page_alloc.c 128 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/debugobjects.h>
  48. #include <asm/tlbflush.h>
  49. #include <asm/div64.h>
  50. #include "internal.h"
  51. /*
  52. * Array of node states.
  53. */
  54. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  55. [N_POSSIBLE] = NODE_MASK_ALL,
  56. [N_ONLINE] = { { [0] = 1UL } },
  57. #ifndef CONFIG_NUMA
  58. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  59. #ifdef CONFIG_HIGHMEM
  60. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  61. #endif
  62. [N_CPU] = { { [0] = 1UL } },
  63. #endif /* NUMA */
  64. };
  65. EXPORT_SYMBOL(node_states);
  66. unsigned long totalram_pages __read_mostly;
  67. unsigned long totalreserve_pages __read_mostly;
  68. long nr_swap_pages;
  69. int percpu_pagelist_fraction;
  70. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  71. int pageblock_order __read_mostly;
  72. #endif
  73. static void __free_pages_ok(struct page *page, unsigned int order);
  74. /*
  75. * results with 256, 32 in the lowmem_reserve sysctl:
  76. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  77. * 1G machine -> (16M dma, 784M normal, 224M high)
  78. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  79. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  80. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  81. *
  82. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  83. * don't need any ZONE_NORMAL reservation
  84. */
  85. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  86. #ifdef CONFIG_ZONE_DMA
  87. 256,
  88. #endif
  89. #ifdef CONFIG_ZONE_DMA32
  90. 256,
  91. #endif
  92. #ifdef CONFIG_HIGHMEM
  93. 32,
  94. #endif
  95. 32,
  96. };
  97. EXPORT_SYMBOL(totalram_pages);
  98. static char * const zone_names[MAX_NR_ZONES] = {
  99. #ifdef CONFIG_ZONE_DMA
  100. "DMA",
  101. #endif
  102. #ifdef CONFIG_ZONE_DMA32
  103. "DMA32",
  104. #endif
  105. "Normal",
  106. #ifdef CONFIG_HIGHMEM
  107. "HighMem",
  108. #endif
  109. "Movable",
  110. };
  111. int min_free_kbytes = 1024;
  112. unsigned long __meminitdata nr_kernel_pages;
  113. unsigned long __meminitdata nr_all_pages;
  114. static unsigned long __meminitdata dma_reserve;
  115. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  116. /*
  117. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  118. * ranges of memory (RAM) that may be registered with add_active_range().
  119. * Ranges passed to add_active_range() will be merged if possible
  120. * so the number of times add_active_range() can be called is
  121. * related to the number of nodes and the number of holes
  122. */
  123. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  124. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  125. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  126. #else
  127. #if MAX_NUMNODES >= 32
  128. /* If there can be many nodes, allow up to 50 holes per node */
  129. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  130. #else
  131. /* By default, allow up to 256 distinct regions */
  132. #define MAX_ACTIVE_REGIONS 256
  133. #endif
  134. #endif
  135. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  136. static int __meminitdata nr_nodemap_entries;
  137. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  138. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  139. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  140. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  141. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  142. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  143. static unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. EXPORT_SYMBOL(nr_node_ids);
  153. #endif
  154. int page_group_by_mobility_disabled __read_mostly;
  155. static void set_pageblock_migratetype(struct page *page, int migratetype)
  156. {
  157. set_pageblock_flags_group(page, (unsigned long)migratetype,
  158. PB_migrate, PB_migrate_end);
  159. }
  160. #ifdef CONFIG_DEBUG_VM
  161. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  162. {
  163. int ret = 0;
  164. unsigned seq;
  165. unsigned long pfn = page_to_pfn(page);
  166. do {
  167. seq = zone_span_seqbegin(zone);
  168. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  169. ret = 1;
  170. else if (pfn < zone->zone_start_pfn)
  171. ret = 1;
  172. } while (zone_span_seqretry(zone, seq));
  173. return ret;
  174. }
  175. static int page_is_consistent(struct zone *zone, struct page *page)
  176. {
  177. if (!pfn_valid_within(page_to_pfn(page)))
  178. return 0;
  179. if (zone != page_zone(page))
  180. return 0;
  181. return 1;
  182. }
  183. /*
  184. * Temporary debugging check for pages not lying within a given zone.
  185. */
  186. static int bad_range(struct zone *zone, struct page *page)
  187. {
  188. if (page_outside_zone_boundaries(zone, page))
  189. return 1;
  190. if (!page_is_consistent(zone, page))
  191. return 1;
  192. return 0;
  193. }
  194. #else
  195. static inline int bad_range(struct zone *zone, struct page *page)
  196. {
  197. return 0;
  198. }
  199. #endif
  200. static void bad_page(struct page *page)
  201. {
  202. void *pc = page_get_page_cgroup(page);
  203. printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
  204. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  205. current->comm, page, (int)(2*sizeof(unsigned long)),
  206. (unsigned long)page->flags, page->mapping,
  207. page_mapcount(page), page_count(page));
  208. if (pc) {
  209. printk(KERN_EMERG "cgroup:%p\n", pc);
  210. page_reset_bad_cgroup(page);
  211. }
  212. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  213. KERN_EMERG "Backtrace:\n");
  214. dump_stack();
  215. page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
  216. set_page_count(page, 0);
  217. reset_page_mapcount(page);
  218. page->mapping = NULL;
  219. add_taint(TAINT_BAD_PAGE);
  220. }
  221. /*
  222. * Higher-order pages are called "compound pages". They are structured thusly:
  223. *
  224. * The first PAGE_SIZE page is called the "head page".
  225. *
  226. * The remaining PAGE_SIZE pages are called "tail pages".
  227. *
  228. * All pages have PG_compound set. All pages have their ->private pointing at
  229. * the head page (even the head page has this).
  230. *
  231. * The first tail page's ->lru.next holds the address of the compound page's
  232. * put_page() function. Its ->lru.prev holds the order of allocation.
  233. * This usage means that zero-order pages may not be compound.
  234. */
  235. static void free_compound_page(struct page *page)
  236. {
  237. __free_pages_ok(page, compound_order(page));
  238. }
  239. void prep_compound_page(struct page *page, unsigned long order)
  240. {
  241. int i;
  242. int nr_pages = 1 << order;
  243. struct page *p = page + 1;
  244. set_compound_page_dtor(page, free_compound_page);
  245. set_compound_order(page, order);
  246. __SetPageHead(page);
  247. for (i = 1; i < nr_pages; i++, p++) {
  248. if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
  249. p = pfn_to_page(page_to_pfn(page) + i);
  250. __SetPageTail(p);
  251. p->first_page = page;
  252. }
  253. }
  254. static void destroy_compound_page(struct page *page, unsigned long order)
  255. {
  256. int i;
  257. int nr_pages = 1 << order;
  258. struct page *p = page + 1;
  259. if (unlikely(compound_order(page) != order))
  260. bad_page(page);
  261. if (unlikely(!PageHead(page)))
  262. bad_page(page);
  263. __ClearPageHead(page);
  264. for (i = 1; i < nr_pages; i++, p++) {
  265. if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
  266. p = pfn_to_page(page_to_pfn(page) + i);
  267. if (unlikely(!PageTail(p) |
  268. (p->first_page != page)))
  269. bad_page(page);
  270. __ClearPageTail(p);
  271. }
  272. }
  273. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  274. {
  275. int i;
  276. /*
  277. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  278. * and __GFP_HIGHMEM from hard or soft interrupt context.
  279. */
  280. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  281. for (i = 0; i < (1 << order); i++)
  282. clear_highpage(page + i);
  283. }
  284. static inline void set_page_order(struct page *page, int order)
  285. {
  286. set_page_private(page, order);
  287. __SetPageBuddy(page);
  288. }
  289. static inline void rmv_page_order(struct page *page)
  290. {
  291. __ClearPageBuddy(page);
  292. set_page_private(page, 0);
  293. }
  294. /*
  295. * Locate the struct page for both the matching buddy in our
  296. * pair (buddy1) and the combined O(n+1) page they form (page).
  297. *
  298. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  299. * the following equation:
  300. * B2 = B1 ^ (1 << O)
  301. * For example, if the starting buddy (buddy2) is #8 its order
  302. * 1 buddy is #10:
  303. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  304. *
  305. * 2) Any buddy B will have an order O+1 parent P which
  306. * satisfies the following equation:
  307. * P = B & ~(1 << O)
  308. *
  309. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  310. */
  311. static inline struct page *
  312. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  313. {
  314. unsigned long buddy_idx = page_idx ^ (1 << order);
  315. return page + (buddy_idx - page_idx);
  316. }
  317. static inline unsigned long
  318. __find_combined_index(unsigned long page_idx, unsigned int order)
  319. {
  320. return (page_idx & ~(1 << order));
  321. }
  322. /*
  323. * This function checks whether a page is free && is the buddy
  324. * we can do coalesce a page and its buddy if
  325. * (a) the buddy is not in a hole &&
  326. * (b) the buddy is in the buddy system &&
  327. * (c) a page and its buddy have the same order &&
  328. * (d) a page and its buddy are in the same zone.
  329. *
  330. * For recording whether a page is in the buddy system, we use PG_buddy.
  331. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  332. *
  333. * For recording page's order, we use page_private(page).
  334. */
  335. static inline int page_is_buddy(struct page *page, struct page *buddy,
  336. int order)
  337. {
  338. if (!pfn_valid_within(page_to_pfn(buddy)))
  339. return 0;
  340. if (page_zone_id(page) != page_zone_id(buddy))
  341. return 0;
  342. if (PageBuddy(buddy) && page_order(buddy) == order) {
  343. BUG_ON(page_count(buddy) != 0);
  344. return 1;
  345. }
  346. return 0;
  347. }
  348. /*
  349. * Freeing function for a buddy system allocator.
  350. *
  351. * The concept of a buddy system is to maintain direct-mapped table
  352. * (containing bit values) for memory blocks of various "orders".
  353. * The bottom level table contains the map for the smallest allocatable
  354. * units of memory (here, pages), and each level above it describes
  355. * pairs of units from the levels below, hence, "buddies".
  356. * At a high level, all that happens here is marking the table entry
  357. * at the bottom level available, and propagating the changes upward
  358. * as necessary, plus some accounting needed to play nicely with other
  359. * parts of the VM system.
  360. * At each level, we keep a list of pages, which are heads of continuous
  361. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  362. * order is recorded in page_private(page) field.
  363. * So when we are allocating or freeing one, we can derive the state of the
  364. * other. That is, if we allocate a small block, and both were
  365. * free, the remainder of the region must be split into blocks.
  366. * If a block is freed, and its buddy is also free, then this
  367. * triggers coalescing into a block of larger size.
  368. *
  369. * -- wli
  370. */
  371. static inline void __free_one_page(struct page *page,
  372. struct zone *zone, unsigned int order)
  373. {
  374. unsigned long page_idx;
  375. int order_size = 1 << order;
  376. int migratetype = get_pageblock_migratetype(page);
  377. if (unlikely(PageCompound(page)))
  378. destroy_compound_page(page, order);
  379. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  380. VM_BUG_ON(page_idx & (order_size - 1));
  381. VM_BUG_ON(bad_range(zone, page));
  382. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  383. while (order < MAX_ORDER-1) {
  384. unsigned long combined_idx;
  385. struct page *buddy;
  386. buddy = __page_find_buddy(page, page_idx, order);
  387. if (!page_is_buddy(page, buddy, order))
  388. break;
  389. /* Our buddy is free, merge with it and move up one order. */
  390. list_del(&buddy->lru);
  391. zone->free_area[order].nr_free--;
  392. rmv_page_order(buddy);
  393. combined_idx = __find_combined_index(page_idx, order);
  394. page = page + (combined_idx - page_idx);
  395. page_idx = combined_idx;
  396. order++;
  397. }
  398. set_page_order(page, order);
  399. list_add(&page->lru,
  400. &zone->free_area[order].free_list[migratetype]);
  401. zone->free_area[order].nr_free++;
  402. }
  403. static inline int free_pages_check(struct page *page)
  404. {
  405. if (unlikely(page_mapcount(page) |
  406. (page->mapping != NULL) |
  407. (page_get_page_cgroup(page) != NULL) |
  408. (page_count(page) != 0) |
  409. (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
  410. bad_page(page);
  411. if (PageDirty(page))
  412. __ClearPageDirty(page);
  413. /*
  414. * For now, we report if PG_reserved was found set, but do not
  415. * clear it, and do not free the page. But we shall soon need
  416. * to do more, for when the ZERO_PAGE count wraps negative.
  417. */
  418. return PageReserved(page);
  419. }
  420. /*
  421. * Frees a list of pages.
  422. * Assumes all pages on list are in same zone, and of same order.
  423. * count is the number of pages to free.
  424. *
  425. * If the zone was previously in an "all pages pinned" state then look to
  426. * see if this freeing clears that state.
  427. *
  428. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  429. * pinned" detection logic.
  430. */
  431. static void free_pages_bulk(struct zone *zone, int count,
  432. struct list_head *list, int order)
  433. {
  434. spin_lock(&zone->lock);
  435. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  436. zone->pages_scanned = 0;
  437. while (count--) {
  438. struct page *page;
  439. VM_BUG_ON(list_empty(list));
  440. page = list_entry(list->prev, struct page, lru);
  441. /* have to delete it as __free_one_page list manipulates */
  442. list_del(&page->lru);
  443. __free_one_page(page, zone, order);
  444. }
  445. spin_unlock(&zone->lock);
  446. }
  447. static void free_one_page(struct zone *zone, struct page *page, int order)
  448. {
  449. spin_lock(&zone->lock);
  450. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  451. zone->pages_scanned = 0;
  452. __free_one_page(page, zone, order);
  453. spin_unlock(&zone->lock);
  454. }
  455. static void __free_pages_ok(struct page *page, unsigned int order)
  456. {
  457. unsigned long flags;
  458. int i;
  459. int reserved = 0;
  460. for (i = 0 ; i < (1 << order) ; ++i)
  461. reserved += free_pages_check(page + i);
  462. if (reserved)
  463. return;
  464. if (!PageHighMem(page)) {
  465. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  466. debug_check_no_obj_freed(page_address(page),
  467. PAGE_SIZE << order);
  468. }
  469. arch_free_page(page, order);
  470. kernel_map_pages(page, 1 << order, 0);
  471. local_irq_save(flags);
  472. __count_vm_events(PGFREE, 1 << order);
  473. free_one_page(page_zone(page), page, order);
  474. local_irq_restore(flags);
  475. }
  476. /*
  477. * permit the bootmem allocator to evade page validation on high-order frees
  478. */
  479. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  480. {
  481. if (order == 0) {
  482. __ClearPageReserved(page);
  483. set_page_count(page, 0);
  484. set_page_refcounted(page);
  485. __free_page(page);
  486. } else {
  487. int loop;
  488. prefetchw(page);
  489. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  490. struct page *p = &page[loop];
  491. if (loop + 1 < BITS_PER_LONG)
  492. prefetchw(p + 1);
  493. __ClearPageReserved(p);
  494. set_page_count(p, 0);
  495. }
  496. set_page_refcounted(page);
  497. __free_pages(page, order);
  498. }
  499. }
  500. /*
  501. * The order of subdivision here is critical for the IO subsystem.
  502. * Please do not alter this order without good reasons and regression
  503. * testing. Specifically, as large blocks of memory are subdivided,
  504. * the order in which smaller blocks are delivered depends on the order
  505. * they're subdivided in this function. This is the primary factor
  506. * influencing the order in which pages are delivered to the IO
  507. * subsystem according to empirical testing, and this is also justified
  508. * by considering the behavior of a buddy system containing a single
  509. * large block of memory acted on by a series of small allocations.
  510. * This behavior is a critical factor in sglist merging's success.
  511. *
  512. * -- wli
  513. */
  514. static inline void expand(struct zone *zone, struct page *page,
  515. int low, int high, struct free_area *area,
  516. int migratetype)
  517. {
  518. unsigned long size = 1 << high;
  519. while (high > low) {
  520. area--;
  521. high--;
  522. size >>= 1;
  523. VM_BUG_ON(bad_range(zone, &page[size]));
  524. list_add(&page[size].lru, &area->free_list[migratetype]);
  525. area->nr_free++;
  526. set_page_order(&page[size], high);
  527. }
  528. }
  529. /*
  530. * This page is about to be returned from the page allocator
  531. */
  532. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  533. {
  534. if (unlikely(page_mapcount(page) |
  535. (page->mapping != NULL) |
  536. (page_get_page_cgroup(page) != NULL) |
  537. (page_count(page) != 0) |
  538. (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
  539. bad_page(page);
  540. /*
  541. * For now, we report if PG_reserved was found set, but do not
  542. * clear it, and do not allocate the page: as a safety net.
  543. */
  544. if (PageReserved(page))
  545. return 1;
  546. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
  547. 1 << PG_referenced | 1 << PG_arch_1 |
  548. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  549. set_page_private(page, 0);
  550. set_page_refcounted(page);
  551. arch_alloc_page(page, order);
  552. kernel_map_pages(page, 1 << order, 1);
  553. if (gfp_flags & __GFP_ZERO)
  554. prep_zero_page(page, order, gfp_flags);
  555. if (order && (gfp_flags & __GFP_COMP))
  556. prep_compound_page(page, order);
  557. return 0;
  558. }
  559. /*
  560. * Go through the free lists for the given migratetype and remove
  561. * the smallest available page from the freelists
  562. */
  563. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  564. int migratetype)
  565. {
  566. unsigned int current_order;
  567. struct free_area * area;
  568. struct page *page;
  569. /* Find a page of the appropriate size in the preferred list */
  570. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  571. area = &(zone->free_area[current_order]);
  572. if (list_empty(&area->free_list[migratetype]))
  573. continue;
  574. page = list_entry(area->free_list[migratetype].next,
  575. struct page, lru);
  576. list_del(&page->lru);
  577. rmv_page_order(page);
  578. area->nr_free--;
  579. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  580. expand(zone, page, order, current_order, area, migratetype);
  581. return page;
  582. }
  583. return NULL;
  584. }
  585. /*
  586. * This array describes the order lists are fallen back to when
  587. * the free lists for the desirable migrate type are depleted
  588. */
  589. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  590. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  591. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  592. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  593. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  594. };
  595. /*
  596. * Move the free pages in a range to the free lists of the requested type.
