disk-io.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include "compat.h"
  29. #include "crc32c.h"
  30. #include "ctree.h"
  31. #include "disk-io.h"
  32. #include "transaction.h"
  33. #include "btrfs_inode.h"
  34. #include "volumes.h"
  35. #include "print-tree.h"
  36. #include "async-thread.h"
  37. #include "locking.h"
  38. #include "ref-cache.h"
  39. #include "tree-log.h"
  40. static struct extent_io_ops btree_extent_io_ops;
  41. static void end_workqueue_fn(struct btrfs_work *work);
  42. /*
  43. * end_io_wq structs are used to do processing in task context when an IO is
  44. * complete. This is used during reads to verify checksums, and it is used
  45. * by writes to insert metadata for new file extents after IO is complete.
  46. */
  47. struct end_io_wq {
  48. struct bio *bio;
  49. bio_end_io_t *end_io;
  50. void *private;
  51. struct btrfs_fs_info *info;
  52. int error;
  53. int metadata;
  54. struct list_head list;
  55. struct btrfs_work work;
  56. };
  57. /*
  58. * async submit bios are used to offload expensive checksumming
  59. * onto the worker threads. They checksum file and metadata bios
  60. * just before they are sent down the IO stack.
  61. */
  62. struct async_submit_bio {
  63. struct inode *inode;
  64. struct bio *bio;
  65. struct list_head list;
  66. extent_submit_bio_hook_t *submit_bio_start;
  67. extent_submit_bio_hook_t *submit_bio_done;
  68. int rw;
  69. int mirror_num;
  70. unsigned long bio_flags;
  71. struct btrfs_work work;
  72. };
  73. /*
  74. * extents on the btree inode are pretty simple, there's one extent
  75. * that covers the entire device
  76. */
  77. static struct extent_map *btree_get_extent(struct inode *inode,
  78. struct page *page, size_t page_offset, u64 start, u64 len,
  79. int create)
  80. {
  81. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  82. struct extent_map *em;
  83. int ret;
  84. spin_lock(&em_tree->lock);
  85. em = lookup_extent_mapping(em_tree, start, len);
  86. if (em) {
  87. em->bdev =
  88. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  89. spin_unlock(&em_tree->lock);
  90. goto out;
  91. }
  92. spin_unlock(&em_tree->lock);
  93. em = alloc_extent_map(GFP_NOFS);
  94. if (!em) {
  95. em = ERR_PTR(-ENOMEM);
  96. goto out;
  97. }
  98. em->start = 0;
  99. em->len = (u64)-1;
  100. em->block_len = (u64)-1;
  101. em->block_start = 0;
  102. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  103. spin_lock(&em_tree->lock);
  104. ret = add_extent_mapping(em_tree, em);
  105. if (ret == -EEXIST) {
  106. u64 failed_start = em->start;
  107. u64 failed_len = em->len;
  108. free_extent_map(em);
  109. em = lookup_extent_mapping(em_tree, start, len);
  110. if (em) {
  111. ret = 0;
  112. } else {
  113. em = lookup_extent_mapping(em_tree, failed_start,
  114. failed_len);
  115. ret = -EIO;
  116. }
  117. } else if (ret) {
  118. free_extent_map(em);
  119. em = NULL;
  120. }
  121. spin_unlock(&em_tree->lock);
  122. if (ret)
  123. em = ERR_PTR(ret);
  124. out:
  125. return em;
  126. }
  127. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  128. {
  129. return btrfs_crc32c(seed, data, len);
  130. }
  131. void btrfs_csum_final(u32 crc, char *result)
  132. {
  133. *(__le32 *)result = ~cpu_to_le32(crc);
  134. }
  135. /*
  136. * compute the csum for a btree block, and either verify it or write it
  137. * into the csum field of the block.
  138. */
  139. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  140. int verify)
  141. {
  142. u16 csum_size =
  143. btrfs_super_csum_size(&root->fs_info->super_copy);
  144. char *result = NULL;
  145. unsigned long len;
  146. unsigned long cur_len;
  147. unsigned long offset = BTRFS_CSUM_SIZE;
  148. char *map_token = NULL;
  149. char *kaddr;
  150. unsigned long map_start;
  151. unsigned long map_len;
  152. int err;
  153. u32 crc = ~(u32)0;
  154. unsigned long inline_result;
  155. len = buf->len - offset;
  156. while (len > 0) {
  157. err = map_private_extent_buffer(buf, offset, 32,
  158. &map_token, &kaddr,
  159. &map_start, &map_len, KM_USER0);
  160. if (err)
  161. return 1;
  162. cur_len = min(len, map_len - (offset - map_start));
  163. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  164. crc, cur_len);
  165. len -= cur_len;
  166. offset += cur_len;
  167. unmap_extent_buffer(buf, map_token, KM_USER0);
  168. }
  169. if (csum_size > sizeof(inline_result)) {
  170. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  171. if (!result)
  172. return 1;
  173. } else {
  174. result = (char *)&inline_result;
  175. }
  176. btrfs_csum_final(crc, result);
  177. if (verify) {
  178. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  179. u32 val;
  180. u32 found = 0;
  181. memcpy(&found, result, csum_size);
  182. read_extent_buffer(buf, &val, 0, csum_size);
  183. printk(KERN_INFO "btrfs: %s checksum verify failed "
  184. "on %llu wanted %X found %X level %d\n",
  185. root->fs_info->sb->s_id,
  186. buf->start, val, found, btrfs_header_level(buf));
  187. if (result != (char *)&inline_result)
  188. kfree(result);
  189. return 1;
  190. }
  191. } else {
  192. write_extent_buffer(buf, result, 0, csum_size);
  193. }
  194. if (result != (char *)&inline_result)
  195. kfree(result);
  196. return 0;
  197. }
  198. /*
  199. * we can't consider a given block up to date unless the transid of the
  200. * block matches the transid in the parent node's pointer. This is how we
  201. * detect blocks that either didn't get written at all or got written
  202. * in the wrong place.
  203. */
  204. static int verify_parent_transid(struct extent_io_tree *io_tree,
  205. struct extent_buffer *eb, u64 parent_transid)
  206. {
  207. int ret;
  208. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  209. return 0;
  210. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  211. if (extent_buffer_uptodate(io_tree, eb) &&
  212. btrfs_header_generation(eb) == parent_transid) {
  213. ret = 0;
  214. goto out;
  215. }
  216. printk("parent transid verify failed on %llu wanted %llu found %llu\n",
  217. (unsigned long long)eb->start,
  218. (unsigned long long)parent_transid,
  219. (unsigned long long)btrfs_header_generation(eb));
  220. ret = 1;
  221. clear_extent_buffer_uptodate(io_tree, eb);
  222. out:
  223. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  224. GFP_NOFS);
  225. return ret;
  226. }
  227. /*
  228. * helper to read a given tree block, doing retries as required when
  229. * the checksums don't match and we have alternate mirrors to try.
