ctree.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/highmem.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  24. *root, struct btrfs_path *path, int level);
  25. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_key *ins_key,
  27. struct btrfs_path *path, int data_size);
  28. static int push_node_left(struct btrfs_trans_handle *trans,
  29. struct btrfs_root *root, struct extent_buffer *dst,
  30. struct extent_buffer *src);
  31. static int balance_node_right(struct btrfs_trans_handle *trans,
  32. struct btrfs_root *root,
  33. struct extent_buffer *dst_buf,
  34. struct extent_buffer *src_buf);
  35. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  36. struct btrfs_path *path, int level, int slot);
  37. inline void btrfs_init_path(struct btrfs_path *p)
  38. {
  39. memset(p, 0, sizeof(*p));
  40. }
  41. struct btrfs_path *btrfs_alloc_path(void)
  42. {
  43. struct btrfs_path *path;
  44. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  45. if (path) {
  46. btrfs_init_path(path);
  47. path->reada = 1;
  48. }
  49. return path;
  50. }
  51. void btrfs_free_path(struct btrfs_path *p)
  52. {
  53. btrfs_release_path(NULL, p);
  54. kmem_cache_free(btrfs_path_cachep, p);
  55. }
  56. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  57. {
  58. int i;
  59. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60. if (!p->nodes[i])
  61. break;
  62. free_extent_buffer(p->nodes[i]);
  63. }
  64. memset(p, 0, sizeof(*p));
  65. }
  66. static int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  67. struct btrfs_root *root,
  68. struct extent_buffer *buf,
  69. struct extent_buffer *parent, int parent_slot,
  70. struct extent_buffer **cow_ret,
  71. u64 search_start, u64 empty_size)
  72. {
  73. struct extent_buffer *cow;
  74. int ret = 0;
  75. int different_trans = 0;
  76. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  77. cow = btrfs_alloc_free_block(trans, root, buf->len,
  78. search_start, empty_size);
  79. if (IS_ERR(cow))
  80. return PTR_ERR(cow);
  81. cow->alloc_addr = (unsigned long)__builtin_return_address(0);
  82. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  83. btrfs_set_header_bytenr(cow, cow->start);
  84. btrfs_set_header_generation(cow, trans->transid);
  85. btrfs_set_header_owner(cow, root->root_key.objectid);
  86. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  87. if (btrfs_header_generation(buf) != trans->transid) {
  88. different_trans = 1;
  89. ret = btrfs_inc_ref(trans, root, buf);
  90. if (ret)
  91. return ret;
  92. } else {
  93. clean_tree_block(trans, root, buf);
  94. }
  95. if (buf == root->node) {
  96. root->node = cow;
  97. extent_buffer_get(cow);
  98. if (buf != root->commit_root) {
  99. btrfs_free_extent(trans, root, buf->start,
  100. buf->len, 1);
  101. }
  102. free_extent_buffer(buf);
  103. } else {
  104. btrfs_set_node_blockptr(parent, parent_slot,
  105. cow->start);
  106. btrfs_mark_buffer_dirty(parent);
  107. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  108. btrfs_free_extent(trans, root, buf->start, buf->len, 1);
  109. }
  110. free_extent_buffer(buf);
  111. btrfs_mark_buffer_dirty(cow);
  112. *cow_ret = cow;
  113. return 0;
  114. }
  115. int btrfs_cow_block(struct btrfs_trans_handle *trans,
  116. struct btrfs_root *root, struct extent_buffer *buf,
  117. struct extent_buffer *parent, int parent_slot,
  118. struct extent_buffer **cow_ret)
  119. {
  120. u64 search_start;
  121. int ret;
  122. if (trans->transaction != root->fs_info->running_transaction) {
  123. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  124. root->fs_info->running_transaction->transid);
  125. WARN_ON(1);
  126. }
  127. if (trans->transid != root->fs_info->generation) {
  128. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  129. root->fs_info->generation);
  130. WARN_ON(1);
  131. }
  132. if (btrfs_header_generation(buf) == trans->transid) {
  133. *cow_ret = buf;
  134. return 0;
  135. }
  136. search_start = buf->start & ~((u64)BTRFS_BLOCK_GROUP_SIZE - 1);
