intr_remapping.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585
  1. #include <linux/interrupt.h>
  2. #include <linux/dmar.h>
  3. #include <linux/spinlock.h>
  4. #include <linux/jiffies.h>
  5. #include <linux/pci.h>
  6. #include <linux/irq.h>
  7. #include <asm/io_apic.h>
  8. #include <asm/smp.h>
  9. #include <linux/intel-iommu.h>
  10. #include "intr_remapping.h"
  11. static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
  12. static int ir_ioapic_num;
  13. int intr_remapping_enabled;
  14. struct irq_2_iommu {
  15. struct intel_iommu *iommu;
  16. u16 irte_index;
  17. u16 sub_handle;
  18. u8 irte_mask;
  19. };
  20. #ifdef CONFIG_SPARSE_IRQ
  21. static struct irq_2_iommu *get_one_free_irq_2_iommu(int cpu)
  22. {
  23. struct irq_2_iommu *iommu;
  24. int node;
  25. node = cpu_to_node(cpu);
  26. iommu = kzalloc_node(sizeof(*iommu), GFP_ATOMIC, node);
  27. printk(KERN_DEBUG "alloc irq_2_iommu on cpu %d node %d\n", cpu, node);
  28. return iommu;
  29. }
  30. static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
  31. {
  32. struct irq_desc *desc;
  33. desc = irq_to_desc(irq);
  34. if (WARN_ON_ONCE(!desc))
  35. return NULL;
  36. return desc->irq_2_iommu;
  37. }
  38. static struct irq_2_iommu *irq_2_iommu_alloc_cpu(unsigned int irq, int cpu)
  39. {
  40. struct irq_desc *desc;
  41. struct irq_2_iommu *irq_iommu;
  42. /*
  43. * alloc irq desc if not allocated already.
  44. */
  45. desc = irq_to_desc_alloc_cpu(irq, cpu);
  46. if (!desc) {
  47. printk(KERN_INFO "can not get irq_desc for %d\n", irq);
  48. return NULL;
  49. }
  50. irq_iommu = desc->irq_2_iommu;
  51. if (!irq_iommu)
  52. desc->irq_2_iommu = get_one_free_irq_2_iommu(cpu);
  53. return desc->irq_2_iommu;
  54. }
  55. static struct irq_2_iommu *irq_2_iommu_alloc(unsigned int irq)
  56. {
  57. return irq_2_iommu_alloc_cpu(irq, boot_cpu_id);
  58. }
  59. #else /* !CONFIG_SPARSE_IRQ */
  60. static struct irq_2_iommu irq_2_iommuX[NR_IRQS];
  61. static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
  62. {
  63. if (irq < nr_irqs)
  64. return &irq_2_iommuX[irq];
  65. return NULL;
  66. }
  67. static struct irq_2_iommu *irq_2_iommu_alloc(unsigned int irq)
  68. {
  69. return irq_2_iommu(irq);
  70. }
  71. #endif
  72. static DEFINE_SPINLOCK(irq_2_ir_lock);
  73. static struct irq_2_iommu *valid_irq_2_iommu(unsigned int irq)
  74. {
  75. struct irq_2_iommu *irq_iommu;
  76. irq_iommu = irq_2_iommu(irq);
  77. if (!irq_iommu)
  78. return NULL;
  79. if (!irq_iommu->iommu)
  80. return NULL;
  81. return irq_iommu;
  82. }
  83. int irq_remapped(int irq)
  84. {
  85. return valid_irq_2_iommu(irq) != NULL;
  86. }
  87. int get_irte(int irq, struct irte *entry)
  88. {
  89. int index;
  90. struct irq_2_iommu *irq_iommu;
  91. if (!entry)
  92. return -1;
  93. spin_lock(&irq_2_ir_lock);
  94. irq_iommu = valid_irq_2_iommu(irq);
  95. if (!irq_iommu) {
  96. spin_unlock(&irq_2_ir_lock);
  97. return -1;
  98. }
  99. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  100. *entry = *(irq_iommu->iommu->ir_table->base + index);
  101. spin_unlock(&irq_2_ir_lock);
  102. return 0;
  103. }
  104. int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
  105. {
  106. struct ir_table *table = iommu->ir_table;
  107. struct irq_2_iommu *irq_iommu;
  108. u16 index, start_index;
  109. unsigned int mask = 0;
  110. int i;
  111. if (!count)
  112. return -1;
  113. #ifndef CONFIG_SPARSE_IRQ
  114. /* protect irq_2_iommu_alloc later */
  115. if (irq >= nr_irqs)
  116. return -1;
  117. #endif
  118. /*
  119. * start the IRTE search from index 0.
