qlge_main.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. /* NETIF_MSG_TX_QUEUED | */
  58. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  72. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  73. /* required last entry */
  74. {0,}
  75. };
  76. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  77. /* This hardware semaphore causes exclusive access to
  78. * resources shared between the NIC driver, MPI firmware,
  79. * FCOE firmware and the FC driver.
  80. */
  81. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  82. {
  83. u32 sem_bits = 0;
  84. switch (sem_mask) {
  85. case SEM_XGMAC0_MASK:
  86. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  87. break;
  88. case SEM_XGMAC1_MASK:
  89. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  90. break;
  91. case SEM_ICB_MASK:
  92. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  93. break;
  94. case SEM_MAC_ADDR_MASK:
  95. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  96. break;
  97. case SEM_FLASH_MASK:
  98. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  99. break;
  100. case SEM_PROBE_MASK:
  101. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  102. break;
  103. case SEM_RT_IDX_MASK:
  104. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  105. break;
  106. case SEM_PROC_REG_MASK:
  107. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  108. break;
  109. default:
  110. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  111. return -EINVAL;
  112. }
  113. ql_write32(qdev, SEM, sem_bits | sem_mask);
  114. return !(ql_read32(qdev, SEM) & sem_bits);
  115. }
  116. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  117. {
  118. unsigned int wait_count = 30;
  119. do {
  120. if (!ql_sem_trylock(qdev, sem_mask))
  121. return 0;
  122. udelay(100);
  123. } while (--wait_count);
  124. return -ETIMEDOUT;
  125. }
  126. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  127. {
  128. ql_write32(qdev, SEM, sem_mask);
  129. ql_read32(qdev, SEM); /* flush */
  130. }
  131. /* This function waits for a specific bit to come ready
  132. * in a given register. It is used mostly by the initialize
  133. * process, but is also used in kernel thread API such as
  134. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  135. */
  136. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  137. {
  138. u32 temp;
  139. int count = UDELAY_COUNT;
  140. while (count) {
  141. temp = ql_read32(qdev, reg);
  142. /* check for errors */
  143. if (temp & err_bit) {
  144. QPRINTK(qdev, PROBE, ALERT,
  145. "register 0x%.08x access error, value = 0x%.08x!.\n",
  146. reg, temp);
  147. return -EIO;
  148. } else if (temp & bit)
  149. return 0;
  150. udelay(UDELAY_DELAY);
  151. count--;
  152. }
  153. QPRINTK(qdev, PROBE, ALERT,
  154. "Timed out waiting for reg %x to come ready.\n", reg);
  155. return -ETIMEDOUT;
  156. }
  157. /* The CFG register is used to download TX and RX control blocks
  158. * to the chip. This function waits for an operation to complete.
  159. */
  160. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  161. {
  162. int count = UDELAY_COUNT;
  163. u32 temp;
  164. while (count) {
  165. temp = ql_read32(qdev, CFG);
  166. if (temp & CFG_LE)
  167. return -EIO;
  168. if (!(temp & bit))
  169. return 0;
  170. udelay(UDELAY_DELAY);
  171. count--;
  172. }
  173. return -ETIMEDOUT;
  174. }
  175. /* Used to issue init control blocks to hw. Maps control block,
  176. * sets address, triggers download, waits for completion.
  177. */
  178. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  179. u16 q_id)
  180. {
  181. u64 map;
  182. int status = 0;
  183. int direction;
  184. u32 mask;
  185. u32 value;
  186. direction =
  187. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  188. PCI_DMA_FROMDEVICE;
  189. map = pci_map_single(qdev->pdev, ptr, size, direction);
  190. if (pci_dma_mapping_error(qdev->pdev, map)) {
  191. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  192. return -ENOMEM;
  193. }
  194. status = ql_wait_cfg(qdev, bit);
  195. if (status) {
  196. QPRINTK(qdev, IFUP, ERR,
  197. "Timed out waiting for CFG to come ready.\n");
  198. goto exit;
  199. }
  200. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  201. if (status)
  202. goto exit;
  203. ql_write32(qdev, ICB_L, (u32) map);
  204. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  205. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  206. mask = CFG_Q_MASK | (bit << 16);
  207. value = bit | (q_id << CFG_Q_SHIFT);
  208. ql_write32(qdev, CFG, (mask | value));
  209. /*
  210. * Wait for the bit to clear after signaling hw.
  211. */
  212. status = ql_wait_cfg(qdev, bit);
  213. exit:
  214. pci_unmap_single(qdev->pdev, map, size, direction);
  215. return status;
  216. }
  217. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  218. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  219. u32 *value)
  220. {
  221. u32 offset = 0;
  222. int status;
  223. switch (type) {
  224. case MAC_ADDR_TYPE_MULTI_MAC:
  225. case MAC_ADDR_TYPE_CAM_MAC:
  226. {
  227. status =
  228. ql_wait_reg_rdy(qdev,
  229. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  230. if (status)
  231. goto exit;
  232. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  233. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  234. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  235. status =
  236. ql_wait_reg_rdy(qdev,
  237. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  238. if (status)
  239. goto exit;
  240. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  241. status =
  242. ql_wait_reg_rdy(qdev,
  243. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  244. if (status)
  245. goto exit;
  246. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  247. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  248. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  249. status =
  250. ql_wait_reg_rdy(qdev,
  251. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  252. if (status)
  253. goto exit;
  254. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  255. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  256. status =
  257. ql_wait_reg_rdy(qdev,
  258. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  259. if (status)
  260. goto exit;
  261. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  262. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  263. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  264. status =
  265. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  266. MAC_ADDR_MR, 0);
  267. if (status)
  268. goto exit;
  269. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  270. }
  271. break;
  272. }
  273. case MAC_ADDR_TYPE_VLAN:
  274. case MAC_ADDR_TYPE_MULTI_FLTR:
  275. default:
  276. QPRINTK(qdev, IFUP, CRIT,
  277. "Address type %d not yet supported.\n", type);
  278. status = -EPERM;
  279. }
  280. exit:
  281. return status;
  282. }
  283. /* Set up a MAC, multicast or VLAN address for the
  284. * inbound frame matching.
  285. */
  286. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  287. u16 index)
  288. {
  289. u32 offset = 0;
  290. int status = 0;
  291. switch (type) {
  292. case MAC_ADDR_TYPE_MULTI_MAC:
  293. case MAC_ADDR_TYPE_CAM_MAC:
  294. {
  295. u32 cam_output;
  296. u32 upper = (addr[0] << 8) | addr[1];
  297. u32 lower =
  298. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  299. (addr[5]);
  300. QPRINTK(qdev, IFUP, DEBUG,
  301. "Adding %s address %pM"
  302. " at index %d in the CAM.\n",
  303. ((type ==
  304. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  305. "UNICAST"), addr, index);
  306. status =
  307. ql_wait_reg_rdy(qdev,
  308. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  309. if (status)
  310. goto exit;
  311. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  312. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  313. type); /* type */
  314. ql_write32(qdev, MAC_ADDR_DATA, lower);
  315. status =
  316. ql_wait_reg_rdy(qdev,
  317. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  318. if (status)
  319. goto exit;
  320. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  321. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  322. type); /* type */
  323. ql_write32(qdev, MAC_ADDR_DATA, upper);
  324. status =
  325. ql_wait_reg_rdy(qdev,
  326. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  327. if (status)
  328. goto exit;
  329. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  330. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  331. type); /* type */
  332. /* This field should also include the queue id
  333. and possibly the function id. Right now we hardcode
  334. the route field to NIC core.
  335. */
  336. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  337. cam_output = (CAM_OUT_ROUTE_NIC |
  338. (qdev->
  339. func << CAM_OUT_FUNC_SHIFT) |
  340. (qdev->
  341. rss_ring_first_cq_id <<
  342. CAM_OUT_CQ_ID_SHIFT));
  343. if (qdev->vlgrp)
  344. cam_output |= CAM_OUT_RV;
  345. /* route to NIC core */
  346. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  347. }
  348. break;
  349. }
  350. case MAC_ADDR_TYPE_VLAN:
  351. {
  352. u32 enable_bit = *((u32 *) &addr[0]);
  353. /* For VLAN, the addr actually holds a bit that
  354. * either enables or disables the vlan id we are
  355. * addressing. It's either MAC_ADDR_E on or off.
  356. * That's bit-27 we're talking about.
  357. */
  358. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  359. (enable_bit ? "Adding" : "Removing"),
  360. index, (enable_bit ? "to" : "from"));
  361. status =
  362. ql_wait_reg_rdy(qdev,
  363. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  364. if (status)
  365. goto exit;
  366. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  367. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  368. type | /* type */
  369. enable_bit); /* enable/disable */
  370. break;
  371. }
  372. case MAC_ADDR_TYPE_MULTI_FLTR:
  373. default:
  374. QPRINTK(qdev, IFUP, CRIT,
  375. "Address type %d not yet supported.\n", type);
  376. status = -EPERM;
  377. }
  378. exit:
  379. return status;
  380. }
  381. /* Get a specific frame routing value from the CAM.
  382. * Used for debug and reg dump.
  383. */
  384. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  385. {
  386. int status = 0;
  387. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  388. if (status)
  389. goto exit;
  390. ql_write32(qdev, RT_IDX,
  391. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  392. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  393. if (status)
  394. goto exit;
  395. *value = ql_read32(qdev, RT_DATA);
  396. exit:
  397. return status;
  398. }
  399. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  400. * to route different frame types to various inbound queues. We send broadcast/
  401. * multicast/error frames to the default queue for slow handling,
  402. * and CAM hit/RSS frames to the fast handling queues.
  403. */
  404. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  405. int enable)
  406. {
  407. int status = -EINVAL; /* Return error if no mask match. */
  408. u32 value = 0;
  409. QPRINTK(qdev, IFUP, DEBUG,
  410. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  411. (enable ? "Adding" : "Removing"),
  412. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  413. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  414. ((index ==
  415. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  416. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  417. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  418. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  419. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  420. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  421. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  422. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  423. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  424. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  425. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  426. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  427. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  428. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  429. (enable ? "to" : "from"));
  430. switch (mask) {
  431. case RT_IDX_CAM_HIT:
  432. {
  433. value = RT_IDX_DST_CAM_Q | /* dest */
  434. RT_IDX_TYPE_NICQ | /* type */
  435. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  436. break;
  437. }
  438. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  439. {
  440. value = RT_IDX_DST_DFLT_Q | /* dest */
  441. RT_IDX_TYPE_NICQ | /* type */
  442. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  443. break;
  444. }
  445. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  446. {
  447. value = RT_IDX_DST_DFLT_Q | /* dest */
  448. RT_IDX_TYPE_NICQ | /* type */
  449. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  450. break;
  451. }
  452. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  453. {
  454. value = RT_IDX_DST_DFLT_Q | /* dest */
  455. RT_IDX_TYPE_NICQ | /* type */
  456. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  457. break;
  458. }
  459. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  460. {
  461. value = RT_IDX_DST_CAM_Q | /* dest */
  462. RT_IDX_TYPE_NICQ | /* type */
  463. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  464. break;
  465. }
  466. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  467. {
  468. value = RT_IDX_DST_CAM_Q | /* dest */
  469. RT_IDX_TYPE_NICQ | /* type */
  470. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  471. break;
  472. }
  473. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  474. {
  475. value = RT_IDX_DST_RSS | /* dest */
  476. RT_IDX_TYPE_NICQ | /* type */
  477. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  478. break;
  479. }
  480. case 0: /* Clear the E-bit on an entry. */
  481. {
  482. value = RT_IDX_DST_DFLT_Q | /* dest */
  483. RT_IDX_TYPE_NICQ | /* type */
  484. (index << RT_IDX_IDX_SHIFT);/* index */
  485. break;
  486. }
  487. default:
  488. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  489. mask);
  490. status = -EPERM;
  491. goto exit;
  492. }
  493. if (value) {
  494. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  495. if (status)
  496. goto exit;
  497. value |= (enable ? RT_IDX_E : 0);
  498. ql_write32(qdev, RT_IDX, value);
  499. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  500. }
  501. exit:
  502. return status;
  503. }
  504. static void ql_enable_interrupts(struct ql_adapter *qdev)
  505. {
  506. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  507. }
  508. static void ql_disable_interrupts(struct ql_adapter *qdev)
  509. {
  510. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  511. }
  512. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  513. * Otherwise, we may have multiple outstanding workers and don't want to
  514. * enable until the last one finishes. In this case, the irq_cnt gets
  515. * incremented everytime we queue a worker and decremented everytime
  516. * a worker finishes. Once it hits zero we enable the interrupt.
  517. */
  518. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  519. {
  520. u32 var = 0;
  521. unsigned long hw_flags = 0;
  522. struct intr_context *ctx = qdev->intr_context + intr;
  523. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  524. /* Always enable if we're MSIX multi interrupts and
  525. * it's not the default (zeroeth) interrupt.
  526. */
  527. ql_write32(qdev, INTR_EN,
  528. ctx->intr_en_mask);
  529. var = ql_read32(qdev, STS);
  530. return var;
  531. }
  532. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  533. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  534. ql_write32(qdev, INTR_EN,
  535. ctx->intr_en_mask);
  536. var = ql_read32(qdev, STS);
  537. }
  538. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  539. return var;
  540. }
  541. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  542. {
  543. u32 var = 0;
  544. unsigned long hw_flags;
  545. struct intr_context *ctx;
  546. /* HW disables for us if we're MSIX multi interrupts and
  547. * it's not the default (zeroeth) interrupt.
  548. */
  549. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  550. return 0;
  551. ctx = qdev->intr_context + intr;
  552. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  553. if (!atomic_read(&ctx->irq_cnt)) {
  554. ql_write32(qdev, INTR_EN,
  555. ctx->intr_dis_mask);
  556. var = ql_read32(qdev, STS);
  557. }
  558. atomic_inc(&ctx->irq_cnt);
  559. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  560. return var;
  561. }
  562. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  563. {
  564. int i;
  565. for (i = 0; i < qdev->intr_count; i++) {
  566. /* The enable call does a atomic_dec_and_test
  567. * and enables only if the result is zero.
  568. * So we precharge it here.
  569. */
  570. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  571. i == 0))
  572. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  573. ql_enable_completion_interrupt(qdev, i);
  574. }
  575. }
  576. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  577. {
  578. int status, i;
  579. u16 csum = 0;
  580. __le16 *flash = (__le16 *)&qdev->flash;
  581. status = strncmp((char *)&qdev->flash, str, 4);
  582. if (status) {
  583. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  584. return status;
  585. }
  586. for (i = 0; i < size; i++)
  587. csum += le16_to_cpu(*flash++);
  588. if (csum)
  589. QPRINTK(qdev, IFUP, ERR,
  590. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  591. return csum;
  592. }
  593. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  594. {
  595. int status = 0;
  596. /* wait for reg to come ready */
  597. status = ql_wait_reg_rdy(qdev,
  598. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  599. if (status)
  600. goto exit;
  601. /* set up for reg read */
  602. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  603. /* wait for reg to come ready */
  604. status = ql_wait_reg_rdy(qdev,
  605. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  606. if (status)
  607. goto exit;
  608. /* This data is stored on flash as an array of
  609. * __le32. Since ql_read32() returns cpu endian
  610. * we need to swap it back.
