sched.c 269 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static inline int rt_policy(int policy)
  112. {
  113. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  114. return 1;
  115. return 0;
  116. }
  117. static inline int task_has_rt_policy(struct task_struct *p)
  118. {
  119. return rt_policy(p->policy);
  120. }
  121. /*
  122. * This is the priority-queue data structure of the RT scheduling class:
  123. */
  124. struct rt_prio_array {
  125. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  126. struct list_head queue[MAX_RT_PRIO];
  127. };
  128. struct rt_bandwidth {
  129. /* nests inside the rq lock: */
  130. spinlock_t rt_runtime_lock;
  131. ktime_t rt_period;
  132. u64 rt_runtime;
  133. struct hrtimer rt_period_timer;
  134. };
  135. static struct rt_bandwidth def_rt_bandwidth;
  136. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  137. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  138. {
  139. struct rt_bandwidth *rt_b =
  140. container_of(timer, struct rt_bandwidth, rt_period_timer);
  141. ktime_t now;
  142. int overrun;
  143. int idle = 0;
  144. for (;;) {
  145. now = hrtimer_cb_get_time(timer);
  146. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  147. if (!overrun)
  148. break;
  149. idle = do_sched_rt_period_timer(rt_b, overrun);
  150. }
  151. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  152. }
  153. static
  154. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  155. {
  156. rt_b->rt_period = ns_to_ktime(period);
  157. rt_b->rt_runtime = runtime;
  158. spin_lock_init(&rt_b->rt_runtime_lock);
  159. hrtimer_init(&rt_b->rt_period_timer,
  160. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. rt_b->rt_period_timer.function = sched_rt_period_timer;
  162. }
  163. static inline int rt_bandwidth_enabled(void)
  164. {
  165. return sysctl_sched_rt_runtime >= 0;
  166. }
  167. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  168. {
  169. ktime_t now;
  170. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  171. return;
  172. if (hrtimer_active(&rt_b->rt_period_timer))
  173. return;
  174. spin_lock(&rt_b->rt_runtime_lock);
  175. for (;;) {
  176. unsigned long delta;
  177. ktime_t soft, hard;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  181. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  182. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  183. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. spin_unlock(&rt_b->rt_runtime_lock);
  189. }
  190. #ifdef CONFIG_RT_GROUP_SCHED
  191. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. hrtimer_cancel(&rt_b->rt_period_timer);
  194. }
  195. #endif
  196. /*
  197. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  198. * detach_destroy_domains and partition_sched_domains.
  199. */
  200. static DEFINE_MUTEX(sched_domains_mutex);
  201. #ifdef CONFIG_GROUP_SCHED
  202. #include <linux/cgroup.h>
  203. struct cfs_rq;
  204. static LIST_HEAD(task_groups);
  205. /* task group related information */
  206. struct task_group {
  207. #ifdef CONFIG_CGROUP_SCHED
  208. struct cgroup_subsys_state css;
  209. #endif
  210. #ifdef CONFIG_USER_SCHED
  211. uid_t uid;
  212. #endif
  213. #ifdef CONFIG_FAIR_GROUP_SCHED
  214. /* schedulable entities of this group on each cpu */
  215. struct sched_entity **se;
  216. /* runqueue "owned" by this group on each cpu */
  217. struct cfs_rq **cfs_rq;
  218. unsigned long shares;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. };
  231. #ifdef CONFIG_USER_SCHED
  232. /* Helper function to pass uid information to create_sched_user() */
  233. void set_tg_uid(struct user_struct *user)
  234. {
  235. user->tg->uid = user->uid;
  236. }
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  248. #endif /* CONFIG_FAIR_GROUP_SCHED */
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
  252. #endif /* CONFIG_RT_GROUP_SCHED */
  253. #else /* !CONFIG_USER_SCHED */
  254. #define root_task_group init_task_group
  255. #endif /* CONFIG_USER_SCHED */
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. #ifdef CONFIG_SMP
  262. static int root_task_group_empty(void)
  263. {
  264. return list_empty(&root_task_group.children);
  265. }
  266. #endif
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else /* !CONFIG_USER_SCHED */
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif /* CONFIG_USER_SCHED */
  272. /*
  273. * A weight of 0 or 1 can cause arithmetics problems.
  274. * A weight of a cfs_rq is the sum of weights of which entities
  275. * are queued on this cfs_rq, so a weight of a entity should not be
  276. * too large, so as the shares value of a task group.
  277. * (The default weight is 1024 - so there's no practical
  278. * limitation from this.)
  279. */
  280. #define MIN_SHARES 2
  281. #define MAX_SHARES (1UL << 18)
  282. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  283. #endif
  284. /* Default task group.
  285. * Every task in system belong to this group at bootup.
  286. */
  287. struct task_group init_task_group;
  288. /* return group to which a task belongs */
  289. static inline struct task_group *task_group(struct task_struct *p)
  290. {
  291. struct task_group *tg;
  292. #ifdef CONFIG_USER_SCHED
  293. rcu_read_lock();
  294. tg = __task_cred(p)->user->tg;
  295. rcu_read_unlock();
  296. #elif defined(CONFIG_CGROUP_SCHED)
  297. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  298. struct task_group, css);
  299. #else
  300. tg = &init_task_group;
  301. #endif
  302. return tg;
  303. }
  304. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  305. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  306. {
  307. #ifdef CONFIG_FAIR_GROUP_SCHED
  308. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  309. p->se.parent = task_group(p)->se[cpu];
  310. #endif
  311. #ifdef CONFIG_RT_GROUP_SCHED
  312. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  313. p->rt.parent = task_group(p)->rt_se[cpu];
  314. #endif
  315. }
  316. #else
  317. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  318. static inline struct task_group *task_group(struct task_struct *p)
  319. {
  320. return NULL;
  321. }
  322. #endif /* CONFIG_GROUP_SCHED */
  323. /* CFS-related fields in a runqueue */
  324. struct cfs_rq {
  325. struct load_weight load;
  326. unsigned long nr_running;
  327. u64 exec_clock;
  328. u64 min_vruntime;
  329. struct rb_root tasks_timeline;
  330. struct rb_node *rb_leftmost;
  331. struct list_head tasks;
  332. struct list_head *balance_iterator;
  333. /*
  334. * 'curr' points to currently running entity on this cfs_rq.
  335. * It is set to NULL otherwise (i.e when none are currently running).
  336. */
  337. struct sched_entity *curr, *next, *last;
  338. unsigned int nr_spread_over;
  339. #ifdef CONFIG_FAIR_GROUP_SCHED
  340. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  341. /*
  342. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  343. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  344. * (like users, containers etc.)
  345. *
  346. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  347. * list is used during load balance.
  348. */
  349. struct list_head leaf_cfs_rq_list;
  350. struct task_group *tg; /* group that "owns" this runqueue */
  351. #ifdef CONFIG_SMP
  352. /*
  353. * the part of load.weight contributed by tasks
  354. */
  355. unsigned long task_weight;
  356. /*
  357. * h_load = weight * f(tg)
  358. *
  359. * Where f(tg) is the recursive weight fraction assigned to
  360. * this group.
  361. */
  362. unsigned long h_load;
  363. /*
  364. * this cpu's part of tg->shares
  365. */
  366. unsigned long shares;
  367. /*
  368. * load.weight at the time we set shares
  369. */
  370. unsigned long rq_weight;
  371. #endif
  372. #endif
  373. };
  374. /* Real-Time classes' related field in a runqueue: */
  375. struct rt_rq {
  376. struct rt_prio_array active;
  377. unsigned long rt_nr_running;
  378. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  379. struct {
  380. int curr; /* highest queued rt task prio */
  381. #ifdef CONFIG_SMP
  382. int next; /* next highest */
  383. #endif
  384. } highest_prio;
  385. #endif
  386. #ifdef CONFIG_SMP
  387. unsigned long rt_nr_migratory;
  388. unsigned long rt_nr_total;
  389. int overloaded;
  390. struct plist_head pushable_tasks;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_var_t span;
  417. cpumask_var_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_var_t rto_mask;
  423. atomic_t rto_count;
  424. #ifdef CONFIG_SMP
  425. struct cpupri cpupri;
  426. #endif
  427. };
  428. /*
  429. * By default the system creates a single root-domain with all cpus as
  430. * members (mimicking the global state we have today).
  431. */
  432. static struct root_domain def_root_domain;
  433. #endif
  434. /*
  435. * This is the main, per-CPU runqueue data structure.
  436. *
  437. * Locking rule: those places that want to lock multiple runqueues
  438. * (such as the load balancing or the thread migration code), lock
  439. * acquire operations must be ordered by ascending &runqueue.
  440. */
  441. struct rq {
  442. /* runqueue lock: */
  443. spinlock_t lock;
  444. /*
  445. * nr_running and cpu_load should be in the same cacheline because
  446. * remote CPUs use both these fields when doing load calculation.
  447. */
  448. unsigned long nr_running;
  449. #define CPU_LOAD_IDX_MAX 5
  450. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  451. #ifdef CONFIG_NO_HZ
  452. unsigned char in_nohz_recently;
  453. #endif
  454. /* capture load from *all* tasks on this cpu: */
  455. struct load_weight load;
  456. unsigned long nr_load_updates;
  457. u64 nr_switches;
  458. struct cfs_rq cfs;
  459. struct rt_rq rt;
  460. #ifdef CONFIG_FAIR_GROUP_SCHED
  461. /* list of leaf cfs_rq on this cpu: */
  462. struct list_head leaf_cfs_rq_list;
  463. #endif
  464. #ifdef CONFIG_RT_GROUP_SCHED
  465. struct list_head leaf_rt_rq_list;
  466. #endif
  467. /*
  468. * This is part of a global counter where only the total sum
  469. * over all CPUs matters. A task can increase this counter on
  470. * one CPU and if it got migrated afterwards it may decrease
  471. * it on another CPU. Always updated under the runqueue lock:
  472. */
  473. unsigned long nr_uninterruptible;
  474. struct task_struct *curr, *idle;
  475. unsigned long next_balance;
  476. struct mm_struct *prev_mm;
  477. u64 clock;
  478. atomic_t nr_iowait;
  479. #ifdef CONFIG_SMP
  480. struct root_domain *rd;
  481. struct sched_domain *sd;
  482. unsigned char idle_at_tick;
  483. /* For active balancing */
  484. int post_schedule;
  485. int active_balance;
  486. int push_cpu;
  487. /* cpu of this runqueue: */
  488. int cpu;
  489. int online;
  490. unsigned long avg_load_per_task;
  491. struct task_struct *migration_thread;
  492. struct list_head migration_queue;
  493. u64 rt_avg;
  494. u64 age_stamp;
  495. u64 idle_stamp;
  496. u64 avg_idle;
  497. #endif
  498. /* calc_load related fields */
  499. unsigned long calc_load_update;
  500. long calc_load_active;
  501. #ifdef CONFIG_SCHED_HRTICK
  502. #ifdef CONFIG_SMP
  503. int hrtick_csd_pending;
  504. struct call_single_data hrtick_csd;
  505. #endif
  506. struct hrtimer hrtick_timer;
  507. #endif
  508. #ifdef CONFIG_SCHEDSTATS
  509. /* latency stats */
  510. struct sched_info rq_sched_info;
  511. unsigned long long rq_cpu_time;
  512. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  513. /* sys_sched_yield() stats */
  514. unsigned int yld_count;
  515. /* schedule() stats */
  516. unsigned int sched_switch;
  517. unsigned int sched_count;
  518. unsigned int sched_goidle;
  519. /* try_to_wake_up() stats */
  520. unsigned int ttwu_count;
  521. unsigned int ttwu_local;
  522. /* BKL stats */
  523. unsigned int bkl_count;
  524. #endif
  525. };
  526. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  527. static inline
  528. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  529. {
  530. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  531. }
  532. static inline int cpu_of(struct rq *rq)
  533. {
  534. #ifdef CONFIG_SMP
  535. return rq->cpu;
  536. #else
  537. return 0;
  538. #endif
  539. }
  540. /*
  541. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  542. * See detach_destroy_domains: synchronize_sched for details.
  543. *
  544. * The domain tree of any CPU may only be accessed from within
  545. * preempt-disabled sections.
  546. */
  547. #define for_each_domain(cpu, __sd) \
  548. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  549. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  550. #define this_rq() (&__get_cpu_var(runqueues))
  551. #define task_rq(p) cpu_rq(task_cpu(p))
  552. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  553. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  554. inline void update_rq_clock(struct rq *rq)
  555. {
  556. rq->clock = sched_clock_cpu(cpu_of(rq));
  557. }
  558. /*
  559. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  560. */
  561. #ifdef CONFIG_SCHED_DEBUG
  562. # define const_debug __read_mostly
  563. #else
  564. # define const_debug static const
  565. #endif
  566. /**
  567. * runqueue_is_locked
  568. * @cpu: the processor in question.
  569. *
  570. * Returns true if the current cpu runqueue is locked.
  571. * This interface allows printk to be called with the runqueue lock
  572. * held and know whether or not it is OK to wake up the klogd.
  573. */
  574. int runqueue_is_locked(int cpu)
  575. {
  576. return spin_is_locked(&cpu_rq(cpu)->lock);
  577. }
  578. /*
  579. * Debugging: various feature bits
  580. */
  581. #define SCHED_FEAT(name, enabled) \
  582. __SCHED_FEAT_##name ,
  583. enum {
  584. #include "sched_features.h"
  585. };
  586. #undef SCHED_FEAT
  587. #define SCHED_FEAT(name, enabled) \
  588. (1UL << __SCHED_FEAT_##name) * enabled |
  589. const_debug unsigned int sysctl_sched_features =
  590. #include "sched_features.h"
  591. 0;
  592. #undef SCHED_FEAT
  593. #ifdef CONFIG_SCHED_DEBUG
  594. #define SCHED_FEAT(name, enabled) \
  595. #name ,
  596. static __read_mostly char *sched_feat_names[] = {
  597. #include "sched_features.h"
  598. NULL
  599. };
  600. #undef SCHED_FEAT
  601. static int sched_feat_show(struct seq_file *m, void *v)
  602. {
  603. int i;
  604. for (i = 0; sched_feat_names[i]; i++) {
  605. if (!(sysctl_sched_features & (1UL << i)))
  606. seq_puts(m, "NO_");
  607. seq_printf(m, "%s ", sched_feat_names[i]);
  608. }
  609. seq_puts(m, "\n");
  610. return 0;
  611. }
  612. static ssize_t
  613. sched_feat_write(struct file *filp, const char __user *ubuf,
  614. size_t cnt, loff_t *ppos)
  615. {
  616. char buf[64];
  617. char *cmp = buf;
  618. int neg = 0;
  619. int i;
  620. if (cnt > 63)
  621. cnt = 63;
  622. if (copy_from_user(&buf, ubuf, cnt))
  623. return -EFAULT;
  624. buf[cnt] = 0;
  625. if (strncmp(buf, "NO_", 3) == 0) {
  626. neg = 1;
  627. cmp += 3;
  628. }
  629. for (i = 0; sched_feat_names[i]; i++) {
  630. int len = strlen(sched_feat_names[i]);
  631. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  632. if (neg)
  633. sysctl_sched_features &= ~(1UL << i);
  634. else
  635. sysctl_sched_features |= (1UL << i);
  636. break;
  637. }
  638. }
  639. if (!sched_feat_names[i])
  640. return -EINVAL;
  641. *ppos += cnt;
  642. return cnt;
  643. }
  644. static int sched_feat_open(struct inode *inode, struct file *filp)
  645. {
  646. return single_open(filp, sched_feat_show, NULL);
  647. }
  648. static const struct file_operations sched_feat_fops = {
  649. .open = sched_feat_open,
  650. .write = sched_feat_write,
  651. .read = seq_read,
  652. .llseek = seq_lseek,
  653. .release = single_release,
  654. };
  655. static __init int sched_init_debug(void)
  656. {
  657. debugfs_create_file("sched_features", 0644, NULL, NULL,
  658. &sched_feat_fops);
  659. return 0;
  660. }
  661. late_initcall(sched_init_debug);
  662. #endif
  663. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  664. /*
  665. * Number of tasks to iterate in a single balance run.
  666. * Limited because this is done with IRQs disabled.
  667. */
  668. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  669. /*
  670. * ratelimit for updating the group shares.
  671. * default: 0.25ms
  672. */
  673. unsigned int sysctl_sched_shares_ratelimit = 250000;
  674. /*
  675. * Inject some fuzzyness into changing the per-cpu group shares
  676. * this avoids remote rq-locks at the expense of fairness.
  677. * default: 4
  678. */
  679. unsigned int sysctl_sched_shares_thresh = 4;
  680. /*
  681. * period over which we average the RT time consumption, measured
  682. * in ms.
  683. *
  684. * default: 1s
  685. */
  686. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  687. /*
  688. * period over which we measure -rt task cpu usage in us.
  689. * default: 1s
  690. */
  691. unsigned int sysctl_sched_rt_period = 1000000;
  692. static __read_mostly int scheduler_running;
  693. /*
  694. * part of the period that we allow rt tasks to run in us.
  695. * default: 0.95s
  696. */
  697. int sysctl_sched_rt_runtime = 950000;
  698. static inline u64 global_rt_period(void)
  699. {
  700. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  701. }
  702. static inline u64 global_rt_runtime(void)
  703. {
  704. if (sysctl_sched_rt_runtime < 0)
  705. return RUNTIME_INF;
  706. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  707. }
  708. #ifndef prepare_arch_switch
  709. # define prepare_arch_switch(next) do { } while (0)
  710. #endif
  711. #ifndef finish_arch_switch
  712. # define finish_arch_switch(prev) do { } while (0)
  713. #endif
  714. static inline int task_current(struct rq *rq, struct task_struct *p)
  715. {
  716. return rq->curr == p;
  717. }
  718. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  719. static inline int task_running(struct rq *rq, struct task_struct *p)
  720. {
  721. return task_current(rq, p);
  722. }
  723. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  724. {
  725. }
  726. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  727. {
  728. #ifdef CONFIG_DEBUG_SPINLOCK
  729. /* this is a valid case when another task releases the spinlock */
  730. rq->lock.owner = current;
  731. #endif
  732. /*
  733. * If we are tracking spinlock dependencies then we have to
  734. * fix up the runqueue lock - which gets 'carried over' from
  735. * prev into current:
  736. */
  737. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  738. spin_unlock_irq(&rq->lock);
  739. }
  740. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  741. static inline int task_running(struct rq *rq, struct task_struct *p)
  742. {
  743. #ifdef CONFIG_SMP
  744. return p->oncpu;
  745. #else
  746. return task_current(rq, p);
  747. #endif
  748. }
  749. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * We can optimise this out completely for !SMP, because the
  754. * SMP rebalancing from interrupt is the only thing that cares
  755. * here.
  756. */
  757. next->oncpu = 1;
  758. #endif
  759. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  760. spin_unlock_irq(&rq->lock);
  761. #else
  762. spin_unlock(&rq->lock);
  763. #endif
  764. }
  765. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  766. {
  767. #ifdef CONFIG_SMP
  768. /*
  769. * After ->oncpu is cleared, the task can be moved to a different CPU.
  770. * We must ensure this doesn't happen until the switch is completely
  771. * finished.
  772. */
  773. smp_wmb();
  774. prev->oncpu = 0;
  775. #endif
  776. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  777. local_irq_enable();
  778. #endif
  779. }
  780. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  781. /*
  782. * __task_rq_lock - lock the runqueue a given task resides on.
  783. * Must be called interrupts disabled.
  784. */
  785. static inline struct rq *__task_rq_lock(struct task_struct *p)
  786. __acquires(rq->lock)
  787. {
  788. for (;;) {
  789. struct rq *rq = task_rq(p);
  790. spin_lock(&rq->lock);
  791. if (likely(rq == task_rq(p)))
  792. return rq;
  793. spin_unlock(&rq->lock);
  794. }
  795. }
  796. /*
  797. * task_rq_lock - lock the runqueue a given task resides on and disable
  798. * interrupts. Note the ordering: we can safely lookup the task_rq without
  799. * explicitly disabling preemption.
  800. */
  801. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  802. __acquires(rq->lock)
  803. {
  804. struct rq *rq;
  805. for (;;) {
  806. local_irq_save(*flags);
  807. rq = task_rq(p);
  808. spin_lock(&rq->lock);
  809. if (likely(rq == task_rq(p)))
  810. return rq;
  811. spin_unlock_irqrestore(&rq->lock, *flags);
  812. }
  813. }
  814. void task_rq_unlock_wait(struct task_struct *p)
  815. {
  816. struct rq *rq = task_rq(p);
  817. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  818. spin_unlock_wait(&rq->lock);
  819. }
  820. static void __task_rq_unlock(struct rq *rq)
  821. __releases(rq->lock)
  822. {
  823. spin_unlock(&rq->lock);
  824. }
  825. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  826. __releases(rq->lock)
  827. {
  828. spin_unlock_irqrestore(&rq->lock, *flags);
  829. }
  830. /*
  831. * this_rq_lock - lock this runqueue and disable interrupts.
  832. */
  833. static struct rq *this_rq_lock(void)
  834. __acquires(rq->lock)
  835. {
  836. struct rq *rq;
  837. local_irq_disable();
  838. rq = this_rq();
  839. spin_lock(&rq->lock);
  840. return rq;
  841. }
  842. #ifdef CONFIG_SCHED_HRTICK
  843. /*
  844. * Use HR-timers to deliver accurate preemption points.
  845. *
  846. * Its all a bit involved since we cannot program an hrt while holding the
  847. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  848. * reschedule event.
  849. *
  850. * When we get rescheduled we reprogram the hrtick_timer outside of the
  851. * rq->lock.
  852. */
  853. /*
  854. * Use hrtick when:
  855. * - enabled by features
  856. * - hrtimer is actually high res
  857. */
  858. static inline int hrtick_enabled(struct rq *rq)
  859. {
  860. if (!sched_feat(HRTICK))
  861. return 0;
  862. if (!cpu_active(cpu_of(rq)))
  863. return 0;
  864. return hrtimer_is_hres_active(&rq->hrtick_timer);
  865. }
  866. static void hrtick_clear(struct rq *rq)
  867. {
  868. if (hrtimer_active(&rq->hrtick_timer))
  869. hrtimer_cancel(&rq->hrtick_timer);
  870. }
  871. /*
  872. * High-resolution timer tick.
  873. * Runs from hardirq context with interrupts disabled.
  874. */
  875. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  876. {
  877. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  878. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  879. spin_lock(&rq->lock);
  880. update_rq_clock(rq);
  881. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  882. spin_unlock(&rq->lock);
  883. return HRTIMER_NORESTART;
  884. }
  885. #ifdef CONFIG_SMP
  886. /*
  887. * called from hardirq (IPI) context
  888. */
  889. static void __hrtick_start(void *arg)
  890. {
  891. struct rq *rq = arg;
  892. spin_lock(&rq->lock);
  893. hrtimer_restart(&rq->hrtick_timer);
  894. rq->hrtick_csd_pending = 0;
  895. spin_unlock(&rq->lock);
  896. }
  897. /*
  898. * Called to set the hrtick timer state.
  899. *
  900. * called with rq->lock held and irqs disabled
  901. */
  902. static void hrtick_start(struct rq *rq, u64 delay)
  903. {
  904. struct hrtimer *timer = &rq->hrtick_timer;
  905. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  906. hrtimer_set_expires(timer, time);
  907. if (rq == this_rq()) {
  908. hrtimer_restart(timer);
  909. } else if (!rq->hrtick_csd_pending) {
  910. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  911. rq->hrtick_csd_pending = 1;
  912. }
  913. }
  914. static int
  915. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  916. {
  917. int cpu = (int)(long)hcpu;
  918. switch (action) {
  919. case CPU_UP_CANCELED:
  920. case CPU_UP_CANCELED_FROZEN:
  921. case CPU_DOWN_PREPARE:
  922. case CPU_DOWN_PREPARE_FROZEN:
  923. case CPU_DEAD:
  924. case CPU_DEAD_FROZEN:
  925. hrtick_clear(cpu_rq(cpu));
  926. return NOTIFY_OK;
  927. }
  928. return NOTIFY_DONE;
  929. }
  930. static __init void init_hrtick(void)
  931. {
  932. hotcpu_notifier(hotplug_hrtick, 0);
  933. }
  934. #else
  935. /*
  936. * Called to set the hrtick timer state.
  937. *
  938. * called with rq->lock held and irqs disabled
  939. */
  940. static void hrtick_start(struct rq *rq, u64 delay)
  941. {
  942. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  943. HRTIMER_MODE_REL_PINNED, 0);
  944. }
  945. static inline void init_hrtick(void)
  946. {
  947. }
  948. #endif /* CONFIG_SMP */
  949. static void init_rq_hrtick(struct rq *rq)
  950. {
  951. #ifdef CONFIG_SMP
  952. rq->hrtick_csd_pending = 0;
  953. rq->hrtick_csd.flags = 0;
  954. rq->hrtick_csd.func = __hrtick_start;
  955. rq->hrtick_csd.info = rq;
  956. #endif
  957. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  958. rq->hrtick_timer.function = hrtick;
  959. }
  960. #else /* CONFIG_SCHED_HRTICK */
  961. static inline void hrtick_clear(struct rq *rq)
  962. {
  963. }
  964. static inline void init_rq_hrtick(struct rq *rq)
  965. {
  966. }
  967. static inline void init_hrtick(void)
  968. {
  969. }
  970. #endif /* CONFIG_SCHED_HRTICK */
  971. /*
  972. * resched_task - mark a task 'to be rescheduled now'.
  973. *
  974. * On UP this means the setting of the need_resched flag, on SMP it
  975. * might also involve a cross-CPU call to trigger the scheduler on
  976. * the target CPU.
  977. */
  978. #ifdef CONFIG_SMP
  979. #ifndef tsk_is_polling
  980. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  981. #endif
  982. static void resched_task(struct task_struct *p)
  983. {
  984. int cpu;
  985. assert_spin_locked(&task_rq(p)->lock);
  986. if (test_tsk_need_resched(p))
  987. return;
  988. set_tsk_need_resched(p);
  989. cpu = task_cpu(p);
  990. if (cpu == smp_processor_id())
  991. return;
  992. /* NEED_RESCHED must be visible before we test polling */
  993. smp_mb();
  994. if (!tsk_is_polling(p))
  995. smp_send_reschedule(cpu);
  996. }
  997. static void resched_cpu(int cpu)
  998. {
  999. struct rq *rq = cpu_rq(cpu);
  1000. unsigned long flags;
  1001. if (!spin_trylock_irqsave(&rq->lock, flags))
  1002. return;
  1003. resched_task(cpu_curr(cpu));
  1004. spin_unlock_irqrestore(&rq->lock, flags);
  1005. }
  1006. #ifdef CONFIG_NO_HZ
  1007. /*
  1008. * When add_timer_on() enqueues a timer into the timer wheel of an
  1009. * idle CPU then this timer might expire before the next timer event
  1010. * which is scheduled to wake up that CPU. In case of a completely
  1011. * idle system the next event might even be infinite time into the
  1012. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1013. * leaves the inner idle loop so the newly added timer is taken into
  1014. * account when the CPU goes back to idle and evaluates the timer
  1015. * wheel for the next timer event.
  1016. */
  1017. void wake_up_idle_cpu(int cpu)
  1018. {
  1019. struct rq *rq = cpu_rq(cpu);
  1020. if (cpu == smp_processor_id())
  1021. return;
  1022. /*
  1023. * This is safe, as this function is called with the timer
  1024. * wheel base lock of (cpu) held. When the CPU is on the way
  1025. * to idle and has not yet set rq->curr to idle then it will
  1026. * be serialized on the timer wheel base lock and take the new
  1027. * timer into account automatically.
  1028. */
  1029. if (rq->curr != rq->idle)
  1030. return;
  1031. /*
  1032. * We can set TIF_RESCHED on the idle task of the other CPU
  1033. * lockless. The worst case is that the other CPU runs the
  1034. * idle task through an additional NOOP schedule()
  1035. */
  1036. set_tsk_need_resched(rq->idle);
  1037. /* NEED_RESCHED must be visible before we test polling */
  1038. smp_mb();
  1039. if (!tsk_is_polling(rq->idle))
  1040. smp_send_reschedule(cpu);
  1041. }
  1042. #endif /* CONFIG_NO_HZ */
  1043. static u64 sched_avg_period(void)
  1044. {
  1045. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1046. }
  1047. static void sched_avg_update(struct rq *rq)
  1048. {
  1049. s64 period = sched_avg_period();
  1050. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1051. rq->age_stamp += period;
  1052. rq->rt_avg /= 2;
  1053. }
  1054. }
  1055. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1056. {
  1057. rq->rt_avg += rt_delta;
  1058. sched_avg_update(rq);
  1059. }
  1060. #else /* !CONFIG_SMP */
  1061. static void resched_task(struct task_struct *p)
  1062. {
  1063. assert_spin_locked(&task_rq(p)->lock);
  1064. set_tsk_need_resched(p);
  1065. }
  1066. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1067. {
  1068. }
  1069. #endif /* CONFIG_SMP */
  1070. #if BITS_PER_LONG == 32
  1071. # define WMULT_CONST (~0UL)
  1072. #else
  1073. # define WMULT_CONST (1UL << 32)
  1074. #endif
  1075. #define WMULT_SHIFT 32
  1076. /*
  1077. * Shift right and round:
  1078. */
  1079. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1080. /*
  1081. * delta *= weight / lw
  1082. */
  1083. static unsigned long
  1084. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1085. struct load_weight *lw)
  1086. {
  1087. u64 tmp;
  1088. if (!lw->inv_weight) {
  1089. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1090. lw->inv_weight = 1;
  1091. else
  1092. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1093. / (lw->weight+1);
  1094. }
  1095. tmp = (u64)delta_exec * weight;
  1096. /*
  1097. * Check whether we'd overflow the 64-bit multiplication:
  1098. */
  1099. if (unlikely(tmp > WMULT_CONST))
  1100. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1101. WMULT_SHIFT/2);
  1102. else
  1103. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1104. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1105. }
  1106. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1107. {
  1108. lw->weight += inc;
  1109. lw->inv_weight = 0;
  1110. }
  1111. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1112. {
  1113. lw->weight -= dec;
  1114. lw->inv_weight = 0;
  1115. }
  1116. /*
  1117. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1118. * of tasks with abnormal "nice" values across CPUs the contribution that
  1119. * each task makes to its run queue's load is weighted according to its
  1120. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1121. * scaled version of the new time slice allocation that they receive on time
  1122. * slice expiry etc.
  1123. */
  1124. #define WEIGHT_IDLEPRIO 3
  1125. #define WMULT_IDLEPRIO 1431655765
  1126. /*
  1127. * Nice levels are multiplicative, with a gentle 10% change for every
  1128. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1129. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1130. * that remained on nice 0.
  1131. *
  1132. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1133. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1134. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1135. * If a task goes up by ~10% and another task goes down by ~10% then
  1136. * the relative distance between them is ~25%.)
  1137. */
  1138. static const int prio_to_weight[40] = {
  1139. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1140. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1141. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1142. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1143. /* 0 */ 1024, 820, 655, 526, 423,
  1144. /* 5 */ 335, 272, 215, 172, 137,
  1145. /* 10 */ 110, 87, 70, 56, 45,
  1146. /* 15 */ 36, 29, 23, 18, 15,
  1147. };
  1148. /*
  1149. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1150. *
  1151. * In cases where the weight does not change often, we can use the
  1152. * precalculated inverse to speed up arithmetics by turning divisions
  1153. * into multiplications:
  1154. */
  1155. static const u32 prio_to_wmult[40] = {
  1156. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1157. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1158. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1159. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1160. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1161. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1162. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1163. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1164. };
  1165. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1166. /*
  1167. * runqueue iterator, to support SMP load-balancing between different
  1168. * scheduling classes, without having to expose their internal data
  1169. * structures to the load-balancing proper:
  1170. */
  1171. struct rq_iterator {
  1172. void *arg;
  1173. struct task_struct *(*start)(void *);
  1174. struct task_struct *(*next)(void *);
  1175. };
  1176. #ifdef CONFIG_SMP
  1177. static unsigned long
  1178. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1179. unsigned long max_load_move, struct sched_domain *sd,
  1180. enum cpu_idle_type idle, int *all_pinned,
  1181. int *this_best_prio, struct rq_iterator *iterator);
  1182. static int
  1183. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1184. struct sched_domain *sd, enum cpu_idle_type idle,
  1185. struct rq_iterator *iterator);
  1186. #endif
  1187. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1188. enum cpuacct_stat_index {
  1189. CPUACCT_STAT_USER, /* ... user mode */
  1190. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1191. CPUACCT_STAT_NSTATS,
  1192. };
  1193. #ifdef CONFIG_CGROUP_CPUACCT
  1194. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1195. static void cpuacct_update_stats(struct task_struct *tsk,
  1196. enum cpuacct_stat_index idx, cputime_t val);
  1197. #else
  1198. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1199. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1200. enum cpuacct_stat_index idx, cputime_t val) {}
  1201. #endif
  1202. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1203. {
  1204. update_load_add(&rq->load, load);
  1205. }
  1206. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1207. {
  1208. update_load_sub(&rq->load, load);
  1209. }
  1210. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1211. typedef int (*tg_visitor)(struct task_group *, void *);
  1212. /*
  1213. * Iterate the full tree, calling @down when first entering a node and @up when
  1214. * leaving it for the final time.
  1215. */
  1216. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1217. {
  1218. struct task_group *parent, *child;
  1219. int ret;
  1220. rcu_read_lock();
  1221. parent = &root_task_group;
  1222. down:
  1223. ret = (*down)(parent, data);
  1224. if (ret)
  1225. goto out_unlock;
  1226. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1227. parent = child;
  1228. goto down;
  1229. up:
  1230. continue;
  1231. }
  1232. ret = (*up)(parent, data);
  1233. if (ret)
  1234. goto out_unlock;
  1235. child = parent;
  1236. parent = parent->parent;
  1237. if (parent)
  1238. goto up;
  1239. out_unlock:
  1240. rcu_read_unlock();
  1241. return ret;
  1242. }
  1243. static int tg_nop(struct task_group *tg, void *data)
  1244. {
  1245. return 0;
  1246. }
  1247. #endif
  1248. #ifdef CONFIG_SMP
  1249. /* Used instead of source_load when we know the type == 0 */
  1250. static unsigned long weighted_cpuload(const int cpu)
  1251. {
  1252. return cpu_rq(cpu)->load.weight;
  1253. }
  1254. /*
  1255. * Return a low guess at the load of a migration-source cpu weighted
  1256. * according to the scheduling class and "nice" value.
  1257. *
  1258. * We want to under-estimate the load of migration sources, to
  1259. * balance conservatively.
  1260. */
  1261. static unsigned long source_load(int cpu, int type)
  1262. {
  1263. struct rq *rq = cpu_rq(cpu);
  1264. unsigned long total = weighted_cpuload(cpu);
  1265. if (type == 0 || !sched_feat(LB_BIAS))
  1266. return total;
  1267. return min(rq->cpu_load[type-1], total);
  1268. }
  1269. /*
  1270. * Return a high guess at the load of a migration-target cpu weighted
  1271. * according to the scheduling class and "nice" value.
  1272. */
  1273. static unsigned long target_load(int cpu, int type)
  1274. {
  1275. struct rq *rq = cpu_rq(cpu);
  1276. unsigned long total = weighted_cpuload(cpu);
  1277. if (type == 0 || !sched_feat(LB_BIAS))
  1278. return total;
  1279. return max(rq->cpu_load[type-1], total);
  1280. }
  1281. static struct sched_group *group_of(int cpu)
  1282. {
  1283. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1284. if (!sd)
  1285. return NULL;
  1286. return sd->groups;
  1287. }
  1288. static unsigned long power_of(int cpu)
  1289. {
  1290. struct sched_group *group = group_of(cpu);
  1291. if (!group)
  1292. return SCHED_LOAD_SCALE;
  1293. return group->cpu_power;
  1294. }
  1295. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1296. static unsigned long cpu_avg_load_per_task(int cpu)
  1297. {
  1298. struct rq *rq = cpu_rq(cpu);
  1299. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1300. if (nr_running)
  1301. rq->avg_load_per_task = rq->load.weight / nr_running;
  1302. else
  1303. rq->avg_load_per_task = 0;
  1304. return rq->avg_load_per_task;
  1305. }
  1306. #ifdef CONFIG_FAIR_GROUP_SCHED
  1307. static __read_mostly unsigned long *update_shares_data;
  1308. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1309. /*
  1310. * Calculate and set the cpu's group shares.
  1311. */
  1312. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1313. unsigned long sd_shares,
  1314. unsigned long sd_rq_weight,
  1315. unsigned long *usd_rq_weight)
  1316. {
  1317. unsigned long shares, rq_weight;
  1318. int boost = 0;
  1319. rq_weight = usd_rq_weight[cpu];
  1320. if (!rq_weight) {
  1321. boost = 1;
  1322. rq_weight = NICE_0_LOAD;
  1323. }
  1324. /*
  1325. * \Sum_j shares_j * rq_weight_i
  1326. * shares_i = -----------------------------
  1327. * \Sum_j rq_weight_j
  1328. */
  1329. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1330. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1331. if (abs(shares - tg->se[cpu]->load.weight) >
  1332. sysctl_sched_shares_thresh) {
  1333. struct rq *rq = cpu_rq(cpu);
  1334. unsigned long flags;
  1335. spin_lock_irqsave(&rq->lock, flags);
  1336. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1337. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1338. __set_se_shares(tg->se[cpu], shares);
  1339. spin_unlock_irqrestore(&rq->lock, flags);
  1340. }
  1341. }
  1342. /*
  1343. * Re-compute the task group their per cpu shares over the given domain.
  1344. * This needs to be done in a bottom-up fashion because the rq weight of a
  1345. * parent group depends on the shares of its child groups.
  1346. */
  1347. static int tg_shares_up(struct task_group *tg, void *data)
  1348. {
  1349. unsigned long weight, rq_weight = 0, shares = 0;
  1350. unsigned long *usd_rq_weight;
  1351. struct sched_domain *sd = data;
  1352. unsigned long flags;
  1353. int i;
  1354. if (!tg->se[0])
  1355. return 0;
  1356. local_irq_save(flags);
  1357. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1358. for_each_cpu(i, sched_domain_span(sd)) {
  1359. weight = tg->cfs_rq[i]->load.weight;
  1360. usd_rq_weight[i] = weight;
  1361. /*
  1362. * If there are currently no tasks on the cpu pretend there
  1363. * is one of average load so that when a new task gets to
  1364. * run here it will not get delayed by group starvation.
  1365. */
  1366. if (!weight)
  1367. weight = NICE_0_LOAD;
  1368. rq_weight += weight;
  1369. shares += tg->cfs_rq[i]->shares;
  1370. }
  1371. if ((!shares && rq_weight) || shares > tg->shares)
  1372. shares = tg->shares;
  1373. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1374. shares = tg->shares;
  1375. for_each_cpu(i, sched_domain_span(sd))
  1376. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1377. local_irq_restore(flags);
  1378. return 0;
  1379. }
  1380. /*
  1381. * Compute the cpu's hierarchical load factor for each task group.
  1382. * This needs to be done in a top-down fashion because the load of a child
  1383. * group is a fraction of its parents load.