  230. */
  231. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  232. struct extent_buffer *eb,
  233. u64 start, u64 parent_transid)
  234. {
  235. struct extent_io_tree *io_tree;
  236. int ret;
  237. int num_copies = 0;
  238. int mirror_num = 0;
  239. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  240. while (1) {
  241. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  242. btree_get_extent, mirror_num);
  243. if (!ret &&
  244. !verify_parent_transid(io_tree, eb, parent_transid))
  245. return ret;
  246. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  247. eb->start, eb->len);
  248. if (num_copies == 1)
  249. return ret;
  250. mirror_num++;
  251. if (mirror_num > num_copies)
  252. return ret;
  253. }
  254. return -EIO;
  255. }
  256. /*
  257. * checksum a dirty tree block before IO. This has extra checks to make sure
  258. * we only fill in the checksum field in the first page of a multi-page block
  259. */
  260. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  261. {
  262. struct extent_io_tree *tree;
  263. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  264. u64 found_start;
  265. int found_level;
  266. unsigned long len;
  267. struct extent_buffer *eb;
  268. int ret;
  269. tree = &BTRFS_I(page->mapping->host)->io_tree;
  270. if (page->private == EXTENT_PAGE_PRIVATE)
  271. goto out;
  272. if (!page->private)
  273. goto out;
  274. len = page->private >> 2;
  275. WARN_ON(len == 0);
  276. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  277. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  278. btrfs_header_generation(eb));
  279. BUG_ON(ret);
  280. found_start = btrfs_header_bytenr(eb);
  281. if (found_start != start) {
  282. WARN_ON(1);
  283. goto err;
  284. }
  285. if (eb->first_page != page) {
  286. WARN_ON(1);
  287. goto err;
  288. }
  289. if (!PageUptodate(page)) {
  290. WARN_ON(1);
  291. goto err;
  292. }
  293. found_level = btrfs_header_level(eb);
  294. csum_tree_block(root, eb, 0);
  295. err:
  296. free_extent_buffer(eb);
  297. out:
  298. return 0;
  299. }
  300. static int check_tree_block_fsid(struct btrfs_root *root,
  301. struct extent_buffer *eb)
  302. {
  303. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  304. u8 fsid[BTRFS_UUID_SIZE];
  305. int ret = 1;
  306. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  307. BTRFS_FSID_SIZE);
  308. while (fs_devices) {
  309. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  310. ret = 0;
  311. break;
  312. }
  313. fs_devices = fs_devices->seed;
  314. }
  315. return ret;
  316. }
  317. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  318. struct extent_state *state)
  319. {
  320. struct extent_io_tree *tree;
  321. u64 found_start;
  322. int found_level;
  323. unsigned long len;
  324. struct extent_buffer *eb;
  325. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  326. int ret = 0;
  327. tree = &BTRFS_I(page->mapping->host)->io_tree;
  328. if (page->private == EXTENT_PAGE_PRIVATE)
  329. goto out;
  330. if (!page->private)
  331. goto out;
  332. len = page->private >> 2;
  333. WARN_ON(len == 0);
  334. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  335. found_start = btrfs_header_bytenr(eb);
  336. if (found_start != start) {
  337. printk(KERN_INFO "btrfs bad tree block start %llu %llu\n",
  338. (unsigned long long)found_start,
  339. (unsigned long long)eb->start);
  340. ret = -EIO;
  341. goto err;
  342. }
  343. if (eb->first_page != page) {
  344. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  345. eb->first_page->index, page->index);
  346. WARN_ON(1);
  347. ret = -EIO;
  348. goto err;
  349. }
  350. if (check_tree_block_fsid(root, eb)) {
  351. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  352. (unsigned long long)eb->start);
  353. ret = -EIO;
  354. goto err;
  355. }
  356. found_level = btrfs_header_level(eb);
  357. ret = csum_tree_block(root, eb, 1);
  358. if (ret)
  359. ret = -EIO;
  360. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  361. end = eb->start + end - 1;
  362. err:
  363. free_extent_buffer(eb);
  364. out:
  365. return ret;
  366. }
  367. static void end_workqueue_bio(struct bio *bio, int err)
  368. {
  369. struct end_io_wq *end_io_wq = bio->bi_private;
  370. struct btrfs_fs_info *fs_info;
  371. fs_info = end_io_wq->info;
  372. end_io_wq->error = err;
  373. end_io_wq->work.func = end_workqueue_fn;
  374. end_io_wq->work.flags = 0;
  375. if (bio->bi_rw & (1 << BIO_RW)) {
  376. if (end_io_wq->metadata)
  377. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  378. &end_io_wq->work);
  379. else
  380. btrfs_queue_worker(&fs_info->endio_write_workers,
  381. &end_io_wq->work);
  382. } else {
  383. if (end_io_wq->metadata)
  384. btrfs_queue_worker(&fs_info->endio_meta_workers,
  385. &end_io_wq->work);
  386. else
  387. btrfs_queue_worker(&fs_info->endio_workers,
  388. &end_io_wq->work);
  389. }
  390. }
  391. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  392. int metadata)
  393. {
  394. struct end_io_wq *end_io_wq;
  395. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  396. if (!end_io_wq)
  397. return -ENOMEM;
  398. end_io_wq->private = bio->bi_private;
  399. end_io_wq->end_io = bio->bi_end_io;
  400. end_io_wq->info = info;
  401. end_io_wq->error = 0;
  402. end_io_wq->bio = bio;
  403. end_io_wq->metadata = metadata;
  404. bio->bi_private = end_io_wq;
  405. bio->bi_end_io = end_workqueue_bio;
  406. return 0;
  407. }
  408. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  409. {
  410. unsigned long limit = min_t(unsigned long,
  411. info->workers.max_workers,
  412. info->fs_devices->open_devices);
  413. return 256 * limit;
  414. }
  415. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  416. {
  417. return atomic_read(&info->nr_async_bios) >
  418. btrfs_async_submit_limit(info);
  419. }
  420. static void run_one_async_start(struct btrfs_work *work)
  421. {
  422. struct btrfs_fs_info *fs_info;
  423. struct async_submit_bio *async;
  424. async = container_of(work, struct async_submit_bio, work);
  425. fs_info = BTRFS_I(async->inode)->root->fs_info;
  426. async->submit_bio_start(async->inode, async->rw, async->bio,
  427. async->mirror_num, async->bio_flags);
  428. }
  429. static void run_one_async_done(struct btrfs_work *work)
  430. {
  431. struct btrfs_fs_info *fs_info;
  432. struct async_submit_bio *async;
  433. int limit;
  434. async = container_of(work, struct async_submit_bio, work);
  435. fs_info = BTRFS_I(async->inode)->root->fs_info;
  436. limit = btrfs_async_submit_limit(fs_info);
  437. limit = limit * 2 / 3;
  438. atomic_dec(&fs_info->nr_async_submits);
  439. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  440. waitqueue_active(&fs_info->async_submit_wait))
  441. wake_up(&fs_info->async_submit_wait);
  442. async->submit_bio_done(async->inode, async->rw, async->bio,
  443. async->mirror_num, async->bio_flags);
  444. }
  445. static void run_one_async_free(struct btrfs_work *work)
  446. {
  447. struct async_submit_bio *async;
  448. async = container_of(work, struct async_submit_bio, work);
  449. kfree(async);
  450. }
  451. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  452. int rw, struct bio *bio, int mirror_num,
  453. unsigned long bio_flags,
  454. extent_submit_bio_hook_t *submit_bio_start,
  455. extent_submit_bio_hook_t *submit_bio_done)
  456. {
  457. struct async_submit_bio *async;
  458. async = kmalloc(sizeof(*async), GFP_NOFS);
  459. if (!async)
  460. return -ENOMEM;
  461. async->inode = inode;
  462. async->rw = rw;
  463. async->bio = bio;
  464. async->mirror_num = mirror_num;
  465. async->submit_bio_start = submit_bio_start;
  466. async->submit_bio_done = submit_bio_done;
  467. async->work.func = run_one_async_start;
  468. async->work.ordered_func = run_one_async_done;
  469. async->work.ordered_free = run_one_async_free;
  470. async->work.flags = 0;
  471. async->bio_flags = bio_flags;
  472. atomic_inc(&fs_info->nr_async_submits);
  473. btrfs_queue_worker(&fs_info->workers, &async->work);
  474. #if 0
  475. int limit = btrfs_async_submit_limit(fs_info);
  476. if (atomic_read(&fs_info->nr_async_submits) > limit) {
  477. wait_event_timeout(fs_info->async_submit_wait,
  478. (atomic_read(&fs_info->nr_async_submits) < limit),
  479. HZ/10);
  480. wait_event_timeout(fs_info->async_submit_wait,
  481. (atomic_read(&fs_info->nr_async_bios) < limit),
  482. HZ/10);
  483. }
  484. #endif
  485. while (atomic_read(&fs_info->async_submit_draining) &&
  486. atomic_read(&fs_info->nr_async_submits)) {
  487. wait_event(fs_info->async_submit_wait,
  488. (atomic_read(&fs_info->nr_async_submits) == 0));
  489. }
  490. return 0;
  491. }
  492. static int btree_csum_one_bio(struct bio *bio)
  493. {
  494. struct bio_vec *bvec = bio->bi_io_vec;
  495. int bio_index = 0;
  496. struct btrfs_root *root;
  497. WARN_ON(bio->bi_vcnt <= 0);
  498. while (bio_index < bio->bi_vcnt) {
  499. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  500. csum_dirty_buffer(root, bvec->bv_page);
  501. bio_index++;
  502. bvec++;
  503. }
  504. return 0;
  505. }
  506. static int __btree_submit_bio_start(struct inode *inode, int rw,
  507. struct bio *bio, int mirror_num,
  508. unsigned long bio_flags)
  509. {
  510. /*
  511. * when we're called for a write, we're already in the async
  512. * submission context. Just jump into btrfs_map_bio
  513. */
  514. btree_csum_one_bio(bio);
  515. return 0;
  516. }
  517. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  518. int mirror_num, unsigned long bio_flags)
  519. {
  520. /*
  521. * when we're called for a write, we're already in the async
  522. * submission context. Just jump into btrfs_map_bio
  523. */
  524. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  525. }
  526. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  527. int mirror_num, unsigned long bio_flags)
  528. {
  529. int ret;
  530. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  531. bio, 1);
  532. BUG_ON(ret);
  533. if (!(rw & (1 << BIO_RW))) {
  534. /*
  535. * called for a read, do the setup so that checksum validation
  536. * can happen in the async kernel threads
  537. */
  538. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  539. mirror_num, 0);
  540. }
  541. /*
  542. * kthread helpers are used to submit writes so that checksumming
  543. * can happen in parallel across all CPUs
  544. */
  545. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  546. inode, rw, bio, mirror_num, 0,
  547. __btree_submit_bio_start,
  548. __btree_submit_bio_done);
  549. }
  550. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  551. {