  137. ret = __btrfs_cow_block(trans, root, buf, parent,
  138. parent_slot, cow_ret, search_start, 0);
  139. (*cow_ret)->alloc_addr = (unsigned long)__builtin_return_address(0);
  140. return ret;
  141. }
  142. #if 0
  143. static int close_blocks(u64 blocknr, u64 other)
  144. {
  145. if (blocknr < other && other - blocknr < 8)
  146. return 1;
  147. if (blocknr > other && blocknr - other < 8)
  148. return 1;
  149. return 0;
  150. }
  151. static int should_defrag_leaf(struct extent_buffer *eb)
  152. {
  153. return 0;
  154. struct btrfs_leaf *leaf = btrfs_buffer_leaf(eb);
  155. struct btrfs_disk_key *key;
  156. u32 nritems;
  157. if (buffer_defrag(bh))
  158. return 1;
  159. nritems = btrfs_header_nritems(&leaf->header);
  160. if (nritems == 0)
  161. return 0;
  162. key = &leaf->items[0].key;
  163. if (btrfs_disk_key_type(key) == BTRFS_DIR_ITEM_KEY)
  164. return 1;
  165. key = &leaf->items[nritems-1].key;
  166. if (btrfs_disk_key_type(key) == BTRFS_DIR_ITEM_KEY)
  167. return 1;
  168. if (nritems > 4) {
  169. key = &leaf->items[nritems/2].key;
  170. if (btrfs_disk_key_type(key) == BTRFS_DIR_ITEM_KEY)
  171. return 1;
  172. }
  173. return 0;
  174. }
  175. #endif
  176. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  177. struct btrfs_root *root, struct extent_buffer *parent,
  178. int cache_only, u64 *last_ret)
  179. {
  180. return 0;
  181. #if 0
  182. struct btrfs_node *parent_node;
  183. struct extent_buffer *cur_eb;
  184. struct extent_buffer *tmp_eb;
  185. u64 blocknr;
  186. u64 search_start = *last_ret;
  187. u64 last_block = 0;
  188. u64 other;
  189. u32 parent_nritems;
  190. int start_slot;
  191. int end_slot;
  192. int i;
  193. int err = 0;
  194. int parent_level;
  195. if (trans->transaction != root->fs_info->running_transaction) {
  196. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  197. root->fs_info->running_transaction->transid);
  198. WARN_ON(1);
  199. }
  200. if (trans->transid != root->fs_info->generation) {
  201. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  202. root->fs_info->generation);
  203. WARN_ON(1);
  204. }
  205. if (buffer_defrag_done(parent))
  206. return 0;
  207. parent_node = btrfs_buffer_node(parent);
  208. parent_nritems = btrfs_header_nritems(&parent_node->header);
  209. parent_level = btrfs_header_level(&parent_node->header);
  210. start_slot = 0;
  211. end_slot = parent_nritems;
  212. if (parent_nritems == 1)
  213. return 0;
  214. for (i = start_slot; i < end_slot; i++) {
  215. int close = 1;
  216. blocknr = btrfs_node_blockptr(parent_node, i);
  217. if (last_block == 0)
  218. last_block = blocknr;
  219. if (i > 0) {
  220. other = btrfs_node_blockptr(parent_node, i - 1);
  221. close = close_blocks(blocknr, other);
  222. }
  223. if (close && i < end_slot - 1) {
  224. other = btrfs_node_blockptr(parent_node, i + 1);
  225. close = close_blocks(blocknr, other);
  226. }
  227. if (close) {
  228. last_block = blocknr;
  229. continue;
  230. }
  231. cur_bh = btrfs_find_tree_block(root, blocknr);
  232. if (!cur_bh || !buffer_uptodate(cur_bh) ||
  233. buffer_locked(cur_bh) ||
  234. (parent_level != 1 && !buffer_defrag(cur_bh)) ||
  235. (parent_level == 1 && !should_defrag_leaf(cur_bh))) {
  236. if (cache_only) {
  237. brelse(cur_bh);
  238. continue;
  239. }
  240. if (!cur_bh || !buffer_uptodate(cur_bh) ||
  241. buffer_locked(cur_bh)) {
  242. brelse(cur_bh);
  243. cur_bh = read_tree_block(root, blocknr);
  244. }
  245. }
  246. if (search_start == 0)
  247. search_start = last_block & ~((u64)65535);
  248. err = __btrfs_cow_block(trans, root, cur_bh, parent, i,
  249. &tmp_bh, search_start,
  250. min(8, end_slot - i));
  251. if (err) {
  252. brelse(cur_bh);
  253. break;
  254. }
  255. search_start = bh_blocknr(tmp_bh);
  256. *last_ret = search_start;
  257. if (parent_level == 1)
  258. clear_buffer_defrag(tmp_bh);
  259. set_buffer_defrag_done(tmp_bh);
  260. brelse(tmp_bh);
  261. }
  262. return err;
  263. #endif
  264. }
  265. /*
  266. * The leaf data grows from end-to-front in the node.
