. if (!ddq->d_itimer) {
  1868. if (flags & XFS_QMOPT_DOWARN)
  1869. cmn_err(CE_ALERT,
  1870. "%s : Dquot ID 0x%x (0x%p) "
  1871. "INODE TIMER NOT STARTED",
  1872. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1873. errs++;
  1874. }
  1875. }
  1876. if (ddq->d_rtb_softlimit &&
  1877. be64_to_cpu(ddq->d_rtbcount) >=
  1878. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1879. if (!ddq->d_rtbtimer) {
  1880. if (flags & XFS_QMOPT_DOWARN)
  1881. cmn_err(CE_ALERT,
  1882. "%s : Dquot ID 0x%x (0x%p) "
  1883. "RTBLK TIMER NOT STARTED",
  1884. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1885. errs++;
  1886. }
  1887. }
  1888. }
  1889. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1890. return errs;
  1891. if (flags & XFS_QMOPT_DOWARN)
  1892. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1893. /*
  1894. * Typically, a repair is only requested by quotacheck.
  1895. */
  1896. ASSERT(id != -1);
  1897. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1898. memset(d, 0, sizeof(xfs_dqblk_t));
  1899. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1900. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1901. d->dd_diskdq.d_flags = type;
  1902. d->dd_diskdq.d_id = cpu_to_be32(id);
  1903. return errs;
  1904. }
  1905. /*
  1906. * Perform a dquot buffer recovery.
  1907. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1908. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1909. * Else, treat it as a regular buffer and do recovery.
  1910. */
  1911. STATIC void
  1912. xlog_recover_do_dquot_buffer(
  1913. xfs_mount_t *mp,
  1914. xlog_t *log,
  1915. xlog_recover_item_t *item,
  1916. xfs_buf_t *bp,
  1917. xfs_buf_log_format_t *buf_f)
  1918. {
  1919. uint type;
  1920. /*
  1921. * Filesystems are required to send in quota flags at mount time.
  1922. */
  1923. if (mp->m_qflags == 0) {
  1924. return;
  1925. }
  1926. type = 0;
  1927. if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
  1928. type |= XFS_DQ_USER;
  1929. if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
  1930. type |= XFS_DQ_PROJ;
  1931. if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
  1932. type |= XFS_DQ_GROUP;
  1933. /*
  1934. * This type of quotas was turned off, so ignore this buffer
  1935. */
  1936. if (log->l_quotaoffs_flag & type)
  1937. return;
  1938. xlog_recover_do_reg_buffer(item, bp, buf_f);
  1939. }
  1940. /*
  1941. * This routine replays a modification made to a buffer at runtime.
  1942. * There are actually two types of buffer, regular and inode, which
  1943. * are handled differently. Inode buffers are handled differently
  1944. * in that we only recover a specific set of data from them, namely
  1945. * the inode di_next_unlinked fields. This is because all other inode
  1946. * data is actually logged via inode records and any data we replay
  1947. * here which overlaps that may be stale.
  1948. *
  1949. * When meta-data buffers are freed at run time we log a buffer item
  1950. * with the XFS_BLI_CANCEL bit set to indicate that previous copies
  1951. * of the buffer in the log should not be replayed at recovery time.
  1952. * This is so that if the blocks covered by the buffer are reused for
  1953. * file data before we crash we don't end up replaying old, freed
  1954. * meta-data into a user's file.
  1955. *
  1956. * To handle the cancellation of buffer log items, we make two passes
  1957. * over the log during recovery. During the first we build a table of
  1958. * those buffers which have been cancelled, and during the second we
  1959. * only replay those buffers which do not have corresponding cancel
  1960. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1961. * for more details on the implementation of the table of cancel records.
  1962. */
  1963. STATIC int
  1964. xlog_recover_do_buffer_trans(
  1965. xlog_t *log,
  1966. xlog_recover_item_t *item,
  1967. int pass)
  1968. {
  1969. xfs_buf_log_format_t *buf_f;
  1970. xfs_mount_t *mp;
  1971. xfs_buf_t *bp;
  1972. int error;
  1973. int cancel;
  1974. xfs_daddr_t blkno;
  1975. int len;
  1976. ushort flags;
  1977. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  1978. if (pass == XLOG_RECOVER_PASS1) {
  1979. /*
  1980. * In this pass we're only looking for buf items
  1981. * with the XFS_BLI_CANCEL bit set.
  1982. */
  1983. xlog_recover_do_buffer_pass1(log, buf_f);
  1984. return 0;
  1985. } else {
  1986. /*
  1987. * In this pass we want to recover all the buffers
  1988. * which have not been cancelled and are not
  1989. * cancellation buffers themselves. The routine
  1990. * we call here will tell us whether or not to
  1991. * continue with the replay of this buffer.
  1992. */
  1993. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  1994. if (cancel) {
  1995. return 0;
  1996. }
  1997. }
  1998. switch (buf_f->blf_type) {
  1999. case XFS_LI_BUF:
  2000. blkno = buf_f->blf_blkno;
  2001. len = buf_f->blf_len;
  2002. flags = buf_f->blf_flags;
  2003. break;
  2004. default:
  2005. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  2006. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  2007. buf_f->blf_type, log->l_mp->m_logname ?
  2008. log->l_mp->m_logname : "internal");
  2009. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  2010. XFS_ERRLEVEL_LOW, log->l_mp);
  2011. return XFS_ERROR(EFSCORRUPTED);
  2012. }
  2013. mp = log->l_mp;
  2014. if (flags & XFS_BLI_INODE_BUF) {
  2015. bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
  2016. XFS_BUF_LOCK);
  2017. } else {
  2018. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
  2019. }
  2020. if (XFS_BUF_ISERROR(bp)) {
  2021. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  2022. bp, blkno);
  2023. error = XFS_BUF_GETERROR(bp);
  2024. xfs_buf_relse(bp);
  2025. return error;
  2026. }
  2027. error = 0;
  2028. if (flags & XFS_BLI_INODE_BUF) {
  2029. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2030. } else if (flags &
  2031. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  2032. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2033. } else {
  2034. xlog_recover_do_reg_buffer(item, bp, buf_f);
  2035. }
  2036. if (error)
  2037. return XFS_ERROR(error);
  2038. /*
  2039. * Perform delayed write on the buffer. Asynchronous writes will be
  2040. * slower when taking into account all the buffers to be flushed.
  2041. *
  2042. * Also make sure that only inode buffers with good sizes stay in
  2043. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2044. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2045. * buffers in the log can be a different size if the log was generated
  2046. * by an older kernel using unclustered inode buffers or a newer kernel
  2047. * running with a different inode cluster size. Regardless, if the
  2048. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2049. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2050. * the buffer out of the buffer cache so that the buffer won't
  2051. * overlap with future reads of those inodes.
  2052. */
  2053. if (XFS_DINODE_MAGIC ==
  2054. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2055. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2056. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2057. XFS_BUF_STALE(bp);
  2058. error = xfs_bwrite(mp, bp);
  2059. } else {
  2060. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2061. bp->b_mount = mp;
  2062. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2063. xfs_bdwrite(mp, bp);
  2064. }
  2065. return (error);
  2066. }
  2067. STATIC int
  2068. xlog_recover_do_inode_trans(
  2069. xlog_t *log,
  2070. xlog_recover_item_t *item,
  2071. int pass)
  2072. {
  2073. xfs_inode_log_format_t *in_f;
  2074. xfs_mount_t *mp;
  2075. xfs_buf_t *bp;
  2076. xfs_dinode_t *dip;
  2077. xfs_ino_t ino;
  2078. int len;
  2079. xfs_caddr_t src;
  2080. xfs_caddr_t dest;
  2081. int error;
  2082. int attr_index;
  2083. uint fields;
  2084. xfs_icdinode_t *dicp;
  2085. int need_free = 0;
  2086. if (pass == XLOG_RECOVER_PASS1) {
  2087. return 0;
  2088. }
  2089. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2090. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2091. } else {
  2092. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2093. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2094. need_free = 1;
  2095. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2096. if (error)
  2097. goto error;
  2098. }
  2099. ino = in_f->ilf_ino;
  2100. mp = log->l_mp;
  2101. /*
  2102. * Inode buffers can be freed, look out for it,
  2103. * and do not replay the inode.