  552. struct extent_io_tree *tree;
  553. tree = &BTRFS_I(page->mapping->host)->io_tree;
  554. if (current->flags & PF_MEMALLOC) {
  555. redirty_page_for_writepage(wbc, page);
  556. unlock_page(page);
  557. return 0;
  558. }
  559. return extent_write_full_page(tree, page, btree_get_extent, wbc);
  560. }
  561. static int btree_writepages(struct address_space *mapping,
  562. struct writeback_control *wbc)
  563. {
  564. struct extent_io_tree *tree;
  565. tree = &BTRFS_I(mapping->host)->io_tree;
  566. if (wbc->sync_mode == WB_SYNC_NONE) {
  567. u64 num_dirty;
  568. u64 start = 0;
  569. unsigned long thresh = 32 * 1024 * 1024;
  570. if (wbc->for_kupdate)
  571. return 0;
  572. num_dirty = count_range_bits(tree, &start, (u64)-1,
  573. thresh, EXTENT_DIRTY);
  574. if (num_dirty < thresh)
  575. return 0;
  576. }
  577. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  578. }
  579. static int btree_readpage(struct file *file, struct page *page)
  580. {
  581. struct extent_io_tree *tree;
  582. tree = &BTRFS_I(page->mapping->host)->io_tree;
  583. return extent_read_full_page(tree, page, btree_get_extent);
  584. }
  585. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  586. {
  587. struct extent_io_tree *tree;
  588. struct extent_map_tree *map;
  589. int ret;
  590. if (PageWriteback(page) || PageDirty(page))
  591. return 0;
  592. tree = &BTRFS_I(page->mapping->host)->io_tree;
  593. map = &BTRFS_I(page->mapping->host)->extent_tree;
  594. ret = try_release_extent_state(map, tree, page, gfp_flags);
  595. if (!ret)
  596. return 0;
  597. ret = try_release_extent_buffer(tree, page);
  598. if (ret == 1) {
  599. ClearPagePrivate(page);
  600. set_page_private(page, 0);
  601. page_cache_release(page);
  602. }
  603. return ret;
  604. }
  605. static void btree_invalidatepage(struct page *page, unsigned long offset)
  606. {
  607. struct extent_io_tree *tree;
  608. tree = &BTRFS_I(page->mapping->host)->io_tree;
  609. extent_invalidatepage(tree, page, offset);
  610. btree_releasepage(page, GFP_NOFS);
  611. if (PagePrivate(page)) {
  612. printk(KERN_WARNING "btrfs warning page private not zero "
  613. "on page %llu\n", (unsigned long long)page_offset(page));
  614. ClearPagePrivate(page);
  615. set_page_private(page, 0);
  616. page_cache_release(page);
  617. }
  618. }
  619. #if 0
  620. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  621. {
  622. struct buffer_head *bh;
  623. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  624. struct buffer_head *head;
  625. if (!page_has_buffers(page)) {
  626. create_empty_buffers(page, root->fs_info->sb->s_blocksize,
  627. (1 << BH_Dirty)|(1 << BH_Uptodate));
  628. }
  629. head = page_buffers(page);
  630. bh = head;
  631. do {
  632. if (buffer_dirty(bh))
  633. csum_tree_block(root, bh, 0);
  634. bh = bh->b_this_page;
  635. } while (bh != head);
  636. return block_write_full_page(page, btree_get_block, wbc);
  637. }
  638. #endif
  639. static struct address_space_operations btree_aops = {
  640. .readpage = btree_readpage,
  641. .writepage = btree_writepage,
  642. .writepages = btree_writepages,
  643. .releasepage = btree_releasepage,
  644. .invalidatepage = btree_invalidatepage,
  645. .sync_page = block_sync_page,
  646. };
  647. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  648. u64 parent_transid)
  649. {
  650. struct extent_buffer *buf = NULL;
  651. struct inode *btree_inode = root->fs_info->btree_inode;
  652. int ret = 0;
  653. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  654. if (!buf)
  655. return 0;
  656. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  657. buf, 0, 0, btree_get_extent, 0);
  658. free_extent_buffer(buf);
  659. return ret;
  660. }
  661. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  662. u64 bytenr, u32 blocksize)
  663. {
  664. struct inode *btree_inode = root->fs_info->btree_inode;
  665. struct extent_buffer *eb;
  666. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  667. bytenr, blocksize, GFP_NOFS);
  668. return eb;
  669. }
  670. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  671. u64 bytenr, u32 blocksize)
  672. {
  673. struct inode *btree_inode = root->fs_info->btree_inode;
  674. struct extent_buffer *eb;
  675. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  676. bytenr, blocksize, NULL, GFP_NOFS);
  677. return eb;
  678. }
  679. int btrfs_write_tree_block(struct extent_buffer *buf)
  680. {
  681. return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
  682. buf->start + buf->len - 1, WB_SYNC_ALL);
  683. }
  684. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  685. {
  686. return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
  687. buf->start, buf->start + buf->len - 1);
  688. }
  689. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  690. u32 blocksize, u64 parent_transid)
  691. {
  692. struct extent_buffer *buf = NULL;
  693. struct inode *btree_inode = root->fs_info->btree_inode;
  694. struct extent_io_tree *io_tree;
  695. int ret;
  696. io_tree = &BTRFS_I(btree_inode)->io_tree;
  697. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  698. if (!buf)
  699. return NULL;
  700. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  701. if (ret == 0)
  702. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  703. else
  704. WARN_ON(1);
  705. return buf;
  706. }
  707. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  708. struct extent_buffer *buf)
  709. {
  710. struct inode *btree_inode = root->fs_info->btree_inode;
  711. if (btrfs_header_generation(buf) ==
  712. root->fs_info->running_transaction->transid) {
  713. WARN_ON(!btrfs_tree_locked(buf));
  714. /* ugh, clear_extent_buffer_dirty can be expensive */
  715. btrfs_set_lock_blocking(buf);
  716. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  717. buf);
  718. }
  719. return 0;
  720. }
  721. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  722. u32 stripesize, struct btrfs_root *root,
  723. struct btrfs_fs_info *fs_info,
  724. u64 objectid)
  725. {
  726. root->node = NULL;
  727. root->commit_root = NULL;
  728. root->ref_tree = NULL;
  729. root->sectorsize = sectorsize;
  730. root->nodesize = nodesize;
  731. root->leafsize = leafsize;
  732. root->stripesize = stripesize;
  733. root->ref_cows = 0;
  734. root->track_dirty = 0;
  735. root->fs_info = fs_info;
  736. root->objectid = objectid;
  737. root->last_trans = 0;
  738. root->highest_inode = 0;
  739. root->last_inode_alloc = 0;
  740. root->name = NULL;
  741. root->in_sysfs = 0;
  742. INIT_LIST_HEAD(&root->dirty_list);
  743. INIT_LIST_HEAD(&root->orphan_list);
  744. INIT_LIST_HEAD(&root->dead_list);
  745. spin_lock_init(&root->node_lock);
  746. spin_lock_init(&root->list_lock);
  747. mutex_init(&root->objectid_mutex);
  748. mutex_init(&root->log_mutex);
  749. init_waitqueue_head(&root->log_writer_wait);
  750. init_waitqueue_head(&root->log_commit_wait[0]);
  751. init_waitqueue_head(&root->log_commit_wait[1]);
  752. atomic_set(&root->log_commit[0], 0);
  753. atomic_set(&root->log_commit[1], 0);
  754. atomic_set(&root->log_writers, 0);
  755. root->log_batch = 0;
  756. root->log_transid = 0;
  757. extent_io_tree_init(&root->dirty_log_pages,
  758. fs_info->btree_inode->i_mapping, GFP_NOFS);
  759. btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
  760. root->ref_tree = &root->ref_tree_struct;
  761. memset(&root->root_key, 0, sizeof(root->root_key));
  762. memset(&root->root_item, 0, sizeof(root->root_item));
  763. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  764. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  765. root->defrag_trans_start = fs_info->generation;
  766. init_completion(&root->kobj_unregister);
  767. root->defrag_running = 0;
  768. root->defrag_level = 0;
  769. root->root_key.objectid = objectid;
  770. root->anon_super.s_root = NULL;
  771. root->anon_super.s_dev = 0;
  772. INIT_LIST_HEAD(&root->anon_super.s_list);
  773. INIT_LIST_HEAD(&root->anon_super.s_instances);
  774. init_rwsem(&root->anon_super.s_umount);
  775. return 0;
  776. }
  777. static int find_and_setup_root(struct btrfs_root *tree_root,
  778. struct btrfs_fs_info *fs_info,
  779. u64 objectid,
  780. struct btrfs_root *root)
  781. {
  782. int ret;
  783. u32 blocksize;
  784. u64 generation;
  785. __setup_root(tree_root->nodesize, tree_root->leafsize,
  786. tree_root->sectorsize, tree_root->stripesize,
  787. root, fs_info, objectid);
  788. ret = btrfs_find_last_root(tree_root, objectid,
  789. &root->root_item, &root->root_key);
  790. BUG_ON(ret);
  791. generation = btrfs_root_generation(&root->root_item);
  792. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  793. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  794. blocksize, generation);
  795. BUG_ON(!root->node);
  796. return 0;
  797. }
  798. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  799. struct btrfs_fs_info *fs_info)
  800. {
  801. struct extent_buffer *eb;
  802. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  803. u64 start = 0;
  804. u64 end = 0;
  805. int ret;
  806. if (!log_root_tree)
  807. return 0;
  808. while (1) {
  809. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  810. 0, &start, &end, EXTENT_DIRTY);
  811. if (ret)
  812. break;
  813. clear_extent_dirty(&log_root_tree->dirty_log_pages,
  814. start, end, GFP_NOFS);
  815. }
  816. eb = fs_info->log_root_tree->node;
  817. WARN_ON(btrfs_header_level(eb) != 0);
  818. WARN_ON(btrfs_header_nritems(eb) != 0);
  819. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  820. eb->start, eb->len);
  821. BUG_ON(ret);
  822. free_extent_buffer(eb);
  823. kfree(fs_info->log_root_tree);
  824. fs_info->log_root_tree = NULL;
  825. return 0;
  826. }
  827. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  828. struct btrfs_fs_info *fs_info)
  829. {
  830. struct btrfs_root *root;
  831. struct btrfs_root *tree_root = fs_info->tree_root;
  832. struct extent_buffer *leaf;
  833. root = kzalloc(sizeof(*root), GFP_NOFS);
  834. if (!root)
  835. return ERR_PTR(-ENOMEM);
  836. __setup_root(tree_root->nodesize, tree_root->leafsize,
  837. tree_root->sectorsize, tree_root->stripesize,
  838. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  839. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  840. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  841. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  842. /*
  843. * log trees do not get reference counted because they go away
  844. * before a real commit is actually done. They do store pointers
  845. * to file data extents, and those reference counts still get
  846. * updated (along with back refs to the log tree).
