spi.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066
  1. /*
  2. * spi.c - SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/cache.h>
  24. #include <linux/mutex.h>
  25. #include <linux/of_device.h>
  26. #include <linux/slab.h>
  27. #include <linux/mod_devicetable.h>
  28. #include <linux/spi/spi.h>
  29. #include <linux/of_spi.h>
  30. static void spidev_release(struct device *dev)
  31. {
  32. struct spi_device *spi = to_spi_device(dev);
  33. /* spi masters may cleanup for released devices */
  34. if (spi->master->cleanup)
  35. spi->master->cleanup(spi);
  36. spi_master_put(spi->master);
  37. kfree(spi);
  38. }
  39. static ssize_t
  40. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  41. {
  42. const struct spi_device *spi = to_spi_device(dev);
  43. return sprintf(buf, "%s\n", spi->modalias);
  44. }
  45. static struct device_attribute spi_dev_attrs[] = {
  46. __ATTR_RO(modalias),
  47. __ATTR_NULL,
  48. };
  49. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  50. * and the sysfs version makes coldplug work too.
  51. */
  52. static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  53. const struct spi_device *sdev)
  54. {
  55. while (id->name[0]) {
  56. if (!strcmp(sdev->modalias, id->name))
  57. return id;
  58. id++;
  59. }
  60. return NULL;
  61. }
  62. const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  63. {
  64. const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  65. return spi_match_id(sdrv->id_table, sdev);
  66. }
  67. EXPORT_SYMBOL_GPL(spi_get_device_id);
  68. static int spi_match_device(struct device *dev, struct device_driver *drv)
  69. {
  70. const struct spi_device *spi = to_spi_device(dev);
  71. const struct spi_driver *sdrv = to_spi_driver(drv);
  72. /* Attempt an OF style match */
  73. if (of_driver_match_device(dev, drv))
  74. return 1;
  75. if (sdrv->id_table)
  76. return !!spi_match_id(sdrv->id_table, spi);
  77. return strcmp(spi->modalias, drv->name) == 0;
  78. }
  79. static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  80. {
  81. const struct spi_device *spi = to_spi_device(dev);
  82. add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
  83. return 0;
  84. }
  85. #ifdef CONFIG_PM
  86. static int spi_suspend(struct device *dev, pm_message_t message)
  87. {
  88. int value = 0;
  89. struct spi_driver *drv = to_spi_driver(dev->driver);
  90. /* suspend will stop irqs and dma; no more i/o */
  91. if (drv) {
  92. if (drv->suspend)
  93. value = drv->suspend(to_spi_device(dev), message);
  94. else
  95. dev_dbg(dev, "... can't suspend\n");
  96. }
  97. return value;
  98. }
  99. static int spi_resume(struct device *dev)
  100. {
  101. int value = 0;
  102. struct spi_driver *drv = to_spi_driver(dev->driver);
  103. /* resume may restart the i/o queue */
  104. if (drv) {
  105. if (drv->resume)
  106. value = drv->resume(to_spi_device(dev));
  107. else
  108. dev_dbg(dev, "... can't resume\n");
  109. }
  110. return value;
  111. }
  112. #else
  113. #define spi_suspend NULL
  114. #define spi_resume NULL
  115. #endif
  116. struct bus_type spi_bus_type = {
  117. .name = "spi",
  118. .dev_attrs = spi_dev_attrs,
  119. .match = spi_match_device,
  120. .uevent = spi_uevent,
  121. .suspend = spi_suspend,
  122. .resume = spi_resume,
  123. };
  124. EXPORT_SYMBOL_GPL(spi_bus_type);
  125. static int spi_drv_probe(struct device *dev)
  126. {
  127. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  128. return sdrv->probe(to_spi_device(dev));
  129. }
  130. static int spi_drv_remove(struct device *dev)
  131. {
  132. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  133. return sdrv->remove(to_spi_device(dev));
  134. }
  135. static void spi_drv_shutdown(struct device *dev)
  136. {
  137. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  138. sdrv->shutdown(to_spi_device(dev));
  139. }
  140. /**
  141. * spi_register_driver - register a SPI driver
  142. * @sdrv: the driver to register
  143. * Context: can sleep
  144. */
  145. int spi_register_driver(struct spi_driver *sdrv)
  146. {
  147. sdrv->driver.bus = &spi_bus_type;
  148. if (sdrv->probe)
  149. sdrv->driver.probe = spi_drv_probe;
  150. if (sdrv->remove)
  151. sdrv->driver.remove = spi_drv_remove;
  152. if (sdrv->shutdown)
  153. sdrv->driver.shutdown = spi_drv_shutdown;
  154. return driver_register(&sdrv->driver);
  155. }
  156. EXPORT_SYMBOL_GPL(spi_register_driver);
  157. /*-------------------------------------------------------------------------*/
  158. /* SPI devices should normally not be created by SPI device drivers; that
  159. * would make them board-specific. Similarly with SPI master drivers.