  2104. */
  2105. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2106. in_f->ilf_len, 0)) {
  2107. error = 0;
  2108. goto error;
  2109. }
  2110. bp = xfs_buf_read_flags(mp->m_ddev_targp, in_f->ilf_blkno,
  2111. in_f->ilf_len, XFS_BUF_LOCK);
  2112. if (XFS_BUF_ISERROR(bp)) {
  2113. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2114. bp, in_f->ilf_blkno);
  2115. error = XFS_BUF_GETERROR(bp);
  2116. xfs_buf_relse(bp);
  2117. goto error;
  2118. }
  2119. error = 0;
  2120. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2121. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2122. /*
  2123. * Make sure the place we're flushing out to really looks
  2124. * like an inode!
  2125. */
  2126. if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
  2127. xfs_buf_relse(bp);
  2128. xfs_fs_cmn_err(CE_ALERT, mp,
  2129. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2130. dip, bp, ino);
  2131. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2132. XFS_ERRLEVEL_LOW, mp);
  2133. error = EFSCORRUPTED;
  2134. goto error;
  2135. }
  2136. dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
  2137. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2138. xfs_buf_relse(bp);
  2139. xfs_fs_cmn_err(CE_ALERT, mp,
  2140. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2141. item, ino);
  2142. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2143. XFS_ERRLEVEL_LOW, mp);
  2144. error = EFSCORRUPTED;
  2145. goto error;
  2146. }
  2147. /* Skip replay when the on disk inode is newer than the log one */
  2148. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2149. /*
  2150. * Deal with the wrap case, DI_MAX_FLUSH is less
  2151. * than smaller numbers
  2152. */
  2153. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2154. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2155. /* do nothing */
  2156. } else {
  2157. xfs_buf_relse(bp);
  2158. error = 0;
  2159. goto error;
  2160. }
  2161. }
  2162. /* Take the opportunity to reset the flush iteration count */
  2163. dicp->di_flushiter = 0;
  2164. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2165. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2166. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2167. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2168. XFS_ERRLEVEL_LOW, mp, dicp);
  2169. xfs_buf_relse(bp);
  2170. xfs_fs_cmn_err(CE_ALERT, mp,
  2171. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2172. item, dip, bp, ino);
  2173. error = EFSCORRUPTED;
  2174. goto error;
  2175. }
  2176. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2177. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2178. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2179. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2180. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2181. XFS_ERRLEVEL_LOW, mp, dicp);
  2182. xfs_buf_relse(bp);
  2183. xfs_fs_cmn_err(CE_ALERT, mp,
  2184. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2185. item, dip, bp, ino);
  2186. error = EFSCORRUPTED;
  2187. goto error;
  2188. }
  2189. }
  2190. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2191. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2192. XFS_ERRLEVEL_LOW, mp, dicp);
  2193. xfs_buf_relse(bp);
  2194. xfs_fs_cmn_err(CE_ALERT, mp,
  2195. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2196. item, dip, bp, ino,
  2197. dicp->di_nextents + dicp->di_anextents,
  2198. dicp->di_nblocks);
  2199. error = EFSCORRUPTED;
  2200. goto error;
  2201. }
  2202. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2203. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2204. XFS_ERRLEVEL_LOW, mp, dicp);
  2205. xfs_buf_relse(bp);
  2206. xfs_fs_cmn_err(CE_ALERT, mp,
  2207. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2208. item, dip, bp, ino, dicp->di_forkoff);
  2209. error = EFSCORRUPTED;
  2210. goto error;
  2211. }
  2212. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2213. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2214. XFS_ERRLEVEL_LOW, mp, dicp);
  2215. xfs_buf_relse(bp);
  2216. xfs_fs_cmn_err(CE_ALERT, mp,
  2217. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2218. item->ri_buf[1].i_len, item);
  2219. error = EFSCORRUPTED;
  2220. goto error;
  2221. }
  2222. /* The core is in in-core format */
  2223. xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
  2224. /* the rest is in on-disk format */
  2225. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2226. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2227. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2228. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2229. }
  2230. fields = in_f->ilf_fields;
  2231. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2232. case XFS_ILOG_DEV:
  2233. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2234. break;
  2235. case XFS_ILOG_UUID:
  2236. memcpy(XFS_DFORK_DPTR(dip),
  2237. &in_f->ilf_u.ilfu_uuid,
  2238. sizeof(uuid_t));
  2239. break;
  2240. }
  2241. if (in_f->ilf_size == 2)
  2242. goto write_inode_buffer;
  2243. len = item->ri_buf[2].i_len;
  2244. src = item->ri_buf[2].i_addr;
  2245. ASSERT(in_f->ilf_size <= 4);
  2246. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2247. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2248. (len == in_f->ilf_dsize));
  2249. switch (fields & XFS_ILOG_DFORK) {
  2250. case XFS_ILOG_DDATA:
  2251. case XFS_ILOG_DEXT:
  2252. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2253. break;
  2254. case XFS_ILOG_DBROOT:
  2255. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2256. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2257. XFS_DFORK_DSIZE(dip, mp));
  2258. break;
  2259. default:
  2260. /*
  2261. * There are no data fork flags set.
  2262. */
  2263. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2264. break;
  2265. }
  2266. /*
  2267. * If we logged any attribute data, recover it. There may or
  2268. * may not have been any other non-core data logged in this
  2269. * transaction.
  2270. */
  2271. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2272. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2273. attr_index = 3;
  2274. } else {
  2275. attr_index = 2;
  2276. }
  2277. len = item->ri_buf[attr_index].i_len;
  2278. src = item->ri_buf[attr_index].i_addr;
  2279. ASSERT(len == in_f->ilf_asize);
  2280. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2281. case XFS_ILOG_ADATA:
  2282. case XFS_ILOG_AEXT:
  2283. dest = XFS_DFORK_APTR(dip);
  2284. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2285. memcpy(dest, src, len);
  2286. break;
  2287. case XFS_ILOG_ABROOT:
  2288. dest = XFS_DFORK_APTR(dip);
  2289. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2290. len, (xfs_bmdr_block_t*)dest,
  2291. XFS_DFORK_ASIZE(dip, mp));
  2292. break;
  2293. default:
  2294. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2295. ASSERT(0);
  2296. xfs_buf_relse(bp);
  2297. error = EIO;
  2298. goto error;
  2299. }
  2300. }
  2301. write_inode_buffer:
  2302. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2303. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2304. bp->b_mount = mp;
  2305. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2306. xfs_bdwrite(mp, bp);
  2307. } else {
  2308. XFS_BUF_STALE(bp);
  2309. error = xfs_bwrite(mp, bp);
  2310. }
  2311. error:
  2312. if (need_free)
  2313. kmem_free(in_f);
  2314. return XFS_ERROR(error);
  2315. }
  2316. /*
  2317. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2318. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2319. * of that type.
  2320. */
  2321. STATIC int
  2322. xlog_recover_do_quotaoff_trans(
  2323. xlog_t *log,
  2324. xlog_recover_item_t *item,
  2325. int pass)
  2326. {
  2327. xfs_qoff_logformat_t *qoff_f;
  2328. if (pass == XLOG_RECOVER_PASS2) {
  2329. return (0);
  2330. }
  2331. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2332. ASSERT(qoff_f);
  2333. /*
  2334. * The logitem format's flag tells us if this was user quotaoff,
  2335. * group/project quotaoff or both.