  597. * Note that start_page and end_pages are not aligned on a pageblock
  598. * boundary. If alignment is required, use move_freepages_block()
  599. */
  600. static int move_freepages(struct zone *zone,
  601. struct page *start_page, struct page *end_page,
  602. int migratetype)
  603. {
  604. struct page *page;
  605. unsigned long order;
  606. int pages_moved = 0;
  607. #ifndef CONFIG_HOLES_IN_ZONE
  608. /*
  609. * page_zone is not safe to call in this context when
  610. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  611. * anyway as we check zone boundaries in move_freepages_block().
  612. * Remove at a later date when no bug reports exist related to
  613. * grouping pages by mobility
  614. */
  615. BUG_ON(page_zone(start_page) != page_zone(end_page));
  616. #endif
  617. for (page = start_page; page <= end_page;) {
  618. /* Make sure we are not inadvertently changing nodes */
  619. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  620. if (!pfn_valid_within(page_to_pfn(page))) {
  621. page++;
  622. continue;
  623. }
  624. if (!PageBuddy(page)) {
  625. page++;
  626. continue;
  627. }
  628. order = page_order(page);
  629. list_del(&page->lru);
  630. list_add(&page->lru,
  631. &zone->free_area[order].free_list[migratetype]);
  632. page += 1 << order;
  633. pages_moved += 1 << order;
  634. }
  635. return pages_moved;
  636. }
  637. static int move_freepages_block(struct zone *zone, struct page *page,
  638. int migratetype)
  639. {
  640. unsigned long start_pfn, end_pfn;
  641. struct page *start_page, *end_page;
  642. start_pfn = page_to_pfn(page);
  643. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  644. start_page = pfn_to_page(start_pfn);
  645. end_page = start_page + pageblock_nr_pages - 1;
  646. end_pfn = start_pfn + pageblock_nr_pages - 1;
  647. /* Do not cross zone boundaries */
  648. if (start_pfn < zone->zone_start_pfn)
  649. start_page = page;
  650. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  651. return 0;
  652. return move_freepages(zone, start_page, end_page, migratetype);
  653. }
  654. /* Remove an element from the buddy allocator from the fallback list */
  655. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  656. int start_migratetype)
  657. {
  658. struct free_area * area;
  659. int current_order;
  660. struct page *page;
  661. int migratetype, i;
  662. /* Find the largest possible block of pages in the other list */
  663. for (current_order = MAX_ORDER-1; current_order >= order;
  664. --current_order) {
  665. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  666. migratetype = fallbacks[start_migratetype][i];
  667. /* MIGRATE_RESERVE handled later if necessary */
  668. if (migratetype == MIGRATE_RESERVE)
  669. continue;
  670. area = &(zone->free_area[current_order]);
  671. if (list_empty(&area->free_list[migratetype]))
  672. continue;
  673. page = list_entry(area->free_list[migratetype].next,
  674. struct page, lru);
  675. area->nr_free--;
  676. /*
  677. * If breaking a large block of pages, move all free
  678. * pages to the preferred allocation list. If falling
  679. * back for a reclaimable kernel allocation, be more
  680. * agressive about taking ownership of free pages
  681. */
  682. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  683. start_migratetype == MIGRATE_RECLAIMABLE) {
  684. unsigned long pages;
  685. pages = move_freepages_block(zone, page,
  686. start_migratetype);
  687. /* Claim the whole block if over half of it is free */
  688. if (pages >= (1 << (pageblock_order-1)))
  689. set_pageblock_migratetype(page,
  690. start_migratetype);
  691. migratetype = start_migratetype;
  692. }
  693. /* Remove the page from the freelists */
  694. list_del(&page->lru);
  695. rmv_page_order(page);
  696. __mod_zone_page_state(zone, NR_FREE_PAGES,
  697. -(1UL << order));
  698. if (current_order == pageblock_order)
  699. set_pageblock_migratetype(page,
  700. start_migratetype);
  701. expand(zone, page, order, current_order, area, migratetype);
  702. return page;
  703. }
  704. }
  705. /* Use MIGRATE_RESERVE rather than fail an allocation */
  706. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  707. }
  708. /*
  709. * Do the hard work of removing an element from the buddy allocator.
  710. * Call me with the zone->lock already held.
  711. */
  712. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  713. int migratetype)
  714. {
  715. struct page *page;
  716. page = __rmqueue_smallest(zone, order, migratetype);
  717. if (unlikely(!page))
  718. page = __rmqueue_fallback(zone, order, migratetype);
  719. return page;
  720. }
  721. /*
  722. * Obtain a specified number of elements from the buddy allocator, all under
  723. * a single hold of the lock, for efficiency. Add them to the supplied list.
  724. * Returns the number of new pages which were placed at *list.
  725. */
  726. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  727. unsigned long count, struct list_head *list,
  728. int migratetype)
  729. {
  730. int i;
  731. spin_lock(&zone->lock);
  732. for (i = 0; i < count; ++i) {
  733. struct page *page = __rmqueue(zone, order, migratetype);
  734. if (unlikely(page == NULL))
  735. break;
  736. /*
  737. * Split buddy pages returned by expand() are received here
  738. * in physical page order. The page is added to the callers and
  739. * list and the list head then moves forward. From the callers
  740. * perspective, the linked list is ordered by page number in
  741. * some conditions. This is useful for IO devices that can
  742. * merge IO requests if the physical pages are ordered
  743. * properly.
  744. */
  745. list_add(&page->lru, list);
  746. set_page_private(page, migratetype);
  747. list = &page->lru;
  748. }
  749. spin_unlock(&zone->lock);
  750. return i;
  751. }
  752. #ifdef CONFIG_NUMA
  753. /*
  754. * Called from the vmstat counter updater to drain pagesets of this
  755. * currently executing processor on remote nodes after they have
  756. * expired.
  757. *
  758. * Note that this function must be called with the thread pinned to
  759. * a single processor.
  760. */
  761. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  762. {
  763. unsigned long flags;
  764. int to_drain;
  765. local_irq_save(flags);
  766. if (pcp->count >= pcp->batch)
  767. to_drain = pcp->batch;
  768. else
  769. to_drain = pcp->count;
  770. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  771. pcp->count -= to_drain;
  772. local_irq_restore(flags);
  773. }
  774. #endif
  775. /*
  776. * Drain pages of the indicated processor.
  777. *
  778. * The processor must either be the current processor and the
  779. * thread pinned to the current processor or a processor that
  780. * is not online.
  781. */
  782. static void drain_pages(unsigned int cpu)
  783. {
  784. unsigned long flags;
  785. struct zone *zone;
  786. for_each_zone(zone) {
  787. struct per_cpu_pageset *pset;
  788. struct per_cpu_pages *pcp;
  789. if (!populated_zone(zone))
  790. continue;
  791. pset = zone_pcp(zone, cpu);
  792. pcp = &pset->pcp;
  793. local_irq_save(flags);
  794. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  795. pcp->count = 0;
  796. local_irq_restore(flags);
  797. }
  798. }
  799. /*
  800. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  801. */
  802. void drain_local_pages(void *arg)
  803. {
  804. drain_pages(smp_processor_id());
  805. }
  806. /*
  807. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  808. */
  809. void drain_all_pages(void)
  810. {
  811. on_each_cpu(drain_local_pages, NULL, 1);
  812. }
  813. #ifdef CONFIG_HIBERNATION
  814. void mark_free_pages(struct zone *zone)
  815. {
  816. unsigned long pfn, max_zone_pfn;
  817. unsigned long flags;
  818. int order, t;
  819. struct list_head *curr;
  820. if (!zone->spanned_pages)
  821. return;
  822. spin_lock_irqsave(&zone->lock, flags);
  823. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  824. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  825. if (pfn_valid(pfn)) {
  826. struct page *page = pfn_to_page(pfn);
  827. if (!swsusp_page_is_forbidden(page))
  828. swsusp_unset_page_free(page);
  829. }
  830. for_each_migratetype_order(order, t) {
  831. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  832. unsigned long i;
  833. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  834. for (i = 0; i < (1UL << order); i++)
  835. swsusp_set_page_free(pfn_to_page(pfn + i));
  836. }
  837. }
  838. spin_unlock_irqrestore(&zone->lock, flags);
  839. }
  840. #endif /* CONFIG_PM */
  841. /*
  842. * Free a 0-order page
  843. */
  844. static void free_hot_cold_page(struct page *page, int cold)
  845. {
  846. struct zone *zone = page_zone(page);
  847. struct per_cpu_pages *pcp;
  848. unsigned long flags;
  849. if (PageAnon(page))
  850. page->mapping = NULL;
  851. if (free_pages_check(page))
  852. return;
  853. if (!PageHighMem(page)) {
  854. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  855. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  856. }
  857. arch_free_page(page, 0);
  858. kernel_map_pages(page, 1, 0);
  859. pcp = &zone_pcp(zone, get_cpu())->pcp;
  860. local_irq_save(flags);
  861. __count_vm_event(PGFREE);
  862. if (cold)
  863. list_add_tail(&page->lru, &pcp->list);
  864. else
  865. list_add(&page->lru, &pcp->list);
  866. set_page_private(page, get_pageblock_migratetype(page));
  867. pcp->count++;
  868. if (pcp->count >= pcp->high) {
  869. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  870. pcp->count -= pcp->batch;
  871. }
  872. local_irq_restore(flags);
  873. put_cpu();
  874. }
  875. void free_hot_page(struct page *page)
  876. {
  877. free_hot_cold_page(page, 0);
  878. }
  879. void free_cold_page(struct page *page)
  880. {
  881. free_hot_cold_page(page, 1);
  882. }
  883. /*
  884. * split_page takes a non-compound higher-order page, and splits it into
  885. * n (1<<order) sub-pages: page[0..n]
  886. * Each sub-page must be freed individually.
  887. *
  888. * Note: this is probably too low level an operation for use in drivers.
  889. * Please consult with lkml before using this in your driver.
  890. */
  891. void split_page(struct page *page, unsigned int order)
  892. {
  893. int i;
  894. VM_BUG_ON(PageCompound(page));
  895. VM_BUG_ON(!page_count(page));
  896. for (i = 1; i < (1 << order); i++)
  897. set_page_refcounted(page + i);
  898. }
  899. /*
  900. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  901. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  902. * or two.
  903. */
  904. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  905. struct zone *zone, int order, gfp_t gfp_flags)
  906. {
  907. unsigned long flags;
  908. struct page *page;
  909. int cold = !!(gfp_flags & __GFP_COLD);
  910. int cpu;
  911. int migratetype = allocflags_to_migratetype(gfp_flags);
  912. again:
  913. cpu = get_cpu();
  914. if (likely(order == 0)) {
  915. struct per_cpu_pages *pcp;
  916. pcp = &zone_pcp(zone, cpu)->pcp;
  917. local_irq_save(flags);
  918. if (!pcp->count) {
  919. pcp->count = rmqueue_bulk(zone, 0,
  920. pcp->batch, &pcp->list, migratetype);
  921. if (unlikely(!pcp->count))
  922. goto failed;
  923. }
  924. /* Find a page of the appropriate migrate type */
  925. if (cold) {
  926. list_for_each_entry_reverse(page, &pcp->list, lru)
  927. if (page_private(page) == migratetype)
  928. break;
  929. } else {
  930. list_for_each_entry(page, &pcp->list, lru)
  931. if (page_private(page) == migratetype)
  932. break;
  933. }
  934. /* Allocate more to the pcp list if necessary */
  935. if (unlikely(&page->lru == &pcp->list)) {
  936. pcp->count += rmqueue_bulk(zone, 0,
  937. pcp->batch, &pcp->list, migratetype);
  938. page = list_entry(pcp->list.next, struct page, lru);
  939. }
  940. list_del(&page->lru);
  941. pcp->count--;
  942. } else {
  943. spin_lock_irqsave(&zone->lock, flags);
  944. page = __rmqueue(zone, order, migratetype);
  945. spin_unlock(&zone->lock);
  946. if (!page)
  947. goto failed;
  948. }
  949. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  950. zone_statistics(preferred_zone, zone);
  951. local_irq_restore(flags);
  952. put_cpu();
  953. VM_BUG_ON(bad_range(zone, page));
  954. if (prep_new_page(page, order, gfp_flags))
  955. goto again;
  956. return page;
  957. failed:
  958. local_irq_restore(flags);
  959. put_cpu();
  960. return NULL;
  961. }
  962. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  963. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  964. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  965. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  966. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  967. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  968. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  969. #ifdef CONFIG_FAIL_PAGE_ALLOC
  970. static struct fail_page_alloc_attr {
  971. struct fault_attr attr;
  972. u32 ignore_gfp_highmem;
  973. u32 ignore_gfp_wait;
  974. u32 min_order;
  975. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  976. struct dentry *ignore_gfp_highmem_file;
  977. struct dentry *ignore_gfp_wait_file;
  978. struct dentry *min_order_file;
  979. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  980. } fail_page_alloc = {
  981. .attr = FAULT_ATTR_INITIALIZER,
  982. .ignore_gfp_wait = 1,
  983. .ignore_gfp_highmem = 1,
  984. .min_order = 1,
  985. };
  986. static int __init setup_fail_page_alloc(char *str)
  987. {
  988. return setup_fault_attr(&fail_page_alloc.attr, str);
  989. }
  990. __setup("fail_page_alloc=", setup_fail_page_alloc);
  991. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  992. {
  993. if (order < fail_page_alloc.min_order)
  994. return 0;
  995. if (gfp_mask & __GFP_NOFAIL)
  996. return 0;
  997. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  998. return 0;
  999. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1000. return 0;
  1001. return should_fail(&fail_page_alloc.attr, 1 << order);
  1002. }
  1003. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1004. static int __init fail_page_alloc_debugfs(void)
  1005. {
  1006. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1007. struct dentry *dir;
  1008. int err;
  1009. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1010. "fail_page_alloc");
  1011. if (err)
  1012. return err;
  1013. dir = fail_page_alloc.attr.dentries.dir;
  1014. fail_page_alloc.ignore_gfp_wait_file =
  1015. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1016. &fail_page_alloc.ignore_gfp_wait);
  1017. fail_page_alloc.ignore_gfp_highmem_file =
  1018. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1019. &fail_page_alloc.ignore_gfp_highmem);
  1020. fail_page_alloc.min_order_file =
  1021. debugfs_create_u32("min-order", mode, dir,
  1022. &fail_page_alloc.min_order);
  1023. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1024. !fail_page_alloc.ignore_gfp_highmem_file ||
  1025. !fail_page_alloc.min_order_file) {
  1026. err = -ENOMEM;
  1027. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1028. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1029. debugfs_remove(fail_page_alloc.min_order_file);
  1030. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1031. }
  1032. return err;
  1033. }
  1034. late_initcall(fail_page_alloc_debugfs);
  1035. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1036. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1037. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1038. {
  1039. return 0;
  1040. }
  1041. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1042. /*
  1043. * Return 1 if free pages are above 'mark'. This takes into account the order
  1044. * of the allocation.
  1045. */
  1046. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1047. int classzone_idx, int alloc_flags)
  1048. {
  1049. /* free_pages my go negative - that's OK */
  1050. long min = mark;
  1051. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1052. int o;
  1053. if (alloc_flags & ALLOC_HIGH)
  1054. min -= min / 2;
  1055. if (alloc_flags & ALLOC_HARDER)
  1056. min -= min / 4;
  1057. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1058. return 0;
  1059. for (o = 0; o < order; o++) {
  1060. /* At the next order, this order's pages become unavailable */
  1061. free_pages -= z->free_area[o].nr_free << o;
  1062. /* Require fewer higher order pages to be free */
  1063. min >>= 1;
  1064. if (free_pages <= min)
  1065. return 0;
  1066. }
  1067. return 1;
  1068. }
  1069. #ifdef CONFIG_NUMA
  1070. /*
  1071. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1072. * skip over zones that are not allowed by the cpuset, or that have
  1073. * been recently (in last second) found to be nearly full. See further
  1074. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1075. * that have to skip over a lot of full or unallowed zones.
  1076. *
  1077. * If the zonelist cache is present in the passed in zonelist, then
  1078. * returns a pointer to the allowed node mask (either the current
  1079. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1080. *
  1081. * If the zonelist cache is not available for this zonelist, does
  1082. * nothing and returns NULL.
  1083. *
  1084. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1085. * a second since last zap'd) then we zap it out (clear its bits.)
  1086. *
  1087. * We hold off even calling zlc_setup, until after we've checked the
  1088. * first zone in the zonelist, on the theory that most allocations will
  1089. * be satisfied from that first zone, so best to examine that zone as
  1090. * quickly as we can.