  267. * this returns the address of the start of the last item,
  268. * which is the stop of the leaf data stack
  269. */
  270. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  271. struct extent_buffer *leaf)
  272. {
  273. u32 nr = btrfs_header_nritems(leaf);
  274. if (nr == 0)
  275. return BTRFS_LEAF_DATA_SIZE(root);
  276. return btrfs_item_offset_nr(leaf, nr - 1);
  277. }
  278. /*
  279. * compare two keys in a memcmp fashion
  280. */
  281. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  282. {
  283. struct btrfs_key k1;
  284. btrfs_disk_key_to_cpu(&k1, disk);
  285. if (k1.objectid > k2->objectid)
  286. return 1;
  287. if (k1.objectid < k2->objectid)
  288. return -1;
  289. if (k1.type > k2->type)
  290. return 1;
  291. if (k1.type < k2->type)
  292. return -1;
  293. if (k1.offset > k2->offset)
  294. return 1;
  295. if (k1.offset < k2->offset)
  296. return -1;
  297. return 0;
  298. }
  299. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  300. int level)
  301. {
  302. struct extent_buffer *parent = NULL;
  303. struct extent_buffer *node = path->nodes[level];
  304. struct btrfs_disk_key parent_key;
  305. struct btrfs_disk_key node_key;
  306. int parent_slot;
  307. int slot;
  308. struct btrfs_key cpukey;
  309. u32 nritems = btrfs_header_nritems(node);
  310. if (path->nodes[level + 1])
  311. parent = path->nodes[level + 1];
  312. slot = path->slots[level];
  313. BUG_ON(nritems == 0);
  314. if (parent) {
  315. parent_slot = path->slots[level + 1];
  316. btrfs_node_key(parent, &parent_key, parent_slot);
  317. btrfs_node_key(node, &node_key, 0);
  318. BUG_ON(memcmp(&parent_key, &node_key,
  319. sizeof(struct btrfs_disk_key)));
  320. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  321. btrfs_header_bytenr(node));
  322. }
  323. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  324. if (slot != 0) {
  325. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  326. btrfs_node_key(node, &node_key, slot);
  327. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  328. }
  329. if (slot < nritems - 1) {
  330. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  331. btrfs_node_key(node, &node_key, slot);
  332. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  333. }
  334. return 0;
  335. }
  336. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  337. int level)
  338. {
  339. struct extent_buffer *leaf = path->nodes[level];
  340. struct extent_buffer *parent = NULL;
  341. int parent_slot;
  342. struct btrfs_key cpukey;
  343. struct btrfs_disk_key parent_key;
  344. struct btrfs_disk_key leaf_key;
  345. int slot = path->slots[0];
  346. u32 nritems = btrfs_header_nritems(leaf);
  347. if (path->nodes[level + 1])
  348. parent = path->nodes[level + 1];
  349. if (nritems == 0)
  350. return 0;
  351. if (parent) {
  352. parent_slot = path->slots[level + 1];
  353. btrfs_node_key(parent, &parent_key, parent_slot);
  354. btrfs_item_key(leaf, &leaf_key, 0);
  355. BUG_ON(memcmp(&parent_key, &leaf_key,
  356. sizeof(struct btrfs_disk_key)));
  357. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  358. btrfs_header_bytenr(leaf));
  359. }
  360. #if 0
  361. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  362. btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
  363. btrfs_item_key(leaf, &leaf_key, i);
  364. if (comp_keys(&leaf_key, &cpukey) >= 0) {
  365. btrfs_print_leaf(root, leaf);
  366. printk("slot %d offset bad key\n", i);
  367. BUG_ON(1);
  368. }
  369. if (btrfs_item_offset_nr(leaf, i) !=
  370. btrfs_item_end_nr(leaf, i + 1)) {
  371. btrfs_print_leaf(root, leaf);
  372. printk("slot %d offset bad\n", i);
  373. BUG_ON(1);
  374. }
  375. if (i == 0) {
  376. if (btrfs_item_offset_nr(leaf, i) +
  377. btrfs_item_size_nr(leaf, i) !=
  378. BTRFS_LEAF_DATA_SIZE(root)) {
  379. btrfs_print_leaf(root, leaf);
  380. printk("slot %d first offset bad\n", i);
  381. BUG_ON(1);
  382. }
  383. }
  384. }
  385. if (nritems > 0) {
  386. if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
  387. btrfs_print_leaf(root, leaf);
  388. printk("slot %d bad size \n", nritems - 1);
  389. BUG_ON(1);
  390. }
  391. }
  392. #endif
  393. if (slot != 0 && slot < nritems - 1) {
  394. btrfs_item_key(leaf, &leaf_key, slot);
  395. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  396. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  397. btrfs_print_leaf(root, leaf);
  398. printk("slot %d offset bad key\n", slot);
  399. BUG_ON(1);
  400. }
  401. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  402. btrfs_item_end_nr(leaf, slot)) {
  403. btrfs_print_leaf(root, leaf);
  404. printk("slot %d offset bad\n", slot);
  405. BUG_ON(1);
  406. }
  407. }
  408. if (slot < nritems - 1) {
  409. btrfs_item_key(leaf, &leaf_key, slot);
  410. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  411. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  412. if (btrfs_item_offset_nr(leaf, slot) !=
  413. btrfs_item_end_nr(leaf, slot + 1)) {
  414. btrfs_print_leaf(root, leaf);
  415. printk("slot %d offset bad\n", slot);
  416. BUG_ON(1);
  417. }
  418. }
  419. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  420. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  421. return 0;
  422. }
  423. static int check_block(struct btrfs_root *root, struct btrfs_path *path,
  424. int level)
  425. {
  426. #if 0
  427. struct extent_buffer *buf = path->nodes[level];
  428. if (memcmp_extent_buffer(buf, root->fs_info->fsid,
  429. (unsigned long)btrfs_header_fsid(buf),
  430. BTRFS_FSID_SIZE)) {
  431. printk("warning bad block %Lu\n", buf->start);
  432. return 1;
  433. }
  434. #endif
  435. if (level == 0)
  436. return check_leaf(root, path, level);
  437. return check_node(root, path, level);
  438. }
  439. /*
  440. * search for key in the extent_buffer. The items start at offset p,
  441. * and they are item_size apart. There are 'max' items in p.
  442. *
  443. * the slot in the array is returned via slot, and it points to
  444. * the place where you would insert key if it is not found in
  445. * the array.