  1384. */
  1385. static int tg_load_down(struct task_group *tg, void *data)
  1386. {
  1387. unsigned long load;
  1388. long cpu = (long)data;
  1389. if (!tg->parent) {
  1390. load = cpu_rq(cpu)->load.weight;
  1391. } else {
  1392. load = tg->parent->cfs_rq[cpu]->h_load;
  1393. load *= tg->cfs_rq[cpu]->shares;
  1394. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1395. }
  1396. tg->cfs_rq[cpu]->h_load = load;
  1397. return 0;
  1398. }
  1399. static void update_shares(struct sched_domain *sd)
  1400. {
  1401. s64 elapsed;
  1402. u64 now;
  1403. if (root_task_group_empty())
  1404. return;
  1405. now = cpu_clock(raw_smp_processor_id());
  1406. elapsed = now - sd->last_update;
  1407. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1408. sd->last_update = now;
  1409. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1410. }
  1411. }
  1412. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1413. {
  1414. if (root_task_group_empty())
  1415. return;
  1416. spin_unlock(&rq->lock);
  1417. update_shares(sd);
  1418. spin_lock(&rq->lock);
  1419. }
  1420. static void update_h_load(long cpu)
  1421. {
  1422. if (root_task_group_empty())
  1423. return;
  1424. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1425. }
  1426. #else
  1427. static inline void update_shares(struct sched_domain *sd)
  1428. {
  1429. }
  1430. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1431. {
  1432. }
  1433. #endif
  1434. #ifdef CONFIG_PREEMPT
  1435. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1436. /*
  1437. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1438. * way at the expense of forcing extra atomic operations in all
  1439. * invocations. This assures that the double_lock is acquired using the
  1440. * same underlying policy as the spinlock_t on this architecture, which
  1441. * reduces latency compared to the unfair variant below. However, it
  1442. * also adds more overhead and therefore may reduce throughput.
  1443. */
  1444. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1445. __releases(this_rq->lock)
  1446. __acquires(busiest->lock)
  1447. __acquires(this_rq->lock)
  1448. {
  1449. spin_unlock(&this_rq->lock);
  1450. double_rq_lock(this_rq, busiest);
  1451. return 1;
  1452. }
  1453. #else
  1454. /*
  1455. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1456. * latency by eliminating extra atomic operations when the locks are
  1457. * already in proper order on entry. This favors lower cpu-ids and will
  1458. * grant the double lock to lower cpus over higher ids under contention,
  1459. * regardless of entry order into the function.
  1460. */
  1461. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1462. __releases(this_rq->lock)
  1463. __acquires(busiest->lock)
  1464. __acquires(this_rq->lock)
  1465. {
  1466. int ret = 0;
  1467. if (unlikely(!spin_trylock(&busiest->lock))) {
  1468. if (busiest < this_rq) {
  1469. spin_unlock(&this_rq->lock);
  1470. spin_lock(&busiest->lock);
  1471. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1472. ret = 1;
  1473. } else
  1474. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1475. }
  1476. return ret;
  1477. }
  1478. #endif /* CONFIG_PREEMPT */
  1479. /*
  1480. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1481. */
  1482. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1483. {
  1484. if (unlikely(!irqs_disabled())) {
  1485. /* printk() doesn't work good under rq->lock */
  1486. spin_unlock(&this_rq->lock);
  1487. BUG_ON(1);
  1488. }
  1489. return _double_lock_balance(this_rq, busiest);
  1490. }
  1491. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1492. __releases(busiest->lock)
  1493. {
  1494. spin_unlock(&busiest->lock);
  1495. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1496. }
  1497. #endif
  1498. #ifdef CONFIG_FAIR_GROUP_SCHED
  1499. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1500. {
  1501. #ifdef CONFIG_SMP
  1502. cfs_rq->shares = shares;
  1503. #endif
  1504. }
  1505. #endif
  1506. static void calc_load_account_active(struct rq *this_rq);
  1507. #include "sched_stats.h"
  1508. #include "sched_idletask.c"
  1509. #include "sched_fair.c"
  1510. #include "sched_rt.c"
  1511. #ifdef CONFIG_SCHED_DEBUG
  1512. # include "sched_debug.c"
  1513. #endif
  1514. #define sched_class_highest (&rt_sched_class)
  1515. #define for_each_class(class) \
  1516. for (class = sched_class_highest; class; class = class->next)
  1517. static void inc_nr_running(struct rq *rq)
  1518. {
  1519. rq->nr_running++;
  1520. }
  1521. static void dec_nr_running(struct rq *rq)
  1522. {
  1523. rq->nr_running--;
  1524. }
  1525. static void set_load_weight(struct task_struct *p)
  1526. {
  1527. if (task_has_rt_policy(p)) {
  1528. p->se.load.weight = prio_to_weight[0] * 2;
  1529. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1530. return;
  1531. }
  1532. /*
  1533. * SCHED_IDLE tasks get minimal weight:
  1534. */
  1535. if (p->policy == SCHED_IDLE) {
  1536. p->se.load.weight = WEIGHT_IDLEPRIO;
  1537. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1538. return;
  1539. }
  1540. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1541. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1542. }
  1543. static void update_avg(u64 *avg, u64 sample)
  1544. {
  1545. s64 diff = sample - *avg;
  1546. *avg += diff >> 3;
  1547. }
  1548. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1549. {
  1550. if (wakeup)
  1551. p->se.start_runtime = p->se.sum_exec_runtime;
  1552. sched_info_queued(p);
  1553. p->sched_class->enqueue_task(rq, p, wakeup);
  1554. p->se.on_rq = 1;
  1555. }
  1556. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1557. {
  1558. if (sleep) {
  1559. if (p->se.last_wakeup) {
  1560. update_avg(&p->se.avg_overlap,
  1561. p->se.sum_exec_runtime - p->se.last_wakeup);
  1562. p->se.last_wakeup = 0;
  1563. } else {
  1564. update_avg(&p->se.avg_wakeup,
  1565. sysctl_sched_wakeup_granularity);
  1566. }
  1567. }
  1568. sched_info_dequeued(p);
  1569. p->sched_class->dequeue_task(rq, p, sleep);
  1570. p->se.on_rq = 0;
  1571. }
  1572. /*
  1573. * __normal_prio - return the priority that is based on the static prio
  1574. */
  1575. static inline int __normal_prio(struct task_struct *p)
  1576. {
  1577. return p->static_prio;
  1578. }
  1579. /*
  1580. * Calculate the expected normal priority: i.e. priority
  1581. * without taking RT-inheritance into account. Might be
  1582. * boosted by interactivity modifiers. Changes upon fork,
  1583. * setprio syscalls, and whenever the interactivity
  1584. * estimator recalculates.
  1585. */
  1586. static inline int normal_prio(struct task_struct *p)
  1587. {
  1588. int prio;
  1589. if (task_has_rt_policy(p))
  1590. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1591. else
  1592. prio = __normal_prio(p);
  1593. return prio;
  1594. }
  1595. /*
  1596. * Calculate the current priority, i.e. the priority
  1597. * taken into account by the scheduler. This value might
  1598. * be boosted by RT tasks, or might be boosted by
  1599. * interactivity modifiers. Will be RT if the task got
  1600. * RT-boosted. If not then it returns p->normal_prio.
  1601. */
  1602. static int effective_prio(struct task_struct *p)
  1603. {
  1604. p->normal_prio = normal_prio(p);
  1605. /*
  1606. * If we are RT tasks or we were boosted to RT priority,
  1607. * keep the priority unchanged. Otherwise, update priority
  1608. * to the normal priority:
  1609. */
  1610. if (!rt_prio(p->prio))
  1611. return p->normal_prio;
  1612. return p->prio;
  1613. }
  1614. /*
  1615. * activate_task - move a task to the runqueue.
  1616. */
  1617. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1618. {
  1619. if (task_contributes_to_load(p))
  1620. rq->nr_uninterruptible--;
  1621. enqueue_task(rq, p, wakeup);
  1622. inc_nr_running(rq);
  1623. }
  1624. /*
  1625. * deactivate_task - remove a task from the runqueue.
  1626. */
  1627. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1628. {
  1629. if (task_contributes_to_load(p))
  1630. rq->nr_uninterruptible++;
  1631. dequeue_task(rq, p, sleep);
  1632. dec_nr_running(rq);
  1633. }
  1634. /**
  1635. * task_curr - is this task currently executing on a CPU?
  1636. * @p: the task in question.
  1637. */
  1638. inline int task_curr(const struct task_struct *p)
  1639. {
  1640. return cpu_curr(task_cpu(p)) == p;
  1641. }
  1642. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1643. {
  1644. set_task_rq(p, cpu);
  1645. #ifdef CONFIG_SMP
  1646. /*
  1647. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1648. * successfuly executed on another CPU. We must ensure that updates of
  1649. * per-task data have been completed by this moment.
  1650. */
  1651. smp_wmb();
  1652. task_thread_info(p)->cpu = cpu;
  1653. #endif
  1654. }
  1655. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1656. const struct sched_class *prev_class,
  1657. int oldprio, int running)
  1658. {
  1659. if (prev_class != p->sched_class) {
  1660. if (prev_class->switched_from)
  1661. prev_class->switched_from(rq, p, running);
  1662. p->sched_class->switched_to(rq, p, running);
  1663. } else
  1664. p->sched_class->prio_changed(rq, p, oldprio, running);
  1665. }
  1666. /**
  1667. * kthread_bind - bind a just-created kthread to a cpu.
  1668. * @p: thread created by kthread_create().
  1669. * @cpu: cpu (might not be online, must be possible) for @k to run on.
  1670. *
  1671. * Description: This function is equivalent to set_cpus_allowed(),
  1672. * except that @cpu doesn't need to be online, and the thread must be
  1673. * stopped (i.e., just returned from kthread_create()).
  1674. *
  1675. * Function lives here instead of kthread.c because it messes with
  1676. * scheduler internals which require locking.
  1677. */
  1678. void kthread_bind(struct task_struct *p, unsigned int cpu)
  1679. {
  1680. struct rq *rq = cpu_rq(cpu);
  1681. unsigned long flags;
  1682. /* Must have done schedule() in kthread() before we set_task_cpu */
  1683. if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
  1684. WARN_ON(1);
  1685. return;
  1686. }
  1687. spin_lock_irqsave(&rq->lock, flags);
  1688. update_rq_clock(rq);
  1689. set_task_cpu(p, cpu);
  1690. p->cpus_allowed = cpumask_of_cpu(cpu);
  1691. p->rt.nr_cpus_allowed = 1;
  1692. p->flags |= PF_THREAD_BOUND;
  1693. spin_unlock_irqrestore(&rq->lock, flags);
  1694. }
  1695. EXPORT_SYMBOL(kthread_bind);
  1696. #ifdef CONFIG_SMP
  1697. /*
  1698. * Is this task likely cache-hot:
  1699. */
  1700. static int
  1701. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1702. {
  1703. s64 delta;
  1704. /*
  1705. * Buddy candidates are cache hot:
  1706. */
  1707. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1708. (&p->se == cfs_rq_of(&p->se)->next ||
  1709. &p->se == cfs_rq_of(&p->se)->last))
  1710. return 1;
  1711. if (p->sched_class != &fair_sched_class)
  1712. return 0;
  1713. if (sysctl_sched_migration_cost == -1)
  1714. return 1;
  1715. if (sysctl_sched_migration_cost == 0)
  1716. return 0;
  1717. delta = now - p->se.exec_start;
  1718. return delta < (s64)sysctl_sched_migration_cost;
  1719. }
  1720. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1721. {
  1722. int old_cpu = task_cpu(p);
  1723. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1724. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1725. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1726. u64 clock_offset;
  1727. clock_offset = old_rq->clock - new_rq->clock;
  1728. trace_sched_migrate_task(p, new_cpu);
  1729. #ifdef CONFIG_SCHEDSTATS
  1730. if (p->se.wait_start)
  1731. p->se.wait_start -= clock_offset;
  1732. if (p->se.sleep_start)
  1733. p->se.sleep_start -= clock_offset;
  1734. if (p->se.block_start)
  1735. p->se.block_start -= clock_offset;
  1736. #endif
  1737. if (old_cpu != new_cpu) {
  1738. p->se.nr_migrations++;
  1739. #ifdef CONFIG_SCHEDSTATS
  1740. if (task_hot(p, old_rq->clock, NULL))
  1741. schedstat_inc(p, se.nr_forced2_migrations);
  1742. #endif
  1743. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1744. 1, 1, NULL, 0);
  1745. }
  1746. p->se.vruntime -= old_cfsrq->min_vruntime -
  1747. new_cfsrq->min_vruntime;
  1748. __set_task_cpu(p, new_cpu);
  1749. }
  1750. struct migration_req {
  1751. struct list_head list;
  1752. struct task_struct *task;
  1753. int dest_cpu;
  1754. struct completion done;
  1755. };
  1756. /*
  1757. * The task's runqueue lock must be held.
  1758. * Returns true if you have to wait for migration thread.
  1759. */
  1760. static int
  1761. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1762. {
  1763. struct rq *rq = task_rq(p);
  1764. /*
  1765. * If the task is not on a runqueue (and not running), then
  1766. * it is sufficient to simply update the task's cpu field.
  1767. */
  1768. if (!p->se.on_rq && !task_running(rq, p)) {
  1769. update_rq_clock(rq);
  1770. set_task_cpu(p, dest_cpu);
  1771. return 0;
  1772. }
  1773. init_completion(&req->done);
  1774. req->task = p;
  1775. req->dest_cpu = dest_cpu;
  1776. list_add(&req->list, &rq->migration_queue);
  1777. return 1;
  1778. }
  1779. /*
  1780. * wait_task_context_switch - wait for a thread to complete at least one
  1781. * context switch.
  1782. *
  1783. * @p must not be current.
  1784. */
  1785. void wait_task_context_switch(struct task_struct *p)
  1786. {
  1787. unsigned long nvcsw, nivcsw, flags;
  1788. int running;
  1789. struct rq *rq;
  1790. nvcsw = p->nvcsw;
  1791. nivcsw = p->nivcsw;
  1792. for (;;) {
  1793. /*
  1794. * The runqueue is assigned before the actual context
  1795. * switch. We need to take the runqueue lock.
  1796. *
  1797. * We could check initially without the lock but it is
  1798. * very likely that we need to take the lock in every
  1799. * iteration.
  1800. */
  1801. rq = task_rq_lock(p, &flags);
  1802. running = task_running(rq, p);
  1803. task_rq_unlock(rq, &flags);
  1804. if (likely(!running))
  1805. break;
  1806. /*
  1807. * The switch count is incremented before the actual
  1808. * context switch. We thus wait for two switches to be
  1809. * sure at least one completed.
  1810. */
  1811. if ((p->nvcsw - nvcsw) > 1)
  1812. break;
  1813. if ((p->nivcsw - nivcsw) > 1)
  1814. break;
  1815. cpu_relax();
  1816. }
  1817. }
  1818. /*
  1819. * wait_task_inactive - wait for a thread to unschedule.
  1820. *
  1821. * If @match_state is nonzero, it's the @p->state value just checked and
  1822. * not expected to change. If it changes, i.e. @p might have woken up,
  1823. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1824. * we return a positive number (its total switch count). If a second call
  1825. * a short while later returns the same number, the caller can be sure that
  1826. * @p has remained unscheduled the whole time.
  1827. *
  1828. * The caller must ensure that the task *will* unschedule sometime soon,
  1829. * else this function might spin for a *long* time. This function can't
  1830. * be called with interrupts off, or it may introduce deadlock with
  1831. * smp_call_function() if an IPI is sent by the same process we are
  1832. * waiting to become inactive.
  1833. */
  1834. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1835. {
  1836. unsigned long flags;
  1837. int running, on_rq;
  1838. unsigned long ncsw;
  1839. struct rq *rq;
  1840. for (;;) {
  1841. /*
  1842. * We do the initial early heuristics without holding
  1843. * any task-queue locks at all. We'll only try to get
  1844. * the runqueue lock when things look like they will
  1845. * work out!
  1846. */
  1847. rq = task_rq(p);
  1848. /*
  1849. * If the task is actively running on another CPU
  1850. * still, just relax and busy-wait without holding
  1851. * any locks.
  1852. *
  1853. * NOTE! Since we don't hold any locks, it's not
  1854. * even sure that "rq" stays as the right runqueue!
  1855. * But we don't care, since "task_running()" will
  1856. * return false if the runqueue has changed and p
  1857. * is actually now running somewhere else!
  1858. */
  1859. while (task_running(rq, p)) {
  1860. if (match_state && unlikely(p->state != match_state))
  1861. return 0;
  1862. cpu_relax();
  1863. }
  1864. /*
  1865. * Ok, time to look more closely! We need the rq
  1866. * lock now, to be *sure*. If we're wrong, we'll
  1867. * just go back and repeat.
  1868. */
  1869. rq = task_rq_lock(p, &flags);
  1870. trace_sched_wait_task(rq, p);
  1871. running = task_running(rq, p);
  1872. on_rq = p->se.on_rq;
  1873. ncsw = 0;
  1874. if (!match_state || p->state == match_state)
  1875. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1876. task_rq_unlock(rq, &flags);
  1877. /*
  1878. * If it changed from the expected state, bail out now.
  1879. */
  1880. if (unlikely(!ncsw))
  1881. break;
  1882. /*
  1883. * Was it really running after all now that we
  1884. * checked with the proper locks actually held?
  1885. *
  1886. * Oops. Go back and try again..
  1887. */
  1888. if (unlikely(running)) {
  1889. cpu_relax();
  1890. continue;
  1891. }
  1892. /*
  1893. * It's not enough that it's not actively running,
  1894. * it must be off the runqueue _entirely_, and not
  1895. * preempted!
  1896. *
  1897. * So if it was still runnable (but just not actively
  1898. * running right now), it's preempted, and we should
  1899. * yield - it could be a while.
  1900. */
  1901. if (unlikely(on_rq)) {
  1902. schedule_timeout_uninterruptible(1);
  1903. continue;
  1904. }
  1905. /*
  1906. * Ahh, all good. It wasn't running, and it wasn't
  1907. * runnable, which means that it will never become
  1908. * running in the future either. We're all done!
  1909. */
  1910. break;
  1911. }
  1912. return ncsw;
  1913. }
  1914. /***
  1915. * kick_process - kick a running thread to enter/exit the kernel
  1916. * @p: the to-be-kicked thread
  1917. *
  1918. * Cause a process which is running on another CPU to enter
  1919. * kernel-mode, without any delay. (to get signals handled.)
  1920. *
  1921. * NOTE: this function doesnt have to take the runqueue lock,
  1922. * because all it wants to ensure is that the remote task enters
  1923. * the kernel. If the IPI races and the task has been migrated
  1924. * to another CPU then no harm is done and the purpose has been
  1925. * achieved as well.
  1926. */
  1927. void kick_process(struct task_struct *p)
  1928. {
  1929. int cpu;
  1930. preempt_disable();
  1931. cpu = task_cpu(p);
  1932. if ((cpu != smp_processor_id()) && task_curr(p))
  1933. smp_send_reschedule(cpu);
  1934. preempt_enable();
  1935. }
  1936. EXPORT_SYMBOL_GPL(kick_process);
  1937. #endif /* CONFIG_SMP */
  1938. /**
  1939. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1940. * @p: the task to evaluate
  1941. * @func: the function to be called
  1942. * @info: the function call argument
  1943. *
  1944. * Calls the function @func when the task is currently running. This might
  1945. * be on the current CPU, which just calls the function directly
  1946. */
  1947. void task_oncpu_function_call(struct task_struct *p,
  1948. void (*func) (void *info), void *info)
  1949. {
  1950. int cpu;
  1951. preempt_disable();
  1952. cpu = task_cpu(p);
  1953. if (task_curr(p))
  1954. smp_call_function_single(cpu, func, info, 1);
  1955. preempt_enable();
  1956. }
  1957. /***
  1958. * try_to_wake_up - wake up a thread
  1959. * @p: the to-be-woken-up thread
  1960. * @state: the mask of task states that can be woken
  1961. * @sync: do a synchronous wakeup?
  1962. *
  1963. * Put it on the run-queue if it's not already there. The "current"
  1964. * thread is always on the run-queue (except when the actual
  1965. * re-schedule is in progress), and as such you're allowed to do
  1966. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1967. * runnable without the overhead of this.
  1968. *
  1969. * returns failure only if the task is already active.
  1970. */
  1971. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1972. int wake_flags)
  1973. {
  1974. int cpu, orig_cpu, this_cpu, success = 0;
  1975. unsigned long flags;
  1976. struct rq *rq, *orig_rq;
  1977. if (!sched_feat(SYNC_WAKEUPS))
  1978. wake_flags &= ~WF_SYNC;
  1979. this_cpu = get_cpu();
  1980. smp_wmb();
  1981. rq = orig_rq = task_rq_lock(p, &flags);
  1982. update_rq_clock(rq);
  1983. if (!(p->state & state))
  1984. goto out;
  1985. if (p->se.on_rq)
  1986. goto out_running;
  1987. cpu = task_cpu(p);
  1988. orig_cpu = cpu;
  1989. #ifdef CONFIG_SMP
  1990. if (unlikely(task_running(rq, p)))
  1991. goto out_activate;
  1992. /*
  1993. * In order to handle concurrent wakeups and release the rq->lock
  1994. * we put the task in TASK_WAKING state.
  1995. *
  1996. * First fix up the nr_uninterruptible count:
  1997. */
  1998. if (task_contributes_to_load(p))
  1999. rq->nr_uninterruptible--;
  2000. p->state = TASK_WAKING;
  2001. task_rq_unlock(rq, &flags);
  2002. cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2003. if (cpu != orig_cpu) {
  2004. local_irq_save(flags);
  2005. rq = cpu_rq(cpu);
  2006. update_rq_clock(rq);
  2007. set_task_cpu(p, cpu);
  2008. local_irq_restore(flags);
  2009. }
  2010. rq = task_rq_lock(p, &flags);
  2011. WARN_ON(p->state != TASK_WAKING);
  2012. cpu = task_cpu(p);
  2013. #ifdef CONFIG_SCHEDSTATS
  2014. schedstat_inc(rq, ttwu_count);
  2015. if (cpu == this_cpu)
  2016. schedstat_inc(rq, ttwu_local);
  2017. else {
  2018. struct sched_domain *sd;
  2019. for_each_domain(this_cpu, sd) {
  2020. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2021. schedstat_inc(sd, ttwu_wake_remote);
  2022. break;
  2023. }
  2024. }
  2025. }
  2026. #endif /* CONFIG_SCHEDSTATS */
  2027. out_activate:
  2028. #endif /* CONFIG_SMP */
  2029. schedstat_inc(p, se.nr_wakeups);
  2030. if (wake_flags & WF_SYNC)
  2031. schedstat_inc(p, se.nr_wakeups_sync);
  2032. if (orig_cpu != cpu)
  2033. schedstat_inc(p, se.nr_wakeups_migrate);
  2034. if (cpu == this_cpu)
  2035. schedstat_inc(p, se.nr_wakeups_local);
  2036. else
  2037. schedstat_inc(p, se.nr_wakeups_remote);
  2038. activate_task(rq, p, 1);
  2039. success = 1;
  2040. /*
  2041. * Only attribute actual wakeups done by this task.
  2042. */
  2043. if (!in_interrupt()) {
  2044. struct sched_entity *se = &current->se;
  2045. u64 sample = se->sum_exec_runtime;
  2046. if (se->last_wakeup)
  2047. sample -= se->last_wakeup;
  2048. else
  2049. sample -= se->start_runtime;
  2050. update_avg(&se->avg_wakeup, sample);
  2051. se->last_wakeup = se->sum_exec_runtime;
  2052. }
  2053. out_running:
  2054. trace_sched_wakeup(rq, p, success);
  2055. check_preempt_curr(rq, p, wake_flags);
  2056. p->state = TASK_RUNNING;
  2057. #ifdef CONFIG_SMP
  2058. if (p->sched_class->task_wake_up)
  2059. p->sched_class->task_wake_up(rq, p);
  2060. if (unlikely(rq->idle_stamp)) {
  2061. u64 delta = rq->clock - rq->idle_stamp;
  2062. u64 max = 2*sysctl_sched_migration_cost;
  2063. if (delta > max)
  2064. rq->avg_idle = max;
  2065. else
  2066. update_avg(&rq->avg_idle, delta);
  2067. rq->idle_stamp = 0;
  2068. }
  2069. #endif
  2070. out:
  2071. task_rq_unlock(rq, &flags);
  2072. put_cpu();
  2073. return success;
  2074. }
  2075. /**
  2076. * wake_up_process - Wake up a specific process
  2077. * @p: The process to be woken up.
  2078. *
  2079. * Attempt to wake up the nominated process and move it to the set of runnable
  2080. * processes. Returns 1 if the process was woken up, 0 if it was already
  2081. * running.
  2082. *
  2083. * It may be assumed that this function implies a write memory barrier before
  2084. * changing the task state if and only if any tasks are woken up.
  2085. */
  2086. int wake_up_process(struct task_struct *p)
  2087. {
  2088. return try_to_wake_up(p, TASK_ALL, 0);
  2089. }
  2090. EXPORT_SYMBOL(wake_up_process);
  2091. int wake_up_state(struct task_struct *p, unsigned int state)
  2092. {
  2093. return try_to_wake_up(p, state, 0);
  2094. }
  2095. /*
  2096. * Perform scheduler related setup for a newly forked process p.
  2097. * p is forked by current.
  2098. *
  2099. * __sched_fork() is basic setup used by init_idle() too:
  2100. */
  2101. static void __sched_fork(struct task_struct *p)
  2102. {
  2103. p->se.exec_start = 0;
  2104. p->se.sum_exec_runtime = 0;
  2105. p->se.prev_sum_exec_runtime = 0;
  2106. p->se.nr_migrations = 0;
  2107. p->se.last_wakeup = 0;
  2108. p->se.avg_overlap = 0;
  2109. p->se.start_runtime = 0;
  2110. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2111. p->se.avg_running = 0;
  2112. #ifdef CONFIG_SCHEDSTATS
  2113. p->se.wait_start = 0;
  2114. p->se.wait_max = 0;
  2115. p->se.wait_count = 0;
  2116. p->se.wait_sum = 0;
  2117. p->se.sleep_start = 0;
  2118. p->se.sleep_max = 0;
  2119. p->se.sum_sleep_runtime = 0;
  2120. p->se.block_start = 0;
  2121. p->se.block_max = 0;
  2122. p->se.exec_max = 0;
  2123. p->se.slice_max = 0;
  2124. p->se.nr_migrations_cold = 0;
  2125. p->se.nr_failed_migrations_affine = 0;
  2126. p->se.nr_failed_migrations_running = 0;
  2127. p->se.nr_failed_migrations_hot = 0;
  2128. p->se.nr_forced_migrations = 0;
  2129. p->se.nr_forced2_migrations = 0;
  2130. p->se.nr_wakeups = 0;
  2131. p->se.nr_wakeups_sync = 0;
  2132. p->se.nr_wakeups_migrate = 0;
  2133. p->se.nr_wakeups_local = 0;
  2134. p->se.nr_wakeups_remote = 0;
  2135. p->se.nr_wakeups_affine = 0;
  2136. p->se.nr_wakeups_affine_attempts = 0;
  2137. p->se.nr_wakeups_passive = 0;
  2138. p->se.nr_wakeups_idle = 0;
  2139. #endif
  2140. INIT_LIST_HEAD(&p->rt.run_list);
  2141. p->se.on_rq = 0;
  2142. INIT_LIST_HEAD(&p->se.group_node);
  2143. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2144. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2145. #endif
  2146. /*
  2147. * We mark the process as running here, but have not actually
  2148. * inserted it onto the runqueue yet. This guarantees that
  2149. * nobody will actually run it, and a signal or other external
  2150. * event cannot wake it up and insert it on the runqueue either.
  2151. */
  2152. p->state = TASK_RUNNING;
  2153. }
  2154. /*
  2155. * fork()/clone()-time setup:
  2156. */
  2157. void sched_fork(struct task_struct *p, int clone_flags)
  2158. {
  2159. int cpu = get_cpu();
  2160. unsigned long flags;
  2161. __sched_fork(p);
  2162. /*
  2163. * Revert to default priority/policy on fork if requested.
  2164. */
  2165. if (unlikely(p->sched_reset_on_fork)) {
  2166. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2167. p->policy = SCHED_NORMAL;
  2168. p->normal_prio = p->static_prio;
  2169. }
  2170. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2171. p->static_prio = NICE_TO_PRIO(0);
  2172. p->normal_prio = p->static_prio;
  2173. set_load_weight(p);
  2174. }
  2175. /*
  2176. * We don't need the reset flag anymore after the fork. It has
  2177. * fulfilled its duty:
  2178. */
  2179. p->sched_reset_on_fork = 0;
  2180. }
  2181. /*
  2182. * Make sure we do not leak PI boosting priority to the child.
  2183. */
  2184. p->prio = current->normal_prio;
  2185. if (!rt_prio(p->prio))
  2186. p->sched_class = &fair_sched_class;
  2187. #ifdef CONFIG_SMP
  2188. cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
  2189. #endif
  2190. local_irq_save(flags);
  2191. update_rq_clock(cpu_rq(cpu));
  2192. set_task_cpu(p, cpu);
  2193. local_irq_restore(flags);
  2194. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2195. if (likely(sched_info_on()))
  2196. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2197. #endif
  2198. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2199. p->oncpu = 0;
  2200. #endif
  2201. #ifdef CONFIG_PREEMPT
  2202. /* Want to start with kernel preemption disabled. */
  2203. task_thread_info(p)->preempt_count = 1;
  2204. #endif
  2205. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2206. put_cpu();
  2207. }
  2208. /*
  2209. * wake_up_new_task - wake up a newly created task for the first time.
  2210. *
  2211. * This function will do some initial scheduler statistics housekeeping
  2212. * that must be done for every newly created context, then puts the task
  2213. * on the runqueue and wakes it.
  2214. */
  2215. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2216. {
  2217. unsigned long flags;
  2218. struct rq *rq;
  2219. rq = task_rq_lock(p, &flags);
  2220. BUG_ON(p->state != TASK_RUNNING);
  2221. update_rq_clock(rq);
  2222. if (!p->sched_class->task_new || !current->se.on_rq) {
  2223. activate_task(rq, p, 0);
  2224. } else {
  2225. /*
  2226. * Let the scheduling class do new task startup
  2227. * management (if any):
  2228. */
  2229. p->sched_class->task_new(rq, p);
  2230. inc_nr_running(rq);
  2231. }
  2232. trace_sched_wakeup_new(rq, p, 1);
  2233. check_preempt_curr(rq, p, WF_FORK);
  2234. #ifdef CONFIG_SMP
  2235. if (p->sched_class->task_wake_up)
  2236. p->sched_class->task_wake_up(rq, p);
  2237. #endif
  2238. task_rq_unlock(rq, &flags);
  2239. }
  2240. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2241. /**
  2242. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2243. * @notifier: notifier struct to register
  2244. */
  2245. void preempt_notifier_register(struct preempt_notifier *notifier)
  2246. {
  2247. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2248. }
  2249. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2250. /**
  2251. * preempt_notifier_unregister - no longer interested in preemption notifications
  2252. * @notifier: notifier struct to unregister
  2253. *
  2254. * This is safe to call from within a preemption notifier.
  2255. */
  2256. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2257. {
  2258. hlist_del(&notifier->link);
  2259. }
  2260. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2261. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2262. {
  2263. struct preempt_notifier *notifier;
  2264. struct hlist_node *node;
  2265. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2266. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2267. }
  2268. static void
  2269. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2270. struct task_struct *next)
  2271. {
  2272. struct preempt_notifier *notifier;
  2273. struct hlist_node *node;
  2274. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2275. notifier->ops->sched_out(notifier, next);
  2276. }
  2277. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2278. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2279. {
  2280. }
  2281. static void
  2282. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2283. struct task_struct *next)
  2284. {
  2285. }
  2286. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2287. /**
  2288. * prepare_task_switch - prepare to switch tasks
  2289. * @rq: the runqueue preparing to switch
  2290. * @prev: the current task that is being switched out
  2291. * @next: the task we are going to switch to.
  2292. *
  2293. * This is called with the rq lock held and interrupts off. It must
  2294. * be paired with a subsequent finish_task_switch after the context
  2295. * switch.
  2296. *
  2297. * prepare_task_switch sets up locking and calls architecture specific
  2298. * hooks.
  2299. */
  2300. static inline void
  2301. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2302. struct task_struct *next)
  2303. {
  2304. fire_sched_out_preempt_notifiers(prev, next);
  2305. prepare_lock_switch(rq, next);
  2306. prepare_arch_switch(next);
  2307. }
  2308. /**
  2309. * finish_task_switch - clean up after a task-switch
  2310. * @rq: runqueue associated with task-switch
  2311. * @prev: the thread we just switched away from.
  2312. *
  2313. * finish_task_switch must be called after the context switch, paired
  2314. * with a prepare_task_switch call before the context switch.
  2315. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2316. * and do any other architecture-specific cleanup actions.
  2317. *
  2318. * Note that we may have delayed dropping an mm in context_switch(). If
  2319. * so, we finish that here outside of the runqueue lock. (Doing it
  2320. * with the lock held can cause deadlocks; see schedule() for
  2321. * details.)
  2322. */
  2323. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2324. __releases(rq->lock)
  2325. {
  2326. struct mm_struct *mm = rq->prev_mm;
  2327. long prev_state;
  2328. rq->prev_mm = NULL;
  2329. /*
  2330. * A task struct has one reference for the use as "current".
  2331. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2332. * schedule one last time. The schedule call will never return, and
  2333. * the scheduled task must drop that reference.
  2334. * The test for TASK_DEAD must occur while the runqueue locks are
  2335. * still held, otherwise prev could be scheduled on another cpu, die
  2336. * there before we look at prev->state, and then the reference would
  2337. * be dropped twice.
  2338. * Manfred Spraul <manfred@colorfullife.com>
  2339. */
  2340. prev_state = prev->state;
  2341. finish_arch_switch(prev);
  2342. perf_event_task_sched_in(current, cpu_of(rq));
  2343. finish_lock_switch(rq, prev);
  2344. fire_sched_in_preempt_notifiers(current);
  2345. if (mm)
  2346. mmdrop(mm);
  2347. if (unlikely(prev_state == TASK_DEAD)) {
  2348. /*
  2349. * Remove function-return probe instances associated with this
  2350. * task and put them back on the free list.
  2351. */
  2352. kprobe_flush_task(prev);
  2353. put_task_struct(prev);
  2354. }
  2355. }
  2356. #ifdef CONFIG_SMP
  2357. /* assumes rq->lock is held */
  2358. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2359. {
  2360. if (prev->sched_class->pre_schedule)
  2361. prev->sched_class->pre_schedule(rq, prev);
  2362. }
  2363. /* rq->lock is NOT held, but preemption is disabled */
  2364. static inline void post_schedule(struct rq *rq)
  2365. {
  2366. if (rq->post_schedule) {
  2367. unsigned long flags;
  2368. spin_lock_irqsave(&rq->lock, flags);
  2369. if (rq->curr->sched_class->post_schedule)
  2370. rq->curr->sched_class->post_schedule(rq);
  2371. spin_unlock_irqrestore(&rq->lock, flags);
  2372. rq->post_schedule = 0;
  2373. }
  2374. }
  2375. #else
  2376. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2377. {
  2378. }
  2379. static inline void post_schedule(struct rq *rq)
  2380. {
  2381. }
  2382. #endif
  2383. /**
  2384. * schedule_tail - first thing a freshly forked thread must call.
  2385. * @prev: the thread we just switched away from.
  2386. */
  2387. asmlinkage void schedule_tail(struct task_struct *prev)
  2388. __releases(rq->lock)
  2389. {
  2390. struct rq *rq = this_rq();
  2391. finish_task_switch(rq, prev);
  2392. /*
  2393. * FIXME: do we need to worry about rq being invalidated by the
  2394. * task_switch?
  2395. */
  2396. post_schedule(rq);
  2397. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2398. /* In this case, finish_task_switch does not reenable preemption */
  2399. preempt_enable();
  2400. #endif
  2401. if (current->set_child_tid)
  2402. put_user(task_pid_vnr(current), current->set_child_tid);
  2403. }
  2404. /*
  2405. * context_switch - switch to the new MM and the new
  2406. * thread's register state.
  2407. */
  2408. static inline void
  2409. context_switch(struct rq *rq, struct task_struct *prev,
  2410. struct task_struct *next)
  2411. {
  2412. struct mm_struct *mm, *oldmm;
  2413. prepare_task_switch(rq, prev, next);
  2414. trace_sched_switch(rq, prev, next);
  2415. mm = next->mm;
  2416. oldmm = prev->active_mm;
  2417. /*
  2418. * For paravirt, this is coupled with an exit in switch_to to
  2419. * combine the page table reload and the switch backend into
  2420. * one hypercall.
  2421. */
  2422. arch_start_context_switch(prev);
  2423. if (likely(!mm)) {
  2424. next->active_mm = oldmm;
  2425. atomic_inc(&oldmm->mm_count);
  2426. enter_lazy_tlb(oldmm, next);
  2427. } else
  2428. switch_mm(oldmm, mm, next);
  2429. if (likely(!prev->mm)) {
  2430. prev->active_mm = NULL;
  2431. rq->prev_mm = oldmm;
  2432. }
  2433. /*
  2434. * Since the runqueue lock will be released by the next
  2435. * task (which is an invalid locking op but in the case
  2436. * of the scheduler it's an obvious special-case), so we
  2437. * do an early lockdep release here:
  2438. */
  2439. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2440. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2441. #endif
  2442. /* Here we just switch the register state and the stack. */
  2443. switch_to(prev, next, prev);
  2444. barrier();
  2445. /*
  2446. * this_rq must be evaluated again because prev may have moved
  2447. * CPUs since it called schedule(), thus the 'rq' on its stack
  2448. * frame will be invalid.
  2449. */
  2450. finish_task_switch(this_rq(), prev);
  2451. }
  2452. /*
  2453. * nr_running, nr_uninterruptible and nr_context_switches:
  2454. *
  2455. * externally visible scheduler statistics: current number of runnable
  2456. * threads, current number of uninterruptible-sleeping threads, total
  2457. * number of context switches performed since bootup.
  2458. */
  2459. unsigned long nr_running(void)
  2460. {
  2461. unsigned long i, sum = 0;
  2462. for_each_online_cpu(i)
  2463. sum += cpu_rq(i)->nr_running;
  2464. return sum;
  2465. }
  2466. unsigned long nr_uninterruptible(void)
  2467. {
  2468. unsigned long i, sum = 0;
  2469. for_each_possible_cpu(i)
  2470. sum += cpu_rq(i)->nr_uninterruptible;
  2471. /*
  2472. * Since we read the counters lockless, it might be slightly
  2473. * inaccurate. Do not allow it to go below zero though:
  2474. */
  2475. if (unlikely((long)sum < 0))
  2476. sum = 0;
  2477. return sum;
  2478. }
  2479. unsigned long long nr_context_switches(void)
  2480. {
  2481. int i;
  2482. unsigned long long sum = 0;
  2483. for_each_possible_cpu(i)
  2484. sum += cpu_rq(i)->nr_switches;
  2485. return sum;
  2486. }
  2487. unsigned long nr_iowait(void)
  2488. {
  2489. unsigned long i, sum = 0;
  2490. for_each_possible_cpu(i)
  2491. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2492. return sum;
  2493. }
  2494. unsigned long nr_iowait_cpu(void)
  2495. {
  2496. struct rq *this = this_rq();
  2497. return atomic_read(&this->nr_iowait);
  2498. }
  2499. unsigned long this_cpu_load(void)
  2500. {
  2501. struct rq *this = this_rq();
  2502. return this->cpu_load[0];
  2503. }
  2504. /* Variables and functions for calc_load */
  2505. static atomic_long_t calc_load_tasks;
  2506. static unsigned long calc_load_update;
  2507. unsigned long avenrun[3];
  2508. EXPORT_SYMBOL(avenrun);
  2509. /**
  2510. * get_avenrun - get the load average array
  2511. * @loads: pointer to dest load array
  2512. * @offset: offset to add
  2513. * @shift: shift count to shift the result left
  2514. *
  2515. * These values are estimates at best, so no need for locking.