  1091. */
  1092. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1093. {
  1094. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1095. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1096. zlc = zonelist->zlcache_ptr;
  1097. if (!zlc)
  1098. return NULL;
  1099. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1100. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1101. zlc->last_full_zap = jiffies;
  1102. }
  1103. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1104. &cpuset_current_mems_allowed :
  1105. &node_states[N_HIGH_MEMORY];
  1106. return allowednodes;
  1107. }
  1108. /*
  1109. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1110. * if it is worth looking at further for free memory:
  1111. * 1) Check that the zone isn't thought to be full (doesn't have its
  1112. * bit set in the zonelist_cache fullzones BITMAP).
  1113. * 2) Check that the zones node (obtained from the zonelist_cache
  1114. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1115. * Return true (non-zero) if zone is worth looking at further, or
  1116. * else return false (zero) if it is not.
  1117. *
  1118. * This check -ignores- the distinction between various watermarks,
  1119. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1120. * found to be full for any variation of these watermarks, it will
  1121. * be considered full for up to one second by all requests, unless
  1122. * we are so low on memory on all allowed nodes that we are forced
  1123. * into the second scan of the zonelist.
  1124. *
  1125. * In the second scan we ignore this zonelist cache and exactly
  1126. * apply the watermarks to all zones, even it is slower to do so.
  1127. * We are low on memory in the second scan, and should leave no stone
  1128. * unturned looking for a free page.
  1129. */
  1130. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1131. nodemask_t *allowednodes)
  1132. {
  1133. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1134. int i; /* index of *z in zonelist zones */
  1135. int n; /* node that zone *z is on */
  1136. zlc = zonelist->zlcache_ptr;
  1137. if (!zlc)
  1138. return 1;
  1139. i = z - zonelist->_zonerefs;
  1140. n = zlc->z_to_n[i];
  1141. /* This zone is worth trying if it is allowed but not full */
  1142. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1143. }
  1144. /*
  1145. * Given 'z' scanning a zonelist, set the corresponding bit in
  1146. * zlc->fullzones, so that subsequent attempts to allocate a page
  1147. * from that zone don't waste time re-examining it.
  1148. */
  1149. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1150. {
  1151. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1152. int i; /* index of *z in zonelist zones */
  1153. zlc = zonelist->zlcache_ptr;
  1154. if (!zlc)
  1155. return;
  1156. i = z - zonelist->_zonerefs;
  1157. set_bit(i, zlc->fullzones);
  1158. }
  1159. #else /* CONFIG_NUMA */
  1160. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1161. {
  1162. return NULL;
  1163. }
  1164. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1165. nodemask_t *allowednodes)
  1166. {
  1167. return 1;
  1168. }
  1169. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1170. {
  1171. }
  1172. #endif /* CONFIG_NUMA */
  1173. /*
  1174. * get_page_from_freelist goes through the zonelist trying to allocate
  1175. * a page.
  1176. */
  1177. static struct page *
  1178. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1179. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1180. {
  1181. struct zoneref *z;
  1182. struct page *page = NULL;
  1183. int classzone_idx;
  1184. struct zone *zone, *preferred_zone;
  1185. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1186. int zlc_active = 0; /* set if using zonelist_cache */
  1187. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1188. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1189. &preferred_zone);
  1190. if (!preferred_zone)
  1191. return NULL;
  1192. classzone_idx = zone_idx(preferred_zone);
  1193. zonelist_scan:
  1194. /*
  1195. * Scan zonelist, looking for a zone with enough free.
  1196. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1197. */
  1198. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1199. high_zoneidx, nodemask) {
  1200. if (NUMA_BUILD && zlc_active &&
  1201. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1202. continue;
  1203. if ((alloc_flags & ALLOC_CPUSET) &&
  1204. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1205. goto try_next_zone;
  1206. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1207. unsigned long mark;
  1208. if (alloc_flags & ALLOC_WMARK_MIN)
  1209. mark = zone->pages_min;
  1210. else if (alloc_flags & ALLOC_WMARK_LOW)
  1211. mark = zone->pages_low;
  1212. else
  1213. mark = zone->pages_high;
  1214. if (!zone_watermark_ok(zone, order, mark,
  1215. classzone_idx, alloc_flags)) {
  1216. if (!zone_reclaim_mode ||
  1217. !zone_reclaim(zone, gfp_mask, order))
  1218. goto this_zone_full;
  1219. }
  1220. }
  1221. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1222. if (page)
  1223. break;
  1224. this_zone_full:
  1225. if (NUMA_BUILD)
  1226. zlc_mark_zone_full(zonelist, z);
  1227. try_next_zone:
  1228. if (NUMA_BUILD && !did_zlc_setup) {
  1229. /* we do zlc_setup after the first zone is tried */
  1230. allowednodes = zlc_setup(zonelist, alloc_flags);
  1231. zlc_active = 1;
  1232. did_zlc_setup = 1;
  1233. }
  1234. }
  1235. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1236. /* Disable zlc cache for second zonelist scan */
  1237. zlc_active = 0;
  1238. goto zonelist_scan;
  1239. }
  1240. return page;
  1241. }
  1242. /*
  1243. * This is the 'heart' of the zoned buddy allocator.
  1244. */
  1245. struct page *
  1246. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1247. struct zonelist *zonelist, nodemask_t *nodemask)
  1248. {
  1249. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1250. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1251. struct zoneref *z;
  1252. struct zone *zone;
  1253. struct page *page;
  1254. struct reclaim_state reclaim_state;
  1255. struct task_struct *p = current;
  1256. int do_retry;
  1257. int alloc_flags;
  1258. unsigned long did_some_progress;
  1259. unsigned long pages_reclaimed = 0;
  1260. might_sleep_if(wait);
  1261. if (should_fail_alloc_page(gfp_mask, order))
  1262. return NULL;
  1263. restart:
  1264. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1265. if (unlikely(!z->zone)) {
  1266. /*
  1267. * Happens if we have an empty zonelist as a result of
  1268. * GFP_THISNODE being used on a memoryless node
  1269. */
  1270. return NULL;
  1271. }
  1272. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1273. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1274. if (page)
  1275. goto got_pg;
  1276. /*
  1277. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1278. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1279. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1280. * using a larger set of nodes after it has established that the
  1281. * allowed per node queues are empty and that nodes are
  1282. * over allocated.
  1283. */
  1284. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1285. goto nopage;
  1286. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1287. wakeup_kswapd(zone, order);
  1288. /*
  1289. * OK, we're below the kswapd watermark and have kicked background
  1290. * reclaim. Now things get more complex, so set up alloc_flags according
  1291. * to how we want to proceed.
  1292. *
  1293. * The caller may dip into page reserves a bit more if the caller
  1294. * cannot run direct reclaim, or if the caller has realtime scheduling
  1295. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1296. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1297. */
  1298. alloc_flags = ALLOC_WMARK_MIN;
  1299. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1300. alloc_flags |= ALLOC_HARDER;
  1301. if (gfp_mask & __GFP_HIGH)
  1302. alloc_flags |= ALLOC_HIGH;
  1303. if (wait)
  1304. alloc_flags |= ALLOC_CPUSET;
  1305. /*
  1306. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1307. * coming from realtime tasks go deeper into reserves.
  1308. *
  1309. * This is the last chance, in general, before the goto nopage.
  1310. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1311. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1312. */
  1313. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1314. high_zoneidx, alloc_flags);
  1315. if (page)
  1316. goto got_pg;
  1317. /* This allocation should allow future memory freeing. */
  1318. rebalance:
  1319. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1320. && !in_interrupt()) {
  1321. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1322. nofail_alloc:
  1323. /* go through the zonelist yet again, ignoring mins */
  1324. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1325. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1326. if (page)
  1327. goto got_pg;
  1328. if (gfp_mask & __GFP_NOFAIL) {
  1329. congestion_wait(WRITE, HZ/50);
  1330. goto nofail_alloc;
  1331. }
  1332. }
  1333. goto nopage;
  1334. }
  1335. /* Atomic allocations - we can't balance anything */
  1336. if (!wait)
  1337. goto nopage;
  1338. cond_resched();
  1339. /* We now go into synchronous reclaim */
  1340. cpuset_memory_pressure_bump();
  1341. p->flags |= PF_MEMALLOC;
  1342. reclaim_state.reclaimed_slab = 0;
  1343. p->reclaim_state = &reclaim_state;
  1344. did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
  1345. p->reclaim_state = NULL;
  1346. p->flags &= ~PF_MEMALLOC;
  1347. cond_resched();
  1348. if (order != 0)
  1349. drain_all_pages();
  1350. if (likely(did_some_progress)) {
  1351. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1352. zonelist, high_zoneidx, alloc_flags);
  1353. if (page)
  1354. goto got_pg;
  1355. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1356. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1357. schedule_timeout_uninterruptible(1);
  1358. goto restart;
  1359. }
  1360. /*
  1361. * Go through the zonelist yet one more time, keep
  1362. * very high watermark here, this is only to catch
  1363. * a parallel oom killing, we must fail if we're still
  1364. * under heavy pressure.
  1365. */
  1366. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1367. order, zonelist, high_zoneidx,
  1368. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1369. if (page) {
  1370. clear_zonelist_oom(zonelist, gfp_mask);
  1371. goto got_pg;
  1372. }
  1373. /* The OOM killer will not help higher order allocs so fail */
  1374. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1375. clear_zonelist_oom(zonelist, gfp_mask);
  1376. goto nopage;
  1377. }
  1378. out_of_memory(zonelist, gfp_mask, order);
  1379. clear_zonelist_oom(zonelist, gfp_mask);
  1380. goto restart;
  1381. }
  1382. /*
  1383. * Don't let big-order allocations loop unless the caller explicitly
  1384. * requests that. Wait for some write requests to complete then retry.
  1385. *
  1386. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1387. * means __GFP_NOFAIL, but that may not be true in other
  1388. * implementations.
  1389. *
  1390. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1391. * specified, then we retry until we no longer reclaim any pages
  1392. * (above), or we've reclaimed an order of pages at least as
  1393. * large as the allocation's order. In both cases, if the
  1394. * allocation still fails, we stop retrying.
  1395. */
  1396. pages_reclaimed += did_some_progress;
  1397. do_retry = 0;
  1398. if (!(gfp_mask & __GFP_NORETRY)) {
  1399. if (order <= PAGE_ALLOC_COSTLY_ORDER) {
  1400. do_retry = 1;
  1401. } else {
  1402. if (gfp_mask & __GFP_REPEAT &&
  1403. pages_reclaimed < (1 << order))
  1404. do_retry = 1;
  1405. }
  1406. if (gfp_mask & __GFP_NOFAIL)
  1407. do_retry = 1;
  1408. }
  1409. if (do_retry) {
  1410. congestion_wait(WRITE, HZ/50);
  1411. goto rebalance;
  1412. }
  1413. nopage:
  1414. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1415. printk(KERN_WARNING "%s: page allocation failure."
  1416. " order:%d, mode:0x%x\n",
  1417. p->comm, order, gfp_mask);
  1418. dump_stack();
  1419. show_mem();
  1420. }
  1421. got_pg:
  1422. return page;
  1423. }
  1424. EXPORT_SYMBOL(__alloc_pages_internal);
  1425. /*
  1426. * Common helper functions.
  1427. */
  1428. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1429. {
  1430. struct page * page;
  1431. page = alloc_pages(gfp_mask, order);
  1432. if (!page)
  1433. return 0;
  1434. return (unsigned long) page_address(page);
  1435. }
  1436. EXPORT_SYMBOL(__get_free_pages);
  1437. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1438. {
  1439. struct page * page;
  1440. /*
  1441. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1442. * a highmem page
  1443. */
  1444. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1445. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1446. if (page)
  1447. return (unsigned long) page_address(page);
  1448. return 0;
  1449. }
  1450. EXPORT_SYMBOL(get_zeroed_page);
  1451. void __pagevec_free(struct pagevec *pvec)
  1452. {
  1453. int i = pagevec_count(pvec);
  1454. while (--i >= 0)
  1455. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1456. }
  1457. void __free_pages(struct page *page, unsigned int order)
  1458. {
  1459. if (put_page_testzero(page)) {
  1460. if (order == 0)
  1461. free_hot_page(page);
  1462. else
  1463. __free_pages_ok(page, order);
  1464. }
  1465. }
  1466. EXPORT_SYMBOL(__free_pages);
  1467. void free_pages(unsigned long addr, unsigned int order)
  1468. {
  1469. if (addr != 0) {
  1470. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1471. __free_pages(virt_to_page((void *)addr), order);
  1472. }
  1473. }
  1474. EXPORT_SYMBOL(free_pages);
  1475. /**
  1476. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1477. * @size: the number of bytes to allocate
  1478. * @gfp_mask: GFP flags for the allocation
  1479. *
  1480. * This function is similar to alloc_pages(), except that it allocates the
  1481. * minimum number of pages to satisfy the request. alloc_pages() can only
  1482. * allocate memory in power-of-two pages.
  1483. *
  1484. * This function is also limited by MAX_ORDER.
  1485. *
  1486. * Memory allocated by this function must be released by free_pages_exact().
  1487. */
  1488. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1489. {
  1490. unsigned int order = get_order(size);
  1491. unsigned long addr;
  1492. addr = __get_free_pages(gfp_mask, order);
  1493. if (addr) {
  1494. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1495. unsigned long used = addr + PAGE_ALIGN(size);
  1496. split_page(virt_to_page(addr), order);
  1497. while (used < alloc_end) {
  1498. free_page(used);
  1499. used += PAGE_SIZE;
  1500. }
  1501. }
  1502. return (void *)addr;
  1503. }
  1504. EXPORT_SYMBOL(alloc_pages_exact);
  1505. /**
  1506. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1507. * @virt: the value returned by alloc_pages_exact.
  1508. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1509. *
  1510. * Release the memory allocated by a previous call to alloc_pages_exact.
  1511. */
  1512. void free_pages_exact(void *virt, size_t size)
  1513. {
  1514. unsigned long addr = (unsigned long)virt;
  1515. unsigned long end = addr + PAGE_ALIGN(size);
  1516. while (addr < end) {
  1517. free_page(addr);
  1518. addr += PAGE_SIZE;
  1519. }
  1520. }
  1521. EXPORT_SYMBOL(free_pages_exact);
  1522. static unsigned int nr_free_zone_pages(int offset)
  1523. {
  1524. struct zoneref *z;
  1525. struct zone *zone;
  1526. /* Just pick one node, since fallback list is circular */
  1527. unsigned int sum = 0;
  1528. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1529. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1530. unsigned long size = zone->present_pages;
  1531. unsigned long high = zone->pages_high;
  1532. if (size > high)
  1533. sum += size - high;
  1534. }
  1535. return sum;
  1536. }
  1537. /*
  1538. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1539. */
  1540. unsigned int nr_free_buffer_pages(void)
  1541. {
  1542. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1543. }
  1544. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1545. /*
  1546. * Amount of free RAM allocatable within all zones
  1547. */
  1548. unsigned int nr_free_pagecache_pages(void)
  1549. {
  1550. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1551. }
  1552. static inline void show_node(struct zone *zone)
  1553. {
  1554. if (NUMA_BUILD)
  1555. printk("Node %d ", zone_to_nid(zone));
  1556. }
  1557. void si_meminfo(struct sysinfo *val)
  1558. {
  1559. val->totalram = totalram_pages;
  1560. val->sharedram = 0;
  1561. val->freeram = global_page_state(NR_FREE_PAGES);
  1562. val->bufferram = nr_blockdev_pages();
  1563. val->totalhigh = totalhigh_pages;
  1564. val->freehigh = nr_free_highpages();
  1565. val->mem_unit = PAGE_SIZE;
  1566. }
  1567. EXPORT_SYMBOL(si_meminfo);
  1568. #ifdef CONFIG_NUMA
  1569. void si_meminfo_node(struct sysinfo *val, int nid)
  1570. {
  1571. pg_data_t *pgdat = NODE_DATA(nid);
  1572. val->totalram = pgdat->node_present_pages;
  1573. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1574. #ifdef CONFIG_HIGHMEM
  1575. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1576. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1577. NR_FREE_PAGES);
  1578. #else
  1579. val->totalhigh = 0;
  1580. val->freehigh = 0;
  1581. #endif
  1582. val->mem_unit = PAGE_SIZE;
  1583. }
  1584. #endif
  1585. #define K(x) ((x) << (PAGE_SHIFT-10))
  1586. /*
  1587. * Show free area list (used inside shift_scroll-lock stuff)
  1588. * We also calculate the percentage fragmentation. We do this by counting the
  1589. * memory on each free list with the exception of the first item on the list.