  611. */
  612. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  613. exit:
  614. return status;
  615. }
  616. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  617. {
  618. u32 i, size;
  619. int status;
  620. __le32 *p = (__le32 *)&qdev->flash;
  621. u32 offset;
  622. /* Get flash offset for function and adjust
  623. * for dword access.
  624. */
  625. if (!qdev->func)
  626. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  627. else
  628. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  629. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  630. return -ETIMEDOUT;
  631. size = sizeof(struct flash_params_8000) / sizeof(u32);
  632. for (i = 0; i < size; i++, p++) {
  633. status = ql_read_flash_word(qdev, i+offset, p);
  634. if (status) {
  635. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  636. goto exit;
  637. }
  638. }
  639. status = ql_validate_flash(qdev,
  640. sizeof(struct flash_params_8000) / sizeof(u16),
  641. "8000");
  642. if (status) {
  643. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  644. status = -EINVAL;
  645. goto exit;
  646. }
  647. if (!is_valid_ether_addr(qdev->flash.flash_params_8000.mac_addr)) {
  648. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  649. status = -EINVAL;
  650. goto exit;
  651. }
  652. memcpy(qdev->ndev->dev_addr,
  653. qdev->flash.flash_params_8000.mac_addr,
  654. qdev->ndev->addr_len);
  655. exit:
  656. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  657. return status;
  658. }
  659. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  660. {
  661. int i;
  662. int status;
  663. __le32 *p = (__le32 *)&qdev->flash;
  664. u32 offset = 0;
  665. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  666. /* Second function's parameters follow the first
  667. * function's.
  668. */
  669. if (qdev->func)
  670. offset = size;
  671. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  672. return -ETIMEDOUT;
  673. for (i = 0; i < size; i++, p++) {
  674. status = ql_read_flash_word(qdev, i+offset, p);
  675. if (status) {
  676. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  677. goto exit;
  678. }
  679. }
  680. status = ql_validate_flash(qdev,
  681. sizeof(struct flash_params_8012) / sizeof(u16),
  682. "8012");
  683. if (status) {
  684. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  685. status = -EINVAL;
  686. goto exit;
  687. }
  688. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  689. status = -EINVAL;
  690. goto exit;
  691. }
  692. memcpy(qdev->ndev->dev_addr,
  693. qdev->flash.flash_params_8012.mac_addr,
  694. qdev->ndev->addr_len);
  695. exit:
  696. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  697. return status;
  698. }
  699. /* xgmac register are located behind the xgmac_addr and xgmac_data
  700. * register pair. Each read/write requires us to wait for the ready
  701. * bit before reading/writing the data.
  702. */
  703. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  704. {
  705. int status;
  706. /* wait for reg to come ready */
  707. status = ql_wait_reg_rdy(qdev,
  708. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  709. if (status)
  710. return status;
  711. /* write the data to the data reg */
  712. ql_write32(qdev, XGMAC_DATA, data);
  713. /* trigger the write */
  714. ql_write32(qdev, XGMAC_ADDR, reg);
  715. return status;
  716. }
  717. /* xgmac register are located behind the xgmac_addr and xgmac_data
  718. * register pair. Each read/write requires us to wait for the ready
  719. * bit before reading/writing the data.
  720. */
  721. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  722. {
  723. int status = 0;
  724. /* wait for reg to come ready */
  725. status = ql_wait_reg_rdy(qdev,
  726. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  727. if (status)
  728. goto exit;
  729. /* set up for reg read */
  730. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  731. /* wait for reg to come ready */
  732. status = ql_wait_reg_rdy(qdev,
  733. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  734. if (status)
  735. goto exit;
  736. /* get the data */
  737. *data = ql_read32(qdev, XGMAC_DATA);
  738. exit:
  739. return status;
  740. }
  741. /* This is used for reading the 64-bit statistics regs. */
  742. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  743. {
  744. int status = 0;
  745. u32 hi = 0;
  746. u32 lo = 0;
  747. status = ql_read_xgmac_reg(qdev, reg, &lo);
  748. if (status)
  749. goto exit;
  750. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  751. if (status)
  752. goto exit;
  753. *data = (u64) lo | ((u64) hi << 32);
  754. exit:
  755. return status;
  756. }
  757. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  758. {
  759. int status;
  760. status = ql_mb_get_fw_state(qdev);
  761. if (status)
  762. goto exit;
  763. /* Wake up a worker to get/set the TX/RX frame sizes. */
  764. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  765. exit:
  766. return status;
  767. }
  768. /* Take the MAC Core out of reset.
  769. * Enable statistics counting.
  770. * Take the transmitter/receiver out of reset.
  771. * This functionality may be done in the MPI firmware at a
  772. * later date.
  773. */
  774. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  775. {
  776. int status = 0;
  777. u32 data;
  778. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  779. /* Another function has the semaphore, so
  780. * wait for the port init bit to come ready.
  781. */
  782. QPRINTK(qdev, LINK, INFO,
  783. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  784. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  785. if (status) {
  786. QPRINTK(qdev, LINK, CRIT,
  787. "Port initialize timed out.\n");
  788. }
  789. return status;
  790. }
  791. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  792. /* Set the core reset. */
  793. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  794. if (status)
  795. goto end;
  796. data |= GLOBAL_CFG_RESET;
  797. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  798. if (status)
  799. goto end;
  800. /* Clear the core reset and turn on jumbo for receiver. */
  801. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  802. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  803. data |= GLOBAL_CFG_TX_STAT_EN;
  804. data |= GLOBAL_CFG_RX_STAT_EN;
  805. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  806. if (status)
  807. goto end;
  808. /* Enable transmitter, and clear it's reset. */
  809. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  810. if (status)
  811. goto end;
  812. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  813. data |= TX_CFG_EN; /* Enable the transmitter. */
  814. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  815. if (status)
  816. goto end;
  817. /* Enable receiver and clear it's reset. */
  818. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  819. if (status)
  820. goto end;
  821. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  822. data |= RX_CFG_EN; /* Enable the receiver. */
  823. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  824. if (status)
  825. goto end;
  826. /* Turn on jumbo. */
  827. status =
  828. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  829. if (status)
  830. goto end;
  831. status =
  832. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  833. if (status)
  834. goto end;
  835. /* Signal to the world that the port is enabled. */
  836. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  837. end:
  838. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  839. return status;
  840. }
  841. /* Get the next large buffer. */
  842. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  843. {
  844. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  845. rx_ring->lbq_curr_idx++;
  846. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  847. rx_ring->lbq_curr_idx = 0;
  848. rx_ring->lbq_free_cnt++;
  849. return lbq_desc;
  850. }
  851. /* Get the next small buffer. */
  852. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  853. {
  854. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  855. rx_ring->sbq_curr_idx++;
  856. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  857. rx_ring->sbq_curr_idx = 0;
  858. rx_ring->sbq_free_cnt++;
  859. return sbq_desc;
  860. }
  861. /* Update an rx ring index. */
  862. static void ql_update_cq(struct rx_ring *rx_ring)
  863. {
  864. rx_ring->cnsmr_idx++;
  865. rx_ring->curr_entry++;
  866. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  867. rx_ring->cnsmr_idx = 0;
  868. rx_ring->curr_entry = rx_ring->cq_base;
  869. }
  870. }
  871. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  872. {
  873. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  874. }
  875. /* Process (refill) a large buffer queue. */
  876. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  877. {
  878. u32 clean_idx = rx_ring->lbq_clean_idx;
  879. u32 start_idx = clean_idx;
  880. struct bq_desc *lbq_desc;
  881. u64 map;
  882. int i;
  883. while (rx_ring->lbq_free_cnt > 16) {
  884. for (i = 0; i < 16; i++) {
  885. QPRINTK(qdev, RX_STATUS, DEBUG,
  886. "lbq: try cleaning clean_idx = %d.\n",
  887. clean_idx);
  888. lbq_desc = &rx_ring->lbq[clean_idx];
  889. if (lbq_desc->p.lbq_page == NULL) {
  890. QPRINTK(qdev, RX_STATUS, DEBUG,
  891. "lbq: getting new page for index %d.\n",
  892. lbq_desc->index);
  893. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  894. if (lbq_desc->p.lbq_page == NULL) {
  895. rx_ring->lbq_clean_idx = clean_idx;
  896. QPRINTK(qdev, RX_STATUS, ERR,
  897. "Couldn't get a page.\n");
  898. return;
  899. }
  900. map = pci_map_page(qdev->pdev,
  901. lbq_desc->p.lbq_page,
  902. 0, PAGE_SIZE,
  903. PCI_DMA_FROMDEVICE);
  904. if (pci_dma_mapping_error(qdev->pdev, map)) {
  905. rx_ring->lbq_clean_idx = clean_idx;
  906. put_page(lbq_desc->p.lbq_page);
  907. lbq_desc->p.lbq_page = NULL;
  908. QPRINTK(qdev, RX_STATUS, ERR,
  909. "PCI mapping failed.\n");
  910. return;
  911. }
  912. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  913. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  914. *lbq_desc->addr = cpu_to_le64(map);
  915. }
  916. clean_idx++;
  917. if (clean_idx == rx_ring->lbq_len)
  918. clean_idx = 0;
  919. }
  920. rx_ring->lbq_clean_idx = clean_idx;
  921. rx_ring->lbq_prod_idx += 16;
  922. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  923. rx_ring->lbq_prod_idx = 0;
  924. rx_ring->lbq_free_cnt -= 16;
  925. }
  926. if (start_idx != clean_idx) {
  927. QPRINTK(qdev, RX_STATUS, DEBUG,
  928. "lbq: updating prod idx = %d.\n",
  929. rx_ring->lbq_prod_idx);
  930. ql_write_db_reg(rx_ring->lbq_prod_idx,
  931. rx_ring->lbq_prod_idx_db_reg);
  932. }
  933. }
  934. /* Process (refill) a small buffer queue. */
  935. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  936. {
  937. u32 clean_idx = rx_ring->sbq_clean_idx;
  938. u32 start_idx = clean_idx;
  939. struct bq_desc *sbq_desc;
  940. u64 map;
  941. int i;
  942. while (rx_ring->sbq_free_cnt > 16) {
  943. for (i = 0; i < 16; i++) {
  944. sbq_desc = &rx_ring->sbq[clean_idx];
  945. QPRINTK(qdev, RX_STATUS, DEBUG,
  946. "sbq: try cleaning clean_idx = %d.\n",
  947. clean_idx);
  948. if (sbq_desc->p.skb == NULL) {
  949. QPRINTK(qdev, RX_STATUS, DEBUG,
  950. "sbq: getting new skb for index %d.\n",
  951. sbq_desc->index);
  952. sbq_desc->p.skb =
  953. netdev_alloc_skb(qdev->ndev,
  954. rx_ring->sbq_buf_size);
  955. if (sbq_desc->p.skb == NULL) {
  956. QPRINTK(qdev, PROBE, ERR,
  957. "Couldn't get an skb.\n");
  958. rx_ring->sbq_clean_idx = clean_idx;
  959. return;
  960. }
  961. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  962. map = pci_map_single(qdev->pdev,
  963. sbq_desc->p.skb->data,
  964. rx_ring->sbq_buf_size /
  965. 2, PCI_DMA_FROMDEVICE);
  966. if (pci_dma_mapping_error(qdev->pdev, map)) {
  967. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  968. rx_ring->sbq_clean_idx = clean_idx;
  969. dev_kfree_skb_any(sbq_desc->p.skb);
  970. sbq_desc->p.skb = NULL;
  971. return;
  972. }
  973. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  974. pci_unmap_len_set(sbq_desc, maplen,
  975. rx_ring->sbq_buf_size / 2);
  976. *sbq_desc->addr = cpu_to_le64(map);
  977. }
  978. clean_idx++;
  979. if (clean_idx == rx_ring->sbq_len)
  980. clean_idx = 0;
  981. }
  982. rx_ring->sbq_clean_idx = clean_idx;
  983. rx_ring->sbq_prod_idx += 16;
  984. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  985. rx_ring->sbq_prod_idx = 0;
  986. rx_ring->sbq_free_cnt -= 16;
  987. }
  988. if (start_idx != clean_idx) {
  989. QPRINTK(qdev, RX_STATUS, DEBUG,
  990. "sbq: updating prod idx = %d.\n",
  991. rx_ring->sbq_prod_idx);
  992. ql_write_db_reg(rx_ring->sbq_prod_idx,
  993. rx_ring->sbq_prod_idx_db_reg);
  994. }
  995. }
  996. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  997. struct rx_ring *rx_ring)
  998. {
  999. ql_update_sbq(qdev, rx_ring);
  1000. ql_update_lbq(qdev, rx_ring);
  1001. }
  1002. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1003. * fails at some stage, or from the interrupt when a tx completes.
  1004. */
  1005. static void ql_unmap_send(struct ql_adapter *qdev,
  1006. struct tx_ring_desc *tx_ring_desc, int mapped)
  1007. {
  1008. int i;
  1009. for (i = 0; i < mapped; i++) {
  1010. if (i == 0 || (i == 7 && mapped > 7)) {
  1011. /*
  1012. * Unmap the skb->data area, or the
  1013. * external sglist (AKA the Outbound
  1014. * Address List (OAL)).
  1015. * If its the zeroeth element, then it's
  1016. * the skb->data area. If it's the 7th
  1017. * element and there is more than 6 frags,
  1018. * then its an OAL.
  1019. */
  1020. if (i == 7) {
  1021. QPRINTK(qdev, TX_DONE, DEBUG,
  1022. "unmapping OAL area.\n");
  1023. }
  1024. pci_unmap_single(qdev->pdev,
  1025. pci_unmap_addr(&tx_ring_desc->map[i],
  1026. mapaddr),
  1027. pci_unmap_len(&tx_ring_desc->map[i],
  1028. maplen),
  1029. PCI_DMA_TODEVICE);
  1030. } else {
  1031. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1032. i);
  1033. pci_unmap_page(qdev->pdev,
  1034. pci_unmap_addr(&tx_ring_desc->map[i],
  1035. mapaddr),
  1036. pci_unmap_len(&tx_ring_desc->map[i],
  1037. maplen), PCI_DMA_TODEVICE);
  1038. }
  1039. }
  1040. }
  1041. /* Map the buffers for this transmit. This will return
  1042. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1043. */
  1044. static int ql_map_send(struct ql_adapter *qdev,
  1045. struct ob_mac_iocb_req *mac_iocb_ptr,
  1046. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1047. {
  1048. int len = skb_headlen(skb);
  1049. dma_addr_t map;
  1050. int frag_idx, err, map_idx = 0;
  1051. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1052. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1053. if (frag_cnt) {
  1054. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1055. }
  1056. /*
  1057. * Map the skb buffer first.