  2516. */
  2517. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2518. {
  2519. loads[0] = (avenrun[0] + offset) << shift;
  2520. loads[1] = (avenrun[1] + offset) << shift;
  2521. loads[2] = (avenrun[2] + offset) << shift;
  2522. }
  2523. static unsigned long
  2524. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2525. {
  2526. load *= exp;
  2527. load += active * (FIXED_1 - exp);
  2528. return load >> FSHIFT;
  2529. }
  2530. /*
  2531. * calc_load - update the avenrun load estimates 10 ticks after the
  2532. * CPUs have updated calc_load_tasks.
  2533. */
  2534. void calc_global_load(void)
  2535. {
  2536. unsigned long upd = calc_load_update + 10;
  2537. long active;
  2538. if (time_before(jiffies, upd))
  2539. return;
  2540. active = atomic_long_read(&calc_load_tasks);
  2541. active = active > 0 ? active * FIXED_1 : 0;
  2542. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2543. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2544. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2545. calc_load_update += LOAD_FREQ;
  2546. }
  2547. /*
  2548. * Either called from update_cpu_load() or from a cpu going idle
  2549. */
  2550. static void calc_load_account_active(struct rq *this_rq)
  2551. {
  2552. long nr_active, delta;
  2553. nr_active = this_rq->nr_running;
  2554. nr_active += (long) this_rq->nr_uninterruptible;
  2555. if (nr_active != this_rq->calc_load_active) {
  2556. delta = nr_active - this_rq->calc_load_active;
  2557. this_rq->calc_load_active = nr_active;
  2558. atomic_long_add(delta, &calc_load_tasks);
  2559. }
  2560. }
  2561. /*
  2562. * Update rq->cpu_load[] statistics. This function is usually called every
  2563. * scheduler tick (TICK_NSEC).
  2564. */
  2565. static void update_cpu_load(struct rq *this_rq)
  2566. {
  2567. unsigned long this_load = this_rq->load.weight;
  2568. int i, scale;
  2569. this_rq->nr_load_updates++;
  2570. /* Update our load: */
  2571. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2572. unsigned long old_load, new_load;
  2573. /* scale is effectively 1 << i now, and >> i divides by scale */
  2574. old_load = this_rq->cpu_load[i];
  2575. new_load = this_load;
  2576. /*
  2577. * Round up the averaging division if load is increasing. This
  2578. * prevents us from getting stuck on 9 if the load is 10, for
  2579. * example.
  2580. */
  2581. if (new_load > old_load)
  2582. new_load += scale-1;
  2583. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2584. }
  2585. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2586. this_rq->calc_load_update += LOAD_FREQ;
  2587. calc_load_account_active(this_rq);
  2588. }
  2589. }
  2590. #ifdef CONFIG_SMP
  2591. /*
  2592. * double_rq_lock - safely lock two runqueues
  2593. *
  2594. * Note this does not disable interrupts like task_rq_lock,
  2595. * you need to do so manually before calling.
  2596. */
  2597. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2598. __acquires(rq1->lock)
  2599. __acquires(rq2->lock)
  2600. {
  2601. BUG_ON(!irqs_disabled());
  2602. if (rq1 == rq2) {
  2603. spin_lock(&rq1->lock);
  2604. __acquire(rq2->lock); /* Fake it out ;) */
  2605. } else {
  2606. if (rq1 < rq2) {
  2607. spin_lock(&rq1->lock);
  2608. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2609. } else {
  2610. spin_lock(&rq2->lock);
  2611. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2612. }
  2613. }
  2614. update_rq_clock(rq1);
  2615. update_rq_clock(rq2);
  2616. }
  2617. /*
  2618. * double_rq_unlock - safely unlock two runqueues
  2619. *
  2620. * Note this does not restore interrupts like task_rq_unlock,
  2621. * you need to do so manually after calling.
  2622. */
  2623. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2624. __releases(rq1->lock)
  2625. __releases(rq2->lock)
  2626. {
  2627. spin_unlock(&rq1->lock);
  2628. if (rq1 != rq2)
  2629. spin_unlock(&rq2->lock);
  2630. else
  2631. __release(rq2->lock);
  2632. }
  2633. /*
  2634. * If dest_cpu is allowed for this process, migrate the task to it.
  2635. * This is accomplished by forcing the cpu_allowed mask to only
  2636. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2637. * the cpu_allowed mask is restored.
  2638. */
  2639. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2640. {
  2641. struct migration_req req;
  2642. unsigned long flags;
  2643. struct rq *rq;
  2644. rq = task_rq_lock(p, &flags);
  2645. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2646. || unlikely(!cpu_active(dest_cpu)))
  2647. goto out;
  2648. /* force the process onto the specified CPU */
  2649. if (migrate_task(p, dest_cpu, &req)) {
  2650. /* Need to wait for migration thread (might exit: take ref). */
  2651. struct task_struct *mt = rq->migration_thread;
  2652. get_task_struct(mt);
  2653. task_rq_unlock(rq, &flags);
  2654. wake_up_process(mt);
  2655. put_task_struct(mt);
  2656. wait_for_completion(&req.done);
  2657. return;
  2658. }
  2659. out:
  2660. task_rq_unlock(rq, &flags);
  2661. }
  2662. /*
  2663. * sched_exec - execve() is a valuable balancing opportunity, because at
  2664. * this point the task has the smallest effective memory and cache footprint.
  2665. */
  2666. void sched_exec(void)
  2667. {
  2668. int new_cpu, this_cpu = get_cpu();
  2669. new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
  2670. put_cpu();
  2671. if (new_cpu != this_cpu)
  2672. sched_migrate_task(current, new_cpu);
  2673. }
  2674. /*
  2675. * pull_task - move a task from a remote runqueue to the local runqueue.
  2676. * Both runqueues must be locked.
  2677. */
  2678. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2679. struct rq *this_rq, int this_cpu)
  2680. {
  2681. deactivate_task(src_rq, p, 0);
  2682. set_task_cpu(p, this_cpu);
  2683. activate_task(this_rq, p, 0);
  2684. /*
  2685. * Note that idle threads have a prio of MAX_PRIO, for this test
  2686. * to be always true for them.
  2687. */
  2688. check_preempt_curr(this_rq, p, 0);
  2689. }
  2690. /*
  2691. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2692. */
  2693. static
  2694. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2695. struct sched_domain *sd, enum cpu_idle_type idle,
  2696. int *all_pinned)
  2697. {
  2698. int tsk_cache_hot = 0;
  2699. /*
  2700. * We do not migrate tasks that are:
  2701. * 1) running (obviously), or
  2702. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2703. * 3) are cache-hot on their current CPU.
  2704. */
  2705. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2706. schedstat_inc(p, se.nr_failed_migrations_affine);
  2707. return 0;
  2708. }
  2709. *all_pinned = 0;
  2710. if (task_running(rq, p)) {
  2711. schedstat_inc(p, se.nr_failed_migrations_running);
  2712. return 0;
  2713. }
  2714. /*
  2715. * Aggressive migration if:
  2716. * 1) task is cache cold, or
  2717. * 2) too many balance attempts have failed.
  2718. */
  2719. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2720. if (!tsk_cache_hot ||
  2721. sd->nr_balance_failed > sd->cache_nice_tries) {
  2722. #ifdef CONFIG_SCHEDSTATS
  2723. if (tsk_cache_hot) {
  2724. schedstat_inc(sd, lb_hot_gained[idle]);
  2725. schedstat_inc(p, se.nr_forced_migrations);
  2726. }
  2727. #endif
  2728. return 1;
  2729. }
  2730. if (tsk_cache_hot) {
  2731. schedstat_inc(p, se.nr_failed_migrations_hot);
  2732. return 0;
  2733. }
  2734. return 1;
  2735. }
  2736. static unsigned long
  2737. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2738. unsigned long max_load_move, struct sched_domain *sd,
  2739. enum cpu_idle_type idle, int *all_pinned,
  2740. int *this_best_prio, struct rq_iterator *iterator)
  2741. {
  2742. int loops = 0, pulled = 0, pinned = 0;
  2743. struct task_struct *p;
  2744. long rem_load_move = max_load_move;
  2745. if (max_load_move == 0)
  2746. goto out;
  2747. pinned = 1;
  2748. /*
  2749. * Start the load-balancing iterator:
  2750. */
  2751. p = iterator->start(iterator->arg);
  2752. next:
  2753. if (!p || loops++ > sysctl_sched_nr_migrate)
  2754. goto out;
  2755. if ((p->se.load.weight >> 1) > rem_load_move ||
  2756. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2757. p = iterator->next(iterator->arg);
  2758. goto next;
  2759. }
  2760. pull_task(busiest, p, this_rq, this_cpu);
  2761. pulled++;
  2762. rem_load_move -= p->se.load.weight;
  2763. #ifdef CONFIG_PREEMPT
  2764. /*
  2765. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2766. * will stop after the first task is pulled to minimize the critical
  2767. * section.
  2768. */
  2769. if (idle == CPU_NEWLY_IDLE)
  2770. goto out;
  2771. #endif
  2772. /*
  2773. * We only want to steal up to the prescribed amount of weighted load.
  2774. */
  2775. if (rem_load_move > 0) {
  2776. if (p->prio < *this_best_prio)
  2777. *this_best_prio = p->prio;
  2778. p = iterator->next(iterator->arg);
  2779. goto next;
  2780. }
  2781. out:
  2782. /*
  2783. * Right now, this is one of only two places pull_task() is called,
  2784. * so we can safely collect pull_task() stats here rather than
  2785. * inside pull_task().
  2786. */
  2787. schedstat_add(sd, lb_gained[idle], pulled);
  2788. if (all_pinned)
  2789. *all_pinned = pinned;
  2790. return max_load_move - rem_load_move;
  2791. }
  2792. /*
  2793. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2794. * this_rq, as part of a balancing operation within domain "sd".
  2795. * Returns 1 if successful and 0 otherwise.
  2796. *
  2797. * Called with both runqueues locked.
  2798. */
  2799. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2800. unsigned long max_load_move,
  2801. struct sched_domain *sd, enum cpu_idle_type idle,
  2802. int *all_pinned)
  2803. {
  2804. const struct sched_class *class = sched_class_highest;
  2805. unsigned long total_load_moved = 0;
  2806. int this_best_prio = this_rq->curr->prio;
  2807. do {
  2808. total_load_moved +=
  2809. class->load_balance(this_rq, this_cpu, busiest,
  2810. max_load_move - total_load_moved,
  2811. sd, idle, all_pinned, &this_best_prio);
  2812. class = class->next;
  2813. #ifdef CONFIG_PREEMPT
  2814. /*
  2815. * NEWIDLE balancing is a source of latency, so preemptible
  2816. * kernels will stop after the first task is pulled to minimize
  2817. * the critical section.
  2818. */
  2819. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2820. break;
  2821. #endif
  2822. } while (class && max_load_move > total_load_moved);
  2823. return total_load_moved > 0;
  2824. }
  2825. static int
  2826. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2827. struct sched_domain *sd, enum cpu_idle_type idle,
  2828. struct rq_iterator *iterator)
  2829. {
  2830. struct task_struct *p = iterator->start(iterator->arg);
  2831. int pinned = 0;
  2832. while (p) {
  2833. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2834. pull_task(busiest, p, this_rq, this_cpu);
  2835. /*
  2836. * Right now, this is only the second place pull_task()
  2837. * is called, so we can safely collect pull_task()
  2838. * stats here rather than inside pull_task().
  2839. */
  2840. schedstat_inc(sd, lb_gained[idle]);
  2841. return 1;
  2842. }
  2843. p = iterator->next(iterator->arg);
  2844. }
  2845. return 0;
  2846. }
  2847. /*
  2848. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2849. * part of active balancing operations within "domain".
  2850. * Returns 1 if successful and 0 otherwise.
  2851. *
  2852. * Called with both runqueues locked.
  2853. */
  2854. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2855. struct sched_domain *sd, enum cpu_idle_type idle)
  2856. {
  2857. const struct sched_class *class;
  2858. for_each_class(class) {
  2859. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2860. return 1;
  2861. }
  2862. return 0;
  2863. }
  2864. /********** Helpers for find_busiest_group ************************/
  2865. /*
  2866. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2867. * during load balancing.
  2868. */
  2869. struct sd_lb_stats {
  2870. struct sched_group *busiest; /* Busiest group in this sd */
  2871. struct sched_group *this; /* Local group in this sd */
  2872. unsigned long total_load; /* Total load of all groups in sd */
  2873. unsigned long total_pwr; /* Total power of all groups in sd */
  2874. unsigned long avg_load; /* Average load across all groups in sd */
  2875. /** Statistics of this group */
  2876. unsigned long this_load;
  2877. unsigned long this_load_per_task;
  2878. unsigned long this_nr_running;
  2879. /* Statistics of the busiest group */
  2880. unsigned long max_load;
  2881. unsigned long busiest_load_per_task;
  2882. unsigned long busiest_nr_running;
  2883. int group_imb; /* Is there imbalance in this sd */
  2884. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2885. int power_savings_balance; /* Is powersave balance needed for this sd */
  2886. struct sched_group *group_min; /* Least loaded group in sd */
  2887. struct sched_group *group_leader; /* Group which relieves group_min */
  2888. unsigned long min_load_per_task; /* load_per_task in group_min */
  2889. unsigned long leader_nr_running; /* Nr running of group_leader */
  2890. unsigned long min_nr_running; /* Nr running of group_min */
  2891. #endif
  2892. };
  2893. /*
  2894. * sg_lb_stats - stats of a sched_group required for load_balancing
  2895. */
  2896. struct sg_lb_stats {
  2897. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2898. unsigned long group_load; /* Total load over the CPUs of the group */
  2899. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2900. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2901. unsigned long group_capacity;
  2902. int group_imb; /* Is there an imbalance in the group ? */
  2903. };
  2904. /**
  2905. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2906. * @group: The group whose first cpu is to be returned.
  2907. */
  2908. static inline unsigned int group_first_cpu(struct sched_group *group)
  2909. {
  2910. return cpumask_first(sched_group_cpus(group));
  2911. }
  2912. /**
  2913. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2914. * @sd: The sched_domain whose load_idx is to be obtained.
  2915. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2916. */
  2917. static inline int get_sd_load_idx(struct sched_domain *sd,
  2918. enum cpu_idle_type idle)
  2919. {
  2920. int load_idx;
  2921. switch (idle) {
  2922. case CPU_NOT_IDLE:
  2923. load_idx = sd->busy_idx;
  2924. break;
  2925. case CPU_NEWLY_IDLE:
  2926. load_idx = sd->newidle_idx;
  2927. break;
  2928. default:
  2929. load_idx = sd->idle_idx;
  2930. break;
  2931. }
  2932. return load_idx;
  2933. }
  2934. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2935. /**
  2936. * init_sd_power_savings_stats - Initialize power savings statistics for
  2937. * the given sched_domain, during load balancing.
  2938. *
  2939. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2940. * @sds: Variable containing the statistics for sd.
  2941. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2942. */
  2943. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2944. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2945. {
  2946. /*
  2947. * Busy processors will not participate in power savings
  2948. * balance.
  2949. */
  2950. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2951. sds->power_savings_balance = 0;
  2952. else {
  2953. sds->power_savings_balance = 1;
  2954. sds->min_nr_running = ULONG_MAX;
  2955. sds->leader_nr_running = 0;
  2956. }
  2957. }
  2958. /**
  2959. * update_sd_power_savings_stats - Update the power saving stats for a
  2960. * sched_domain while performing load balancing.
  2961. *
  2962. * @group: sched_group belonging to the sched_domain under consideration.
  2963. * @sds: Variable containing the statistics of the sched_domain
  2964. * @local_group: Does group contain the CPU for which we're performing
  2965. * load balancing ?
  2966. * @sgs: Variable containing the statistics of the group.
  2967. */
  2968. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2969. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2970. {
  2971. if (!sds->power_savings_balance)
  2972. return;
  2973. /*
  2974. * If the local group is idle or completely loaded
  2975. * no need to do power savings balance at this domain
  2976. */
  2977. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2978. !sds->this_nr_running))
  2979. sds->power_savings_balance = 0;
  2980. /*
  2981. * If a group is already running at full capacity or idle,
  2982. * don't include that group in power savings calculations
  2983. */
  2984. if (!sds->power_savings_balance ||
  2985. sgs->sum_nr_running >= sgs->group_capacity ||
  2986. !sgs->sum_nr_running)
  2987. return;
  2988. /*
  2989. * Calculate the group which has the least non-idle load.
  2990. * This is the group from where we need to pick up the load
  2991. * for saving power
  2992. */
  2993. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2994. (sgs->sum_nr_running == sds->min_nr_running &&
  2995. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2996. sds->group_min = group;
  2997. sds->min_nr_running = sgs->sum_nr_running;
  2998. sds->min_load_per_task = sgs->sum_weighted_load /
  2999. sgs->sum_nr_running;
  3000. }
  3001. /*
  3002. * Calculate the group which is almost near its
  3003. * capacity but still has some space to pick up some load
  3004. * from other group and save more power
  3005. */
  3006. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3007. return;
  3008. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3009. (sgs->sum_nr_running == sds->leader_nr_running &&
  3010. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3011. sds->group_leader = group;
  3012. sds->leader_nr_running = sgs->sum_nr_running;
  3013. }
  3014. }
  3015. /**
  3016. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3017. * @sds: Variable containing the statistics of the sched_domain
  3018. * under consideration.
  3019. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3020. * @imbalance: Variable to store the imbalance.
  3021. *
  3022. * Description:
  3023. * Check if we have potential to perform some power-savings balance.
  3024. * If yes, set the busiest group to be the least loaded group in the
  3025. * sched_domain, so that it's CPUs can be put to idle.
  3026. *
  3027. * Returns 1 if there is potential to perform power-savings balance.
  3028. * Else returns 0.
  3029. */
  3030. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3031. int this_cpu, unsigned long *imbalance)
  3032. {
  3033. if (!sds->power_savings_balance)
  3034. return 0;
  3035. if (sds->this != sds->group_leader ||
  3036. sds->group_leader == sds->group_min)
  3037. return 0;
  3038. *imbalance = sds->min_load_per_task;
  3039. sds->busiest = sds->group_min;
  3040. return 1;
  3041. }
  3042. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3043. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3044. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3045. {
  3046. return;
  3047. }
  3048. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3049. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3050. {
  3051. return;
  3052. }
  3053. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3054. int this_cpu, unsigned long *imbalance)
  3055. {
  3056. return 0;
  3057. }
  3058. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3059. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3060. {
  3061. return SCHED_LOAD_SCALE;
  3062. }
  3063. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3064. {
  3065. return default_scale_freq_power(sd, cpu);
  3066. }
  3067. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3068. {
  3069. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3070. unsigned long smt_gain = sd->smt_gain;
  3071. smt_gain /= weight;
  3072. return smt_gain;
  3073. }
  3074. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3075. {
  3076. return default_scale_smt_power(sd, cpu);
  3077. }
  3078. unsigned long scale_rt_power(int cpu)
  3079. {
  3080. struct rq *rq = cpu_rq(cpu);
  3081. u64 total, available;
  3082. sched_avg_update(rq);
  3083. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3084. available = total - rq->rt_avg;
  3085. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3086. total = SCHED_LOAD_SCALE;
  3087. total >>= SCHED_LOAD_SHIFT;
  3088. return div_u64(available, total);
  3089. }
  3090. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3091. {
  3092. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3093. unsigned long power = SCHED_LOAD_SCALE;
  3094. struct sched_group *sdg = sd->groups;
  3095. if (sched_feat(ARCH_POWER))
  3096. power *= arch_scale_freq_power(sd, cpu);
  3097. else
  3098. power *= default_scale_freq_power(sd, cpu);
  3099. power >>= SCHED_LOAD_SHIFT;
  3100. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3101. if (sched_feat(ARCH_POWER))
  3102. power *= arch_scale_smt_power(sd, cpu);
  3103. else
  3104. power *= default_scale_smt_power(sd, cpu);
  3105. power >>= SCHED_LOAD_SHIFT;
  3106. }
  3107. power *= scale_rt_power(cpu);
  3108. power >>= SCHED_LOAD_SHIFT;
  3109. if (!power)
  3110. power = 1;
  3111. sdg->cpu_power = power;
  3112. }
  3113. static void update_group_power(struct sched_domain *sd, int cpu)
  3114. {
  3115. struct sched_domain *child = sd->child;
  3116. struct sched_group *group, *sdg = sd->groups;
  3117. unsigned long power;
  3118. if (!child) {
  3119. update_cpu_power(sd, cpu);
  3120. return;
  3121. }
  3122. power = 0;
  3123. group = child->groups;
  3124. do {
  3125. power += group->cpu_power;
  3126. group = group->next;
  3127. } while (group != child->groups);
  3128. sdg->cpu_power = power;
  3129. }
  3130. /**
  3131. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3132. * @sd: The sched_domain whose statistics are to be updated.
  3133. * @group: sched_group whose statistics are to be updated.
  3134. * @this_cpu: Cpu for which load balance is currently performed.
  3135. * @idle: Idle status of this_cpu
  3136. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3137. * @sd_idle: Idle status of the sched_domain containing group.
  3138. * @local_group: Does group contain this_cpu.
  3139. * @cpus: Set of cpus considered for load balancing.
  3140. * @balance: Should we balance.
  3141. * @sgs: variable to hold the statistics for this group.
  3142. */
  3143. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3144. struct sched_group *group, int this_cpu,
  3145. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3146. int local_group, const struct cpumask *cpus,
  3147. int *balance, struct sg_lb_stats *sgs)
  3148. {
  3149. unsigned long load, max_cpu_load, min_cpu_load;
  3150. int i;
  3151. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3152. unsigned long sum_avg_load_per_task;
  3153. unsigned long avg_load_per_task;
  3154. if (local_group) {
  3155. balance_cpu = group_first_cpu(group);
  3156. if (balance_cpu == this_cpu)
  3157. update_group_power(sd, this_cpu);
  3158. }
  3159. /* Tally up the load of all CPUs in the group */
  3160. sum_avg_load_per_task = avg_load_per_task = 0;
  3161. max_cpu_load = 0;
  3162. min_cpu_load = ~0UL;
  3163. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3164. struct rq *rq = cpu_rq(i);
  3165. if (*sd_idle && rq->nr_running)
  3166. *sd_idle = 0;
  3167. /* Bias balancing toward cpus of our domain */
  3168. if (local_group) {
  3169. if (idle_cpu(i) && !first_idle_cpu) {
  3170. first_idle_cpu = 1;
  3171. balance_cpu = i;
  3172. }
  3173. load = target_load(i, load_idx);
  3174. } else {
  3175. load = source_load(i, load_idx);
  3176. if (load > max_cpu_load)
  3177. max_cpu_load = load;
  3178. if (min_cpu_load > load)
  3179. min_cpu_load = load;
  3180. }
  3181. sgs->group_load += load;
  3182. sgs->sum_nr_running += rq->nr_running;
  3183. sgs->sum_weighted_load += weighted_cpuload(i);
  3184. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3185. }
  3186. /*
  3187. * First idle cpu or the first cpu(busiest) in this sched group
  3188. * is eligible for doing load balancing at this and above
  3189. * domains. In the newly idle case, we will allow all the cpu's
  3190. * to do the newly idle load balance.
  3191. */
  3192. if (idle != CPU_NEWLY_IDLE && local_group &&
  3193. balance_cpu != this_cpu && balance) {
  3194. *balance = 0;
  3195. return;
  3196. }
  3197. /* Adjust by relative CPU power of the group */
  3198. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3199. /*
  3200. * Consider the group unbalanced when the imbalance is larger
  3201. * than the average weight of two tasks.
  3202. *
  3203. * APZ: with cgroup the avg task weight can vary wildly and
  3204. * might not be a suitable number - should we keep a
  3205. * normalized nr_running number somewhere that negates
  3206. * the hierarchy?
  3207. */
  3208. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3209. group->cpu_power;
  3210. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3211. sgs->group_imb = 1;
  3212. sgs->group_capacity =
  3213. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3214. }
  3215. /**
  3216. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3217. * @sd: sched_domain whose statistics are to be updated.
  3218. * @this_cpu: Cpu for which load balance is currently performed.
  3219. * @idle: Idle status of this_cpu
  3220. * @sd_idle: Idle status of the sched_domain containing group.
  3221. * @cpus: Set of cpus considered for load balancing.
  3222. * @balance: Should we balance.
  3223. * @sds: variable to hold the statistics for this sched_domain.
  3224. */
  3225. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3226. enum cpu_idle_type idle, int *sd_idle,
  3227. const struct cpumask *cpus, int *balance,
  3228. struct sd_lb_stats *sds)
  3229. {
  3230. struct sched_domain *child = sd->child;
  3231. struct sched_group *group = sd->groups;
  3232. struct sg_lb_stats sgs;
  3233. int load_idx, prefer_sibling = 0;
  3234. if (child && child->flags & SD_PREFER_SIBLING)
  3235. prefer_sibling = 1;
  3236. init_sd_power_savings_stats(sd, sds, idle);
  3237. load_idx = get_sd_load_idx(sd, idle);
  3238. do {
  3239. int local_group;
  3240. local_group = cpumask_test_cpu(this_cpu,
  3241. sched_group_cpus(group));
  3242. memset(&sgs, 0, sizeof(sgs));
  3243. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3244. local_group, cpus, balance, &sgs);
  3245. if (local_group && balance && !(*balance))
  3246. return;
  3247. sds->total_load += sgs.group_load;
  3248. sds->total_pwr += group->cpu_power;
  3249. /*
  3250. * In case the child domain prefers tasks go to siblings
  3251. * first, lower the group capacity to one so that we'll try
  3252. * and move all the excess tasks away.
  3253. */
  3254. if (prefer_sibling)
  3255. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3256. if (local_group) {
  3257. sds->this_load = sgs.avg_load;
  3258. sds->this = group;
  3259. sds->this_nr_running = sgs.sum_nr_running;
  3260. sds->this_load_per_task = sgs.sum_weighted_load;
  3261. } else if (sgs.avg_load > sds->max_load &&
  3262. (sgs.sum_nr_running > sgs.group_capacity ||
  3263. sgs.group_imb)) {
  3264. sds->max_load = sgs.avg_load;
  3265. sds->busiest = group;
  3266. sds->busiest_nr_running = sgs.sum_nr_running;
  3267. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3268. sds->group_imb = sgs.group_imb;
  3269. }
  3270. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3271. group = group->next;
  3272. } while (group != sd->groups);
  3273. }
  3274. /**
  3275. * fix_small_imbalance - Calculate the minor imbalance that exists
  3276. * amongst the groups of a sched_domain, during
  3277. * load balancing.
  3278. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3279. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3280. * @imbalance: Variable to store the imbalance.
  3281. */
  3282. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3283. int this_cpu, unsigned long *imbalance)
  3284. {
  3285. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3286. unsigned int imbn = 2;
  3287. if (sds->this_nr_running) {
  3288. sds->this_load_per_task /= sds->this_nr_running;
  3289. if (sds->busiest_load_per_task >
  3290. sds->this_load_per_task)
  3291. imbn = 1;
  3292. } else
  3293. sds->this_load_per_task =
  3294. cpu_avg_load_per_task(this_cpu);
  3295. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3296. sds->busiest_load_per_task * imbn) {
  3297. *imbalance = sds->busiest_load_per_task;
  3298. return;
  3299. }
  3300. /*
  3301. * OK, we don't have enough imbalance to justify moving tasks,
  3302. * however we may be able to increase total CPU power used by
  3303. * moving them.
  3304. */
  3305. pwr_now += sds->busiest->cpu_power *
  3306. min(sds->busiest_load_per_task, sds->max_load);
  3307. pwr_now += sds->this->cpu_power *
  3308. min(sds->this_load_per_task, sds->this_load);
  3309. pwr_now /= SCHED_LOAD_SCALE;
  3310. /* Amount of load we'd subtract */
  3311. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3312. sds->busiest->cpu_power;
  3313. if (sds->max_load > tmp)
  3314. pwr_move += sds->busiest->cpu_power *
  3315. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3316. /* Amount of load we'd add */
  3317. if (sds->max_load * sds->busiest->cpu_power <
  3318. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3319. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3320. sds->this->cpu_power;
  3321. else
  3322. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3323. sds->this->cpu_power;
  3324. pwr_move += sds->this->cpu_power *
  3325. min(sds->this_load_per_task, sds->this_load + tmp);
  3326. pwr_move /= SCHED_LOAD_SCALE;
  3327. /* Move if we gain throughput */
  3328. if (pwr_move > pwr_now)
  3329. *imbalance = sds->busiest_load_per_task;
  3330. }
  3331. /**
  3332. * calculate_imbalance - Calculate the amount of imbalance present within the
  3333. * groups of a given sched_domain during load balance.
  3334. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3335. * @this_cpu: Cpu for which currently load balance is being performed.
  3336. * @imbalance: The variable to store the imbalance.
  3337. */
  3338. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3339. unsigned long *imbalance)
  3340. {
  3341. unsigned long max_pull;
  3342. /*
  3343. * In the presence of smp nice balancing, certain scenarios can have
  3344. * max load less than avg load(as we skip the groups at or below
  3345. * its cpu_power, while calculating max_load..)
  3346. */
  3347. if (sds->max_load < sds->avg_load) {
  3348. *imbalance = 0;
  3349. return fix_small_imbalance(sds, this_cpu, imbalance);
  3350. }
  3351. /* Don't want to pull so many tasks that a group would go idle */
  3352. max_pull = min(sds->max_load - sds->avg_load,
  3353. sds->max_load - sds->busiest_load_per_task);
  3354. /* How much load to actually move to equalise the imbalance */
  3355. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3356. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3357. / SCHED_LOAD_SCALE;
  3358. /*
  3359. * if *imbalance is less than the average load per runnable task
  3360. * there is no gaurantee that any tasks will be moved so we'll have
  3361. * a think about bumping its value to force at least one task to be
  3362. * moved
  3363. */
  3364. if (*imbalance < sds->busiest_load_per_task)
  3365. return fix_small_imbalance(sds, this_cpu, imbalance);
  3366. }
  3367. /******* find_busiest_group() helpers end here *********************/
  3368. /**
  3369. * find_busiest_group - Returns the busiest group within the sched_domain
  3370. * if there is an imbalance. If there isn't an imbalance, and
  3371. * the user has opted for power-savings, it returns a group whose
  3372. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3373. * such a group exists.
  3374. *
  3375. * Also calculates the amount of weighted load which should be moved
  3376. * to restore balance.
  3377. *
  3378. * @sd: The sched_domain whose busiest group is to be returned.
  3379. * @this_cpu: The cpu for which load balancing is currently being performed.
  3380. * @imbalance: Variable which stores amount of weighted load which should
  3381. * be moved to restore balance/put a group to idle.
  3382. * @idle: The idle status of this_cpu.
  3383. * @sd_idle: The idleness of sd
  3384. * @cpus: The set of CPUs under consideration for load-balancing.
  3385. * @balance: Pointer to a variable indicating if this_cpu
  3386. * is the appropriate cpu to perform load balancing at this_level.
  3387. *
  3388. * Returns: - the busiest group if imbalance exists.
  3389. * - If no imbalance and user has opted for power-savings balance,
  3390. * return the least loaded group whose CPUs can be
  3391. * put to idle by rebalancing its tasks onto our group.
  3392. */
  3393. static struct sched_group *
  3394. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3395. unsigned long *imbalance, enum cpu_idle_type idle,
  3396. int *sd_idle, const struct cpumask *cpus, int *balance)
  3397. {
  3398. struct sd_lb_stats sds;
  3399. memset(&sds, 0, sizeof(sds));
  3400. /*
  3401. * Compute the various statistics relavent for load balancing at
  3402. * this level.
  3403. */
  3404. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3405. balance, &sds);
  3406. /* Cases where imbalance does not exist from POV of this_cpu */
  3407. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3408. * at this level.
  3409. * 2) There is no busy sibling group to pull from.
  3410. * 3) This group is the busiest group.
  3411. * 4) This group is more busy than the avg busieness at this
  3412. * sched_domain.
  3413. * 5) The imbalance is within the specified limit.
  3414. * 6) Any rebalance would lead to ping-pong
  3415. */
  3416. if (balance && !(*balance))
  3417. goto ret;
  3418. if (!sds.busiest || sds.busiest_nr_running == 0)
  3419. goto out_balanced;
  3420. if (sds.this_load >= sds.max_load)
  3421. goto out_balanced;
  3422. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3423. if (sds.this_load >= sds.avg_load)
  3424. goto out_balanced;
  3425. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3426. goto out_balanced;
  3427. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3428. if (sds.group_imb)
  3429. sds.busiest_load_per_task =
  3430. min(sds.busiest_load_per_task, sds.avg_load);
  3431. /*
  3432. * We're trying to get all the cpus to the average_load, so we don't
  3433. * want to push ourselves above the average load, nor do we wish to
  3434. * reduce the max loaded cpu below the average load, as either of these
  3435. * actions would just result in more rebalancing later, and ping-pong
  3436. * tasks around. Thus we look for the minimum possible imbalance.
  3437. * Negative imbalances (*we* are more loaded than anyone else) will
  3438. * be counted as no imbalance for these purposes -- we can't fix that
  3439. * by pulling tasks to us. Be careful of negative numbers as they'll
  3440. * appear as very large values with unsigned longs.
  3441. */
  3442. if (sds.max_load <= sds.busiest_load_per_task)
  3443. goto out_balanced;
  3444. /* Looks like there is an imbalance. Compute it */
  3445. calculate_imbalance(&sds, this_cpu, imbalance);
  3446. return sds.busiest;
  3447. out_balanced:
  3448. /*
  3449. * There is no obvious imbalance. But check if we can do some balancing
  3450. * to save power.
  3451. */
  3452. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3453. return sds.busiest;
  3454. ret:
  3455. *imbalance = 0;
  3456. return NULL;
  3457. }
  3458. /*
  3459. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3460. */
  3461. static struct rq *
  3462. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3463. unsigned long imbalance, const struct cpumask *cpus)
  3464. {
  3465. struct rq *busiest = NULL, *rq;
  3466. unsigned long max_load = 0;
  3467. int i;
  3468. for_each_cpu(i, sched_group_cpus(group)) {
  3469. unsigned long power = power_of(i);
  3470. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3471. unsigned long wl;
  3472. if (!cpumask_test_cpu(i, cpus))
  3473. continue;
  3474. rq = cpu_rq(i);
  3475. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3476. wl /= power;
  3477. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3478. continue;
  3479. if (wl > max_load) {
  3480. max_load = wl;
  3481. busiest = rq;
  3482. }
  3483. }
  3484. return busiest;
  3485. }
  3486. /*
  3487. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3488. * so long as it is large enough.
  3489. */
  3490. #define MAX_PINNED_INTERVAL 512
  3491. /* Working cpumask for load_balance and load_balance_newidle. */
  3492. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3493. /*
  3494. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3495. * tasks if there is an imbalance.
  3496. */
  3497. static int load_balance(int this_cpu, struct rq *this_rq,
  3498. struct sched_domain *sd, enum cpu_idle_type idle,
  3499. int *balance)
  3500. {
  3501. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3502. struct sched_group *group;
  3503. unsigned long imbalance;
  3504. struct rq *busiest;
  3505. unsigned long flags;
  3506. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3507. cpumask_copy(cpus, cpu_active_mask);
  3508. /*
  3509. * When power savings policy is enabled for the parent domain, idle
  3510. * sibling can pick up load irrespective of busy siblings. In this case,
  3511. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3512. * portraying it as CPU_NOT_IDLE.
  3513. */
  3514. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3515. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3516. sd_idle = 1;
  3517. schedstat_inc(sd, lb_count[idle]);
  3518. redo:
  3519. update_shares(sd);
  3520. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3521. cpus, balance);
  3522. if (*balance == 0)
  3523. goto out_balanced;
  3524. if (!group) {
  3525. schedstat_inc(sd, lb_nobusyg[idle]);
  3526. goto out_balanced;
  3527. }
  3528. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3529. if (!busiest) {
  3530. schedstat_inc(sd, lb_nobusyq[idle]);
  3531. goto out_balanced;
  3532. }
  3533. BUG_ON(busiest == this_rq);
  3534. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3535. ld_moved = 0;
  3536. if (busiest->nr_running > 1) {
  3537. /*
  3538. * Attempt to move tasks. If find_busiest_group has found
  3539. * an imbalance but busiest->nr_running <= 1, the group is
  3540. * still unbalanced. ld_moved simply stays zero, so it is
  3541. * correctly treated as an imbalance.
  3542. */
  3543. local_irq_save(flags);
  3544. double_rq_lock(this_rq, busiest);
  3545. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3546. imbalance, sd, idle, &all_pinned);
  3547. double_rq_unlock(this_rq, busiest);
  3548. local_irq_restore(flags);
  3549. /*
  3550. * some other cpu did the load balance for us.
  3551. */
  3552. if (ld_moved && this_cpu != smp_processor_id())
  3553. resched_cpu(this_cpu);
  3554. /* All tasks on this runqueue were pinned by CPU affinity */
  3555. if (unlikely(all_pinned)) {
  3556. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3557. if (!cpumask_empty(cpus))
  3558. goto redo;
  3559. goto out_balanced;
  3560. }
  3561. }
  3562. if (!ld_moved) {
  3563. schedstat_inc(sd, lb_failed[idle]);
  3564. sd->nr_balance_failed++;
  3565. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3566. spin_lock_irqsave(&busiest->lock, flags);
  3567. /* don't kick the migration_thread, if the curr
  3568. * task on busiest cpu can't be moved to this_cpu
  3569. */
  3570. if (!cpumask_test_cpu(this_cpu,
  3571. &busiest->curr->cpus_allowed)) {
  3572. spin_unlock_irqrestore(&busiest->lock, flags);
  3573. all_pinned = 1;
  3574. goto out_one_pinned;
  3575. }
  3576. if (!busiest->active_balance) {
  3577. busiest->active_balance = 1;
  3578. busiest->push_cpu = this_cpu;
  3579. active_balance = 1;
  3580. }
  3581. spin_unlock_irqrestore(&busiest->lock, flags);
  3582. if (active_balance)
  3583. wake_up_process(busiest->migration_thread);
  3584. /*
  3585. * We've kicked active balancing, reset the failure
  3586. * counter.