  120. */
  121. index = start_index = 0;
  122. if (count > 1) {
  123. count = __roundup_pow_of_two(count);
  124. mask = ilog2(count);
  125. }
  126. if (mask > ecap_max_handle_mask(iommu->ecap)) {
  127. printk(KERN_ERR
  128. "Requested mask %x exceeds the max invalidation handle"
  129. " mask value %Lx\n", mask,
  130. ecap_max_handle_mask(iommu->ecap));
  131. return -1;
  132. }
  133. spin_lock(&irq_2_ir_lock);
  134. do {
  135. for (i = index; i < index + count; i++)
  136. if (table->base[i].present)
  137. break;
  138. /* empty index found */
  139. if (i == index + count)
  140. break;
  141. index = (index + count) % INTR_REMAP_TABLE_ENTRIES;
  142. if (index == start_index) {
  143. spin_unlock(&irq_2_ir_lock);
  144. printk(KERN_ERR "can't allocate an IRTE\n");
  145. return -1;
  146. }
  147. } while (1);
  148. for (i = index; i < index + count; i++)
  149. table->base[i].present = 1;
  150. irq_iommu = irq_2_iommu_alloc(irq);
  151. if (!irq_iommu) {
  152. spin_unlock(&irq_2_ir_lock);
  153. printk(KERN_ERR "can't allocate irq_2_iommu\n");
  154. return -1;
  155. }
  156. irq_iommu->iommu = iommu;
  157. irq_iommu->irte_index = index;
  158. irq_iommu->sub_handle = 0;
  159. irq_iommu->irte_mask = mask;
  160. spin_unlock(&irq_2_ir_lock);
  161. return index;
  162. }
  163. static void qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
  164. {
  165. struct qi_desc desc;
  166. desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
  167. | QI_IEC_SELECTIVE;
  168. desc.high = 0;
  169. qi_submit_sync(&desc, iommu);
  170. }
  171. int map_irq_to_irte_handle(int irq, u16 *sub_handle)
  172. {
  173. int index;
  174. struct irq_2_iommu *irq_iommu;
  175. spin_lock(&irq_2_ir_lock);
  176. irq_iommu = valid_irq_2_iommu(irq);
  177. if (!irq_iommu) {
  178. spin_unlock(&irq_2_ir_lock);
  179. return -1;
  180. }
  181. *sub_handle = irq_iommu->sub_handle;
  182. index = irq_iommu->irte_index;
  183. spin_unlock(&irq_2_ir_lock);
  184. return index;
  185. }
  186. int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
  187. {
  188. struct irq_2_iommu *irq_iommu;
  189. spin_lock(&irq_2_ir_lock);
  190. irq_iommu = irq_2_iommu_alloc(irq);
  191. if (!irq_iommu) {
  192. spin_unlock(&irq_2_ir_lock);
  193. printk(KERN_ERR "can't allocate irq_2_iommu\n");
  194. return -1;
  195. }
  196. irq_iommu->iommu = iommu;
  197. irq_iommu->irte_index = index;
  198. irq_iommu->sub_handle = subhandle;
  199. irq_iommu->irte_mask = 0;
  200. spin_unlock(&irq_2_ir_lock);
  201. return 0;
  202. }
  203. int clear_irte_irq(int irq, struct intel_iommu *iommu, u16 index)
  204. {
  205. struct irq_2_iommu *irq_iommu;
  206. spin_lock(&irq_2_ir_lock);
  207. irq_iommu = valid_irq_2_iommu(irq);
  208. if (!irq_iommu) {
  209. spin_unlock(&irq_2_ir_lock);
  210. return -1;
  211. }
  212. irq_iommu->iommu = NULL;
  213. irq_iommu->irte_index = 0;
  214. irq_iommu->sub_handle = 0;
  215. irq_2_iommu(irq)->irte_mask = 0;
  216. spin_unlock(&irq_2_ir_lock);
  217. return 0;
  218. }
  219. int modify_irte(int irq, struct irte *irte_modified)
  220. {
  221. int index;
  222. struct irte *irte;
  223. struct intel_iommu *iommu;