  2336. */
  2337. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2338. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2339. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2340. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2341. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2342. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2343. return (0);
  2344. }
  2345. /*
  2346. * Recover a dquot record
  2347. */
  2348. STATIC int
  2349. xlog_recover_do_dquot_trans(
  2350. xlog_t *log,
  2351. xlog_recover_item_t *item,
  2352. int pass)
  2353. {
  2354. xfs_mount_t *mp;
  2355. xfs_buf_t *bp;
  2356. struct xfs_disk_dquot *ddq, *recddq;
  2357. int error;
  2358. xfs_dq_logformat_t *dq_f;
  2359. uint type;
  2360. if (pass == XLOG_RECOVER_PASS1) {
  2361. return 0;
  2362. }
  2363. mp = log->l_mp;
  2364. /*
  2365. * Filesystems are required to send in quota flags at mount time.
  2366. */
  2367. if (mp->m_qflags == 0)
  2368. return (0);
  2369. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2370. ASSERT(recddq);
  2371. /*
  2372. * This type of quotas was turned off, so ignore this record.
  2373. */
  2374. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2375. ASSERT(type);
  2376. if (log->l_quotaoffs_flag & type)
  2377. return (0);
  2378. /*
  2379. * At this point we know that quota was _not_ turned off.
  2380. * Since the mount flags are not indicating to us otherwise, this
  2381. * must mean that quota is on, and the dquot needs to be replayed.
  2382. * Remember that we may not have fully recovered the superblock yet,
  2383. * so we can't do the usual trick of looking at the SB quota bits.
  2384. *
  2385. * The other possibility, of course, is that the quota subsystem was
  2386. * removed since the last mount - ENOSYS.
  2387. */
  2388. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2389. ASSERT(dq_f);
  2390. if ((error = xfs_qm_dqcheck(recddq,
  2391. dq_f->qlf_id,
  2392. 0, XFS_QMOPT_DOWARN,
  2393. "xlog_recover_do_dquot_trans (log copy)"))) {
  2394. return XFS_ERROR(EIO);
  2395. }
  2396. ASSERT(dq_f->qlf_len == 1);
  2397. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2398. dq_f->qlf_blkno,
  2399. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2400. 0, &bp);
  2401. if (error) {
  2402. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2403. bp, dq_f->qlf_blkno);
  2404. return error;
  2405. }
  2406. ASSERT(bp);
  2407. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2408. /*
  2409. * At least the magic num portion should be on disk because this
  2410. * was among a chunk of dquots created earlier, and we did some
  2411. * minimal initialization then.
  2412. */
  2413. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2414. "xlog_recover_do_dquot_trans")) {
  2415. xfs_buf_relse(bp);
  2416. return XFS_ERROR(EIO);
  2417. }
  2418. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2419. ASSERT(dq_f->qlf_size == 2);
  2420. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2421. bp->b_mount = mp;
  2422. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2423. xfs_bdwrite(mp, bp);
  2424. return (0);
  2425. }
  2426. /*
  2427. * This routine is called to create an in-core extent free intent
  2428. * item from the efi format structure which was logged on disk.
  2429. * It allocates an in-core efi, copies the extents from the format
  2430. * structure into it, and adds the efi to the AIL with the given
  2431. * LSN.
  2432. */
  2433. STATIC int
  2434. xlog_recover_do_efi_trans(
  2435. xlog_t *log,
  2436. xlog_recover_item_t *item,
  2437. xfs_lsn_t lsn,
  2438. int pass)
  2439. {
  2440. int error;
  2441. xfs_mount_t *mp;
  2442. xfs_efi_log_item_t *efip;
  2443. xfs_efi_log_format_t *efi_formatp;
  2444. if (pass == XLOG_RECOVER_PASS1) {
  2445. return 0;
  2446. }
  2447. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2448. mp = log->l_mp;
  2449. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2450. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2451. &(efip->efi_format)))) {
  2452. xfs_efi_item_free(efip);
  2453. return error;
  2454. }
  2455. efip->efi_next_extent = efi_formatp->efi_nextents;
  2456. efip->efi_flags |= XFS_EFI_COMMITTED;
  2457. spin_lock(&log->l_ailp->xa_lock);
  2458. /*
  2459. * xfs_trans_ail_update() drops the AIL lock.
  2460. */
  2461. xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
  2462. return 0;
  2463. }
  2464. /*
  2465. * This routine is called when an efd format structure is found in
  2466. * a committed transaction in the log. It's purpose is to cancel
  2467. * the corresponding efi if it was still in the log. To do this
  2468. * it searches the AIL for the efi with an id equal to that in the
  2469. * efd format structure. If we find it, we remove the efi from the
  2470. * AIL and free it.
  2471. */
  2472. STATIC void
  2473. xlog_recover_do_efd_trans(
  2474. xlog_t *log,
  2475. xlog_recover_item_t *item,
  2476. int pass)
  2477. {
  2478. xfs_efd_log_format_t *efd_formatp;
  2479. xfs_efi_log_item_t *efip = NULL;
  2480. xfs_log_item_t *lip;
  2481. __uint64_t efi_id;
  2482. struct xfs_ail_cursor cur;
  2483. struct xfs_ail *ailp = log->l_ailp;
  2484. if (pass == XLOG_RECOVER_PASS1) {
  2485. return;
  2486. }
  2487. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2488. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2489. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2490. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2491. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2492. efi_id = efd_formatp->efd_efi_id;
  2493. /*
  2494. * Search for the efi with the id in the efd format structure
  2495. * in the AIL.
  2496. */
  2497. spin_lock(&ailp->xa_lock);
  2498. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2499. while (lip != NULL) {
  2500. if (lip->li_type == XFS_LI_EFI) {
  2501. efip = (xfs_efi_log_item_t *)lip;
  2502. if (efip->efi_format.efi_id == efi_id) {
  2503. /*
  2504. * xfs_trans_ail_delete() drops the
  2505. * AIL lock.
  2506. */
  2507. xfs_trans_ail_delete(ailp, lip);
  2508. xfs_efi_item_free(efip);
  2509. spin_lock(&ailp->xa_lock);
  2510. break;
  2511. }
  2512. }
  2513. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2514. }
  2515. xfs_trans_ail_cursor_done(ailp, &cur);
  2516. spin_unlock(&ailp->xa_lock);
  2517. }
  2518. /*
  2519. * Perform the transaction
  2520. *
  2521. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2522. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2523. */
  2524. STATIC int
  2525. xlog_recover_do_trans(
  2526. xlog_t *log,
  2527. xlog_recover_t *trans,
  2528. int pass)
  2529. {
  2530. int error = 0;
  2531. xlog_recover_item_t *item, *first_item;
  2532. if ((error = xlog_recover_reorder_trans(trans)))
  2533. return error;
  2534. first_item = item = trans->r_itemq;
  2535. do {
  2536. /*
  2537. * we don't need to worry about the block number being
  2538. * truncated in > 1 TB buffers because in user-land,
  2539. * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
  2540. * the blknos will get through the user-mode buffer
  2541. * cache properly. The only bad case is o32 kernels
  2542. * where xfs_daddr_t is 32-bits but mount will warn us
  2543. * off a > 1 TB filesystem before we get here.