  3587. */
  3588. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3589. }
  3590. } else
  3591. sd->nr_balance_failed = 0;
  3592. if (likely(!active_balance)) {
  3593. /* We were unbalanced, so reset the balancing interval */
  3594. sd->balance_interval = sd->min_interval;
  3595. } else {
  3596. /*
  3597. * If we've begun active balancing, start to back off. This
  3598. * case may not be covered by the all_pinned logic if there
  3599. * is only 1 task on the busy runqueue (because we don't call
  3600. * move_tasks).
  3601. */
  3602. if (sd->balance_interval < sd->max_interval)
  3603. sd->balance_interval *= 2;
  3604. }
  3605. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3606. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3607. ld_moved = -1;
  3608. goto out;
  3609. out_balanced:
  3610. schedstat_inc(sd, lb_balanced[idle]);
  3611. sd->nr_balance_failed = 0;
  3612. out_one_pinned:
  3613. /* tune up the balancing interval */
  3614. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3615. (sd->balance_interval < sd->max_interval))
  3616. sd->balance_interval *= 2;
  3617. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3618. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3619. ld_moved = -1;
  3620. else
  3621. ld_moved = 0;
  3622. out:
  3623. if (ld_moved)
  3624. update_shares(sd);
  3625. return ld_moved;
  3626. }
  3627. /*
  3628. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3629. * tasks if there is an imbalance.
  3630. *
  3631. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3632. * this_rq is locked.
  3633. */
  3634. static int
  3635. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3636. {
  3637. struct sched_group *group;
  3638. struct rq *busiest = NULL;
  3639. unsigned long imbalance;
  3640. int ld_moved = 0;
  3641. int sd_idle = 0;
  3642. int all_pinned = 0;
  3643. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3644. cpumask_copy(cpus, cpu_active_mask);
  3645. /*
  3646. * When power savings policy is enabled for the parent domain, idle
  3647. * sibling can pick up load irrespective of busy siblings. In this case,
  3648. * let the state of idle sibling percolate up as IDLE, instead of
  3649. * portraying it as CPU_NOT_IDLE.
  3650. */
  3651. if (sd->flags & SD_SHARE_CPUPOWER &&
  3652. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3653. sd_idle = 1;
  3654. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3655. redo:
  3656. update_shares_locked(this_rq, sd);
  3657. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3658. &sd_idle, cpus, NULL);
  3659. if (!group) {
  3660. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3661. goto out_balanced;
  3662. }
  3663. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3664. if (!busiest) {
  3665. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3666. goto out_balanced;
  3667. }
  3668. BUG_ON(busiest == this_rq);
  3669. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3670. ld_moved = 0;
  3671. if (busiest->nr_running > 1) {
  3672. /* Attempt to move tasks */
  3673. double_lock_balance(this_rq, busiest);
  3674. /* this_rq->clock is already updated */
  3675. update_rq_clock(busiest);
  3676. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3677. imbalance, sd, CPU_NEWLY_IDLE,
  3678. &all_pinned);
  3679. double_unlock_balance(this_rq, busiest);
  3680. if (unlikely(all_pinned)) {
  3681. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3682. if (!cpumask_empty(cpus))
  3683. goto redo;
  3684. }
  3685. }
  3686. if (!ld_moved) {
  3687. int active_balance = 0;
  3688. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3689. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3690. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3691. return -1;
  3692. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3693. return -1;
  3694. if (sd->nr_balance_failed++ < 2)
  3695. return -1;
  3696. /*
  3697. * The only task running in a non-idle cpu can be moved to this
  3698. * cpu in an attempt to completely freeup the other CPU
  3699. * package. The same method used to move task in load_balance()
  3700. * have been extended for load_balance_newidle() to speedup
  3701. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3702. *
  3703. * The package power saving logic comes from
  3704. * find_busiest_group(). If there are no imbalance, then
  3705. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3706. * f_b_g() will select a group from which a running task may be
  3707. * pulled to this cpu in order to make the other package idle.
  3708. * If there is no opportunity to make a package idle and if
  3709. * there are no imbalance, then f_b_g() will return NULL and no
  3710. * action will be taken in load_balance_newidle().
  3711. *
  3712. * Under normal task pull operation due to imbalance, there
  3713. * will be more than one task in the source run queue and
  3714. * move_tasks() will succeed. ld_moved will be true and this
  3715. * active balance code will not be triggered.
  3716. */
  3717. /* Lock busiest in correct order while this_rq is held */
  3718. double_lock_balance(this_rq, busiest);
  3719. /*
  3720. * don't kick the migration_thread, if the curr
  3721. * task on busiest cpu can't be moved to this_cpu
  3722. */
  3723. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3724. double_unlock_balance(this_rq, busiest);
  3725. all_pinned = 1;
  3726. return ld_moved;
  3727. }
  3728. if (!busiest->active_balance) {
  3729. busiest->active_balance = 1;
  3730. busiest->push_cpu = this_cpu;
  3731. active_balance = 1;
  3732. }
  3733. double_unlock_balance(this_rq, busiest);
  3734. /*
  3735. * Should not call ttwu while holding a rq->lock
  3736. */
  3737. spin_unlock(&this_rq->lock);
  3738. if (active_balance)
  3739. wake_up_process(busiest->migration_thread);
  3740. spin_lock(&this_rq->lock);
  3741. } else
  3742. sd->nr_balance_failed = 0;
  3743. update_shares_locked(this_rq, sd);
  3744. return ld_moved;
  3745. out_balanced:
  3746. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3747. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3748. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3749. return -1;
  3750. sd->nr_balance_failed = 0;
  3751. return 0;
  3752. }
  3753. /*
  3754. * idle_balance is called by schedule() if this_cpu is about to become
  3755. * idle. Attempts to pull tasks from other CPUs.
  3756. */
  3757. static void idle_balance(int this_cpu, struct rq *this_rq)
  3758. {
  3759. struct sched_domain *sd;
  3760. int pulled_task = 0;
  3761. unsigned long next_balance = jiffies + HZ;
  3762. this_rq->idle_stamp = this_rq->clock;
  3763. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3764. return;
  3765. for_each_domain(this_cpu, sd) {
  3766. unsigned long interval;
  3767. if (!(sd->flags & SD_LOAD_BALANCE))
  3768. continue;
  3769. if (sd->flags & SD_BALANCE_NEWIDLE)
  3770. /* If we've pulled tasks over stop searching: */
  3771. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3772. sd);
  3773. interval = msecs_to_jiffies(sd->balance_interval);
  3774. if (time_after(next_balance, sd->last_balance + interval))
  3775. next_balance = sd->last_balance + interval;
  3776. if (pulled_task) {
  3777. this_rq->idle_stamp = 0;
  3778. break;
  3779. }
  3780. }
  3781. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3782. /*
  3783. * We are going idle. next_balance may be set based on
  3784. * a busy processor. So reset next_balance.
  3785. */
  3786. this_rq->next_balance = next_balance;
  3787. }
  3788. }
  3789. /*
  3790. * active_load_balance is run by migration threads. It pushes running tasks
  3791. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3792. * running on each physical CPU where possible, and avoids physical /
  3793. * logical imbalances.
  3794. *
  3795. * Called with busiest_rq locked.
  3796. */
  3797. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3798. {
  3799. int target_cpu = busiest_rq->push_cpu;
  3800. struct sched_domain *sd;
  3801. struct rq *target_rq;
  3802. /* Is there any task to move? */
  3803. if (busiest_rq->nr_running <= 1)
  3804. return;
  3805. target_rq = cpu_rq(target_cpu);
  3806. /*
  3807. * This condition is "impossible", if it occurs
  3808. * we need to fix it. Originally reported by
  3809. * Bjorn Helgaas on a 128-cpu setup.
  3810. */
  3811. BUG_ON(busiest_rq == target_rq);
  3812. /* move a task from busiest_rq to target_rq */
  3813. double_lock_balance(busiest_rq, target_rq);
  3814. update_rq_clock(busiest_rq);
  3815. update_rq_clock(target_rq);
  3816. /* Search for an sd spanning us and the target CPU. */
  3817. for_each_domain(target_cpu, sd) {
  3818. if ((sd->flags & SD_LOAD_BALANCE) &&
  3819. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3820. break;
  3821. }
  3822. if (likely(sd)) {
  3823. schedstat_inc(sd, alb_count);
  3824. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3825. sd, CPU_IDLE))
  3826. schedstat_inc(sd, alb_pushed);
  3827. else
  3828. schedstat_inc(sd, alb_failed);
  3829. }
  3830. double_unlock_balance(busiest_rq, target_rq);
  3831. }
  3832. #ifdef CONFIG_NO_HZ
  3833. static struct {
  3834. atomic_t load_balancer;
  3835. cpumask_var_t cpu_mask;
  3836. cpumask_var_t ilb_grp_nohz_mask;
  3837. } nohz ____cacheline_aligned = {
  3838. .load_balancer = ATOMIC_INIT(-1),
  3839. };
  3840. int get_nohz_load_balancer(void)
  3841. {
  3842. return atomic_read(&nohz.load_balancer);
  3843. }
  3844. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3845. /**
  3846. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3847. * @cpu: The cpu whose lowest level of sched domain is to
  3848. * be returned.
  3849. * @flag: The flag to check for the lowest sched_domain
  3850. * for the given cpu.
  3851. *
  3852. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3853. */
  3854. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3855. {
  3856. struct sched_domain *sd;
  3857. for_each_domain(cpu, sd)
  3858. if (sd && (sd->flags & flag))
  3859. break;
  3860. return sd;
  3861. }
  3862. /**
  3863. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3864. * @cpu: The cpu whose domains we're iterating over.
  3865. * @sd: variable holding the value of the power_savings_sd
  3866. * for cpu.
  3867. * @flag: The flag to filter the sched_domains to be iterated.
  3868. *
  3869. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3870. * set, starting from the lowest sched_domain to the highest.
  3871. */
  3872. #define for_each_flag_domain(cpu, sd, flag) \
  3873. for (sd = lowest_flag_domain(cpu, flag); \
  3874. (sd && (sd->flags & flag)); sd = sd->parent)
  3875. /**
  3876. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3877. * @ilb_group: group to be checked for semi-idleness
  3878. *
  3879. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3880. *
  3881. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3882. * and atleast one non-idle CPU. This helper function checks if the given
  3883. * sched_group is semi-idle or not.
  3884. */
  3885. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3886. {
  3887. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3888. sched_group_cpus(ilb_group));
  3889. /*
  3890. * A sched_group is semi-idle when it has atleast one busy cpu
  3891. * and atleast one idle cpu.
  3892. */
  3893. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3894. return 0;
  3895. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3896. return 0;
  3897. return 1;
  3898. }
  3899. /**
  3900. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3901. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3902. *
  3903. * Returns: Returns the id of the idle load balancer if it exists,
  3904. * Else, returns >= nr_cpu_ids.
  3905. *
  3906. * This algorithm picks the idle load balancer such that it belongs to a
  3907. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3908. * completely idle packages/cores just for the purpose of idle load balancing
  3909. * when there are other idle cpu's which are better suited for that job.
  3910. */
  3911. static int find_new_ilb(int cpu)
  3912. {
  3913. struct sched_domain *sd;
  3914. struct sched_group *ilb_group;
  3915. /*
  3916. * Have idle load balancer selection from semi-idle packages only
  3917. * when power-aware load balancing is enabled
  3918. */
  3919. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3920. goto out_done;
  3921. /*
  3922. * Optimize for the case when we have no idle CPUs or only one
  3923. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3924. */
  3925. if (cpumask_weight(nohz.cpu_mask) < 2)
  3926. goto out_done;
  3927. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3928. ilb_group = sd->groups;
  3929. do {
  3930. if (is_semi_idle_group(ilb_group))
  3931. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3932. ilb_group = ilb_group->next;
  3933. } while (ilb_group != sd->groups);
  3934. }
  3935. out_done:
  3936. return cpumask_first(nohz.cpu_mask);
  3937. }
  3938. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3939. static inline int find_new_ilb(int call_cpu)
  3940. {
  3941. return cpumask_first(nohz.cpu_mask);
  3942. }
  3943. #endif
  3944. /*
  3945. * This routine will try to nominate the ilb (idle load balancing)
  3946. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3947. * load balancing on behalf of all those cpus. If all the cpus in the system
  3948. * go into this tickless mode, then there will be no ilb owner (as there is
  3949. * no need for one) and all the cpus will sleep till the next wakeup event
  3950. * arrives...
  3951. *
  3952. * For the ilb owner, tick is not stopped. And this tick will be used
  3953. * for idle load balancing. ilb owner will still be part of
  3954. * nohz.cpu_mask..
  3955. *
  3956. * While stopping the tick, this cpu will become the ilb owner if there
  3957. * is no other owner. And will be the owner till that cpu becomes busy
  3958. * or if all cpus in the system stop their ticks at which point
  3959. * there is no need for ilb owner.
  3960. *
  3961. * When the ilb owner becomes busy, it nominates another owner, during the
  3962. * next busy scheduler_tick()
  3963. */
  3964. int select_nohz_load_balancer(int stop_tick)
  3965. {
  3966. int cpu = smp_processor_id();
  3967. if (stop_tick) {
  3968. cpu_rq(cpu)->in_nohz_recently = 1;
  3969. if (!cpu_active(cpu)) {
  3970. if (atomic_read(&nohz.load_balancer) != cpu)
  3971. return 0;
  3972. /*
  3973. * If we are going offline and still the leader,
  3974. * give up!
  3975. */
  3976. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3977. BUG();
  3978. return 0;
  3979. }
  3980. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3981. /* time for ilb owner also to sleep */
  3982. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  3983. if (atomic_read(&nohz.load_balancer) == cpu)
  3984. atomic_set(&nohz.load_balancer, -1);
  3985. return 0;
  3986. }
  3987. if (atomic_read(&nohz.load_balancer) == -1) {
  3988. /* make me the ilb owner */
  3989. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3990. return 1;
  3991. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3992. int new_ilb;
  3993. if (!(sched_smt_power_savings ||
  3994. sched_mc_power_savings))
  3995. return 1;
  3996. /*
  3997. * Check to see if there is a more power-efficient
  3998. * ilb.
  3999. */
  4000. new_ilb = find_new_ilb(cpu);
  4001. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  4002. atomic_set(&nohz.load_balancer, -1);
  4003. resched_cpu(new_ilb);
  4004. return 0;
  4005. }
  4006. return 1;
  4007. }
  4008. } else {
  4009. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  4010. return 0;
  4011. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4012. if (atomic_read(&nohz.load_balancer) == cpu)
  4013. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4014. BUG();
  4015. }
  4016. return 0;
  4017. }
  4018. #endif
  4019. static DEFINE_SPINLOCK(balancing);
  4020. /*
  4021. * It checks each scheduling domain to see if it is due to be balanced,
  4022. * and initiates a balancing operation if so.
  4023. *
  4024. * Balancing parameters are set up in arch_init_sched_domains.
  4025. */
  4026. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4027. {
  4028. int balance = 1;
  4029. struct rq *rq = cpu_rq(cpu);
  4030. unsigned long interval;
  4031. struct sched_domain *sd;
  4032. /* Earliest time when we have to do rebalance again */
  4033. unsigned long next_balance = jiffies + 60*HZ;
  4034. int update_next_balance = 0;
  4035. int need_serialize;
  4036. for_each_domain(cpu, sd) {
  4037. if (!(sd->flags & SD_LOAD_BALANCE))
  4038. continue;
  4039. interval = sd->balance_interval;
  4040. if (idle != CPU_IDLE)
  4041. interval *= sd->busy_factor;
  4042. /* scale ms to jiffies */
  4043. interval = msecs_to_jiffies(interval);
  4044. if (unlikely(!interval))
  4045. interval = 1;
  4046. if (interval > HZ*NR_CPUS/10)
  4047. interval = HZ*NR_CPUS/10;
  4048. need_serialize = sd->flags & SD_SERIALIZE;
  4049. if (need_serialize) {
  4050. if (!spin_trylock(&balancing))
  4051. goto out;
  4052. }
  4053. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4054. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4055. /*
  4056. * We've pulled tasks over so either we're no
  4057. * longer idle, or one of our SMT siblings is
  4058. * not idle.
  4059. */
  4060. idle = CPU_NOT_IDLE;
  4061. }
  4062. sd->last_balance = jiffies;
  4063. }
  4064. if (need_serialize)
  4065. spin_unlock(&balancing);
  4066. out:
  4067. if (time_after(next_balance, sd->last_balance + interval)) {
  4068. next_balance = sd->last_balance + interval;
  4069. update_next_balance = 1;
  4070. }
  4071. /*
  4072. * Stop the load balance at this level. There is another
  4073. * CPU in our sched group which is doing load balancing more
  4074. * actively.
  4075. */
  4076. if (!balance)
  4077. break;
  4078. }
  4079. /*
  4080. * next_balance will be updated only when there is a need.
  4081. * When the cpu is attached to null domain for ex, it will not be
  4082. * updated.
  4083. */
  4084. if (likely(update_next_balance))
  4085. rq->next_balance = next_balance;
  4086. }
  4087. /*
  4088. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4089. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4090. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4091. */
  4092. static void run_rebalance_domains(struct softirq_action *h)
  4093. {
  4094. int this_cpu = smp_processor_id();
  4095. struct rq *this_rq = cpu_rq(this_cpu);
  4096. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4097. CPU_IDLE : CPU_NOT_IDLE;
  4098. rebalance_domains(this_cpu, idle);
  4099. #ifdef CONFIG_NO_HZ
  4100. /*
  4101. * If this cpu is the owner for idle load balancing, then do the
  4102. * balancing on behalf of the other idle cpus whose ticks are
  4103. * stopped.
  4104. */
  4105. if (this_rq->idle_at_tick &&
  4106. atomic_read(&nohz.load_balancer) == this_cpu) {
  4107. struct rq *rq;
  4108. int balance_cpu;
  4109. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4110. if (balance_cpu == this_cpu)
  4111. continue;
  4112. /*
  4113. * If this cpu gets work to do, stop the load balancing
  4114. * work being done for other cpus. Next load
  4115. * balancing owner will pick it up.
  4116. */
  4117. if (need_resched())
  4118. break;
  4119. rebalance_domains(balance_cpu, CPU_IDLE);
  4120. rq = cpu_rq(balance_cpu);
  4121. if (time_after(this_rq->next_balance, rq->next_balance))
  4122. this_rq->next_balance = rq->next_balance;
  4123. }
  4124. }
  4125. #endif
  4126. }
  4127. static inline int on_null_domain(int cpu)
  4128. {
  4129. return !rcu_dereference(cpu_rq(cpu)->sd);
  4130. }
  4131. /*
  4132. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4133. *
  4134. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4135. * idle load balancing owner or decide to stop the periodic load balancing,
  4136. * if the whole system is idle.
  4137. */
  4138. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4139. {
  4140. #ifdef CONFIG_NO_HZ
  4141. /*
  4142. * If we were in the nohz mode recently and busy at the current
  4143. * scheduler tick, then check if we need to nominate new idle
  4144. * load balancer.
  4145. */
  4146. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4147. rq->in_nohz_recently = 0;
  4148. if (atomic_read(&nohz.load_balancer) == cpu) {
  4149. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4150. atomic_set(&nohz.load_balancer, -1);
  4151. }
  4152. if (atomic_read(&nohz.load_balancer) == -1) {
  4153. int ilb = find_new_ilb(cpu);
  4154. if (ilb < nr_cpu_ids)
  4155. resched_cpu(ilb);
  4156. }
  4157. }
  4158. /*
  4159. * If this cpu is idle and doing idle load balancing for all the
  4160. * cpus with ticks stopped, is it time for that to stop?
  4161. */
  4162. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4163. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4164. resched_cpu(cpu);
  4165. return;
  4166. }
  4167. /*
  4168. * If this cpu is idle and the idle load balancing is done by
  4169. * someone else, then no need raise the SCHED_SOFTIRQ
  4170. */
  4171. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4172. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4173. return;
  4174. #endif
  4175. /* Don't need to rebalance while attached to NULL domain */
  4176. if (time_after_eq(jiffies, rq->next_balance) &&
  4177. likely(!on_null_domain(cpu)))
  4178. raise_softirq(SCHED_SOFTIRQ);
  4179. }
  4180. #else /* CONFIG_SMP */
  4181. /*
  4182. * on UP we do not need to balance between CPUs:
  4183. */
  4184. static inline void idle_balance(int cpu, struct rq *rq)
  4185. {
  4186. }
  4187. #endif
  4188. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4189. EXPORT_PER_CPU_SYMBOL(kstat);
  4190. /*
  4191. * Return any ns on the sched_clock that have not yet been accounted in
  4192. * @p in case that task is currently running.
  4193. *
  4194. * Called with task_rq_lock() held on @rq.
  4195. */
  4196. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4197. {
  4198. u64 ns = 0;
  4199. if (task_current(rq, p)) {
  4200. update_rq_clock(rq);
  4201. ns = rq->clock - p->se.exec_start;
  4202. if ((s64)ns < 0)
  4203. ns = 0;
  4204. }
  4205. return ns;
  4206. }
  4207. unsigned long long task_delta_exec(struct task_struct *p)
  4208. {
  4209. unsigned long flags;
  4210. struct rq *rq;
  4211. u64 ns = 0;
  4212. rq = task_rq_lock(p, &flags);
  4213. ns = do_task_delta_exec(p, rq);
  4214. task_rq_unlock(rq, &flags);
  4215. return ns;
  4216. }
  4217. /*
  4218. * Return accounted runtime for the task.
  4219. * In case the task is currently running, return the runtime plus current's
  4220. * pending runtime that have not been accounted yet.
  4221. */
  4222. unsigned long long task_sched_runtime(struct task_struct *p)
  4223. {
  4224. unsigned long flags;
  4225. struct rq *rq;
  4226. u64 ns = 0;
  4227. rq = task_rq_lock(p, &flags);
  4228. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4229. task_rq_unlock(rq, &flags);
  4230. return ns;
  4231. }
  4232. /*
  4233. * Return sum_exec_runtime for the thread group.
  4234. * In case the task is currently running, return the sum plus current's
  4235. * pending runtime that have not been accounted yet.
  4236. *
  4237. * Note that the thread group might have other running tasks as well,
  4238. * so the return value not includes other pending runtime that other
  4239. * running tasks might have.
  4240. */
  4241. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4242. {
  4243. struct task_cputime totals;
  4244. unsigned long flags;
  4245. struct rq *rq;
  4246. u64 ns;
  4247. rq = task_rq_lock(p, &flags);
  4248. thread_group_cputime(p, &totals);
  4249. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4250. task_rq_unlock(rq, &flags);
  4251. return ns;
  4252. }
  4253. /*
  4254. * Account user cpu time to a process.
  4255. * @p: the process that the cpu time gets accounted to
  4256. * @cputime: the cpu time spent in user space since the last update
  4257. * @cputime_scaled: cputime scaled by cpu frequency
  4258. */
  4259. void account_user_time(struct task_struct *p, cputime_t cputime,
  4260. cputime_t cputime_scaled)
  4261. {
  4262. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4263. cputime64_t tmp;
  4264. /* Add user time to process. */
  4265. p->utime = cputime_add(p->utime, cputime);
  4266. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4267. account_group_user_time(p, cputime);
  4268. /* Add user time to cpustat. */
  4269. tmp = cputime_to_cputime64(cputime);
  4270. if (TASK_NICE(p) > 0)
  4271. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4272. else
  4273. cpustat->user = cputime64_add(cpustat->user, tmp);
  4274. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4275. /* Account for user time used */
  4276. acct_update_integrals(p);
  4277. }
  4278. /*
  4279. * Account guest cpu time to a process.
  4280. * @p: the process that the cpu time gets accounted to
  4281. * @cputime: the cpu time spent in virtual machine since the last update
  4282. * @cputime_scaled: cputime scaled by cpu frequency
  4283. */
  4284. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4285. cputime_t cputime_scaled)
  4286. {
  4287. cputime64_t tmp;
  4288. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4289. tmp = cputime_to_cputime64(cputime);
  4290. /* Add guest time to process. */
  4291. p->utime = cputime_add(p->utime, cputime);
  4292. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4293. account_group_user_time(p, cputime);
  4294. p->gtime = cputime_add(p->gtime, cputime);
  4295. /* Add guest time to cpustat. */
  4296. if (TASK_NICE(p) > 0) {
  4297. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4298. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4299. } else {
  4300. cpustat->user = cputime64_add(cpustat->user, tmp);
  4301. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4302. }
  4303. }
  4304. /*
  4305. * Account system cpu time to a process.
  4306. * @p: the process that the cpu time gets accounted to
  4307. * @hardirq_offset: the offset to subtract from hardirq_count()
  4308. * @cputime: the cpu time spent in kernel space since the last update
  4309. * @cputime_scaled: cputime scaled by cpu frequency
  4310. */
  4311. void account_system_time(struct task_struct *p, int hardirq_offset,
  4312. cputime_t cputime, cputime_t cputime_scaled)
  4313. {
  4314. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4315. cputime64_t tmp;
  4316. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4317. account_guest_time(p, cputime, cputime_scaled);
  4318. return;
  4319. }
  4320. /* Add system time to process. */
  4321. p->stime = cputime_add(p->stime, cputime);
  4322. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4323. account_group_system_time(p, cputime);
  4324. /* Add system time to cpustat. */
  4325. tmp = cputime_to_cputime64(cputime);
  4326. if (hardirq_count() - hardirq_offset)
  4327. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4328. else if (softirq_count())
  4329. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4330. else
  4331. cpustat->system = cputime64_add(cpustat->system, tmp);
  4332. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4333. /* Account for system time used */
  4334. acct_update_integrals(p);
  4335. }
  4336. /*
  4337. * Account for involuntary wait time.
  4338. * @steal: the cpu time spent in involuntary wait
  4339. */
  4340. void account_steal_time(cputime_t cputime)
  4341. {
  4342. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4343. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4344. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4345. }
  4346. /*
  4347. * Account for idle time.
  4348. * @cputime: the cpu time spent in idle wait
  4349. */
  4350. void account_idle_time(cputime_t cputime)
  4351. {
  4352. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4353. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4354. struct rq *rq = this_rq();
  4355. if (atomic_read(&rq->nr_iowait) > 0)
  4356. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4357. else
  4358. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4359. }
  4360. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4361. /*
  4362. * Account a single tick of cpu time.
  4363. * @p: the process that the cpu time gets accounted to
  4364. * @user_tick: indicates if the tick is a user or a system tick
  4365. */
  4366. void account_process_tick(struct task_struct *p, int user_tick)
  4367. {
  4368. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4369. struct rq *rq = this_rq();
  4370. if (user_tick)
  4371. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4372. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4373. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4374. one_jiffy_scaled);
  4375. else
  4376. account_idle_time(cputime_one_jiffy);
  4377. }
  4378. /*
  4379. * Account multiple ticks of steal time.
  4380. * @p: the process from which the cpu time has been stolen
  4381. * @ticks: number of stolen ticks
  4382. */
  4383. void account_steal_ticks(unsigned long ticks)
  4384. {
  4385. account_steal_time(jiffies_to_cputime(ticks));
  4386. }
  4387. /*
  4388. * Account multiple ticks of idle time.
  4389. * @ticks: number of stolen ticks
  4390. */
  4391. void account_idle_ticks(unsigned long ticks)
  4392. {
  4393. account_idle_time(jiffies_to_cputime(ticks));
  4394. }
  4395. #endif
  4396. /*
  4397. * Use precise platform statistics if available:
  4398. */
  4399. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4400. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4401. {
  4402. *ut = p->utime;
  4403. *st = p->stime;
  4404. }
  4405. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4406. {
  4407. struct task_cputime cputime;
  4408. thread_group_cputime(p, &cputime);
  4409. *ut = cputime.utime;
  4410. *st = cputime.stime;
  4411. }
  4412. #else
  4413. #ifndef nsecs_to_cputime
  4414. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4415. #endif
  4416. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4417. {
  4418. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4419. /*
  4420. * Use CFS's precise accounting:
  4421. */
  4422. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4423. if (total) {
  4424. u64 temp;
  4425. temp = (u64)(rtime * utime);
  4426. do_div(temp, total);
  4427. utime = (cputime_t)temp;
  4428. } else
  4429. utime = rtime;
  4430. /*
  4431. * Compare with previous values, to keep monotonicity:
  4432. */
  4433. p->prev_utime = max(p->prev_utime, utime);
  4434. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4435. *ut = p->prev_utime;
  4436. *st = p->prev_stime;
  4437. }
  4438. /*
  4439. * Must be called with siglock held.
  4440. */
  4441. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4442. {
  4443. struct signal_struct *sig = p->signal;
  4444. struct task_cputime cputime;
  4445. cputime_t rtime, utime, total;
  4446. thread_group_cputime(p, &cputime);
  4447. total = cputime_add(cputime.utime, cputime.stime);
  4448. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4449. if (total) {
  4450. u64 temp;
  4451. temp = (u64)(rtime * cputime.utime);
  4452. do_div(temp, total);
  4453. utime = (cputime_t)temp;
  4454. } else
  4455. utime = rtime;
  4456. sig->prev_utime = max(sig->prev_utime, utime);
  4457. sig->prev_stime = max(sig->prev_stime,
  4458. cputime_sub(rtime, sig->prev_utime));
  4459. *ut = sig->prev_utime;
  4460. *st = sig->prev_stime;
  4461. }
  4462. #endif
  4463. /*
  4464. * This function gets called by the timer code, with HZ frequency.
  4465. * We call it with interrupts disabled.
  4466. *
  4467. * It also gets called by the fork code, when changing the parent's
  4468. * timeslices.
  4469. */
  4470. void scheduler_tick(void)
  4471. {
  4472. int cpu = smp_processor_id();
  4473. struct rq *rq = cpu_rq(cpu);
  4474. struct task_struct *curr = rq->curr;
  4475. sched_clock_tick();
  4476. spin_lock(&rq->lock);
  4477. update_rq_clock(rq);
  4478. update_cpu_load(rq);
  4479. curr->sched_class->task_tick(rq, curr, 0);
  4480. spin_unlock(&rq->lock);
  4481. perf_event_task_tick(curr, cpu);
  4482. #ifdef CONFIG_SMP
  4483. rq->idle_at_tick = idle_cpu(cpu);
  4484. trigger_load_balance(rq, cpu);
  4485. #endif
  4486. }
  4487. notrace unsigned long get_parent_ip(unsigned long addr)
  4488. {
  4489. if (in_lock_functions(addr)) {
  4490. addr = CALLER_ADDR2;
  4491. if (in_lock_functions(addr))
  4492. addr = CALLER_ADDR3;
  4493. }
  4494. return addr;
  4495. }
  4496. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4497. defined(CONFIG_PREEMPT_TRACER))
  4498. void __kprobes add_preempt_count(int val)
  4499. {
  4500. #ifdef CONFIG_DEBUG_PREEMPT
  4501. /*
  4502. * Underflow?
  4503. */
  4504. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4505. return;
  4506. #endif
  4507. preempt_count() += val;
  4508. #ifdef CONFIG_DEBUG_PREEMPT
  4509. /*
  4510. * Spinlock count overflowing soon?
  4511. */
  4512. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4513. PREEMPT_MASK - 10);
  4514. #endif
  4515. if (preempt_count() == val)
  4516. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4517. }
  4518. EXPORT_SYMBOL(add_preempt_count);
  4519. void __kprobes sub_preempt_count(int val)
  4520. {
  4521. #ifdef CONFIG_DEBUG_PREEMPT
  4522. /*
  4523. * Underflow?
  4524. */
  4525. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4526. return;
  4527. /*
  4528. * Is the spinlock portion underflowing?
  4529. */
  4530. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4531. !(preempt_count() & PREEMPT_MASK)))
  4532. return;
  4533. #endif
  4534. if (preempt_count() == val)
  4535. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4536. preempt_count() -= val;
  4537. }
  4538. EXPORT_SYMBOL(sub_preempt_count);
  4539. #endif
  4540. /*
  4541. * Print scheduling while atomic bug:
  4542. */
  4543. static noinline void __schedule_bug(struct task_struct *prev)
  4544. {
  4545. struct pt_regs *regs = get_irq_regs();
  4546. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4547. prev->comm, prev->pid, preempt_count());
  4548. debug_show_held_locks(prev);
  4549. print_modules();
  4550. if (irqs_disabled())
  4551. print_irqtrace_events(prev);
  4552. if (regs)
  4553. show_regs(regs);
  4554. else
  4555. dump_stack();
  4556. }
  4557. /*
  4558. * Various schedule()-time debugging checks and statistics:
  4559. */
  4560. static inline void schedule_debug(struct task_struct *prev)
  4561. {
  4562. /*
  4563. * Test if we are atomic. Since do_exit() needs to call into
  4564. * schedule() atomically, we ignore that path for now.
  4565. * Otherwise, whine if we are scheduling when we should not be.
  4566. */
  4567. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4568. __schedule_bug(prev);
  4569. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4570. schedstat_inc(this_rq(), sched_count);
  4571. #ifdef CONFIG_SCHEDSTATS
  4572. if (unlikely(prev->lock_depth >= 0)) {
  4573. schedstat_inc(this_rq(), bkl_count);
  4574. schedstat_inc(prev, sched_info.bkl_count);
  4575. }
  4576. #endif
  4577. }
  4578. static void put_prev_task(struct rq *rq, struct task_struct *p)
  4579. {
  4580. u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
  4581. update_avg(&p->se.avg_running, runtime);
  4582. if (p->state == TASK_RUNNING) {
  4583. /*
  4584. * In order to avoid avg_overlap growing stale when we are
  4585. * indeed overlapping and hence not getting put to sleep, grow
  4586. * the avg_overlap on preemption.
  4587. *
  4588. * We use the average preemption runtime because that
  4589. * correlates to the amount of cache footprint a task can
  4590. * build up.
  4591. */
  4592. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4593. update_avg(&p->se.avg_overlap, runtime);
  4594. } else {
  4595. update_avg(&p->se.avg_running, 0);
  4596. }
  4597. p->sched_class->put_prev_task(rq, p);
  4598. }
  4599. /*
  4600. * Pick up the highest-prio task:
  4601. */
  4602. static inline struct task_struct *
  4603. pick_next_task(struct rq *rq)
  4604. {
  4605. const struct sched_class *class;
  4606. struct task_struct *p;
  4607. /*
  4608. * Optimization: we know that if all tasks are in
  4609. * the fair class we can call that function directly:
  4610. */
  4611. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4612. p = fair_sched_class.pick_next_task(rq);
  4613. if (likely(p))
  4614. return p;
  4615. }
  4616. class = sched_class_highest;
  4617. for ( ; ; ) {
  4618. p = class->pick_next_task(rq);
  4619. if (p)
  4620. return p;
  4621. /*
  4622. * Will never be NULL as the idle class always
  4623. * returns a non-NULL p:
  4624. */
  4625. class = class->next;
  4626. }
  4627. }
  4628. /*
  4629. * schedule() is the main scheduler function.
  4630. */
  4631. asmlinkage void __sched schedule(void)
  4632. {
  4633. struct task_struct *prev, *next;
  4634. unsigned long *switch_count;
  4635. struct rq *rq;
  4636. int cpu;
  4637. need_resched:
  4638. preempt_disable();
  4639. cpu = smp_processor_id();
  4640. rq = cpu_rq(cpu);
  4641. rcu_sched_qs(cpu);
  4642. prev = rq->curr;
  4643. switch_count = &prev->nivcsw;
  4644. release_kernel_lock(prev);
  4645. need_resched_nonpreemptible:
  4646. schedule_debug(prev);
  4647. if (sched_feat(HRTICK))
  4648. hrtick_clear(rq);
  4649. spin_lock_irq(&rq->lock);
  4650. update_rq_clock(rq);
  4651. clear_tsk_need_resched(prev);
  4652. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4653. if (unlikely(signal_pending_state(prev->state, prev)))
  4654. prev->state = TASK_RUNNING;
  4655. else
  4656. deactivate_task(rq, prev, 1);
  4657. switch_count = &prev->nvcsw;
  4658. }
  4659. pre_schedule(rq, prev);
  4660. if (unlikely(!rq->nr_running))
  4661. idle_balance(cpu, rq);
  4662. put_prev_task(rq, prev);
  4663. next = pick_next_task(rq);
  4664. if (likely(prev != next)) {
  4665. sched_info_switch(prev, next);
  4666. perf_event_task_sched_out(prev, next, cpu);
  4667. rq->nr_switches++;
  4668. rq->curr = next;
  4669. ++*switch_count;
  4670. context_switch(rq, prev, next); /* unlocks the rq */
  4671. /*
  4672. * the context switch might have flipped the stack from under
  4673. * us, hence refresh the local variables.
  4674. */
  4675. cpu = smp_processor_id();
  4676. rq = cpu_rq(cpu);
  4677. } else
  4678. spin_unlock_irq(&rq->lock);
  4679. post_schedule(rq);
  4680. if (unlikely(reacquire_kernel_lock(current) < 0))
  4681. goto need_resched_nonpreemptible;
  4682. preempt_enable_no_resched();
  4683. if (need_resched())
  4684. goto need_resched;
  4685. }
  4686. EXPORT_SYMBOL(schedule);
  4687. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4688. /*
  4689. * Look out! "owner" is an entirely speculative pointer
  4690. * access and not reliable.
  4691. */
  4692. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4693. {
  4694. unsigned int cpu;
  4695. struct rq *rq;
  4696. if (!sched_feat(OWNER_SPIN))
  4697. return 0;
  4698. #ifdef CONFIG_DEBUG_PAGEALLOC
  4699. /*
  4700. * Need to access the cpu field knowing that
  4701. * DEBUG_PAGEALLOC could have unmapped it if
  4702. * the mutex owner just released it and exited.
  4703. */
  4704. if (probe_kernel_address(&owner->cpu, cpu))
  4705. goto out;
  4706. #else
  4707. cpu = owner->cpu;
  4708. #endif
  4709. /*
  4710. * Even if the access succeeded (likely case),
  4711. * the cpu field may no longer be valid.
  4712. */
  4713. if (cpu >= nr_cpumask_bits)
  4714. goto out;
  4715. /*
  4716. * We need to validate that we can do a
  4717. * get_cpu() and that we have the percpu area.
  4718. */
  4719. if (!cpu_online(cpu))
  4720. goto out;
  4721. rq = cpu_rq(cpu);
  4722. for (;;) {
  4723. /*
  4724. * Owner changed, break to re-assess state.
  4725. */
  4726. if (lock->owner != owner)
  4727. break;
  4728. /*
  4729. * Is that owner really running on that cpu?
  4730. */
  4731. if (task_thread_info(rq->curr) != owner || need_resched())
  4732. return 0;
  4733. cpu_relax();
  4734. }
  4735. out:
  4736. return 1;
  4737. }
  4738. #endif
  4739. #ifdef CONFIG_PREEMPT
  4740. /*
  4741. * this is the entry point to schedule() from in-kernel preemption
  4742. * off of preempt_enable. Kernel preemptions off return from interrupt
  4743. * occur there and call schedule directly.
  4744. */
  4745. asmlinkage void __sched preempt_schedule(void)
  4746. {
  4747. struct thread_info *ti = current_thread_info();
  4748. /*
  4749. * If there is a non-zero preempt_count or interrupts are disabled,
  4750. * we do not want to preempt the current task. Just return..
  4751. */
  4752. if (likely(ti->preempt_count || irqs_disabled()))
  4753. return;
  4754. do {
  4755. add_preempt_count(PREEMPT_ACTIVE);
  4756. schedule();
  4757. sub_preempt_count(PREEMPT_ACTIVE);
  4758. /*
  4759. * Check again in case we missed a preemption opportunity
  4760. * between schedule and now.