  446. *
  447. * slot may point to max if the key is bigger than all of the keys
  448. */
  449. static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
  450. int item_size, struct btrfs_key *key,
  451. int max, int *slot)
  452. {
  453. int low = 0;
  454. int high = max;
  455. int mid;
  456. int ret;
  457. struct btrfs_disk_key *tmp = NULL;
  458. struct btrfs_disk_key unaligned;
  459. unsigned long offset;
  460. char *map_token = NULL;
  461. char *kaddr = NULL;
  462. unsigned long map_start = 0;
  463. unsigned long map_len = 0;
  464. int err;
  465. while(low < high) {
  466. mid = (low + high) / 2;
  467. offset = p + mid * item_size;
  468. if (!map_token || offset < map_start ||
  469. (offset + sizeof(struct btrfs_disk_key)) >
  470. map_start + map_len) {
  471. if (map_token) {
  472. unmap_extent_buffer(eb, map_token, KM_USER0);
  473. map_token = NULL;
  474. }
  475. err = map_extent_buffer(eb, offset,
  476. sizeof(struct btrfs_disk_key),
  477. &map_token, &kaddr,
  478. &map_start, &map_len, KM_USER0);
  479. if (!err) {
  480. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  481. map_start);
  482. } else {
  483. read_extent_buffer(eb, &unaligned,
  484. offset, sizeof(unaligned));
  485. tmp = &unaligned;
  486. }
  487. } else {
  488. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  489. map_start);
  490. }
  491. ret = comp_keys(tmp, key);
  492. if (ret < 0)
  493. low = mid + 1;
  494. else if (ret > 0)
  495. high = mid;
  496. else {
  497. *slot = mid;
  498. if (map_token)
  499. unmap_extent_buffer(eb, map_token, KM_USER0);
  500. return 0;
  501. }
  502. }
  503. *slot = low;
  504. if (map_token)
  505. unmap_extent_buffer(eb, map_token, KM_USER0);
  506. return 1;
  507. }
  508. /*
  509. * simple bin_search frontend that does the right thing for
  510. * leaves vs nodes
  511. */
  512. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  513. int level, int *slot)
  514. {
  515. if (level == 0) {
  516. return generic_bin_search(eb,
  517. offsetof(struct btrfs_leaf, items),
  518. sizeof(struct btrfs_item),
  519. key, btrfs_header_nritems(eb),
  520. slot);
  521. } else {
  522. return generic_bin_search(eb,
  523. offsetof(struct btrfs_node, ptrs),
  524. sizeof(struct btrfs_key_ptr),
  525. key, btrfs_header_nritems(eb),
  526. slot);
  527. }
  528. return -1;
  529. }
  530. static struct extent_buffer *read_node_slot(struct btrfs_root *root,
  531. struct extent_buffer *parent, int slot)
  532. {
  533. if (slot < 0)
  534. return NULL;
  535. if (slot >= btrfs_header_nritems(parent))
  536. return NULL;
  537. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  538. btrfs_level_size(root, btrfs_header_level(parent) - 1));
  539. }
  540. static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
  541. *root, struct btrfs_path *path, int level)
  542. {
  543. struct extent_buffer *right = NULL;
  544. struct extent_buffer *mid;
  545. struct extent_buffer *left = NULL;
  546. struct extent_buffer *parent = NULL;
  547. int ret = 0;
  548. int wret;
  549. int pslot;
  550. int orig_slot = path->slots[level];
  551. int err_on_enospc = 0;
  552. u64 orig_ptr;
  553. if (level == 0)
  554. return 0;
  555. mid = path->nodes[level];
  556. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  557. if (level < BTRFS_MAX_LEVEL - 1)
  558. parent = path->nodes[level + 1];
  559. pslot = path->slots[level + 1];
  560. /*
  561. * deal with the case where there is only one pointer in the root
  562. * by promoting the node below to a root
  563. */
  564. if (!parent) {
  565. struct extent_buffer *child;
  566. if (btrfs_header_nritems(mid) != 1)
  567. return 0;
  568. /* promote the child to a root */
  569. child = read_node_slot(root, mid, 0);
  570. BUG_ON(!child);
  571. root->node = child;
  572. path->nodes[level] = NULL;
  573. clean_tree_block(trans, root, mid);
  574. wait_on_tree_block_writeback(root, mid);
  575. /* once for the path */
  576. free_extent_buffer(mid);
  577. ret = btrfs_free_extent(trans, root, mid->start, mid->len, 1);
  578. /* once for the root ptr */
  579. free_extent_buffer(mid);
  580. return ret;
  581. }
  582. if (btrfs_header_nritems(mid) >
  583. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  584. return 0;
  585. if (btrfs_header_nritems(mid) < 2)
  586. err_on_enospc = 1;
  587. left = read_node_slot(root, parent, pslot - 1);
  588. if (left) {
  589. wret = btrfs_cow_block(trans, root, left,
  590. parent, pslot - 1, &left);
  591. if (wret) {
  592. ret = wret;
  593. goto enospc;
  594. }
  595. }
  596. right = read_node_slot(root, parent, pslot + 1);
  597. if (right) {
  598. wret = btrfs_cow_block(trans, root, right,
  599. parent, pslot + 1, &right);
  600. if (wret) {
  601. ret = wret;
  602. goto enospc;
  603. }
  604. }
  605. /* first, try to make some room in the middle buffer */
  606. if (left) {
  607. orig_slot += btrfs_header_nritems(left);
  608. wret = push_node_left(trans, root, left, mid);
  609. if (wret < 0)
  610. ret = wret;
  611. if (btrfs_header_nritems(mid) < 2)
  612. err_on_enospc = 1;
  613. }
  614. /*
  615. * then try to empty the right most buffer into the middle
  616. */
  617. if (right) {
  618. wret = push_node_left(trans, root, mid, right);
  619. if (wret < 0 && wret != -ENOSPC)
  620. ret = wret;
  621. if (btrfs_header_nritems(right) == 0) {
  622. u64 bytenr = right->start;
  623. u32 blocksize = right->len;
  624. clean_tree_block(trans, root, right);
  625. wait_on_tree_block_writeback(root, right);
  626. free_extent_buffer(right);
  627. right = NULL;
  628. wret = del_ptr(trans, root, path, level + 1, pslot +
  629. 1);
  630. if (wret)
  631. ret = wret;
  632. wret = btrfs_free_extent(trans, root, bytenr,
  633. blocksize, 1);
  634. if (wret)
  635. ret = wret;
  636. } else {
  637. struct btrfs_disk_key right_key;
  638. btrfs_node_key(right, &right_key, 0);
  639. btrfs_set_node_key(parent, &right_key, pslot + 1);
  640. btrfs_mark_buffer_dirty(parent);
  641. }
  642. }
  643. if (btrfs_header_nritems(mid) == 1) {
  644. /*
  645. * we're not allowed to leave a node with one item in the
  646. * tree during a delete. A deletion from lower in the tree
  647. * could try to delete the only pointer in this node.