  847. */
  848. root->ref_cows = 0;
  849. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  850. 0, BTRFS_TREE_LOG_OBJECTID,
  851. trans->transid, 0, 0, 0);
  852. if (IS_ERR(leaf)) {
  853. kfree(root);
  854. return ERR_CAST(leaf);
  855. }
  856. root->node = leaf;
  857. btrfs_set_header_nritems(root->node, 0);
  858. btrfs_set_header_level(root->node, 0);
  859. btrfs_set_header_bytenr(root->node, root->node->start);
  860. btrfs_set_header_generation(root->node, trans->transid);
  861. btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
  862. write_extent_buffer(root->node, root->fs_info->fsid,
  863. (unsigned long)btrfs_header_fsid(root->node),
  864. BTRFS_FSID_SIZE);
  865. btrfs_mark_buffer_dirty(root->node);
  866. btrfs_tree_unlock(root->node);
  867. return root;
  868. }
  869. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  870. struct btrfs_fs_info *fs_info)
  871. {
  872. struct btrfs_root *log_root;
  873. log_root = alloc_log_tree(trans, fs_info);
  874. if (IS_ERR(log_root))
  875. return PTR_ERR(log_root);
  876. WARN_ON(fs_info->log_root_tree);
  877. fs_info->log_root_tree = log_root;
  878. return 0;
  879. }
  880. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  881. struct btrfs_root *root)
  882. {
  883. struct btrfs_root *log_root;
  884. struct btrfs_inode_item *inode_item;
  885. log_root = alloc_log_tree(trans, root->fs_info);
  886. if (IS_ERR(log_root))
  887. return PTR_ERR(log_root);
  888. log_root->last_trans = trans->transid;
  889. log_root->root_key.offset = root->root_key.objectid;
  890. inode_item = &log_root->root_item.inode;
  891. inode_item->generation = cpu_to_le64(1);
  892. inode_item->size = cpu_to_le64(3);
  893. inode_item->nlink = cpu_to_le32(1);
  894. inode_item->nbytes = cpu_to_le64(root->leafsize);
  895. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  896. btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
  897. btrfs_set_root_generation(&log_root->root_item, trans->transid);
  898. WARN_ON(root->log_root);
  899. root->log_root = log_root;
  900. root->log_transid = 0;
  901. return 0;
  902. }
  903. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  904. struct btrfs_key *location)
  905. {
  906. struct btrfs_root *root;
  907. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  908. struct btrfs_path *path;
  909. struct extent_buffer *l;
  910. u64 highest_inode;
  911. u64 generation;
  912. u32 blocksize;
  913. int ret = 0;
  914. root = kzalloc(sizeof(*root), GFP_NOFS);
  915. if (!root)
  916. return ERR_PTR(-ENOMEM);
  917. if (location->offset == (u64)-1) {
  918. ret = find_and_setup_root(tree_root, fs_info,
  919. location->objectid, root);
  920. if (ret) {
  921. kfree(root);
  922. return ERR_PTR(ret);
  923. }
  924. goto insert;
  925. }
  926. __setup_root(tree_root->nodesize, tree_root->leafsize,
  927. tree_root->sectorsize, tree_root->stripesize,
  928. root, fs_info, location->objectid);
  929. path = btrfs_alloc_path();
  930. BUG_ON(!path);
  931. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  932. if (ret != 0) {
  933. if (ret > 0)
  934. ret = -ENOENT;
  935. goto out;
  936. }
  937. l = path->nodes[0];
  938. read_extent_buffer(l, &root->root_item,
  939. btrfs_item_ptr_offset(l, path->slots[0]),
  940. sizeof(root->root_item));
  941. memcpy(&root->root_key, location, sizeof(*location));
  942. ret = 0;
  943. out:
  944. btrfs_release_path(root, path);
  945. btrfs_free_path(path);
  946. if (ret) {
  947. kfree(root);
  948. return ERR_PTR(ret);
  949. }
  950. generation = btrfs_root_generation(&root->root_item);
  951. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  952. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  953. blocksize, generation);
  954. BUG_ON(!root->node);
  955. insert:
  956. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  957. root->ref_cows = 1;
  958. ret = btrfs_find_highest_inode(root, &highest_inode);
  959. if (ret == 0) {
  960. root->highest_inode = highest_inode;
  961. root->last_inode_alloc = highest_inode;
  962. }
  963. }
  964. return root;
  965. }
  966. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  967. u64 root_objectid)
  968. {
  969. struct btrfs_root *root;
  970. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  971. return fs_info->tree_root;
  972. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  973. return fs_info->extent_root;
  974. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  975. (unsigned long)root_objectid);
  976. return root;
  977. }
  978. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  979. struct btrfs_key *location)
  980. {
  981. struct btrfs_root *root;
  982. int ret;
  983. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  984. return fs_info->tree_root;
  985. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  986. return fs_info->extent_root;
  987. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  988. return fs_info->chunk_root;
  989. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  990. return fs_info->dev_root;
  991. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  992. return fs_info->csum_root;
  993. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  994. (unsigned long)location->objectid);
  995. if (root)
  996. return root;
  997. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  998. if (IS_ERR(root))
  999. return root;
  1000. set_anon_super(&root->anon_super, NULL);
  1001. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1002. (unsigned long)root->root_key.objectid,
  1003. root);
  1004. if (ret) {
  1005. free_extent_buffer(root->node);
  1006. kfree(root);
  1007. return ERR_PTR(ret);
  1008. }
  1009. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1010. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1011. root->root_key.objectid, root);
  1012. BUG_ON(ret);
  1013. btrfs_orphan_cleanup(root);
  1014. }
  1015. return root;
  1016. }
  1017. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1018. struct btrfs_key *location,
  1019. const char *name, int namelen)
  1020. {
  1021. struct btrfs_root *root;
  1022. int ret;
  1023. root = btrfs_read_fs_root_no_name(fs_info, location);
  1024. if (!root)
  1025. return NULL;
  1026. if (root->in_sysfs)
  1027. return root;
  1028. ret = btrfs_set_root_name(root, name, namelen);
  1029. if (ret) {
  1030. free_extent_buffer(root->node);
  1031. kfree(root);
  1032. return ERR_PTR(ret);
  1033. }
  1034. #if 0
  1035. ret = btrfs_sysfs_add_root(root);
  1036. if (ret) {
  1037. free_extent_buffer(root->node);
  1038. kfree(root->name);
  1039. kfree(root);
  1040. return ERR_PTR(ret);
  1041. }
  1042. #endif
  1043. root->in_sysfs = 1;
  1044. return root;
  1045. }
  1046. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1047. {
  1048. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1049. int ret = 0;
  1050. struct btrfs_device *device;
  1051. struct backing_dev_info *bdi;
  1052. #if 0
  1053. if ((bdi_bits & (1 << BDI_write_congested)) &&
  1054. btrfs_congested_async(info, 0))
  1055. return 1;
  1056. #endif
  1057. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1058. if (!device->bdev)
  1059. continue;
  1060. bdi = blk_get_backing_dev_info(device->bdev);
  1061. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1062. ret = 1;
  1063. break;
  1064. }
  1065. }
  1066. return ret;
  1067. }
  1068. /*
  1069. * this unplugs every device on the box, and it is only used when page
  1070. * is null
  1071. */
  1072. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1073. {
  1074. struct btrfs_device *device;
  1075. struct btrfs_fs_info *info;
  1076. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1077. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1078. if (!device->bdev)
  1079. continue;
  1080. bdi = blk_get_backing_dev_info(device->bdev);
  1081. if (bdi->unplug_io_fn)
  1082. bdi->unplug_io_fn(bdi, page);
  1083. }
  1084. }
  1085. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1086. {
  1087. struct inode *inode;
  1088. struct extent_map_tree *em_tree;
  1089. struct extent_map *em;
  1090. struct address_space *mapping;
  1091. u64 offset;
  1092. /* the generic O_DIRECT read code does this */
  1093. if (1 || !page) {
  1094. __unplug_io_fn(bdi, page);
  1095. return;
  1096. }
  1097. /*
  1098. * page->mapping may change at any time. Get a consistent copy
  1099. * and use that for everything below
  1100. */
  1101. smp_mb();
  1102. mapping = page->mapping;
  1103. if (!mapping)
  1104. return;
  1105. inode = mapping->host;
  1106. /*
  1107. * don't do the expensive searching for a small number of
  1108. * devices
  1109. */