  4761. */
  4762. barrier();
  4763. } while (need_resched());
  4764. }
  4765. EXPORT_SYMBOL(preempt_schedule);
  4766. /*
  4767. * this is the entry point to schedule() from kernel preemption
  4768. * off of irq context.
  4769. * Note, that this is called and return with irqs disabled. This will
  4770. * protect us against recursive calling from irq.
  4771. */
  4772. asmlinkage void __sched preempt_schedule_irq(void)
  4773. {
  4774. struct thread_info *ti = current_thread_info();
  4775. /* Catch callers which need to be fixed */
  4776. BUG_ON(ti->preempt_count || !irqs_disabled());
  4777. do {
  4778. add_preempt_count(PREEMPT_ACTIVE);
  4779. local_irq_enable();
  4780. schedule();
  4781. local_irq_disable();
  4782. sub_preempt_count(PREEMPT_ACTIVE);
  4783. /*
  4784. * Check again in case we missed a preemption opportunity
  4785. * between schedule and now.
  4786. */
  4787. barrier();
  4788. } while (need_resched());
  4789. }
  4790. #endif /* CONFIG_PREEMPT */
  4791. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4792. void *key)
  4793. {
  4794. return try_to_wake_up(curr->private, mode, wake_flags);
  4795. }
  4796. EXPORT_SYMBOL(default_wake_function);
  4797. /*
  4798. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4799. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4800. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4801. *
  4802. * There are circumstances in which we can try to wake a task which has already
  4803. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4804. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4805. */
  4806. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4807. int nr_exclusive, int wake_flags, void *key)
  4808. {
  4809. wait_queue_t *curr, *next;
  4810. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4811. unsigned flags = curr->flags;
  4812. if (curr->func(curr, mode, wake_flags, key) &&
  4813. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4814. break;
  4815. }
  4816. }
  4817. /**
  4818. * __wake_up - wake up threads blocked on a waitqueue.
  4819. * @q: the waitqueue
  4820. * @mode: which threads
  4821. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4822. * @key: is directly passed to the wakeup function
  4823. *
  4824. * It may be assumed that this function implies a write memory barrier before
  4825. * changing the task state if and only if any tasks are woken up.
  4826. */
  4827. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4828. int nr_exclusive, void *key)
  4829. {
  4830. unsigned long flags;
  4831. spin_lock_irqsave(&q->lock, flags);
  4832. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4833. spin_unlock_irqrestore(&q->lock, flags);
  4834. }
  4835. EXPORT_SYMBOL(__wake_up);
  4836. /*
  4837. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4838. */
  4839. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4840. {
  4841. __wake_up_common(q, mode, 1, 0, NULL);
  4842. }
  4843. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4844. {
  4845. __wake_up_common(q, mode, 1, 0, key);
  4846. }
  4847. /**
  4848. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4849. * @q: the waitqueue
  4850. * @mode: which threads
  4851. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4852. * @key: opaque value to be passed to wakeup targets
  4853. *
  4854. * The sync wakeup differs that the waker knows that it will schedule
  4855. * away soon, so while the target thread will be woken up, it will not
  4856. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4857. * with each other. This can prevent needless bouncing between CPUs.
  4858. *
  4859. * On UP it can prevent extra preemption.
  4860. *
  4861. * It may be assumed that this function implies a write memory barrier before
  4862. * changing the task state if and only if any tasks are woken up.
  4863. */
  4864. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4865. int nr_exclusive, void *key)
  4866. {
  4867. unsigned long flags;
  4868. int wake_flags = WF_SYNC;
  4869. if (unlikely(!q))
  4870. return;
  4871. if (unlikely(!nr_exclusive))
  4872. wake_flags = 0;
  4873. spin_lock_irqsave(&q->lock, flags);
  4874. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4875. spin_unlock_irqrestore(&q->lock, flags);
  4876. }
  4877. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4878. /*
  4879. * __wake_up_sync - see __wake_up_sync_key()
  4880. */
  4881. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4882. {
  4883. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4884. }
  4885. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4886. /**
  4887. * complete: - signals a single thread waiting on this completion
  4888. * @x: holds the state of this particular completion
  4889. *
  4890. * This will wake up a single thread waiting on this completion. Threads will be
  4891. * awakened in the same order in which they were queued.
  4892. *
  4893. * See also complete_all(), wait_for_completion() and related routines.
  4894. *
  4895. * It may be assumed that this function implies a write memory barrier before
  4896. * changing the task state if and only if any tasks are woken up.
  4897. */
  4898. void complete(struct completion *x)
  4899. {
  4900. unsigned long flags;
  4901. spin_lock_irqsave(&x->wait.lock, flags);
  4902. x->done++;
  4903. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4904. spin_unlock_irqrestore(&x->wait.lock, flags);
  4905. }
  4906. EXPORT_SYMBOL(complete);
  4907. /**
  4908. * complete_all: - signals all threads waiting on this completion
  4909. * @x: holds the state of this particular completion
  4910. *
  4911. * This will wake up all threads waiting on this particular completion event.
  4912. *
  4913. * It may be assumed that this function implies a write memory barrier before
  4914. * changing the task state if and only if any tasks are woken up.
  4915. */
  4916. void complete_all(struct completion *x)
  4917. {
  4918. unsigned long flags;
  4919. spin_lock_irqsave(&x->wait.lock, flags);
  4920. x->done += UINT_MAX/2;
  4921. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4922. spin_unlock_irqrestore(&x->wait.lock, flags);
  4923. }
  4924. EXPORT_SYMBOL(complete_all);
  4925. static inline long __sched
  4926. do_wait_for_common(struct completion *x, long timeout, int state)
  4927. {
  4928. if (!x->done) {
  4929. DECLARE_WAITQUEUE(wait, current);
  4930. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4931. __add_wait_queue_tail(&x->wait, &wait);
  4932. do {
  4933. if (signal_pending_state(state, current)) {
  4934. timeout = -ERESTARTSYS;
  4935. break;
  4936. }
  4937. __set_current_state(state);
  4938. spin_unlock_irq(&x->wait.lock);
  4939. timeout = schedule_timeout(timeout);
  4940. spin_lock_irq(&x->wait.lock);
  4941. } while (!x->done && timeout);
  4942. __remove_wait_queue(&x->wait, &wait);
  4943. if (!x->done)
  4944. return timeout;
  4945. }
  4946. x->done--;
  4947. return timeout ?: 1;
  4948. }
  4949. static long __sched
  4950. wait_for_common(struct completion *x, long timeout, int state)
  4951. {
  4952. might_sleep();
  4953. spin_lock_irq(&x->wait.lock);
  4954. timeout = do_wait_for_common(x, timeout, state);
  4955. spin_unlock_irq(&x->wait.lock);
  4956. return timeout;
  4957. }
  4958. /**
  4959. * wait_for_completion: - waits for completion of a task
  4960. * @x: holds the state of this particular completion
  4961. *
  4962. * This waits to be signaled for completion of a specific task. It is NOT
  4963. * interruptible and there is no timeout.
  4964. *
  4965. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4966. * and interrupt capability. Also see complete().
  4967. */
  4968. void __sched wait_for_completion(struct completion *x)
  4969. {
  4970. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4971. }
  4972. EXPORT_SYMBOL(wait_for_completion);
  4973. /**
  4974. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4975. * @x: holds the state of this particular completion
  4976. * @timeout: timeout value in jiffies
  4977. *
  4978. * This waits for either a completion of a specific task to be signaled or for a
  4979. * specified timeout to expire. The timeout is in jiffies. It is not
  4980. * interruptible.
  4981. */
  4982. unsigned long __sched
  4983. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4984. {
  4985. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4986. }
  4987. EXPORT_SYMBOL(wait_for_completion_timeout);
  4988. /**
  4989. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4990. * @x: holds the state of this particular completion
  4991. *
  4992. * This waits for completion of a specific task to be signaled. It is
  4993. * interruptible.
  4994. */
  4995. int __sched wait_for_completion_interruptible(struct completion *x)
  4996. {
  4997. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4998. if (t == -ERESTARTSYS)
  4999. return t;
  5000. return 0;
  5001. }
  5002. EXPORT_SYMBOL(wait_for_completion_interruptible);
  5003. /**
  5004. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  5005. * @x: holds the state of this particular completion
  5006. * @timeout: timeout value in jiffies
  5007. *
  5008. * This waits for either a completion of a specific task to be signaled or for a
  5009. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  5010. */
  5011. unsigned long __sched
  5012. wait_for_completion_interruptible_timeout(struct completion *x,
  5013. unsigned long timeout)
  5014. {
  5015. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  5016. }
  5017. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  5018. /**
  5019. * wait_for_completion_killable: - waits for completion of a task (killable)
  5020. * @x: holds the state of this particular completion
  5021. *
  5022. * This waits to be signaled for completion of a specific task. It can be
  5023. * interrupted by a kill signal.
  5024. */
  5025. int __sched wait_for_completion_killable(struct completion *x)
  5026. {
  5027. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5028. if (t == -ERESTARTSYS)
  5029. return t;
  5030. return 0;
  5031. }
  5032. EXPORT_SYMBOL(wait_for_completion_killable);
  5033. /**
  5034. * try_wait_for_completion - try to decrement a completion without blocking
  5035. * @x: completion structure
  5036. *
  5037. * Returns: 0 if a decrement cannot be done without blocking
  5038. * 1 if a decrement succeeded.
  5039. *
  5040. * If a completion is being used as a counting completion,
  5041. * attempt to decrement the counter without blocking. This
  5042. * enables us to avoid waiting if the resource the completion
  5043. * is protecting is not available.
  5044. */
  5045. bool try_wait_for_completion(struct completion *x)
  5046. {
  5047. int ret = 1;
  5048. spin_lock_irq(&x->wait.lock);
  5049. if (!x->done)
  5050. ret = 0;
  5051. else
  5052. x->done--;
  5053. spin_unlock_irq(&x->wait.lock);
  5054. return ret;
  5055. }
  5056. EXPORT_SYMBOL(try_wait_for_completion);
  5057. /**
  5058. * completion_done - Test to see if a completion has any waiters
  5059. * @x: completion structure
  5060. *
  5061. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5062. * 1 if there are no waiters.
  5063. *
  5064. */
  5065. bool completion_done(struct completion *x)
  5066. {
  5067. int ret = 1;
  5068. spin_lock_irq(&x->wait.lock);
  5069. if (!x->done)
  5070. ret = 0;
  5071. spin_unlock_irq(&x->wait.lock);
  5072. return ret;
  5073. }
  5074. EXPORT_SYMBOL(completion_done);
  5075. static long __sched
  5076. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5077. {
  5078. unsigned long flags;
  5079. wait_queue_t wait;
  5080. init_waitqueue_entry(&wait, current);
  5081. __set_current_state(state);
  5082. spin_lock_irqsave(&q->lock, flags);
  5083. __add_wait_queue(q, &wait);
  5084. spin_unlock(&q->lock);
  5085. timeout = schedule_timeout(timeout);
  5086. spin_lock_irq(&q->lock);
  5087. __remove_wait_queue(q, &wait);
  5088. spin_unlock_irqrestore(&q->lock, flags);
  5089. return timeout;
  5090. }
  5091. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5092. {
  5093. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5094. }
  5095. EXPORT_SYMBOL(interruptible_sleep_on);
  5096. long __sched
  5097. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5098. {
  5099. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5100. }
  5101. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5102. void __sched sleep_on(wait_queue_head_t *q)
  5103. {
  5104. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5105. }
  5106. EXPORT_SYMBOL(sleep_on);
  5107. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5108. {
  5109. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5110. }
  5111. EXPORT_SYMBOL(sleep_on_timeout);
  5112. #ifdef CONFIG_RT_MUTEXES
  5113. /*
  5114. * rt_mutex_setprio - set the current priority of a task
  5115. * @p: task
  5116. * @prio: prio value (kernel-internal form)
  5117. *
  5118. * This function changes the 'effective' priority of a task. It does
  5119. * not touch ->normal_prio like __setscheduler().
  5120. *
  5121. * Used by the rt_mutex code to implement priority inheritance logic.
  5122. */
  5123. void rt_mutex_setprio(struct task_struct *p, int prio)
  5124. {
  5125. unsigned long flags;
  5126. int oldprio, on_rq, running;
  5127. struct rq *rq;
  5128. const struct sched_class *prev_class = p->sched_class;
  5129. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5130. rq = task_rq_lock(p, &flags);
  5131. update_rq_clock(rq);
  5132. oldprio = p->prio;
  5133. on_rq = p->se.on_rq;
  5134. running = task_current(rq, p);
  5135. if (on_rq)
  5136. dequeue_task(rq, p, 0);
  5137. if (running)
  5138. p->sched_class->put_prev_task(rq, p);
  5139. if (rt_prio(prio))
  5140. p->sched_class = &rt_sched_class;
  5141. else
  5142. p->sched_class = &fair_sched_class;
  5143. p->prio = prio;
  5144. if (running)
  5145. p->sched_class->set_curr_task(rq);
  5146. if (on_rq) {
  5147. enqueue_task(rq, p, 0);
  5148. check_class_changed(rq, p, prev_class, oldprio, running);
  5149. }
  5150. task_rq_unlock(rq, &flags);
  5151. }
  5152. #endif
  5153. void set_user_nice(struct task_struct *p, long nice)
  5154. {
  5155. int old_prio, delta, on_rq;
  5156. unsigned long flags;
  5157. struct rq *rq;
  5158. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5159. return;
  5160. /*
  5161. * We have to be careful, if called from sys_setpriority(),
  5162. * the task might be in the middle of scheduling on another CPU.
  5163. */
  5164. rq = task_rq_lock(p, &flags);
  5165. update_rq_clock(rq);
  5166. /*
  5167. * The RT priorities are set via sched_setscheduler(), but we still
  5168. * allow the 'normal' nice value to be set - but as expected
  5169. * it wont have any effect on scheduling until the task is
  5170. * SCHED_FIFO/SCHED_RR:
  5171. */
  5172. if (task_has_rt_policy(p)) {
  5173. p->static_prio = NICE_TO_PRIO(nice);
  5174. goto out_unlock;
  5175. }
  5176. on_rq = p->se.on_rq;
  5177. if (on_rq)
  5178. dequeue_task(rq, p, 0);
  5179. p->static_prio = NICE_TO_PRIO(nice);
  5180. set_load_weight(p);
  5181. old_prio = p->prio;
  5182. p->prio = effective_prio(p);
  5183. delta = p->prio - old_prio;
  5184. if (on_rq) {
  5185. enqueue_task(rq, p, 0);
  5186. /*
  5187. * If the task increased its priority or is running and
  5188. * lowered its priority, then reschedule its CPU:
  5189. */
  5190. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5191. resched_task(rq->curr);
  5192. }
  5193. out_unlock:
  5194. task_rq_unlock(rq, &flags);
  5195. }
  5196. EXPORT_SYMBOL(set_user_nice);
  5197. /*
  5198. * can_nice - check if a task can reduce its nice value
  5199. * @p: task
  5200. * @nice: nice value
  5201. */
  5202. int can_nice(const struct task_struct *p, const int nice)
  5203. {
  5204. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5205. int nice_rlim = 20 - nice;
  5206. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5207. capable(CAP_SYS_NICE));
  5208. }
  5209. #ifdef __ARCH_WANT_SYS_NICE
  5210. /*
  5211. * sys_nice - change the priority of the current process.
  5212. * @increment: priority increment
  5213. *
  5214. * sys_setpriority is a more generic, but much slower function that
  5215. * does similar things.
  5216. */
  5217. SYSCALL_DEFINE1(nice, int, increment)
  5218. {
  5219. long nice, retval;
  5220. /*
  5221. * Setpriority might change our priority at the same moment.
  5222. * We don't have to worry. Conceptually one call occurs first
  5223. * and we have a single winner.
  5224. */
  5225. if (increment < -40)
  5226. increment = -40;
  5227. if (increment > 40)
  5228. increment = 40;
  5229. nice = TASK_NICE(current) + increment;
  5230. if (nice < -20)
  5231. nice = -20;
  5232. if (nice > 19)
  5233. nice = 19;
  5234. if (increment < 0 && !can_nice(current, nice))
  5235. return -EPERM;
  5236. retval = security_task_setnice(current, nice);
  5237. if (retval)
  5238. return retval;
  5239. set_user_nice(current, nice);
  5240. return 0;
  5241. }
  5242. #endif
  5243. /**
  5244. * task_prio - return the priority value of a given task.
  5245. * @p: the task in question.
  5246. *
  5247. * This is the priority value as seen by users in /proc.
  5248. * RT tasks are offset by -200. Normal tasks are centered
  5249. * around 0, value goes from -16 to +15.
  5250. */
  5251. int task_prio(const struct task_struct *p)
  5252. {
  5253. return p->prio - MAX_RT_PRIO;
  5254. }
  5255. /**
  5256. * task_nice - return the nice value of a given task.
  5257. * @p: the task in question.
  5258. */
  5259. int task_nice(const struct task_struct *p)
  5260. {
  5261. return TASK_NICE(p);
  5262. }
  5263. EXPORT_SYMBOL(task_nice);
  5264. /**
  5265. * idle_cpu - is a given cpu idle currently?
  5266. * @cpu: the processor in question.
  5267. */
  5268. int idle_cpu(int cpu)
  5269. {
  5270. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5271. }
  5272. /**
  5273. * idle_task - return the idle task for a given cpu.
  5274. * @cpu: the processor in question.
  5275. */
  5276. struct task_struct *idle_task(int cpu)
  5277. {
  5278. return cpu_rq(cpu)->idle;
  5279. }
  5280. /**
  5281. * find_process_by_pid - find a process with a matching PID value.
  5282. * @pid: the pid in question.
  5283. */
  5284. static struct task_struct *find_process_by_pid(pid_t pid)
  5285. {
  5286. return pid ? find_task_by_vpid(pid) : current;
  5287. }
  5288. /* Actually do priority change: must hold rq lock. */
  5289. static void
  5290. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5291. {
  5292. BUG_ON(p->se.on_rq);
  5293. p->policy = policy;
  5294. p->rt_priority = prio;
  5295. p->normal_prio = normal_prio(p);
  5296. /* we are holding p->pi_lock already */
  5297. p->prio = rt_mutex_getprio(p);
  5298. if (rt_prio(p->prio))
  5299. p->sched_class = &rt_sched_class;
  5300. else
  5301. p->sched_class = &fair_sched_class;
  5302. set_load_weight(p);
  5303. }
  5304. /*
  5305. * check the target process has a UID that matches the current process's
  5306. */
  5307. static bool check_same_owner(struct task_struct *p)
  5308. {
  5309. const struct cred *cred = current_cred(), *pcred;
  5310. bool match;
  5311. rcu_read_lock();
  5312. pcred = __task_cred(p);
  5313. match = (cred->euid == pcred->euid ||
  5314. cred->euid == pcred->uid);
  5315. rcu_read_unlock();
  5316. return match;
  5317. }
  5318. static int __sched_setscheduler(struct task_struct *p, int policy,
  5319. struct sched_param *param, bool user)
  5320. {
  5321. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5322. unsigned long flags;
  5323. const struct sched_class *prev_class = p->sched_class;
  5324. struct rq *rq;
  5325. int reset_on_fork;
  5326. /* may grab non-irq protected spin_locks */
  5327. BUG_ON(in_interrupt());
  5328. recheck:
  5329. /* double check policy once rq lock held */
  5330. if (policy < 0) {
  5331. reset_on_fork = p->sched_reset_on_fork;
  5332. policy = oldpolicy = p->policy;
  5333. } else {
  5334. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5335. policy &= ~SCHED_RESET_ON_FORK;
  5336. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5337. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5338. policy != SCHED_IDLE)
  5339. return -EINVAL;
  5340. }
  5341. /*
  5342. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5343. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5344. * SCHED_BATCH and SCHED_IDLE is 0.
  5345. */
  5346. if (param->sched_priority < 0 ||
  5347. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5348. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5349. return -EINVAL;
  5350. if (rt_policy(policy) != (param->sched_priority != 0))
  5351. return -EINVAL;
  5352. /*
  5353. * Allow unprivileged RT tasks to decrease priority:
  5354. */
  5355. if (user && !capable(CAP_SYS_NICE)) {
  5356. if (rt_policy(policy)) {
  5357. unsigned long rlim_rtprio;
  5358. if (!lock_task_sighand(p, &flags))
  5359. return -ESRCH;
  5360. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5361. unlock_task_sighand(p, &flags);
  5362. /* can't set/change the rt policy */
  5363. if (policy != p->policy && !rlim_rtprio)
  5364. return -EPERM;
  5365. /* can't increase priority */
  5366. if (param->sched_priority > p->rt_priority &&
  5367. param->sched_priority > rlim_rtprio)
  5368. return -EPERM;
  5369. }
  5370. /*
  5371. * Like positive nice levels, dont allow tasks to
  5372. * move out of SCHED_IDLE either:
  5373. */
  5374. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5375. return -EPERM;
  5376. /* can't change other user's priorities */
  5377. if (!check_same_owner(p))
  5378. return -EPERM;
  5379. /* Normal users shall not reset the sched_reset_on_fork flag */
  5380. if (p->sched_reset_on_fork && !reset_on_fork)
  5381. return -EPERM;
  5382. }
  5383. if (user) {
  5384. #ifdef CONFIG_RT_GROUP_SCHED
  5385. /*
  5386. * Do not allow realtime tasks into groups that have no runtime
  5387. * assigned.
  5388. */
  5389. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5390. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5391. return -EPERM;
  5392. #endif
  5393. retval = security_task_setscheduler(p, policy, param);
  5394. if (retval)
  5395. return retval;
  5396. }
  5397. /*
  5398. * make sure no PI-waiters arrive (or leave) while we are
  5399. * changing the priority of the task:
  5400. */
  5401. spin_lock_irqsave(&p->pi_lock, flags);
  5402. /*
  5403. * To be able to change p->policy safely, the apropriate
  5404. * runqueue lock must be held.
  5405. */
  5406. rq = __task_rq_lock(p);
  5407. /* recheck policy now with rq lock held */
  5408. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5409. policy = oldpolicy = -1;
  5410. __task_rq_unlock(rq);
  5411. spin_unlock_irqrestore(&p->pi_lock, flags);
  5412. goto recheck;
  5413. }
  5414. update_rq_clock(rq);
  5415. on_rq = p->se.on_rq;
  5416. running = task_current(rq, p);
  5417. if (on_rq)
  5418. deactivate_task(rq, p, 0);
  5419. if (running)
  5420. p->sched_class->put_prev_task(rq, p);
  5421. p->sched_reset_on_fork = reset_on_fork;
  5422. oldprio = p->prio;
  5423. __setscheduler(rq, p, policy, param->sched_priority);
  5424. if (running)
  5425. p->sched_class->set_curr_task(rq);
  5426. if (on_rq) {
  5427. activate_task(rq, p, 0);
  5428. check_class_changed(rq, p, prev_class, oldprio, running);
  5429. }
  5430. __task_rq_unlock(rq);
  5431. spin_unlock_irqrestore(&p->pi_lock, flags);
  5432. rt_mutex_adjust_pi(p);
  5433. return 0;
  5434. }
  5435. /**
  5436. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5437. * @p: the task in question.
  5438. * @policy: new policy.
  5439. * @param: structure containing the new RT priority.
  5440. *
  5441. * NOTE that the task may be already dead.
  5442. */
  5443. int sched_setscheduler(struct task_struct *p, int policy,
  5444. struct sched_param *param)
  5445. {
  5446. return __sched_setscheduler(p, policy, param, true);
  5447. }
  5448. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5449. /**
  5450. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5451. * @p: the task in question.
  5452. * @policy: new policy.
  5453. * @param: structure containing the new RT priority.
  5454. *
  5455. * Just like sched_setscheduler, only don't bother checking if the
  5456. * current context has permission. For example, this is needed in
  5457. * stop_machine(): we create temporary high priority worker threads,
  5458. * but our caller might not have that capability.
  5459. */
  5460. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5461. struct sched_param *param)
  5462. {
  5463. return __sched_setscheduler(p, policy, param, false);
  5464. }
  5465. static int
  5466. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5467. {
  5468. struct sched_param lparam;
  5469. struct task_struct *p;
  5470. int retval;
  5471. if (!param || pid < 0)
  5472. return -EINVAL;
  5473. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5474. return -EFAULT;
  5475. rcu_read_lock();
  5476. retval = -ESRCH;
  5477. p = find_process_by_pid(pid);
  5478. if (p != NULL)
  5479. retval = sched_setscheduler(p, policy, &lparam);
  5480. rcu_read_unlock();
  5481. return retval;
  5482. }
  5483. /**
  5484. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5485. * @pid: the pid in question.
  5486. * @policy: new policy.
  5487. * @param: structure containing the new RT priority.
  5488. */
  5489. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5490. struct sched_param __user *, param)
  5491. {
  5492. /* negative values for policy are not valid */
  5493. if (policy < 0)
  5494. return -EINVAL;
  5495. return do_sched_setscheduler(pid, policy, param);
  5496. }
  5497. /**
  5498. * sys_sched_setparam - set/change the RT priority of a thread
  5499. * @pid: the pid in question.
  5500. * @param: structure containing the new RT priority.
  5501. */
  5502. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5503. {
  5504. return do_sched_setscheduler(pid, -1, param);
  5505. }
  5506. /**
  5507. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5508. * @pid: the pid in question.
  5509. */
  5510. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5511. {
  5512. struct task_struct *p;
  5513. int retval;
  5514. if (pid < 0)
  5515. return -EINVAL;
  5516. retval = -ESRCH;
  5517. read_lock(&tasklist_lock);
  5518. p = find_process_by_pid(pid);
  5519. if (p) {
  5520. retval = security_task_getscheduler(p);
  5521. if (!retval)
  5522. retval = p->policy
  5523. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5524. }
  5525. read_unlock(&tasklist_lock);
  5526. return retval;
  5527. }
  5528. /**
  5529. * sys_sched_getparam - get the RT priority of a thread
  5530. * @pid: the pid in question.
  5531. * @param: structure containing the RT priority.
  5532. */
  5533. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5534. {
  5535. struct sched_param lp;
  5536. struct task_struct *p;
  5537. int retval;
  5538. if (!param || pid < 0)
  5539. return -EINVAL;
  5540. read_lock(&tasklist_lock);
  5541. p = find_process_by_pid(pid);
  5542. retval = -ESRCH;
  5543. if (!p)
  5544. goto out_unlock;
  5545. retval = security_task_getscheduler(p);
  5546. if (retval)
  5547. goto out_unlock;
  5548. lp.sched_priority = p->rt_priority;
  5549. read_unlock(&tasklist_lock);
  5550. /*
  5551. * This one might sleep, we cannot do it with a spinlock held ...
  5552. */
  5553. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5554. return retval;
  5555. out_unlock:
  5556. read_unlock(&tasklist_lock);
  5557. return retval;
  5558. }
  5559. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5560. {
  5561. cpumask_var_t cpus_allowed, new_mask;
  5562. struct task_struct *p;
  5563. int retval;
  5564. get_online_cpus();
  5565. read_lock(&tasklist_lock);
  5566. p = find_process_by_pid(pid);
  5567. if (!p) {
  5568. read_unlock(&tasklist_lock);
  5569. put_online_cpus();
  5570. return -ESRCH;
  5571. }
  5572. /*
  5573. * It is not safe to call set_cpus_allowed with the
  5574. * tasklist_lock held. We will bump the task_struct's
  5575. * usage count and then drop tasklist_lock.
  5576. */
  5577. get_task_struct(p);
  5578. read_unlock(&tasklist_lock);
  5579. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5580. retval = -ENOMEM;
  5581. goto out_put_task;
  5582. }
  5583. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5584. retval = -ENOMEM;
  5585. goto out_free_cpus_allowed;
  5586. }
  5587. retval = -EPERM;
  5588. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5589. goto out_unlock;
  5590. retval = security_task_setscheduler(p, 0, NULL);
  5591. if (retval)
  5592. goto out_unlock;
  5593. cpuset_cpus_allowed(p, cpus_allowed);
  5594. cpumask_and(new_mask, in_mask, cpus_allowed);
  5595. again:
  5596. retval = set_cpus_allowed_ptr(p, new_mask);
  5597. if (!retval) {
  5598. cpuset_cpus_allowed(p, cpus_allowed);
  5599. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5600. /*
  5601. * We must have raced with a concurrent cpuset
  5602. * update. Just reset the cpus_allowed to the
  5603. * cpuset's cpus_allowed
  5604. */
  5605. cpumask_copy(new_mask, cpus_allowed);
  5606. goto again;
  5607. }
  5608. }
  5609. out_unlock:
  5610. free_cpumask_var(new_mask);
  5611. out_free_cpus_allowed:
  5612. free_cpumask_var(cpus_allowed);
  5613. out_put_task:
  5614. put_task_struct(p);
  5615. put_online_cpus();
  5616. return retval;
  5617. }
  5618. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5619. struct cpumask *new_mask)
  5620. {
  5621. if (len < cpumask_size())
  5622. cpumask_clear(new_mask);
  5623. else if (len > cpumask_size())
  5624. len = cpumask_size();
  5625. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5626. }
  5627. /**
  5628. * sys_sched_setaffinity - set the cpu affinity of a process
  5629. * @pid: pid of the process
  5630. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5631. * @user_mask_ptr: user-space pointer to the new cpu mask
  5632. */
  5633. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5634. unsigned long __user *, user_mask_ptr)
  5635. {
  5636. cpumask_var_t new_mask;
  5637. int retval;
  5638. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5639. return -ENOMEM;
  5640. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5641. if (retval == 0)
  5642. retval = sched_setaffinity(pid, new_mask);
  5643. free_cpumask_var(new_mask);
  5644. return retval;
  5645. }
  5646. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5647. {
  5648. struct task_struct *p;
  5649. unsigned long flags;
  5650. struct rq *rq;
  5651. int retval;
  5652. get_online_cpus();
  5653. read_lock(&tasklist_lock);
  5654. retval = -ESRCH;
  5655. p = find_process_by_pid(pid);
  5656. if (!p)
  5657. goto out_unlock;
  5658. retval = security_task_getscheduler(p);
  5659. if (retval)
  5660. goto out_unlock;
  5661. rq = task_rq_lock(p, &flags);
  5662. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5663. task_rq_unlock(rq, &flags);
  5664. out_unlock:
  5665. read_unlock(&tasklist_lock);
  5666. put_online_cpus();
  5667. return retval;
  5668. }
  5669. /**
  5670. * sys_sched_getaffinity - get the cpu affinity of a process
  5671. * @pid: pid of the process
  5672. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5673. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5674. */
  5675. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5676. unsigned long __user *, user_mask_ptr)
  5677. {
  5678. int ret;
  5679. cpumask_var_t mask;
  5680. if (len < cpumask_size())
  5681. return -EINVAL;
  5682. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5683. return -ENOMEM;
  5684. ret = sched_getaffinity(pid, mask);
  5685. if (ret == 0) {
  5686. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5687. ret = -EFAULT;
  5688. else
  5689. ret = cpumask_size();
  5690. }
  5691. free_cpumask_var(mask);
  5692. return ret;
  5693. }
  5694. /**
  5695. * sys_sched_yield - yield the current processor to other threads.
  5696. *
  5697. * This function yields the current CPU to other tasks. If there are no
  5698. * other threads running on this CPU then this function will return.
  5699. */
  5700. SYSCALL_DEFINE0(sched_yield)
  5701. {
  5702. struct rq *rq = this_rq_lock();
  5703. schedstat_inc(rq, yld_count);
  5704. current->sched_class->yield_task(rq);
  5705. /*
  5706. * Since we are going to call schedule() anyway, there's
  5707. * no need to preempt or enable interrupts:
  5708. */
  5709. __release(rq->lock);
  5710. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5711. _raw_spin_unlock(&rq->lock);
  5712. preempt_enable_no_resched();
  5713. schedule();
  5714. return 0;
  5715. }
  5716. static inline int should_resched(void)
  5717. {
  5718. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5719. }
  5720. static void __cond_resched(void)
  5721. {
  5722. add_preempt_count(PREEMPT_ACTIVE);
  5723. schedule();
  5724. sub_preempt_count(PREEMPT_ACTIVE);
  5725. }
  5726. int __sched _cond_resched(void)
  5727. {
  5728. if (should_resched()) {
  5729. __cond_resched();
  5730. return 1;
  5731. }
  5732. return 0;
  5733. }
  5734. EXPORT_SYMBOL(_cond_resched);
  5735. /*
  5736. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5737. * call schedule, and on return reacquire the lock.
  5738. *
  5739. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5740. * operations here to prevent schedule() from being called twice (once via
  5741. * spin_unlock(), once by hand).
  5742. */
  5743. int __cond_resched_lock(spinlock_t *lock)
  5744. {
  5745. int resched = should_resched();
  5746. int ret = 0;
  5747. lockdep_assert_held(lock);
  5748. if (spin_needbreak(lock) || resched) {
  5749. spin_unlock(lock);
  5750. if (resched)
  5751. __cond_resched();
  5752. else
  5753. cpu_relax();
  5754. ret = 1;
  5755. spin_lock(lock);
  5756. }
  5757. return ret;
  5758. }
  5759. EXPORT_SYMBOL(__cond_resched_lock);
  5760. int __sched __cond_resched_softirq(void)
  5761. {
  5762. BUG_ON(!in_softirq());
  5763. if (should_resched()) {
  5764. local_bh_enable();
  5765. __cond_resched();
  5766. local_bh_disable();
  5767. return 1;
  5768. }
  5769. return 0;
  5770. }
  5771. EXPORT_SYMBOL(__cond_resched_softirq);
  5772. /**
  5773. * yield - yield the current processor to other threads.
  5774. *
  5775. * This is a shortcut for kernel-space yielding - it marks the
  5776. * thread runnable and calls sys_sched_yield().
  5777. */
  5778. void __sched yield(void)
  5779. {
  5780. set_current_state(TASK_RUNNING);
  5781. sys_sched_yield();
  5782. }
  5783. EXPORT_SYMBOL(yield);
  5784. /*
  5785. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5786. * that process accounting knows that this is a task in IO wait state.
  5787. */
  5788. void __sched io_schedule(void)
  5789. {
  5790. struct rq *rq = raw_rq();
  5791. delayacct_blkio_start();
  5792. atomic_inc(&rq->nr_iowait);
  5793. current->in_iowait = 1;
  5794. schedule();
  5795. current->in_iowait = 0;
  5796. atomic_dec(&rq->nr_iowait);
  5797. delayacct_blkio_end();
  5798. }
  5799. EXPORT_SYMBOL(io_schedule);
  5800. long __sched io_schedule_timeout(long timeout)
  5801. {
  5802. struct rq *rq = raw_rq();
  5803. long ret;
  5804. delayacct_blkio_start();
  5805. atomic_inc(&rq->nr_iowait);
  5806. current->in_iowait = 1;
  5807. ret = schedule_timeout(timeout);
  5808. current->in_iowait = 0;
  5809. atomic_dec(&rq->nr_iowait);
  5810. delayacct_blkio_end();
  5811. return ret;
  5812. }
  5813. /**
  5814. * sys_sched_get_priority_max - return maximum RT priority.
  5815. * @policy: scheduling class.
  5816. *
  5817. * this syscall returns the maximum rt_priority that can be used
  5818. * by a given scheduling class.
  5819. */
  5820. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5821. {
  5822. int ret = -EINVAL;
  5823. switch (policy) {
  5824. case SCHED_FIFO:
  5825. case SCHED_RR:
  5826. ret = MAX_USER_RT_PRIO-1;
  5827. break;
  5828. case SCHED_NORMAL:
  5829. case SCHED_BATCH:
  5830. case SCHED_IDLE:
  5831. ret = 0;
  5832. break;
  5833. }
  5834. return ret;
  5835. }
  5836. /**
  5837. * sys_sched_get_priority_min - return minimum RT priority.
  5838. * @policy: scheduling class.
  5839. *
  5840. * this syscall returns the minimum rt_priority that can be used
  5841. * by a given scheduling class.
  5842. */
  5843. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5844. {
  5845. int ret = -EINVAL;
  5846. switch (policy) {
  5847. case SCHED_FIFO:
  5848. case SCHED_RR:
  5849. ret = 1;
  5850. break;
  5851. case SCHED_NORMAL:
  5852. case SCHED_BATCH:
  5853. case SCHED_IDLE:
  5854. ret = 0;
  5855. }
  5856. return ret;
  5857. }
  5858. /**
  5859. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5860. * @pid: pid of the process.
  5861. * @interval: userspace pointer to the timeslice value.
  5862. *
  5863. * this syscall writes the default timeslice value of a given process
  5864. * into the user-space timespec buffer. A value of '0' means infinity.
  5865. */
  5866. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5867. struct timespec __user *, interval)
  5868. {
  5869. struct task_struct *p;
  5870. unsigned int time_slice;
  5871. unsigned long flags;
  5872. struct rq *rq;
  5873. int retval;
  5874. struct timespec t;
  5875. if (pid < 0)
  5876. return -EINVAL;
  5877. retval = -ESRCH;
  5878. read_lock(&tasklist_lock);
  5879. p = find_process_by_pid(pid);
  5880. if (!p)
  5881. goto out_unlock;
  5882. retval = security_task_getscheduler(p);
  5883. if (retval)
  5884. goto out_unlock;
  5885. rq = task_rq_lock(p, &flags);
  5886. time_slice = p->sched_class->get_rr_interval(rq, p);
  5887. task_rq_unlock(rq, &flags);
  5888. read_unlock(&tasklist_lock);
  5889. jiffies_to_timespec(time_slice, &t);
  5890. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5891. return retval;
  5892. out_unlock:
  5893. read_unlock(&tasklist_lock);
  5894. return retval;
  5895. }
  5896. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5897. void sched_show_task(struct task_struct *p)
  5898. {
  5899. unsigned long free = 0;
  5900. unsigned state;
  5901. state = p->state ? __ffs(p->state) + 1 : 0;
  5902. printk(KERN_INFO "%-13.13s %c", p->comm,
  5903. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5904. #if BITS_PER_LONG == 32
  5905. if (state == TASK_RUNNING)
  5906. printk(KERN_CONT " running ");
  5907. else
  5908. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5909. #else
  5910. if (state == TASK_RUNNING)
  5911. printk(KERN_CONT " running task ");
  5912. else
  5913. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5914. #endif
  5915. #ifdef CONFIG_DEBUG_STACK_USAGE
  5916. free = stack_not_used(p);
  5917. #endif
  5918. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5919. task_pid_nr(p), task_pid_nr(p->real_parent),
  5920. (unsigned long)task_thread_info(p)->flags);
  5921. show_stack(p, NULL);
  5922. }
  5923. void show_state_filter(unsigned long state_filter)
  5924. {
  5925. struct task_struct *g, *p;
  5926. #if BITS_PER_LONG == 32
  5927. printk(KERN_INFO
  5928. " task PC stack pid father\n");
  5929. #else
  5930. printk(KERN_INFO
  5931. " task PC stack pid father\n");
  5932. #endif
  5933. read_lock(&tasklist_lock);
  5934. do_each_thread(g, p) {
  5935. /*
  5936. * reset the NMI-timeout, listing all files on a slow
  5937. * console might take alot of time:
  5938. */
  5939. touch_nmi_watchdog();
  5940. if (!state_filter || (p->state & state_filter))
  5941. sched_show_task(p);
  5942. } while_each_thread(g, p);
  5943. touch_all_softlockup_watchdogs();
  5944. #ifdef CONFIG_SCHED_DEBUG
  5945. sysrq_sched_debug_show();
  5946. #endif
  5947. read_unlock(&tasklist_lock);
  5948. /*
  5949. * Only show locks if all tasks are dumped:
  5950. */
  5951. if (!state_filter)
  5952. debug_show_all_locks();
  5953. }
  5954. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5955. {
  5956. idle->sched_class = &idle_sched_class;
  5957. }
  5958. /**
  5959. * init_idle - set up an idle thread for a given CPU
  5960. * @idle: task in question
  5961. * @cpu: cpu the idle task belongs to
  5962. *
  5963. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5964. * flag, to make booting more robust.