  648. * So, pull some keys from the left.
  649. * There has to be a left pointer at this point because
  650. * otherwise we would have pulled some pointers from the
  651. * right
  652. */
  653. BUG_ON(!left);
  654. wret = balance_node_right(trans, root, mid, left);
  655. if (wret < 0) {
  656. ret = wret;
  657. goto enospc;
  658. }
  659. BUG_ON(wret == 1);
  660. }
  661. if (btrfs_header_nritems(mid) == 0) {
  662. /* we've managed to empty the middle node, drop it */
  663. u64 bytenr = mid->start;
  664. u32 blocksize = mid->len;
  665. clean_tree_block(trans, root, mid);
  666. wait_on_tree_block_writeback(root, mid);
  667. free_extent_buffer(mid);
  668. mid = NULL;
  669. wret = del_ptr(trans, root, path, level + 1, pslot);
  670. if (wret)
  671. ret = wret;
  672. wret = btrfs_free_extent(trans, root, bytenr, blocksize, 1);
  673. if (wret)
  674. ret = wret;
  675. } else {
  676. /* update the parent key to reflect our changes */
  677. struct btrfs_disk_key mid_key;
  678. btrfs_node_key(mid, &mid_key, 0);
  679. btrfs_set_node_key(parent, &mid_key, pslot);
  680. btrfs_mark_buffer_dirty(parent);
  681. }
  682. /* update the path */
  683. if (left) {
  684. if (btrfs_header_nritems(left) > orig_slot) {
  685. extent_buffer_get(left);
  686. path->nodes[level] = left;
  687. path->slots[level + 1] -= 1;
  688. path->slots[level] = orig_slot;
  689. if (mid)
  690. free_extent_buffer(mid);
  691. } else {
  692. orig_slot -= btrfs_header_nritems(left);
  693. path->slots[level] = orig_slot;
  694. }
  695. }
  696. /* double check we haven't messed things up */
  697. check_block(root, path, level);
  698. if (orig_ptr !=
  699. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  700. BUG();
  701. enospc:
  702. if (right)
  703. free_extent_buffer(right);
  704. if (left)
  705. free_extent_buffer(left);
  706. return ret;
  707. }
  708. /* returns zero if the push worked, non-zero otherwise */
  709. static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  710. struct btrfs_root *root,
  711. struct btrfs_path *path, int level)
  712. {
  713. struct extent_buffer *right = NULL;
  714. struct extent_buffer *mid;
  715. struct extent_buffer *left = NULL;
  716. struct extent_buffer *parent = NULL;
  717. int ret = 0;
  718. int wret;
  719. int pslot;
  720. int orig_slot = path->slots[level];
  721. u64 orig_ptr;
  722. if (level == 0)
  723. return 1;
  724. mid = path->nodes[level];
  725. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  726. if (level < BTRFS_MAX_LEVEL - 1)
  727. parent = path->nodes[level + 1];
  728. pslot = path->slots[level + 1];
  729. if (!parent)
  730. return 1;
  731. left = read_node_slot(root, parent, pslot - 1);
  732. /* first, try to make some room in the middle buffer */
  733. if (left) {
  734. u32 left_nr;
  735. left_nr = btrfs_header_nritems(left);
  736. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  737. wret = 1;
  738. } else {
  739. ret = btrfs_cow_block(trans, root, left, parent,
  740. pslot - 1, &left);
  741. if (ret)
  742. wret = 1;
  743. else {
  744. wret = push_node_left(trans, root,
  745. left, mid);
  746. }
  747. }
  748. if (wret < 0)
  749. ret = wret;
  750. if (wret == 0) {
  751. struct btrfs_disk_key disk_key;
  752. orig_slot += left_nr;
  753. btrfs_node_key(mid, &disk_key, 0);
  754. btrfs_set_node_key(parent, &disk_key, pslot);
  755. btrfs_mark_buffer_dirty(parent);
  756. if (btrfs_header_nritems(left) > orig_slot) {
  757. path->nodes[level] = left;
  758. path->slots[level + 1] -= 1;