  1590. */
  1591. void show_free_areas(void)
  1592. {
  1593. int cpu;
  1594. struct zone *zone;
  1595. for_each_zone(zone) {
  1596. if (!populated_zone(zone))
  1597. continue;
  1598. show_node(zone);
  1599. printk("%s per-cpu:\n", zone->name);
  1600. for_each_online_cpu(cpu) {
  1601. struct per_cpu_pageset *pageset;
  1602. pageset = zone_pcp(zone, cpu);
  1603. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1604. cpu, pageset->pcp.high,
  1605. pageset->pcp.batch, pageset->pcp.count);
  1606. }
  1607. }
  1608. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1609. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1610. global_page_state(NR_ACTIVE),
  1611. global_page_state(NR_INACTIVE),
  1612. global_page_state(NR_FILE_DIRTY),
  1613. global_page_state(NR_WRITEBACK),
  1614. global_page_state(NR_UNSTABLE_NFS),
  1615. global_page_state(NR_FREE_PAGES),
  1616. global_page_state(NR_SLAB_RECLAIMABLE) +
  1617. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1618. global_page_state(NR_FILE_MAPPED),
  1619. global_page_state(NR_PAGETABLE),
  1620. global_page_state(NR_BOUNCE));
  1621. for_each_zone(zone) {
  1622. int i;
  1623. if (!populated_zone(zone))
  1624. continue;
  1625. show_node(zone);
  1626. printk("%s"
  1627. " free:%lukB"
  1628. " min:%lukB"
  1629. " low:%lukB"
  1630. " high:%lukB"
  1631. " active:%lukB"
  1632. " inactive:%lukB"
  1633. " present:%lukB"
  1634. " pages_scanned:%lu"
  1635. " all_unreclaimable? %s"
  1636. "\n",
  1637. zone->name,
  1638. K(zone_page_state(zone, NR_FREE_PAGES)),
  1639. K(zone->pages_min),
  1640. K(zone->pages_low),
  1641. K(zone->pages_high),
  1642. K(zone_page_state(zone, NR_ACTIVE)),
  1643. K(zone_page_state(zone, NR_INACTIVE)),
  1644. K(zone->present_pages),
  1645. zone->pages_scanned,
  1646. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1647. );
  1648. printk("lowmem_reserve[]:");
  1649. for (i = 0; i < MAX_NR_ZONES; i++)
  1650. printk(" %lu", zone->lowmem_reserve[i]);
  1651. printk("\n");
  1652. }
  1653. for_each_zone(zone) {
  1654. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1655. if (!populated_zone(zone))
  1656. continue;
  1657. show_node(zone);
  1658. printk("%s: ", zone->name);
  1659. spin_lock_irqsave(&zone->lock, flags);
  1660. for (order = 0; order < MAX_ORDER; order++) {
  1661. nr[order] = zone->free_area[order].nr_free;
  1662. total += nr[order] << order;
  1663. }
  1664. spin_unlock_irqrestore(&zone->lock, flags);
  1665. for (order = 0; order < MAX_ORDER; order++)
  1666. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1667. printk("= %lukB\n", K(total));
  1668. }
  1669. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1670. show_swap_cache_info();
  1671. }
  1672. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1673. {
  1674. zoneref->zone = zone;
  1675. zoneref->zone_idx = zone_idx(zone);
  1676. }
  1677. /*
  1678. * Builds allocation fallback zone lists.
  1679. *
  1680. * Add all populated zones of a node to the zonelist.
  1681. */
  1682. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1683. int nr_zones, enum zone_type zone_type)
  1684. {
  1685. struct zone *zone;
  1686. BUG_ON(zone_type >= MAX_NR_ZONES);
  1687. zone_type++;
  1688. do {
  1689. zone_type--;
  1690. zone = pgdat->node_zones + zone_type;
  1691. if (populated_zone(zone)) {
  1692. zoneref_set_zone(zone,
  1693. &zonelist->_zonerefs[nr_zones++]);
  1694. check_highest_zone(zone_type);
  1695. }
  1696. } while (zone_type);
  1697. return nr_zones;
  1698. }
  1699. /*
  1700. * zonelist_order:
  1701. * 0 = automatic detection of better ordering.
  1702. * 1 = order by ([node] distance, -zonetype)
  1703. * 2 = order by (-zonetype, [node] distance)
  1704. *
  1705. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1706. * the same zonelist. So only NUMA can configure this param.
  1707. */
  1708. #define ZONELIST_ORDER_DEFAULT 0
  1709. #define ZONELIST_ORDER_NODE 1
  1710. #define ZONELIST_ORDER_ZONE 2
  1711. /* zonelist order in the kernel.
  1712. * set_zonelist_order() will set this to NODE or ZONE.
  1713. */
  1714. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1715. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1716. #ifdef CONFIG_NUMA
  1717. /* The value user specified ....changed by config */
  1718. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1719. /* string for sysctl */
  1720. #define NUMA_ZONELIST_ORDER_LEN 16
  1721. char numa_zonelist_order[16] = "default";
  1722. /*
  1723. * interface for configure zonelist ordering.
  1724. * command line option "numa_zonelist_order"
  1725. * = "[dD]efault - default, automatic configuration.
  1726. * = "[nN]ode - order by node locality, then by zone within node
  1727. * = "[zZ]one - order by zone, then by locality within zone
  1728. */
  1729. static int __parse_numa_zonelist_order(char *s)
  1730. {
  1731. if (*s == 'd' || *s == 'D') {
  1732. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1733. } else if (*s == 'n' || *s == 'N') {
  1734. user_zonelist_order = ZONELIST_ORDER_NODE;
  1735. } else if (*s == 'z' || *s == 'Z') {
  1736. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1737. } else {
  1738. printk(KERN_WARNING
  1739. "Ignoring invalid numa_zonelist_order value: "
  1740. "%s\n", s);
  1741. return -EINVAL;
  1742. }
  1743. return 0;
  1744. }
  1745. static __init int setup_numa_zonelist_order(char *s)
  1746. {
  1747. if (s)
  1748. return __parse_numa_zonelist_order(s);
  1749. return 0;
  1750. }
  1751. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1752. /*
  1753. * sysctl handler for numa_zonelist_order
  1754. */
  1755. int numa_zonelist_order_handler(ctl_table *table, int write,
  1756. struct file *file, void __user *buffer, size_t *length,
  1757. loff_t *ppos)
  1758. {
  1759. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1760. int ret;
  1761. if (write)
  1762. strncpy(saved_string, (char*)table->data,
  1763. NUMA_ZONELIST_ORDER_LEN);
  1764. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1765. if (ret)
  1766. return ret;
  1767. if (write) {
  1768. int oldval = user_zonelist_order;
  1769. if (__parse_numa_zonelist_order((char*)table->data)) {
  1770. /*
  1771. * bogus value. restore saved string
  1772. */
  1773. strncpy((char*)table->data, saved_string,
  1774. NUMA_ZONELIST_ORDER_LEN);
  1775. user_zonelist_order = oldval;
  1776. } else if (oldval != user_zonelist_order)
  1777. build_all_zonelists();
  1778. }
  1779. return 0;
  1780. }
  1781. #define MAX_NODE_LOAD (num_online_nodes())
  1782. static int node_load[MAX_NUMNODES];
  1783. /**
  1784. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1785. * @node: node whose fallback list we're appending
  1786. * @used_node_mask: nodemask_t of already used nodes
  1787. *
  1788. * We use a number of factors to determine which is the next node that should
  1789. * appear on a given node's fallback list. The node should not have appeared
  1790. * already in @node's fallback list, and it should be the next closest node
  1791. * according to the distance array (which contains arbitrary distance values
  1792. * from each node to each node in the system), and should also prefer nodes
  1793. * with no CPUs, since presumably they'll have very little allocation pressure
  1794. * on them otherwise.
  1795. * It returns -1 if no node is found.
  1796. */
  1797. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1798. {
  1799. int n, val;
  1800. int min_val = INT_MAX;
  1801. int best_node = -1;
  1802. node_to_cpumask_ptr(tmp, 0);
  1803. /* Use the local node if we haven't already */
  1804. if (!node_isset(node, *used_node_mask)) {
  1805. node_set(node, *used_node_mask);
  1806. return node;
  1807. }
  1808. for_each_node_state(n, N_HIGH_MEMORY) {
  1809. /* Don't want a node to appear more than once */
  1810. if (node_isset(n, *used_node_mask))
  1811. continue;
  1812. /* Use the distance array to find the distance */
  1813. val = node_distance(node, n);
  1814. /* Penalize nodes under us ("prefer the next node") */
  1815. val += (n < node);
  1816. /* Give preference to headless and unused nodes */
  1817. node_to_cpumask_ptr_next(tmp, n);
  1818. if (!cpus_empty(*tmp))
  1819. val += PENALTY_FOR_NODE_WITH_CPUS;
  1820. /* Slight preference for less loaded node */
  1821. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1822. val += node_load[n];
  1823. if (val < min_val) {
  1824. min_val = val;
  1825. best_node = n;
  1826. }
  1827. }
  1828. if (best_node >= 0)
  1829. node_set(best_node, *used_node_mask);
  1830. return best_node;
  1831. }
  1832. /*
  1833. * Build zonelists ordered by node and zones within node.
  1834. * This results in maximum locality--normal zone overflows into local
  1835. * DMA zone, if any--but risks exhausting DMA zone.
  1836. */
  1837. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1838. {
  1839. int j;
  1840. struct zonelist *zonelist;
  1841. zonelist = &pgdat->node_zonelists[0];
  1842. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1843. ;
  1844. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1845. MAX_NR_ZONES - 1);
  1846. zonelist->_zonerefs[j].zone = NULL;
  1847. zonelist->_zonerefs[j].zone_idx = 0;
  1848. }
  1849. /*
  1850. * Build gfp_thisnode zonelists
  1851. */
  1852. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1853. {
  1854. int j;
  1855. struct zonelist *zonelist;
  1856. zonelist = &pgdat->node_zonelists[1];
  1857. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1858. zonelist->_zonerefs[j].zone = NULL;
  1859. zonelist->_zonerefs[j].zone_idx = 0;
  1860. }
  1861. /*
  1862. * Build zonelists ordered by zone and nodes within zones.
  1863. * This results in conserving DMA zone[s] until all Normal memory is
  1864. * exhausted, but results in overflowing to remote node while memory
  1865. * may still exist in local DMA zone.
  1866. */
  1867. static int node_order[MAX_NUMNODES];
  1868. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1869. {
  1870. int pos, j, node;
  1871. int zone_type; /* needs to be signed */
  1872. struct zone *z;
  1873. struct zonelist *zonelist;
  1874. zonelist = &pgdat->node_zonelists[0];
  1875. pos = 0;
  1876. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1877. for (j = 0; j < nr_nodes; j++) {
  1878. node = node_order[j];
  1879. z = &NODE_DATA(node)->node_zones[zone_type];
  1880. if (populated_zone(z)) {
  1881. zoneref_set_zone(z,
  1882. &zonelist->_zonerefs[pos++]);
  1883. check_highest_zone(zone_type);
  1884. }
  1885. }
  1886. }
  1887. zonelist->_zonerefs[pos].zone = NULL;
  1888. zonelist->_zonerefs[pos].zone_idx = 0;
  1889. }
  1890. static int default_zonelist_order(void)
  1891. {
  1892. int nid, zone_type;
  1893. unsigned long low_kmem_size,total_size;
  1894. struct zone *z;
  1895. int average_size;
  1896. /*
  1897. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1898. * If they are really small and used heavily, the system can fall
  1899. * into OOM very easily.
  1900. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1901. */
  1902. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1903. low_kmem_size = 0;
  1904. total_size = 0;
  1905. for_each_online_node(nid) {
  1906. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1907. z = &NODE_DATA(nid)->node_zones[zone_type];
  1908. if (populated_zone(z)) {
  1909. if (zone_type < ZONE_NORMAL)
  1910. low_kmem_size += z->present_pages;
  1911. total_size += z->present_pages;
  1912. }
  1913. }
  1914. }
  1915. if (!low_kmem_size || /* there are no DMA area. */
  1916. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1917. return ZONELIST_ORDER_NODE;
  1918. /*
  1919. * look into each node's config.
  1920. * If there is a node whose DMA/DMA32 memory is very big area on
  1921. * local memory, NODE_ORDER may be suitable.
  1922. */
  1923. average_size = total_size /
  1924. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1925. for_each_online_node(nid) {
  1926. low_kmem_size = 0;
  1927. total_size = 0;
  1928. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1929. z = &NODE_DATA(nid)->node_zones[zone_type];
  1930. if (populated_zone(z)) {
  1931. if (zone_type < ZONE_NORMAL)
  1932. low_kmem_size += z->present_pages;
  1933. total_size += z->present_pages;
  1934. }
  1935. }
  1936. if (low_kmem_size &&
  1937. total_size > average_size && /* ignore small node */
  1938. low_kmem_size > total_size * 70/100)
  1939. return ZONELIST_ORDER_NODE;
  1940. }
  1941. return ZONELIST_ORDER_ZONE;
  1942. }
  1943. static void set_zonelist_order(void)
  1944. {
  1945. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1946. current_zonelist_order = default_zonelist_order();
  1947. else
  1948. current_zonelist_order = user_zonelist_order;
  1949. }
  1950. static void build_zonelists(pg_data_t *pgdat)
  1951. {
  1952. int j, node, load;
  1953. enum zone_type i;
  1954. nodemask_t used_mask;
  1955. int local_node, prev_node;
  1956. struct zonelist *zonelist;
  1957. int order = current_zonelist_order;
  1958. /* initialize zonelists */
  1959. for (i = 0; i < MAX_ZONELISTS; i++) {
  1960. zonelist = pgdat->node_zonelists + i;
  1961. zonelist->_zonerefs[0].zone = NULL;
  1962. zonelist->_zonerefs[0].zone_idx = 0;
  1963. }
  1964. /* NUMA-aware ordering of nodes */
  1965. local_node = pgdat->node_id;
  1966. load = num_online_nodes();
  1967. prev_node = local_node;
  1968. nodes_clear(used_mask);
  1969. memset(node_load, 0, sizeof(node_load));
  1970. memset(node_order, 0, sizeof(node_order));
  1971. j = 0;
  1972. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1973. int distance = node_distance(local_node, node);
  1974. /*
  1975. * If another node is sufficiently far away then it is better
  1976. * to reclaim pages in a zone before going off node.
  1977. */
  1978. if (distance > RECLAIM_DISTANCE)
  1979. zone_reclaim_mode = 1;
  1980. /*
  1981. * We don't want to pressure a particular node.
  1982. * So adding penalty to the first node in same
  1983. * distance group to make it round-robin.
  1984. */
  1985. if (distance != node_distance(local_node, prev_node))
  1986. node_load[node] = load;
  1987. prev_node = node;
  1988. load--;
  1989. if (order == ZONELIST_ORDER_NODE)
  1990. build_zonelists_in_node_order(pgdat, node);
  1991. else
  1992. node_order[j++] = node; /* remember order */
  1993. }
  1994. if (order == ZONELIST_ORDER_ZONE) {
  1995. /* calculate node order -- i.e., DMA last! */
  1996. build_zonelists_in_zone_order(pgdat, j);
  1997. }
  1998. build_thisnode_zonelists(pgdat);
  1999. }
  2000. /* Construct the zonelist performance cache - see further mmzone.h */
  2001. static void build_zonelist_cache(pg_data_t *pgdat)
  2002. {
  2003. struct zonelist *zonelist;
  2004. struct zonelist_cache *zlc;
  2005. struct zoneref *z;
  2006. zonelist = &pgdat->node_zonelists[0];
  2007. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2008. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2009. for (z = zonelist->_zonerefs; z->zone; z++)
  2010. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2011. }
  2012. #else /* CONFIG_NUMA */
  2013. static void set_zonelist_order(void)
  2014. {
  2015. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2016. }
  2017. static void build_zonelists(pg_data_t *pgdat)
  2018. {
  2019. int node, local_node;
  2020. enum zone_type j;
  2021. struct zonelist *zonelist;
  2022. local_node = pgdat->node_id;
  2023. zonelist = &pgdat->node_zonelists[0];
  2024. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2025. /*
  2026. * Now we build the zonelist so that it contains the zones
  2027. * of all the other nodes.
  2028. * We don't want to pressure a particular node, so when
  2029. * building the zones for node N, we make sure that the
  2030. * zones coming right after the local ones are those from
  2031. * node N+1 (modulo N)
  2032. */
  2033. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2034. if (!node_online(node))
  2035. continue;
  2036. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2037. MAX_NR_ZONES - 1);
  2038. }
  2039. for (node = 0; node < local_node; node++) {
  2040. if (!node_online(node))
  2041. continue;
  2042. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2043. MAX_NR_ZONES - 1);
  2044. }
  2045. zonelist->_zonerefs[j].zone = NULL;
  2046. zonelist->_zonerefs[j].zone_idx = 0;
  2047. }
  2048. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2049. static void build_zonelist_cache(pg_data_t *pgdat)
  2050. {
  2051. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2052. }
  2053. #endif /* CONFIG_NUMA */
  2054. /* return values int ....just for stop_machine() */
  2055. static int __build_all_zonelists(void *dummy)
  2056. {
  2057. int nid;
  2058. for_each_online_node(nid) {
  2059. pg_data_t *pgdat = NODE_DATA(nid);
  2060. build_zonelists(pgdat);
  2061. build_zonelist_cache(pgdat);
  2062. }
  2063. return 0;
  2064. }
  2065. void build_all_zonelists(void)
  2066. {
  2067. set_zonelist_order();
  2068. if (system_state == SYSTEM_BOOTING) {
  2069. __build_all_zonelists(NULL);
  2070. mminit_verify_zonelist();
  2071. cpuset_init_current_mems_allowed();
  2072. } else {
  2073. /* we have to stop all cpus to guarantee there is no user
  2074. of zonelist */
  2075. stop_machine(__build_all_zonelists, NULL, NULL);
  2076. /* cpuset refresh routine should be here */
  2077. }
  2078. vm_total_pages = nr_free_pagecache_pages();
  2079. /*
  2080. * Disable grouping by mobility if the number of pages in the
  2081. * system is too low to allow the mechanism to work. It would be
  2082. * more accurate, but expensive to check per-zone. This check is
  2083. * made on memory-hotadd so a system can start with mobility
  2084. * disabled and enable it later
  2085. */
  2086. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2087. page_group_by_mobility_disabled = 1;
  2088. else
  2089. page_group_by_mobility_disabled = 0;
  2090. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2091. "Total pages: %ld\n",
  2092. num_online_nodes(),
  2093. zonelist_order_name[current_zonelist_order],
  2094. page_group_by_mobility_disabled ? "off" : "on",
  2095. vm_total_pages);
  2096. #ifdef CONFIG_NUMA
  2097. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2098. #endif
  2099. }
  2100. /*
  2101. * Helper functions to size the waitqueue hash table.