  5965. */
  5966. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5967. {
  5968. struct rq *rq = cpu_rq(cpu);
  5969. unsigned long flags;
  5970. spin_lock_irqsave(&rq->lock, flags);
  5971. __sched_fork(idle);
  5972. idle->se.exec_start = sched_clock();
  5973. idle->prio = idle->normal_prio = MAX_PRIO;
  5974. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5975. __set_task_cpu(idle, cpu);
  5976. rq->curr = rq->idle = idle;
  5977. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5978. idle->oncpu = 1;
  5979. #endif
  5980. spin_unlock_irqrestore(&rq->lock, flags);
  5981. /* Set the preempt count _outside_ the spinlocks! */
  5982. #if defined(CONFIG_PREEMPT)
  5983. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5984. #else
  5985. task_thread_info(idle)->preempt_count = 0;
  5986. #endif
  5987. /*
  5988. * The idle tasks have their own, simple scheduling class:
  5989. */
  5990. idle->sched_class = &idle_sched_class;
  5991. ftrace_graph_init_task(idle);
  5992. }
  5993. /*
  5994. * In a system that switches off the HZ timer nohz_cpu_mask
  5995. * indicates which cpus entered this state. This is used
  5996. * in the rcu update to wait only for active cpus. For system
  5997. * which do not switch off the HZ timer nohz_cpu_mask should
  5998. * always be CPU_BITS_NONE.
  5999. */
  6000. cpumask_var_t nohz_cpu_mask;
  6001. /*
  6002. * Increase the granularity value when there are more CPUs,
  6003. * because with more CPUs the 'effective latency' as visible
  6004. * to users decreases. But the relationship is not linear,
  6005. * so pick a second-best guess by going with the log2 of the
  6006. * number of CPUs.
  6007. *
  6008. * This idea comes from the SD scheduler of Con Kolivas:
  6009. */
  6010. static inline void sched_init_granularity(void)
  6011. {
  6012. unsigned int factor = 1 + ilog2(num_online_cpus());
  6013. const unsigned long limit = 200000000;
  6014. sysctl_sched_min_granularity *= factor;
  6015. if (sysctl_sched_min_granularity > limit)
  6016. sysctl_sched_min_granularity = limit;
  6017. sysctl_sched_latency *= factor;
  6018. if (sysctl_sched_latency > limit)
  6019. sysctl_sched_latency = limit;
  6020. sysctl_sched_wakeup_granularity *= factor;
  6021. sysctl_sched_shares_ratelimit *= factor;
  6022. }
  6023. #ifdef CONFIG_SMP
  6024. /*
  6025. * This is how migration works:
  6026. *
  6027. * 1) we queue a struct migration_req structure in the source CPU's
  6028. * runqueue and wake up that CPU's migration thread.
  6029. * 2) we down() the locked semaphore => thread blocks.
  6030. * 3) migration thread wakes up (implicitly it forces the migrated
  6031. * thread off the CPU)
  6032. * 4) it gets the migration request and checks whether the migrated
  6033. * task is still in the wrong runqueue.
  6034. * 5) if it's in the wrong runqueue then the migration thread removes
  6035. * it and puts it into the right queue.
  6036. * 6) migration thread up()s the semaphore.
  6037. * 7) we wake up and the migration is done.
  6038. */
  6039. /*
  6040. * Change a given task's CPU affinity. Migrate the thread to a
  6041. * proper CPU and schedule it away if the CPU it's executing on
  6042. * is removed from the allowed bitmask.
  6043. *
  6044. * NOTE: the caller must have a valid reference to the task, the
  6045. * task must not exit() & deallocate itself prematurely. The
  6046. * call is not atomic; no spinlocks may be held.
  6047. */
  6048. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6049. {
  6050. struct migration_req req;
  6051. unsigned long flags;
  6052. struct rq *rq;
  6053. int ret = 0;
  6054. rq = task_rq_lock(p, &flags);
  6055. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6056. ret = -EINVAL;
  6057. goto out;
  6058. }
  6059. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6060. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6061. ret = -EINVAL;
  6062. goto out;
  6063. }
  6064. if (p->sched_class->set_cpus_allowed)
  6065. p->sched_class->set_cpus_allowed(p, new_mask);
  6066. else {
  6067. cpumask_copy(&p->cpus_allowed, new_mask);
  6068. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6069. }
  6070. /* Can the task run on the task's current CPU? If so, we're done */
  6071. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6072. goto out;
  6073. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6074. /* Need help from migration thread: drop lock and wait. */
  6075. struct task_struct *mt = rq->migration_thread;
  6076. get_task_struct(mt);
  6077. task_rq_unlock(rq, &flags);
  6078. wake_up_process(rq->migration_thread);
  6079. put_task_struct(mt);
  6080. wait_for_completion(&req.done);
  6081. tlb_migrate_finish(p->mm);
  6082. return 0;
  6083. }
  6084. out:
  6085. task_rq_unlock(rq, &flags);
  6086. return ret;
  6087. }
  6088. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6089. /*
  6090. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6091. * this because either it can't run here any more (set_cpus_allowed()
  6092. * away from this CPU, or CPU going down), or because we're
  6093. * attempting to rebalance this task on exec (sched_exec).
  6094. *
  6095. * So we race with normal scheduler movements, but that's OK, as long
  6096. * as the task is no longer on this CPU.
  6097. *
  6098. * Returns non-zero if task was successfully migrated.
  6099. */
  6100. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6101. {
  6102. struct rq *rq_dest, *rq_src;
  6103. int ret = 0, on_rq;
  6104. if (unlikely(!cpu_active(dest_cpu)))
  6105. return ret;
  6106. rq_src = cpu_rq(src_cpu);
  6107. rq_dest = cpu_rq(dest_cpu);
  6108. double_rq_lock(rq_src, rq_dest);
  6109. /* Already moved. */
  6110. if (task_cpu(p) != src_cpu)
  6111. goto done;
  6112. /* Affinity changed (again). */
  6113. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6114. goto fail;
  6115. on_rq = p->se.on_rq;
  6116. if (on_rq)
  6117. deactivate_task(rq_src, p, 0);
  6118. set_task_cpu(p, dest_cpu);
  6119. if (on_rq) {
  6120. activate_task(rq_dest, p, 0);
  6121. check_preempt_curr(rq_dest, p, 0);
  6122. }
  6123. done:
  6124. ret = 1;
  6125. fail:
  6126. double_rq_unlock(rq_src, rq_dest);
  6127. return ret;
  6128. }
  6129. #define RCU_MIGRATION_IDLE 0
  6130. #define RCU_MIGRATION_NEED_QS 1
  6131. #define RCU_MIGRATION_GOT_QS 2
  6132. #define RCU_MIGRATION_MUST_SYNC 3
  6133. /*
  6134. * migration_thread - this is a highprio system thread that performs
  6135. * thread migration by bumping thread off CPU then 'pushing' onto
  6136. * another runqueue.
  6137. */
  6138. static int migration_thread(void *data)
  6139. {
  6140. int badcpu;
  6141. int cpu = (long)data;
  6142. struct rq *rq;
  6143. rq = cpu_rq(cpu);
  6144. BUG_ON(rq->migration_thread != current);
  6145. set_current_state(TASK_INTERRUPTIBLE);
  6146. while (!kthread_should_stop()) {
  6147. struct migration_req *req;
  6148. struct list_head *head;
  6149. spin_lock_irq(&rq->lock);
  6150. if (cpu_is_offline(cpu)) {
  6151. spin_unlock_irq(&rq->lock);
  6152. break;
  6153. }
  6154. if (rq->active_balance) {
  6155. active_load_balance(rq, cpu);
  6156. rq->active_balance = 0;
  6157. }
  6158. head = &rq->migration_queue;
  6159. if (list_empty(head)) {
  6160. spin_unlock_irq(&rq->lock);
  6161. schedule();
  6162. set_current_state(TASK_INTERRUPTIBLE);
  6163. continue;
  6164. }
  6165. req = list_entry(head->next, struct migration_req, list);
  6166. list_del_init(head->next);
  6167. if (req->task != NULL) {
  6168. spin_unlock(&rq->lock);
  6169. __migrate_task(req->task, cpu, req->dest_cpu);
  6170. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6171. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6172. spin_unlock(&rq->lock);
  6173. } else {
  6174. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6175. spin_unlock(&rq->lock);
  6176. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6177. }
  6178. local_irq_enable();
  6179. complete(&req->done);
  6180. }
  6181. __set_current_state(TASK_RUNNING);
  6182. return 0;
  6183. }
  6184. #ifdef CONFIG_HOTPLUG_CPU
  6185. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6186. {
  6187. int ret;
  6188. local_irq_disable();
  6189. ret = __migrate_task(p, src_cpu, dest_cpu);
  6190. local_irq_enable();
  6191. return ret;
  6192. }
  6193. /*
  6194. * Figure out where task on dead CPU should go, use force if necessary.
  6195. */
  6196. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6197. {
  6198. int dest_cpu;
  6199. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6200. again:
  6201. /* Look for allowed, online CPU in same node. */
  6202. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  6203. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6204. goto move;
  6205. /* Any allowed, online CPU? */
  6206. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  6207. if (dest_cpu < nr_cpu_ids)
  6208. goto move;
  6209. /* No more Mr. Nice Guy. */
  6210. if (dest_cpu >= nr_cpu_ids) {
  6211. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6212. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  6213. /*
  6214. * Don't tell them about moving exiting tasks or
  6215. * kernel threads (both mm NULL), since they never
  6216. * leave kernel.
  6217. */
  6218. if (p->mm && printk_ratelimit()) {
  6219. printk(KERN_INFO "process %d (%s) no "
  6220. "longer affine to cpu%d\n",
  6221. task_pid_nr(p), p->comm, dead_cpu);
  6222. }
  6223. }
  6224. move:
  6225. /* It can have affinity changed while we were choosing. */
  6226. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6227. goto again;
  6228. }
  6229. /*
  6230. * While a dead CPU has no uninterruptible tasks queued at this point,
  6231. * it might still have a nonzero ->nr_uninterruptible counter, because
  6232. * for performance reasons the counter is not stricly tracking tasks to
  6233. * their home CPUs. So we just add the counter to another CPU's counter,
  6234. * to keep the global sum constant after CPU-down:
  6235. */
  6236. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6237. {
  6238. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6239. unsigned long flags;
  6240. local_irq_save(flags);
  6241. double_rq_lock(rq_src, rq_dest);
  6242. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6243. rq_src->nr_uninterruptible = 0;
  6244. double_rq_unlock(rq_src, rq_dest);
  6245. local_irq_restore(flags);
  6246. }
  6247. /* Run through task list and migrate tasks from the dead cpu. */
  6248. static void migrate_live_tasks(int src_cpu)
  6249. {
  6250. struct task_struct *p, *t;
  6251. read_lock(&tasklist_lock);
  6252. do_each_thread(t, p) {
  6253. if (p == current)
  6254. continue;
  6255. if (task_cpu(p) == src_cpu)
  6256. move_task_off_dead_cpu(src_cpu, p);
  6257. } while_each_thread(t, p);
  6258. read_unlock(&tasklist_lock);
  6259. }
  6260. /*
  6261. * Schedules idle task to be the next runnable task on current CPU.
  6262. * It does so by boosting its priority to highest possible.
  6263. * Used by CPU offline code.
  6264. */
  6265. void sched_idle_next(void)
  6266. {
  6267. int this_cpu = smp_processor_id();
  6268. struct rq *rq = cpu_rq(this_cpu);
  6269. struct task_struct *p = rq->idle;
  6270. unsigned long flags;
  6271. /* cpu has to be offline */
  6272. BUG_ON(cpu_online(this_cpu));
  6273. /*
  6274. * Strictly not necessary since rest of the CPUs are stopped by now
  6275. * and interrupts disabled on the current cpu.
  6276. */
  6277. spin_lock_irqsave(&rq->lock, flags);
  6278. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6279. update_rq_clock(rq);
  6280. activate_task(rq, p, 0);
  6281. spin_unlock_irqrestore(&rq->lock, flags);
  6282. }
  6283. /*
  6284. * Ensures that the idle task is using init_mm right before its cpu goes
  6285. * offline.
  6286. */
  6287. void idle_task_exit(void)
  6288. {
  6289. struct mm_struct *mm = current->active_mm;
  6290. BUG_ON(cpu_online(smp_processor_id()));
  6291. if (mm != &init_mm)
  6292. switch_mm(mm, &init_mm, current);
  6293. mmdrop(mm);
  6294. }
  6295. /* called under rq->lock with disabled interrupts */
  6296. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6297. {
  6298. struct rq *rq = cpu_rq(dead_cpu);
  6299. /* Must be exiting, otherwise would be on tasklist. */
  6300. BUG_ON(!p->exit_state);
  6301. /* Cannot have done final schedule yet: would have vanished. */
  6302. BUG_ON(p->state == TASK_DEAD);
  6303. get_task_struct(p);
  6304. /*
  6305. * Drop lock around migration; if someone else moves it,
  6306. * that's OK. No task can be added to this CPU, so iteration is
  6307. * fine.
  6308. */
  6309. spin_unlock_irq(&rq->lock);
  6310. move_task_off_dead_cpu(dead_cpu, p);
  6311. spin_lock_irq(&rq->lock);
  6312. put_task_struct(p);
  6313. }
  6314. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6315. static void migrate_dead_tasks(unsigned int dead_cpu)
  6316. {
  6317. struct rq *rq = cpu_rq(dead_cpu);
  6318. struct task_struct *next;
  6319. for ( ; ; ) {
  6320. if (!rq->nr_running)
  6321. break;
  6322. update_rq_clock(rq);
  6323. next = pick_next_task(rq);
  6324. if (!next)
  6325. break;
  6326. next->sched_class->put_prev_task(rq, next);
  6327. migrate_dead(dead_cpu, next);
  6328. }
  6329. }
  6330. /*
  6331. * remove the tasks which were accounted by rq from calc_load_tasks.
  6332. */
  6333. static void calc_global_load_remove(struct rq *rq)
  6334. {
  6335. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6336. rq->calc_load_active = 0;
  6337. }
  6338. #endif /* CONFIG_HOTPLUG_CPU */
  6339. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6340. static struct ctl_table sd_ctl_dir[] = {
  6341. {
  6342. .procname = "sched_domain",
  6343. .mode = 0555,
  6344. },
  6345. {0, },
  6346. };
  6347. static struct ctl_table sd_ctl_root[] = {
  6348. {
  6349. .ctl_name = CTL_KERN,
  6350. .procname = "kernel",
  6351. .mode = 0555,
  6352. .child = sd_ctl_dir,
  6353. },
  6354. {0, },
  6355. };
  6356. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6357. {
  6358. struct ctl_table *entry =
  6359. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6360. return entry;
  6361. }
  6362. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6363. {
  6364. struct ctl_table *entry;
  6365. /*
  6366. * In the intermediate directories, both the child directory and
  6367. * procname are dynamically allocated and could fail but the mode
  6368. * will always be set. In the lowest directory the names are
  6369. * static strings and all have proc handlers.
  6370. */
  6371. for (entry = *tablep; entry->mode; entry++) {
  6372. if (entry->child)
  6373. sd_free_ctl_entry(&entry->child);
  6374. if (entry->proc_handler == NULL)
  6375. kfree(entry->procname);
  6376. }
  6377. kfree(*tablep);
  6378. *tablep = NULL;
  6379. }
  6380. static void
  6381. set_table_entry(struct ctl_table *entry,
  6382. const char *procname, void *data, int maxlen,
  6383. mode_t mode, proc_handler *proc_handler)
  6384. {
  6385. entry->procname = procname;
  6386. entry->data = data;
  6387. entry->maxlen = maxlen;
  6388. entry->mode = mode;
  6389. entry->proc_handler = proc_handler;
  6390. }
  6391. static struct ctl_table *
  6392. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6393. {
  6394. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6395. if (table == NULL)
  6396. return NULL;
  6397. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6398. sizeof(long), 0644, proc_doulongvec_minmax);
  6399. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6400. sizeof(long), 0644, proc_doulongvec_minmax);
  6401. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6402. sizeof(int), 0644, proc_dointvec_minmax);
  6403. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6404. sizeof(int), 0644, proc_dointvec_minmax);
  6405. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6406. sizeof(int), 0644, proc_dointvec_minmax);
  6407. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6408. sizeof(int), 0644, proc_dointvec_minmax);
  6409. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6410. sizeof(int), 0644, proc_dointvec_minmax);
  6411. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6412. sizeof(int), 0644, proc_dointvec_minmax);
  6413. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6414. sizeof(int), 0644, proc_dointvec_minmax);
  6415. set_table_entry(&table[9], "cache_nice_tries",
  6416. &sd->cache_nice_tries,
  6417. sizeof(int), 0644, proc_dointvec_minmax);
  6418. set_table_entry(&table[10], "flags", &sd->flags,
  6419. sizeof(int), 0644, proc_dointvec_minmax);
  6420. set_table_entry(&table[11], "name", sd->name,
  6421. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6422. /* &table[12] is terminator */
  6423. return table;
  6424. }
  6425. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6426. {
  6427. struct ctl_table *entry, *table;
  6428. struct sched_domain *sd;
  6429. int domain_num = 0, i;
  6430. char buf[32];
  6431. for_each_domain(cpu, sd)
  6432. domain_num++;
  6433. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6434. if (table == NULL)
  6435. return NULL;
  6436. i = 0;
  6437. for_each_domain(cpu, sd) {
  6438. snprintf(buf, 32, "domain%d", i);
  6439. entry->procname = kstrdup(buf, GFP_KERNEL);
  6440. entry->mode = 0555;
  6441. entry->child = sd_alloc_ctl_domain_table(sd);
  6442. entry++;
  6443. i++;
  6444. }
  6445. return table;
  6446. }
  6447. static struct ctl_table_header *sd_sysctl_header;
  6448. static void register_sched_domain_sysctl(void)
  6449. {
  6450. int i, cpu_num = num_possible_cpus();
  6451. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6452. char buf[32];
  6453. WARN_ON(sd_ctl_dir[0].child);
  6454. sd_ctl_dir[0].child = entry;
  6455. if (entry == NULL)
  6456. return;
  6457. for_each_possible_cpu(i) {
  6458. snprintf(buf, 32, "cpu%d", i);
  6459. entry->procname = kstrdup(buf, GFP_KERNEL);
  6460. entry->mode = 0555;
  6461. entry->child = sd_alloc_ctl_cpu_table(i);
  6462. entry++;
  6463. }
  6464. WARN_ON(sd_sysctl_header);
  6465. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6466. }
  6467. /* may be called multiple times per register */
  6468. static void unregister_sched_domain_sysctl(void)
  6469. {
  6470. if (sd_sysctl_header)
  6471. unregister_sysctl_table(sd_sysctl_header);
  6472. sd_sysctl_header = NULL;
  6473. if (sd_ctl_dir[0].child)
  6474. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6475. }
  6476. #else
  6477. static void register_sched_domain_sysctl(void)
  6478. {
  6479. }
  6480. static void unregister_sched_domain_sysctl(void)
  6481. {
  6482. }
  6483. #endif
  6484. static void set_rq_online(struct rq *rq)
  6485. {
  6486. if (!rq->online) {
  6487. const struct sched_class *class;
  6488. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6489. rq->online = 1;
  6490. for_each_class(class) {
  6491. if (class->rq_online)
  6492. class->rq_online(rq);
  6493. }
  6494. }
  6495. }
  6496. static void set_rq_offline(struct rq *rq)
  6497. {
  6498. if (rq->online) {
  6499. const struct sched_class *class;
  6500. for_each_class(class) {
  6501. if (class->rq_offline)
  6502. class->rq_offline(rq);
  6503. }
  6504. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6505. rq->online = 0;
  6506. }
  6507. }
  6508. /*
  6509. * migration_call - callback that gets triggered when a CPU is added.
  6510. * Here we can start up the necessary migration thread for the new CPU.
  6511. */
  6512. static int __cpuinit
  6513. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6514. {
  6515. struct task_struct *p;
  6516. int cpu = (long)hcpu;
  6517. unsigned long flags;
  6518. struct rq *rq;
  6519. switch (action) {
  6520. case CPU_UP_PREPARE:
  6521. case CPU_UP_PREPARE_FROZEN:
  6522. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6523. if (IS_ERR(p))
  6524. return NOTIFY_BAD;
  6525. kthread_bind(p, cpu);
  6526. /* Must be high prio: stop_machine expects to yield to it. */
  6527. rq = task_rq_lock(p, &flags);
  6528. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6529. task_rq_unlock(rq, &flags);
  6530. get_task_struct(p);
  6531. cpu_rq(cpu)->migration_thread = p;
  6532. rq->calc_load_update = calc_load_update;
  6533. break;
  6534. case CPU_ONLINE:
  6535. case CPU_ONLINE_FROZEN:
  6536. /* Strictly unnecessary, as first user will wake it. */
  6537. wake_up_process(cpu_rq(cpu)->migration_thread);
  6538. /* Update our root-domain */
  6539. rq = cpu_rq(cpu);
  6540. spin_lock_irqsave(&rq->lock, flags);
  6541. if (rq->rd) {
  6542. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6543. set_rq_online(rq);
  6544. }
  6545. spin_unlock_irqrestore(&rq->lock, flags);
  6546. break;
  6547. #ifdef CONFIG_HOTPLUG_CPU
  6548. case CPU_UP_CANCELED:
  6549. case CPU_UP_CANCELED_FROZEN:
  6550. if (!cpu_rq(cpu)->migration_thread)
  6551. break;
  6552. /* Unbind it from offline cpu so it can run. Fall thru. */
  6553. kthread_bind(cpu_rq(cpu)->migration_thread,
  6554. cpumask_any(cpu_online_mask));
  6555. kthread_stop(cpu_rq(cpu)->migration_thread);
  6556. put_task_struct(cpu_rq(cpu)->migration_thread);
  6557. cpu_rq(cpu)->migration_thread = NULL;
  6558. break;
  6559. case CPU_DEAD:
  6560. case CPU_DEAD_FROZEN:
  6561. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6562. migrate_live_tasks(cpu);
  6563. rq = cpu_rq(cpu);
  6564. kthread_stop(rq->migration_thread);
  6565. put_task_struct(rq->migration_thread);
  6566. rq->migration_thread = NULL;
  6567. /* Idle task back to normal (off runqueue, low prio) */
  6568. spin_lock_irq(&rq->lock);
  6569. update_rq_clock(rq);
  6570. deactivate_task(rq, rq->idle, 0);
  6571. rq->idle->static_prio = MAX_PRIO;
  6572. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6573. rq->idle->sched_class = &idle_sched_class;
  6574. migrate_dead_tasks(cpu);
  6575. spin_unlock_irq(&rq->lock);
  6576. cpuset_unlock();
  6577. migrate_nr_uninterruptible(rq);
  6578. BUG_ON(rq->nr_running != 0);
  6579. calc_global_load_remove(rq);
  6580. /*
  6581. * No need to migrate the tasks: it was best-effort if
  6582. * they didn't take sched_hotcpu_mutex. Just wake up
  6583. * the requestors.
  6584. */
  6585. spin_lock_irq(&rq->lock);
  6586. while (!list_empty(&rq->migration_queue)) {
  6587. struct migration_req *req;
  6588. req = list_entry(rq->migration_queue.next,
  6589. struct migration_req, list);
  6590. list_del_init(&req->list);
  6591. spin_unlock_irq(&rq->lock);
  6592. complete(&req->done);
  6593. spin_lock_irq(&rq->lock);
  6594. }
  6595. spin_unlock_irq(&rq->lock);
  6596. break;
  6597. case CPU_DYING:
  6598. case CPU_DYING_FROZEN:
  6599. /* Update our root-domain */
  6600. rq = cpu_rq(cpu);
  6601. spin_lock_irqsave(&rq->lock, flags);
  6602. if (rq->rd) {
  6603. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6604. set_rq_offline(rq);
  6605. }
  6606. spin_unlock_irqrestore(&rq->lock, flags);
  6607. break;
  6608. #endif
  6609. }
  6610. return NOTIFY_OK;
  6611. }
  6612. /*
  6613. * Register at high priority so that task migration (migrate_all_tasks)
  6614. * happens before everything else. This has to be lower priority than
  6615. * the notifier in the perf_event subsystem, though.
  6616. */
  6617. static struct notifier_block __cpuinitdata migration_notifier = {
  6618. .notifier_call = migration_call,
  6619. .priority = 10
  6620. };
  6621. static int __init migration_init(void)
  6622. {
  6623. void *cpu = (void *)(long)smp_processor_id();
  6624. int err;
  6625. /* Start one for the boot CPU: */
  6626. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6627. BUG_ON(err == NOTIFY_BAD);
  6628. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6629. register_cpu_notifier(&migration_notifier);
  6630. return 0;
  6631. }
  6632. early_initcall(migration_init);
  6633. #endif
  6634. #ifdef CONFIG_SMP
  6635. #ifdef CONFIG_SCHED_DEBUG
  6636. static __read_mostly int sched_domain_debug_enabled;
  6637. static int __init sched_domain_debug_setup(char *str)
  6638. {
  6639. sched_domain_debug_enabled = 1;
  6640. return 0;
  6641. }
  6642. early_param("sched_debug", sched_domain_debug_setup);
  6643. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6644. struct cpumask *groupmask)
  6645. {
  6646. struct sched_group *group = sd->groups;
  6647. char str[256];
  6648. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6649. cpumask_clear(groupmask);
  6650. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6651. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6652. printk("does not load-balance\n");
  6653. if (sd->parent)
  6654. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6655. " has parent");
  6656. return -1;
  6657. }
  6658. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6659. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6660. printk(KERN_ERR "ERROR: domain->span does not contain "
  6661. "CPU%d\n", cpu);
  6662. }
  6663. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6664. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6665. " CPU%d\n", cpu);
  6666. }
  6667. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6668. do {
  6669. if (!group) {
  6670. printk("\n");
  6671. printk(KERN_ERR "ERROR: group is NULL\n");
  6672. break;
  6673. }
  6674. if (!group->cpu_power) {
  6675. printk(KERN_CONT "\n");
  6676. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6677. "set\n");
  6678. break;
  6679. }
  6680. if (!cpumask_weight(sched_group_cpus(group))) {
  6681. printk(KERN_CONT "\n");
  6682. printk(KERN_ERR "ERROR: empty group\n");
  6683. break;
  6684. }
  6685. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6686. printk(KERN_CONT "\n");
  6687. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6688. break;
  6689. }
  6690. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6691. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6692. printk(KERN_CONT " %s", str);
  6693. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6694. printk(KERN_CONT " (cpu_power = %d)",
  6695. group->cpu_power);
  6696. }
  6697. group = group->next;
  6698. } while (group != sd->groups);
  6699. printk(KERN_CONT "\n");
  6700. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6701. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6702. if (sd->parent &&
  6703. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6704. printk(KERN_ERR "ERROR: parent span is not a superset "
  6705. "of domain->span\n");
  6706. return 0;
  6707. }
  6708. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6709. {
  6710. cpumask_var_t groupmask;
  6711. int level = 0;
  6712. if (!sched_domain_debug_enabled)
  6713. return;
  6714. if (!sd) {
  6715. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6716. return;
  6717. }
  6718. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6719. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6720. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6721. return;
  6722. }
  6723. for (;;) {
  6724. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6725. break;
  6726. level++;
  6727. sd = sd->parent;
  6728. if (!sd)
  6729. break;
  6730. }
  6731. free_cpumask_var(groupmask);
  6732. }
  6733. #else /* !CONFIG_SCHED_DEBUG */
  6734. # define sched_domain_debug(sd, cpu) do { } while (0)
  6735. #endif /* CONFIG_SCHED_DEBUG */
  6736. static int sd_degenerate(struct sched_domain *sd)
  6737. {
  6738. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6739. return 1;
  6740. /* Following flags need at least 2 groups */
  6741. if (sd->flags & (SD_LOAD_BALANCE |
  6742. SD_BALANCE_NEWIDLE |
  6743. SD_BALANCE_FORK |
  6744. SD_BALANCE_EXEC |
  6745. SD_SHARE_CPUPOWER |
  6746. SD_SHARE_PKG_RESOURCES)) {
  6747. if (sd->groups != sd->groups->next)
  6748. return 0;
  6749. }
  6750. /* Following flags don't use groups */
  6751. if (sd->flags & (SD_WAKE_AFFINE))
  6752. return 0;
  6753. return 1;
  6754. }
  6755. static int
  6756. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6757. {
  6758. unsigned long cflags = sd->flags, pflags = parent->flags;
  6759. if (sd_degenerate(parent))
  6760. return 1;
  6761. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6762. return 0;
  6763. /* Flags needing groups don't count if only 1 group in parent */
  6764. if (parent->groups == parent->groups->next) {
  6765. pflags &= ~(SD_LOAD_BALANCE |
  6766. SD_BALANCE_NEWIDLE |
  6767. SD_BALANCE_FORK |
  6768. SD_BALANCE_EXEC |
  6769. SD_SHARE_CPUPOWER |
  6770. SD_SHARE_PKG_RESOURCES);
  6771. if (nr_node_ids == 1)
  6772. pflags &= ~SD_SERIALIZE;
  6773. }
  6774. if (~cflags & pflags)
  6775. return 0;
  6776. return 1;
  6777. }
  6778. static void free_rootdomain(struct root_domain *rd)
  6779. {
  6780. synchronize_sched();
  6781. cpupri_cleanup(&rd->cpupri);
  6782. free_cpumask_var(rd->rto_mask);
  6783. free_cpumask_var(rd->online);
  6784. free_cpumask_var(rd->span);
  6785. kfree(rd);
  6786. }
  6787. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6788. {
  6789. struct root_domain *old_rd = NULL;
  6790. unsigned long flags;
  6791. spin_lock_irqsave(&rq->lock, flags);
  6792. if (rq->rd) {
  6793. old_rd = rq->rd;
  6794. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6795. set_rq_offline(rq);
  6796. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6797. /*
  6798. * If we dont want to free the old_rt yet then
  6799. * set old_rd to NULL to skip the freeing later
  6800. * in this function:
  6801. */
  6802. if (!atomic_dec_and_test(&old_rd->refcount))
  6803. old_rd = NULL;
  6804. }
  6805. atomic_inc(&rd->refcount);
  6806. rq->rd = rd;
  6807. cpumask_set_cpu(rq->cpu, rd->span);
  6808. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6809. set_rq_online(rq);
  6810. spin_unlock_irqrestore(&rq->lock, flags);
  6811. if (old_rd)
  6812. free_rootdomain(old_rd);
  6813. }
  6814. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6815. {
  6816. gfp_t gfp = GFP_KERNEL;
  6817. memset(rd, 0, sizeof(*rd));
  6818. if (bootmem)
  6819. gfp = GFP_NOWAIT;
  6820. if (!alloc_cpumask_var(&rd->span, gfp))
  6821. goto out;
  6822. if (!alloc_cpumask_var(&rd->online, gfp))
  6823. goto free_span;
  6824. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6825. goto free_online;
  6826. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6827. goto free_rto_mask;
  6828. return 0;
  6829. free_rto_mask:
  6830. free_cpumask_var(rd->rto_mask);
  6831. free_online:
  6832. free_cpumask_var(rd->online);
  6833. free_span:
  6834. free_cpumask_var(rd->span);
  6835. out:
  6836. return -ENOMEM;
  6837. }
  6838. static void init_defrootdomain(void)
  6839. {
  6840. init_rootdomain(&def_root_domain, true);
  6841. atomic_set(&def_root_domain.refcount, 1);
  6842. }
  6843. static struct root_domain *alloc_rootdomain(void)
  6844. {
  6845. struct root_domain *rd;
  6846. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6847. if (!rd)
  6848. return NULL;
  6849. if (init_rootdomain(rd, false) != 0) {
  6850. kfree(rd);
  6851. return NULL;
  6852. }
  6853. return rd;
  6854. }
  6855. /*
  6856. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6857. * hold the hotplug lock.
  6858. */
  6859. static void
  6860. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6861. {
  6862. struct rq *rq = cpu_rq(cpu);
  6863. struct sched_domain *tmp;
  6864. /* Remove the sched domains which do not contribute to scheduling. */
  6865. for (tmp = sd; tmp; ) {
  6866. struct sched_domain *parent = tmp->parent;
  6867. if (!parent)
  6868. break;
  6869. if (sd_parent_degenerate(tmp, parent)) {
  6870. tmp->parent = parent->parent;
  6871. if (parent->parent)
  6872. parent->parent->child = tmp;
  6873. } else
  6874. tmp = tmp->parent;
  6875. }
  6876. if (sd && sd_degenerate(sd)) {
  6877. sd = sd->parent;
  6878. if (sd)
  6879. sd->child = NULL;
  6880. }
  6881. sched_domain_debug(sd, cpu);
  6882. rq_attach_root(rq, rd);
  6883. rcu_assign_pointer(rq->sd, sd);
  6884. }
  6885. /* cpus with isolated domains */
  6886. static cpumask_var_t cpu_isolated_map;
  6887. /* Setup the mask of cpus configured for isolated domains */
  6888. static int __init isolated_cpu_setup(char *str)
  6889. {
  6890. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6891. cpulist_parse(str, cpu_isolated_map);
  6892. return 1;
  6893. }
  6894. __setup("isolcpus=", isolated_cpu_setup);
  6895. /*
  6896. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6897. * to a function which identifies what group(along with sched group) a CPU
  6898. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6899. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6900. *
  6901. * init_sched_build_groups will build a circular linked list of the groups
  6902. * covered by the given span, and will set each group's ->cpumask correctly,
  6903. * and ->cpu_power to 0.
  6904. */
  6905. static void
  6906. init_sched_build_groups(const struct cpumask *span,
  6907. const struct cpumask *cpu_map,
  6908. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6909. struct sched_group **sg,
  6910. struct cpumask *tmpmask),
  6911. struct cpumask *covered, struct cpumask *tmpmask)
  6912. {
  6913. struct sched_group *first = NULL, *last = NULL;
  6914. int i;
  6915. cpumask_clear(covered);
  6916. for_each_cpu(i, span) {
  6917. struct sched_group *sg;
  6918. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6919. int j;
  6920. if (cpumask_test_cpu(i, covered))
  6921. continue;
  6922. cpumask_clear(sched_group_cpus(sg));
  6923. sg->cpu_power = 0;
  6924. for_each_cpu(j, span) {
  6925. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6926. continue;
  6927. cpumask_set_cpu(j, covered);
  6928. cpumask_set_cpu(j, sched_group_cpus(sg));
  6929. }
  6930. if (!first)
  6931. first = sg;
  6932. if (last)
  6933. last->next = sg;
  6934. last = sg;
  6935. }
  6936. last->next = first;
  6937. }
  6938. #define SD_NODES_PER_DOMAIN 16
  6939. #ifdef CONFIG_NUMA
  6940. /**
  6941. * find_next_best_node - find the next node to include in a sched_domain
  6942. * @node: node whose sched_domain we're building
  6943. * @used_nodes: nodes already in the sched_domain
  6944. *
  6945. * Find the next node to include in a given scheduling domain. Simply
  6946. * finds the closest node not already in the @used_nodes map.
  6947. *
  6948. * Should use nodemask_t.
  6949. */
  6950. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6951. {
  6952. int i, n, val, min_val, best_node = 0;
  6953. min_val = INT_MAX;
  6954. for (i = 0; i < nr_node_ids; i++) {
  6955. /* Start at @node */
  6956. n = (node + i) % nr_node_ids;
  6957. if (!nr_cpus_node(n))
  6958. continue;
  6959. /* Skip already used nodes */
  6960. if (node_isset(n, *used_nodes))
  6961. continue;
  6962. /* Simple min distance search */
  6963. val = node_distance(node, n);
  6964. if (val < min_val) {
  6965. min_val = val;
  6966. best_node = n;
  6967. }
  6968. }
  6969. node_set(best_node, *used_nodes);
  6970. return best_node;
  6971. }
  6972. /**
  6973. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6974. * @node: node whose cpumask we're constructing
  6975. * @span: resulting cpumask
  6976. *
  6977. * Given a node, construct a good cpumask for its sched_domain to span. It
  6978. * should be one that prevents unnecessary balancing, but also spreads tasks
  6979. * out optimally.
  6980. */
  6981. static void sched_domain_node_span(int node, struct cpumask *span)
  6982. {
  6983. nodemask_t used_nodes;
  6984. int i;
  6985. cpumask_clear(span);
  6986. nodes_clear(used_nodes);
  6987. cpumask_or(span, span, cpumask_of_node(node));
  6988. node_set(node, used_nodes);
  6989. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6990. int next_node = find_next_best_node(node, &used_nodes);
  6991. cpumask_or(span, span, cpumask_of_node(next_node));
  6992. }
  6993. }
  6994. #endif /* CONFIG_NUMA */
  6995. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6996. /*
  6997. * The cpus mask in sched_group and sched_domain hangs off the end.