  160. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  161. * with other readonly (flashable) information about mainboard devices.
  162. */
  163. struct boardinfo {
  164. struct list_head list;
  165. struct spi_board_info board_info;
  166. };
  167. static LIST_HEAD(board_list);
  168. static LIST_HEAD(spi_master_list);
  169. /*
  170. * Used to protect add/del opertion for board_info list and
  171. * spi_master list, and their matching process
  172. */
  173. static DEFINE_MUTEX(board_lock);
  174. /**
  175. * spi_alloc_device - Allocate a new SPI device
  176. * @master: Controller to which device is connected
  177. * Context: can sleep
  178. *
  179. * Allows a driver to allocate and initialize a spi_device without
  180. * registering it immediately. This allows a driver to directly
  181. * fill the spi_device with device parameters before calling
  182. * spi_add_device() on it.
  183. *
  184. * Caller is responsible to call spi_add_device() on the returned
  185. * spi_device structure to add it to the SPI master. If the caller
  186. * needs to discard the spi_device without adding it, then it should
  187. * call spi_dev_put() on it.
  188. *
  189. * Returns a pointer to the new device, or NULL.
  190. */
  191. struct spi_device *spi_alloc_device(struct spi_master *master)
  192. {
  193. struct spi_device *spi;
  194. struct device *dev = master->dev.parent;
  195. if (!spi_master_get(master))
  196. return NULL;
  197. spi = kzalloc(sizeof *spi, GFP_KERNEL);
  198. if (!spi) {
  199. dev_err(dev, "cannot alloc spi_device\n");
  200. spi_master_put(master);
  201. return NULL;
  202. }
  203. spi->master = master;
  204. spi->dev.parent = dev;
  205. spi->dev.bus = &spi_bus_type;
  206. spi->dev.release = spidev_release;
  207. device_initialize(&spi->dev);
  208. return spi;
  209. }
  210. EXPORT_SYMBOL_GPL(spi_alloc_device);
  211. /**
  212. * spi_add_device - Add spi_device allocated with spi_alloc_device
  213. * @spi: spi_device to register
  214. *
  215. * Companion function to spi_alloc_device. Devices allocated with
  216. * spi_alloc_device can be added onto the spi bus with this function.
  217. *
  218. * Returns 0 on success; negative errno on failure
  219. */
  220. int spi_add_device(struct spi_device *spi)
  221. {
  222. static DEFINE_MUTEX(spi_add_lock);
  223. struct device *dev = spi->master->dev.parent;
  224. struct device *d;
  225. int status;
  226. /* Chipselects are numbered 0..max; validate. */
  227. if (spi->chip_select >= spi->master->num_chipselect) {
  228. dev_err(dev, "cs%d >= max %d\n",
  229. spi->chip_select,
  230. spi->master->num_chipselect);
  231. return -EINVAL;
  232. }
  233. /* Set the bus ID string */
  234. dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
  235. spi->chip_select);
  236. /* We need to make sure there's no other device with this
  237. * chipselect **BEFORE** we call setup(), else we'll trash
  238. * its configuration. Lock against concurrent add() calls.
  239. */
  240. mutex_lock(&spi_add_lock);
  241. d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
  242. if (d != NULL) {
  243. dev_err(dev, "chipselect %d already in use\n",
  244. spi->chip_select);
  245. put_device(d);
  246. status = -EBUSY;
  247. goto done;
  248. }
  249. /* Drivers may modify this initial i/o setup, but will
  250. * normally rely on the device being setup. Devices
  251. * using SPI_CS_HIGH can't coexist well otherwise...