  759. path->slots[level] = orig_slot;
  760. free_extent_buffer(mid);
  761. } else {
  762. orig_slot -=
  763. btrfs_header_nritems(left);
  764. path->slots[level] = orig_slot;
  765. free_extent_buffer(left);
  766. }
  767. return 0;
  768. }
  769. free_extent_buffer(left);
  770. }
  771. right= read_node_slot(root, parent, pslot + 1);
  772. /*
  773. * then try to empty the right most buffer into the middle
  774. */
  775. if (right) {
  776. u32 right_nr;
  777. right_nr = btrfs_header_nritems(right);
  778. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  779. wret = 1;
  780. } else {
  781. ret = btrfs_cow_block(trans, root, right,
  782. parent, pslot + 1,
  783. &right);
  784. if (ret)
  785. wret = 1;
  786. else {
  787. wret = balance_node_right(trans, root,
  788. right, mid);
  789. }
  790. }
  791. if (wret < 0)
  792. ret = wret;
  793. if (wret == 0) {
  794. struct btrfs_disk_key disk_key;
  795. btrfs_node_key(right, &disk_key, 0);
  796. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  797. btrfs_mark_buffer_dirty(parent);
  798. if (btrfs_header_nritems(mid) <= orig_slot) {
  799. path->nodes[level] = right;
  800. path->slots[level + 1] += 1;
  801. path->slots[level] = orig_slot -
  802. btrfs_header_nritems(mid);
  803. free_extent_buffer(mid);
  804. } else {
  805. free_extent_buffer(right);
  806. }
  807. return 0;
  808. }
  809. free_extent_buffer(right);
  810. }
  811. return 1;
  812. }
  813. /*
  814. * readahead one full node of leaves
  815. */
  816. static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
  817. int level, int slot)
  818. {
  819. return;
  820. #if 0
  821. struct extent_buffer *node;
  822. int i;
  823. u32 nritems;
  824. u64 bytenr;
  825. u64 search;
  826. u64 cluster_start;
  827. int ret;
  828. int nread = 0;
  829. int direction = path->reada;
  830. int level;
  831. struct radix_tree_root found;
  832. unsigned long gang[8];
  833. struct extent_buffer *eb;
  834. if (level == 0)
  835. return;
  836. if (!path->nodes[level])
  837. return;
  838. node = path->nodes[level];
  839. search = btrfs_node_blockptr(node, slot);
  840. eb = btrfs_find_tree_block(root, search);
  841. if (eb) {
  842. free_extent_buffer(eb);
  843. return;
  844. }
  845. init_bit_radix(&found);
  846. nritems = btrfs_header_nritems(node);
  847. level = btrfs_header_level(node) - 1;
  848. for (i = slot; i < nritems; i++) {
  849. bytenr = btrfs_node_blockptr(node, i);
  850. set_radix_bit(&found, blocknr);
  851. }
  852. if (direction > 0) {
  853. cluster_start = search - 4;
  854. if (cluster_start > search)
  855. cluster_start = 0;
  856. } else
  857. cluster_start = search + 4;
  858. while(1) {
  859. ret = find_first_radix_bit(&found, gang, 0, ARRAY_SIZE(gang));
  860. if (!ret)
  861. break;
  862. for (i = 0; i < ret; i++) {
  863. blocknr = gang[i];
  864. clear_radix_bit(&found, blocknr);
  865. if (path->reada == 1 && nread > 16)
  866. continue;
  867. if (close_blocks(cluster_start, blocknr)) {
  868. readahead_tree_block(root, blocknr);
  869. nread++;
  870. cluster_start = blocknr;
  871. }
  872. }
  873. }
  874. #endif
  875. }
  876. /*
  877. * look for key in the tree. path is filled in with nodes along the way
  878. * if key is found, we return zero and you can find the item in the leaf
  879. * level of the path (level 0)
  880. *
  881. * If the key isn't found, the path points to the slot where it should
  882. * be inserted, and 1 is returned. If there are other errors during the
  883. * search a negative error number is returned.