  2544. */
  2545. if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
  2546. if ((error = xlog_recover_do_buffer_trans(log, item,
  2547. pass)))
  2548. break;
  2549. } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
  2550. if ((error = xlog_recover_do_inode_trans(log, item,
  2551. pass)))
  2552. break;
  2553. } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
  2554. if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
  2555. pass)))
  2556. break;
  2557. } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
  2558. xlog_recover_do_efd_trans(log, item, pass);
  2559. } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
  2560. if ((error = xlog_recover_do_dquot_trans(log, item,
  2561. pass)))
  2562. break;
  2563. } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
  2564. if ((error = xlog_recover_do_quotaoff_trans(log, item,
  2565. pass)))
  2566. break;
  2567. } else {
  2568. xlog_warn("XFS: xlog_recover_do_trans");
  2569. ASSERT(0);
  2570. error = XFS_ERROR(EIO);
  2571. break;
  2572. }
  2573. item = item->ri_next;
  2574. } while (first_item != item);
  2575. return error;
  2576. }
  2577. /*
  2578. * Free up any resources allocated by the transaction
  2579. *
  2580. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2581. */
  2582. STATIC void
  2583. xlog_recover_free_trans(
  2584. xlog_recover_t *trans)
  2585. {
  2586. xlog_recover_item_t *first_item, *item, *free_item;
  2587. int i;
  2588. item = first_item = trans->r_itemq;
  2589. do {
  2590. free_item = item;
  2591. item = item->ri_next;
  2592. /* Free the regions in the item. */
  2593. for (i = 0; i < free_item->ri_cnt; i++) {
  2594. kmem_free(free_item->ri_buf[i].i_addr);
  2595. }
  2596. /* Free the item itself */
  2597. kmem_free(free_item->ri_buf);
  2598. kmem_free(free_item);
  2599. } while (first_item != item);
  2600. /* Free the transaction recover structure */
  2601. kmem_free(trans);
  2602. }
  2603. STATIC int
  2604. xlog_recover_commit_trans(
  2605. xlog_t *log,
  2606. xlog_recover_t **q,
  2607. xlog_recover_t *trans,
  2608. int pass)
  2609. {
  2610. int error;
  2611. if ((error = xlog_recover_unlink_tid(q, trans)))
  2612. return error;
  2613. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2614. return error;
  2615. xlog_recover_free_trans(trans); /* no error */
  2616. return 0;
  2617. }
  2618. STATIC int
  2619. xlog_recover_unmount_trans(
  2620. xlog_recover_t *trans)
  2621. {
  2622. /* Do nothing now */
  2623. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2624. return 0;
  2625. }
  2626. /*
  2627. * There are two valid states of the r_state field. 0 indicates that the
  2628. * transaction structure is in a normal state. We have either seen the
  2629. * start of the transaction or the last operation we added was not a partial
  2630. * operation. If the last operation we added to the transaction was a
  2631. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2632. *
  2633. * NOTE: skip LRs with 0 data length.
  2634. */
  2635. STATIC int
  2636. xlog_recover_process_data(
  2637. xlog_t *log,
  2638. xlog_recover_t *rhash[],
  2639. xlog_rec_header_t *rhead,
  2640. xfs_caddr_t dp,
  2641. int pass)
  2642. {
  2643. xfs_caddr_t lp;
  2644. int num_logops;
  2645. xlog_op_header_t *ohead;
  2646. xlog_recover_t *trans;
  2647. xlog_tid_t tid;
  2648. int error;
  2649. unsigned long hash;
  2650. uint flags;
  2651. lp = dp + be32_to_cpu(rhead->h_len);
  2652. num_logops = be32_to_cpu(rhead->h_num_logops);
  2653. /* check the log format matches our own - else we can't recover */
  2654. if (xlog_header_check_recover(log->l_mp, rhead))
  2655. return (XFS_ERROR(EIO));
  2656. while ((dp < lp) && num_logops) {
  2657. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2658. ohead = (xlog_op_header_t *)dp;
  2659. dp += sizeof(xlog_op_header_t);
  2660. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2661. ohead->oh_clientid != XFS_LOG) {
  2662. xlog_warn(
  2663. "XFS: xlog_recover_process_data: bad clientid");
  2664. ASSERT(0);
  2665. return (XFS_ERROR(EIO));
  2666. }
  2667. tid = be32_to_cpu(ohead->oh_tid);
  2668. hash = XLOG_RHASH(tid);
  2669. trans = xlog_recover_find_tid(rhash[hash], tid);
  2670. if (trans == NULL) { /* not found; add new tid */
  2671. if (ohead->oh_flags & XLOG_START_TRANS)
  2672. xlog_recover_new_tid(&rhash[hash], tid,
  2673. be64_to_cpu(rhead->h_lsn));
  2674. } else {
  2675. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2676. xlog_warn(
  2677. "XFS: xlog_recover_process_data: bad length");
  2678. WARN_ON(1);
  2679. return (XFS_ERROR(EIO));
  2680. }
  2681. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2682. if (flags & XLOG_WAS_CONT_TRANS)
  2683. flags &= ~XLOG_CONTINUE_TRANS;
  2684. switch (flags) {
  2685. case XLOG_COMMIT_TRANS:
  2686. error = xlog_recover_commit_trans(log,
  2687. &rhash[hash], trans, pass);
  2688. break;
  2689. case XLOG_UNMOUNT_TRANS:
  2690. error = xlog_recover_unmount_trans(trans);
  2691. break;
  2692. case XLOG_WAS_CONT_TRANS:
  2693. error = xlog_recover_add_to_cont_trans(trans,
  2694. dp, be32_to_cpu(ohead->oh_len));
  2695. break;
  2696. case XLOG_START_TRANS:
  2697. xlog_warn(
  2698. "XFS: xlog_recover_process_data: bad transaction");
  2699. ASSERT(0);
  2700. error = XFS_ERROR(EIO);
  2701. break;
  2702. case 0:
  2703. case XLOG_CONTINUE_TRANS:
  2704. error = xlog_recover_add_to_trans(trans,
  2705. dp, be32_to_cpu(ohead->oh_len));
  2706. break;
  2707. default:
  2708. xlog_warn(
  2709. "XFS: xlog_recover_process_data: bad flag");
  2710. ASSERT(0);
  2711. error = XFS_ERROR(EIO);
  2712. break;
  2713. }
  2714. if (error)
  2715. return error;
  2716. }
  2717. dp += be32_to_cpu(ohead->oh_len);
  2718. num_logops--;
  2719. }
  2720. return 0;
  2721. }
  2722. /*
  2723. * Process an extent free intent item that was recovered from
  2724. * the log. We need to free the extents that it describes.
  2725. */
  2726. STATIC int
  2727. xlog_recover_process_efi(
  2728. xfs_mount_t *mp,
  2729. xfs_efi_log_item_t *efip)
  2730. {
  2731. xfs_efd_log_item_t *efdp;
  2732. xfs_trans_t *tp;
  2733. int i;
  2734. int error = 0;
  2735. xfs_extent_t *extp;
  2736. xfs_fsblock_t startblock_fsb;
  2737. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2738. /*
  2739. * First check the validity of the extents described by the
  2740. * EFI. If any are bad, then assume that all are bad and
  2741. * just toss the EFI.
  2742. */
  2743. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2744. extp = &(efip->efi_format.efi_extents[i]);
  2745. startblock_fsb = XFS_BB_TO_FSB(mp,
  2746. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2747. if ((startblock_fsb == 0) ||
  2748. (extp->ext_len == 0) ||
  2749. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2750. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2751. /*
  2752. * This will pull the EFI from the AIL and
  2753. * free the memory associated with it.
  2754. */
  2755. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2756. return XFS_ERROR(EIO);
  2757. }
  2758. }
  2759. tp = xfs_trans_alloc(mp, 0);
  2760. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2761. if (error)
  2762. goto abort_error;
  2763. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2764. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2765. extp = &(efip->efi_format.efi_extents[i]);
  2766. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2767. if (error)
  2768. goto abort_error;
  2769. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2770. extp->ext_len);
  2771. }
  2772. efip->efi_flags |= XFS_EFI_RECOVERED;
  2773. error = xfs_trans_commit(tp, 0);
  2774. return error;
  2775. abort_error:
  2776. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2777. return error;
  2778. }
  2779. /*
  2780. * When this is called, all of the EFIs which did not have
  2781. * corresponding EFDs should be in the AIL. What we do now
  2782. * is free the extents associated with each one.
  2783. *
  2784. * Since we process the EFIs in normal transactions, they
  2785. * will be removed at some point after the commit. This prevents
  2786. * us from just walking down the list processing each one.
  2787. * We'll use a flag in the EFI to skip those that we've already
  2788. * processed and use the AIL iteration mechanism's generation
  2789. * count to try to speed this up at least a bit.
  2790. *
  2791. * When we start, we know that the EFIs are the only things in
  2792. * the AIL. As we process them, however, other items are added
  2793. * to the AIL. Since everything added to the AIL must come after
  2794. * everything already in the AIL, we stop processing as soon as
  2795. * we see something other than an EFI in the AIL.