  252. */
  253. status = spi_setup(spi);
  254. if (status < 0) {
  255. dev_err(dev, "can't setup %s, status %d\n",
  256. dev_name(&spi->dev), status);
  257. goto done;
  258. }
  259. /* Device may be bound to an active driver when this returns */
  260. status = device_add(&spi->dev);
  261. if (status < 0)
  262. dev_err(dev, "can't add %s, status %d\n",
  263. dev_name(&spi->dev), status);
  264. else
  265. dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
  266. done:
  267. mutex_unlock(&spi_add_lock);
  268. return status;
  269. }
  270. EXPORT_SYMBOL_GPL(spi_add_device);
  271. /**
  272. * spi_new_device - instantiate one new SPI device
  273. * @master: Controller to which device is connected
  274. * @chip: Describes the SPI device
  275. * Context: can sleep
  276. *
  277. * On typical mainboards, this is purely internal; and it's not needed
  278. * after board init creates the hard-wired devices. Some development
  279. * platforms may not be able to use spi_register_board_info though, and
  280. * this is exported so that for example a USB or parport based adapter
  281. * driver could add devices (which it would learn about out-of-band).
  282. *
  283. * Returns the new device, or NULL.
  284. */
  285. struct spi_device *spi_new_device(struct spi_master *master,
  286. struct spi_board_info *chip)
  287. {
  288. struct spi_device *proxy;
  289. int status;
  290. /* NOTE: caller did any chip->bus_num checks necessary.
  291. *
  292. * Also, unless we change the return value convention to use
  293. * error-or-pointer (not NULL-or-pointer), troubleshootability
  294. * suggests syslogged diagnostics are best here (ugh).
  295. */
  296. proxy = spi_alloc_device(master);
  297. if (!proxy)
  298. return NULL;
  299. WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
  300. proxy->chip_select = chip->chip_select;
  301. proxy->max_speed_hz = chip->max_speed_hz;
  302. proxy->mode = chip->mode;
  303. proxy->irq = chip->irq;
  304. strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
  305. proxy->dev.platform_data = (void *) chip->platform_data;
  306. proxy->controller_data = chip->controller_data;
  307. proxy->controller_state = NULL;
  308. status = spi_add_device(proxy);
  309. if (status < 0) {
  310. spi_dev_put(proxy);
  311. return NULL;
  312. }
  313. return proxy;
  314. }
  315. EXPORT_SYMBOL_GPL(spi_new_device);
  316. static void spi_match_master_to_boardinfo(struct spi_master *master,
  317. struct spi_board_info *bi)
  318. {
  319. struct spi_device *dev;
  320. if (master->bus_num != bi->bus_num)
  321. return;
  322. dev = spi_new_device(master, bi);
  323. if (!dev)
  324. dev_err(master->dev.parent, "can't create new device for %s\n",
  325. bi->modalias);
  326. }
  327. /**
  328. * spi_register_board_info - register SPI devices for a given board
  329. * @info: array of chip descriptors
  330. * @n: how many descriptors are provided
  331. * Context: can sleep
  332. *
  333. * Board-specific early init code calls this (probably during arch_initcall)
  334. * with segments of the SPI device table. Any device nodes are created later,
  335. * after the relevant parent SPI controller (bus_num) is defined. We keep
  336. * this table of devices forever, so that reloading a controller driver will
  337. * not make Linux forget about these hard-wired devices.
  338. *
  339. * Other code can also call this, e.g. a particular add-on board might provide
  340. * SPI devices through its expansion connector, so code initializing that board
  341. * would naturally declare its SPI devices.
  342. *
  343. * The board info passed can safely be __initdata ... but be careful of
  344. * any embedded pointers (platform_data, etc), they're copied as-is.
  345. */
  346. int __init
  347. spi_register_board_info(struct spi_board_info const *info, unsigned n)
  348. {
  349. struct boardinfo *bi;
  350. int i;
  351. bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
  352. if (!bi)
  353. return -ENOMEM;
  354. for (i = 0; i < n; i++, bi++, info++) {
  355. struct spi_master *master;
  356. memcpy(&bi->board_info, info, sizeof(*info));
  357. mutex_lock(&board_lock);
  358. list_add_tail(&bi->list, &board_list);
  359. list_for_each_entry(master, &spi_master_list, list)
  360. spi_match_master_to_boardinfo(master, &bi->board_info);
  361. mutex_unlock(&board_lock);
  362. }
  363. return 0;
  364. }
  365. /*-------------------------------------------------------------------------*/
  366. static void spi_master_release(struct device *dev)
  367. {
  368. struct spi_master *master;
  369. master = container_of(dev, struct spi_master, dev);
  370. kfree(master);
  371. }
  372. static struct class spi_master_class = {
  373. .name = "spi_master",
  374. .owner = THIS_MODULE,
  375. .dev_release = spi_master_release,
  376. };
  377. /**
  378. * spi_alloc_master - allocate SPI master controller
  379. * @dev: the controller, possibly using the platform_bus
  380. * @size: how much zeroed driver-private data to allocate; the pointer to this
  381. * memory is in the driver_data field of the returned device,
  382. * accessible with spi_master_get_devdata().