  224. struct irq_2_iommu *irq_iommu;
  225. spin_lock(&irq_2_ir_lock);
  226. irq_iommu = valid_irq_2_iommu(irq);
  227. if (!irq_iommu) {
  228. spin_unlock(&irq_2_ir_lock);
  229. return -1;
  230. }
  231. iommu = irq_iommu->iommu;
  232. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  233. irte = &iommu->ir_table->base[index];
  234. set_64bit((unsigned long *)irte, irte_modified->low | (1 << 1));
  235. __iommu_flush_cache(iommu, irte, sizeof(*irte));
  236. qi_flush_iec(iommu, index, 0);
  237. spin_unlock(&irq_2_ir_lock);
  238. return 0;
  239. }
  240. int flush_irte(int irq)
  241. {
  242. int index;
  243. struct intel_iommu *iommu;
  244. struct irq_2_iommu *irq_iommu;
  245. spin_lock(&irq_2_ir_lock);
  246. irq_iommu = valid_irq_2_iommu(irq);
  247. if (!irq_iommu) {
  248. spin_unlock(&irq_2_ir_lock);
  249. return -1;
  250. }
  251. iommu = irq_iommu->iommu;
  252. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  253. qi_flush_iec(iommu, index, irq_iommu->irte_mask);
  254. spin_unlock(&irq_2_ir_lock);
  255. return 0;
  256. }
  257. struct intel_iommu *map_ioapic_to_ir(int apic)
  258. {
  259. int i;
  260. for (i = 0; i < MAX_IO_APICS; i++)
  261. if (ir_ioapic[i].id == apic)
  262. return ir_ioapic[i].iommu;
  263. return NULL;
  264. }
  265. struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
  266. {
  267. struct dmar_drhd_unit *drhd;
  268. drhd = dmar_find_matched_drhd_unit(dev);
  269. if (!drhd)
  270. return NULL;
  271. return drhd->iommu;
  272. }
  273. int free_irte(int irq)
  274. {
  275. int index, i;
  276. struct irte *irte;
  277. struct intel_iommu *iommu;
  278. struct irq_2_iommu *irq_iommu;
  279. spin_lock(&irq_2_ir_lock);
  280. irq_iommu = valid_irq_2_iommu(irq);
  281. if (!irq_iommu) {
  282. spin_unlock(&irq_2_ir_lock);
  283. return -1;
  284. }
  285. iommu = irq_iommu->iommu;
  286. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  287. irte = &iommu->ir_table->base[index];
  288. if (!irq_iommu->sub_handle) {
  289. for (i = 0; i < (1 << irq_iommu->irte_mask); i++)
  290. set_64bit((unsigned long *)irte, 0);
  291. qi_flush_iec(iommu, index, irq_iommu->irte_mask);
  292. }
  293. irq_iommu->iommu = NULL;
  294. irq_iommu->irte_index = 0;
  295. irq_iommu->sub_handle = 0;
  296. irq_iommu->irte_mask = 0;
  297. spin_unlock(&irq_2_ir_lock);
  298. return 0;
  299. }
  300. static void iommu_set_intr_remapping(struct intel_iommu *iommu, int mode)
  301. {
  302. u64 addr;
  303. u32 cmd, sts;
  304. unsigned long flags;
  305. addr = virt_to_phys((void *)iommu->ir_table->base);
  306. spin_lock_irqsave(&iommu->register_lock, flags);
  307. dmar_writeq(iommu->reg + DMAR_IRTA_REG,
  308. (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
  309. /* Set interrupt-remapping table pointer */
  310. cmd = iommu->gcmd | DMA_GCMD_SIRTP;
  311. writel(cmd, iommu->reg + DMAR_GCMD_REG);
  312. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  313. readl, (sts & DMA_GSTS_IRTPS), sts);
  314. spin_unlock_irqrestore(&iommu->register_lock, flags);
  315. /*
  316. * global invalidation of interrupt entry cache before enabling
  317. * interrupt-remapping.