  1058. */
  1059. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1060. err = pci_dma_mapping_error(qdev->pdev, map);
  1061. if (err) {
  1062. QPRINTK(qdev, TX_QUEUED, ERR,
  1063. "PCI mapping failed with error: %d\n", err);
  1064. return NETDEV_TX_BUSY;
  1065. }
  1066. tbd->len = cpu_to_le32(len);
  1067. tbd->addr = cpu_to_le64(map);
  1068. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1069. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1070. map_idx++;
  1071. /*
  1072. * This loop fills the remainder of the 8 address descriptors
  1073. * in the IOCB. If there are more than 7 fragments, then the
  1074. * eighth address desc will point to an external list (OAL).
  1075. * When this happens, the remainder of the frags will be stored
  1076. * in this list.
  1077. */
  1078. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1079. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1080. tbd++;
  1081. if (frag_idx == 6 && frag_cnt > 7) {
  1082. /* Let's tack on an sglist.
  1083. * Our control block will now
  1084. * look like this:
  1085. * iocb->seg[0] = skb->data
  1086. * iocb->seg[1] = frag[0]
  1087. * iocb->seg[2] = frag[1]
  1088. * iocb->seg[3] = frag[2]
  1089. * iocb->seg[4] = frag[3]
  1090. * iocb->seg[5] = frag[4]
  1091. * iocb->seg[6] = frag[5]
  1092. * iocb->seg[7] = ptr to OAL (external sglist)
  1093. * oal->seg[0] = frag[6]
  1094. * oal->seg[1] = frag[7]
  1095. * oal->seg[2] = frag[8]
  1096. * oal->seg[3] = frag[9]
  1097. * oal->seg[4] = frag[10]
  1098. * etc...
  1099. */
  1100. /* Tack on the OAL in the eighth segment of IOCB. */
  1101. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1102. sizeof(struct oal),
  1103. PCI_DMA_TODEVICE);
  1104. err = pci_dma_mapping_error(qdev->pdev, map);
  1105. if (err) {
  1106. QPRINTK(qdev, TX_QUEUED, ERR,
  1107. "PCI mapping outbound address list with error: %d\n",
  1108. err);
  1109. goto map_error;
  1110. }
  1111. tbd->addr = cpu_to_le64(map);
  1112. /*
  1113. * The length is the number of fragments
  1114. * that remain to be mapped times the length
  1115. * of our sglist (OAL).
  1116. */
  1117. tbd->len =
  1118. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1119. (frag_cnt - frag_idx)) | TX_DESC_C);
  1120. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1121. map);
  1122. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1123. sizeof(struct oal));
  1124. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1125. map_idx++;
  1126. }
  1127. map =
  1128. pci_map_page(qdev->pdev, frag->page,
  1129. frag->page_offset, frag->size,
  1130. PCI_DMA_TODEVICE);
  1131. err = pci_dma_mapping_error(qdev->pdev, map);
  1132. if (err) {
  1133. QPRINTK(qdev, TX_QUEUED, ERR,
  1134. "PCI mapping frags failed with error: %d.\n",
  1135. err);
  1136. goto map_error;
  1137. }
  1138. tbd->addr = cpu_to_le64(map);
  1139. tbd->len = cpu_to_le32(frag->size);
  1140. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1141. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1142. frag->size);
  1143. }
  1144. /* Save the number of segments we've mapped. */
  1145. tx_ring_desc->map_cnt = map_idx;
  1146. /* Terminate the last segment. */
  1147. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1148. return NETDEV_TX_OK;
  1149. map_error:
  1150. /*
  1151. * If the first frag mapping failed, then i will be zero.
  1152. * This causes the unmap of the skb->data area. Otherwise
  1153. * we pass in the number of frags that mapped successfully
  1154. * so they can be umapped.
  1155. */
  1156. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1157. return NETDEV_TX_BUSY;
  1158. }
  1159. static void ql_realign_skb(struct sk_buff *skb, int len)
  1160. {
  1161. void *temp_addr = skb->data;
  1162. /* Undo the skb_reserve(skb,32) we did before
  1163. * giving to hardware, and realign data on
  1164. * a 2-byte boundary.
  1165. */
  1166. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1167. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1168. skb_copy_to_linear_data(skb, temp_addr,
  1169. (unsigned int)len);
  1170. }
  1171. /*
  1172. * This function builds an skb for the given inbound
  1173. * completion. It will be rewritten for readability in the near
  1174. * future, but for not it works well.
  1175. */
  1176. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1177. struct rx_ring *rx_ring,
  1178. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1179. {
  1180. struct bq_desc *lbq_desc;
  1181. struct bq_desc *sbq_desc;
  1182. struct sk_buff *skb = NULL;
  1183. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1184. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1185. /*
  1186. * Handle the header buffer if present.
  1187. */
  1188. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1189. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1190. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1191. /*
  1192. * Headers fit nicely into a small buffer.
  1193. */
  1194. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1195. pci_unmap_single(qdev->pdev,
  1196. pci_unmap_addr(sbq_desc, mapaddr),
  1197. pci_unmap_len(sbq_desc, maplen),
  1198. PCI_DMA_FROMDEVICE);
  1199. skb = sbq_desc->p.skb;
  1200. ql_realign_skb(skb, hdr_len);
  1201. skb_put(skb, hdr_len);
  1202. sbq_desc->p.skb = NULL;
  1203. }
  1204. /*
  1205. * Handle the data buffer(s).
  1206. */
  1207. if (unlikely(!length)) { /* Is there data too? */
  1208. QPRINTK(qdev, RX_STATUS, DEBUG,
  1209. "No Data buffer in this packet.\n");
  1210. return skb;
  1211. }
  1212. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1213. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1214. QPRINTK(qdev, RX_STATUS, DEBUG,
  1215. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1216. /*
  1217. * Data is less than small buffer size so it's
  1218. * stuffed in a small buffer.
  1219. * For this case we append the data
  1220. * from the "data" small buffer to the "header" small
  1221. * buffer.
  1222. */
  1223. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1224. pci_dma_sync_single_for_cpu(qdev->pdev,
  1225. pci_unmap_addr
  1226. (sbq_desc, mapaddr),
  1227. pci_unmap_len
  1228. (sbq_desc, maplen),
  1229. PCI_DMA_FROMDEVICE);
  1230. memcpy(skb_put(skb, length),
  1231. sbq_desc->p.skb->data, length);
  1232. pci_dma_sync_single_for_device(qdev->pdev,
  1233. pci_unmap_addr
  1234. (sbq_desc,
  1235. mapaddr),
  1236. pci_unmap_len
  1237. (sbq_desc,
  1238. maplen),
  1239. PCI_DMA_FROMDEVICE);
  1240. } else {
  1241. QPRINTK(qdev, RX_STATUS, DEBUG,
  1242. "%d bytes in a single small buffer.\n", length);
  1243. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1244. skb = sbq_desc->p.skb;
  1245. ql_realign_skb(skb, length);
  1246. skb_put(skb, length);
  1247. pci_unmap_single(qdev->pdev,
  1248. pci_unmap_addr(sbq_desc,
  1249. mapaddr),
  1250. pci_unmap_len(sbq_desc,
  1251. maplen),
  1252. PCI_DMA_FROMDEVICE);
  1253. sbq_desc->p.skb = NULL;
  1254. }
  1255. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1256. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1257. QPRINTK(qdev, RX_STATUS, DEBUG,
  1258. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1259. /*
  1260. * The data is in a single large buffer. We
  1261. * chain it to the header buffer's skb and let
  1262. * it rip.
  1263. */
  1264. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1265. pci_unmap_page(qdev->pdev,
  1266. pci_unmap_addr(lbq_desc,
  1267. mapaddr),
  1268. pci_unmap_len(lbq_desc, maplen),
  1269. PCI_DMA_FROMDEVICE);
  1270. QPRINTK(qdev, RX_STATUS, DEBUG,
  1271. "Chaining page to skb.\n");
  1272. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1273. 0, length);
  1274. skb->len += length;
  1275. skb->data_len += length;
  1276. skb->truesize += length;
  1277. lbq_desc->p.lbq_page = NULL;
  1278. } else {
  1279. /*
  1280. * The headers and data are in a single large buffer. We
  1281. * copy it to a new skb and let it go. This can happen with
  1282. * jumbo mtu on a non-TCP/UDP frame.
  1283. */
  1284. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1285. skb = netdev_alloc_skb(qdev->ndev, length);
  1286. if (skb == NULL) {
  1287. QPRINTK(qdev, PROBE, DEBUG,
  1288. "No skb available, drop the packet.\n");
  1289. return NULL;
  1290. }
  1291. pci_unmap_page(qdev->pdev,
  1292. pci_unmap_addr(lbq_desc,
  1293. mapaddr),
  1294. pci_unmap_len(lbq_desc, maplen),
  1295. PCI_DMA_FROMDEVICE);
  1296. skb_reserve(skb, NET_IP_ALIGN);
  1297. QPRINTK(qdev, RX_STATUS, DEBUG,
  1298. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1299. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1300. 0, length);
  1301. skb->len += length;
  1302. skb->data_len += length;
  1303. skb->truesize += length;
  1304. length -= length;
  1305. lbq_desc->p.lbq_page = NULL;
  1306. __pskb_pull_tail(skb,
  1307. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1308. VLAN_ETH_HLEN : ETH_HLEN);
  1309. }
  1310. } else {
  1311. /*
  1312. * The data is in a chain of large buffers
  1313. * pointed to by a small buffer. We loop
  1314. * thru and chain them to the our small header
  1315. * buffer's skb.
  1316. * frags: There are 18 max frags and our small
  1317. * buffer will hold 32 of them. The thing is,
  1318. * we'll use 3 max for our 9000 byte jumbo
  1319. * frames. If the MTU goes up we could
  1320. * eventually be in trouble.
  1321. */
  1322. int size, offset, i = 0;
  1323. __le64 *bq, bq_array[8];
  1324. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1325. pci_unmap_single(qdev->pdev,
  1326. pci_unmap_addr(sbq_desc, mapaddr),
  1327. pci_unmap_len(sbq_desc, maplen),
  1328. PCI_DMA_FROMDEVICE);
  1329. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1330. /*
  1331. * This is an non TCP/UDP IP frame, so
  1332. * the headers aren't split into a small
  1333. * buffer. We have to use the small buffer
  1334. * that contains our sg list as our skb to
  1335. * send upstairs. Copy the sg list here to
  1336. * a local buffer and use it to find the
  1337. * pages to chain.
  1338. */
  1339. QPRINTK(qdev, RX_STATUS, DEBUG,
  1340. "%d bytes of headers & data in chain of large.\n", length);
  1341. skb = sbq_desc->p.skb;
  1342. bq = &bq_array[0];
  1343. memcpy(bq, skb->data, sizeof(bq_array));
  1344. sbq_desc->p.skb = NULL;
  1345. skb_reserve(skb, NET_IP_ALIGN);
  1346. } else {
  1347. QPRINTK(qdev, RX_STATUS, DEBUG,
  1348. "Headers in small, %d bytes of data in chain of large.\n", length);
  1349. bq = (__le64 *)sbq_desc->p.skb->data;
  1350. }
  1351. while (length > 0) {
  1352. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1353. pci_unmap_page(qdev->pdev,
  1354. pci_unmap_addr(lbq_desc,
  1355. mapaddr),
  1356. pci_unmap_len(lbq_desc,
  1357. maplen),
  1358. PCI_DMA_FROMDEVICE);
  1359. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1360. offset = 0;
  1361. QPRINTK(qdev, RX_STATUS, DEBUG,
  1362. "Adding page %d to skb for %d bytes.\n",
  1363. i, size);
  1364. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1365. offset, size);
  1366. skb->len += size;
  1367. skb->data_len += size;
  1368. skb->truesize += size;
  1369. length -= size;
  1370. lbq_desc->p.lbq_page = NULL;
  1371. bq++;
  1372. i++;
  1373. }
  1374. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1375. VLAN_ETH_HLEN : ETH_HLEN);
  1376. }
  1377. return skb;
  1378. }
  1379. /* Process an inbound completion from an rx ring. */
  1380. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1381. struct rx_ring *rx_ring,
  1382. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1383. {
  1384. struct net_device *ndev = qdev->ndev;
  1385. struct sk_buff *skb = NULL;
  1386. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1387. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1388. if (unlikely(!skb)) {
  1389. QPRINTK(qdev, RX_STATUS, DEBUG,
  1390. "No skb available, drop packet.\n");
  1391. return;
  1392. }
  1393. prefetch(skb->data);
  1394. skb->dev = ndev;
  1395. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1396. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1397. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1398. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1399. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1400. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1401. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1402. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1403. }
  1404. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1405. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1406. }
  1407. if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
  1408. QPRINTK(qdev, RX_STATUS, ERR,
  1409. "Bad checksum for this %s packet.\n",
  1410. ((ib_mac_rsp->
  1411. flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
  1412. skb->ip_summed = CHECKSUM_NONE;
  1413. } else if (qdev->rx_csum &&
  1414. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
  1415. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1416. !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
  1417. QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
  1418. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1419. }
  1420. qdev->stats.rx_packets++;
  1421. qdev->stats.rx_bytes += skb->len;
  1422. skb->protocol = eth_type_trans(skb, ndev);
  1423. skb_record_rx_queue(skb, rx_ring - &qdev->rx_ring[0]);
  1424. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1425. QPRINTK(qdev, RX_STATUS, DEBUG,
  1426. "Passing a VLAN packet upstream.\n");
  1427. vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
  1428. le16_to_cpu(ib_mac_rsp->vlan_id));
  1429. } else {
  1430. QPRINTK(qdev, RX_STATUS, DEBUG,
  1431. "Passing a normal packet upstream.\n");
  1432. netif_receive_skb(skb);
  1433. }
  1434. }
  1435. /* Process an outbound completion from an rx ring. */
  1436. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1437. struct ob_mac_iocb_rsp *mac_rsp)
  1438. {
  1439. struct tx_ring *tx_ring;
  1440. struct tx_ring_desc *tx_ring_desc;
  1441. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1442. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1443. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1444. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1445. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1446. qdev->stats.tx_packets++;
  1447. dev_kfree_skb(tx_ring_desc->skb);
  1448. tx_ring_desc->skb = NULL;
  1449. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1450. OB_MAC_IOCB_RSP_S |
  1451. OB_MAC_IOCB_RSP_L |
  1452. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1453. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1454. QPRINTK(qdev, TX_DONE, WARNING,
  1455. "Total descriptor length did not match transfer length.\n");
  1456. }
  1457. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1458. QPRINTK(qdev, TX_DONE, WARNING,
  1459. "Frame too short to be legal, not sent.\n");
  1460. }
  1461. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1462. QPRINTK(qdev, TX_DONE, WARNING,
  1463. "Frame too long, but sent anyway.\n");
  1464. }
  1465. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1466. QPRINTK(qdev, TX_DONE, WARNING,
  1467. "PCI backplane error. Frame not sent.\n");
  1468. }
  1469. }
  1470. atomic_inc(&tx_ring->tx_count);
  1471. }
  1472. /* Fire up a handler to reset the MPI processor. */
  1473. void ql_queue_fw_error(struct ql_adapter *qdev)
  1474. {
  1475. netif_stop_queue(qdev->ndev);
  1476. netif_carrier_off(qdev->ndev);
  1477. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1478. }
  1479. void ql_queue_asic_error(struct ql_adapter *qdev)
  1480. {
  1481. netif_stop_queue(qdev->ndev);
  1482. netif_carrier_off(qdev->ndev);
  1483. ql_disable_interrupts(qdev);
  1484. /* Clear adapter up bit to signal the recovery
  1485. * process that it shouldn't kill the reset worker
  1486. * thread
  1487. */
  1488. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1489. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1490. }
  1491. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1492. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1493. {
  1494. switch (ib_ae_rsp->event) {
  1495. case MGMT_ERR_EVENT:
  1496. QPRINTK(qdev, RX_ERR, ERR,
  1497. "Management Processor Fatal Error.\n");
  1498. ql_queue_fw_error(qdev);
  1499. return;
  1500. case CAM_LOOKUP_ERR_EVENT:
  1501. QPRINTK(qdev, LINK, ERR,
  1502. "Multiple CAM hits lookup occurred.\n");
  1503. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1504. ql_queue_asic_error(qdev);
  1505. return;
  1506. case SOFT_ECC_ERROR_EVENT:
  1507. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1508. ql_queue_asic_error(qdev);
  1509. break;
  1510. case PCI_ERR_ANON_BUF_RD:
  1511. QPRINTK(qdev, RX_ERR, ERR,
  1512. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1513. ib_ae_rsp->q_id);
  1514. ql_queue_asic_error(qdev);
  1515. break;
  1516. default:
  1517. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1518. ib_ae_rsp->event);
  1519. ql_queue_asic_error(qdev);
  1520. break;
  1521. }
  1522. }
  1523. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1524. {
  1525. struct ql_adapter *qdev = rx_ring->qdev;
  1526. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1527. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1528. int count = 0;
  1529. /* While there are entries in the completion queue. */
  1530. while (prod != rx_ring->cnsmr_idx) {
  1531. QPRINTK(qdev, RX_STATUS, DEBUG,
  1532. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1533. prod, rx_ring->cnsmr_idx);
  1534. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1535. rmb();
  1536. switch (net_rsp->opcode) {
  1537. case OPCODE_OB_MAC_TSO_IOCB:
  1538. case OPCODE_OB_MAC_IOCB:
  1539. ql_process_mac_tx_intr(qdev, net_rsp);
  1540. break;
  1541. default:
  1542. QPRINTK(qdev, RX_STATUS, DEBUG,
  1543. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1544. net_rsp->opcode);
  1545. }
  1546. count++;
  1547. ql_update_cq(rx_ring);
  1548. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1549. }
  1550. ql_write_cq_idx(rx_ring);
  1551. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1552. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1553. if (atomic_read(&tx_ring->queue_stopped) &&
  1554. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1555. /*
  1556. * The queue got stopped because the tx_ring was full.