  2796. */
  2797. STATIC int
  2798. xlog_recover_process_efis(
  2799. xlog_t *log)
  2800. {
  2801. xfs_log_item_t *lip;
  2802. xfs_efi_log_item_t *efip;
  2803. int error = 0;
  2804. struct xfs_ail_cursor cur;
  2805. struct xfs_ail *ailp;
  2806. ailp = log->l_ailp;
  2807. spin_lock(&ailp->xa_lock);
  2808. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2809. while (lip != NULL) {
  2810. /*
  2811. * We're done when we see something other than an EFI.
  2812. * There should be no EFIs left in the AIL now.
  2813. */
  2814. if (lip->li_type != XFS_LI_EFI) {
  2815. #ifdef DEBUG
  2816. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2817. ASSERT(lip->li_type != XFS_LI_EFI);
  2818. #endif
  2819. break;
  2820. }
  2821. /*
  2822. * Skip EFIs that we've already processed.
  2823. */
  2824. efip = (xfs_efi_log_item_t *)lip;
  2825. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2826. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2827. continue;
  2828. }
  2829. spin_unlock(&ailp->xa_lock);
  2830. error = xlog_recover_process_efi(log->l_mp, efip);
  2831. spin_lock(&ailp->xa_lock);
  2832. if (error)
  2833. goto out;
  2834. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2835. }
  2836. out:
  2837. xfs_trans_ail_cursor_done(ailp, &cur);
  2838. spin_unlock(&ailp->xa_lock);
  2839. return error;
  2840. }
  2841. /*
  2842. * This routine performs a transaction to null out a bad inode pointer
  2843. * in an agi unlinked inode hash bucket.
  2844. */
  2845. STATIC void
  2846. xlog_recover_clear_agi_bucket(
  2847. xfs_mount_t *mp,
  2848. xfs_agnumber_t agno,
  2849. int bucket)
  2850. {
  2851. xfs_trans_t *tp;
  2852. xfs_agi_t *agi;
  2853. xfs_buf_t *agibp;
  2854. int offset;
  2855. int error;
  2856. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2857. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2858. 0, 0, 0);
  2859. if (error)
  2860. goto out_abort;
  2861. error = xfs_read_agi(mp, tp, agno, &agibp);
  2862. if (error)
  2863. goto out_abort;
  2864. agi = XFS_BUF_TO_AGI(agibp);
  2865. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2866. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2867. (sizeof(xfs_agino_t) * bucket);
  2868. xfs_trans_log_buf(tp, agibp, offset,
  2869. (offset + sizeof(xfs_agino_t) - 1));
  2870. error = xfs_trans_commit(tp, 0);
  2871. if (error)
  2872. goto out_error;
  2873. return;
  2874. out_abort:
  2875. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2876. out_error:
  2877. xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
  2878. "failed to clear agi %d. Continuing.", agno);
  2879. return;
  2880. }
  2881. STATIC xfs_agino_t
  2882. xlog_recover_process_one_iunlink(
  2883. struct xfs_mount *mp,
  2884. xfs_agnumber_t agno,
  2885. xfs_agino_t agino,
  2886. int bucket)
  2887. {
  2888. struct xfs_buf *ibp;
  2889. struct xfs_dinode *dip;
  2890. struct xfs_inode *ip;
  2891. xfs_ino_t ino;
  2892. int error;
  2893. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2894. error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
  2895. if (error)
  2896. goto fail;
  2897. /*
  2898. * Get the on disk inode to find the next inode in the bucket.
  2899. */
  2900. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
  2901. if (error)
  2902. goto fail_iput;
  2903. ASSERT(ip->i_d.di_nlink == 0);
  2904. ASSERT(ip->i_d.di_mode != 0);
  2905. /* setup for the next pass */
  2906. agino = be32_to_cpu(dip->di_next_unlinked);
  2907. xfs_buf_relse(ibp);
  2908. /*
  2909. * Prevent any DMAPI event from being sent when the reference on
  2910. * the inode is dropped.
  2911. */
  2912. ip->i_d.di_dmevmask = 0;
  2913. IRELE(ip);
  2914. return agino;
  2915. fail_iput:
  2916. IRELE(ip);
  2917. fail:
  2918. /*
  2919. * We can't read in the inode this bucket points to, or this inode
  2920. * is messed up. Just ditch this bucket of inodes. We will lose
  2921. * some inodes and space, but at least we won't hang.
  2922. *
  2923. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2924. * clear the inode pointer in the bucket.
  2925. */
  2926. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2927. return NULLAGINO;
  2928. }
  2929. /*
  2930. * xlog_iunlink_recover
  2931. *
  2932. * This is called during recovery to process any inodes which
  2933. * we unlinked but not freed when the system crashed. These
  2934. * inodes will be on the lists in the AGI blocks. What we do
  2935. * here is scan all the AGIs and fully truncate and free any
  2936. * inodes found on the lists. Each inode is removed from the
  2937. * lists when it has been fully truncated and is freed. The
  2938. * freeing of the inode and its removal from the list must be
  2939. * atomic.
  2940. */
  2941. void
  2942. xlog_recover_process_iunlinks(
  2943. xlog_t *log)
  2944. {
  2945. xfs_mount_t *mp;
  2946. xfs_agnumber_t agno;
  2947. xfs_agi_t *agi;
  2948. xfs_buf_t *agibp;
  2949. xfs_agino_t agino;
  2950. int bucket;
  2951. int error;
  2952. uint mp_dmevmask;
  2953. mp = log->l_mp;
  2954. /*
  2955. * Prevent any DMAPI event from being sent while in this function.
  2956. */
  2957. mp_dmevmask = mp->m_dmevmask;
  2958. mp->m_dmevmask = 0;
  2959. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2960. /*
  2961. * Find the agi for this ag.
  2962. */
  2963. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2964. if (error) {
  2965. /*
  2966. * AGI is b0rked. Don't process it.
  2967. *
  2968. * We should probably mark the filesystem as corrupt
  2969. * after we've recovered all the ag's we can....
  2970. */
  2971. continue;
  2972. }
  2973. agi = XFS_BUF_TO_AGI(agibp);
  2974. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2975. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2976. while (agino != NULLAGINO) {
  2977. /*
  2978. * Release the agi buffer so that it can
  2979. * be acquired in the normal course of the
  2980. * transaction to truncate and free the inode.
  2981. */
  2982. xfs_buf_relse(agibp);
  2983. agino = xlog_recover_process_one_iunlink(mp,
  2984. agno, agino, bucket);
  2985. /*
  2986. * Reacquire the agibuffer and continue around
  2987. * the loop. This should never fail as we know
  2988. * the buffer was good earlier on.
  2989. */
  2990. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2991. ASSERT(error == 0);
  2992. agi = XFS_BUF_TO_AGI(agibp);
  2993. }
  2994. }
  2995. /*
  2996. * Release the buffer for the current agi so we can
  2997. * go on to the next one.