  884. *
  885. * if ins_len > 0, nodes and leaves will be split as we walk down the
  886. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  887. * possible)
  888. */
  889. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  890. *root, struct btrfs_key *key, struct btrfs_path *p, int
  891. ins_len, int cow)
  892. {
  893. struct extent_buffer *b;
  894. u64 bytenr;
  895. int slot;
  896. int ret;
  897. int level;
  898. int should_reada = p->reada;
  899. u8 lowest_level = 0;
  900. lowest_level = p->lowest_level;
  901. WARN_ON(lowest_level && ins_len);
  902. WARN_ON(p->nodes[0] != NULL);
  903. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  904. again:
  905. b = root->node;
  906. extent_buffer_get(b);
  907. while (b) {
  908. level = btrfs_header_level(b);
  909. if (cow) {
  910. int wret;
  911. wret = btrfs_cow_block(trans, root, b,
  912. p->nodes[level + 1],
  913. p->slots[level + 1],
  914. &b);
  915. if (wret) {
  916. free_extent_buffer(b);
  917. return wret;
  918. }
  919. }
  920. BUG_ON(!cow && ins_len);
  921. if (level != btrfs_header_level(b))
  922. WARN_ON(1);
  923. level = btrfs_header_level(b);
  924. p->nodes[level] = b;
  925. ret = check_block(root, p, level);
  926. if (ret)
  927. return -1;
  928. ret = bin_search(b, key, level, &slot);
  929. if (level != 0) {
  930. if (ret && slot > 0)
  931. slot -= 1;
  932. p->slots[level] = slot;
  933. if (ins_len > 0 && btrfs_header_nritems(b) >=
  934. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  935. int sret = split_node(trans, root, p, level);
  936. BUG_ON(sret > 0);
  937. if (sret)
  938. return sret;
  939. b = p->nodes[level];
  940. slot = p->slots[level];
  941. } else if (ins_len < 0) {
  942. int sret = balance_level(trans, root, p,
  943. level);
  944. if (sret)
  945. return sret;
  946. b = p->nodes[level];
  947. if (!b) {
  948. btrfs_release_path(NULL, p);
  949. goto again;
  950. }
  951. slot = p->slots[level];
  952. BUG_ON(btrfs_header_nritems(b) == 1);
  953. }
  954. /* this is only true while dropping a snapshot */
  955. if (level == lowest_level)
  956. break;
  957. bytenr = btrfs_node_blockptr(b, slot);
  958. if (should_reada)
  959. reada_for_search(root, p, level, slot);
  960. b = read_tree_block(root, bytenr,
  961. btrfs_level_size(root, level - 1));
  962. } else {
  963. p->slots[level] = slot;
  964. if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
  965. sizeof(struct btrfs_item) + ins_len) {
  966. int sret = split_leaf(trans, root, key,
  967. p, ins_len);
  968. BUG_ON(sret > 0);
  969. if (sret)
  970. return sret;
  971. }
  972. return ret;
  973. }
  974. }
  975. return 1;
  976. }
  977. /*
  978. * adjust the pointers going up the tree, starting at level
  979. * making sure the right key of each node is points to 'key'.
  980. * This is used after shifting pointers to the left, so it stops
  981. * fixing up pointers when a given leaf/node is not in slot 0 of the
  982. * higher levels
  983. *
  984. * If this fails to write a tree block, it returns -1, but continues
  985. * fixing up the blocks in ram so the tree is consistent.
  986. */
  987. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  988. struct btrfs_root *root, struct btrfs_path *path,
  989. struct btrfs_disk_key *key, int level)
  990. {
  991. int i;
  992. int ret = 0;
  993. struct extent_buffer *t;
  994. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  995. int tslot = path->slots[i];
  996. if (!path->nodes[i])
  997. break;
  998. t = path->nodes[i];
  999. btrfs_set_node_key(t, key, tslot);
  1000. btrfs_mark_buffer_dirty(path->nodes[i]);
  1001. if (tslot != 0)
  1002. break;
  1003. }
  1004. return ret;
  1005. }
  1006. /*
  1007. * try to push data from one node into the next node left in the
  1008. * tree.
  1009. *
  1010. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1011. * error, and > 0 if there was no room in the left hand block.
  1012. */
  1013. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1014. *root, struct extent_buffer *dst,
  1015. struct extent_buffer *src)
  1016. {
  1017. int push_items = 0;
  1018. int src_nritems;
  1019. int dst_nritems;
  1020. int ret = 0;
  1021. src_nritems = btrfs_header_nritems(src);
  1022. dst_nritems = btrfs_header_nritems(dst);
  1023. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1024. if (push_items <= 0) {
  1025. return 1;
  1026. }
  1027. if (src_nritems < push_items)
  1028. push_items = src_nritems;
  1029. copy_extent_buffer(dst, src,
  1030. btrfs_node_key_ptr_offset(dst_nritems),
  1031. btrfs_node_key_ptr_offset(0),
  1032. push_items * sizeof(struct btrfs_key_ptr));
  1033. if (push_items < src_nritems) {
  1034. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1035. btrfs_node_key_ptr_offset(push_items),
  1036. (src_nritems - push_items) *
  1037. sizeof(struct btrfs_key_ptr));
  1038. }
  1039. btrfs_set_header_nritems(src, src_nritems - push_items);
  1040. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1041. btrfs_mark_buffer_dirty(src);
  1042. btrfs_mark_buffer_dirty(dst);
  1043. return ret;
  1044. }
  1045. /*
  1046. * try to push data from one node into the next node right in the
  1047. * tree.
  1048. *
  1049. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1050. * error, and > 0 if there was no room in the right hand block.
  1051. *
  1052. * this will only push up to 1/2 the contents of the left node over
  1053. */
  1054. static int balance_node_right(struct btrfs_trans_handle *trans,
  1055. struct btrfs_root *root,
  1056. struct extent_buffer *dst,
  1057. struct extent_buffer *src)
  1058. {
  1059. int push_items = 0;
  1060. int max_push;
  1061. int src_nritems;
  1062. int dst_nritems;
  1063. int ret = 0;
  1064. src_nritems = btrfs_header_nritems(src);
  1065. dst_nritems = btrfs_header_nritems(dst);
  1066. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1067. if (push_items <= 0)
  1068. return 1;
  1069. max_push = src_nritems / 2 + 1;
  1070. /* don't try to empty the node */
  1071. if (max_push >= src_nritems)
  1072. return 1;
  1073. if (max_push < push_items)
  1074. push_items = max_push;
  1075. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1076. btrfs_node_key_ptr_offset(0),
  1077. (dst_nritems) *
  1078. sizeof(struct btrfs_key_ptr));
  1079. copy_extent_buffer(dst, src,
  1080. btrfs_node_key_ptr_offset(0),
  1081. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1082. push_items * sizeof(struct btrfs_key_ptr));
  1083. btrfs_set_header_nritems(src, src_nritems - push_items);
  1084. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1085. btrfs_mark_buffer_dirty(src);
  1086. btrfs_mark_buffer_dirty(dst);
  1087. return ret;
  1088. }
  1089. /*
  1090. * helper function to insert a new root level in the tree.