  1557. * Wake it up, because it's now at least 25% empty.
  1558. */
  1559. netif_wake_queue(qdev->ndev);
  1560. }
  1561. return count;
  1562. }
  1563. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1564. {
  1565. struct ql_adapter *qdev = rx_ring->qdev;
  1566. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1567. struct ql_net_rsp_iocb *net_rsp;
  1568. int count = 0;
  1569. /* While there are entries in the completion queue. */
  1570. while (prod != rx_ring->cnsmr_idx) {
  1571. QPRINTK(qdev, RX_STATUS, DEBUG,
  1572. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1573. prod, rx_ring->cnsmr_idx);
  1574. net_rsp = rx_ring->curr_entry;
  1575. rmb();
  1576. switch (net_rsp->opcode) {
  1577. case OPCODE_IB_MAC_IOCB:
  1578. ql_process_mac_rx_intr(qdev, rx_ring,
  1579. (struct ib_mac_iocb_rsp *)
  1580. net_rsp);
  1581. break;
  1582. case OPCODE_IB_AE_IOCB:
  1583. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1584. net_rsp);
  1585. break;
  1586. default:
  1587. {
  1588. QPRINTK(qdev, RX_STATUS, DEBUG,
  1589. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1590. net_rsp->opcode);
  1591. }
  1592. }
  1593. count++;
  1594. ql_update_cq(rx_ring);
  1595. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1596. if (count == budget)
  1597. break;
  1598. }
  1599. ql_update_buffer_queues(qdev, rx_ring);
  1600. ql_write_cq_idx(rx_ring);
  1601. return count;
  1602. }
  1603. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1604. {
  1605. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1606. struct ql_adapter *qdev = rx_ring->qdev;
  1607. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1608. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1609. rx_ring->cq_id);
  1610. if (work_done < budget) {
  1611. __napi_complete(napi);
  1612. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1613. }
  1614. return work_done;
  1615. }
  1616. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1617. {
  1618. struct ql_adapter *qdev = netdev_priv(ndev);
  1619. qdev->vlgrp = grp;
  1620. if (grp) {
  1621. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1622. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1623. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1624. } else {
  1625. QPRINTK(qdev, IFUP, DEBUG,
  1626. "Turning off VLAN in NIC_RCV_CFG.\n");
  1627. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1628. }
  1629. }
  1630. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1631. {
  1632. struct ql_adapter *qdev = netdev_priv(ndev);
  1633. u32 enable_bit = MAC_ADDR_E;
  1634. int status;
  1635. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1636. if (status)
  1637. return;
  1638. spin_lock(&qdev->hw_lock);
  1639. if (ql_set_mac_addr_reg
  1640. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1641. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1642. }
  1643. spin_unlock(&qdev->hw_lock);
  1644. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1645. }
  1646. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1647. {
  1648. struct ql_adapter *qdev = netdev_priv(ndev);
  1649. u32 enable_bit = 0;
  1650. int status;
  1651. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1652. if (status)
  1653. return;
  1654. spin_lock(&qdev->hw_lock);
  1655. if (ql_set_mac_addr_reg
  1656. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1657. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1658. }
  1659. spin_unlock(&qdev->hw_lock);
  1660. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1661. }
  1662. /* Worker thread to process a given rx_ring that is dedicated
  1663. * to outbound completions.
  1664. */
  1665. static void ql_tx_clean(struct work_struct *work)
  1666. {
  1667. struct rx_ring *rx_ring =
  1668. container_of(work, struct rx_ring, rx_work.work);
  1669. ql_clean_outbound_rx_ring(rx_ring);
  1670. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1671. }
  1672. /* Worker thread to process a given rx_ring that is dedicated
  1673. * to inbound completions.
  1674. */
  1675. static void ql_rx_clean(struct work_struct *work)
  1676. {
  1677. struct rx_ring *rx_ring =
  1678. container_of(work, struct rx_ring, rx_work.work);
  1679. ql_clean_inbound_rx_ring(rx_ring, 64);
  1680. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1681. }
  1682. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1683. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1684. {
  1685. struct rx_ring *rx_ring = dev_id;
  1686. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1687. &rx_ring->rx_work, 0);
  1688. return IRQ_HANDLED;
  1689. }
  1690. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1691. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1692. {
  1693. struct rx_ring *rx_ring = dev_id;
  1694. napi_schedule(&rx_ring->napi);
  1695. return IRQ_HANDLED;
  1696. }
  1697. /* This handles a fatal error, MPI activity, and the default
  1698. * rx_ring in an MSI-X multiple vector environment.
  1699. * In MSI/Legacy environment it also process the rest of
  1700. * the rx_rings.
  1701. */
  1702. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1703. {
  1704. struct rx_ring *rx_ring = dev_id;
  1705. struct ql_adapter *qdev = rx_ring->qdev;
  1706. struct intr_context *intr_context = &qdev->intr_context[0];
  1707. u32 var;
  1708. int i;
  1709. int work_done = 0;
  1710. spin_lock(&qdev->hw_lock);
  1711. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1712. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1713. spin_unlock(&qdev->hw_lock);
  1714. return IRQ_NONE;
  1715. }
  1716. spin_unlock(&qdev->hw_lock);
  1717. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1718. /*
  1719. * Check for fatal error.
  1720. */
  1721. if (var & STS_FE) {
  1722. ql_queue_asic_error(qdev);
  1723. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1724. var = ql_read32(qdev, ERR_STS);
  1725. QPRINTK(qdev, INTR, ERR,
  1726. "Resetting chip. Error Status Register = 0x%x\n", var);
  1727. return IRQ_HANDLED;
  1728. }
  1729. /*
  1730. * Check MPI processor activity.
  1731. */
  1732. if (var & STS_PI) {
  1733. /*
  1734. * We've got an async event or mailbox completion.
  1735. * Handle it and clear the source of the interrupt.
  1736. */
  1737. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1738. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1739. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1740. &qdev->mpi_work, 0);
  1741. work_done++;
  1742. }
  1743. /*
  1744. * Check the default queue and wake handler if active.
  1745. */
  1746. rx_ring = &qdev->rx_ring[0];
  1747. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1748. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1749. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1750. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1751. &rx_ring->rx_work, 0);
  1752. work_done++;
  1753. }
  1754. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1755. /*
  1756. * Start the DPC for each active queue.
  1757. */
  1758. for (i = 1; i < qdev->rx_ring_count; i++) {
  1759. rx_ring = &qdev->rx_ring[i];
  1760. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1761. rx_ring->cnsmr_idx) {
  1762. QPRINTK(qdev, INTR, INFO,
  1763. "Waking handler for rx_ring[%d].\n", i);
  1764. ql_disable_completion_interrupt(qdev,
  1765. intr_context->
  1766. intr);
  1767. if (i < qdev->rss_ring_first_cq_id)
  1768. queue_delayed_work_on(rx_ring->cpu,
  1769. qdev->q_workqueue,
  1770. &rx_ring->rx_work,
  1771. 0);
  1772. else
  1773. napi_schedule(&rx_ring->napi);
  1774. work_done++;
  1775. }
  1776. }
  1777. }
  1778. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1779. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1780. }
  1781. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1782. {
  1783. if (skb_is_gso(skb)) {
  1784. int err;
  1785. if (skb_header_cloned(skb)) {
  1786. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1787. if (err)
  1788. return err;
  1789. }
  1790. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1791. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1792. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1793. mac_iocb_ptr->total_hdrs_len =
  1794. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1795. mac_iocb_ptr->net_trans_offset =
  1796. cpu_to_le16(skb_network_offset(skb) |
  1797. skb_transport_offset(skb)
  1798. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1799. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1800. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1801. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1802. struct iphdr *iph = ip_hdr(skb);
  1803. iph->check = 0;
  1804. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1805. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1806. iph->daddr, 0,
  1807. IPPROTO_TCP,
  1808. 0);
  1809. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1810. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1811. tcp_hdr(skb)->check =
  1812. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1813. &ipv6_hdr(skb)->daddr,
  1814. 0, IPPROTO_TCP, 0);
  1815. }
  1816. return 1;
  1817. }
  1818. return 0;
  1819. }
  1820. static void ql_hw_csum_setup(struct sk_buff *skb,
  1821. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1822. {
  1823. int len;
  1824. struct iphdr *iph = ip_hdr(skb);
  1825. __sum16 *check;
  1826. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1827. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1828. mac_iocb_ptr->net_trans_offset =
  1829. cpu_to_le16(skb_network_offset(skb) |
  1830. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1831. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1832. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1833. if (likely(iph->protocol == IPPROTO_TCP)) {
  1834. check = &(tcp_hdr(skb)->check);
  1835. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1836. mac_iocb_ptr->total_hdrs_len =
  1837. cpu_to_le16(skb_transport_offset(skb) +
  1838. (tcp_hdr(skb)->doff << 2));
  1839. } else {
  1840. check = &(udp_hdr(skb)->check);
  1841. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1842. mac_iocb_ptr->total_hdrs_len =
  1843. cpu_to_le16(skb_transport_offset(skb) +
  1844. sizeof(struct udphdr));
  1845. }
  1846. *check = ~csum_tcpudp_magic(iph->saddr,
  1847. iph->daddr, len, iph->protocol, 0);
  1848. }
  1849. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1850. {
  1851. struct tx_ring_desc *tx_ring_desc;
  1852. struct ob_mac_iocb_req *mac_iocb_ptr;
  1853. struct ql_adapter *qdev = netdev_priv(ndev);
  1854. int tso;
  1855. struct tx_ring *tx_ring;
  1856. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1857. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1858. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1859. QPRINTK(qdev, TX_QUEUED, INFO,
  1860. "%s: shutting down tx queue %d du to lack of resources.\n",
  1861. __func__, tx_ring_idx);
  1862. netif_stop_queue(ndev);
  1863. atomic_inc(&tx_ring->queue_stopped);
  1864. return NETDEV_TX_BUSY;
  1865. }
  1866. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1867. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1868. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1869. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1870. mac_iocb_ptr->tid = tx_ring_desc->index;
  1871. /* We use the upper 32-bits to store the tx queue for this IO.
  1872. * When we get the completion we can use it to establish the context.