  2998. */
  2999. xfs_buf_relse(agibp);
  3000. }
  3001. mp->m_dmevmask = mp_dmevmask;
  3002. }
  3003. #ifdef DEBUG
  3004. STATIC void
  3005. xlog_pack_data_checksum(
  3006. xlog_t *log,
  3007. xlog_in_core_t *iclog,
  3008. int size)
  3009. {
  3010. int i;
  3011. __be32 *up;
  3012. uint chksum = 0;
  3013. up = (__be32 *)iclog->ic_datap;
  3014. /* divide length by 4 to get # words */
  3015. for (i = 0; i < (size >> 2); i++) {
  3016. chksum ^= be32_to_cpu(*up);
  3017. up++;
  3018. }
  3019. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  3020. }
  3021. #else
  3022. #define xlog_pack_data_checksum(log, iclog, size)
  3023. #endif
  3024. /*
  3025. * Stamp cycle number in every block
  3026. */
  3027. void
  3028. xlog_pack_data(
  3029. xlog_t *log,
  3030. xlog_in_core_t *iclog,
  3031. int roundoff)
  3032. {
  3033. int i, j, k;
  3034. int size = iclog->ic_offset + roundoff;
  3035. __be32 cycle_lsn;
  3036. xfs_caddr_t dp;
  3037. xlog_pack_data_checksum(log, iclog, size);
  3038. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3039. dp = iclog->ic_datap;
  3040. for (i = 0; i < BTOBB(size) &&
  3041. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3042. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  3043. *(__be32 *)dp = cycle_lsn;
  3044. dp += BBSIZE;
  3045. }
  3046. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3047. xlog_in_core_2_t *xhdr = iclog->ic_data;
  3048. for ( ; i < BTOBB(size); i++) {
  3049. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3050. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3051. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  3052. *(__be32 *)dp = cycle_lsn;
  3053. dp += BBSIZE;
  3054. }
  3055. for (i = 1; i < log->l_iclog_heads; i++) {
  3056. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3057. }
  3058. }
  3059. }
  3060. #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
  3061. STATIC void
  3062. xlog_unpack_data_checksum(
  3063. xlog_rec_header_t *rhead,
  3064. xfs_caddr_t dp,
  3065. xlog_t *log)
  3066. {
  3067. __be32 *up = (__be32 *)dp;
  3068. uint chksum = 0;
  3069. int i;
  3070. /* divide length by 4 to get # words */
  3071. for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
  3072. chksum ^= be32_to_cpu(*up);
  3073. up++;
  3074. }
  3075. if (chksum != be32_to_cpu(rhead->h_chksum)) {
  3076. if (rhead->h_chksum ||
  3077. ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
  3078. cmn_err(CE_DEBUG,
  3079. "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
  3080. be32_to_cpu(rhead->h_chksum), chksum);
  3081. cmn_err(CE_DEBUG,
  3082. "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
  3083. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3084. cmn_err(CE_DEBUG,
  3085. "XFS: LogR this is a LogV2 filesystem\n");
  3086. }
  3087. log->l_flags |= XLOG_CHKSUM_MISMATCH;
  3088. }
  3089. }
  3090. }
  3091. #else
  3092. #define xlog_unpack_data_checksum(rhead, dp, log)
  3093. #endif
  3094. STATIC void
  3095. xlog_unpack_data(
  3096. xlog_rec_header_t *rhead,
  3097. xfs_caddr_t dp,
  3098. xlog_t *log)
  3099. {
  3100. int i, j, k;
  3101. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3102. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3103. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3104. dp += BBSIZE;
  3105. }
  3106. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3107. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3108. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3109. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3110. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3111. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3112. dp += BBSIZE;
  3113. }
  3114. }
  3115. xlog_unpack_data_checksum(rhead, dp, log);
  3116. }
  3117. STATIC int
  3118. xlog_valid_rec_header(
  3119. xlog_t *log,
  3120. xlog_rec_header_t *rhead,
  3121. xfs_daddr_t blkno)
  3122. {
  3123. int hlen;
  3124. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  3125. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3126. XFS_ERRLEVEL_LOW, log->l_mp);
  3127. return XFS_ERROR(EFSCORRUPTED);
  3128. }
  3129. if (unlikely(
  3130. (!rhead->h_version ||
  3131. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3132. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3133. __func__, be32_to_cpu(rhead->h_version));
  3134. return XFS_ERROR(EIO);
  3135. }
  3136. /* LR body must have data or it wouldn't have been written */
  3137. hlen = be32_to_cpu(rhead->h_len);
  3138. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3139. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3140. XFS_ERRLEVEL_LOW, log->l_mp);
  3141. return XFS_ERROR(EFSCORRUPTED);
  3142. }
  3143. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3144. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3145. XFS_ERRLEVEL_LOW, log->l_mp);
  3146. return XFS_ERROR(EFSCORRUPTED);
  3147. }
  3148. return 0;
  3149. }
  3150. /*
  3151. * Read the log from tail to head and process the log records found.
  3152. * Handle the two cases where the tail and head are in the same cycle
  3153. * and where the active portion of the log wraps around the end of
  3154. * the physical log separately. The pass parameter is passed through
  3155. * to the routines called to process the data and is not looked at
  3156. * here.
  3157. */
  3158. STATIC int
  3159. xlog_do_recovery_pass(
  3160. xlog_t *log,
  3161. xfs_daddr_t head_blk,
  3162. xfs_daddr_t tail_blk,
  3163. int pass)
  3164. {
  3165. xlog_rec_header_t *rhead;
  3166. xfs_daddr_t blk_no;
  3167. xfs_caddr_t bufaddr, offset;
  3168. xfs_buf_t *hbp, *dbp;
  3169. int error = 0, h_size;
  3170. int bblks, split_bblks;
  3171. int hblks, split_hblks, wrapped_hblks;
  3172. xlog_recover_t *rhash[XLOG_RHASH_SIZE];
  3173. ASSERT(head_blk != tail_blk);
  3174. /*
  3175. * Read the header of the tail block and get the iclog buffer size from
  3176. * h_size. Use this to tell how many sectors make up the log header.
  3177. */
  3178. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3179. /*
  3180. * When using variable length iclogs, read first sector of
  3181. * iclog header and extract the header size from it. Get a
  3182. * new hbp that is the correct size.
  3183. */
  3184. hbp = xlog_get_bp(log, 1);
  3185. if (!hbp)
  3186. return ENOMEM;
  3187. if ((error = xlog_bread(log, tail_blk, 1, hbp)))
  3188. goto bread_err1;
  3189. offset = xlog_align(log, tail_blk, 1, hbp);
  3190. rhead = (xlog_rec_header_t *)offset;
  3191. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3192. if (error)
  3193. goto bread_err1;
  3194. h_size = be32_to_cpu(rhead->h_size);
  3195. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3196. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3197. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3198. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3199. hblks++;
  3200. xlog_put_bp(hbp);
  3201. hbp = xlog_get_bp(log, hblks);
  3202. } else {
  3203. hblks = 1;
  3204. }
  3205. } else {
  3206. ASSERT(log->l_sectbb_log == 0);
  3207. hblks = 1;
  3208. hbp = xlog_get_bp(log, 1);
  3209. h_size = XLOG_BIG_RECORD_BSIZE;
  3210. }
  3211. if (!hbp)
  3212. return ENOMEM;
  3213. dbp = xlog_get_bp(log, BTOBB(h_size));
  3214. if (!dbp) {
  3215. xlog_put_bp(hbp);
  3216. return ENOMEM;
  3217. }
  3218. memset(rhash, 0, sizeof(rhash));
  3219. if (tail_blk <= head_blk) {
  3220. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3221. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3222. goto bread_err2;
  3223. offset = xlog_align(log, blk_no, hblks, hbp);
  3224. rhead = (xlog_rec_header_t *)offset;
  3225. error = xlog_valid_rec_header(log, rhead, blk_no);
  3226. if (error)
  3227. goto bread_err2;
  3228. /* blocks in data section */
  3229. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3230. error = xlog_bread(log, blk_no + hblks, bblks, dbp);
  3231. if (error)
  3232. goto bread_err2;
  3233. offset = xlog_align(log, blk_no + hblks, bblks, dbp);
  3234. xlog_unpack_data(rhead, offset, log);
  3235. if ((error = xlog_recover_process_data(log,
  3236. rhash, rhead, offset, pass)))
  3237. goto bread_err2;
  3238. blk_no += bblks + hblks;
  3239. }
  3240. } else {
  3241. /*
  3242. * Perform recovery around the end of the physical log.
  3243. * When the head is not on the same cycle number as the tail,
  3244. * we can't do a sequential recovery as above.