  383. * Context: can sleep
  384. *
  385. * This call is used only by SPI master controller drivers, which are the
  386. * only ones directly touching chip registers. It's how they allocate
  387. * an spi_master structure, prior to calling spi_register_master().
  388. *
  389. * This must be called from context that can sleep. It returns the SPI
  390. * master structure on success, else NULL.
  391. *
  392. * The caller is responsible for assigning the bus number and initializing
  393. * the master's methods before calling spi_register_master(); and (after errors
  394. * adding the device) calling spi_master_put() to prevent a memory leak.
  395. */
  396. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  397. {
  398. struct spi_master *master;
  399. if (!dev)
  400. return NULL;
  401. master = kzalloc(size + sizeof *master, GFP_KERNEL);
  402. if (!master)
  403. return NULL;
  404. device_initialize(&master->dev);
  405. master->dev.class = &spi_master_class;
  406. master->dev.parent = get_device(dev);
  407. spi_master_set_devdata(master, &master[1]);
  408. return master;
  409. }
  410. EXPORT_SYMBOL_GPL(spi_alloc_master);
  411. /**
  412. * spi_register_master - register SPI master controller
  413. * @master: initialized master, originally from spi_alloc_master()
  414. * Context: can sleep
  415. *
  416. * SPI master controllers connect to their drivers using some non-SPI bus,
  417. * such as the platform bus. The final stage of probe() in that code
  418. * includes calling spi_register_master() to hook up to this SPI bus glue.
  419. *
  420. * SPI controllers use board specific (often SOC specific) bus numbers,
  421. * and board-specific addressing for SPI devices combines those numbers
  422. * with chip select numbers. Since SPI does not directly support dynamic
  423. * device identification, boards need configuration tables telling which
  424. * chip is at which address.
  425. *
  426. * This must be called from context that can sleep. It returns zero on
  427. * success, else a negative error code (dropping the master's refcount).
  428. * After a successful return, the caller is responsible for calling
  429. * spi_unregister_master().
  430. */
  431. int spi_register_master(struct spi_master *master)
  432. {
  433. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
  434. struct device *dev = master->dev.parent;
  435. struct boardinfo *bi;
  436. int status = -ENODEV;
  437. int dynamic = 0;
  438. if (!dev)
  439. return -ENODEV;
  440. /* even if it's just one always-selected device, there must
  441. * be at least one chipselect
  442. */
  443. if (master->num_chipselect == 0)
  444. return -EINVAL;
  445. /* convention: dynamically assigned bus IDs count down from the max */
  446. if (master->bus_num < 0) {
  447. /* FIXME switch to an IDR based scheme, something like
  448. * I2C now uses, so we can't run out of "dynamic" IDs
  449. */
  450. master->bus_num = atomic_dec_return(&dyn_bus_id);
  451. dynamic = 1;
  452. }
  453. spin_lock_init(&master->bus_lock_spinlock);
  454. mutex_init(&master->bus_lock_mutex);
  455. master->bus_lock_flag = 0;
  456. /* register the device, then userspace will see it.
  457. * registration fails if the bus ID is in use.