  1873. */
  1874. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1875. tx_ring_desc->skb = skb;
  1876. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1877. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1878. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1879. vlan_tx_tag_get(skb));
  1880. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1881. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1882. }
  1883. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1884. if (tso < 0) {
  1885. dev_kfree_skb_any(skb);
  1886. return NETDEV_TX_OK;
  1887. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1888. ql_hw_csum_setup(skb,
  1889. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1890. }
  1891. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1892. NETDEV_TX_OK) {
  1893. QPRINTK(qdev, TX_QUEUED, ERR,
  1894. "Could not map the segments.\n");
  1895. return NETDEV_TX_BUSY;
  1896. }
  1897. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1898. tx_ring->prod_idx++;
  1899. if (tx_ring->prod_idx == tx_ring->wq_len)
  1900. tx_ring->prod_idx = 0;
  1901. wmb();
  1902. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1903. ndev->trans_start = jiffies;
  1904. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1905. tx_ring->prod_idx, skb->len);
  1906. atomic_dec(&tx_ring->tx_count);
  1907. return NETDEV_TX_OK;
  1908. }
  1909. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1910. {
  1911. if (qdev->rx_ring_shadow_reg_area) {
  1912. pci_free_consistent(qdev->pdev,
  1913. PAGE_SIZE,
  1914. qdev->rx_ring_shadow_reg_area,
  1915. qdev->rx_ring_shadow_reg_dma);
  1916. qdev->rx_ring_shadow_reg_area = NULL;
  1917. }
  1918. if (qdev->tx_ring_shadow_reg_area) {
  1919. pci_free_consistent(qdev->pdev,
  1920. PAGE_SIZE,
  1921. qdev->tx_ring_shadow_reg_area,
  1922. qdev->tx_ring_shadow_reg_dma);
  1923. qdev->tx_ring_shadow_reg_area = NULL;
  1924. }
  1925. }
  1926. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1927. {
  1928. qdev->rx_ring_shadow_reg_area =
  1929. pci_alloc_consistent(qdev->pdev,
  1930. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1931. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1932. QPRINTK(qdev, IFUP, ERR,
  1933. "Allocation of RX shadow space failed.\n");
  1934. return -ENOMEM;
  1935. }
  1936. qdev->tx_ring_shadow_reg_area =
  1937. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1938. &qdev->tx_ring_shadow_reg_dma);
  1939. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1940. QPRINTK(qdev, IFUP, ERR,
  1941. "Allocation of TX shadow space failed.\n");
  1942. goto err_wqp_sh_area;
  1943. }
  1944. return 0;
  1945. err_wqp_sh_area:
  1946. pci_free_consistent(qdev->pdev,
  1947. PAGE_SIZE,
  1948. qdev->rx_ring_shadow_reg_area,
  1949. qdev->rx_ring_shadow_reg_dma);
  1950. return -ENOMEM;
  1951. }
  1952. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1953. {
  1954. struct tx_ring_desc *tx_ring_desc;
  1955. int i;
  1956. struct ob_mac_iocb_req *mac_iocb_ptr;
  1957. mac_iocb_ptr = tx_ring->wq_base;
  1958. tx_ring_desc = tx_ring->q;
  1959. for (i = 0; i < tx_ring->wq_len; i++) {
  1960. tx_ring_desc->index = i;
  1961. tx_ring_desc->skb = NULL;
  1962. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1963. mac_iocb_ptr++;
  1964. tx_ring_desc++;
  1965. }
  1966. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1967. atomic_set(&tx_ring->queue_stopped, 0);
  1968. }
  1969. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1970. struct tx_ring *tx_ring)
  1971. {
  1972. if (tx_ring->wq_base) {
  1973. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1974. tx_ring->wq_base, tx_ring->wq_base_dma);
  1975. tx_ring->wq_base = NULL;
  1976. }
  1977. kfree(tx_ring->q);
  1978. tx_ring->q = NULL;
  1979. }
  1980. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1981. struct tx_ring *tx_ring)
  1982. {
  1983. tx_ring->wq_base =
  1984. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1985. &tx_ring->wq_base_dma);
  1986. if ((tx_ring->wq_base == NULL)
  1987. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1988. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  1989. return -ENOMEM;
  1990. }
  1991. tx_ring->q =
  1992. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  1993. if (tx_ring->q == NULL)
  1994. goto err;
  1995. return 0;
  1996. err:
  1997. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1998. tx_ring->wq_base, tx_ring->wq_base_dma);
  1999. return -ENOMEM;
  2000. }
  2001. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2002. {
  2003. int i;
  2004. struct bq_desc *lbq_desc;
  2005. for (i = 0; i < rx_ring->lbq_len; i++) {
  2006. lbq_desc = &rx_ring->lbq[i];
  2007. if (lbq_desc->p.lbq_page) {
  2008. pci_unmap_page(qdev->pdev,
  2009. pci_unmap_addr(lbq_desc, mapaddr),
  2010. pci_unmap_len(lbq_desc, maplen),
  2011. PCI_DMA_FROMDEVICE);
  2012. put_page(lbq_desc->p.lbq_page);
  2013. lbq_desc->p.lbq_page = NULL;
  2014. }
  2015. }
  2016. }
  2017. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2018. {
  2019. int i;
  2020. struct bq_desc *sbq_desc;
  2021. for (i = 0; i < rx_ring->sbq_len; i++) {
  2022. sbq_desc = &rx_ring->sbq[i];
  2023. if (sbq_desc == NULL) {
  2024. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2025. return;
  2026. }
  2027. if (sbq_desc->p.skb) {
  2028. pci_unmap_single(qdev->pdev,
  2029. pci_unmap_addr(sbq_desc, mapaddr),
  2030. pci_unmap_len(sbq_desc, maplen),
  2031. PCI_DMA_FROMDEVICE);
  2032. dev_kfree_skb(sbq_desc->p.skb);
  2033. sbq_desc->p.skb = NULL;
  2034. }
  2035. }
  2036. }
  2037. /* Free all large and small rx buffers associated
  2038. * with the completion queues for this device.
  2039. */
  2040. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2041. {
  2042. int i;
  2043. struct rx_ring *rx_ring;
  2044. for (i = 0; i < qdev->rx_ring_count; i++) {
  2045. rx_ring = &qdev->rx_ring[i];
  2046. if (rx_ring->lbq)
  2047. ql_free_lbq_buffers(qdev, rx_ring);
  2048. if (rx_ring->sbq)
  2049. ql_free_sbq_buffers(qdev, rx_ring);
  2050. }
  2051. }
  2052. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2053. {
  2054. struct rx_ring *rx_ring;
  2055. int i;
  2056. for (i = 0; i < qdev->rx_ring_count; i++) {
  2057. rx_ring = &qdev->rx_ring[i];
  2058. if (rx_ring->type != TX_Q)
  2059. ql_update_buffer_queues(qdev, rx_ring);
  2060. }
  2061. }
  2062. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2063. struct rx_ring *rx_ring)
  2064. {
  2065. int i;
  2066. struct bq_desc *lbq_desc;
  2067. __le64 *bq = rx_ring->lbq_base;
  2068. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2069. for (i = 0; i < rx_ring->lbq_len; i++) {
  2070. lbq_desc = &rx_ring->lbq[i];
  2071. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2072. lbq_desc->index = i;
  2073. lbq_desc->addr = bq;
  2074. bq++;
  2075. }
  2076. }
  2077. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2078. struct rx_ring *rx_ring)
  2079. {
  2080. int i;
  2081. struct bq_desc *sbq_desc;
  2082. __le64 *bq = rx_ring->sbq_base;
  2083. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2084. for (i = 0; i < rx_ring->sbq_len; i++) {
  2085. sbq_desc = &rx_ring->sbq[i];
  2086. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2087. sbq_desc->index = i;
  2088. sbq_desc->addr = bq;
  2089. bq++;
  2090. }
  2091. }
  2092. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2093. struct rx_ring *rx_ring)
  2094. {
  2095. /* Free the small buffer queue. */
  2096. if (rx_ring->sbq_base) {
  2097. pci_free_consistent(qdev->pdev,
  2098. rx_ring->sbq_size,
  2099. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2100. rx_ring->sbq_base = NULL;
  2101. }
  2102. /* Free the small buffer queue control blocks. */
  2103. kfree(rx_ring->sbq);
  2104. rx_ring->sbq = NULL;
  2105. /* Free the large buffer queue. */
  2106. if (rx_ring->lbq_base) {
  2107. pci_free_consistent(qdev->pdev,
  2108. rx_ring->lbq_size,
  2109. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2110. rx_ring->lbq_base = NULL;
  2111. }
  2112. /* Free the large buffer queue control blocks. */
  2113. kfree(rx_ring->lbq);
  2114. rx_ring->lbq = NULL;
  2115. /* Free the rx queue. */
  2116. if (rx_ring->cq_base) {
  2117. pci_free_consistent(qdev->pdev,
  2118. rx_ring->cq_size,
  2119. rx_ring->cq_base, rx_ring->cq_base_dma);
  2120. rx_ring->cq_base = NULL;
  2121. }
  2122. }
  2123. /* Allocate queues and buffers for this completions queue based
  2124. * on the values in the parameter structure. */
  2125. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2126. struct rx_ring *rx_ring)
  2127. {
  2128. /*
  2129. * Allocate the completion queue for this rx_ring.
  2130. */
  2131. rx_ring->cq_base =
  2132. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2133. &rx_ring->cq_base_dma);
  2134. if (rx_ring->cq_base == NULL) {
  2135. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2136. return -ENOMEM;
  2137. }
  2138. if (rx_ring->sbq_len) {
  2139. /*
  2140. * Allocate small buffer queue.
  2141. */
  2142. rx_ring->sbq_base =
  2143. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2144. &rx_ring->sbq_base_dma);
  2145. if (rx_ring->sbq_base == NULL) {
  2146. QPRINTK(qdev, IFUP, ERR,
  2147. "Small buffer queue allocation failed.\n");
  2148. goto err_mem;
  2149. }
  2150. /*
  2151. * Allocate small buffer queue control blocks.
  2152. */
  2153. rx_ring->sbq =
  2154. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2155. GFP_KERNEL);
  2156. if (rx_ring->sbq == NULL) {
  2157. QPRINTK(qdev, IFUP, ERR,
  2158. "Small buffer queue control block allocation failed.\n");
  2159. goto err_mem;
  2160. }
  2161. ql_init_sbq_ring(qdev, rx_ring);
  2162. }
  2163. if (rx_ring->lbq_len) {
  2164. /*
  2165. * Allocate large buffer queue.
  2166. */
  2167. rx_ring->lbq_base =
  2168. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2169. &rx_ring->lbq_base_dma);
  2170. if (rx_ring->lbq_base == NULL) {
  2171. QPRINTK(qdev, IFUP, ERR,
  2172. "Large buffer queue allocation failed.\n");
  2173. goto err_mem;
  2174. }
  2175. /*
  2176. * Allocate large buffer queue control blocks.
  2177. */
  2178. rx_ring->lbq =
  2179. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2180. GFP_KERNEL);
  2181. if (rx_ring->lbq == NULL) {
  2182. QPRINTK(qdev, IFUP, ERR,
  2183. "Large buffer queue control block allocation failed.\n");
  2184. goto err_mem;
  2185. }
  2186. ql_init_lbq_ring(qdev, rx_ring);
  2187. }
  2188. return 0;
  2189. err_mem:
  2190. ql_free_rx_resources(qdev, rx_ring);
  2191. return -ENOMEM;
  2192. }
  2193. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2194. {
  2195. struct tx_ring *tx_ring;
  2196. struct tx_ring_desc *tx_ring_desc;
  2197. int i, j;
  2198. /*
  2199. * Loop through all queues and free
  2200. * any resources.
  2201. */
  2202. for (j = 0; j < qdev->tx_ring_count; j++) {
  2203. tx_ring = &qdev->tx_ring[j];
  2204. for (i = 0; i < tx_ring->wq_len; i++) {
  2205. tx_ring_desc = &tx_ring->q[i];
  2206. if (tx_ring_desc && tx_ring_desc->skb) {
  2207. QPRINTK(qdev, IFDOWN, ERR,
  2208. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2209. tx_ring_desc->skb, j,
  2210. tx_ring_desc->index);
  2211. ql_unmap_send(qdev, tx_ring_desc,
  2212. tx_ring_desc->map_cnt);
  2213. dev_kfree_skb(tx_ring_desc->skb);
  2214. tx_ring_desc->skb = NULL;
  2215. }
  2216. }
  2217. }
  2218. }
  2219. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2220. {
  2221. int i;
  2222. for (i = 0; i < qdev->tx_ring_count; i++)
  2223. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2224. for (i = 0; i < qdev->rx_ring_count; i++)
  2225. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2226. ql_free_shadow_space(qdev);
  2227. }
  2228. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2229. {
  2230. int i;
  2231. /* Allocate space for our shadow registers and such. */
  2232. if (ql_alloc_shadow_space(qdev))
  2233. return -ENOMEM;
  2234. for (i = 0; i < qdev->rx_ring_count; i++) {
  2235. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2236. QPRINTK(qdev, IFUP, ERR,
  2237. "RX resource allocation failed.\n");
  2238. goto err_mem;
  2239. }
  2240. }
  2241. /* Allocate tx queue resources */
  2242. for (i = 0; i < qdev->tx_ring_count; i++) {
  2243. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2244. QPRINTK(qdev, IFUP, ERR,
  2245. "TX resource allocation failed.\n");
  2246. goto err_mem;
  2247. }
  2248. }
  2249. return 0;
  2250. err_mem:
  2251. ql_free_mem_resources(qdev);
  2252. return -ENOMEM;
  2253. }
  2254. /* Set up the rx ring control block and pass it to the chip.
  2255. * The control block is defined as
  2256. * "Completion Queue Initialization Control Block", or cqicb.
  2257. */
  2258. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2259. {
  2260. struct cqicb *cqicb = &rx_ring->cqicb;
  2261. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2262. (rx_ring->cq_id * sizeof(u64) * 4);
  2263. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2264. (rx_ring->cq_id * sizeof(u64) * 4);
  2265. void __iomem *doorbell_area =
  2266. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2267. int err = 0;
  2268. u16 bq_len;
  2269. /* Set up the shadow registers for this ring. */
  2270. rx_ring->prod_idx_sh_reg = shadow_reg;
  2271. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2272. shadow_reg += sizeof(u64);
  2273. shadow_reg_dma += sizeof(u64);
  2274. rx_ring->lbq_base_indirect = shadow_reg;
  2275. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2276. shadow_reg += sizeof(u64);
  2277. shadow_reg_dma += sizeof(u64);
  2278. rx_ring->sbq_base_indirect = shadow_reg;
  2279. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2280. /* PCI doorbell mem area + 0x00 for consumer index register */
  2281. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2282. rx_ring->cnsmr_idx = 0;
  2283. rx_ring->curr_entry = rx_ring->cq_base;
  2284. /* PCI doorbell mem area + 0x04 for valid register */
  2285. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2286. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2287. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2288. /* PCI doorbell mem area + 0x1c */
  2289. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2290. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2291. cqicb->msix_vect = rx_ring->irq;
  2292. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2293. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2294. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2295. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2296. /*
  2297. * Set up the control block load flags.
  2298. */
  2299. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2300. FLAGS_LV | /* Load MSI-X vector */
  2301. FLAGS_LI; /* Load irq delay values */
  2302. if (rx_ring->lbq_len) {
  2303. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2304. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2305. cqicb->lbq_addr =
  2306. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2307. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2308. (u16) rx_ring->lbq_buf_size;
  2309. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2310. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2311. (u16) rx_ring->lbq_len;
  2312. cqicb->lbq_len = cpu_to_le16(bq_len);
  2313. rx_ring->lbq_prod_idx = 0;
  2314. rx_ring->lbq_curr_idx = 0;
  2315. rx_ring->lbq_clean_idx = 0;
  2316. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2317. }
  2318. if (rx_ring->sbq_len) {
  2319. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2320. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2321. cqicb->sbq_addr =
  2322. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2323. cqicb->sbq_buf_size =
  2324. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2325. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2326. (u16) rx_ring->sbq_len;
  2327. cqicb->sbq_len = cpu_to_le16(bq_len);
  2328. rx_ring->sbq_prod_idx = 0;
  2329. rx_ring->sbq_curr_idx = 0;
  2330. rx_ring->sbq_clean_idx = 0;
  2331. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2332. }
  2333. switch (rx_ring->type) {
  2334. case TX_Q:
  2335. /* If there's only one interrupt, then we use
  2336. * worker threads to process the outbound
  2337. * completion handling rx_rings. We do this so
  2338. * they can be run on multiple CPUs. There is
  2339. * room to play with this more where we would only
  2340. * run in a worker if there are more than x number
  2341. * of outbound completions on the queue and more
  2342. * than one queue active. Some threshold that
  2343. * would indicate a benefit in spite of the cost
  2344. * of a context switch.