  6998. *
  6999. * ( See the the comments in include/linux/sched.h:struct sched_group
  7000. * and struct sched_domain. )
  7001. */
  7002. struct static_sched_group {
  7003. struct sched_group sg;
  7004. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  7005. };
  7006. struct static_sched_domain {
  7007. struct sched_domain sd;
  7008. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  7009. };
  7010. struct s_data {
  7011. #ifdef CONFIG_NUMA
  7012. int sd_allnodes;
  7013. cpumask_var_t domainspan;
  7014. cpumask_var_t covered;
  7015. cpumask_var_t notcovered;
  7016. #endif
  7017. cpumask_var_t nodemask;
  7018. cpumask_var_t this_sibling_map;
  7019. cpumask_var_t this_core_map;
  7020. cpumask_var_t send_covered;
  7021. cpumask_var_t tmpmask;
  7022. struct sched_group **sched_group_nodes;
  7023. struct root_domain *rd;
  7024. };
  7025. enum s_alloc {
  7026. sa_sched_groups = 0,
  7027. sa_rootdomain,
  7028. sa_tmpmask,
  7029. sa_send_covered,
  7030. sa_this_core_map,
  7031. sa_this_sibling_map,
  7032. sa_nodemask,
  7033. sa_sched_group_nodes,
  7034. #ifdef CONFIG_NUMA
  7035. sa_notcovered,
  7036. sa_covered,
  7037. sa_domainspan,
  7038. #endif
  7039. sa_none,
  7040. };
  7041. /*
  7042. * SMT sched-domains:
  7043. */
  7044. #ifdef CONFIG_SCHED_SMT
  7045. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7046. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  7047. static int
  7048. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7049. struct sched_group **sg, struct cpumask *unused)
  7050. {
  7051. if (sg)
  7052. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  7053. return cpu;
  7054. }
  7055. #endif /* CONFIG_SCHED_SMT */
  7056. /*
  7057. * multi-core sched-domains:
  7058. */
  7059. #ifdef CONFIG_SCHED_MC
  7060. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7061. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7062. #endif /* CONFIG_SCHED_MC */
  7063. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7064. static int
  7065. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7066. struct sched_group **sg, struct cpumask *mask)
  7067. {
  7068. int group;
  7069. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7070. group = cpumask_first(mask);
  7071. if (sg)
  7072. *sg = &per_cpu(sched_group_core, group).sg;
  7073. return group;
  7074. }
  7075. #elif defined(CONFIG_SCHED_MC)
  7076. static int
  7077. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7078. struct sched_group **sg, struct cpumask *unused)
  7079. {
  7080. if (sg)
  7081. *sg = &per_cpu(sched_group_core, cpu).sg;
  7082. return cpu;
  7083. }
  7084. #endif
  7085. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7086. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7087. static int
  7088. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7089. struct sched_group **sg, struct cpumask *mask)
  7090. {
  7091. int group;
  7092. #ifdef CONFIG_SCHED_MC
  7093. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7094. group = cpumask_first(mask);
  7095. #elif defined(CONFIG_SCHED_SMT)
  7096. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7097. group = cpumask_first(mask);
  7098. #else
  7099. group = cpu;
  7100. #endif
  7101. if (sg)
  7102. *sg = &per_cpu(sched_group_phys, group).sg;
  7103. return group;
  7104. }
  7105. #ifdef CONFIG_NUMA
  7106. /*
  7107. * The init_sched_build_groups can't handle what we want to do with node
  7108. * groups, so roll our own. Now each node has its own list of groups which
  7109. * gets dynamically allocated.
  7110. */
  7111. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7112. static struct sched_group ***sched_group_nodes_bycpu;
  7113. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7114. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7115. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7116. struct sched_group **sg,
  7117. struct cpumask *nodemask)
  7118. {
  7119. int group;
  7120. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7121. group = cpumask_first(nodemask);
  7122. if (sg)
  7123. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7124. return group;
  7125. }
  7126. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7127. {
  7128. struct sched_group *sg = group_head;
  7129. int j;
  7130. if (!sg)
  7131. return;
  7132. do {
  7133. for_each_cpu(j, sched_group_cpus(sg)) {
  7134. struct sched_domain *sd;
  7135. sd = &per_cpu(phys_domains, j).sd;
  7136. if (j != group_first_cpu(sd->groups)) {
  7137. /*
  7138. * Only add "power" once for each
  7139. * physical package.
  7140. */
  7141. continue;
  7142. }
  7143. sg->cpu_power += sd->groups->cpu_power;
  7144. }
  7145. sg = sg->next;
  7146. } while (sg != group_head);
  7147. }
  7148. static int build_numa_sched_groups(struct s_data *d,
  7149. const struct cpumask *cpu_map, int num)
  7150. {
  7151. struct sched_domain *sd;
  7152. struct sched_group *sg, *prev;
  7153. int n, j;
  7154. cpumask_clear(d->covered);
  7155. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7156. if (cpumask_empty(d->nodemask)) {
  7157. d->sched_group_nodes[num] = NULL;
  7158. goto out;
  7159. }
  7160. sched_domain_node_span(num, d->domainspan);
  7161. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7162. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7163. GFP_KERNEL, num);
  7164. if (!sg) {
  7165. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  7166. num);
  7167. return -ENOMEM;
  7168. }
  7169. d->sched_group_nodes[num] = sg;
  7170. for_each_cpu(j, d->nodemask) {
  7171. sd = &per_cpu(node_domains, j).sd;
  7172. sd->groups = sg;
  7173. }
  7174. sg->cpu_power = 0;
  7175. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7176. sg->next = sg;
  7177. cpumask_or(d->covered, d->covered, d->nodemask);
  7178. prev = sg;
  7179. for (j = 0; j < nr_node_ids; j++) {
  7180. n = (num + j) % nr_node_ids;
  7181. cpumask_complement(d->notcovered, d->covered);
  7182. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7183. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7184. if (cpumask_empty(d->tmpmask))
  7185. break;
  7186. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7187. if (cpumask_empty(d->tmpmask))
  7188. continue;
  7189. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7190. GFP_KERNEL, num);
  7191. if (!sg) {
  7192. printk(KERN_WARNING
  7193. "Can not alloc domain group for node %d\n", j);
  7194. return -ENOMEM;
  7195. }
  7196. sg->cpu_power = 0;
  7197. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7198. sg->next = prev->next;
  7199. cpumask_or(d->covered, d->covered, d->tmpmask);
  7200. prev->next = sg;
  7201. prev = sg;
  7202. }
  7203. out:
  7204. return 0;
  7205. }
  7206. #endif /* CONFIG_NUMA */
  7207. #ifdef CONFIG_NUMA
  7208. /* Free memory allocated for various sched_group structures */
  7209. static void free_sched_groups(const struct cpumask *cpu_map,
  7210. struct cpumask *nodemask)
  7211. {
  7212. int cpu, i;
  7213. for_each_cpu(cpu, cpu_map) {
  7214. struct sched_group **sched_group_nodes
  7215. = sched_group_nodes_bycpu[cpu];
  7216. if (!sched_group_nodes)
  7217. continue;
  7218. for (i = 0; i < nr_node_ids; i++) {
  7219. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7220. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7221. if (cpumask_empty(nodemask))
  7222. continue;
  7223. if (sg == NULL)
  7224. continue;
  7225. sg = sg->next;
  7226. next_sg:
  7227. oldsg = sg;
  7228. sg = sg->next;
  7229. kfree(oldsg);
  7230. if (oldsg != sched_group_nodes[i])
  7231. goto next_sg;
  7232. }
  7233. kfree(sched_group_nodes);
  7234. sched_group_nodes_bycpu[cpu] = NULL;
  7235. }
  7236. }
  7237. #else /* !CONFIG_NUMA */
  7238. static void free_sched_groups(const struct cpumask *cpu_map,
  7239. struct cpumask *nodemask)
  7240. {
  7241. }
  7242. #endif /* CONFIG_NUMA */
  7243. /*
  7244. * Initialize sched groups cpu_power.
  7245. *
  7246. * cpu_power indicates the capacity of sched group, which is used while
  7247. * distributing the load between different sched groups in a sched domain.
  7248. * Typically cpu_power for all the groups in a sched domain will be same unless
  7249. * there are asymmetries in the topology. If there are asymmetries, group
  7250. * having more cpu_power will pickup more load compared to the group having
  7251. * less cpu_power.
  7252. */
  7253. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7254. {
  7255. struct sched_domain *child;
  7256. struct sched_group *group;
  7257. long power;
  7258. int weight;
  7259. WARN_ON(!sd || !sd->groups);
  7260. if (cpu != group_first_cpu(sd->groups))
  7261. return;
  7262. child = sd->child;
  7263. sd->groups->cpu_power = 0;
  7264. if (!child) {
  7265. power = SCHED_LOAD_SCALE;
  7266. weight = cpumask_weight(sched_domain_span(sd));
  7267. /*
  7268. * SMT siblings share the power of a single core.
  7269. * Usually multiple threads get a better yield out of
  7270. * that one core than a single thread would have,
  7271. * reflect that in sd->smt_gain.
  7272. */
  7273. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7274. power *= sd->smt_gain;
  7275. power /= weight;
  7276. power >>= SCHED_LOAD_SHIFT;
  7277. }
  7278. sd->groups->cpu_power += power;
  7279. return;
  7280. }
  7281. /*
  7282. * Add cpu_power of each child group to this groups cpu_power.
  7283. */
  7284. group = child->groups;
  7285. do {
  7286. sd->groups->cpu_power += group->cpu_power;
  7287. group = group->next;
  7288. } while (group != child->groups);
  7289. }
  7290. /*
  7291. * Initializers for schedule domains
  7292. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7293. */
  7294. #ifdef CONFIG_SCHED_DEBUG
  7295. # define SD_INIT_NAME(sd, type) sd->name = #type
  7296. #else
  7297. # define SD_INIT_NAME(sd, type) do { } while (0)
  7298. #endif
  7299. #define SD_INIT(sd, type) sd_init_##type(sd)
  7300. #define SD_INIT_FUNC(type) \
  7301. static noinline void sd_init_##type(struct sched_domain *sd) \
  7302. { \
  7303. memset(sd, 0, sizeof(*sd)); \
  7304. *sd = SD_##type##_INIT; \
  7305. sd->level = SD_LV_##type; \
  7306. SD_INIT_NAME(sd, type); \
  7307. }
  7308. SD_INIT_FUNC(CPU)
  7309. #ifdef CONFIG_NUMA
  7310. SD_INIT_FUNC(ALLNODES)
  7311. SD_INIT_FUNC(NODE)
  7312. #endif
  7313. #ifdef CONFIG_SCHED_SMT
  7314. SD_INIT_FUNC(SIBLING)
  7315. #endif
  7316. #ifdef CONFIG_SCHED_MC
  7317. SD_INIT_FUNC(MC)
  7318. #endif
  7319. static int default_relax_domain_level = -1;
  7320. static int __init setup_relax_domain_level(char *str)
  7321. {
  7322. unsigned long val;
  7323. val = simple_strtoul(str, NULL, 0);
  7324. if (val < SD_LV_MAX)
  7325. default_relax_domain_level = val;
  7326. return 1;
  7327. }
  7328. __setup("relax_domain_level=", setup_relax_domain_level);
  7329. static void set_domain_attribute(struct sched_domain *sd,
  7330. struct sched_domain_attr *attr)
  7331. {
  7332. int request;
  7333. if (!attr || attr->relax_domain_level < 0) {
  7334. if (default_relax_domain_level < 0)
  7335. return;
  7336. else
  7337. request = default_relax_domain_level;
  7338. } else
  7339. request = attr->relax_domain_level;
  7340. if (request < sd->level) {
  7341. /* turn off idle balance on this domain */
  7342. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7343. } else {
  7344. /* turn on idle balance on this domain */
  7345. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7346. }
  7347. }
  7348. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7349. const struct cpumask *cpu_map)
  7350. {
  7351. switch (what) {
  7352. case sa_sched_groups:
  7353. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7354. d->sched_group_nodes = NULL;
  7355. case sa_rootdomain:
  7356. free_rootdomain(d->rd); /* fall through */
  7357. case sa_tmpmask:
  7358. free_cpumask_var(d->tmpmask); /* fall through */
  7359. case sa_send_covered:
  7360. free_cpumask_var(d->send_covered); /* fall through */
  7361. case sa_this_core_map:
  7362. free_cpumask_var(d->this_core_map); /* fall through */
  7363. case sa_this_sibling_map:
  7364. free_cpumask_var(d->this_sibling_map); /* fall through */
  7365. case sa_nodemask:
  7366. free_cpumask_var(d->nodemask); /* fall through */
  7367. case sa_sched_group_nodes:
  7368. #ifdef CONFIG_NUMA
  7369. kfree(d->sched_group_nodes); /* fall through */
  7370. case sa_notcovered:
  7371. free_cpumask_var(d->notcovered); /* fall through */
  7372. case sa_covered:
  7373. free_cpumask_var(d->covered); /* fall through */
  7374. case sa_domainspan:
  7375. free_cpumask_var(d->domainspan); /* fall through */
  7376. #endif
  7377. case sa_none:
  7378. break;
  7379. }
  7380. }
  7381. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7382. const struct cpumask *cpu_map)
  7383. {
  7384. #ifdef CONFIG_NUMA
  7385. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7386. return sa_none;
  7387. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7388. return sa_domainspan;
  7389. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7390. return sa_covered;
  7391. /* Allocate the per-node list of sched groups */
  7392. d->sched_group_nodes = kcalloc(nr_node_ids,
  7393. sizeof(struct sched_group *), GFP_KERNEL);
  7394. if (!d->sched_group_nodes) {
  7395. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7396. return sa_notcovered;
  7397. }
  7398. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7399. #endif
  7400. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7401. return sa_sched_group_nodes;
  7402. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7403. return sa_nodemask;
  7404. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7405. return sa_this_sibling_map;
  7406. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7407. return sa_this_core_map;
  7408. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7409. return sa_send_covered;
  7410. d->rd = alloc_rootdomain();
  7411. if (!d->rd) {
  7412. printk(KERN_WARNING "Cannot alloc root domain\n");
  7413. return sa_tmpmask;
  7414. }
  7415. return sa_rootdomain;
  7416. }
  7417. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7418. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7419. {
  7420. struct sched_domain *sd = NULL;
  7421. #ifdef CONFIG_NUMA
  7422. struct sched_domain *parent;
  7423. d->sd_allnodes = 0;
  7424. if (cpumask_weight(cpu_map) >
  7425. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7426. sd = &per_cpu(allnodes_domains, i).sd;
  7427. SD_INIT(sd, ALLNODES);
  7428. set_domain_attribute(sd, attr);
  7429. cpumask_copy(sched_domain_span(sd), cpu_map);
  7430. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7431. d->sd_allnodes = 1;
  7432. }
  7433. parent = sd;
  7434. sd = &per_cpu(node_domains, i).sd;
  7435. SD_INIT(sd, NODE);
  7436. set_domain_attribute(sd, attr);
  7437. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7438. sd->parent = parent;
  7439. if (parent)
  7440. parent->child = sd;
  7441. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7442. #endif
  7443. return sd;
  7444. }
  7445. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7446. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7447. struct sched_domain *parent, int i)
  7448. {
  7449. struct sched_domain *sd;
  7450. sd = &per_cpu(phys_domains, i).sd;
  7451. SD_INIT(sd, CPU);
  7452. set_domain_attribute(sd, attr);
  7453. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7454. sd->parent = parent;
  7455. if (parent)
  7456. parent->child = sd;
  7457. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7458. return sd;
  7459. }
  7460. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7461. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7462. struct sched_domain *parent, int i)
  7463. {
  7464. struct sched_domain *sd = parent;
  7465. #ifdef CONFIG_SCHED_MC
  7466. sd = &per_cpu(core_domains, i).sd;
  7467. SD_INIT(sd, MC);
  7468. set_domain_attribute(sd, attr);
  7469. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7470. sd->parent = parent;
  7471. parent->child = sd;
  7472. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7473. #endif
  7474. return sd;
  7475. }
  7476. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7477. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7478. struct sched_domain *parent, int i)
  7479. {
  7480. struct sched_domain *sd = parent;
  7481. #ifdef CONFIG_SCHED_SMT
  7482. sd = &per_cpu(cpu_domains, i).sd;
  7483. SD_INIT(sd, SIBLING);
  7484. set_domain_attribute(sd, attr);
  7485. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7486. sd->parent = parent;
  7487. parent->child = sd;
  7488. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7489. #endif
  7490. return sd;
  7491. }
  7492. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7493. const struct cpumask *cpu_map, int cpu)
  7494. {
  7495. switch (l) {
  7496. #ifdef CONFIG_SCHED_SMT
  7497. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7498. cpumask_and(d->this_sibling_map, cpu_map,
  7499. topology_thread_cpumask(cpu));
  7500. if (cpu == cpumask_first(d->this_sibling_map))
  7501. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7502. &cpu_to_cpu_group,
  7503. d->send_covered, d->tmpmask);
  7504. break;
  7505. #endif
  7506. #ifdef CONFIG_SCHED_MC
  7507. case SD_LV_MC: /* set up multi-core groups */
  7508. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7509. if (cpu == cpumask_first(d->this_core_map))
  7510. init_sched_build_groups(d->this_core_map, cpu_map,
  7511. &cpu_to_core_group,
  7512. d->send_covered, d->tmpmask);
  7513. break;
  7514. #endif
  7515. case SD_LV_CPU: /* set up physical groups */
  7516. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7517. if (!cpumask_empty(d->nodemask))
  7518. init_sched_build_groups(d->nodemask, cpu_map,
  7519. &cpu_to_phys_group,
  7520. d->send_covered, d->tmpmask);
  7521. break;
  7522. #ifdef CONFIG_NUMA
  7523. case SD_LV_ALLNODES:
  7524. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7525. d->send_covered, d->tmpmask);
  7526. break;
  7527. #endif
  7528. default:
  7529. break;
  7530. }
  7531. }
  7532. /*
  7533. * Build sched domains for a given set of cpus and attach the sched domains
  7534. * to the individual cpus
  7535. */
  7536. static int __build_sched_domains(const struct cpumask *cpu_map,
  7537. struct sched_domain_attr *attr)
  7538. {
  7539. enum s_alloc alloc_state = sa_none;
  7540. struct s_data d;
  7541. struct sched_domain *sd;
  7542. int i;
  7543. #ifdef CONFIG_NUMA
  7544. d.sd_allnodes = 0;
  7545. #endif
  7546. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7547. if (alloc_state != sa_rootdomain)
  7548. goto error;
  7549. alloc_state = sa_sched_groups;
  7550. /*
  7551. * Set up domains for cpus specified by the cpu_map.
  7552. */
  7553. for_each_cpu(i, cpu_map) {
  7554. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7555. cpu_map);
  7556. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7557. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7558. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7559. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7560. }
  7561. for_each_cpu(i, cpu_map) {
  7562. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7563. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7564. }
  7565. /* Set up physical groups */
  7566. for (i = 0; i < nr_node_ids; i++)
  7567. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7568. #ifdef CONFIG_NUMA
  7569. /* Set up node groups */
  7570. if (d.sd_allnodes)
  7571. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7572. for (i = 0; i < nr_node_ids; i++)
  7573. if (build_numa_sched_groups(&d, cpu_map, i))
  7574. goto error;
  7575. #endif
  7576. /* Calculate CPU power for physical packages and nodes */
  7577. #ifdef CONFIG_SCHED_SMT
  7578. for_each_cpu(i, cpu_map) {
  7579. sd = &per_cpu(cpu_domains, i).sd;
  7580. init_sched_groups_power(i, sd);
  7581. }
  7582. #endif
  7583. #ifdef CONFIG_SCHED_MC
  7584. for_each_cpu(i, cpu_map) {
  7585. sd = &per_cpu(core_domains, i).sd;
  7586. init_sched_groups_power(i, sd);
  7587. }
  7588. #endif
  7589. for_each_cpu(i, cpu_map) {
  7590. sd = &per_cpu(phys_domains, i).sd;
  7591. init_sched_groups_power(i, sd);
  7592. }
  7593. #ifdef CONFIG_NUMA
  7594. for (i = 0; i < nr_node_ids; i++)
  7595. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7596. if (d.sd_allnodes) {
  7597. struct sched_group *sg;
  7598. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7599. d.tmpmask);
  7600. init_numa_sched_groups_power(sg);
  7601. }
  7602. #endif
  7603. /* Attach the domains */
  7604. for_each_cpu(i, cpu_map) {
  7605. #ifdef CONFIG_SCHED_SMT
  7606. sd = &per_cpu(cpu_domains, i).sd;
  7607. #elif defined(CONFIG_SCHED_MC)
  7608. sd = &per_cpu(core_domains, i).sd;
  7609. #else
  7610. sd = &per_cpu(phys_domains, i).sd;
  7611. #endif
  7612. cpu_attach_domain(sd, d.rd, i);
  7613. }
  7614. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7615. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7616. return 0;
  7617. error:
  7618. __free_domain_allocs(&d, alloc_state, cpu_map);
  7619. return -ENOMEM;
  7620. }
  7621. static int build_sched_domains(const struct cpumask *cpu_map)
  7622. {
  7623. return __build_sched_domains(cpu_map, NULL);
  7624. }
  7625. static cpumask_var_t *doms_cur; /* current sched domains */
  7626. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7627. static struct sched_domain_attr *dattr_cur;
  7628. /* attribues of custom domains in 'doms_cur' */
  7629. /*
  7630. * Special case: If a kmalloc of a doms_cur partition (array of
  7631. * cpumask) fails, then fallback to a single sched domain,
  7632. * as determined by the single cpumask fallback_doms.
  7633. */
  7634. static cpumask_var_t fallback_doms;
  7635. /*
  7636. * arch_update_cpu_topology lets virtualized architectures update the
  7637. * cpu core maps. It is supposed to return 1 if the topology changed
  7638. * or 0 if it stayed the same.
  7639. */
  7640. int __attribute__((weak)) arch_update_cpu_topology(void)
  7641. {
  7642. return 0;
  7643. }
  7644. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7645. {
  7646. int i;
  7647. cpumask_var_t *doms;
  7648. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7649. if (!doms)
  7650. return NULL;
  7651. for (i = 0; i < ndoms; i++) {
  7652. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7653. free_sched_domains(doms, i);
  7654. return NULL;
  7655. }
  7656. }
  7657. return doms;
  7658. }
  7659. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7660. {
  7661. unsigned int i;
  7662. for (i = 0; i < ndoms; i++)
  7663. free_cpumask_var(doms[i]);
  7664. kfree(doms);
  7665. }
  7666. /*
  7667. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7668. * For now this just excludes isolated cpus, but could be used to
  7669. * exclude other special cases in the future.
  7670. */
  7671. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7672. {
  7673. int err;
  7674. arch_update_cpu_topology();
  7675. ndoms_cur = 1;
  7676. doms_cur = alloc_sched_domains(ndoms_cur);
  7677. if (!doms_cur)
  7678. doms_cur = &fallback_doms;
  7679. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7680. dattr_cur = NULL;
  7681. err = build_sched_domains(doms_cur[0]);
  7682. register_sched_domain_sysctl();
  7683. return err;
  7684. }
  7685. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7686. struct cpumask *tmpmask)
  7687. {
  7688. free_sched_groups(cpu_map, tmpmask);
  7689. }
  7690. /*
  7691. * Detach sched domains from a group of cpus specified in cpu_map
  7692. * These cpus will now be attached to the NULL domain
  7693. */
  7694. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7695. {
  7696. /* Save because hotplug lock held. */
  7697. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7698. int i;
  7699. for_each_cpu(i, cpu_map)
  7700. cpu_attach_domain(NULL, &def_root_domain, i);
  7701. synchronize_sched();
  7702. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7703. }
  7704. /* handle null as "default" */
  7705. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7706. struct sched_domain_attr *new, int idx_new)
  7707. {
  7708. struct sched_domain_attr tmp;
  7709. /* fast path */
  7710. if (!new && !cur)
  7711. return 1;
  7712. tmp = SD_ATTR_INIT;
  7713. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7714. new ? (new + idx_new) : &tmp,
  7715. sizeof(struct sched_domain_attr));
  7716. }
  7717. /*
  7718. * Partition sched domains as specified by the 'ndoms_new'
  7719. * cpumasks in the array doms_new[] of cpumasks. This compares
  7720. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7721. * It destroys each deleted domain and builds each new domain.
  7722. *
  7723. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7724. * The masks don't intersect (don't overlap.) We should setup one
  7725. * sched domain for each mask. CPUs not in any of the cpumasks will
  7726. * not be load balanced. If the same cpumask appears both in the
  7727. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7728. * it as it is.
  7729. *
  7730. * The passed in 'doms_new' should be allocated using
  7731. * alloc_sched_domains. This routine takes ownership of it and will
  7732. * free_sched_domains it when done with it. If the caller failed the
  7733. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7734. * and partition_sched_domains() will fallback to the single partition
  7735. * 'fallback_doms', it also forces the domains to be rebuilt.
  7736. *
  7737. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7738. * ndoms_new == 0 is a special case for destroying existing domains,
  7739. * and it will not create the default domain.
  7740. *
  7741. * Call with hotplug lock held
  7742. */
  7743. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7744. struct sched_domain_attr *dattr_new)
  7745. {
  7746. int i, j, n;
  7747. int new_topology;
  7748. mutex_lock(&sched_domains_mutex);
  7749. /* always unregister in case we don't destroy any domains */
  7750. unregister_sched_domain_sysctl();
  7751. /* Let architecture update cpu core mappings. */
  7752. new_topology = arch_update_cpu_topology();
  7753. n = doms_new ? ndoms_new : 0;
  7754. /* Destroy deleted domains */
  7755. for (i = 0; i < ndoms_cur; i++) {
  7756. for (j = 0; j < n && !new_topology; j++) {
  7757. if (cpumask_equal(doms_cur[i], doms_new[j])
  7758. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7759. goto match1;
  7760. }
  7761. /* no match - a current sched domain not in new doms_new[] */
  7762. detach_destroy_domains(doms_cur[i]);
  7763. match1:
  7764. ;
  7765. }
  7766. if (doms_new == NULL) {
  7767. ndoms_cur = 0;
  7768. doms_new = &fallback_doms;
  7769. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7770. WARN_ON_ONCE(dattr_new);
  7771. }
  7772. /* Build new domains */
  7773. for (i = 0; i < ndoms_new; i++) {
  7774. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7775. if (cpumask_equal(doms_new[i], doms_cur[j])
  7776. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7777. goto match2;
  7778. }
  7779. /* no match - add a new doms_new */
  7780. __build_sched_domains(doms_new[i],
  7781. dattr_new ? dattr_new + i : NULL);
  7782. match2:
  7783. ;
  7784. }
  7785. /* Remember the new sched domains */
  7786. if (doms_cur != &fallback_doms)
  7787. free_sched_domains(doms_cur, ndoms_cur);
  7788. kfree(dattr_cur); /* kfree(NULL) is safe */
  7789. doms_cur = doms_new;
  7790. dattr_cur = dattr_new;
  7791. ndoms_cur = ndoms_new;
  7792. register_sched_domain_sysctl();
  7793. mutex_unlock(&sched_domains_mutex);
  7794. }
  7795. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7796. static void arch_reinit_sched_domains(void)
  7797. {
  7798. get_online_cpus();
  7799. /* Destroy domains first to force the rebuild */
  7800. partition_sched_domains(0, NULL, NULL);
  7801. rebuild_sched_domains();
  7802. put_online_cpus();
  7803. }
  7804. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7805. {
  7806. unsigned int level = 0;
  7807. if (sscanf(buf, "%u", &level) != 1)
  7808. return -EINVAL;
  7809. /*
  7810. * level is always be positive so don't check for
  7811. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7812. * What happens on 0 or 1 byte write,
  7813. * need to check for count as well?
  7814. */
  7815. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7816. return -EINVAL;
  7817. if (smt)
  7818. sched_smt_power_savings = level;
  7819. else
  7820. sched_mc_power_savings = level;
  7821. arch_reinit_sched_domains();
  7822. return count;
  7823. }
  7824. #ifdef CONFIG_SCHED_MC
  7825. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7826. char *page)
  7827. {
  7828. return sprintf(page, "%u\n", sched_mc_power_savings);
  7829. }
  7830. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7831. const char *buf, size_t count)
  7832. {
  7833. return sched_power_savings_store(buf, count, 0);
  7834. }
  7835. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7836. sched_mc_power_savings_show,
  7837. sched_mc_power_savings_store);
  7838. #endif
  7839. #ifdef CONFIG_SCHED_SMT
  7840. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7841. char *page)
  7842. {
  7843. return sprintf(page, "%u\n", sched_smt_power_savings);
  7844. }
  7845. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7846. const char *buf, size_t count)
  7847. {
  7848. return sched_power_savings_store(buf, count, 1);
  7849. }
  7850. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7851. sched_smt_power_savings_show,
  7852. sched_smt_power_savings_store);
  7853. #endif
  7854. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7855. {
  7856. int err = 0;
  7857. #ifdef CONFIG_SCHED_SMT
  7858. if (smt_capable())
  7859. err = sysfs_create_file(&cls->kset.kobj,
  7860. &attr_sched_smt_power_savings.attr);
  7861. #endif
  7862. #ifdef CONFIG_SCHED_MC
  7863. if (!err && mc_capable())
  7864. err = sysfs_create_file(&cls->kset.kobj,
  7865. &attr_sched_mc_power_savings.attr);
  7866. #endif
  7867. return err;
  7868. }
  7869. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7870. #ifndef CONFIG_CPUSETS
  7871. /*
  7872. * Add online and remove offline CPUs from the scheduler domains.
  7873. * When cpusets are enabled they take over this function.
  7874. */
  7875. static int update_sched_domains(struct notifier_block *nfb,
  7876. unsigned long action, void *hcpu)
  7877. {
  7878. switch (action) {
  7879. case CPU_ONLINE:
  7880. case CPU_ONLINE_FROZEN:
  7881. case CPU_DOWN_PREPARE:
  7882. case CPU_DOWN_PREPARE_FROZEN:
  7883. case CPU_DOWN_FAILED:
  7884. case CPU_DOWN_FAILED_FROZEN:
  7885. partition_sched_domains(1, NULL, NULL);
  7886. return NOTIFY_OK;
  7887. default:
  7888. return NOTIFY_DONE;
  7889. }
  7890. }
  7891. #endif
  7892. static int update_runtime(struct notifier_block *nfb,
  7893. unsigned long action, void *hcpu)
  7894. {
  7895. int cpu = (int)(long)hcpu;
  7896. switch (action) {
  7897. case CPU_DOWN_PREPARE:
  7898. case CPU_DOWN_PREPARE_FROZEN:
  7899. disable_runtime(cpu_rq(cpu));
  7900. return NOTIFY_OK;
  7901. case CPU_DOWN_FAILED:
  7902. case CPU_DOWN_FAILED_FROZEN:
  7903. case CPU_ONLINE:
  7904. case CPU_ONLINE_FROZEN:
  7905. enable_runtime(cpu_rq(cpu));
  7906. return NOTIFY_OK;
  7907. default:
  7908. return NOTIFY_DONE;
  7909. }
  7910. }
  7911. void __init sched_init_smp(void)
  7912. {
  7913. cpumask_var_t non_isolated_cpus;
  7914. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7915. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7916. #if defined(CONFIG_NUMA)
  7917. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7918. GFP_KERNEL);
  7919. BUG_ON(sched_group_nodes_bycpu == NULL);
  7920. #endif
  7921. get_online_cpus();
  7922. mutex_lock(&sched_domains_mutex);
  7923. arch_init_sched_domains(cpu_active_mask);
  7924. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7925. if (cpumask_empty(non_isolated_cpus))
  7926. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7927. mutex_unlock(&sched_domains_mutex);
  7928. put_online_cpus();
  7929. #ifndef CONFIG_CPUSETS
  7930. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7931. hotcpu_notifier(update_sched_domains, 0);
  7932. #endif
  7933. /* RT runtime code needs to handle some hotplug events */
  7934. hotcpu_notifier(update_runtime, 0);
  7935. init_hrtick();
  7936. /* Move init over to a non-isolated CPU */
  7937. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7938. BUG();
  7939. sched_init_granularity();
  7940. free_cpumask_var(non_isolated_cpus);
  7941. init_sched_rt_class();
  7942. }
  7943. #else
  7944. void __init sched_init_smp(void)
  7945. {
  7946. sched_init_granularity();
  7947. }
  7948. #endif /* CONFIG_SMP */
  7949. const_debug unsigned int sysctl_timer_migration = 1;
  7950. int in_sched_functions(unsigned long addr)
  7951. {
  7952. return in_lock_functions(addr) ||
  7953. (addr >= (unsigned long)__sched_text_start
  7954. && addr < (unsigned long)__sched_text_end);
  7955. }
  7956. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7957. {
  7958. cfs_rq->tasks_timeline = RB_ROOT;
  7959. INIT_LIST_HEAD(&cfs_rq->tasks);
  7960. #ifdef CONFIG_FAIR_GROUP_SCHED
  7961. cfs_rq->rq = rq;
  7962. #endif
  7963. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7964. }
  7965. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7966. {
  7967. struct rt_prio_array *array;
  7968. int i;
  7969. array = &rt_rq->active;
  7970. for (i = 0; i < MAX_RT_PRIO; i++) {
  7971. INIT_LIST_HEAD(array->queue + i);
  7972. __clear_bit(i, array->bitmap);
  7973. }
  7974. /* delimiter for bitsearch: */
  7975. __set_bit(MAX_RT_PRIO, array->bitmap);
  7976. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7977. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7978. #ifdef CONFIG_SMP
  7979. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7980. #endif
  7981. #endif
  7982. #ifdef CONFIG_SMP
  7983. rt_rq->rt_nr_migratory = 0;
  7984. rt_rq->overloaded = 0;
  7985. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7986. #endif
  7987. rt_rq->rt_time = 0;
  7988. rt_rq->rt_throttled = 0;
  7989. rt_rq->rt_runtime = 0;
  7990. spin_lock_init(&rt_rq->rt_runtime_lock);
  7991. #ifdef CONFIG_RT_GROUP_SCHED
  7992. rt_rq->rt_nr_boosted = 0;
  7993. rt_rq->rq = rq;
  7994. #endif
  7995. }
  7996. #ifdef CONFIG_FAIR_GROUP_SCHED
  7997. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7998. struct sched_entity *se, int cpu, int add,
  7999. struct sched_entity *parent)
  8000. {
  8001. struct rq *rq = cpu_rq(cpu);
  8002. tg->cfs_rq[cpu] = cfs_rq;
  8003. init_cfs_rq(cfs_rq, rq);
  8004. cfs_rq->tg = tg;
  8005. if (add)
  8006. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  8007. tg->se[cpu] = se;
  8008. /* se could be NULL for init_task_group */
  8009. if (!se)
  8010. return;
  8011. if (!parent)
  8012. se->cfs_rq = &rq->cfs;
  8013. else
  8014. se->cfs_rq = parent->my_q;
  8015. se->my_q = cfs_rq;
  8016. se->load.weight = tg->shares;
  8017. se->load.inv_weight = 0;
  8018. se->parent = parent;
  8019. }
  8020. #endif
  8021. #ifdef CONFIG_RT_GROUP_SCHED
  8022. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8023. struct sched_rt_entity *rt_se, int cpu, int add,
  8024. struct sched_rt_entity *parent)
  8025. {
  8026. struct rq *rq = cpu_rq(cpu);
  8027. tg->rt_rq[cpu] = rt_rq;
  8028. init_rt_rq(rt_rq, rq);
  8029. rt_rq->tg = tg;
  8030. rt_rq->rt_se = rt_se;
  8031. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8032. if (add)
  8033. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8034. tg->rt_se[cpu] = rt_se;
  8035. if (!rt_se)
  8036. return;
  8037. if (!parent)
  8038. rt_se->rt_rq = &rq->rt;
  8039. else
  8040. rt_se->rt_rq = parent->my_q;
  8041. rt_se->my_q = rt_rq;
  8042. rt_se->parent = parent;
  8043. INIT_LIST_HEAD(&rt_se->run_list);
  8044. }
  8045. #endif
  8046. void __init sched_init(void)
  8047. {
  8048. int i, j;
  8049. unsigned long alloc_size = 0, ptr;
  8050. #ifdef CONFIG_FAIR_GROUP_SCHED
  8051. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8052. #endif
  8053. #ifdef CONFIG_RT_GROUP_SCHED
  8054. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8055. #endif
  8056. #ifdef CONFIG_USER_SCHED
  8057. alloc_size *= 2;
  8058. #endif
  8059. #ifdef CONFIG_CPUMASK_OFFSTACK
  8060. alloc_size += num_possible_cpus() * cpumask_size();
  8061. #endif
  8062. if (alloc_size) {
  8063. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8064. #ifdef CONFIG_FAIR_GROUP_SCHED
  8065. init_task_group.se = (struct sched_entity **)ptr;
  8066. ptr += nr_cpu_ids * sizeof(void **);
  8067. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8068. ptr += nr_cpu_ids * sizeof(void **);
  8069. #ifdef CONFIG_USER_SCHED
  8070. root_task_group.se = (struct sched_entity **)ptr;
  8071. ptr += nr_cpu_ids * sizeof(void **);
  8072. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8073. ptr += nr_cpu_ids * sizeof(void **);
  8074. #endif /* CONFIG_USER_SCHED */
  8075. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8076. #ifdef CONFIG_RT_GROUP_SCHED
  8077. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8078. ptr += nr_cpu_ids * sizeof(void **);
  8079. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8080. ptr += nr_cpu_ids * sizeof(void **);
  8081. #ifdef CONFIG_USER_SCHED
  8082. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8083. ptr += nr_cpu_ids * sizeof(void **);
  8084. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8085. ptr += nr_cpu_ids * sizeof(void **);
  8086. #endif /* CONFIG_USER_SCHED */
  8087. #endif /* CONFIG_RT_GROUP_SCHED */
  8088. #ifdef CONFIG_CPUMASK_OFFSTACK
  8089. for_each_possible_cpu(i) {
  8090. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8091. ptr += cpumask_size();
  8092. }
  8093. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8094. }
  8095. #ifdef CONFIG_SMP
  8096. init_defrootdomain();
  8097. #endif
  8098. init_rt_bandwidth(&def_rt_bandwidth,
  8099. global_rt_period(), global_rt_runtime());
  8100. #ifdef CONFIG_RT_GROUP_SCHED
  8101. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8102. global_rt_period(), global_rt_runtime());
  8103. #ifdef CONFIG_USER_SCHED
  8104. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8105. global_rt_period(), RUNTIME_INF);
  8106. #endif /* CONFIG_USER_SCHED */
  8107. #endif /* CONFIG_RT_GROUP_SCHED */
  8108. #ifdef CONFIG_GROUP_SCHED
  8109. list_add(&init_task_group.list, &task_groups);
  8110. INIT_LIST_HEAD(&init_task_group.children);
  8111. #ifdef CONFIG_USER_SCHED
  8112. INIT_LIST_HEAD(&root_task_group.children);
  8113. init_task_group.parent = &root_task_group;
  8114. list_add(&init_task_group.siblings, &root_task_group.children);
  8115. #endif /* CONFIG_USER_SCHED */
  8116. #endif /* CONFIG_GROUP_SCHED */
  8117. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8118. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8119. __alignof__(unsigned long));
  8120. #endif
  8121. for_each_possible_cpu(i) {
  8122. struct rq *rq;
  8123. rq = cpu_rq(i);
  8124. spin_lock_init(&rq->lock);
  8125. rq->nr_running = 0;
  8126. rq->calc_load_active = 0;
  8127. rq->calc_load_update = jiffies + LOAD_FREQ;
  8128. init_cfs_rq(&rq->cfs, rq);
  8129. init_rt_rq(&rq->rt, rq);
  8130. #ifdef CONFIG_FAIR_GROUP_SCHED
  8131. init_task_group.shares = init_task_group_load;
  8132. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8133. #ifdef CONFIG_CGROUP_SCHED
  8134. /*
  8135. * How much cpu bandwidth does init_task_group get?
  8136. *
  8137. * In case of task-groups formed thr' the cgroup filesystem, it
  8138. * gets 100% of the cpu resources in the system. This overall
  8139. * system cpu resource is divided among the tasks of
  8140. * init_task_group and its child task-groups in a fair manner,
  8141. * based on each entity's (task or task-group's) weight
  8142. * (se->load.weight).
  8143. *
  8144. * In other words, if init_task_group has 10 tasks of weight
  8145. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8146. * then A0's share of the cpu resource is:
  8147. *
  8148. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8149. *
  8150. * We achieve this by letting init_task_group's tasks sit
  8151. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8152. */
  8153. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8154. #elif defined CONFIG_USER_SCHED
  8155. root_task_group.shares = NICE_0_LOAD;
  8156. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8157. /*
  8158. * In case of task-groups formed thr' the user id of tasks,
  8159. * init_task_group represents tasks belonging to root user.