  2102. * Essentially these want to choose hash table sizes sufficiently
  2103. * large so that collisions trying to wait on pages are rare.
  2104. * But in fact, the number of active page waitqueues on typical
  2105. * systems is ridiculously low, less than 200. So this is even
  2106. * conservative, even though it seems large.
  2107. *
  2108. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2109. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2110. */
  2111. #define PAGES_PER_WAITQUEUE 256
  2112. #ifndef CONFIG_MEMORY_HOTPLUG
  2113. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2114. {
  2115. unsigned long size = 1;
  2116. pages /= PAGES_PER_WAITQUEUE;
  2117. while (size < pages)
  2118. size <<= 1;
  2119. /*
  2120. * Once we have dozens or even hundreds of threads sleeping
  2121. * on IO we've got bigger problems than wait queue collision.
  2122. * Limit the size of the wait table to a reasonable size.
  2123. */
  2124. size = min(size, 4096UL);
  2125. return max(size, 4UL);
  2126. }
  2127. #else
  2128. /*
  2129. * A zone's size might be changed by hot-add, so it is not possible to determine
  2130. * a suitable size for its wait_table. So we use the maximum size now.
  2131. *
  2132. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2133. *
  2134. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2135. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2136. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2137. *
  2138. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2139. * or more by the traditional way. (See above). It equals:
  2140. *
  2141. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2142. * ia64(16K page size) : = ( 8G + 4M)byte.
  2143. * powerpc (64K page size) : = (32G +16M)byte.
  2144. */
  2145. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2146. {
  2147. return 4096UL;
  2148. }
  2149. #endif
  2150. /*
  2151. * This is an integer logarithm so that shifts can be used later
  2152. * to extract the more random high bits from the multiplicative
  2153. * hash function before the remainder is taken.
  2154. */
  2155. static inline unsigned long wait_table_bits(unsigned long size)
  2156. {
  2157. return ffz(~size);
  2158. }
  2159. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2160. /*
  2161. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2162. * of blocks reserved is based on zone->pages_min. The memory within the
  2163. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2164. * higher will lead to a bigger reserve which will get freed as contiguous
  2165. * blocks as reclaim kicks in
  2166. */
  2167. static void setup_zone_migrate_reserve(struct zone *zone)
  2168. {
  2169. unsigned long start_pfn, pfn, end_pfn;
  2170. struct page *page;
  2171. unsigned long reserve, block_migratetype;
  2172. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2173. start_pfn = zone->zone_start_pfn;
  2174. end_pfn = start_pfn + zone->spanned_pages;
  2175. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2176. pageblock_order;
  2177. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2178. if (!pfn_valid(pfn))
  2179. continue;
  2180. page = pfn_to_page(pfn);
  2181. /* Watch out for overlapping nodes */
  2182. if (page_to_nid(page) != zone_to_nid(zone))
  2183. continue;
  2184. /* Blocks with reserved pages will never free, skip them. */
  2185. if (PageReserved(page))
  2186. continue;
  2187. block_migratetype = get_pageblock_migratetype(page);
  2188. /* If this block is reserved, account for it */
  2189. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2190. reserve--;
  2191. continue;
  2192. }
  2193. /* Suitable for reserving if this block is movable */
  2194. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2195. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2196. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2197. reserve--;
  2198. continue;
  2199. }
  2200. /*
  2201. * If the reserve is met and this is a previous reserved block,
  2202. * take it back
  2203. */
  2204. if (block_migratetype == MIGRATE_RESERVE) {
  2205. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2206. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2207. }
  2208. }
  2209. }
  2210. /*
  2211. * Initially all pages are reserved - free ones are freed
  2212. * up by free_all_bootmem() once the early boot process is
  2213. * done. Non-atomic initialization, single-pass.
  2214. */
  2215. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2216. unsigned long start_pfn, enum memmap_context context)
  2217. {
  2218. struct page *page;
  2219. unsigned long end_pfn = start_pfn + size;
  2220. unsigned long pfn;
  2221. struct zone *z;
  2222. z = &NODE_DATA(nid)->node_zones[zone];
  2223. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2224. /*
  2225. * There can be holes in boot-time mem_map[]s
  2226. * handed to this function. They do not
  2227. * exist on hotplugged memory.
  2228. */
  2229. if (context == MEMMAP_EARLY) {
  2230. if (!early_pfn_valid(pfn))
  2231. continue;
  2232. if (!early_pfn_in_nid(pfn, nid))
  2233. continue;
  2234. }
  2235. page = pfn_to_page(pfn);
  2236. set_page_links(page, zone, nid, pfn);
  2237. mminit_verify_page_links(page, zone, nid, pfn);
  2238. init_page_count(page);
  2239. reset_page_mapcount(page);
  2240. SetPageReserved(page);
  2241. /*
  2242. * Mark the block movable so that blocks are reserved for
  2243. * movable at startup. This will force kernel allocations
  2244. * to reserve their blocks rather than leaking throughout
  2245. * the address space during boot when many long-lived
  2246. * kernel allocations are made. Later some blocks near
  2247. * the start are marked MIGRATE_RESERVE by
  2248. * setup_zone_migrate_reserve()
  2249. *
  2250. * bitmap is created for zone's valid pfn range. but memmap
  2251. * can be created for invalid pages (for alignment)
  2252. * check here not to call set_pageblock_migratetype() against
  2253. * pfn out of zone.
  2254. */
  2255. if ((z->zone_start_pfn <= pfn)
  2256. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2257. && !(pfn & (pageblock_nr_pages - 1)))
  2258. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2259. INIT_LIST_HEAD(&page->lru);
  2260. #ifdef WANT_PAGE_VIRTUAL
  2261. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2262. if (!is_highmem_idx(zone))
  2263. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2264. #endif
  2265. }
  2266. }
  2267. static void __meminit zone_init_free_lists(struct zone *zone)
  2268. {
  2269. int order, t;
  2270. for_each_migratetype_order(order, t) {
  2271. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2272. zone->free_area[order].nr_free = 0;
  2273. }
  2274. }
  2275. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2276. #define memmap_init(size, nid, zone, start_pfn) \
  2277. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2278. #endif
  2279. static int zone_batchsize(struct zone *zone)
  2280. {
  2281. int batch;
  2282. /*
  2283. * The per-cpu-pages pools are set to around 1000th of the
  2284. * size of the zone. But no more than 1/2 of a meg.
  2285. *
  2286. * OK, so we don't know how big the cache is. So guess.
  2287. */
  2288. batch = zone->present_pages / 1024;
  2289. if (batch * PAGE_SIZE > 512 * 1024)
  2290. batch = (512 * 1024) / PAGE_SIZE;
  2291. batch /= 4; /* We effectively *= 4 below */
  2292. if (batch < 1)
  2293. batch = 1;
  2294. /*
  2295. * Clamp the batch to a 2^n - 1 value. Having a power
  2296. * of 2 value was found to be more likely to have
  2297. * suboptimal cache aliasing properties in some cases.
  2298. *
  2299. * For example if 2 tasks are alternately allocating
  2300. * batches of pages, one task can end up with a lot
  2301. * of pages of one half of the possible page colors
  2302. * and the other with pages of the other colors.
  2303. */
  2304. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2305. return batch;
  2306. }
  2307. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2308. {
  2309. struct per_cpu_pages *pcp;
  2310. memset(p, 0, sizeof(*p));
  2311. pcp = &p->pcp;
  2312. pcp->count = 0;
  2313. pcp->high = 6 * batch;
  2314. pcp->batch = max(1UL, 1 * batch);
  2315. INIT_LIST_HEAD(&pcp->list);
  2316. }
  2317. /*
  2318. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2319. * to the value high for the pageset p.
  2320. */
  2321. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2322. unsigned long high)
  2323. {
  2324. struct per_cpu_pages *pcp;
  2325. pcp = &p->pcp;
  2326. pcp->high = high;
  2327. pcp->batch = max(1UL, high/4);
  2328. if ((high/4) > (PAGE_SHIFT * 8))
  2329. pcp->batch = PAGE_SHIFT * 8;
  2330. }
  2331. #ifdef CONFIG_NUMA
  2332. /*
  2333. * Boot pageset table. One per cpu which is going to be used for all
  2334. * zones and all nodes. The parameters will be set in such a way
  2335. * that an item put on a list will immediately be handed over to
  2336. * the buddy list. This is safe since pageset manipulation is done
  2337. * with interrupts disabled.
  2338. *
  2339. * Some NUMA counter updates may also be caught by the boot pagesets.
  2340. *
  2341. * The boot_pagesets must be kept even after bootup is complete for
  2342. * unused processors and/or zones. They do play a role for bootstrapping
  2343. * hotplugged processors.
  2344. *
  2345. * zoneinfo_show() and maybe other functions do
  2346. * not check if the processor is online before following the pageset pointer.
  2347. * Other parts of the kernel may not check if the zone is available.
  2348. */
  2349. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2350. /*
  2351. * Dynamically allocate memory for the
  2352. * per cpu pageset array in struct zone.
  2353. */
  2354. static int __cpuinit process_zones(int cpu)
  2355. {
  2356. struct zone *zone, *dzone;
  2357. int node = cpu_to_node(cpu);
  2358. node_set_state(node, N_CPU); /* this node has a cpu */
  2359. for_each_zone(zone) {
  2360. if (!populated_zone(zone))
  2361. continue;
  2362. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2363. GFP_KERNEL, node);
  2364. if (!zone_pcp(zone, cpu))
  2365. goto bad;
  2366. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2367. if (percpu_pagelist_fraction)
  2368. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2369. (zone->present_pages / percpu_pagelist_fraction));
  2370. }
  2371. return 0;
  2372. bad:
  2373. for_each_zone(dzone) {
  2374. if (!populated_zone(dzone))
  2375. continue;
  2376. if (dzone == zone)
  2377. break;
  2378. kfree(zone_pcp(dzone, cpu));
  2379. zone_pcp(dzone, cpu) = NULL;
  2380. }
  2381. return -ENOMEM;
  2382. }
  2383. static inline void free_zone_pagesets(int cpu)
  2384. {
  2385. struct zone *zone;
  2386. for_each_zone(zone) {
  2387. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2388. /* Free per_cpu_pageset if it is slab allocated */
  2389. if (pset != &boot_pageset[cpu])
  2390. kfree(pset);
  2391. zone_pcp(zone, cpu) = NULL;
  2392. }
  2393. }
  2394. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2395. unsigned long action,
  2396. void *hcpu)
  2397. {
  2398. int cpu = (long)hcpu;
  2399. int ret = NOTIFY_OK;
  2400. switch (action) {
  2401. case CPU_UP_PREPARE:
  2402. case CPU_UP_PREPARE_FROZEN:
  2403. if (process_zones(cpu))
  2404. ret = NOTIFY_BAD;
  2405. break;
  2406. case CPU_UP_CANCELED:
  2407. case CPU_UP_CANCELED_FROZEN:
  2408. case CPU_DEAD:
  2409. case CPU_DEAD_FROZEN:
  2410. free_zone_pagesets(cpu);
  2411. break;
  2412. default:
  2413. break;
  2414. }
  2415. return ret;
  2416. }
  2417. static struct notifier_block __cpuinitdata pageset_notifier =
  2418. { &pageset_cpuup_callback, NULL, 0 };
  2419. void __init setup_per_cpu_pageset(void)
  2420. {
  2421. int err;
  2422. /* Initialize per_cpu_pageset for cpu 0.
  2423. * A cpuup callback will do this for every cpu
  2424. * as it comes online
  2425. */
  2426. err = process_zones(smp_processor_id());
  2427. BUG_ON(err);
  2428. register_cpu_notifier(&pageset_notifier);
  2429. }
  2430. #endif
  2431. static noinline __init_refok
  2432. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2433. {
  2434. int i;
  2435. struct pglist_data *pgdat = zone->zone_pgdat;
  2436. size_t alloc_size;
  2437. /*
  2438. * The per-page waitqueue mechanism uses hashed waitqueues
  2439. * per zone.
  2440. */
  2441. zone->wait_table_hash_nr_entries =
  2442. wait_table_hash_nr_entries(zone_size_pages);
  2443. zone->wait_table_bits =
  2444. wait_table_bits(zone->wait_table_hash_nr_entries);
  2445. alloc_size = zone->wait_table_hash_nr_entries
  2446. * sizeof(wait_queue_head_t);
  2447. if (!slab_is_available()) {
  2448. zone->wait_table = (wait_queue_head_t *)
  2449. alloc_bootmem_node(pgdat, alloc_size);
  2450. } else {
  2451. /*
  2452. * This case means that a zone whose size was 0 gets new memory
  2453. * via memory hot-add.
  2454. * But it may be the case that a new node was hot-added. In
  2455. * this case vmalloc() will not be able to use this new node's
  2456. * memory - this wait_table must be initialized to use this new
  2457. * node itself as well.
  2458. * To use this new node's memory, further consideration will be
  2459. * necessary.
  2460. */
  2461. zone->wait_table = vmalloc(alloc_size);
  2462. }
  2463. if (!zone->wait_table)
  2464. return -ENOMEM;
  2465. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2466. init_waitqueue_head(zone->wait_table + i);
  2467. return 0;
  2468. }
  2469. static __meminit void zone_pcp_init(struct zone *zone)
  2470. {
  2471. int cpu;
  2472. unsigned long batch = zone_batchsize(zone);
  2473. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2474. #ifdef CONFIG_NUMA
  2475. /* Early boot. Slab allocator not functional yet */
  2476. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2477. setup_pageset(&boot_pageset[cpu],0);
  2478. #else
  2479. setup_pageset(zone_pcp(zone,cpu), batch);
  2480. #endif
  2481. }
  2482. if (zone->present_pages)
  2483. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2484. zone->name, zone->present_pages, batch);
  2485. }
  2486. __meminit int init_currently_empty_zone(struct zone *zone,
  2487. unsigned long zone_start_pfn,
  2488. unsigned long size,
  2489. enum memmap_context context)
  2490. {
  2491. struct pglist_data *pgdat = zone->zone_pgdat;
  2492. int ret;
  2493. ret = zone_wait_table_init(zone, size);
  2494. if (ret)
  2495. return ret;
  2496. pgdat->nr_zones = zone_idx(zone) + 1;
  2497. zone->zone_start_pfn = zone_start_pfn;
  2498. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2499. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2500. pgdat->node_id,
  2501. (unsigned long)zone_idx(zone),
  2502. zone_start_pfn, (zone_start_pfn + size));
  2503. zone_init_free_lists(zone);
  2504. return 0;
  2505. }
  2506. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2507. /*
  2508. * Basic iterator support. Return the first range of PFNs for a node
  2509. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2510. */
  2511. static int __meminit first_active_region_index_in_nid(int nid)
  2512. {
  2513. int i;
  2514. for (i = 0; i < nr_nodemap_entries; i++)
  2515. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2516. return i;
  2517. return -1;
  2518. }
  2519. /*
  2520. * Basic iterator support. Return the next active range of PFNs for a node
  2521. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2522. */
  2523. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2524. {
  2525. for (index = index + 1; index < nr_nodemap_entries; index++)
  2526. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2527. return index;
  2528. return -1;
  2529. }
  2530. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2531. /*
  2532. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2533. * Architectures may implement their own version but if add_active_range()
  2534. * was used and there are no special requirements, this is a convenient
  2535. * alternative
  2536. */
  2537. int __meminit early_pfn_to_nid(unsigned long pfn)
  2538. {
  2539. int i;
  2540. for (i = 0; i < nr_nodemap_entries; i++) {
  2541. unsigned long start_pfn = early_node_map[i].start_pfn;
  2542. unsigned long end_pfn = early_node_map[i].end_pfn;
  2543. if (start_pfn <= pfn && pfn < end_pfn)
  2544. return early_node_map[i].nid;
  2545. }
  2546. return 0;
  2547. }
  2548. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2549. /* Basic iterator support to walk early_node_map[] */
  2550. #define for_each_active_range_index_in_nid(i, nid) \
  2551. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2552. i = next_active_region_index_in_nid(i, nid))
  2553. /**
  2554. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2555. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2556. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2557. *
  2558. * If an architecture guarantees that all ranges registered with
  2559. * add_active_ranges() contain no holes and may be freed, this
  2560. * this function may be used instead of calling free_bootmem() manually.
  2561. */
  2562. void __init free_bootmem_with_active_regions(int nid,
  2563. unsigned long max_low_pfn)
  2564. {
  2565. int i;
  2566. for_each_active_range_index_in_nid(i, nid) {
  2567. unsigned long size_pages = 0;
  2568. unsigned long end_pfn = early_node_map[i].end_pfn;
  2569. if (early_node_map[i].start_pfn >= max_low_pfn)
  2570. continue;
  2571. if (end_pfn > max_low_pfn)
  2572. end_pfn = max_low_pfn;
  2573. size_pages = end_pfn - early_node_map[i].start_pfn;
  2574. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2575. PFN_PHYS(early_node_map[i].start_pfn),
  2576. size_pages << PAGE_SHIFT);
  2577. }
  2578. }
  2579. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2580. {
  2581. int i;
  2582. int ret;
  2583. for_each_active_range_index_in_nid(i, nid) {
  2584. ret = work_fn(early_node_map[i].start_pfn,
  2585. early_node_map[i].end_pfn, data);
  2586. if (ret)
  2587. break;
  2588. }
  2589. }
  2590. /**
  2591. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2592. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2593. *
  2594. * If an architecture guarantees that all ranges registered with
  2595. * add_active_ranges() contain no holes and may be freed, this
  2596. * function may be used instead of calling memory_present() manually.