  1110. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1111. __unplug_io_fn(bdi, page);
  1112. return;
  1113. }
  1114. offset = page_offset(page);
  1115. em_tree = &BTRFS_I(inode)->extent_tree;
  1116. spin_lock(&em_tree->lock);
  1117. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1118. spin_unlock(&em_tree->lock);
  1119. if (!em) {
  1120. __unplug_io_fn(bdi, page);
  1121. return;
  1122. }
  1123. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1124. free_extent_map(em);
  1125. __unplug_io_fn(bdi, page);
  1126. return;
  1127. }
  1128. offset = offset - em->start;
  1129. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1130. em->block_start + offset, page);
  1131. free_extent_map(em);
  1132. }
  1133. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1134. {
  1135. bdi_init(bdi);
  1136. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1137. bdi->state = 0;
  1138. bdi->capabilities = default_backing_dev_info.capabilities;
  1139. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1140. bdi->unplug_io_data = info;
  1141. bdi->congested_fn = btrfs_congested_fn;
  1142. bdi->congested_data = info;
  1143. return 0;
  1144. }
  1145. static int bio_ready_for_csum(struct bio *bio)
  1146. {
  1147. u64 length = 0;
  1148. u64 buf_len = 0;
  1149. u64 start = 0;
  1150. struct page *page;
  1151. struct extent_io_tree *io_tree = NULL;
  1152. struct btrfs_fs_info *info = NULL;
  1153. struct bio_vec *bvec;
  1154. int i;
  1155. int ret;
  1156. bio_for_each_segment(bvec, bio, i) {
  1157. page = bvec->bv_page;
  1158. if (page->private == EXTENT_PAGE_PRIVATE) {
  1159. length += bvec->bv_len;
  1160. continue;
  1161. }
  1162. if (!page->private) {
  1163. length += bvec->bv_len;
  1164. continue;
  1165. }
  1166. length = bvec->bv_len;
  1167. buf_len = page->private >> 2;
  1168. start = page_offset(page) + bvec->bv_offset;
  1169. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1170. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1171. }
  1172. /* are we fully contained in this bio? */
  1173. if (buf_len <= length)
  1174. return 1;
  1175. ret = extent_range_uptodate(io_tree, start + length,
  1176. start + buf_len - 1);
  1177. if (ret == 1)
  1178. return ret;
  1179. return ret;
  1180. }
  1181. /*
  1182. * called by the kthread helper functions to finally call the bio end_io
  1183. * functions. This is where read checksum verification actually happens
  1184. */
  1185. static void end_workqueue_fn(struct btrfs_work *work)
  1186. {
  1187. struct bio *bio;
  1188. struct end_io_wq *end_io_wq;
  1189. struct btrfs_fs_info *fs_info;
  1190. int error;
  1191. end_io_wq = container_of(work, struct end_io_wq, work);
  1192. bio = end_io_wq->bio;
  1193. fs_info = end_io_wq->info;
  1194. /* metadata bio reads are special because the whole tree block must
  1195. * be checksummed at once. This makes sure the entire block is in
  1196. * ram and up to date before trying to verify things. For
  1197. * blocksize <= pagesize, it is basically a noop
  1198. */
  1199. if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
  1200. !bio_ready_for_csum(bio)) {
  1201. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1202. &end_io_wq->work);
  1203. return;
  1204. }
  1205. error = end_io_wq->error;
  1206. bio->bi_private = end_io_wq->private;
  1207. bio->bi_end_io = end_io_wq->end_io;
  1208. kfree(end_io_wq);
  1209. bio_endio(bio, error);
  1210. }
  1211. static int cleaner_kthread(void *arg)
  1212. {
  1213. struct btrfs_root *root = arg;
  1214. do {
  1215. smp_mb();
  1216. if (root->fs_info->closing)
  1217. break;
  1218. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1219. mutex_lock(&root->fs_info->cleaner_mutex);
  1220. btrfs_clean_old_snapshots(root);
  1221. mutex_unlock(&root->fs_info->cleaner_mutex);
  1222. if (freezing(current)) {
  1223. refrigerator();
  1224. } else {
  1225. smp_mb();
  1226. if (root->fs_info->closing)
  1227. break;
  1228. set_current_state(TASK_INTERRUPTIBLE);
  1229. schedule();
  1230. __set_current_state(TASK_RUNNING);
  1231. }
  1232. } while (!kthread_should_stop());
  1233. return 0;
  1234. }
  1235. static int transaction_kthread(void *arg)
  1236. {
  1237. struct btrfs_root *root = arg;
  1238. struct btrfs_trans_handle *trans;
  1239. struct btrfs_transaction *cur;
  1240. unsigned long now;
  1241. unsigned long delay;
  1242. int ret;
  1243. do {
  1244. smp_mb();
  1245. if (root->fs_info->closing)
  1246. break;
  1247. delay = HZ * 30;
  1248. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1249. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1250. if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
  1251. printk(KERN_INFO "btrfs: total reference cache "
  1252. "size %llu\n",
  1253. root->fs_info->total_ref_cache_size);
  1254. }
  1255. mutex_lock(&root->fs_info->trans_mutex);
  1256. cur = root->fs_info->running_transaction;
  1257. if (!cur) {
  1258. mutex_unlock(&root->fs_info->trans_mutex);
  1259. goto sleep;
  1260. }
  1261. now = get_seconds();
  1262. if (now < cur->start_time || now - cur->start_time < 30) {
  1263. mutex_unlock(&root->fs_info->trans_mutex);
  1264. delay = HZ * 5;
  1265. goto sleep;
  1266. }
  1267. mutex_unlock(&root->fs_info->trans_mutex);
  1268. trans = btrfs_start_transaction(root, 1);
  1269. ret = btrfs_commit_transaction(trans, root);
  1270. sleep:
  1271. wake_up_process(root->fs_info->cleaner_kthread);
  1272. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1273. if (freezing(current)) {
  1274. refrigerator();
  1275. } else {
  1276. if (root->fs_info->closing)
  1277. break;
  1278. set_current_state(TASK_INTERRUPTIBLE);
  1279. schedule_timeout(delay);
  1280. __set_current_state(TASK_RUNNING);
  1281. }
  1282. } while (!kthread_should_stop());
  1283. return 0;
  1284. }
  1285. struct btrfs_root *open_ctree(struct super_block *sb,
  1286. struct btrfs_fs_devices *fs_devices,
  1287. char *options)
  1288. {
  1289. u32 sectorsize;
  1290. u32 nodesize;
  1291. u32 leafsize;
  1292. u32 blocksize;
  1293. u32 stripesize;
  1294. u64 generation;
  1295. u64 features;
  1296. struct btrfs_key location;
  1297. struct buffer_head *bh;
  1298. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1299. GFP_NOFS);
  1300. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1301. GFP_NOFS);
  1302. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1303. GFP_NOFS);
  1304. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1305. GFP_NOFS);
  1306. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1307. GFP_NOFS);
  1308. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1309. GFP_NOFS);
  1310. struct btrfs_root *log_tree_root;
  1311. int ret;
  1312. int err = -EINVAL;
  1313. struct btrfs_super_block *disk_super;
  1314. if (!extent_root || !tree_root || !fs_info ||
  1315. !chunk_root || !dev_root || !csum_root) {
  1316. err = -ENOMEM;
  1317. goto fail;
  1318. }
  1319. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1320. INIT_LIST_HEAD(&fs_info->trans_list);
  1321. INIT_LIST_HEAD(&fs_info->dead_roots);
  1322. INIT_LIST_HEAD(&fs_info->hashers);
  1323. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1324. spin_lock_init(&fs_info->delalloc_lock);
  1325. spin_lock_init(&fs_info->new_trans_lock);
  1326. spin_lock_init(&fs_info->ref_cache_lock);
  1327. init_completion(&fs_info->kobj_unregister);
  1328. fs_info->tree_root = tree_root;
  1329. fs_info->extent_root = extent_root;
  1330. fs_info->csum_root = csum_root;
  1331. fs_info->chunk_root = chunk_root;
  1332. fs_info->dev_root = dev_root;
  1333. fs_info->fs_devices = fs_devices;
  1334. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1335. INIT_LIST_HEAD(&fs_info->space_info);
  1336. btrfs_mapping_init(&fs_info->mapping_tree);
  1337. atomic_set(&fs_info->nr_async_submits, 0);
  1338. atomic_set(&fs_info->async_delalloc_pages, 0);
  1339. atomic_set(&fs_info->async_submit_draining, 0);
  1340. atomic_set(&fs_info->nr_async_bios, 0);
  1341. atomic_set(&fs_info->throttles, 0);
  1342. atomic_set(&fs_info->throttle_gen, 0);
  1343. fs_info->sb = sb;
  1344. fs_info->max_extent = (u64)-1;
  1345. fs_info->max_inline = 8192 * 1024;
  1346. setup_bdi(fs_info, &fs_info->bdi);
  1347. fs_info->btree_inode = new_inode(sb);
  1348. fs_info->btree_inode->i_ino = 1;
  1349. fs_info->btree_inode->i_nlink = 1;
  1350. fs_info->thread_pool_size = min_t(unsigned long,
  1351. num_online_cpus() + 2, 8);
  1352. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1353. spin_lock_init(&fs_info->ordered_extent_lock);
  1354. sb->s_blocksize = 4096;
  1355. sb->s_blocksize_bits = blksize_bits(4096);
  1356. /*
  1357. * we set the i_size on the btree inode to the max possible int.