  8160. * Hence it forms a sibling of all subsequent groups formed.
  8161. * In this case, init_task_group gets only a fraction of overall
  8162. * system cpu resource, based on the weight assigned to root
  8163. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8164. * by letting tasks of init_task_group sit in a separate cfs_rq
  8165. * (init_tg_cfs_rq) and having one entity represent this group of
  8166. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8167. */
  8168. init_tg_cfs_entry(&init_task_group,
  8169. &per_cpu(init_tg_cfs_rq, i),
  8170. &per_cpu(init_sched_entity, i), i, 1,
  8171. root_task_group.se[i]);
  8172. #endif
  8173. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8174. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8175. #ifdef CONFIG_RT_GROUP_SCHED
  8176. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8177. #ifdef CONFIG_CGROUP_SCHED
  8178. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8179. #elif defined CONFIG_USER_SCHED
  8180. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8181. init_tg_rt_entry(&init_task_group,
  8182. &per_cpu(init_rt_rq, i),
  8183. &per_cpu(init_sched_rt_entity, i), i, 1,
  8184. root_task_group.rt_se[i]);
  8185. #endif
  8186. #endif
  8187. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8188. rq->cpu_load[j] = 0;
  8189. #ifdef CONFIG_SMP
  8190. rq->sd = NULL;
  8191. rq->rd = NULL;
  8192. rq->post_schedule = 0;
  8193. rq->active_balance = 0;
  8194. rq->next_balance = jiffies;
  8195. rq->push_cpu = 0;
  8196. rq->cpu = i;
  8197. rq->online = 0;
  8198. rq->migration_thread = NULL;
  8199. rq->idle_stamp = 0;
  8200. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8201. INIT_LIST_HEAD(&rq->migration_queue);
  8202. rq_attach_root(rq, &def_root_domain);
  8203. #endif
  8204. init_rq_hrtick(rq);
  8205. atomic_set(&rq->nr_iowait, 0);
  8206. }
  8207. set_load_weight(&init_task);
  8208. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8209. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8210. #endif
  8211. #ifdef CONFIG_SMP
  8212. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8213. #endif
  8214. #ifdef CONFIG_RT_MUTEXES
  8215. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8216. #endif
  8217. /*
  8218. * The boot idle thread does lazy MMU switching as well:
  8219. */
  8220. atomic_inc(&init_mm.mm_count);
  8221. enter_lazy_tlb(&init_mm, current);
  8222. /*
  8223. * Make us the idle thread. Technically, schedule() should not be
  8224. * called from this thread, however somewhere below it might be,
  8225. * but because we are the idle thread, we just pick up running again
  8226. * when this runqueue becomes "idle".
  8227. */
  8228. init_idle(current, smp_processor_id());
  8229. calc_load_update = jiffies + LOAD_FREQ;
  8230. /*
  8231. * During early bootup we pretend to be a normal task:
  8232. */
  8233. current->sched_class = &fair_sched_class;
  8234. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8235. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8236. #ifdef CONFIG_SMP
  8237. #ifdef CONFIG_NO_HZ
  8238. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8239. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8240. #endif
  8241. /* May be allocated at isolcpus cmdline parse time */
  8242. if (cpu_isolated_map == NULL)
  8243. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8244. #endif /* SMP */
  8245. perf_event_init();
  8246. scheduler_running = 1;
  8247. }
  8248. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8249. static inline int preempt_count_equals(int preempt_offset)
  8250. {
  8251. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8252. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8253. }
  8254. void __might_sleep(char *file, int line, int preempt_offset)
  8255. {
  8256. #ifdef in_atomic
  8257. static unsigned long prev_jiffy; /* ratelimiting */
  8258. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8259. system_state != SYSTEM_RUNNING || oops_in_progress)
  8260. return;
  8261. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8262. return;
  8263. prev_jiffy = jiffies;
  8264. printk(KERN_ERR
  8265. "BUG: sleeping function called from invalid context at %s:%d\n",
  8266. file, line);
  8267. printk(KERN_ERR
  8268. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8269. in_atomic(), irqs_disabled(),
  8270. current->pid, current->comm);
  8271. debug_show_held_locks(current);
  8272. if (irqs_disabled())
  8273. print_irqtrace_events(current);
  8274. dump_stack();
  8275. #endif
  8276. }
  8277. EXPORT_SYMBOL(__might_sleep);
  8278. #endif
  8279. #ifdef CONFIG_MAGIC_SYSRQ
  8280. static void normalize_task(struct rq *rq, struct task_struct *p)
  8281. {
  8282. int on_rq;
  8283. update_rq_clock(rq);
  8284. on_rq = p->se.on_rq;
  8285. if (on_rq)
  8286. deactivate_task(rq, p, 0);
  8287. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8288. if (on_rq) {
  8289. activate_task(rq, p, 0);
  8290. resched_task(rq->curr);
  8291. }
  8292. }
  8293. void normalize_rt_tasks(void)
  8294. {
  8295. struct task_struct *g, *p;
  8296. unsigned long flags;
  8297. struct rq *rq;
  8298. read_lock_irqsave(&tasklist_lock, flags);
  8299. do_each_thread(g, p) {
  8300. /*
  8301. * Only normalize user tasks:
  8302. */
  8303. if (!p->mm)
  8304. continue;
  8305. p->se.exec_start = 0;
  8306. #ifdef CONFIG_SCHEDSTATS
  8307. p->se.wait_start = 0;
  8308. p->se.sleep_start = 0;
  8309. p->se.block_start = 0;
  8310. #endif
  8311. if (!rt_task(p)) {
  8312. /*
  8313. * Renice negative nice level userspace
  8314. * tasks back to 0:
  8315. */
  8316. if (TASK_NICE(p) < 0 && p->mm)
  8317. set_user_nice(p, 0);
  8318. continue;
  8319. }
  8320. spin_lock(&p->pi_lock);
  8321. rq = __task_rq_lock(p);
  8322. normalize_task(rq, p);
  8323. __task_rq_unlock(rq);
  8324. spin_unlock(&p->pi_lock);
  8325. } while_each_thread(g, p);
  8326. read_unlock_irqrestore(&tasklist_lock, flags);
  8327. }
  8328. #endif /* CONFIG_MAGIC_SYSRQ */
  8329. #ifdef CONFIG_IA64
  8330. /*
  8331. * These functions are only useful for the IA64 MCA handling.
  8332. *
  8333. * They can only be called when the whole system has been
  8334. * stopped - every CPU needs to be quiescent, and no scheduling
  8335. * activity can take place. Using them for anything else would
  8336. * be a serious bug, and as a result, they aren't even visible
  8337. * under any other configuration.
  8338. */
  8339. /**
  8340. * curr_task - return the current task for a given cpu.
  8341. * @cpu: the processor in question.
  8342. *
  8343. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8344. */
  8345. struct task_struct *curr_task(int cpu)
  8346. {
  8347. return cpu_curr(cpu);
  8348. }
  8349. /**
  8350. * set_curr_task - set the current task for a given cpu.
  8351. * @cpu: the processor in question.
  8352. * @p: the task pointer to set.
  8353. *
  8354. * Description: This function must only be used when non-maskable interrupts
  8355. * are serviced on a separate stack. It allows the architecture to switch the
  8356. * notion of the current task on a cpu in a non-blocking manner. This function
  8357. * must be called with all CPU's synchronized, and interrupts disabled, the
  8358. * and caller must save the original value of the current task (see
  8359. * curr_task() above) and restore that value before reenabling interrupts and
  8360. * re-starting the system.
  8361. *
  8362. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8363. */
  8364. void set_curr_task(int cpu, struct task_struct *p)
  8365. {
  8366. cpu_curr(cpu) = p;
  8367. }
  8368. #endif
  8369. #ifdef CONFIG_FAIR_GROUP_SCHED
  8370. static void free_fair_sched_group(struct task_group *tg)
  8371. {
  8372. int i;
  8373. for_each_possible_cpu(i) {
  8374. if (tg->cfs_rq)
  8375. kfree(tg->cfs_rq[i]);
  8376. if (tg->se)
  8377. kfree(tg->se[i]);
  8378. }
  8379. kfree(tg->cfs_rq);
  8380. kfree(tg->se);
  8381. }
  8382. static
  8383. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8384. {
  8385. struct cfs_rq *cfs_rq;
  8386. struct sched_entity *se;
  8387. struct rq *rq;
  8388. int i;
  8389. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8390. if (!tg->cfs_rq)
  8391. goto err;
  8392. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8393. if (!tg->se)
  8394. goto err;
  8395. tg->shares = NICE_0_LOAD;
  8396. for_each_possible_cpu(i) {
  8397. rq = cpu_rq(i);
  8398. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8399. GFP_KERNEL, cpu_to_node(i));
  8400. if (!cfs_rq)
  8401. goto err;
  8402. se = kzalloc_node(sizeof(struct sched_entity),
  8403. GFP_KERNEL, cpu_to_node(i));
  8404. if (!se)
  8405. goto err;
  8406. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8407. }
  8408. return 1;
  8409. err:
  8410. return 0;
  8411. }
  8412. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8413. {
  8414. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8415. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8416. }
  8417. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8418. {
  8419. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8420. }
  8421. #else /* !CONFG_FAIR_GROUP_SCHED */
  8422. static inline void free_fair_sched_group(struct task_group *tg)
  8423. {
  8424. }
  8425. static inline
  8426. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8427. {
  8428. return 1;
  8429. }
  8430. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8431. {
  8432. }
  8433. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8434. {
  8435. }
  8436. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8437. #ifdef CONFIG_RT_GROUP_SCHED
  8438. static void free_rt_sched_group(struct task_group *tg)
  8439. {
  8440. int i;
  8441. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8442. for_each_possible_cpu(i) {
  8443. if (tg->rt_rq)
  8444. kfree(tg->rt_rq[i]);
  8445. if (tg->rt_se)
  8446. kfree(tg->rt_se[i]);
  8447. }
  8448. kfree(tg->rt_rq);
  8449. kfree(tg->rt_se);
  8450. }
  8451. static
  8452. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8453. {
  8454. struct rt_rq *rt_rq;
  8455. struct sched_rt_entity *rt_se;
  8456. struct rq *rq;
  8457. int i;
  8458. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8459. if (!tg->rt_rq)
  8460. goto err;
  8461. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8462. if (!tg->rt_se)
  8463. goto err;
  8464. init_rt_bandwidth(&tg->rt_bandwidth,
  8465. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8466. for_each_possible_cpu(i) {
  8467. rq = cpu_rq(i);
  8468. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8469. GFP_KERNEL, cpu_to_node(i));
  8470. if (!rt_rq)
  8471. goto err;
  8472. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8473. GFP_KERNEL, cpu_to_node(i));
  8474. if (!rt_se)
  8475. goto err;
  8476. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8477. }
  8478. return 1;
  8479. err:
  8480. return 0;
  8481. }
  8482. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8483. {
  8484. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8485. &cpu_rq(cpu)->leaf_rt_rq_list);
  8486. }
  8487. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8488. {
  8489. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8490. }
  8491. #else /* !CONFIG_RT_GROUP_SCHED */
  8492. static inline void free_rt_sched_group(struct task_group *tg)
  8493. {
  8494. }
  8495. static inline
  8496. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8497. {
  8498. return 1;
  8499. }
  8500. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8501. {
  8502. }
  8503. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8504. {
  8505. }
  8506. #endif /* CONFIG_RT_GROUP_SCHED */
  8507. #ifdef CONFIG_GROUP_SCHED
  8508. static void free_sched_group(struct task_group *tg)
  8509. {
  8510. free_fair_sched_group(tg);
  8511. free_rt_sched_group(tg);
  8512. kfree(tg);
  8513. }
  8514. /* allocate runqueue etc for a new task group */
  8515. struct task_group *sched_create_group(struct task_group *parent)
  8516. {
  8517. struct task_group *tg;
  8518. unsigned long flags;
  8519. int i;
  8520. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8521. if (!tg)
  8522. return ERR_PTR(-ENOMEM);
  8523. if (!alloc_fair_sched_group(tg, parent))
  8524. goto err;
  8525. if (!alloc_rt_sched_group(tg, parent))
  8526. goto err;
  8527. spin_lock_irqsave(&task_group_lock, flags);
  8528. for_each_possible_cpu(i) {
  8529. register_fair_sched_group(tg, i);
  8530. register_rt_sched_group(tg, i);
  8531. }
  8532. list_add_rcu(&tg->list, &task_groups);
  8533. WARN_ON(!parent); /* root should already exist */
  8534. tg->parent = parent;
  8535. INIT_LIST_HEAD(&tg->children);
  8536. list_add_rcu(&tg->siblings, &parent->children);
  8537. spin_unlock_irqrestore(&task_group_lock, flags);
  8538. return tg;
  8539. err:
  8540. free_sched_group(tg);
  8541. return ERR_PTR(-ENOMEM);
  8542. }
  8543. /* rcu callback to free various structures associated with a task group */
  8544. static void free_sched_group_rcu(struct rcu_head *rhp)
  8545. {
  8546. /* now it should be safe to free those cfs_rqs */
  8547. free_sched_group(container_of(rhp, struct task_group, rcu));
  8548. }
  8549. /* Destroy runqueue etc associated with a task group */
  8550. void sched_destroy_group(struct task_group *tg)
  8551. {
  8552. unsigned long flags;
  8553. int i;
  8554. spin_lock_irqsave(&task_group_lock, flags);
  8555. for_each_possible_cpu(i) {
  8556. unregister_fair_sched_group(tg, i);
  8557. unregister_rt_sched_group(tg, i);
  8558. }
  8559. list_del_rcu(&tg->list);
  8560. list_del_rcu(&tg->siblings);
  8561. spin_unlock_irqrestore(&task_group_lock, flags);
  8562. /* wait for possible concurrent references to cfs_rqs complete */
  8563. call_rcu(&tg->rcu, free_sched_group_rcu);
  8564. }
  8565. /* change task's runqueue when it moves between groups.
  8566. * The caller of this function should have put the task in its new group
  8567. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8568. * reflect its new group.
  8569. */
  8570. void sched_move_task(struct task_struct *tsk)
  8571. {
  8572. int on_rq, running;
  8573. unsigned long flags;
  8574. struct rq *rq;
  8575. rq = task_rq_lock(tsk, &flags);
  8576. update_rq_clock(rq);
  8577. running = task_current(rq, tsk);
  8578. on_rq = tsk->se.on_rq;
  8579. if (on_rq)
  8580. dequeue_task(rq, tsk, 0);
  8581. if (unlikely(running))
  8582. tsk->sched_class->put_prev_task(rq, tsk);
  8583. set_task_rq(tsk, task_cpu(tsk));
  8584. #ifdef CONFIG_FAIR_GROUP_SCHED
  8585. if (tsk->sched_class->moved_group)
  8586. tsk->sched_class->moved_group(tsk);
  8587. #endif
  8588. if (unlikely(running))
  8589. tsk->sched_class->set_curr_task(rq);
  8590. if (on_rq)
  8591. enqueue_task(rq, tsk, 0);
  8592. task_rq_unlock(rq, &flags);
  8593. }
  8594. #endif /* CONFIG_GROUP_SCHED */
  8595. #ifdef CONFIG_FAIR_GROUP_SCHED
  8596. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8597. {
  8598. struct cfs_rq *cfs_rq = se->cfs_rq;
  8599. int on_rq;
  8600. on_rq = se->on_rq;
  8601. if (on_rq)
  8602. dequeue_entity(cfs_rq, se, 0);
  8603. se->load.weight = shares;
  8604. se->load.inv_weight = 0;
  8605. if (on_rq)
  8606. enqueue_entity(cfs_rq, se, 0);
  8607. }
  8608. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8609. {
  8610. struct cfs_rq *cfs_rq = se->cfs_rq;
  8611. struct rq *rq = cfs_rq->rq;
  8612. unsigned long flags;
  8613. spin_lock_irqsave(&rq->lock, flags);
  8614. __set_se_shares(se, shares);
  8615. spin_unlock_irqrestore(&rq->lock, flags);
  8616. }
  8617. static DEFINE_MUTEX(shares_mutex);
  8618. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8619. {
  8620. int i;
  8621. unsigned long flags;
  8622. /*
  8623. * We can't change the weight of the root cgroup.
  8624. */
  8625. if (!tg->se[0])
  8626. return -EINVAL;
  8627. if (shares < MIN_SHARES)
  8628. shares = MIN_SHARES;
  8629. else if (shares > MAX_SHARES)
  8630. shares = MAX_SHARES;
  8631. mutex_lock(&shares_mutex);
  8632. if (tg->shares == shares)
  8633. goto done;
  8634. spin_lock_irqsave(&task_group_lock, flags);
  8635. for_each_possible_cpu(i)
  8636. unregister_fair_sched_group(tg, i);
  8637. list_del_rcu(&tg->siblings);
  8638. spin_unlock_irqrestore(&task_group_lock, flags);
  8639. /* wait for any ongoing reference to this group to finish */
  8640. synchronize_sched();
  8641. /*
  8642. * Now we are free to modify the group's share on each cpu
  8643. * w/o tripping rebalance_share or load_balance_fair.
  8644. */
  8645. tg->shares = shares;
  8646. for_each_possible_cpu(i) {
  8647. /*
  8648. * force a rebalance
  8649. */
  8650. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8651. set_se_shares(tg->se[i], shares);
  8652. }
  8653. /*
  8654. * Enable load balance activity on this group, by inserting it back on
  8655. * each cpu's rq->leaf_cfs_rq_list.
  8656. */
  8657. spin_lock_irqsave(&task_group_lock, flags);
  8658. for_each_possible_cpu(i)
  8659. register_fair_sched_group(tg, i);
  8660. list_add_rcu(&tg->siblings, &tg->parent->children);
  8661. spin_unlock_irqrestore(&task_group_lock, flags);
  8662. done:
  8663. mutex_unlock(&shares_mutex);
  8664. return 0;
  8665. }
  8666. unsigned long sched_group_shares(struct task_group *tg)
  8667. {
  8668. return tg->shares;
  8669. }
  8670. #endif
  8671. #ifdef CONFIG_RT_GROUP_SCHED
  8672. /*
  8673. * Ensure that the real time constraints are schedulable.
  8674. */
  8675. static DEFINE_MUTEX(rt_constraints_mutex);
  8676. static unsigned long to_ratio(u64 period, u64 runtime)
  8677. {
  8678. if (runtime == RUNTIME_INF)
  8679. return 1ULL << 20;
  8680. return div64_u64(runtime << 20, period);
  8681. }
  8682. /* Must be called with tasklist_lock held */
  8683. static inline int tg_has_rt_tasks(struct task_group *tg)
  8684. {
  8685. struct task_struct *g, *p;
  8686. do_each_thread(g, p) {
  8687. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8688. return 1;
  8689. } while_each_thread(g, p);
  8690. return 0;
  8691. }
  8692. struct rt_schedulable_data {
  8693. struct task_group *tg;
  8694. u64 rt_period;
  8695. u64 rt_runtime;
  8696. };
  8697. static int tg_schedulable(struct task_group *tg, void *data)
  8698. {
  8699. struct rt_schedulable_data *d = data;
  8700. struct task_group *child;
  8701. unsigned long total, sum = 0;
  8702. u64 period, runtime;
  8703. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8704. runtime = tg->rt_bandwidth.rt_runtime;
  8705. if (tg == d->tg) {
  8706. period = d->rt_period;
  8707. runtime = d->rt_runtime;
  8708. }
  8709. #ifdef CONFIG_USER_SCHED
  8710. if (tg == &root_task_group) {
  8711. period = global_rt_period();
  8712. runtime = global_rt_runtime();
  8713. }
  8714. #endif
  8715. /*
  8716. * Cannot have more runtime than the period.
  8717. */
  8718. if (runtime > period && runtime != RUNTIME_INF)
  8719. return -EINVAL;
  8720. /*
  8721. * Ensure we don't starve existing RT tasks.
  8722. */
  8723. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8724. return -EBUSY;
  8725. total = to_ratio(period, runtime);
  8726. /*
  8727. * Nobody can have more than the global setting allows.
  8728. */
  8729. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8730. return -EINVAL;
  8731. /*
  8732. * The sum of our children's runtime should not exceed our own.
  8733. */
  8734. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8735. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8736. runtime = child->rt_bandwidth.rt_runtime;
  8737. if (child == d->tg) {
  8738. period = d->rt_period;
  8739. runtime = d->rt_runtime;
  8740. }
  8741. sum += to_ratio(period, runtime);
  8742. }
  8743. if (sum > total)
  8744. return -EINVAL;
  8745. return 0;
  8746. }
  8747. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8748. {
  8749. struct rt_schedulable_data data = {
  8750. .tg = tg,
  8751. .rt_period = period,
  8752. .rt_runtime = runtime,
  8753. };
  8754. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8755. }
  8756. static int tg_set_bandwidth(struct task_group *tg,
  8757. u64 rt_period, u64 rt_runtime)
  8758. {
  8759. int i, err = 0;
  8760. mutex_lock(&rt_constraints_mutex);
  8761. read_lock(&tasklist_lock);
  8762. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8763. if (err)
  8764. goto unlock;
  8765. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8766. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8767. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8768. for_each_possible_cpu(i) {
  8769. struct rt_rq *rt_rq = tg->rt_rq[i];
  8770. spin_lock(&rt_rq->rt_runtime_lock);
  8771. rt_rq->rt_runtime = rt_runtime;
  8772. spin_unlock(&rt_rq->rt_runtime_lock);
  8773. }
  8774. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8775. unlock:
  8776. read_unlock(&tasklist_lock);
  8777. mutex_unlock(&rt_constraints_mutex);
  8778. return err;
  8779. }
  8780. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8781. {
  8782. u64 rt_runtime, rt_period;
  8783. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8784. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8785. if (rt_runtime_us < 0)
  8786. rt_runtime = RUNTIME_INF;
  8787. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8788. }
  8789. long sched_group_rt_runtime(struct task_group *tg)
  8790. {
  8791. u64 rt_runtime_us;
  8792. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8793. return -1;
  8794. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8795. do_div(rt_runtime_us, NSEC_PER_USEC);
  8796. return rt_runtime_us;
  8797. }
  8798. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8799. {
  8800. u64 rt_runtime, rt_period;
  8801. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8802. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8803. if (rt_period == 0)
  8804. return -EINVAL;
  8805. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8806. }
  8807. long sched_group_rt_period(struct task_group *tg)
  8808. {
  8809. u64 rt_period_us;
  8810. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8811. do_div(rt_period_us, NSEC_PER_USEC);
  8812. return rt_period_us;
  8813. }
  8814. static int sched_rt_global_constraints(void)
  8815. {
  8816. u64 runtime, period;
  8817. int ret = 0;
  8818. if (sysctl_sched_rt_period <= 0)
  8819. return -EINVAL;
  8820. runtime = global_rt_runtime();
  8821. period = global_rt_period();
  8822. /*
  8823. * Sanity check on the sysctl variables.
  8824. */
  8825. if (runtime > period && runtime != RUNTIME_INF)
  8826. return -EINVAL;
  8827. mutex_lock(&rt_constraints_mutex);
  8828. read_lock(&tasklist_lock);
  8829. ret = __rt_schedulable(NULL, 0, 0);
  8830. read_unlock(&tasklist_lock);
  8831. mutex_unlock(&rt_constraints_mutex);
  8832. return ret;
  8833. }
  8834. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8835. {
  8836. /* Don't accept realtime tasks when there is no way for them to run */
  8837. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8838. return 0;
  8839. return 1;
  8840. }
  8841. #else /* !CONFIG_RT_GROUP_SCHED */
  8842. static int sched_rt_global_constraints(void)
  8843. {
  8844. unsigned long flags;
  8845. int i;
  8846. if (sysctl_sched_rt_period <= 0)
  8847. return -EINVAL;
  8848. /*
  8849. * There's always some RT tasks in the root group
  8850. * -- migration, kstopmachine etc..
  8851. */
  8852. if (sysctl_sched_rt_runtime == 0)
  8853. return -EBUSY;
  8854. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8855. for_each_possible_cpu(i) {
  8856. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8857. spin_lock(&rt_rq->rt_runtime_lock);
  8858. rt_rq->rt_runtime = global_rt_runtime();
  8859. spin_unlock(&rt_rq->rt_runtime_lock);
  8860. }
  8861. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8862. return 0;
  8863. }
  8864. #endif /* CONFIG_RT_GROUP_SCHED */
  8865. int sched_rt_handler(struct ctl_table *table, int write,
  8866. void __user *buffer, size_t *lenp,
  8867. loff_t *ppos)
  8868. {
  8869. int ret;
  8870. int old_period, old_runtime;
  8871. static DEFINE_MUTEX(mutex);
  8872. mutex_lock(&mutex);
  8873. old_period = sysctl_sched_rt_period;
  8874. old_runtime = sysctl_sched_rt_runtime;
  8875. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8876. if (!ret && write) {
  8877. ret = sched_rt_global_constraints();
  8878. if (ret) {
  8879. sysctl_sched_rt_period = old_period;
  8880. sysctl_sched_rt_runtime = old_runtime;
  8881. } else {
  8882. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8883. def_rt_bandwidth.rt_period =
  8884. ns_to_ktime(global_rt_period());
  8885. }
  8886. }
  8887. mutex_unlock(&mutex);
  8888. return ret;
  8889. }
  8890. #ifdef CONFIG_CGROUP_SCHED
  8891. /* return corresponding task_group object of a cgroup */
  8892. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8893. {
  8894. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8895. struct task_group, css);
  8896. }
  8897. static struct cgroup_subsys_state *
  8898. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8899. {
  8900. struct task_group *tg, *parent;
  8901. if (!cgrp->parent) {
  8902. /* This is early initialization for the top cgroup */
  8903. return &init_task_group.css;
  8904. }
  8905. parent = cgroup_tg(cgrp->parent);
  8906. tg = sched_create_group(parent);
  8907. if (IS_ERR(tg))
  8908. return ERR_PTR(-ENOMEM);
  8909. return &tg->css;
  8910. }
  8911. static void
  8912. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8913. {
  8914. struct task_group *tg = cgroup_tg(cgrp);
  8915. sched_destroy_group(tg);
  8916. }
  8917. static int
  8918. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8919. {
  8920. #ifdef CONFIG_RT_GROUP_SCHED
  8921. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8922. return -EINVAL;
  8923. #else
  8924. /* We don't support RT-tasks being in separate groups */
  8925. if (tsk->sched_class != &fair_sched_class)
  8926. return -EINVAL;
  8927. #endif
  8928. return 0;
  8929. }
  8930. static int
  8931. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8932. struct task_struct *tsk, bool threadgroup)
  8933. {
  8934. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8935. if (retval)
  8936. return retval;
  8937. if (threadgroup) {
  8938. struct task_struct *c;
  8939. rcu_read_lock();
  8940. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8941. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8942. if (retval) {
  8943. rcu_read_unlock();
  8944. return retval;
  8945. }
  8946. }
  8947. rcu_read_unlock();
  8948. }
  8949. return 0;
  8950. }
  8951. static void
  8952. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8953. struct cgroup *old_cont, struct task_struct *tsk,
  8954. bool threadgroup)
  8955. {
  8956. sched_move_task(tsk);
  8957. if (threadgroup) {
  8958. struct task_struct *c;
  8959. rcu_read_lock();
  8960. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8961. sched_move_task(c);
  8962. }
  8963. rcu_read_unlock();
  8964. }
  8965. }
  8966. #ifdef CONFIG_FAIR_GROUP_SCHED
  8967. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8968. u64 shareval)
  8969. {
  8970. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8971. }
  8972. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8973. {
  8974. struct task_group *tg = cgroup_tg(cgrp);
  8975. return (u64) tg->shares;
  8976. }
  8977. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8978. #ifdef CONFIG_RT_GROUP_SCHED
  8979. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8980. s64 val)
  8981. {
  8982. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8983. }
  8984. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8985. {
  8986. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8987. }
  8988. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8989. u64 rt_period_us)
  8990. {
  8991. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8992. }
  8993. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8994. {
  8995. return sched_group_rt_period(cgroup_tg(cgrp));
  8996. }
  8997. #endif /* CONFIG_RT_GROUP_SCHED */
  8998. static struct cftype cpu_files[] = {
  8999. #ifdef CONFIG_FAIR_GROUP_SCHED
  9000. {
  9001. .name = "shares",
  9002. .read_u64 = cpu_shares_read_u64,
  9003. .write_u64 = cpu_shares_write_u64,
  9004. },
  9005. #endif
  9006. #ifdef CONFIG_RT_GROUP_SCHED
  9007. {
  9008. .name = "rt_runtime_us",
  9009. .read_s64 = cpu_rt_runtime_read,
  9010. .write_s64 = cpu_rt_runtime_write,
  9011. },
  9012. {
  9013. .name = "rt_period_us",
  9014. .read_u64 = cpu_rt_period_read_uint,
  9015. .write_u64 = cpu_rt_period_write_uint,
  9016. },
  9017. #endif
  9018. };
  9019. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9020. {
  9021. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9022. }
  9023. struct cgroup_subsys cpu_cgroup_subsys = {
  9024. .name = "cpu",
  9025. .create = cpu_cgroup_create,
  9026. .destroy = cpu_cgroup_destroy,
  9027. .can_attach = cpu_cgroup_can_attach,
  9028. .attach = cpu_cgroup_attach,
  9029. .populate = cpu_cgroup_populate,
  9030. .subsys_id = cpu_cgroup_subsys_id,
  9031. .early_init = 1,
  9032. };
  9033. #endif /* CONFIG_CGROUP_SCHED */
  9034. #ifdef CONFIG_CGROUP_CPUACCT
  9035. /*
  9036. * CPU accounting code for task groups.
  9037. *
  9038. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9039. * (balbir@in.ibm.com).
  9040. */
  9041. /* track cpu usage of a group of tasks and its child groups */
  9042. struct cpuacct {
  9043. struct cgroup_subsys_state css;
  9044. /* cpuusage holds pointer to a u64-type object on every cpu */
  9045. u64 *cpuusage;
  9046. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9047. struct cpuacct *parent;
  9048. };
  9049. struct cgroup_subsys cpuacct_subsys;
  9050. /* return cpu accounting group corresponding to this container */
  9051. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9052. {
  9053. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9054. struct cpuacct, css);
  9055. }
  9056. /* return cpu accounting group to which this task belongs */
  9057. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9058. {
  9059. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9060. struct cpuacct, css);
  9061. }
  9062. /* create a new cpu accounting group */
  9063. static struct cgroup_subsys_state *cpuacct_create(
  9064. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9065. {
  9066. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9067. int i;
  9068. if (!ca)
  9069. goto out;
  9070. ca->cpuusage = alloc_percpu(u64);
  9071. if (!ca->cpuusage)
  9072. goto out_free_ca;
  9073. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9074. if (percpu_counter_init(&ca->cpustat[i], 0))
  9075. goto out_free_counters;
  9076. if (cgrp->parent)
  9077. ca->parent = cgroup_ca(cgrp->parent);
  9078. return &ca->css;
  9079. out_free_counters:
  9080. while (--i >= 0)
  9081. percpu_counter_destroy(&ca->cpustat[i]);
  9082. free_percpu(ca->cpuusage);
  9083. out_free_ca:
  9084. kfree(ca);
  9085. out:
  9086. return ERR_PTR(-ENOMEM);
  9087. }
  9088. /* destroy an existing cpu accounting group */
  9089. static void
  9090. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9091. {
  9092. struct cpuacct *ca = cgroup_ca(cgrp);
  9093. int i;
  9094. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9095. percpu_counter_destroy(&ca->cpustat[i]);
  9096. free_percpu(ca->cpuusage);
  9097. kfree(ca);
  9098. }
  9099. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9100. {
  9101. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9102. u64 data;
  9103. #ifndef CONFIG_64BIT
  9104. /*
  9105. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9106. */
  9107. spin_lock_irq(&cpu_rq(cpu)->lock);
  9108. data = *cpuusage;
  9109. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9110. #else
  9111. data = *cpuusage;
  9112. #endif
  9113. return data;
  9114. }
  9115. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9116. {
  9117. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9118. #ifndef CONFIG_64BIT
  9119. /*
  9120. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9121. */
  9122. spin_lock_irq(&cpu_rq(cpu)->lock);
  9123. *cpuusage = val;
  9124. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9125. #else
  9126. *cpuusage = val;
  9127. #endif
  9128. }
  9129. /* return total cpu usage (in nanoseconds) of a group */
  9130. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9131. {
  9132. struct cpuacct *ca = cgroup_ca(cgrp);
  9133. u64 totalcpuusage = 0;
  9134. int i;
  9135. for_each_present_cpu(i)
  9136. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9137. return totalcpuusage;
  9138. }
  9139. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9140. u64 reset)
  9141. {
  9142. struct cpuacct *ca = cgroup_ca(cgrp);
  9143. int err = 0;
  9144. int i;
  9145. if (reset) {
  9146. err = -EINVAL;
  9147. goto out;
  9148. }
  9149. for_each_present_cpu(i)
  9150. cpuacct_cpuusage_write(ca, i, 0);
  9151. out:
  9152. return err;
  9153. }
  9154. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9155. struct seq_file *m)
  9156. {
  9157. struct cpuacct *ca = cgroup_ca(cgroup);
  9158. u64 percpu;
  9159. int i;
  9160. for_each_present_cpu(i) {
  9161. percpu = cpuacct_cpuusage_read(ca, i);
  9162. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9163. }
  9164. seq_printf(m, "\n");
  9165. return 0;
  9166. }
  9167. static const char *cpuacct_stat_desc[] = {
  9168. [CPUACCT_STAT_USER] = "user",
  9169. [CPUACCT_STAT_SYSTEM] = "system",
  9170. };
  9171. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9172. struct cgroup_map_cb *cb)
  9173. {
  9174. struct cpuacct *ca = cgroup_ca(cgrp);
  9175. int i;
  9176. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9177. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9178. val = cputime64_to_clock_t(val);
  9179. cb->fill(cb, cpuacct_stat_desc[i], val);
  9180. }
  9181. return 0;
  9182. }
  9183. static struct cftype files[] = {
  9184. {
  9185. .name = "usage",
  9186. .read_u64 = cpuusage_read,
  9187. .write_u64 = cpuusage_write,
  9188. },
  9189. {
  9190. .name = "usage_percpu",
  9191. .read_seq_string = cpuacct_percpu_seq_read,
  9192. },
  9193. {
  9194. .name = "stat",
  9195. .read_map = cpuacct_stats_show,
  9196. },
  9197. };
  9198. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9199. {
  9200. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9201. }
  9202. /*
  9203. * charge this task's execution time to its accounting group.
  9204. *
  9205. * called with rq->lock held.
  9206. */
  9207. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9208. {
  9209. struct cpuacct *ca;
  9210. int cpu;
  9211. if (unlikely(!cpuacct_subsys.active))
  9212. return;
  9213. cpu = task_cpu(tsk);
  9214. rcu_read_lock();
  9215. ca = task_ca(tsk);
  9216. for (; ca; ca = ca->parent) {
  9217. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9218. *cpuusage += cputime;
  9219. }
  9220. rcu_read_unlock();
  9221. }
  9222. /*
  9223. * Charge the system/user time to the task's accounting group.
  9224. */
  9225. static void cpuacct_update_stats(struct task_struct *tsk,
  9226. enum cpuacct_stat_index idx, cputime_t val)
  9227. {
  9228. struct cpuacct *ca;
  9229. if (unlikely(!cpuacct_subsys.active))
  9230. return;
  9231. rcu_read_lock();
  9232. ca = task_ca(tsk);
  9233. do {
  9234. percpu_counter_add(&ca->cpustat[idx], val);
  9235. ca = ca->parent;
  9236. } while (ca);
  9237. rcu_read_unlock();
  9238. }
  9239. struct cgroup_subsys cpuacct_subsys = {
  9240. .name = "cpuacct",
  9241. .create = cpuacct_create,
  9242. .destroy = cpuacct_destroy,
  9243. .populate = cpuacct_populate,
  9244. .subsys_id = cpuacct_subsys_id,
  9245. };
  9246. #endif /* CONFIG_CGROUP_CPUACCT */
  9247. #ifndef CONFIG_SMP
  9248. int rcu_expedited_torture_stats(char *page)
  9249. {
  9250. return 0;
  9251. }
  9252. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9253. void synchronize_sched_expedited(void)
  9254. {
  9255. }
  9256. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9257. #else /* #ifndef CONFIG_SMP */
  9258. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9259. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9260. #define RCU_EXPEDITED_STATE_POST -2
  9261. #define RCU_EXPEDITED_STATE_IDLE -1
  9262. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9263. int rcu_expedited_torture_stats(char *page)
  9264. {
  9265. int cnt = 0;
  9266. int cpu;
  9267. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9268. for_each_online_cpu(cpu) {
  9269. cnt += sprintf(&page[cnt], " %d:%d",
  9270. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9271. }
  9272. cnt += sprintf(&page[cnt], "\n");
  9273. return cnt;
  9274. }
  9275. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9276. static long synchronize_sched_expedited_count;
  9277. /*
  9278. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9279. * approach to force grace period to end quickly. This consumes
  9280. * significant time on all CPUs, and is thus not recommended for
  9281. * any sort of common-case code.
  9282. *
  9283. * Note that it is illegal to call this function while holding any
  9284. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9285. * observe this restriction will result in deadlock.
  9286. */
  9287. void synchronize_sched_expedited(void)
  9288. {
  9289. int cpu;
  9290. unsigned long flags;
  9291. bool need_full_sync = 0;
  9292. struct rq *rq;
  9293. struct migration_req *req;
  9294. long snap;
  9295. int trycount = 0;
  9296. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9297. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9298. get_online_cpus();
  9299. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9300. put_online_cpus();
  9301. if (trycount++ < 10)
  9302. udelay(trycount * num_online_cpus());
  9303. else {
  9304. synchronize_sched();
  9305. return;
  9306. }
  9307. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9308. smp_mb(); /* ensure test happens before caller kfree */
  9309. return;
  9310. }
  9311. get_online_cpus();
  9312. }
  9313. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9314. for_each_online_cpu(cpu) {
  9315. rq = cpu_rq(cpu);
  9316. req = &per_cpu(rcu_migration_req, cpu);
  9317. init_completion(&req->done);
  9318. req->task = NULL;
  9319. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9320. spin_lock_irqsave(&rq->lock, flags);
  9321. list_add(&req->list, &rq->migration_queue);
  9322. spin_unlock_irqrestore(&rq->lock, flags);
  9323. wake_up_process(rq->migration_thread);
  9324. }
  9325. for_each_online_cpu(cpu) {
  9326. rcu_expedited_state = cpu;
  9327. req = &per_cpu(rcu_migration_req, cpu);
  9328. rq = cpu_rq(cpu);
  9329. wait_for_completion(&req->done);
  9330. spin_lock_irqsave(&rq->lock, flags);
  9331. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9332. need_full_sync = 1;
  9333. req->dest_cpu = RCU_MIGRATION_IDLE;
  9334. spin_unlock_irqrestore(&rq->lock, flags);
  9335. }
  9336. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9337. synchronize_sched_expedited_count++;
  9338. mutex_unlock(&rcu_sched_expedited_mutex);
  9339. put_online_cpus();
  9340. if (need_full_sync)
  9341. synchronize_sched();
  9342. }
  9343. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9344. #endif /* #else #ifndef CONFIG_SMP */