  2597. */
  2598. void __init sparse_memory_present_with_active_regions(int nid)
  2599. {
  2600. int i;
  2601. for_each_active_range_index_in_nid(i, nid)
  2602. memory_present(early_node_map[i].nid,
  2603. early_node_map[i].start_pfn,
  2604. early_node_map[i].end_pfn);
  2605. }
  2606. /**
  2607. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2608. * @nid: The nid of the node to push the boundary for
  2609. * @start_pfn: The start pfn of the node
  2610. * @end_pfn: The end pfn of the node
  2611. *
  2612. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2613. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2614. * be hotplugged even though no physical memory exists. This function allows
  2615. * an arch to push out the node boundaries so mem_map is allocated that can
  2616. * be used later.
  2617. */
  2618. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2619. void __init push_node_boundaries(unsigned int nid,
  2620. unsigned long start_pfn, unsigned long end_pfn)
  2621. {
  2622. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2623. "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2624. nid, start_pfn, end_pfn);
  2625. /* Initialise the boundary for this node if necessary */
  2626. if (node_boundary_end_pfn[nid] == 0)
  2627. node_boundary_start_pfn[nid] = -1UL;
  2628. /* Update the boundaries */
  2629. if (node_boundary_start_pfn[nid] > start_pfn)
  2630. node_boundary_start_pfn[nid] = start_pfn;
  2631. if (node_boundary_end_pfn[nid] < end_pfn)
  2632. node_boundary_end_pfn[nid] = end_pfn;
  2633. }
  2634. /* If necessary, push the node boundary out for reserve hotadd */
  2635. static void __meminit account_node_boundary(unsigned int nid,
  2636. unsigned long *start_pfn, unsigned long *end_pfn)
  2637. {
  2638. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2639. "Entering account_node_boundary(%u, %lu, %lu)\n",
  2640. nid, *start_pfn, *end_pfn);
  2641. /* Return if boundary information has not been provided */
  2642. if (node_boundary_end_pfn[nid] == 0)
  2643. return;
  2644. /* Check the boundaries and update if necessary */
  2645. if (node_boundary_start_pfn[nid] < *start_pfn)
  2646. *start_pfn = node_boundary_start_pfn[nid];
  2647. if (node_boundary_end_pfn[nid] > *end_pfn)
  2648. *end_pfn = node_boundary_end_pfn[nid];
  2649. }
  2650. #else
  2651. void __init push_node_boundaries(unsigned int nid,
  2652. unsigned long start_pfn, unsigned long end_pfn) {}
  2653. static void __meminit account_node_boundary(unsigned int nid,
  2654. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2655. #endif
  2656. /**
  2657. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2658. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2659. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2660. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2661. *
  2662. * It returns the start and end page frame of a node based on information
  2663. * provided by an arch calling add_active_range(). If called for a node
  2664. * with no available memory, a warning is printed and the start and end
  2665. * PFNs will be 0.
  2666. */
  2667. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2668. unsigned long *start_pfn, unsigned long *end_pfn)
  2669. {
  2670. int i;
  2671. *start_pfn = -1UL;
  2672. *end_pfn = 0;
  2673. for_each_active_range_index_in_nid(i, nid) {
  2674. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2675. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2676. }
  2677. if (*start_pfn == -1UL)
  2678. *start_pfn = 0;
  2679. /* Push the node boundaries out if requested */
  2680. account_node_boundary(nid, start_pfn, end_pfn);
  2681. }
  2682. /*
  2683. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2684. * assumption is made that zones within a node are ordered in monotonic
  2685. * increasing memory addresses so that the "highest" populated zone is used
  2686. */
  2687. static void __init find_usable_zone_for_movable(void)
  2688. {
  2689. int zone_index;
  2690. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2691. if (zone_index == ZONE_MOVABLE)
  2692. continue;
  2693. if (arch_zone_highest_possible_pfn[zone_index] >
  2694. arch_zone_lowest_possible_pfn[zone_index])
  2695. break;
  2696. }
  2697. VM_BUG_ON(zone_index == -1);
  2698. movable_zone = zone_index;
  2699. }
  2700. /*
  2701. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2702. * because it is sized independant of architecture. Unlike the other zones,
  2703. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2704. * in each node depending on the size of each node and how evenly kernelcore
  2705. * is distributed. This helper function adjusts the zone ranges
  2706. * provided by the architecture for a given node by using the end of the
  2707. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2708. * zones within a node are in order of monotonic increases memory addresses
  2709. */
  2710. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2711. unsigned long zone_type,
  2712. unsigned long node_start_pfn,
  2713. unsigned long node_end_pfn,
  2714. unsigned long *zone_start_pfn,
  2715. unsigned long *zone_end_pfn)
  2716. {
  2717. /* Only adjust if ZONE_MOVABLE is on this node */
  2718. if (zone_movable_pfn[nid]) {
  2719. /* Size ZONE_MOVABLE */
  2720. if (zone_type == ZONE_MOVABLE) {
  2721. *zone_start_pfn = zone_movable_pfn[nid];
  2722. *zone_end_pfn = min(node_end_pfn,
  2723. arch_zone_highest_possible_pfn[movable_zone]);
  2724. /* Adjust for ZONE_MOVABLE starting within this range */
  2725. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2726. *zone_end_pfn > zone_movable_pfn[nid]) {
  2727. *zone_end_pfn = zone_movable_pfn[nid];
  2728. /* Check if this whole range is within ZONE_MOVABLE */
  2729. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2730. *zone_start_pfn = *zone_end_pfn;
  2731. }
  2732. }
  2733. /*
  2734. * Return the number of pages a zone spans in a node, including holes
  2735. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2736. */
  2737. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2738. unsigned long zone_type,
  2739. unsigned long *ignored)
  2740. {
  2741. unsigned long node_start_pfn, node_end_pfn;
  2742. unsigned long zone_start_pfn, zone_end_pfn;
  2743. /* Get the start and end of the node and zone */
  2744. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2745. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2746. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2747. adjust_zone_range_for_zone_movable(nid, zone_type,
  2748. node_start_pfn, node_end_pfn,
  2749. &zone_start_pfn, &zone_end_pfn);
  2750. /* Check that this node has pages within the zone's required range */
  2751. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2752. return 0;
  2753. /* Move the zone boundaries inside the node if necessary */
  2754. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2755. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2756. /* Return the spanned pages */
  2757. return zone_end_pfn - zone_start_pfn;
  2758. }
  2759. /*
  2760. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2761. * then all holes in the requested range will be accounted for.
  2762. */
  2763. static unsigned long __meminit __absent_pages_in_range(int nid,
  2764. unsigned long range_start_pfn,
  2765. unsigned long range_end_pfn)
  2766. {
  2767. int i = 0;
  2768. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2769. unsigned long start_pfn;
  2770. /* Find the end_pfn of the first active range of pfns in the node */
  2771. i = first_active_region_index_in_nid(nid);
  2772. if (i == -1)
  2773. return 0;
  2774. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2775. /* Account for ranges before physical memory on this node */
  2776. if (early_node_map[i].start_pfn > range_start_pfn)
  2777. hole_pages = prev_end_pfn - range_start_pfn;
  2778. /* Find all holes for the zone within the node */
  2779. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2780. /* No need to continue if prev_end_pfn is outside the zone */
  2781. if (prev_end_pfn >= range_end_pfn)
  2782. break;
  2783. /* Make sure the end of the zone is not within the hole */
  2784. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2785. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2786. /* Update the hole size cound and move on */
  2787. if (start_pfn > range_start_pfn) {
  2788. BUG_ON(prev_end_pfn > start_pfn);
  2789. hole_pages += start_pfn - prev_end_pfn;
  2790. }
  2791. prev_end_pfn = early_node_map[i].end_pfn;
  2792. }
  2793. /* Account for ranges past physical memory on this node */
  2794. if (range_end_pfn > prev_end_pfn)
  2795. hole_pages += range_end_pfn -
  2796. max(range_start_pfn, prev_end_pfn);
  2797. return hole_pages;
  2798. }
  2799. /**
  2800. * absent_pages_in_range - Return number of page frames in holes within a range
  2801. * @start_pfn: The start PFN to start searching for holes
  2802. * @end_pfn: The end PFN to stop searching for holes
  2803. *
  2804. * It returns the number of pages frames in memory holes within a range.
  2805. */
  2806. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2807. unsigned long end_pfn)
  2808. {
  2809. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2810. }
  2811. /* Return the number of page frames in holes in a zone on a node */
  2812. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2813. unsigned long zone_type,
  2814. unsigned long *ignored)
  2815. {
  2816. unsigned long node_start_pfn, node_end_pfn;
  2817. unsigned long zone_start_pfn, zone_end_pfn;
  2818. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2819. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2820. node_start_pfn);
  2821. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2822. node_end_pfn);
  2823. adjust_zone_range_for_zone_movable(nid, zone_type,
  2824. node_start_pfn, node_end_pfn,
  2825. &zone_start_pfn, &zone_end_pfn);
  2826. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2827. }
  2828. #else
  2829. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2830. unsigned long zone_type,
  2831. unsigned long *zones_size)
  2832. {
  2833. return zones_size[zone_type];
  2834. }
  2835. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2836. unsigned long zone_type,
  2837. unsigned long *zholes_size)
  2838. {
  2839. if (!zholes_size)
  2840. return 0;
  2841. return zholes_size[zone_type];
  2842. }
  2843. #endif
  2844. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2845. unsigned long *zones_size, unsigned long *zholes_size)
  2846. {
  2847. unsigned long realtotalpages, totalpages = 0;
  2848. enum zone_type i;
  2849. for (i = 0; i < MAX_NR_ZONES; i++)
  2850. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2851. zones_size);
  2852. pgdat->node_spanned_pages = totalpages;
  2853. realtotalpages = totalpages;
  2854. for (i = 0; i < MAX_NR_ZONES; i++)
  2855. realtotalpages -=
  2856. zone_absent_pages_in_node(pgdat->node_id, i,
  2857. zholes_size);
  2858. pgdat->node_present_pages = realtotalpages;
  2859. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2860. realtotalpages);
  2861. }
  2862. #ifndef CONFIG_SPARSEMEM
  2863. /*
  2864. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2865. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2866. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2867. * round what is now in bits to nearest long in bits, then return it in
  2868. * bytes.
  2869. */
  2870. static unsigned long __init usemap_size(unsigned long zonesize)
  2871. {
  2872. unsigned long usemapsize;
  2873. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2874. usemapsize = usemapsize >> pageblock_order;
  2875. usemapsize *= NR_PAGEBLOCK_BITS;
  2876. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2877. return usemapsize / 8;
  2878. }
  2879. static void __init setup_usemap(struct pglist_data *pgdat,
  2880. struct zone *zone, unsigned long zonesize)
  2881. {
  2882. unsigned long usemapsize = usemap_size(zonesize);
  2883. zone->pageblock_flags = NULL;
  2884. if (usemapsize) {
  2885. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2886. memset(zone->pageblock_flags, 0, usemapsize);
  2887. }
  2888. }
  2889. #else
  2890. static void inline setup_usemap(struct pglist_data *pgdat,
  2891. struct zone *zone, unsigned long zonesize) {}
  2892. #endif /* CONFIG_SPARSEMEM */
  2893. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2894. /* Return a sensible default order for the pageblock size. */
  2895. static inline int pageblock_default_order(void)
  2896. {
  2897. if (HPAGE_SHIFT > PAGE_SHIFT)
  2898. return HUGETLB_PAGE_ORDER;
  2899. return MAX_ORDER-1;
  2900. }
  2901. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2902. static inline void __init set_pageblock_order(unsigned int order)
  2903. {
  2904. /* Check that pageblock_nr_pages has not already been setup */
  2905. if (pageblock_order)
  2906. return;
  2907. /*
  2908. * Assume the largest contiguous order of interest is a huge page.
  2909. * This value may be variable depending on boot parameters on IA64
  2910. */
  2911. pageblock_order = order;
  2912. }
  2913. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2914. /*
  2915. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2916. * and pageblock_default_order() are unused as pageblock_order is set
  2917. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2918. * pageblock_order based on the kernel config
  2919. */
  2920. static inline int pageblock_default_order(unsigned int order)
  2921. {
  2922. return MAX_ORDER-1;
  2923. }
  2924. #define set_pageblock_order(x) do {} while (0)
  2925. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2926. /*
  2927. * Set up the zone data structures:
  2928. * - mark all pages reserved
  2929. * - mark all memory queues empty
  2930. * - clear the memory bitmaps
  2931. */
  2932. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2933. unsigned long *zones_size, unsigned long *zholes_size)
  2934. {
  2935. enum zone_type j;
  2936. int nid = pgdat->node_id;
  2937. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2938. int ret;
  2939. pgdat_resize_init(pgdat);
  2940. pgdat->nr_zones = 0;
  2941. init_waitqueue_head(&pgdat->kswapd_wait);
  2942. pgdat->kswapd_max_order = 0;
  2943. for (j = 0; j < MAX_NR_ZONES; j++) {
  2944. struct zone *zone = pgdat->node_zones + j;
  2945. unsigned long size, realsize, memmap_pages;
  2946. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2947. realsize = size - zone_absent_pages_in_node(nid, j,
  2948. zholes_size);
  2949. /*
  2950. * Adjust realsize so that it accounts for how much memory
  2951. * is used by this zone for memmap. This affects the watermark
  2952. * and per-cpu initialisations
  2953. */
  2954. memmap_pages =
  2955. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  2956. if (realsize >= memmap_pages) {
  2957. realsize -= memmap_pages;
  2958. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2959. "%s zone: %lu pages used for memmap\n",
  2960. zone_names[j], memmap_pages);
  2961. } else
  2962. printk(KERN_WARNING
  2963. " %s zone: %lu pages exceeds realsize %lu\n",
  2964. zone_names[j], memmap_pages, realsize);
  2965. /* Account for reserved pages */
  2966. if (j == 0 && realsize > dma_reserve) {
  2967. realsize -= dma_reserve;
  2968. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2969. "%s zone: %lu pages reserved\n",
  2970. zone_names[0], dma_reserve);
  2971. }
  2972. if (!is_highmem_idx(j))
  2973. nr_kernel_pages += realsize;
  2974. nr_all_pages += realsize;
  2975. zone->spanned_pages = size;
  2976. zone->present_pages = realsize;
  2977. #ifdef CONFIG_NUMA
  2978. zone->node = nid;
  2979. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2980. / 100;
  2981. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2982. #endif
  2983. zone->name = zone_names[j];
  2984. spin_lock_init(&zone->lock);
  2985. spin_lock_init(&zone->lru_lock);
  2986. zone_seqlock_init(zone);
  2987. zone->zone_pgdat = pgdat;
  2988. zone->prev_priority = DEF_PRIORITY;
  2989. zone_pcp_init(zone);
  2990. INIT_LIST_HEAD(&zone->active_list);
  2991. INIT_LIST_HEAD(&zone->inactive_list);
  2992. zone->nr_scan_active = 0;
  2993. zone->nr_scan_inactive = 0;
  2994. zap_zone_vm_stats(zone);
  2995. zone->flags = 0;
  2996. if (!size)
  2997. continue;
  2998. set_pageblock_order(pageblock_default_order());
  2999. setup_usemap(pgdat, zone, size);
  3000. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3001. size, MEMMAP_EARLY);
  3002. BUG_ON(ret);
  3003. memmap_init(size, nid, j, zone_start_pfn);
  3004. zone_start_pfn += size;
  3005. }
  3006. }
  3007. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3008. {
  3009. /* Skip empty nodes */
  3010. if (!pgdat->node_spanned_pages)
  3011. return;
  3012. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3013. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3014. if (!pgdat->node_mem_map) {
  3015. unsigned long size, start, end;
  3016. struct page *map;
  3017. /*
  3018. * The zone's endpoints aren't required to be MAX_ORDER
  3019. * aligned but the node_mem_map endpoints must be in order
  3020. * for the buddy allocator to function correctly.
  3021. */
  3022. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3023. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3024. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3025. size = (end - start) * sizeof(struct page);
  3026. map = alloc_remap(pgdat->node_id, size);
  3027. if (!map)
  3028. map = alloc_bootmem_node(pgdat, size);
  3029. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3030. }
  3031. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3032. /*
  3033. * With no DISCONTIG, the global mem_map is just set as node 0's
  3034. */
  3035. if (pgdat == NODE_DATA(0)) {
  3036. mem_map = NODE_DATA(0)->node_mem_map;
  3037. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3038. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3039. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3040. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3041. }
  3042. #endif
  3043. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3044. }
  3045. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3046. unsigned long node_start_pfn, unsigned long *zholes_size)
  3047. {
  3048. pg_data_t *pgdat = NODE_DATA(nid);
  3049. pgdat->node_id = nid;
  3050. pgdat->node_start_pfn = node_start_pfn;
  3051. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3052. alloc_node_mem_map(pgdat);
  3053. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3054. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3055. nid, (unsigned long)pgdat,
  3056. (unsigned long)pgdat->node_mem_map);
  3057. #endif
  3058. free_area_init_core(pgdat, zones_size, zholes_size);
  3059. }
  3060. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3061. #if MAX_NUMNODES > 1
  3062. /*
  3063. * Figure out the number of possible node ids.