  1358. * the real end of the address space is determined by all of
  1359. * the devices in the system
  1360. */
  1361. fs_info->btree_inode->i_size = OFFSET_MAX;
  1362. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1363. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1364. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1365. fs_info->btree_inode->i_mapping,
  1366. GFP_NOFS);
  1367. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1368. GFP_NOFS);
  1369. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1370. spin_lock_init(&fs_info->block_group_cache_lock);
  1371. fs_info->block_group_cache_tree.rb_node = NULL;
  1372. extent_io_tree_init(&fs_info->pinned_extents,
  1373. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1374. extent_io_tree_init(&fs_info->pending_del,
  1375. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1376. extent_io_tree_init(&fs_info->extent_ins,
  1377. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1378. fs_info->do_barriers = 1;
  1379. INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
  1380. btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
  1381. btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
  1382. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1383. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1384. sizeof(struct btrfs_key));
  1385. insert_inode_hash(fs_info->btree_inode);
  1386. mutex_init(&fs_info->trans_mutex);
  1387. mutex_init(&fs_info->tree_log_mutex);
  1388. mutex_init(&fs_info->drop_mutex);
  1389. mutex_init(&fs_info->extent_ins_mutex);
  1390. mutex_init(&fs_info->pinned_mutex);
  1391. mutex_init(&fs_info->chunk_mutex);
  1392. mutex_init(&fs_info->transaction_kthread_mutex);
  1393. mutex_init(&fs_info->cleaner_mutex);
  1394. mutex_init(&fs_info->volume_mutex);
  1395. mutex_init(&fs_info->tree_reloc_mutex);
  1396. init_waitqueue_head(&fs_info->transaction_throttle);
  1397. init_waitqueue_head(&fs_info->transaction_wait);
  1398. init_waitqueue_head(&fs_info->async_submit_wait);
  1399. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1400. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1401. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1402. if (!bh)
  1403. goto fail_iput;
  1404. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1405. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1406. sizeof(fs_info->super_for_commit));
  1407. brelse(bh);
  1408. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1409. disk_super = &fs_info->super_copy;
  1410. if (!btrfs_super_root(disk_super))
  1411. goto fail_iput;
  1412. ret = btrfs_parse_options(tree_root, options);
  1413. if (ret) {
  1414. err = ret;
  1415. goto fail_iput;
  1416. }
  1417. features = btrfs_super_incompat_flags(disk_super) &
  1418. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1419. if (features) {
  1420. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1421. "unsupported optional features (%Lx).\n",
  1422. features);
  1423. err = -EINVAL;
  1424. goto fail_iput;
  1425. }
  1426. features = btrfs_super_compat_ro_flags(disk_super) &
  1427. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1428. if (!(sb->s_flags & MS_RDONLY) && features) {
  1429. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1430. "unsupported option features (%Lx).\n",
  1431. features);
  1432. err = -EINVAL;
  1433. goto fail_iput;
  1434. }
  1435. /*
  1436. * we need to start all the end_io workers up front because the
  1437. * queue work function gets called at interrupt time, and so it
  1438. * cannot dynamically grow.
  1439. */
  1440. btrfs_init_workers(&fs_info->workers, "worker",
  1441. fs_info->thread_pool_size);
  1442. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1443. fs_info->thread_pool_size);
  1444. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1445. min_t(u64, fs_devices->num_devices,
  1446. fs_info->thread_pool_size));
  1447. /* a higher idle thresh on the submit workers makes it much more
  1448. * likely that bios will be send down in a sane order to the
  1449. * devices
  1450. */
  1451. fs_info->submit_workers.idle_thresh = 64;
  1452. fs_info->workers.idle_thresh = 16;
  1453. fs_info->workers.ordered = 1;
  1454. fs_info->delalloc_workers.idle_thresh = 2;
  1455. fs_info->delalloc_workers.ordered = 1;
  1456. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
  1457. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1458. fs_info->thread_pool_size);
  1459. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1460. fs_info->thread_pool_size);
  1461. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1462. "endio-meta-write", fs_info->thread_pool_size);
  1463. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1464. fs_info->thread_pool_size);
  1465. /*
  1466. * endios are largely parallel and should have a very
  1467. * low idle thresh
  1468. */
  1469. fs_info->endio_workers.idle_thresh = 4;
  1470. fs_info->endio_meta_workers.idle_thresh = 4;
  1471. fs_info->endio_write_workers.idle_thresh = 64;
  1472. fs_info->endio_meta_write_workers.idle_thresh = 64;
  1473. btrfs_start_workers(&fs_info->workers, 1);
  1474. btrfs_start_workers(&fs_info->submit_workers, 1);
  1475. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1476. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1477. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1478. btrfs_start_workers(&fs_info->endio_meta_workers,
  1479. fs_info->thread_pool_size);
  1480. btrfs_start_workers(&fs_info->endio_meta_write_workers,
  1481. fs_info->thread_pool_size);
  1482. btrfs_start_workers(&fs_info->endio_write_workers,
  1483. fs_info->thread_pool_size);
  1484. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1485. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1486. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1487. nodesize = btrfs_super_nodesize(disk_super);
  1488. leafsize = btrfs_super_leafsize(disk_super);
  1489. sectorsize = btrfs_super_sectorsize(disk_super);
  1490. stripesize = btrfs_super_stripesize(disk_super);
  1491. tree_root->nodesize = nodesize;
  1492. tree_root->leafsize = leafsize;
  1493. tree_root->sectorsize = sectorsize;
  1494. tree_root->stripesize = stripesize;
  1495. sb->s_blocksize = sectorsize;
  1496. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1497. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1498. sizeof(disk_super->magic))) {
  1499. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1500. goto fail_sb_buffer;
  1501. }
  1502. mutex_lock(&fs_info->chunk_mutex);
  1503. ret = btrfs_read_sys_array(tree_root);
  1504. mutex_unlock(&fs_info->chunk_mutex);
  1505. if (ret) {
  1506. printk(KERN_WARNING "btrfs: failed to read the system "
  1507. "array on %s\n", sb->s_id);
  1508. goto fail_sys_array;
  1509. }
  1510. blocksize = btrfs_level_size(tree_root,
  1511. btrfs_super_chunk_root_level(disk_super));
  1512. generation = btrfs_super_chunk_root_generation(disk_super);
  1513. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1514. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1515. chunk_root->node = read_tree_block(chunk_root,
  1516. btrfs_super_chunk_root(disk_super),
  1517. blocksize, generation);
  1518. BUG_ON(!chunk_root->node);
  1519. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1520. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1521. BTRFS_UUID_SIZE);
  1522. mutex_lock(&fs_info->chunk_mutex);
  1523. ret = btrfs_read_chunk_tree(chunk_root);
  1524. mutex_unlock(&fs_info->chunk_mutex);
  1525. if (ret) {
  1526. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1527. sb->s_id);
  1528. goto fail_chunk_root;
  1529. }
  1530. btrfs_close_extra_devices(fs_devices);
  1531. blocksize = btrfs_level_size(tree_root,
  1532. btrfs_super_root_level(disk_super));
  1533. generation = btrfs_super_generation(disk_super);
  1534. tree_root->node = read_tree_block(tree_root,
  1535. btrfs_super_root(disk_super),
  1536. blocksize, generation);
  1537. if (!tree_root->node)
  1538. goto fail_chunk_root;
  1539. ret = find_and_setup_root(tree_root, fs_info,
  1540. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1541. if (ret)
  1542. goto fail_tree_root;
  1543. extent_root->track_dirty = 1;
  1544. ret = find_and_setup_root(tree_root, fs_info,
  1545. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1546. dev_root->track_dirty = 1;
  1547. if (ret)
  1548. goto fail_extent_root;
  1549. ret = find_and_setup_root(tree_root, fs_info,
  1550. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1551. if (ret)
  1552. goto fail_extent_root;
  1553. csum_root->track_dirty = 1;
  1554. btrfs_read_block_groups(extent_root);
  1555. fs_info->generation = generation;
  1556. fs_info->last_trans_committed = generation;
  1557. fs_info->data_alloc_profile = (u64)-1;
  1558. fs_info->metadata_alloc_profile = (u64)-1;
  1559. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1560. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1561. "btrfs-cleaner");