  458. */
  459. dev_set_name(&master->dev, "spi%u", master->bus_num);
  460. status = device_add(&master->dev);
  461. if (status < 0)
  462. goto done;
  463. dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
  464. dynamic ? " (dynamic)" : "");
  465. mutex_lock(&board_lock);
  466. list_add_tail(&master->list, &spi_master_list);
  467. list_for_each_entry(bi, &board_list, list)
  468. spi_match_master_to_boardinfo(master, &bi->board_info);
  469. mutex_unlock(&board_lock);
  470. status = 0;
  471. /* Register devices from the device tree */
  472. of_register_spi_devices(master);
  473. done:
  474. return status;
  475. }
  476. EXPORT_SYMBOL_GPL(spi_register_master);
  477. static int __unregister(struct device *dev, void *null)
  478. {
  479. spi_unregister_device(to_spi_device(dev));
  480. return 0;
  481. }
  482. /**
  483. * spi_unregister_master - unregister SPI master controller
  484. * @master: the master being unregistered
  485. * Context: can sleep
  486. *
  487. * This call is used only by SPI master controller drivers, which are the
  488. * only ones directly touching chip registers.
  489. *
  490. * This must be called from context that can sleep.
  491. */
  492. void spi_unregister_master(struct spi_master *master)
  493. {
  494. int dummy;
  495. mutex_lock(&board_lock);
  496. list_del(&master->list);
  497. mutex_unlock(&board_lock);
  498. dummy = device_for_each_child(&master->dev, NULL, __unregister);
  499. device_unregister(&master->dev);
  500. }
  501. EXPORT_SYMBOL_GPL(spi_unregister_master);
  502. static int __spi_master_match(struct device *dev, void *data)
  503. {
  504. struct spi_master *m;
  505. u16 *bus_num = data;
  506. m = container_of(dev, struct spi_master, dev);
  507. return m->bus_num == *bus_num;
  508. }
  509. /**
  510. * spi_busnum_to_master - look up master associated with bus_num
  511. * @bus_num: the master's bus number
  512. * Context: can sleep
  513. *
  514. * This call may be used with devices that are registered after
  515. * arch init time. It returns a refcounted pointer to the relevant
  516. * spi_master (which the caller must release), or NULL if there is
  517. * no such master registered.
  518. */
  519. struct spi_master *spi_busnum_to_master(u16 bus_num)
  520. {
  521. struct device *dev;
  522. struct spi_master *master = NULL;
  523. dev = class_find_device(&spi_master_class, NULL, &bus_num,
  524. __spi_master_match);
  525. if (dev)
  526. master = container_of(dev, struct spi_master, dev);
  527. /* reference got in class_find_device */
  528. return master;
  529. }
  530. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  531. /*-------------------------------------------------------------------------*/
  532. /* Core methods for SPI master protocol drivers. Some of the
  533. * other core methods are currently defined as inline functions.
  534. */
  535. /**
  536. * spi_setup - setup SPI mode and clock rate
  537. * @spi: the device whose settings are being modified
  538. * Context: can sleep, and no requests are queued to the device
  539. *
  540. * SPI protocol drivers may need to update the transfer mode if the
  541. * device doesn't work with its default. They may likewise need
  542. * to update clock rates or word sizes from initial values. This function
  543. * changes those settings, and must be called from a context that can sleep.
  544. * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
  545. * effect the next time the device is selected and data is transferred to
  546. * or from it. When this function returns, the spi device is deselected.
  547. *
  548. * Note that this call will fail if the protocol driver specifies an option
  549. * that the underlying controller or its driver does not support. For
  550. * example, not all hardware supports wire transfers using nine bit words,
  551. * LSB-first wire encoding, or active-high chipselects.
  552. */
  553. int spi_setup(struct spi_device *spi)
  554. {
  555. unsigned bad_bits;
  556. int status;
  557. /* help drivers fail *cleanly* when they need options
  558. * that aren't supported with their current master
  559. */
  560. bad_bits = spi->mode & ~spi->master->mode_bits;
  561. if (bad_bits) {
  562. dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
  563. bad_bits);
  564. return -EINVAL;
  565. }
  566. if (!spi->bits_per_word)
  567. spi->bits_per_word = 8;
  568. status = spi->master->setup(spi);
  569. dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
  570. "%u bits/w, %u Hz max --> %d\n",
  571. (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
  572. (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
  573. (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
  574. (spi->mode & SPI_3WIRE) ? "3wire, " : "",
  575. (spi->mode & SPI_LOOP) ? "loopback, " : "",
  576. spi->bits_per_word, spi->max_speed_hz,
  577. status);
  578. return status;
  579. }
  580. EXPORT_SYMBOL_GPL(spi_setup);
  581. static int __spi_async(struct spi_device *spi, struct spi_message *message)
  582. {
  583. struct spi_master *master = spi->master;
  584. /* Half-duplex links include original MicroWire, and ones with
  585. * only one data pin like SPI_3WIRE (switches direction) or where
  586. * either MOSI or MISO is missing. They can also be caused by
  587. * software limitations.