  3064. */
  3065. static void __init setup_nr_node_ids(void)
  3066. {
  3067. unsigned int node;
  3068. unsigned int highest = 0;
  3069. for_each_node_mask(node, node_possible_map)
  3070. highest = node;
  3071. nr_node_ids = highest + 1;
  3072. }
  3073. #else
  3074. static inline void setup_nr_node_ids(void)
  3075. {
  3076. }
  3077. #endif
  3078. /**
  3079. * add_active_range - Register a range of PFNs backed by physical memory
  3080. * @nid: The node ID the range resides on
  3081. * @start_pfn: The start PFN of the available physical memory
  3082. * @end_pfn: The end PFN of the available physical memory
  3083. *
  3084. * These ranges are stored in an early_node_map[] and later used by
  3085. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3086. * range spans a memory hole, it is up to the architecture to ensure
  3087. * the memory is not freed by the bootmem allocator. If possible
  3088. * the range being registered will be merged with existing ranges.
  3089. */
  3090. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3091. unsigned long end_pfn)
  3092. {
  3093. int i;
  3094. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3095. "Entering add_active_range(%d, %#lx, %#lx) "
  3096. "%d entries of %d used\n",
  3097. nid, start_pfn, end_pfn,
  3098. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3099. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3100. /* Merge with existing active regions if possible */
  3101. for (i = 0; i < nr_nodemap_entries; i++) {
  3102. if (early_node_map[i].nid != nid)
  3103. continue;
  3104. /* Skip if an existing region covers this new one */
  3105. if (start_pfn >= early_node_map[i].start_pfn &&
  3106. end_pfn <= early_node_map[i].end_pfn)
  3107. return;
  3108. /* Merge forward if suitable */
  3109. if (start_pfn <= early_node_map[i].end_pfn &&
  3110. end_pfn > early_node_map[i].end_pfn) {
  3111. early_node_map[i].end_pfn = end_pfn;
  3112. return;
  3113. }
  3114. /* Merge backward if suitable */
  3115. if (start_pfn < early_node_map[i].end_pfn &&
  3116. end_pfn >= early_node_map[i].start_pfn) {
  3117. early_node_map[i].start_pfn = start_pfn;
  3118. return;
  3119. }
  3120. }
  3121. /* Check that early_node_map is large enough */
  3122. if (i >= MAX_ACTIVE_REGIONS) {
  3123. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3124. MAX_ACTIVE_REGIONS);
  3125. return;
  3126. }
  3127. early_node_map[i].nid = nid;
  3128. early_node_map[i].start_pfn = start_pfn;
  3129. early_node_map[i].end_pfn = end_pfn;
  3130. nr_nodemap_entries = i + 1;
  3131. }
  3132. /**
  3133. * remove_active_range - Shrink an existing registered range of PFNs
  3134. * @nid: The node id the range is on that should be shrunk
  3135. * @start_pfn: The new PFN of the range
  3136. * @end_pfn: The new PFN of the range
  3137. *
  3138. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3139. * The map is kept near the end physical page range that has already been
  3140. * registered. This function allows an arch to shrink an existing registered
  3141. * range.
  3142. */
  3143. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3144. unsigned long end_pfn)
  3145. {
  3146. int i, j;
  3147. int removed = 0;
  3148. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3149. nid, start_pfn, end_pfn);
  3150. /* Find the old active region end and shrink */
  3151. for_each_active_range_index_in_nid(i, nid) {
  3152. if (early_node_map[i].start_pfn >= start_pfn &&
  3153. early_node_map[i].end_pfn <= end_pfn) {
  3154. /* clear it */
  3155. early_node_map[i].start_pfn = 0;
  3156. early_node_map[i].end_pfn = 0;
  3157. removed = 1;
  3158. continue;
  3159. }
  3160. if (early_node_map[i].start_pfn < start_pfn &&
  3161. early_node_map[i].end_pfn > start_pfn) {
  3162. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3163. early_node_map[i].end_pfn = start_pfn;
  3164. if (temp_end_pfn > end_pfn)
  3165. add_active_range(nid, end_pfn, temp_end_pfn);
  3166. continue;
  3167. }
  3168. if (early_node_map[i].start_pfn >= start_pfn &&
  3169. early_node_map[i].end_pfn > end_pfn &&
  3170. early_node_map[i].start_pfn < end_pfn) {
  3171. early_node_map[i].start_pfn = end_pfn;
  3172. continue;
  3173. }
  3174. }
  3175. if (!removed)
  3176. return;
  3177. /* remove the blank ones */
  3178. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3179. if (early_node_map[i].nid != nid)
  3180. continue;
  3181. if (early_node_map[i].end_pfn)
  3182. continue;
  3183. /* we found it, get rid of it */
  3184. for (j = i; j < nr_nodemap_entries - 1; j++)
  3185. memcpy(&early_node_map[j], &early_node_map[j+1],
  3186. sizeof(early_node_map[j]));
  3187. j = nr_nodemap_entries - 1;
  3188. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3189. nr_nodemap_entries--;
  3190. }
  3191. }
  3192. /**
  3193. * remove_all_active_ranges - Remove all currently registered regions
  3194. *
  3195. * During discovery, it may be found that a table like SRAT is invalid
  3196. * and an alternative discovery method must be used. This function removes
  3197. * all currently registered regions.
  3198. */
  3199. void __init remove_all_active_ranges(void)
  3200. {
  3201. memset(early_node_map, 0, sizeof(early_node_map));
  3202. nr_nodemap_entries = 0;
  3203. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3204. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3205. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3206. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3207. }
  3208. /* Compare two active node_active_regions */
  3209. static int __init cmp_node_active_region(const void *a, const void *b)
  3210. {
  3211. struct node_active_region *arange = (struct node_active_region *)a;
  3212. struct node_active_region *brange = (struct node_active_region *)b;
  3213. /* Done this way to avoid overflows */
  3214. if (arange->start_pfn > brange->start_pfn)
  3215. return 1;
  3216. if (arange->start_pfn < brange->start_pfn)
  3217. return -1;
  3218. return 0;
  3219. }
  3220. /* sort the node_map by start_pfn */
  3221. static void __init sort_node_map(void)
  3222. {
  3223. sort(early_node_map, (size_t)nr_nodemap_entries,
  3224. sizeof(struct node_active_region),
  3225. cmp_node_active_region, NULL);
  3226. }
  3227. /* Find the lowest pfn for a node */
  3228. static unsigned long __init find_min_pfn_for_node(int nid)
  3229. {
  3230. int i;
  3231. unsigned long min_pfn = ULONG_MAX;
  3232. /* Assuming a sorted map, the first range found has the starting pfn */
  3233. for_each_active_range_index_in_nid(i, nid)
  3234. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3235. if (min_pfn == ULONG_MAX) {
  3236. printk(KERN_WARNING
  3237. "Could not find start_pfn for node %d\n", nid);
  3238. return 0;
  3239. }
  3240. return min_pfn;
  3241. }
  3242. /**
  3243. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3244. *
  3245. * It returns the minimum PFN based on information provided via
  3246. * add_active_range().
  3247. */
  3248. unsigned long __init find_min_pfn_with_active_regions(void)
  3249. {
  3250. return find_min_pfn_for_node(MAX_NUMNODES);
  3251. }
  3252. /*
  3253. * early_calculate_totalpages()
  3254. * Sum pages in active regions for movable zone.
  3255. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3256. */
  3257. static unsigned long __init early_calculate_totalpages(void)
  3258. {
  3259. int i;
  3260. unsigned long totalpages = 0;
  3261. for (i = 0; i < nr_nodemap_entries; i++) {
  3262. unsigned long pages = early_node_map[i].end_pfn -
  3263. early_node_map[i].start_pfn;
  3264. totalpages += pages;
  3265. if (pages)
  3266. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3267. }
  3268. return totalpages;
  3269. }
  3270. /*
  3271. * Find the PFN the Movable zone begins in each node. Kernel memory
  3272. * is spread evenly between nodes as long as the nodes have enough
  3273. * memory. When they don't, some nodes will have more kernelcore than
  3274. * others
  3275. */
  3276. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3277. {
  3278. int i, nid;
  3279. unsigned long usable_startpfn;
  3280. unsigned long kernelcore_node, kernelcore_remaining;
  3281. unsigned long totalpages = early_calculate_totalpages();
  3282. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3283. /*
  3284. * If movablecore was specified, calculate what size of
  3285. * kernelcore that corresponds so that memory usable for
  3286. * any allocation type is evenly spread. If both kernelcore
  3287. * and movablecore are specified, then the value of kernelcore
  3288. * will be used for required_kernelcore if it's greater than
  3289. * what movablecore would have allowed.
  3290. */
  3291. if (required_movablecore) {
  3292. unsigned long corepages;
  3293. /*
  3294. * Round-up so that ZONE_MOVABLE is at least as large as what
  3295. * was requested by the user
  3296. */
  3297. required_movablecore =
  3298. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3299. corepages = totalpages - required_movablecore;
  3300. required_kernelcore = max(required_kernelcore, corepages);
  3301. }
  3302. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3303. if (!required_kernelcore)
  3304. return;
  3305. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3306. find_usable_zone_for_movable();
  3307. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3308. restart:
  3309. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3310. kernelcore_node = required_kernelcore / usable_nodes;
  3311. for_each_node_state(nid, N_HIGH_MEMORY) {
  3312. /*
  3313. * Recalculate kernelcore_node if the division per node
  3314. * now exceeds what is necessary to satisfy the requested
  3315. * amount of memory for the kernel
  3316. */
  3317. if (required_kernelcore < kernelcore_node)
  3318. kernelcore_node = required_kernelcore / usable_nodes;
  3319. /*
  3320. * As the map is walked, we track how much memory is usable
  3321. * by the kernel using kernelcore_remaining. When it is
  3322. * 0, the rest of the node is usable by ZONE_MOVABLE
  3323. */
  3324. kernelcore_remaining = kernelcore_node;
  3325. /* Go through each range of PFNs within this node */
  3326. for_each_active_range_index_in_nid(i, nid) {
  3327. unsigned long start_pfn, end_pfn;
  3328. unsigned long size_pages;
  3329. start_pfn = max(early_node_map[i].start_pfn,
  3330. zone_movable_pfn[nid]);
  3331. end_pfn = early_node_map[i].end_pfn;
  3332. if (start_pfn >= end_pfn)
  3333. continue;
  3334. /* Account for what is only usable for kernelcore */
  3335. if (start_pfn < usable_startpfn) {
  3336. unsigned long kernel_pages;
  3337. kernel_pages = min(end_pfn, usable_startpfn)
  3338. - start_pfn;
  3339. kernelcore_remaining -= min(kernel_pages,
  3340. kernelcore_remaining);
  3341. required_kernelcore -= min(kernel_pages,
  3342. required_kernelcore);
  3343. /* Continue if range is now fully accounted */
  3344. if (end_pfn <= usable_startpfn) {
  3345. /*
  3346. * Push zone_movable_pfn to the end so
  3347. * that if we have to rebalance
  3348. * kernelcore across nodes, we will
  3349. * not double account here
  3350. */
  3351. zone_movable_pfn[nid] = end_pfn;
  3352. continue;
  3353. }
  3354. start_pfn = usable_startpfn;
  3355. }
  3356. /*
  3357. * The usable PFN range for ZONE_MOVABLE is from
  3358. * start_pfn->end_pfn. Calculate size_pages as the
  3359. * number of pages used as kernelcore
  3360. */
  3361. size_pages = end_pfn - start_pfn;
  3362. if (size_pages > kernelcore_remaining)
  3363. size_pages = kernelcore_remaining;
  3364. zone_movable_pfn[nid] = start_pfn + size_pages;
  3365. /*
  3366. * Some kernelcore has been met, update counts and
  3367. * break if the kernelcore for this node has been
  3368. * satisified
  3369. */
  3370. required_kernelcore -= min(required_kernelcore,
  3371. size_pages);
  3372. kernelcore_remaining -= size_pages;
  3373. if (!kernelcore_remaining)
  3374. break;
  3375. }
  3376. }
  3377. /*
  3378. * If there is still required_kernelcore, we do another pass with one
  3379. * less node in the count. This will push zone_movable_pfn[nid] further
  3380. * along on the nodes that still have memory until kernelcore is
  3381. * satisified
  3382. */
  3383. usable_nodes--;
  3384. if (usable_nodes && required_kernelcore > usable_nodes)
  3385. goto restart;
  3386. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3387. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3388. zone_movable_pfn[nid] =
  3389. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3390. }
  3391. /* Any regular memory on that node ? */
  3392. static void check_for_regular_memory(pg_data_t *pgdat)
  3393. {
  3394. #ifdef CONFIG_HIGHMEM
  3395. enum zone_type zone_type;
  3396. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3397. struct zone *zone = &pgdat->node_zones[zone_type];
  3398. if (zone->present_pages)
  3399. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3400. }
  3401. #endif
  3402. }
  3403. /**
  3404. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3405. * @max_zone_pfn: an array of max PFNs for each zone
  3406. *
  3407. * This will call free_area_init_node() for each active node in the system.
  3408. * Using the page ranges provided by add_active_range(), the size of each
  3409. * zone in each node and their holes is calculated. If the maximum PFN
  3410. * between two adjacent zones match, it is assumed that the zone is empty.
  3411. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3412. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3413. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3414. * at arch_max_dma_pfn.
  3415. */
  3416. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3417. {
  3418. unsigned long nid;
  3419. int i;
  3420. /* Sort early_node_map as initialisation assumes it is sorted */
  3421. sort_node_map();
  3422. /* Record where the zone boundaries are */
  3423. memset(arch_zone_lowest_possible_pfn, 0,
  3424. sizeof(arch_zone_lowest_possible_pfn));
  3425. memset(arch_zone_highest_possible_pfn, 0,
  3426. sizeof(arch_zone_highest_possible_pfn));
  3427. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3428. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3429. for (i = 1; i < MAX_NR_ZONES; i++) {
  3430. if (i == ZONE_MOVABLE)
  3431. continue;
  3432. arch_zone_lowest_possible_pfn[i] =
  3433. arch_zone_highest_possible_pfn[i-1];
  3434. arch_zone_highest_possible_pfn[i] =
  3435. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3436. }
  3437. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3438. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3439. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3440. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3441. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3442. /* Print out the zone ranges */
  3443. printk("Zone PFN ranges:\n");
  3444. for (i = 0; i < MAX_NR_ZONES; i++) {
  3445. if (i == ZONE_MOVABLE)
  3446. continue;
  3447. printk(" %-8s %0#10lx -> %0#10lx\n",
  3448. zone_names[i],
  3449. arch_zone_lowest_possible_pfn[i],
  3450. arch_zone_highest_possible_pfn[i]);
  3451. }
  3452. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3453. printk("Movable zone start PFN for each node\n");
  3454. for (i = 0; i < MAX_NUMNODES; i++) {
  3455. if (zone_movable_pfn[i])
  3456. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3457. }
  3458. /* Print out the early_node_map[] */
  3459. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3460. for (i = 0; i < nr_nodemap_entries; i++)
  3461. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3462. early_node_map[i].start_pfn,
  3463. early_node_map[i].end_pfn);
  3464. /* Initialise every node */
  3465. mminit_verify_pageflags_layout();
  3466. setup_nr_node_ids();
  3467. for_each_online_node(nid) {
  3468. pg_data_t *pgdat = NODE_DATA(nid);
  3469. free_area_init_node(nid, NULL,
  3470. find_min_pfn_for_node(nid), NULL);
  3471. /* Any memory on that node */
  3472. if (pgdat->node_present_pages)
  3473. node_set_state(nid, N_HIGH_MEMORY);
  3474. check_for_regular_memory(pgdat);
  3475. }
  3476. }
  3477. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3478. {
  3479. unsigned long long coremem;
  3480. if (!p)
  3481. return -EINVAL;
  3482. coremem = memparse(p, &p);
  3483. *core = coremem >> PAGE_SHIFT;
  3484. /* Paranoid check that UL is enough for the coremem value */
  3485. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3486. return 0;
  3487. }
  3488. /*
  3489. * kernelcore=size sets the amount of memory for use for allocations that
  3490. * cannot be reclaimed or migrated.
  3491. */
  3492. static int __init cmdline_parse_kernelcore(char *p)
  3493. {
  3494. return cmdline_parse_core(p, &required_kernelcore);
  3495. }
  3496. /*
  3497. * movablecore=size sets the amount of memory for use for allocations that
  3498. * can be reclaimed or migrated.
  3499. */
  3500. static int __init cmdline_parse_movablecore(char *p)
  3501. {
  3502. return cmdline_parse_core(p, &required_movablecore);
  3503. }
  3504. early_param("kernelcore", cmdline_parse_kernelcore);
  3505. early_param("movablecore", cmdline_parse_movablecore);
  3506. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3507. /**
  3508. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3509. * @new_dma_reserve: The number of pages to mark reserved
  3510. *
  3511. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3512. * In the DMA zone, a significant percentage may be consumed by kernel image
  3513. * and other unfreeable allocations which can skew the watermarks badly. This
  3514. * function may optionally be used to account for unfreeable pages in the
  3515. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3516. * smaller per-cpu batchsize.
  3517. */
  3518. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3519. {
  3520. dma_reserve = new_dma_reserve;
  3521. }
  3522. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3523. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3524. EXPORT_SYMBOL(contig_page_data);
  3525. #endif
  3526. void __init free_area_init(unsigned long *zones_size)
  3527. {
  3528. free_area_init_node(0, zones_size,
  3529. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3530. }
  3531. static int page_alloc_cpu_notify(struct notifier_block *self,
  3532. unsigned long action, void *hcpu)
  3533. {
  3534. int cpu = (unsigned long)hcpu;
  3535. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3536. drain_pages(cpu);
  3537. /*
  3538. * Spill the event counters of the dead processor
  3539. * into the current processors event counters.