  1562. if (IS_ERR(fs_info->cleaner_kthread))
  1563. goto fail_csum_root;
  1564. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1565. tree_root,
  1566. "btrfs-transaction");
  1567. if (IS_ERR(fs_info->transaction_kthread))
  1568. goto fail_cleaner;
  1569. if (btrfs_super_log_root(disk_super) != 0) {
  1570. u64 bytenr = btrfs_super_log_root(disk_super);
  1571. if (fs_devices->rw_devices == 0) {
  1572. printk(KERN_WARNING "Btrfs log replay required "
  1573. "on RO media\n");
  1574. err = -EIO;
  1575. goto fail_trans_kthread;
  1576. }
  1577. blocksize =
  1578. btrfs_level_size(tree_root,
  1579. btrfs_super_log_root_level(disk_super));
  1580. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1581. GFP_NOFS);
  1582. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1583. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1584. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1585. blocksize,
  1586. generation + 1);
  1587. ret = btrfs_recover_log_trees(log_tree_root);
  1588. BUG_ON(ret);
  1589. if (sb->s_flags & MS_RDONLY) {
  1590. ret = btrfs_commit_super(tree_root);
  1591. BUG_ON(ret);
  1592. }
  1593. }
  1594. if (!(sb->s_flags & MS_RDONLY)) {
  1595. ret = btrfs_cleanup_reloc_trees(tree_root);
  1596. BUG_ON(ret);
  1597. }
  1598. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1599. location.type = BTRFS_ROOT_ITEM_KEY;
  1600. location.offset = (u64)-1;
  1601. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1602. if (!fs_info->fs_root)
  1603. goto fail_trans_kthread;
  1604. return tree_root;
  1605. fail_trans_kthread:
  1606. kthread_stop(fs_info->transaction_kthread);
  1607. fail_cleaner:
  1608. kthread_stop(fs_info->cleaner_kthread);
  1609. /*
  1610. * make sure we're done with the btree inode before we stop our
  1611. * kthreads
  1612. */
  1613. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1614. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1615. fail_csum_root:
  1616. free_extent_buffer(csum_root->node);
  1617. fail_extent_root:
  1618. free_extent_buffer(extent_root->node);
  1619. fail_tree_root:
  1620. free_extent_buffer(tree_root->node);
  1621. fail_chunk_root:
  1622. free_extent_buffer(chunk_root->node);
  1623. fail_sys_array:
  1624. free_extent_buffer(dev_root->node);
  1625. fail_sb_buffer:
  1626. btrfs_stop_workers(&fs_info->fixup_workers);
  1627. btrfs_stop_workers(&fs_info->delalloc_workers);
  1628. btrfs_stop_workers(&fs_info->workers);
  1629. btrfs_stop_workers(&fs_info->endio_workers);
  1630. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1631. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1632. btrfs_stop_workers(&fs_info->endio_write_workers);
  1633. btrfs_stop_workers(&fs_info->submit_workers);
  1634. fail_iput:
  1635. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1636. iput(fs_info->btree_inode);
  1637. btrfs_close_devices(fs_info->fs_devices);
  1638. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1639. bdi_destroy(&fs_info->bdi);
  1640. fail:
  1641. kfree(extent_root);
  1642. kfree(tree_root);
  1643. kfree(fs_info);
  1644. kfree(chunk_root);
  1645. kfree(dev_root);
  1646. kfree(csum_root);
  1647. return ERR_PTR(err);
  1648. }
  1649. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1650. {
  1651. char b[BDEVNAME_SIZE];
  1652. if (uptodate) {
  1653. set_buffer_uptodate(bh);
  1654. } else {
  1655. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1656. printk(KERN_WARNING "lost page write due to "
  1657. "I/O error on %s\n",
  1658. bdevname(bh->b_bdev, b));
  1659. }
  1660. /* note, we dont' set_buffer_write_io_error because we have
  1661. * our own ways of dealing with the IO errors
  1662. */
  1663. clear_buffer_uptodate(bh);
  1664. }
  1665. unlock_buffer(bh);
  1666. put_bh(bh);
  1667. }
  1668. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1669. {
  1670. struct buffer_head *bh;
  1671. struct buffer_head *latest = NULL;
  1672. struct btrfs_super_block *super;
  1673. int i;
  1674. u64 transid = 0;
  1675. u64 bytenr;
  1676. /* we would like to check all the supers, but that would make
  1677. * a btrfs mount succeed after a mkfs from a different FS.
  1678. * So, we need to add a special mount option to scan for
  1679. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1680. */
  1681. for (i = 0; i < 1; i++) {
  1682. bytenr = btrfs_sb_offset(i);
  1683. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1684. break;
  1685. bh = __bread(bdev, bytenr / 4096, 4096);
  1686. if (!bh)
  1687. continue;
  1688. super = (struct btrfs_super_block *)bh->b_data;
  1689. if (btrfs_super_bytenr(super) != bytenr ||
  1690. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1691. sizeof(super->magic))) {
  1692. brelse(bh);
  1693. continue;
  1694. }
  1695. if (!latest || btrfs_super_generation(super) > transid) {
  1696. brelse(latest);
  1697. latest = bh;
  1698. transid = btrfs_super_generation(super);
  1699. } else {
  1700. brelse(bh);
  1701. }
  1702. }
  1703. return latest;
  1704. }
  1705. static int write_dev_supers(struct btrfs_device *device,
  1706. struct btrfs_super_block *sb,
  1707. int do_barriers, int wait, int max_mirrors)
  1708. {
  1709. struct buffer_head *bh;
  1710. int i;
  1711. int ret;
  1712. int errors = 0;
  1713. u32 crc;
  1714. u64 bytenr;
  1715. int last_barrier = 0;
  1716. if (max_mirrors == 0)
  1717. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1718. /* make sure only the last submit_bh does a barrier */
  1719. if (do_barriers) {
  1720. for (i = 0; i < max_mirrors; i++) {
  1721. bytenr = btrfs_sb_offset(i);
  1722. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1723. device->total_bytes)
  1724. break;
  1725. last_barrier = i;
  1726. }
  1727. }
  1728. for (i = 0; i < max_mirrors; i++) {
  1729. bytenr = btrfs_sb_offset(i);
  1730. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1731. break;
  1732. if (wait) {
  1733. bh = __find_get_block(device->bdev, bytenr / 4096,
  1734. BTRFS_SUPER_INFO_SIZE);
  1735. BUG_ON(!bh);
  1736. brelse(bh);
  1737. wait_on_buffer(bh);
  1738. if (buffer_uptodate(bh)) {
  1739. brelse(bh);
  1740. continue;
  1741. }
  1742. } else {
  1743. btrfs_set_super_bytenr(sb, bytenr);
  1744. crc = ~(u32)0;
  1745. crc = btrfs_csum_data(NULL, (char *)sb +
  1746. BTRFS_CSUM_SIZE, crc,
  1747. BTRFS_SUPER_INFO_SIZE -
  1748. BTRFS_CSUM_SIZE);
  1749. btrfs_csum_final(crc, sb->csum);
  1750. bh = __getblk(device->bdev, bytenr / 4096,
  1751. BTRFS_SUPER_INFO_SIZE);
  1752. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1753. set_buffer_uptodate(bh);
  1754. get_bh(bh);
  1755. lock_buffer(bh);
  1756. bh->b_end_io = btrfs_end_buffer_write_sync;
  1757. }
  1758. if (i == last_barrier && do_barriers && device->barriers) {
  1759. ret = submit_bh(WRITE_BARRIER, bh);
  1760. if (ret == -EOPNOTSUPP) {
  1761. printk("btrfs: disabling barriers on dev %s\n",
  1762. device->name);
  1763. set_buffer_uptodate(bh);
  1764. device->barriers = 0;
  1765. get_bh(bh);
  1766. lock_buffer(bh);
  1767. ret = submit_bh(WRITE, bh);
  1768. }
  1769. } else {
  1770. ret = submit_bh(WRITE, bh);
  1771. }
  1772. if (!ret && wait) {
  1773. wait_on_buffer(bh);
  1774. if (!buffer_uptodate(bh))
  1775. errors++;
  1776. } else if (ret) {
  1777. errors++;
  1778. }
  1779. if (wait)
  1780. brelse(bh);
  1781. }
  1782. return errors < i ? 0 : -1;
  1783. }
  1784. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1785. {
  1786. struct list_head *head = &root->fs_info->fs_devices->devices;
  1787. struct btrfs_device *dev;
  1788. struct btrfs_super_block *sb;
  1789. struct btrfs_dev_item *dev_item;
  1790. int ret;
  1791. int do_barriers;
  1792. int max_errors;
  1793. int total_errors = 0;
  1794. u64 flags;
  1795. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1796. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1797. sb = &root->fs_info->super_for_commit;
  1798. dev_item = &sb->dev_item;
  1799. list_for_each_entry(dev, head, dev_list) {
  1800. if (!dev->bdev) {
  1801. total_errors++;
  1802. continue;
  1803. }
  1804. if (!dev->in_fs_metadata || !dev->writeable)
  1805. continue;
  1806. btrfs_set_stack_device_generation(dev_item, 0);
  1807. btrfs_set_stack_device_type(dev_item, dev->type);
  1808. btrfs_set_stack_device_id(dev_item, dev->devid);
  1809. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1810. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1811. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1812. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1813. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1814. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1815. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1816. flags = btrfs_super_flags(sb);
  1817. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1818. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1819. if (ret)
  1820. total_errors++;
  1821. }
  1822. if (total_errors > max_errors) {