  3245. */
  3246. blk_no = tail_blk;
  3247. while (blk_no < log->l_logBBsize) {
  3248. /*
  3249. * Check for header wrapping around physical end-of-log
  3250. */
  3251. offset = NULL;
  3252. split_hblks = 0;
  3253. wrapped_hblks = 0;
  3254. if (blk_no + hblks <= log->l_logBBsize) {
  3255. /* Read header in one read */
  3256. error = xlog_bread(log, blk_no, hblks, hbp);
  3257. if (error)
  3258. goto bread_err2;
  3259. offset = xlog_align(log, blk_no, hblks, hbp);
  3260. } else {
  3261. /* This LR is split across physical log end */
  3262. if (blk_no != log->l_logBBsize) {
  3263. /* some data before physical log end */
  3264. ASSERT(blk_no <= INT_MAX);
  3265. split_hblks = log->l_logBBsize - (int)blk_no;
  3266. ASSERT(split_hblks > 0);
  3267. if ((error = xlog_bread(log, blk_no,
  3268. split_hblks, hbp)))
  3269. goto bread_err2;
  3270. offset = xlog_align(log, blk_no,
  3271. split_hblks, hbp);
  3272. }
  3273. /*
  3274. * Note: this black magic still works with
  3275. * large sector sizes (non-512) only because:
  3276. * - we increased the buffer size originally
  3277. * by 1 sector giving us enough extra space
  3278. * for the second read;
  3279. * - the log start is guaranteed to be sector
  3280. * aligned;
  3281. * - we read the log end (LR header start)
  3282. * _first_, then the log start (LR header end)
  3283. * - order is important.
  3284. */
  3285. wrapped_hblks = hblks - split_hblks;
  3286. bufaddr = XFS_BUF_PTR(hbp);
  3287. error = XFS_BUF_SET_PTR(hbp,
  3288. bufaddr + BBTOB(split_hblks),
  3289. BBTOB(hblks - split_hblks));
  3290. if (!error)
  3291. error = xlog_bread(log, 0,
  3292. wrapped_hblks, hbp);
  3293. if (!error)
  3294. error = XFS_BUF_SET_PTR(hbp, bufaddr,
  3295. BBTOB(hblks));
  3296. if (error)
  3297. goto bread_err2;
  3298. if (!offset)
  3299. offset = xlog_align(log, 0,
  3300. wrapped_hblks, hbp);
  3301. }
  3302. rhead = (xlog_rec_header_t *)offset;
  3303. error = xlog_valid_rec_header(log, rhead,
  3304. split_hblks ? blk_no : 0);
  3305. if (error)
  3306. goto bread_err2;
  3307. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3308. blk_no += hblks;
  3309. /* Read in data for log record */
  3310. if (blk_no + bblks <= log->l_logBBsize) {
  3311. error = xlog_bread(log, blk_no, bblks, dbp);
  3312. if (error)
  3313. goto bread_err2;
  3314. offset = xlog_align(log, blk_no, bblks, dbp);
  3315. } else {
  3316. /* This log record is split across the
  3317. * physical end of log */
  3318. offset = NULL;
  3319. split_bblks = 0;
  3320. if (blk_no != log->l_logBBsize) {
  3321. /* some data is before the physical
  3322. * end of log */
  3323. ASSERT(!wrapped_hblks);
  3324. ASSERT(blk_no <= INT_MAX);
  3325. split_bblks =
  3326. log->l_logBBsize - (int)blk_no;
  3327. ASSERT(split_bblks > 0);
  3328. if ((error = xlog_bread(log, blk_no,
  3329. split_bblks, dbp)))
  3330. goto bread_err2;
  3331. offset = xlog_align(log, blk_no,
  3332. split_bblks, dbp);
  3333. }
  3334. /*
  3335. * Note: this black magic still works with
  3336. * large sector sizes (non-512) only because:
  3337. * - we increased the buffer size originally
  3338. * by 1 sector giving us enough extra space
  3339. * for the second read;
  3340. * - the log start is guaranteed to be sector
  3341. * aligned;
  3342. * - we read the log end (LR header start)
  3343. * _first_, then the log start (LR header end)
  3344. * - order is important.
  3345. */
  3346. bufaddr = XFS_BUF_PTR(dbp);
  3347. error = XFS_BUF_SET_PTR(dbp,
  3348. bufaddr + BBTOB(split_bblks),
  3349. BBTOB(bblks - split_bblks));
  3350. if (!error)
  3351. error = xlog_bread(log, wrapped_hblks,
  3352. bblks - split_bblks,
  3353. dbp);
  3354. if (!error)
  3355. error = XFS_BUF_SET_PTR(dbp, bufaddr,
  3356. h_size);
  3357. if (error)
  3358. goto bread_err2;
  3359. if (!offset)
  3360. offset = xlog_align(log, wrapped_hblks,
  3361. bblks - split_bblks, dbp);
  3362. }
  3363. xlog_unpack_data(rhead, offset, log);
  3364. if ((error = xlog_recover_process_data(log, rhash,
  3365. rhead, offset, pass)))
  3366. goto bread_err2;
  3367. blk_no += bblks;
  3368. }
  3369. ASSERT(blk_no >= log->l_logBBsize);
  3370. blk_no -= log->l_logBBsize;
  3371. /* read first part of physical log */
  3372. while (blk_no < head_blk) {
  3373. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3374. goto bread_err2;
  3375. offset = xlog_align(log, blk_no, hblks, hbp);
  3376. rhead = (xlog_rec_header_t *)offset;
  3377. error = xlog_valid_rec_header(log, rhead, blk_no);
  3378. if (error)
  3379. goto bread_err2;
  3380. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3381. if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
  3382. goto bread_err2;
  3383. offset = xlog_align(log, blk_no+hblks, bblks, dbp);
  3384. xlog_unpack_data(rhead, offset, log);
  3385. if ((error = xlog_recover_process_data(log, rhash,
  3386. rhead, offset, pass)))
  3387. goto bread_err2;
  3388. blk_no += bblks + hblks;
  3389. }
  3390. }
  3391. bread_err2:
  3392. xlog_put_bp(dbp);
  3393. bread_err1:
  3394. xlog_put_bp(hbp);
  3395. return error;
  3396. }
  3397. /*
  3398. * Do the recovery of the log. We actually do this in two phases.
  3399. * The two passes are necessary in order to implement the function
  3400. * of cancelling a record written into the log. The first pass
  3401. * determines those things which have been cancelled, and the
  3402. * second pass replays log items normally except for those which
  3403. * have been cancelled. The handling of the replay and cancellations
  3404. * takes place in the log item type specific routines.
  3405. *
  3406. * The table of items which have cancel records in the log is allocated
  3407. * and freed at this level, since only here do we know when all of
  3408. * the log recovery has been completed.
  3409. */
  3410. STATIC int
  3411. xlog_do_log_recovery(
  3412. xlog_t *log,
  3413. xfs_daddr_t head_blk,
  3414. xfs_daddr_t tail_blk)
  3415. {
  3416. int error;
  3417. ASSERT(head_blk != tail_blk);
  3418. /*
  3419. * First do a pass to find all of the cancelled buf log items.
  3420. * Store them in the buf_cancel_table for use in the second pass.
  3421. */
  3422. log->l_buf_cancel_table =
  3423. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3424. sizeof(xfs_buf_cancel_t*),
  3425. KM_SLEEP);
  3426. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3427. XLOG_RECOVER_PASS1);
  3428. if (error != 0) {
  3429. kmem_free(log->l_buf_cancel_table);
  3430. log->l_buf_cancel_table = NULL;
  3431. return error;
  3432. }
  3433. /*
  3434. * Then do a second pass to actually recover the items in the log.
  3435. * When it is complete free the table of buf cancel items.
  3436. */
  3437. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3438. XLOG_RECOVER_PASS2);
  3439. #ifdef DEBUG
  3440. if (!error) {
  3441. int i;
  3442. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3443. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3444. }
  3445. #endif /* DEBUG */
  3446. kmem_free(log->l_buf_cancel_table);
  3447. log->l_buf_cancel_table = NULL;
  3448. return error;
  3449. }
  3450. /*
  3451. * Do the actual recovery
  3452. */
  3453. STATIC int
  3454. xlog_do_recover(
  3455. xlog_t *log,
  3456. xfs_daddr_t head_blk,
  3457. xfs_daddr_t tail_blk)
  3458. {
  3459. int error;
  3460. xfs_buf_t *bp;
  3461. xfs_sb_t *sbp;
  3462. /*
  3463. * First replay the images in the log.