  2345. * If there's more than one interrupt, then the
  2346. * outbound completions are processed in the ISR.
  2347. */
  2348. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2349. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2350. else {
  2351. /* With all debug warnings on we see a WARN_ON message
  2352. * when we free the skb in the interrupt context.
  2353. */
  2354. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2355. }
  2356. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2357. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2358. break;
  2359. case DEFAULT_Q:
  2360. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2361. cqicb->irq_delay = 0;
  2362. cqicb->pkt_delay = 0;
  2363. break;
  2364. case RX_Q:
  2365. /* Inbound completion handling rx_rings run in
  2366. * separate NAPI contexts.
  2367. */
  2368. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2369. 64);
  2370. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2371. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2372. break;
  2373. default:
  2374. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2375. rx_ring->type);
  2376. }
  2377. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2378. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2379. CFG_LCQ, rx_ring->cq_id);
  2380. if (err) {
  2381. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2382. return err;
  2383. }
  2384. return err;
  2385. }
  2386. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2387. {
  2388. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2389. void __iomem *doorbell_area =
  2390. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2391. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2392. (tx_ring->wq_id * sizeof(u64));
  2393. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2394. (tx_ring->wq_id * sizeof(u64));
  2395. int err = 0;
  2396. /*
  2397. * Assign doorbell registers for this tx_ring.
  2398. */
  2399. /* TX PCI doorbell mem area for tx producer index */
  2400. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2401. tx_ring->prod_idx = 0;
  2402. /* TX PCI doorbell mem area + 0x04 */
  2403. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2404. /*
  2405. * Assign shadow registers for this tx_ring.
  2406. */
  2407. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2408. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2409. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2410. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2411. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2412. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2413. wqicb->rid = 0;
  2414. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2415. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2416. ql_init_tx_ring(qdev, tx_ring);
  2417. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2418. (u16) tx_ring->wq_id);
  2419. if (err) {
  2420. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2421. return err;
  2422. }
  2423. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2424. return err;
  2425. }
  2426. static void ql_disable_msix(struct ql_adapter *qdev)
  2427. {
  2428. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2429. pci_disable_msix(qdev->pdev);
  2430. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2431. kfree(qdev->msi_x_entry);
  2432. qdev->msi_x_entry = NULL;
  2433. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2434. pci_disable_msi(qdev->pdev);
  2435. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2436. }
  2437. }
  2438. static void ql_enable_msix(struct ql_adapter *qdev)
  2439. {
  2440. int i;
  2441. qdev->intr_count = 1;
  2442. /* Get the MSIX vectors. */
  2443. if (irq_type == MSIX_IRQ) {
  2444. /* Try to alloc space for the msix struct,
  2445. * if it fails then go to MSI/legacy.
  2446. */
  2447. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2448. sizeof(struct msix_entry),
  2449. GFP_KERNEL);
  2450. if (!qdev->msi_x_entry) {
  2451. irq_type = MSI_IRQ;
  2452. goto msi;
  2453. }
  2454. for (i = 0; i < qdev->rx_ring_count; i++)
  2455. qdev->msi_x_entry[i].entry = i;
  2456. if (!pci_enable_msix
  2457. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2458. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2459. qdev->intr_count = qdev->rx_ring_count;
  2460. QPRINTK(qdev, IFUP, DEBUG,
  2461. "MSI-X Enabled, got %d vectors.\n",
  2462. qdev->intr_count);
  2463. return;
  2464. } else {
  2465. kfree(qdev->msi_x_entry);
  2466. qdev->msi_x_entry = NULL;
  2467. QPRINTK(qdev, IFUP, WARNING,
  2468. "MSI-X Enable failed, trying MSI.\n");
  2469. irq_type = MSI_IRQ;
  2470. }
  2471. }
  2472. msi:
  2473. if (irq_type == MSI_IRQ) {
  2474. if (!pci_enable_msi(qdev->pdev)) {
  2475. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2476. QPRINTK(qdev, IFUP, INFO,
  2477. "Running with MSI interrupts.\n");
  2478. return;
  2479. }
  2480. }
  2481. irq_type = LEG_IRQ;
  2482. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2483. }
  2484. /*
  2485. * Here we build the intr_context structures based on
  2486. * our rx_ring count and intr vector count.
  2487. * The intr_context structure is used to hook each vector
  2488. * to possibly different handlers.
  2489. */
  2490. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2491. {
  2492. int i = 0;
  2493. struct intr_context *intr_context = &qdev->intr_context[0];
  2494. ql_enable_msix(qdev);
  2495. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2496. /* Each rx_ring has it's
  2497. * own intr_context since we have separate
  2498. * vectors for each queue.
  2499. * This only true when MSI-X is enabled.
  2500. */
  2501. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2502. qdev->rx_ring[i].irq = i;
  2503. intr_context->intr = i;
  2504. intr_context->qdev = qdev;
  2505. /*
  2506. * We set up each vectors enable/disable/read bits so
  2507. * there's no bit/mask calculations in the critical path.
  2508. */
  2509. intr_context->intr_en_mask =
  2510. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2511. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2512. | i;
  2513. intr_context->intr_dis_mask =
  2514. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2515. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2516. INTR_EN_IHD | i;
  2517. intr_context->intr_read_mask =
  2518. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2519. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2520. i;
  2521. if (i == 0) {
  2522. /*
  2523. * Default queue handles bcast/mcast plus
  2524. * async events. Needs buffers.
  2525. */
  2526. intr_context->handler = qlge_isr;
  2527. sprintf(intr_context->name, "%s-default-queue",
  2528. qdev->ndev->name);
  2529. } else if (i < qdev->rss_ring_first_cq_id) {
  2530. /*
  2531. * Outbound queue is for outbound completions only.
  2532. */
  2533. intr_context->handler = qlge_msix_tx_isr;
  2534. sprintf(intr_context->name, "%s-tx-%d",
  2535. qdev->ndev->name, i);
  2536. } else {
  2537. /*
  2538. * Inbound queues handle unicast frames only.
  2539. */
  2540. intr_context->handler = qlge_msix_rx_isr;
  2541. sprintf(intr_context->name, "%s-rx-%d",
  2542. qdev->ndev->name, i);
  2543. }
  2544. }
  2545. } else {
  2546. /*
  2547. * All rx_rings use the same intr_context since
  2548. * there is only one vector.
  2549. */
  2550. intr_context->intr = 0;
  2551. intr_context->qdev = qdev;
  2552. /*
  2553. * We set up each vectors enable/disable/read bits so
  2554. * there's no bit/mask calculations in the critical path.
  2555. */
  2556. intr_context->intr_en_mask =
  2557. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2558. intr_context->intr_dis_mask =
  2559. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2560. INTR_EN_TYPE_DISABLE;
  2561. intr_context->intr_read_mask =
  2562. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2563. /*
  2564. * Single interrupt means one handler for all rings.
  2565. */
  2566. intr_context->handler = qlge_isr;
  2567. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2568. for (i = 0; i < qdev->rx_ring_count; i++)
  2569. qdev->rx_ring[i].irq = 0;
  2570. }
  2571. }
  2572. static void ql_free_irq(struct ql_adapter *qdev)
  2573. {
  2574. int i;
  2575. struct intr_context *intr_context = &qdev->intr_context[0];
  2576. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2577. if (intr_context->hooked) {
  2578. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2579. free_irq(qdev->msi_x_entry[i].vector,
  2580. &qdev->rx_ring[i]);
  2581. QPRINTK(qdev, IFDOWN, DEBUG,
  2582. "freeing msix interrupt %d.\n", i);
  2583. } else {
  2584. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2585. QPRINTK(qdev, IFDOWN, DEBUG,
  2586. "freeing msi interrupt %d.\n", i);
  2587. }
  2588. }
  2589. }
  2590. ql_disable_msix(qdev);
  2591. }
  2592. static int ql_request_irq(struct ql_adapter *qdev)
  2593. {
  2594. int i;
  2595. int status = 0;
  2596. struct pci_dev *pdev = qdev->pdev;
  2597. struct intr_context *intr_context = &qdev->intr_context[0];
  2598. ql_resolve_queues_to_irqs(qdev);
  2599. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2600. atomic_set(&intr_context->irq_cnt, 0);
  2601. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2602. status = request_irq(qdev->msi_x_entry[i].vector,
  2603. intr_context->handler,
  2604. 0,
  2605. intr_context->name,
  2606. &qdev->rx_ring[i]);
  2607. if (status) {
  2608. QPRINTK(qdev, IFUP, ERR,
  2609. "Failed request for MSIX interrupt %d.\n",
  2610. i);
  2611. goto err_irq;
  2612. } else {
  2613. QPRINTK(qdev, IFUP, DEBUG,
  2614. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2615. i,
  2616. qdev->rx_ring[i].type ==
  2617. DEFAULT_Q ? "DEFAULT_Q" : "",
  2618. qdev->rx_ring[i].type ==
  2619. TX_Q ? "TX_Q" : "",
  2620. qdev->rx_ring[i].type ==
  2621. RX_Q ? "RX_Q" : "", intr_context->name);
  2622. }
  2623. } else {
  2624. QPRINTK(qdev, IFUP, DEBUG,
  2625. "trying msi or legacy interrupts.\n");
  2626. QPRINTK(qdev, IFUP, DEBUG,
  2627. "%s: irq = %d.\n", __func__, pdev->irq);
  2628. QPRINTK(qdev, IFUP, DEBUG,
  2629. "%s: context->name = %s.\n", __func__,
  2630. intr_context->name);
  2631. QPRINTK(qdev, IFUP, DEBUG,
  2632. "%s: dev_id = 0x%p.\n", __func__,
  2633. &qdev->rx_ring[0]);
  2634. status =
  2635. request_irq(pdev->irq, qlge_isr,
  2636. test_bit(QL_MSI_ENABLED,
  2637. &qdev->
  2638. flags) ? 0 : IRQF_SHARED,
  2639. intr_context->name, &qdev->rx_ring[0]);
  2640. if (status)
  2641. goto err_irq;
  2642. QPRINTK(qdev, IFUP, ERR,
  2643. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2644. i,
  2645. qdev->rx_ring[0].type ==
  2646. DEFAULT_Q ? "DEFAULT_Q" : "",
  2647. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2648. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2649. intr_context->name);
  2650. }
  2651. intr_context->hooked = 1;
  2652. }
  2653. return status;
  2654. err_irq:
  2655. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2656. ql_free_irq(qdev);
  2657. return status;
  2658. }
  2659. static int ql_start_rss(struct ql_adapter *qdev)
  2660. {
  2661. struct ricb *ricb = &qdev->ricb;
  2662. int status = 0;
  2663. int i;
  2664. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2665. memset((void *)ricb, 0, sizeof(ricb));
  2666. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2667. ricb->flags =
  2668. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2669. RSS_RT6);
  2670. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2671. /*
  2672. * Fill out the Indirection Table.
  2673. */
  2674. for (i = 0; i < 256; i++)
  2675. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2676. /*
  2677. * Random values for the IPv6 and IPv4 Hash Keys.
  2678. */
  2679. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2680. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2681. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  2682. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2683. if (status) {
  2684. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2685. return status;
  2686. }
  2687. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  2688. return status;
  2689. }
  2690. /* Initialize the frame-to-queue routing. */
  2691. static int ql_route_initialize(struct ql_adapter *qdev)
  2692. {
  2693. int status = 0;
  2694. int i;
  2695. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2696. if (status)
  2697. return status;
  2698. /* Clear all the entries in the routing table. */
  2699. for (i = 0; i < 16; i++) {
  2700. status = ql_set_routing_reg(qdev, i, 0, 0);
  2701. if (status) {
  2702. QPRINTK(qdev, IFUP, ERR,
  2703. "Failed to init routing register for CAM packets.\n");
  2704. goto exit;
  2705. }
  2706. }
  2707. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2708. if (status) {
  2709. QPRINTK(qdev, IFUP, ERR,
  2710. "Failed to init routing register for error packets.\n");
  2711. goto exit;
  2712. }
  2713. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2714. if (status) {
  2715. QPRINTK(qdev, IFUP, ERR,
  2716. "Failed to init routing register for broadcast packets.\n");
  2717. goto exit;
  2718. }
  2719. /* If we have more than one inbound queue, then turn on RSS in the
  2720. * routing block.
  2721. */
  2722. if (qdev->rss_ring_count > 1) {
  2723. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2724. RT_IDX_RSS_MATCH, 1);
  2725. if (status) {
  2726. QPRINTK(qdev, IFUP, ERR,
  2727. "Failed to init routing register for MATCH RSS packets.\n");
  2728. goto exit;
  2729. }
  2730. }
  2731. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2732. RT_IDX_CAM_HIT, 1);
  2733. if (status)
  2734. QPRINTK(qdev, IFUP, ERR,
  2735. "Failed to init routing register for CAM packets.\n");
  2736. exit:
  2737. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2738. return status;
  2739. }
  2740. int ql_cam_route_initialize(struct ql_adapter *qdev)
  2741. {
  2742. int status;
  2743. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2744. if (status)
  2745. return status;
  2746. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2747. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  2748. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2749. if (status) {
  2750. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2751. return status;
  2752. }
  2753. status = ql_route_initialize(qdev);
  2754. if (status)
  2755. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2756. return status;
  2757. }
  2758. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2759. {
  2760. u32 value, mask;
  2761. int i;
  2762. int status = 0;
  2763. /*
  2764. * Set up the System register to halt on errors.
  2765. */
  2766. value = SYS_EFE | SYS_FAE;
  2767. mask = value << 16;
  2768. ql_write32(qdev, SYS, mask | value);
  2769. /* Set the default queue. */
  2770. value = NIC_RCV_CFG_DFQ;
  2771. mask = NIC_RCV_CFG_DFQ_MASK;
  2772. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2773. /* Set the MPI interrupt to enabled. */
  2774. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2775. /* Enable the function, set pagesize, enable error checking. */
  2776. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2777. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2778. /* Set/clear header splitting. */
  2779. mask = FSC_VM_PAGESIZE_MASK |
  2780. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2781. ql_write32(qdev, FSC, mask | value);
  2782. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2783. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2784. /* Start up the rx queues. */
  2785. for (i = 0; i < qdev->rx_ring_count; i++) {
  2786. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2787. if (status) {
  2788. QPRINTK(qdev, IFUP, ERR,
  2789. "Failed to start rx ring[%d].\n", i);
  2790. return status;
  2791. }
  2792. }
  2793. /* If there is more than one inbound completion queue
  2794. * then download a RICB to configure RSS.