  1823. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1824. total_errors);
  1825. BUG();
  1826. }
  1827. total_errors = 0;
  1828. list_for_each_entry(dev, head, dev_list) {
  1829. if (!dev->bdev)
  1830. continue;
  1831. if (!dev->in_fs_metadata || !dev->writeable)
  1832. continue;
  1833. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  1834. if (ret)
  1835. total_errors++;
  1836. }
  1837. if (total_errors > max_errors) {
  1838. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1839. total_errors);
  1840. BUG();
  1841. }
  1842. return 0;
  1843. }
  1844. int write_ctree_super(struct btrfs_trans_handle *trans,
  1845. struct btrfs_root *root, int max_mirrors)
  1846. {
  1847. int ret;
  1848. ret = write_all_supers(root, max_mirrors);
  1849. return ret;
  1850. }
  1851. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1852. {
  1853. radix_tree_delete(&fs_info->fs_roots_radix,
  1854. (unsigned long)root->root_key.objectid);
  1855. if (root->anon_super.s_dev) {
  1856. down_write(&root->anon_super.s_umount);
  1857. kill_anon_super(&root->anon_super);
  1858. }
  1859. if (root->node)
  1860. free_extent_buffer(root->node);
  1861. if (root->commit_root)
  1862. free_extent_buffer(root->commit_root);
  1863. kfree(root->name);
  1864. kfree(root);
  1865. return 0;
  1866. }
  1867. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1868. {
  1869. int ret;
  1870. struct btrfs_root *gang[8];
  1871. int i;
  1872. while (1) {
  1873. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1874. (void **)gang, 0,
  1875. ARRAY_SIZE(gang));
  1876. if (!ret)
  1877. break;
  1878. for (i = 0; i < ret; i++)
  1879. btrfs_free_fs_root(fs_info, gang[i]);
  1880. }
  1881. return 0;
  1882. }
  1883. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  1884. {
  1885. u64 root_objectid = 0;
  1886. struct btrfs_root *gang[8];
  1887. int i;
  1888. int ret;
  1889. while (1) {
  1890. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1891. (void **)gang, root_objectid,
  1892. ARRAY_SIZE(gang));
  1893. if (!ret)
  1894. break;
  1895. for (i = 0; i < ret; i++) {
  1896. root_objectid = gang[i]->root_key.objectid;
  1897. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1898. root_objectid, gang[i]);
  1899. BUG_ON(ret);
  1900. btrfs_orphan_cleanup(gang[i]);
  1901. }
  1902. root_objectid++;
  1903. }
  1904. return 0;
  1905. }
  1906. int btrfs_commit_super(struct btrfs_root *root)
  1907. {
  1908. struct btrfs_trans_handle *trans;
  1909. int ret;
  1910. mutex_lock(&root->fs_info->cleaner_mutex);
  1911. btrfs_clean_old_snapshots(root);
  1912. mutex_unlock(&root->fs_info->cleaner_mutex);
  1913. trans = btrfs_start_transaction(root, 1);
  1914. ret = btrfs_commit_transaction(trans, root);
  1915. BUG_ON(ret);
  1916. /* run commit again to drop the original snapshot */
  1917. trans = btrfs_start_transaction(root, 1);
  1918. btrfs_commit_transaction(trans, root);
  1919. ret = btrfs_write_and_wait_transaction(NULL, root);
  1920. BUG_ON(ret);
  1921. ret = write_ctree_super(NULL, root, 0);
  1922. return ret;
  1923. }
  1924. int close_ctree(struct btrfs_root *root)
  1925. {
  1926. struct btrfs_fs_info *fs_info = root->fs_info;
  1927. int ret;
  1928. fs_info->closing = 1;
  1929. smp_mb();
  1930. kthread_stop(root->fs_info->transaction_kthread);
  1931. kthread_stop(root->fs_info->cleaner_kthread);
  1932. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1933. ret = btrfs_commit_super(root);
  1934. if (ret)
  1935. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  1936. }
  1937. if (fs_info->delalloc_bytes) {
  1938. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  1939. fs_info->delalloc_bytes);
  1940. }
  1941. if (fs_info->total_ref_cache_size) {
  1942. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  1943. (unsigned long long)fs_info->total_ref_cache_size);
  1944. }
  1945. if (fs_info->extent_root->node)
  1946. free_extent_buffer(fs_info->extent_root->node);
  1947. if (fs_info->tree_root->node)
  1948. free_extent_buffer(fs_info->tree_root->node);
  1949. if (root->fs_info->chunk_root->node)
  1950. free_extent_buffer(root->fs_info->chunk_root->node);
  1951. if (root->fs_info->dev_root->node)
  1952. free_extent_buffer(root->fs_info->dev_root->node);
  1953. if (root->fs_info->csum_root->node)
  1954. free_extent_buffer(root->fs_info->csum_root->node);
  1955. btrfs_free_block_groups(root->fs_info);
  1956. del_fs_roots(fs_info);
  1957. iput(fs_info->btree_inode);
  1958. btrfs_stop_workers(&fs_info->fixup_workers);
  1959. btrfs_stop_workers(&fs_info->delalloc_workers);
  1960. btrfs_stop_workers(&fs_info->workers);
  1961. btrfs_stop_workers(&fs_info->endio_workers);
  1962. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1963. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1964. btrfs_stop_workers(&fs_info->endio_write_workers);
  1965. btrfs_stop_workers(&fs_info->submit_workers);
  1966. #if 0
  1967. while (!list_empty(&fs_info->hashers)) {
  1968. struct btrfs_hasher *hasher;
  1969. hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
  1970. hashers);
  1971. list_del(&hasher->hashers);
  1972. crypto_free_hash(&fs_info->hash_tfm);
  1973. kfree(hasher);
  1974. }
  1975. #endif
  1976. btrfs_close_devices(fs_info->fs_devices);
  1977. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1978. bdi_destroy(&fs_info->bdi);
  1979. kfree(fs_info->extent_root);
  1980. kfree(fs_info->tree_root);
  1981. kfree(fs_info->chunk_root);
  1982. kfree(fs_info->dev_root);
  1983. kfree(fs_info->csum_root);
  1984. return 0;
  1985. }
  1986. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  1987. {
  1988. int ret;
  1989. struct inode *btree_inode = buf->first_page->mapping->host;
  1990. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  1991. if (!ret)
  1992. return ret;
  1993. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  1994. parent_transid);
  1995. return !ret;
  1996. }
  1997. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  1998. {
  1999. struct inode *btree_inode = buf->first_page->mapping->host;
  2000. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2001. buf);
  2002. }
  2003. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2004. {
  2005. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2006. u64 transid = btrfs_header_generation(buf);
  2007. struct inode *btree_inode = root->fs_info->btree_inode;
  2008. btrfs_set_lock_blocking(buf);
  2009. WARN_ON(!btrfs_tree_locked(buf));
  2010. if (transid != root->fs_info->generation) {
  2011. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2012. "found %llu running %llu\n",
  2013. (unsigned long long)buf->start,
  2014. (unsigned long long)transid,
  2015. (unsigned long long)root->fs_info->generation);
  2016. WARN_ON(1);
  2017. }
  2018. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
  2019. }
  2020. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2021. {
  2022. /*
  2023. * looks as though older kernels can get into trouble with
  2024. * this code, they end up stuck in balance_dirty_pages forever
  2025. */
  2026. struct extent_io_tree *tree;
  2027. u64 num_dirty;
  2028. u64 start = 0;
  2029. unsigned long thresh = 32 * 1024 * 1024;
  2030. tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  2031. if (current_is_pdflush() || current->flags & PF_MEMALLOC)
  2032. return;
  2033. num_dirty = count_range_bits(tree, &start, (u64)-1,
  2034. thresh, EXTENT_DIRTY);
  2035. if (num_dirty > thresh) {
  2036. balance_dirty_pages_ratelimited_nr(
  2037. root->fs_info->btree_inode->i_mapping, 1);
  2038. }
  2039. return;
  2040. }
  2041. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2042. {
  2043. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2044. int ret;
  2045. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2046. if (ret == 0)
  2047. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2048. return ret;
  2049. }
  2050. int btree_lock_page_hook(struct page *page)
  2051. {
  2052. struct inode *inode = page->mapping->host;
  2053. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2054. struct extent_buffer *eb;
  2055. unsigned long len;
  2056. u64 bytenr = page_offset(page);
  2057. if (page->private == EXTENT_PAGE_PRIVATE)
  2058. goto out;
  2059. len = page->private >> 2;
  2060. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2061. if (!eb)
  2062. goto out;
  2063. btrfs_tree_lock(eb);
  2064. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2065. btrfs_tree_unlock(eb);
  2066. free_extent_buffer(eb);
  2067. out:
  2068. lock_page(page);
  2069. return 0;
  2070. }
  2071. static struct extent_io_ops btree_extent_io_ops = {
  2072. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2073. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2074. .submit_bio_hook = btree_submit_bio_hook,
  2075. /* note we're sharing with inode.c for the merge bio hook */
  2076. .merge_bio_hook = btrfs_merge_bio_hook,
  2077. };