  318. */
  319. qi_global_iec(iommu);
  320. spin_lock_irqsave(&iommu->register_lock, flags);
  321. /* Enable interrupt-remapping */
  322. cmd = iommu->gcmd | DMA_GCMD_IRE;
  323. iommu->gcmd |= DMA_GCMD_IRE;
  324. writel(cmd, iommu->reg + DMAR_GCMD_REG);
  325. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  326. readl, (sts & DMA_GSTS_IRES), sts);
  327. spin_unlock_irqrestore(&iommu->register_lock, flags);
  328. }
  329. static int setup_intr_remapping(struct intel_iommu *iommu, int mode)
  330. {
  331. struct ir_table *ir_table;
  332. struct page *pages;
  333. ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table),
  334. GFP_KERNEL);
  335. if (!iommu->ir_table)
  336. return -ENOMEM;
  337. pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, INTR_REMAP_PAGE_ORDER);
  338. if (!pages) {
  339. printk(KERN_ERR "failed to allocate pages of order %d\n",
  340. INTR_REMAP_PAGE_ORDER);
  341. kfree(iommu->ir_table);
  342. return -ENOMEM;
  343. }
  344. ir_table->base = page_address(pages);
  345. iommu_set_intr_remapping(iommu, mode);
  346. return 0;
  347. }
  348. int __init enable_intr_remapping(int eim)
  349. {
  350. struct dmar_drhd_unit *drhd;
  351. int setup = 0;
  352. /*
  353. * check for the Interrupt-remapping support
  354. */
  355. for_each_drhd_unit(drhd) {
  356. struct intel_iommu *iommu = drhd->iommu;
  357. if (!ecap_ir_support(iommu->ecap))
  358. continue;
  359. if (eim && !ecap_eim_support(iommu->ecap)) {
  360. printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
  361. " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
  362. return -1;
  363. }
  364. }
  365. /*
  366. * Enable queued invalidation for all the DRHD's.
  367. */
  368. for_each_drhd_unit(drhd) {
  369. int ret;
  370. struct intel_iommu *iommu = drhd->iommu;
  371. ret = dmar_enable_qi(iommu);
  372. if (ret) {
  373. printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
  374. " invalidation, ecap %Lx, ret %d\n",
  375. drhd->reg_base_addr, iommu->ecap, ret);
  376. return -1;
  377. }
  378. }
  379. /*
  380. * Setup Interrupt-remapping for all the DRHD's now.
  381. */
  382. for_each_drhd_unit(drhd) {
  383. struct intel_iommu *iommu = drhd->iommu;
  384. if (!ecap_ir_support(iommu->ecap))
  385. continue;
  386. if (setup_intr_remapping(iommu, eim))
  387. goto error;
  388. setup = 1;
  389. }
  390. if (!setup)
  391. goto error;
  392. intr_remapping_enabled = 1;
  393. return 0;
  394. error:
  395. /*
  396. * handle error condition gracefully here!
  397. */
  398. return -1;
  399. }
  400. static int ir_parse_ioapic_scope(struct acpi_dmar_header *header,
  401. struct intel_iommu *iommu)
  402. {
  403. struct acpi_dmar_hardware_unit *drhd;
  404. struct acpi_dmar_device_scope *scope;
  405. void *start, *end;
  406. drhd = (struct acpi_dmar_hardware_unit *)header;
  407. start = (void *)(drhd + 1);
  408. end = ((void *)drhd) + header->length;
  409. while (start < end) {
  410. scope = start;
  411. if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
  412. if (ir_ioapic_num == MAX_IO_APICS) {
  413. printk(KERN_WARNING "Exceeded Max IO APICS\n");
  414. return -1;
  415. }
  416. printk(KERN_INFO "IOAPIC id %d under DRHD base"
  417. " 0x%Lx\n", scope->enumeration_id,
  418. drhd->address);
  419. ir_ioapic[ir_ioapic_num].iommu = iommu;
  420. ir_ioapic[ir_ioapic_num].id = scope->enumeration_id;
  421. ir_ioapic_num++;
  422. }
  423. start += scope->length;
  424. }
  425. return 0;
  426. }
  427. /*
  428. * Finds the assocaition between IOAPIC's and its Interrupt-remapping
  429. * hardware unit.
  430. */
  431. int __init parse_ioapics_under_ir(void)
  432. {
  433. struct dmar_drhd_unit *drhd;
  434. int ir_supported = 0;
  435. for_each_drhd_unit(drhd) {
  436. struct intel_iommu *iommu = drhd->iommu;
  437. if (ecap_ir_support(iommu->ecap)) {
  438. if (ir_parse_ioapic_scope(drhd->hdr, iommu))
  439. return -1;
  440. ir_supported = 1;
  441. }
  442. }
  443. if (ir_supported && ir_ioapic_num != nr_ioapics) {
  444. printk(KERN_WARNING
  445. "Not all IO-APIC's listed under remapping hardware\n");
  446. return -1;
  447. }
  448. return ir_supported;
  449. }