  588. */
  589. if ((master->flags & SPI_MASTER_HALF_DUPLEX)
  590. || (spi->mode & SPI_3WIRE)) {
  591. struct spi_transfer *xfer;
  592. unsigned flags = master->flags;
  593. list_for_each_entry(xfer, &message->transfers, transfer_list) {
  594. if (xfer->rx_buf && xfer->tx_buf)
  595. return -EINVAL;
  596. if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
  597. return -EINVAL;
  598. if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
  599. return -EINVAL;
  600. }
  601. }
  602. message->spi = spi;
  603. message->status = -EINPROGRESS;
  604. return master->transfer(spi, message);
  605. }
  606. /**
  607. * spi_async - asynchronous SPI transfer
  608. * @spi: device with which data will be exchanged
  609. * @message: describes the data transfers, including completion callback
  610. * Context: any (irqs may be blocked, etc)
  611. *
  612. * This call may be used in_irq and other contexts which can't sleep,
  613. * as well as from task contexts which can sleep.
  614. *
  615. * The completion callback is invoked in a context which can't sleep.
  616. * Before that invocation, the value of message->status is undefined.
  617. * When the callback is issued, message->status holds either zero (to
  618. * indicate complete success) or a negative error code. After that
  619. * callback returns, the driver which issued the transfer request may
  620. * deallocate the associated memory; it's no longer in use by any SPI
  621. * core or controller driver code.
  622. *
  623. * Note that although all messages to a spi_device are handled in
  624. * FIFO order, messages may go to different devices in other orders.
  625. * Some device might be higher priority, or have various "hard" access
  626. * time requirements, for example.
  627. *
  628. * On detection of any fault during the transfer, processing of
  629. * the entire message is aborted, and the device is deselected.
  630. * Until returning from the associated message completion callback,
  631. * no other spi_message queued to that device will be processed.
  632. * (This rule applies equally to all the synchronous transfer calls,
  633. * which are wrappers around this core asynchronous primitive.)
  634. */
  635. int spi_async(struct spi_device *spi, struct spi_message *message)
  636. {
  637. struct spi_master *master = spi->master;
  638. int ret;
  639. unsigned long flags;
  640. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  641. if (master->bus_lock_flag)
  642. ret = -EBUSY;
  643. else
  644. ret = __spi_async(spi, message);
  645. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  646. return ret;
  647. }
  648. EXPORT_SYMBOL_GPL(spi_async);
  649. /**
  650. * spi_async_locked - version of spi_async with exclusive bus usage
  651. * @spi: device with which data will be exchanged
  652. * @message: describes the data transfers, including completion callback
  653. * Context: any (irqs may be blocked, etc)
  654. *
  655. * This call may be used in_irq and other contexts which can't sleep,
  656. * as well as from task contexts which can sleep.
  657. *
  658. * The completion callback is invoked in a context which can't sleep.
  659. * Before that invocation, the value of message->status is undefined.
  660. * When the callback is issued, message->status holds either zero (to
  661. * indicate complete success) or a negative error code. After that
  662. * callback returns, the driver which issued the transfer request may
  663. * deallocate the associated memory; it's no longer in use by any SPI
  664. * core or controller driver code.
  665. *
  666. * Note that although all messages to a spi_device are handled in
  667. * FIFO order, messages may go to different devices in other orders.
  668. * Some device might be higher priority, or have various "hard" access
  669. * time requirements, for example.
  670. *
  671. * On detection of any fault during the transfer, processing of
  672. * the entire message is aborted, and the device is deselected.
  673. * Until returning from the associated message completion callback,
  674. * no other spi_message queued to that device will be processed.
  675. * (This rule applies equally to all the synchronous transfer calls,
  676. * which are wrappers around this core asynchronous primitive.)
  677. */
  678. int spi_async_locked(struct spi_device *spi, struct spi_message *message)
  679. {
  680. struct spi_master *master = spi->master;
  681. int ret;
  682. unsigned long flags;
  683. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  684. ret = __spi_async(spi, message);
  685. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  686. return ret;
  687. }
  688. EXPORT_SYMBOL_GPL(spi_async_locked);
  689. /*-------------------------------------------------------------------------*/
  690. /* Utility methods for SPI master protocol drivers, layered on
  691. * top of the core. Some other utility methods are defined as
  692. * inline functions.