  3464. */
  3465. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3466. if (error) {
  3467. return error;
  3468. }
  3469. XFS_bflush(log->l_mp->m_ddev_targp);
  3470. /*
  3471. * If IO errors happened during recovery, bail out.
  3472. */
  3473. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3474. return (EIO);
  3475. }
  3476. /*
  3477. * We now update the tail_lsn since much of the recovery has completed
  3478. * and there may be space available to use. If there were no extent
  3479. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3480. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3481. * lsn of the last known good LR on disk. If there are extent frees
  3482. * or iunlinks they will have some entries in the AIL; so we look at
  3483. * the AIL to determine how to set the tail_lsn.
  3484. */
  3485. xlog_assign_tail_lsn(log->l_mp);
  3486. /*
  3487. * Now that we've finished replaying all buffer and inode
  3488. * updates, re-read in the superblock.
  3489. */
  3490. bp = xfs_getsb(log->l_mp, 0);
  3491. XFS_BUF_UNDONE(bp);
  3492. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3493. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3494. XFS_BUF_READ(bp);
  3495. XFS_BUF_UNASYNC(bp);
  3496. xfsbdstrat(log->l_mp, bp);
  3497. error = xfs_iowait(bp);
  3498. if (error) {
  3499. xfs_ioerror_alert("xlog_do_recover",
  3500. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3501. ASSERT(0);
  3502. xfs_buf_relse(bp);
  3503. return error;
  3504. }
  3505. /* Convert superblock from on-disk format */
  3506. sbp = &log->l_mp->m_sb;
  3507. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3508. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3509. ASSERT(xfs_sb_good_version(sbp));
  3510. xfs_buf_relse(bp);
  3511. /* We've re-read the superblock so re-initialize per-cpu counters */
  3512. xfs_icsb_reinit_counters(log->l_mp);
  3513. xlog_recover_check_summary(log);
  3514. /* Normal transactions can now occur */
  3515. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3516. return 0;
  3517. }
  3518. /*
  3519. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3520. *
  3521. * Return error or zero.
  3522. */
  3523. int
  3524. xlog_recover(
  3525. xlog_t *log)
  3526. {
  3527. xfs_daddr_t head_blk, tail_blk;
  3528. int error;
  3529. /* find the tail of the log */
  3530. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3531. return error;
  3532. if (tail_blk != head_blk) {
  3533. /* There used to be a comment here:
  3534. *
  3535. * disallow recovery on read-only mounts. note -- mount
  3536. * checks for ENOSPC and turns it into an intelligent
  3537. * error message.
  3538. * ...but this is no longer true. Now, unless you specify
  3539. * NORECOVERY (in which case this function would never be
  3540. * called), we just go ahead and recover. We do this all
  3541. * under the vfs layer, so we can get away with it unless
  3542. * the device itself is read-only, in which case we fail.
  3543. */
  3544. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3545. return error;
  3546. }
  3547. cmn_err(CE_NOTE,
  3548. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3549. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3550. log->l_mp->m_logname : "internal");
  3551. error = xlog_do_recover(log, head_blk, tail_blk);
  3552. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3553. }
  3554. return error;
  3555. }
  3556. /*
  3557. * In the first part of recovery we replay inodes and buffers and build
  3558. * up the list of extent free items which need to be processed. Here
  3559. * we process the extent free items and clean up the on disk unlinked
  3560. * inode lists. This is separated from the first part of recovery so
  3561. * that the root and real-time bitmap inodes can be read in from disk in
  3562. * between the two stages. This is necessary so that we can free space
  3563. * in the real-time portion of the file system.
  3564. */
  3565. int
  3566. xlog_recover_finish(
  3567. xlog_t *log)
  3568. {
  3569. /*
  3570. * Now we're ready to do the transactions needed for the
  3571. * rest of recovery. Start with completing all the extent
  3572. * free intent records and then process the unlinked inode
  3573. * lists. At this point, we essentially run in normal mode
  3574. * except that we're still performing recovery actions
  3575. * rather than accepting new requests.
  3576. */
  3577. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3578. int error;
  3579. error = xlog_recover_process_efis(log);
  3580. if (error) {
  3581. cmn_err(CE_ALERT,
  3582. "Failed to recover EFIs on filesystem: %s",
  3583. log->l_mp->m_fsname);
  3584. return error;
  3585. }
  3586. /*
  3587. * Sync the log to get all the EFIs out of the AIL.
  3588. * This isn't absolutely necessary, but it helps in
  3589. * case the unlink transactions would have problems
  3590. * pushing the EFIs out of the way.
  3591. */
  3592. xfs_log_force(log->l_mp, (xfs_lsn_t)0,
  3593. (XFS_LOG_FORCE | XFS_LOG_SYNC));
  3594. xlog_recover_process_iunlinks(log);
  3595. xlog_recover_check_summary(log);
  3596. cmn_err(CE_NOTE,
  3597. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3598. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3599. log->l_mp->m_logname : "internal");
  3600. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3601. } else {
  3602. cmn_err(CE_DEBUG,
  3603. "!Ending clean XFS mount for filesystem: %s\n",
  3604. log->l_mp->m_fsname);
  3605. }
  3606. return 0;
  3607. }
  3608. #if defined(DEBUG)
  3609. /*
  3610. * Read all of the agf and agi counters and check that they
  3611. * are consistent with the superblock counters.
  3612. */
  3613. void
  3614. xlog_recover_check_summary(
  3615. xlog_t *log)
  3616. {
  3617. xfs_mount_t *mp;
  3618. xfs_agf_t *agfp;
  3619. xfs_buf_t *agfbp;
  3620. xfs_buf_t *agibp;
  3621. xfs_buf_t *sbbp;
  3622. #ifdef XFS_LOUD_RECOVERY
  3623. xfs_sb_t *sbp;
  3624. #endif
  3625. xfs_agnumber_t agno;
  3626. __uint64_t freeblks;
  3627. __uint64_t itotal;
  3628. __uint64_t ifree;
  3629. int error;
  3630. mp = log->l_mp;
  3631. freeblks = 0LL;
  3632. itotal = 0LL;
  3633. ifree = 0LL;
  3634. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3635. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3636. if (error) {
  3637. xfs_fs_cmn_err(CE_ALERT, mp,
  3638. "xlog_recover_check_summary(agf)"
  3639. "agf read failed agno %d error %d",
  3640. agno, error);
  3641. } else {
  3642. agfp = XFS_BUF_TO_AGF(agfbp);
  3643. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3644. be32_to_cpu(agfp->agf_flcount);
  3645. xfs_buf_relse(agfbp);
  3646. }
  3647. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3648. if (!error) {
  3649. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3650. itotal += be32_to_cpu(agi->agi_count);
  3651. ifree += be32_to_cpu(agi->agi_freecount);
  3652. xfs_buf_relse(agibp);
  3653. }
  3654. }
  3655. sbbp = xfs_getsb(mp, 0);
  3656. #ifdef XFS_LOUD_RECOVERY
  3657. sbp = &mp->m_sb;
  3658. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
  3659. cmn_err(CE_NOTE,
  3660. "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
  3661. sbp->sb_icount, itotal);
  3662. cmn_err(CE_NOTE,
  3663. "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
  3664. sbp->sb_ifree, ifree);
  3665. cmn_err(CE_NOTE,
  3666. "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
  3667. sbp->sb_fdblocks, freeblks);
  3668. #if 0
  3669. /*
  3670. * This is turned off until I account for the allocation
  3671. * btree blocks which live in free space.
  3672. */
  3673. ASSERT(sbp->sb_icount == itotal);
  3674. ASSERT(sbp->sb_ifree == ifree);
  3675. ASSERT(sbp->sb_fdblocks == freeblks);
  3676. #endif
  3677. #endif
  3678. xfs_buf_relse(sbbp);
  3679. }
  3680. #endif /* DEBUG */