  3540. * This artificially elevates the count of the current
  3541. * processor.
  3542. */
  3543. vm_events_fold_cpu(cpu);
  3544. /*
  3545. * Zero the differential counters of the dead processor
  3546. * so that the vm statistics are consistent.
  3547. *
  3548. * This is only okay since the processor is dead and cannot
  3549. * race with what we are doing.
  3550. */
  3551. refresh_cpu_vm_stats(cpu);
  3552. }
  3553. return NOTIFY_OK;
  3554. }
  3555. void __init page_alloc_init(void)
  3556. {
  3557. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3558. }
  3559. /*
  3560. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3561. * or min_free_kbytes changes.
  3562. */
  3563. static void calculate_totalreserve_pages(void)
  3564. {
  3565. struct pglist_data *pgdat;
  3566. unsigned long reserve_pages = 0;
  3567. enum zone_type i, j;
  3568. for_each_online_pgdat(pgdat) {
  3569. for (i = 0; i < MAX_NR_ZONES; i++) {
  3570. struct zone *zone = pgdat->node_zones + i;
  3571. unsigned long max = 0;
  3572. /* Find valid and maximum lowmem_reserve in the zone */
  3573. for (j = i; j < MAX_NR_ZONES; j++) {
  3574. if (zone->lowmem_reserve[j] > max)
  3575. max = zone->lowmem_reserve[j];
  3576. }
  3577. /* we treat pages_high as reserved pages. */
  3578. max += zone->pages_high;
  3579. if (max > zone->present_pages)
  3580. max = zone->present_pages;
  3581. reserve_pages += max;
  3582. }
  3583. }
  3584. totalreserve_pages = reserve_pages;
  3585. }
  3586. /*
  3587. * setup_per_zone_lowmem_reserve - called whenever
  3588. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3589. * has a correct pages reserved value, so an adequate number of
  3590. * pages are left in the zone after a successful __alloc_pages().
  3591. */
  3592. static void setup_per_zone_lowmem_reserve(void)
  3593. {
  3594. struct pglist_data *pgdat;
  3595. enum zone_type j, idx;
  3596. for_each_online_pgdat(pgdat) {
  3597. for (j = 0; j < MAX_NR_ZONES; j++) {
  3598. struct zone *zone = pgdat->node_zones + j;
  3599. unsigned long present_pages = zone->present_pages;
  3600. zone->lowmem_reserve[j] = 0;
  3601. idx = j;
  3602. while (idx) {
  3603. struct zone *lower_zone;
  3604. idx--;
  3605. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3606. sysctl_lowmem_reserve_ratio[idx] = 1;
  3607. lower_zone = pgdat->node_zones + idx;
  3608. lower_zone->lowmem_reserve[j] = present_pages /
  3609. sysctl_lowmem_reserve_ratio[idx];
  3610. present_pages += lower_zone->present_pages;
  3611. }
  3612. }
  3613. }
  3614. /* update totalreserve_pages */
  3615. calculate_totalreserve_pages();
  3616. }
  3617. /**
  3618. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3619. *
  3620. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3621. * with respect to min_free_kbytes.
  3622. */
  3623. void setup_per_zone_pages_min(void)
  3624. {
  3625. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3626. unsigned long lowmem_pages = 0;
  3627. struct zone *zone;
  3628. unsigned long flags;
  3629. /* Calculate total number of !ZONE_HIGHMEM pages */
  3630. for_each_zone(zone) {
  3631. if (!is_highmem(zone))
  3632. lowmem_pages += zone->present_pages;
  3633. }
  3634. for_each_zone(zone) {
  3635. u64 tmp;
  3636. spin_lock_irqsave(&zone->lru_lock, flags);
  3637. tmp = (u64)pages_min * zone->present_pages;
  3638. do_div(tmp, lowmem_pages);
  3639. if (is_highmem(zone)) {
  3640. /*
  3641. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3642. * need highmem pages, so cap pages_min to a small
  3643. * value here.
  3644. *
  3645. * The (pages_high-pages_low) and (pages_low-pages_min)
  3646. * deltas controls asynch page reclaim, and so should
  3647. * not be capped for highmem.
  3648. */
  3649. int min_pages;
  3650. min_pages = zone->present_pages / 1024;
  3651. if (min_pages < SWAP_CLUSTER_MAX)
  3652. min_pages = SWAP_CLUSTER_MAX;
  3653. if (min_pages > 128)
  3654. min_pages = 128;
  3655. zone->pages_min = min_pages;
  3656. } else {
  3657. /*
  3658. * If it's a lowmem zone, reserve a number of pages
  3659. * proportionate to the zone's size.
  3660. */
  3661. zone->pages_min = tmp;
  3662. }
  3663. zone->pages_low = zone->pages_min + (tmp >> 2);
  3664. zone->pages_high = zone->pages_min + (tmp >> 1);
  3665. setup_zone_migrate_reserve(zone);
  3666. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3667. }
  3668. /* update totalreserve_pages */
  3669. calculate_totalreserve_pages();
  3670. }
  3671. /*
  3672. * Initialise min_free_kbytes.
  3673. *
  3674. * For small machines we want it small (128k min). For large machines
  3675. * we want it large (64MB max). But it is not linear, because network
  3676. * bandwidth does not increase linearly with machine size. We use
  3677. *
  3678. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3679. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3680. *
  3681. * which yields
  3682. *
  3683. * 16MB: 512k
  3684. * 32MB: 724k
  3685. * 64MB: 1024k
  3686. * 128MB: 1448k
  3687. * 256MB: 2048k
  3688. * 512MB: 2896k
  3689. * 1024MB: 4096k
  3690. * 2048MB: 5792k
  3691. * 4096MB: 8192k
  3692. * 8192MB: 11584k
  3693. * 16384MB: 16384k
  3694. */
  3695. static int __init init_per_zone_pages_min(void)
  3696. {
  3697. unsigned long lowmem_kbytes;
  3698. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3699. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3700. if (min_free_kbytes < 128)
  3701. min_free_kbytes = 128;
  3702. if (min_free_kbytes > 65536)
  3703. min_free_kbytes = 65536;
  3704. setup_per_zone_pages_min();
  3705. setup_per_zone_lowmem_reserve();
  3706. return 0;
  3707. }
  3708. module_init(init_per_zone_pages_min)
  3709. /*
  3710. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3711. * that we can call two helper functions whenever min_free_kbytes
  3712. * changes.
  3713. */
  3714. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3715. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3716. {
  3717. proc_dointvec(table, write, file, buffer, length, ppos);
  3718. if (write)
  3719. setup_per_zone_pages_min();
  3720. return 0;
  3721. }
  3722. #ifdef CONFIG_NUMA
  3723. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3724. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3725. {
  3726. struct zone *zone;
  3727. int rc;
  3728. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3729. if (rc)
  3730. return rc;
  3731. for_each_zone(zone)
  3732. zone->min_unmapped_pages = (zone->present_pages *
  3733. sysctl_min_unmapped_ratio) / 100;
  3734. return 0;
  3735. }
  3736. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3737. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3738. {
  3739. struct zone *zone;
  3740. int rc;
  3741. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3742. if (rc)
  3743. return rc;
  3744. for_each_zone(zone)
  3745. zone->min_slab_pages = (zone->present_pages *
  3746. sysctl_min_slab_ratio) / 100;
  3747. return 0;
  3748. }
  3749. #endif
  3750. /*
  3751. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3752. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3753. * whenever sysctl_lowmem_reserve_ratio changes.
  3754. *
  3755. * The reserve ratio obviously has absolutely no relation with the
  3756. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3757. * if in function of the boot time zone sizes.
  3758. */
  3759. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3760. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3761. {
  3762. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3763. setup_per_zone_lowmem_reserve();
  3764. return 0;
  3765. }
  3766. /*
  3767. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3768. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3769. * can have before it gets flushed back to buddy allocator.
  3770. */
  3771. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3772. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3773. {
  3774. struct zone *zone;
  3775. unsigned int cpu;
  3776. int ret;
  3777. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3778. if (!write || (ret == -EINVAL))
  3779. return ret;
  3780. for_each_zone(zone) {
  3781. for_each_online_cpu(cpu) {
  3782. unsigned long high;
  3783. high = zone->present_pages / percpu_pagelist_fraction;
  3784. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3785. }
  3786. }
  3787. return 0;
  3788. }
  3789. int hashdist = HASHDIST_DEFAULT;
  3790. #ifdef CONFIG_NUMA
  3791. static int __init set_hashdist(char *str)
  3792. {
  3793. if (!str)
  3794. return 0;
  3795. hashdist = simple_strtoul(str, &str, 0);
  3796. return 1;
  3797. }
  3798. __setup("hashdist=", set_hashdist);
  3799. #endif
  3800. /*
  3801. * allocate a large system hash table from bootmem
  3802. * - it is assumed that the hash table must contain an exact power-of-2
  3803. * quantity of entries
  3804. * - limit is the number of hash buckets, not the total allocation size
  3805. */
  3806. void *__init alloc_large_system_hash(const char *tablename,
  3807. unsigned long bucketsize,
  3808. unsigned long numentries,
  3809. int scale,
  3810. int flags,
  3811. unsigned int *_hash_shift,
  3812. unsigned int *_hash_mask,
  3813. unsigned long limit)
  3814. {
  3815. unsigned long long max = limit;
  3816. unsigned long log2qty, size;
  3817. void *table = NULL;
  3818. /* allow the kernel cmdline to have a say */
  3819. if (!numentries) {
  3820. /* round applicable memory size up to nearest megabyte */
  3821. numentries = nr_kernel_pages;
  3822. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3823. numentries >>= 20 - PAGE_SHIFT;
  3824. numentries <<= 20 - PAGE_SHIFT;
  3825. /* limit to 1 bucket per 2^scale bytes of low memory */
  3826. if (scale > PAGE_SHIFT)
  3827. numentries >>= (scale - PAGE_SHIFT);
  3828. else
  3829. numentries <<= (PAGE_SHIFT - scale);
  3830. /* Make sure we've got at least a 0-order allocation.. */
  3831. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3832. numentries = PAGE_SIZE / bucketsize;
  3833. }
  3834. numentries = roundup_pow_of_two(numentries);
  3835. /* limit allocation size to 1/16 total memory by default */
  3836. if (max == 0) {
  3837. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3838. do_div(max, bucketsize);
  3839. }
  3840. if (numentries > max)
  3841. numentries = max;
  3842. log2qty = ilog2(numentries);
  3843. do {
  3844. size = bucketsize << log2qty;
  3845. if (flags & HASH_EARLY)
  3846. table = alloc_bootmem_nopanic(size);
  3847. else if (hashdist)
  3848. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3849. else {
  3850. unsigned long order = get_order(size);
  3851. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3852. /*
  3853. * If bucketsize is not a power-of-two, we may free
  3854. * some pages at the end of hash table.
  3855. */
  3856. if (table) {
  3857. unsigned long alloc_end = (unsigned long)table +
  3858. (PAGE_SIZE << order);
  3859. unsigned long used = (unsigned long)table +
  3860. PAGE_ALIGN(size);
  3861. split_page(virt_to_page(table), order);
  3862. while (used < alloc_end) {
  3863. free_page(used);
  3864. used += PAGE_SIZE;
  3865. }
  3866. }
  3867. }
  3868. } while (!table && size > PAGE_SIZE && --log2qty);
  3869. if (!table)
  3870. panic("Failed to allocate %s hash table\n", tablename);
  3871. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3872. tablename,
  3873. (1U << log2qty),
  3874. ilog2(size) - PAGE_SHIFT,
  3875. size);
  3876. if (_hash_shift)
  3877. *_hash_shift = log2qty;
  3878. if (_hash_mask)
  3879. *_hash_mask = (1 << log2qty) - 1;
  3880. return table;
  3881. }
  3882. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3883. struct page *pfn_to_page(unsigned long pfn)
  3884. {
  3885. return __pfn_to_page(pfn);
  3886. }
  3887. unsigned long page_to_pfn(struct page *page)
  3888. {
  3889. return __page_to_pfn(page);
  3890. }
  3891. EXPORT_SYMBOL(pfn_to_page);
  3892. EXPORT_SYMBOL(page_to_pfn);
  3893. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3894. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3895. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3896. unsigned long pfn)
  3897. {
  3898. #ifdef CONFIG_SPARSEMEM
  3899. return __pfn_to_section(pfn)->pageblock_flags;
  3900. #else
  3901. return zone->pageblock_flags;
  3902. #endif /* CONFIG_SPARSEMEM */
  3903. }
  3904. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3905. {
  3906. #ifdef CONFIG_SPARSEMEM
  3907. pfn &= (PAGES_PER_SECTION-1);
  3908. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3909. #else
  3910. pfn = pfn - zone->zone_start_pfn;
  3911. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3912. #endif /* CONFIG_SPARSEMEM */
  3913. }
  3914. /**
  3915. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3916. * @page: The page within the block of interest
  3917. * @start_bitidx: The first bit of interest to retrieve
  3918. * @end_bitidx: The last bit of interest
  3919. * returns pageblock_bits flags
  3920. */
  3921. unsigned long get_pageblock_flags_group(struct page *page,
  3922. int start_bitidx, int end_bitidx)
  3923. {
  3924. struct zone *zone;
  3925. unsigned long *bitmap;
  3926. unsigned long pfn, bitidx;
  3927. unsigned long flags = 0;
  3928. unsigned long value = 1;
  3929. zone = page_zone(page);
  3930. pfn = page_to_pfn(page);
  3931. bitmap = get_pageblock_bitmap(zone, pfn);
  3932. bitidx = pfn_to_bitidx(zone, pfn);
  3933. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3934. if (test_bit(bitidx + start_bitidx, bitmap))
  3935. flags |= value;
  3936. return flags;
  3937. }
  3938. /**
  3939. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3940. * @page: The page within the block of interest
  3941. * @start_bitidx: The first bit of interest
  3942. * @end_bitidx: The last bit of interest
  3943. * @flags: The flags to set
  3944. */
  3945. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3946. int start_bitidx, int end_bitidx)
  3947. {
  3948. struct zone *zone;
  3949. unsigned long *bitmap;
  3950. unsigned long pfn, bitidx;
  3951. unsigned long value = 1;
  3952. zone = page_zone(page);
  3953. pfn = page_to_pfn(page);
  3954. bitmap = get_pageblock_bitmap(zone, pfn);
  3955. bitidx = pfn_to_bitidx(zone, pfn);
  3956. VM_BUG_ON(pfn < zone->zone_start_pfn);
  3957. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  3958. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3959. if (flags & value)
  3960. __set_bit(bitidx + start_bitidx, bitmap);
  3961. else
  3962. __clear_bit(bitidx + start_bitidx, bitmap);
  3963. }
  3964. /*
  3965. * This is designed as sub function...plz see page_isolation.c also.
  3966. * set/clear page block's type to be ISOLATE.
  3967. * page allocater never alloc memory from ISOLATE block.
  3968. */
  3969. int set_migratetype_isolate(struct page *page)
  3970. {
  3971. struct zone *zone;
  3972. unsigned long flags;
  3973. int ret = -EBUSY;
  3974. zone = page_zone(page);
  3975. spin_lock_irqsave(&zone->lock, flags);
  3976. /*
  3977. * In future, more migrate types will be able to be isolation target.
  3978. */
  3979. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3980. goto out;
  3981. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3982. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3983. ret = 0;
  3984. out:
  3985. spin_unlock_irqrestore(&zone->lock, flags);
  3986. if (!ret)
  3987. drain_all_pages();
  3988. return ret;
  3989. }
  3990. void unset_migratetype_isolate(struct page *page)
  3991. {
  3992. struct zone *zone;
  3993. unsigned long flags;
  3994. zone = page_zone(page);
  3995. spin_lock_irqsave(&zone->lock, flags);
  3996. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  3997. goto out;
  3998. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3999. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4000. out:
  4001. spin_unlock_irqrestore(&zone->lock, flags);
  4002. }
  4003. #ifdef CONFIG_MEMORY_HOTREMOVE
  4004. /*
  4005. * All pages in the range must be isolated before calling this.
  4006. */
  4007. void
  4008. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4009. {
  4010. struct page *page;
  4011. struct zone *zone;
  4012. int order, i;
  4013. unsigned long pfn;
  4014. unsigned long flags;
  4015. /* find the first valid pfn */
  4016. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4017. if (pfn_valid(pfn))
  4018. break;
  4019. if (pfn == end_pfn)
  4020. return;
  4021. zone = page_zone(pfn_to_page(pfn));
  4022. spin_lock_irqsave(&zone->lock, flags);
  4023. pfn = start_pfn;
  4024. while (pfn < end_pfn) {
  4025. if (!pfn_valid(pfn)) {
  4026. pfn++;
  4027. continue;
  4028. }
  4029. page = pfn_to_page(pfn);
  4030. BUG_ON(page_count(page));
  4031. BUG_ON(!PageBuddy(page));
  4032. order = page_order(page);
  4033. #ifdef CONFIG_DEBUG_VM
  4034. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4035. pfn, 1 << order, end_pfn);
  4036. #endif
  4037. list_del(&page->lru);
  4038. rmv_page_order(page);
  4039. zone->free_area[order].nr_free--;
  4040. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4041. - (1UL << order));
  4042. for (i = 0; i < (1 << order); i++)
  4043. SetPageReserved((page+i));
  4044. pfn += (1 << order);
  4045. }
  4046. spin_unlock_irqrestore(&zone->lock, flags);
  4047. }
  4048. #endif