  693. */
  694. static void spi_complete(void *arg)
  695. {
  696. complete(arg);
  697. }
  698. static int __spi_sync(struct spi_device *spi, struct spi_message *message,
  699. int bus_locked)
  700. {
  701. DECLARE_COMPLETION_ONSTACK(done);
  702. int status;
  703. struct spi_master *master = spi->master;
  704. message->complete = spi_complete;
  705. message->context = &done;
  706. if (!bus_locked)
  707. mutex_lock(&master->bus_lock_mutex);
  708. status = spi_async_locked(spi, message);
  709. if (!bus_locked)
  710. mutex_unlock(&master->bus_lock_mutex);
  711. if (status == 0) {
  712. wait_for_completion(&done);
  713. status = message->status;
  714. }
  715. message->context = NULL;
  716. return status;
  717. }
  718. /**
  719. * spi_sync - blocking/synchronous SPI data transfers
  720. * @spi: device with which data will be exchanged
  721. * @message: describes the data transfers
  722. * Context: can sleep
  723. *
  724. * This call may only be used from a context that may sleep. The sleep
  725. * is non-interruptible, and has no timeout. Low-overhead controller
  726. * drivers may DMA directly into and out of the message buffers.
  727. *
  728. * Note that the SPI device's chip select is active during the message,
  729. * and then is normally disabled between messages. Drivers for some
  730. * frequently-used devices may want to minimize costs of selecting a chip,
  731. * by leaving it selected in anticipation that the next message will go
  732. * to the same chip. (That may increase power usage.)
  733. *
  734. * Also, the caller is guaranteeing that the memory associated with the
  735. * message will not be freed before this call returns.
  736. *
  737. * It returns zero on success, else a negative error code.
  738. */
  739. int spi_sync(struct spi_device *spi, struct spi_message *message)
  740. {
  741. return __spi_sync(spi, message, 0);
  742. }
  743. EXPORT_SYMBOL_GPL(spi_sync);
  744. /**
  745. * spi_sync_locked - version of spi_sync with exclusive bus usage
  746. * @spi: device with which data will be exchanged
  747. * @message: describes the data transfers
  748. * Context: can sleep
  749. *
  750. * This call may only be used from a context that may sleep. The sleep
  751. * is non-interruptible, and has no timeout. Low-overhead controller
  752. * drivers may DMA directly into and out of the message buffers.
  753. *
  754. * This call should be used by drivers that require exclusive access to the
  755. * SPI bus. It has to be preceeded by a spi_bus_lock call. The SPI bus must
  756. * be released by a spi_bus_unlock call when the exclusive access is over.
  757. *
  758. * It returns zero on success, else a negative error code.
  759. */
  760. int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
  761. {
  762. return __spi_sync(spi, message, 1);
  763. }
  764. EXPORT_SYMBOL_GPL(spi_sync_locked);
  765. /**
  766. * spi_bus_lock - obtain a lock for exclusive SPI bus usage
  767. * @master: SPI bus master that should be locked for exclusive bus access
  768. * Context: can sleep
  769. *
  770. * This call may only be used from a context that may sleep. The sleep
  771. * is non-interruptible, and has no timeout.
  772. *
  773. * This call should be used by drivers that require exclusive access to the
  774. * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
  775. * exclusive access is over. Data transfer must be done by spi_sync_locked
  776. * and spi_async_locked calls when the SPI bus lock is held.
  777. *
  778. * It returns zero on success, else a negative error code.
  779. */
  780. int spi_bus_lock(struct spi_master *master)
  781. {
  782. unsigned long flags;
  783. mutex_lock(&master->bus_lock_mutex);
  784. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  785. master->bus_lock_flag = 1;
  786. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  787. /* mutex remains locked until spi_bus_unlock is called */
  788. return 0;
  789. }
  790. EXPORT_SYMBOL_GPL(spi_bus_lock);
  791. /**
  792. * spi_bus_unlock - release the lock for exclusive SPI bus usage
  793. * @master: SPI bus master that was locked for exclusive bus access
  794. * Context: can sleep
  795. *
  796. * This call may only be used from a context that may sleep. The sleep
  797. * is non-interruptible, and has no timeout.