  2795. */
  2796. if (qdev->rss_ring_count > 1) {
  2797. status = ql_start_rss(qdev);
  2798. if (status) {
  2799. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2800. return status;
  2801. }
  2802. }
  2803. /* Start up the tx queues. */
  2804. for (i = 0; i < qdev->tx_ring_count; i++) {
  2805. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2806. if (status) {
  2807. QPRINTK(qdev, IFUP, ERR,
  2808. "Failed to start tx ring[%d].\n", i);
  2809. return status;
  2810. }
  2811. }
  2812. /* Initialize the port and set the max framesize. */
  2813. status = qdev->nic_ops->port_initialize(qdev);
  2814. if (status) {
  2815. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2816. return status;
  2817. }
  2818. /* Set up the MAC address and frame routing filter. */
  2819. status = ql_cam_route_initialize(qdev);
  2820. if (status) {
  2821. QPRINTK(qdev, IFUP, ERR,
  2822. "Failed to init CAM/Routing tables.\n");
  2823. return status;
  2824. }
  2825. /* Start NAPI for the RSS queues. */
  2826. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2827. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  2828. i);
  2829. napi_enable(&qdev->rx_ring[i].napi);
  2830. }
  2831. return status;
  2832. }
  2833. /* Issue soft reset to chip. */
  2834. static int ql_adapter_reset(struct ql_adapter *qdev)
  2835. {
  2836. u32 value;
  2837. int max_wait_time;
  2838. int status = 0;
  2839. int resetCnt = 0;
  2840. #define MAX_RESET_CNT 1
  2841. issueReset:
  2842. resetCnt++;
  2843. QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
  2844. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2845. /* Wait for reset to complete. */
  2846. max_wait_time = 3;
  2847. QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
  2848. max_wait_time);
  2849. do {
  2850. value = ql_read32(qdev, RST_FO);
  2851. if ((value & RST_FO_FR) == 0)
  2852. break;
  2853. ssleep(1);
  2854. } while ((--max_wait_time));
  2855. if (value & RST_FO_FR) {
  2856. QPRINTK(qdev, IFDOWN, ERR,
  2857. "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
  2858. if (resetCnt < MAX_RESET_CNT)
  2859. goto issueReset;
  2860. }
  2861. if (max_wait_time == 0) {
  2862. status = -ETIMEDOUT;
  2863. QPRINTK(qdev, IFDOWN, ERR,
  2864. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2865. }
  2866. return status;
  2867. }
  2868. static void ql_display_dev_info(struct net_device *ndev)
  2869. {
  2870. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2871. QPRINTK(qdev, PROBE, INFO,
  2872. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2873. "XG Roll = %d, XG Rev = %d.\n",
  2874. qdev->func,
  2875. qdev->chip_rev_id & 0x0000000f,
  2876. qdev->chip_rev_id >> 4 & 0x0000000f,
  2877. qdev->chip_rev_id >> 8 & 0x0000000f,
  2878. qdev->chip_rev_id >> 12 & 0x0000000f);
  2879. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2880. }
  2881. static int ql_adapter_down(struct ql_adapter *qdev)
  2882. {
  2883. struct net_device *ndev = qdev->ndev;
  2884. int i, status = 0;
  2885. struct rx_ring *rx_ring;
  2886. netif_stop_queue(ndev);
  2887. netif_carrier_off(ndev);
  2888. /* Don't kill the reset worker thread if we
  2889. * are in the process of recovery.
  2890. */
  2891. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  2892. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2893. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2894. cancel_delayed_work_sync(&qdev->mpi_work);
  2895. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  2896. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  2897. /* The default queue at index 0 is always processed in
  2898. * a workqueue.
  2899. */
  2900. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2901. /* The rest of the rx_rings are processed in
  2902. * a workqueue only if it's a single interrupt
  2903. * environment (MSI/Legacy).
  2904. */
  2905. for (i = 1; i < qdev->rx_ring_count; i++) {
  2906. rx_ring = &qdev->rx_ring[i];
  2907. /* Only the RSS rings use NAPI on multi irq
  2908. * environment. Outbound completion processing
  2909. * is done in interrupt context.
  2910. */
  2911. if (i >= qdev->rss_ring_first_cq_id) {
  2912. napi_disable(&rx_ring->napi);
  2913. } else {
  2914. cancel_delayed_work_sync(&rx_ring->rx_work);
  2915. }
  2916. }
  2917. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2918. ql_disable_interrupts(qdev);
  2919. ql_tx_ring_clean(qdev);
  2920. ql_free_rx_buffers(qdev);
  2921. spin_lock(&qdev->hw_lock);
  2922. status = ql_adapter_reset(qdev);
  2923. if (status)
  2924. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2925. qdev->func);
  2926. spin_unlock(&qdev->hw_lock);
  2927. return status;
  2928. }
  2929. static int ql_adapter_up(struct ql_adapter *qdev)
  2930. {
  2931. int err = 0;
  2932. spin_lock(&qdev->hw_lock);
  2933. err = ql_adapter_initialize(qdev);
  2934. if (err) {
  2935. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2936. spin_unlock(&qdev->hw_lock);
  2937. goto err_init;
  2938. }
  2939. spin_unlock(&qdev->hw_lock);
  2940. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2941. ql_alloc_rx_buffers(qdev);
  2942. ql_enable_interrupts(qdev);
  2943. ql_enable_all_completion_interrupts(qdev);
  2944. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2945. netif_carrier_on(qdev->ndev);
  2946. netif_start_queue(qdev->ndev);
  2947. }
  2948. return 0;
  2949. err_init:
  2950. ql_adapter_reset(qdev);
  2951. return err;
  2952. }
  2953. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2954. {
  2955. ql_free_mem_resources(qdev);
  2956. ql_free_irq(qdev);
  2957. }
  2958. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2959. {
  2960. int status = 0;
  2961. if (ql_alloc_mem_resources(qdev)) {
  2962. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2963. return -ENOMEM;
  2964. }
  2965. status = ql_request_irq(qdev);
  2966. if (status)
  2967. goto err_irq;
  2968. return status;
  2969. err_irq:
  2970. ql_free_mem_resources(qdev);
  2971. return status;
  2972. }
  2973. static int qlge_close(struct net_device *ndev)
  2974. {
  2975. struct ql_adapter *qdev = netdev_priv(ndev);
  2976. /*
  2977. * Wait for device to recover from a reset.
  2978. * (Rarely happens, but possible.)
  2979. */
  2980. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2981. msleep(1);
  2982. ql_adapter_down(qdev);
  2983. ql_release_adapter_resources(qdev);
  2984. return 0;
  2985. }
  2986. static int ql_configure_rings(struct ql_adapter *qdev)
  2987. {
  2988. int i;
  2989. struct rx_ring *rx_ring;
  2990. struct tx_ring *tx_ring;
  2991. int cpu_cnt = num_online_cpus();
  2992. /*
  2993. * For each processor present we allocate one
  2994. * rx_ring for outbound completions, and one
  2995. * rx_ring for inbound completions. Plus there is
  2996. * always the one default queue. For the CPU
  2997. * counts we end up with the following rx_rings:
  2998. * rx_ring count =
  2999. * one default queue +
  3000. * (CPU count * outbound completion rx_ring) +
  3001. * (CPU count * inbound (RSS) completion rx_ring)
  3002. * To keep it simple we limit the total number of
  3003. * queues to < 32, so we truncate CPU to 8.
  3004. * This limitation can be removed when requested.
  3005. */
  3006. if (cpu_cnt > MAX_CPUS)
  3007. cpu_cnt = MAX_CPUS;
  3008. /*
  3009. * rx_ring[0] is always the default queue.
  3010. */
  3011. /* Allocate outbound completion ring for each CPU. */
  3012. qdev->tx_ring_count = cpu_cnt;
  3013. /* Allocate inbound completion (RSS) ring for each CPU. */
  3014. qdev->rss_ring_count = cpu_cnt;
  3015. /* cq_id for the first inbound ring handler. */
  3016. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  3017. /*
  3018. * qdev->rx_ring_count:
  3019. * Total number of rx_rings. This includes the one
  3020. * default queue, a number of outbound completion
  3021. * handler rx_rings, and the number of inbound
  3022. * completion handler rx_rings.
  3023. */
  3024. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  3025. for (i = 0; i < qdev->tx_ring_count; i++) {
  3026. tx_ring = &qdev->tx_ring[i];
  3027. memset((void *)tx_ring, 0, sizeof(tx_ring));
  3028. tx_ring->qdev = qdev;
  3029. tx_ring->wq_id = i;
  3030. tx_ring->wq_len = qdev->tx_ring_size;
  3031. tx_ring->wq_size =
  3032. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3033. /*
  3034. * The completion queue ID for the tx rings start
  3035. * immediately after the default Q ID, which is zero.
  3036. */
  3037. tx_ring->cq_id = i + 1;
  3038. }
  3039. for (i = 0; i < qdev->rx_ring_count; i++) {
  3040. rx_ring = &qdev->rx_ring[i];
  3041. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3042. rx_ring->qdev = qdev;
  3043. rx_ring->cq_id = i;
  3044. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3045. if (i == 0) { /* Default queue at index 0. */
  3046. /*
  3047. * Default queue handles bcast/mcast plus
  3048. * async events. Needs buffers.
  3049. */
  3050. rx_ring->cq_len = qdev->rx_ring_size;
  3051. rx_ring->cq_size =
  3052. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3053. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3054. rx_ring->lbq_size =
  3055. rx_ring->lbq_len * sizeof(__le64);
  3056. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3057. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3058. rx_ring->sbq_size =
  3059. rx_ring->sbq_len * sizeof(__le64);
  3060. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3061. rx_ring->type = DEFAULT_Q;
  3062. } else if (i < qdev->rss_ring_first_cq_id) {
  3063. /*
  3064. * Outbound queue handles outbound completions only.
  3065. */
  3066. /* outbound cq is same size as tx_ring it services. */
  3067. rx_ring->cq_len = qdev->tx_ring_size;
  3068. rx_ring->cq_size =
  3069. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3070. rx_ring->lbq_len = 0;
  3071. rx_ring->lbq_size = 0;
  3072. rx_ring->lbq_buf_size = 0;
  3073. rx_ring->sbq_len = 0;
  3074. rx_ring->sbq_size = 0;
  3075. rx_ring->sbq_buf_size = 0;
  3076. rx_ring->type = TX_Q;
  3077. } else { /* Inbound completions (RSS) queues */
  3078. /*
  3079. * Inbound queues handle unicast frames only.
  3080. */
  3081. rx_ring->cq_len = qdev->rx_ring_size;
  3082. rx_ring->cq_size =
  3083. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3084. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3085. rx_ring->lbq_size =
  3086. rx_ring->lbq_len * sizeof(__le64);
  3087. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3088. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3089. rx_ring->sbq_size =
  3090. rx_ring->sbq_len * sizeof(__le64);
  3091. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3092. rx_ring->type = RX_Q;
  3093. }
  3094. }
  3095. return 0;
  3096. }
  3097. static int qlge_open(struct net_device *ndev)
  3098. {
  3099. int err = 0;
  3100. struct ql_adapter *qdev = netdev_priv(ndev);
  3101. err = ql_configure_rings(qdev);
  3102. if (err)
  3103. return err;
  3104. err = ql_get_adapter_resources(qdev);
  3105. if (err)
  3106. goto error_up;
  3107. err = ql_adapter_up(qdev);
  3108. if (err)
  3109. goto error_up;
  3110. return err;
  3111. error_up:
  3112. ql_release_adapter_resources(qdev);
  3113. return err;
  3114. }
  3115. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3116. {
  3117. struct ql_adapter *qdev = netdev_priv(ndev);
  3118. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3119. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3120. queue_delayed_work(qdev->workqueue,
  3121. &qdev->mpi_port_cfg_work, 0);
  3122. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3123. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3124. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3125. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3126. return 0;
  3127. } else
  3128. return -EINVAL;
  3129. ndev->mtu = new_mtu;
  3130. return 0;
  3131. }
  3132. static struct net_device_stats *qlge_get_stats(struct net_device
  3133. *ndev)
  3134. {
  3135. struct ql_adapter *qdev = netdev_priv(ndev);
  3136. return &qdev->stats;
  3137. }
  3138. static void qlge_set_multicast_list(struct net_device *ndev)
  3139. {
  3140. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3141. struct dev_mc_list *mc_ptr;
  3142. int i, status;
  3143. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3144. if (status)
  3145. return;
  3146. spin_lock(&qdev->hw_lock);
  3147. /*
  3148. * Set or clear promiscuous mode if a
  3149. * transition is taking place.
  3150. */
  3151. if (ndev->flags & IFF_PROMISC) {
  3152. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3153. if (ql_set_routing_reg
  3154. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3155. QPRINTK(qdev, HW, ERR,
  3156. "Failed to set promiscous mode.\n");
  3157. } else {
  3158. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3159. }
  3160. }
  3161. } else {
  3162. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3163. if (ql_set_routing_reg
  3164. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3165. QPRINTK(qdev, HW, ERR,
  3166. "Failed to clear promiscous mode.\n");
  3167. } else {
  3168. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3169. }
  3170. }
  3171. }
  3172. /*
  3173. * Set or clear all multicast mode if a
  3174. * transition is taking place.