  798. *
  799. * This call releases an SPI bus lock previously obtained by an spi_bus_lock
  800. * call.
  801. *
  802. * It returns zero on success, else a negative error code.
  803. */
  804. int spi_bus_unlock(struct spi_master *master)
  805. {
  806. master->bus_lock_flag = 0;
  807. mutex_unlock(&master->bus_lock_mutex);
  808. return 0;
  809. }
  810. EXPORT_SYMBOL_GPL(spi_bus_unlock);
  811. /* portable code must never pass more than 32 bytes */
  812. #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
  813. static u8 *buf;
  814. /**
  815. * spi_write_then_read - SPI synchronous write followed by read
  816. * @spi: device with which data will be exchanged
  817. * @txbuf: data to be written (need not be dma-safe)
  818. * @n_tx: size of txbuf, in bytes
  819. * @rxbuf: buffer into which data will be read (need not be dma-safe)
  820. * @n_rx: size of rxbuf, in bytes
  821. * Context: can sleep
  822. *
  823. * This performs a half duplex MicroWire style transaction with the
  824. * device, sending txbuf and then reading rxbuf. The return value
  825. * is zero for success, else a negative errno status code.
  826. * This call may only be used from a context that may sleep.
  827. *
  828. * Parameters to this routine are always copied using a small buffer;
  829. * portable code should never use this for more than 32 bytes.
  830. * Performance-sensitive or bulk transfer code should instead use
  831. * spi_{async,sync}() calls with dma-safe buffers.
  832. */
  833. int spi_write_then_read(struct spi_device *spi,
  834. const u8 *txbuf, unsigned n_tx,
  835. u8 *rxbuf, unsigned n_rx)
  836. {
  837. static DEFINE_MUTEX(lock);
  838. int status;
  839. struct spi_message message;
  840. struct spi_transfer x[2];
  841. u8 *local_buf;
  842. /* Use preallocated DMA-safe buffer. We can't avoid copying here,
  843. * (as a pure convenience thing), but we can keep heap costs
  844. * out of the hot path ...
  845. */
  846. if ((n_tx + n_rx) > SPI_BUFSIZ)
  847. return -EINVAL;
  848. spi_message_init(&message);
  849. memset(x, 0, sizeof x);
  850. if (n_tx) {
  851. x[0].len = n_tx;
  852. spi_message_add_tail(&x[0], &message);
  853. }
  854. if (n_rx) {
  855. x[1].len = n_rx;
  856. spi_message_add_tail(&x[1], &message);
  857. }
  858. /* ... unless someone else is using the pre-allocated buffer */
  859. if (!mutex_trylock(&lock)) {
  860. local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  861. if (!local_buf)
  862. return -ENOMEM;
  863. } else
  864. local_buf = buf;
  865. memcpy(local_buf, txbuf, n_tx);
  866. x[0].tx_buf = local_buf;
  867. x[1].rx_buf = local_buf + n_tx;
  868. /* do the i/o */
  869. status = spi_sync(spi, &message);
  870. if (status == 0)
  871. memcpy(rxbuf, x[1].rx_buf, n_rx);
  872. if (x[0].tx_buf == buf)
  873. mutex_unlock(&lock);
  874. else
  875. kfree(local_buf);
  876. return status;
  877. }
  878. EXPORT_SYMBOL_GPL(spi_write_then_read);
  879. /*-------------------------------------------------------------------------*/
  880. static int __init spi_init(void)
  881. {
  882. int status;
  883. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  884. if (!buf) {
  885. status = -ENOMEM;
  886. goto err0;
  887. }
  888. status = bus_register(&spi_bus_type);
  889. if (status < 0)
  890. goto err1;
  891. status = class_register(&spi_master_class);
  892. if (status < 0)
  893. goto err2;
  894. return 0;
  895. err2:
  896. bus_unregister(&spi_bus_type);
  897. err1:
  898. kfree(buf);
  899. buf = NULL;
  900. err0:
  901. return status;
  902. }
  903. /* board_info is normally registered in arch_initcall(),
  904. * but even essential drivers wait till later
  905. *
  906. * REVISIT only boardinfo really needs static linking. the rest (device and
  907. * driver registration) _could_ be dynamically linked (modular) ... costs
  908. * include needing to have boardinfo data structures be much more public.
  909. */
  910. postcore_initcall(spi_init);