  3175. */
  3176. if ((ndev->flags & IFF_ALLMULTI) ||
  3177. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3178. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3179. if (ql_set_routing_reg
  3180. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3181. QPRINTK(qdev, HW, ERR,
  3182. "Failed to set all-multi mode.\n");
  3183. } else {
  3184. set_bit(QL_ALLMULTI, &qdev->flags);
  3185. }
  3186. }
  3187. } else {
  3188. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3189. if (ql_set_routing_reg
  3190. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3191. QPRINTK(qdev, HW, ERR,
  3192. "Failed to clear all-multi mode.\n");
  3193. } else {
  3194. clear_bit(QL_ALLMULTI, &qdev->flags);
  3195. }
  3196. }
  3197. }
  3198. if (ndev->mc_count) {
  3199. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3200. if (status)
  3201. goto exit;
  3202. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3203. i++, mc_ptr = mc_ptr->next)
  3204. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3205. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3206. QPRINTK(qdev, HW, ERR,
  3207. "Failed to loadmulticast address.\n");
  3208. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3209. goto exit;
  3210. }
  3211. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3212. if (ql_set_routing_reg
  3213. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3214. QPRINTK(qdev, HW, ERR,
  3215. "Failed to set multicast match mode.\n");
  3216. } else {
  3217. set_bit(QL_ALLMULTI, &qdev->flags);
  3218. }
  3219. }
  3220. exit:
  3221. spin_unlock(&qdev->hw_lock);
  3222. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3223. }
  3224. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3225. {
  3226. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3227. struct sockaddr *addr = p;
  3228. int status;
  3229. if (netif_running(ndev))
  3230. return -EBUSY;
  3231. if (!is_valid_ether_addr(addr->sa_data))
  3232. return -EADDRNOTAVAIL;
  3233. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3234. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3235. if (status)
  3236. return status;
  3237. spin_lock(&qdev->hw_lock);
  3238. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3239. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3240. spin_unlock(&qdev->hw_lock);
  3241. if (status)
  3242. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3243. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3244. return status;
  3245. }
  3246. static void qlge_tx_timeout(struct net_device *ndev)
  3247. {
  3248. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3249. ql_queue_asic_error(qdev);
  3250. }
  3251. static void ql_asic_reset_work(struct work_struct *work)
  3252. {
  3253. struct ql_adapter *qdev =
  3254. container_of(work, struct ql_adapter, asic_reset_work.work);
  3255. int status;
  3256. status = ql_adapter_down(qdev);
  3257. if (status)
  3258. goto error;
  3259. status = ql_adapter_up(qdev);
  3260. if (status)
  3261. goto error;
  3262. return;
  3263. error:
  3264. QPRINTK(qdev, IFUP, ALERT,
  3265. "Driver up/down cycle failed, closing device\n");
  3266. rtnl_lock();
  3267. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3268. dev_close(qdev->ndev);
  3269. rtnl_unlock();
  3270. }
  3271. static struct nic_operations qla8012_nic_ops = {
  3272. .get_flash = ql_get_8012_flash_params,
  3273. .port_initialize = ql_8012_port_initialize,
  3274. };
  3275. static struct nic_operations qla8000_nic_ops = {
  3276. .get_flash = ql_get_8000_flash_params,
  3277. .port_initialize = ql_8000_port_initialize,
  3278. };
  3279. static void ql_get_board_info(struct ql_adapter *qdev)
  3280. {
  3281. qdev->func =
  3282. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3283. if (qdev->func) {
  3284. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3285. qdev->port_link_up = STS_PL1;
  3286. qdev->port_init = STS_PI1;
  3287. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3288. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3289. } else {
  3290. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3291. qdev->port_link_up = STS_PL0;
  3292. qdev->port_init = STS_PI0;
  3293. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3294. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3295. }
  3296. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3297. qdev->device_id = qdev->pdev->device;
  3298. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3299. qdev->nic_ops = &qla8012_nic_ops;
  3300. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3301. qdev->nic_ops = &qla8000_nic_ops;
  3302. }
  3303. static void ql_release_all(struct pci_dev *pdev)
  3304. {
  3305. struct net_device *ndev = pci_get_drvdata(pdev);
  3306. struct ql_adapter *qdev = netdev_priv(ndev);
  3307. if (qdev->workqueue) {
  3308. destroy_workqueue(qdev->workqueue);
  3309. qdev->workqueue = NULL;
  3310. }
  3311. if (qdev->q_workqueue) {
  3312. destroy_workqueue(qdev->q_workqueue);
  3313. qdev->q_workqueue = NULL;
  3314. }
  3315. if (qdev->reg_base)
  3316. iounmap(qdev->reg_base);
  3317. if (qdev->doorbell_area)
  3318. iounmap(qdev->doorbell_area);
  3319. pci_release_regions(pdev);
  3320. pci_set_drvdata(pdev, NULL);
  3321. }
  3322. static int __devinit ql_init_device(struct pci_dev *pdev,
  3323. struct net_device *ndev, int cards_found)
  3324. {
  3325. struct ql_adapter *qdev = netdev_priv(ndev);
  3326. int pos, err = 0;
  3327. u16 val16;
  3328. memset((void *)qdev, 0, sizeof(qdev));
  3329. err = pci_enable_device(pdev);
  3330. if (err) {
  3331. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3332. return err;
  3333. }
  3334. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3335. if (pos <= 0) {
  3336. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3337. "aborting.\n");
  3338. goto err_out;
  3339. } else {
  3340. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3341. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3342. val16 |= (PCI_EXP_DEVCTL_CERE |
  3343. PCI_EXP_DEVCTL_NFERE |
  3344. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3345. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3346. }
  3347. err = pci_request_regions(pdev, DRV_NAME);
  3348. if (err) {
  3349. dev_err(&pdev->dev, "PCI region request failed.\n");
  3350. goto err_out;
  3351. }
  3352. pci_set_master(pdev);
  3353. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3354. set_bit(QL_DMA64, &qdev->flags);
  3355. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3356. } else {
  3357. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3358. if (!err)
  3359. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3360. }
  3361. if (err) {
  3362. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3363. goto err_out;
  3364. }
  3365. pci_set_drvdata(pdev, ndev);
  3366. qdev->reg_base =
  3367. ioremap_nocache(pci_resource_start(pdev, 1),
  3368. pci_resource_len(pdev, 1));
  3369. if (!qdev->reg_base) {
  3370. dev_err(&pdev->dev, "Register mapping failed.\n");
  3371. err = -ENOMEM;
  3372. goto err_out;
  3373. }
  3374. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3375. qdev->doorbell_area =
  3376. ioremap_nocache(pci_resource_start(pdev, 3),
  3377. pci_resource_len(pdev, 3));
  3378. if (!qdev->doorbell_area) {
  3379. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3380. err = -ENOMEM;
  3381. goto err_out;
  3382. }
  3383. qdev->ndev = ndev;
  3384. qdev->pdev = pdev;
  3385. ql_get_board_info(qdev);
  3386. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3387. spin_lock_init(&qdev->hw_lock);
  3388. spin_lock_init(&qdev->stats_lock);
  3389. /* make sure the EEPROM is good */
  3390. err = qdev->nic_ops->get_flash(qdev);
  3391. if (err) {
  3392. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3393. goto err_out;
  3394. }
  3395. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3396. /* Set up the default ring sizes. */
  3397. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3398. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3399. /* Set up the coalescing parameters. */
  3400. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3401. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3402. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3403. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3404. /*
  3405. * Set up the operating parameters.
  3406. */
  3407. qdev->rx_csum = 1;
  3408. qdev->q_workqueue = create_workqueue(ndev->name);
  3409. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3410. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3411. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3412. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3413. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  3414. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  3415. mutex_init(&qdev->mpi_mutex);
  3416. init_completion(&qdev->ide_completion);
  3417. if (!cards_found) {
  3418. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3419. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3420. DRV_NAME, DRV_VERSION);
  3421. }
  3422. return 0;
  3423. err_out:
  3424. ql_release_all(pdev);
  3425. pci_disable_device(pdev);
  3426. return err;
  3427. }
  3428. static const struct net_device_ops qlge_netdev_ops = {
  3429. .ndo_open = qlge_open,
  3430. .ndo_stop = qlge_close,
  3431. .ndo_start_xmit = qlge_send,
  3432. .ndo_change_mtu = qlge_change_mtu,
  3433. .ndo_get_stats = qlge_get_stats,
  3434. .ndo_set_multicast_list = qlge_set_multicast_list,
  3435. .ndo_set_mac_address = qlge_set_mac_address,
  3436. .ndo_validate_addr = eth_validate_addr,
  3437. .ndo_tx_timeout = qlge_tx_timeout,
  3438. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3439. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3440. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3441. };
  3442. static int __devinit qlge_probe(struct pci_dev *pdev,
  3443. const struct pci_device_id *pci_entry)
  3444. {
  3445. struct net_device *ndev = NULL;
  3446. struct ql_adapter *qdev = NULL;
  3447. static int cards_found = 0;
  3448. int err = 0;
  3449. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3450. if (!ndev)
  3451. return -ENOMEM;
  3452. err = ql_init_device(pdev, ndev, cards_found);
  3453. if (err < 0) {
  3454. free_netdev(ndev);
  3455. return err;
  3456. }
  3457. qdev = netdev_priv(ndev);
  3458. SET_NETDEV_DEV(ndev, &pdev->dev);
  3459. ndev->features = (0
  3460. | NETIF_F_IP_CSUM
  3461. | NETIF_F_SG
  3462. | NETIF_F_TSO
  3463. | NETIF_F_TSO6
  3464. | NETIF_F_TSO_ECN
  3465. | NETIF_F_HW_VLAN_TX
  3466. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3467. if (test_bit(QL_DMA64, &qdev->flags))
  3468. ndev->features |= NETIF_F_HIGHDMA;
  3469. /*
  3470. * Set up net_device structure.
  3471. */
  3472. ndev->tx_queue_len = qdev->tx_ring_size;
  3473. ndev->irq = pdev->irq;
  3474. ndev->netdev_ops = &qlge_netdev_ops;
  3475. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3476. ndev->watchdog_timeo = 10 * HZ;
  3477. err = register_netdev(ndev);
  3478. if (err) {
  3479. dev_err(&pdev->dev, "net device registration failed.\n");
  3480. ql_release_all(pdev);
  3481. pci_disable_device(pdev);
  3482. return err;
  3483. }
  3484. netif_carrier_off(ndev);
  3485. netif_stop_queue(ndev);
  3486. ql_display_dev_info(ndev);
  3487. cards_found++;
  3488. return 0;
  3489. }
  3490. static void __devexit qlge_remove(struct pci_dev *pdev)
  3491. {
  3492. struct net_device *ndev = pci_get_drvdata(pdev);
  3493. unregister_netdev(ndev);
  3494. ql_release_all(pdev);
  3495. pci_disable_device(pdev);
  3496. free_netdev(ndev);
  3497. }
  3498. /*
  3499. * This callback is called by the PCI subsystem whenever
  3500. * a PCI bus error is detected.
  3501. */
  3502. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3503. enum pci_channel_state state)
  3504. {
  3505. struct net_device *ndev = pci_get_drvdata(pdev);
  3506. struct ql_adapter *qdev = netdev_priv(ndev);
  3507. if (netif_running(ndev))
  3508. ql_adapter_down(qdev);
  3509. pci_disable_device(pdev);
  3510. /* Request a slot reset. */
  3511. return PCI_ERS_RESULT_NEED_RESET;
  3512. }
  3513. /*
  3514. * This callback is called after the PCI buss has been reset.
  3515. * Basically, this tries to restart the card from scratch.
  3516. * This is a shortened version of the device probe/discovery code,
  3517. * it resembles the first-half of the () routine.
  3518. */
  3519. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3520. {
  3521. struct net_device *ndev = pci_get_drvdata(pdev);
  3522. struct ql_adapter *qdev = netdev_priv(ndev);
  3523. if (pci_enable_device(pdev)) {
  3524. QPRINTK(qdev, IFUP, ERR,
  3525. "Cannot re-enable PCI device after reset.\n");
  3526. return PCI_ERS_RESULT_DISCONNECT;
  3527. }
  3528. pci_set_master(pdev);
  3529. netif_carrier_off(ndev);
  3530. netif_stop_queue(ndev);
  3531. ql_adapter_reset(qdev);
  3532. /* Make sure the EEPROM is good */
  3533. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3534. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3535. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3536. return PCI_ERS_RESULT_DISCONNECT;
  3537. }
  3538. return PCI_ERS_RESULT_RECOVERED;
  3539. }
  3540. static void qlge_io_resume(struct pci_dev *pdev)
  3541. {
  3542. struct net_device *ndev = pci_get_drvdata(pdev);
  3543. struct ql_adapter *qdev = netdev_priv(ndev);
  3544. pci_set_master(pdev);
  3545. if (netif_running(ndev)) {
  3546. if (ql_adapter_up(qdev)) {
  3547. QPRINTK(qdev, IFUP, ERR,
  3548. "Device initialization failed after reset.\n");
  3549. return;
  3550. }
  3551. }
  3552. netif_device_attach(ndev);
  3553. }
  3554. static struct pci_error_handlers qlge_err_handler = {
  3555. .error_detected = qlge_io_error_detected,
  3556. .slot_reset = qlge_io_slot_reset,
  3557. .resume = qlge_io_resume,
  3558. };
  3559. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3560. {
  3561. struct net_device *ndev = pci_get_drvdata(pdev);
  3562. struct ql_adapter *qdev = netdev_priv(ndev);
  3563. int err, i;
  3564. netif_device_detach(ndev);
  3565. if (netif_running(ndev)) {
  3566. err = ql_adapter_down(qdev);
  3567. if (!err)
  3568. return err;
  3569. }
  3570. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
  3571. netif_napi_del(&qdev->rx_ring[i].napi);
  3572. err = pci_save_state(pdev);
  3573. if (err)
  3574. return err;
  3575. pci_disable_device(pdev);
  3576. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3577. return 0;
  3578. }
  3579. #ifdef CONFIG_PM
  3580. static int qlge_resume(struct pci_dev *pdev)
  3581. {
  3582. struct net_device *ndev = pci_get_drvdata(pdev);
  3583. struct ql_adapter *qdev = netdev_priv(ndev);
  3584. int err;
  3585. pci_set_power_state(pdev, PCI_D0);
  3586. pci_restore_state(pdev);
  3587. err = pci_enable_device(pdev);
  3588. if (err) {
  3589. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3590. return err;
  3591. }
  3592. pci_set_master(pdev);
  3593. pci_enable_wake(pdev, PCI_D3hot, 0);
  3594. pci_enable_wake(pdev, PCI_D3cold, 0);
  3595. if (netif_running(ndev)) {
  3596. err = ql_adapter_up(qdev);
  3597. if (err)
  3598. return err;
  3599. }
  3600. netif_device_attach(ndev);
  3601. return 0;
  3602. }
  3603. #endif /* CONFIG_PM */
  3604. static void qlge_shutdown(struct pci_dev *pdev)
  3605. {
  3606. qlge_suspend(pdev, PMSG_SUSPEND);
  3607. }
  3608. static struct pci_driver qlge_driver = {
  3609. .name = DRV_NAME,
  3610. .id_table = qlge_pci_tbl,
  3611. .probe = qlge_probe,
  3612. .remove = __devexit_p(qlge_remove),
  3613. #ifdef CONFIG_PM
  3614. .suspend = qlge_suspend,
  3615. .resume = qlge_resume,
  3616. #endif
  3617. .shutdown = qlge_shutdown,
  3618. .err_handler = &qlge_err_handler
  3619. };
  3620. static int __init qlge_init_module(void)
  3621. {
  3622. return pci_register_driver(&qlge_driver);
  3623. }
  3624. static void __exit qlge_exit(void)
  3625. {
  3626. pci_unregister_driver(&qlge_driver);
  3627. }
  3628. module_init(qlge_init_module);
  3629. module_exit(qlge_exit);