  1091. * A new node is allocated, and a single item is inserted to
  1092. * point to the existing root
  1093. *
  1094. * returns zero on success or < 0 on failure.
  1095. */
  1096. static int insert_new_root(struct btrfs_trans_handle *trans,
  1097. struct btrfs_root *root,
  1098. struct btrfs_path *path, int level)
  1099. {
  1100. struct extent_buffer *lower;
  1101. struct extent_buffer *c;
  1102. struct btrfs_disk_key lower_key;
  1103. BUG_ON(path->nodes[level]);
  1104. BUG_ON(path->nodes[level-1] != root->node);
  1105. c = btrfs_alloc_free_block(trans, root, root->nodesize,
  1106. root->node->start, 0);
  1107. if (IS_ERR(c))
  1108. return PTR_ERR(c);
  1109. memset_extent_buffer(c, 0, 0, root->nodesize);
  1110. btrfs_set_header_nritems(c, 1);
  1111. btrfs_set_header_level(c, level);
  1112. btrfs_set_header_bytenr(c, c->start);
  1113. btrfs_set_header_generation(c, trans->transid);
  1114. btrfs_set_header_owner(c, root->root_key.objectid);
  1115. lower = path->nodes[level-1];
  1116. write_extent_buffer(c, root->fs_info->fsid,
  1117. (unsigned long)btrfs_header_fsid(c),
  1118. BTRFS_FSID_SIZE);
  1119. if (level == 1)
  1120. btrfs_item_key(lower, &lower_key, 0);
  1121. else
  1122. btrfs_node_key(lower, &lower_key, 0);
  1123. btrfs_set_node_key(c, &lower_key, 0);
  1124. btrfs_set_node_blockptr(c, 0, lower->start);
  1125. btrfs_mark_buffer_dirty(c);
  1126. /* the super has an extra ref to root->node */
  1127. free_extent_buffer(root->node);
  1128. root->node = c;
  1129. extent_buffer_get(c);
  1130. path->nodes[level] = c;
  1131. path->slots[level] = 0;
  1132. return 0;
  1133. }
  1134. /*
  1135. * worker function to insert a single pointer in a node.
  1136. * the node should have enough room for the pointer already
  1137. *
  1138. * slot and level indicate where you want the key to go, and
  1139. * blocknr is the block the key points to.
  1140. *
  1141. * returns zero on success and < 0 on any error
  1142. */
  1143. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1144. *root, struct btrfs_path *path, struct btrfs_disk_key
  1145. *key, u64 bytenr, int slot, int level)
  1146. {
  1147. struct extent_buffer *lower;
  1148. int nritems;
  1149. BUG_ON(!path->nodes[level]);
  1150. lower = path->nodes[level];
  1151. nritems = btrfs_header_nritems(lower);
  1152. if (slot > nritems)
  1153. BUG();
  1154. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1155. BUG();
  1156. if (slot != nritems) {
  1157. memmove_extent_buffer(lower,
  1158. btrfs_node_key_ptr_offset(slot + 1),
  1159. btrfs_node_key_ptr_offset(slot),
  1160. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1161. }
  1162. btrfs_set_node_key(lower, key, slot);
  1163. btrfs_set_node_blockptr(lower, slot, bytenr);
  1164. btrfs_set_header_nritems(lower, nritems + 1);
  1165. btrfs_mark_buffer_dirty(lower);
  1166. return 0;
  1167. }
  1168. /*
  1169. * split the node at the specified level in path in two.
  1170. * The path is corrected to point to the appropriate node after the split
  1171. *
  1172. * Before splitting this tries to make some room in the node by pushing
  1173. * left and right, if either one works, it returns right away.
  1174. *
  1175. * returns 0 on success and < 0 on failure
  1176. */
  1177. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  1178. *root, struct btrfs_path *path, int level)
  1179. {
  1180. struct extent_buffer *c;
  1181. struct extent_buffer *split;
  1182. struct btrfs_disk_key disk_key;
  1183. int mid;
  1184. int ret;
  1185. int wret;
  1186. u32 c_nritems;
  1187. c = path->nodes[level];
  1188. if (c == root->node) {
  1189. /* trying to split the root, lets make a new one */
  1190. ret = insert_new_root(trans, root, path, level + 1);
  1191. if (ret)
  1192. return ret;
  1193. } else {
  1194. ret = push_nodes_for_insert(trans, root, path, level);
  1195. c = path->nodes[level];
  1196. if (!ret && btrfs_header_nritems(c) <
  1197. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  1198. return 0;
  1199. if (ret < 0)
  1200. return ret;
  1201. }
  1202. c_nritems = btrfs_header_nritems(c);
  1203. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1204. c->start, 0);
  1205. if (IS_ERR(split))
  1206. return PTR_ERR(split);
  1207. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1208. btrfs_set_header_level(split, btrfs_header_level(c));
  1209. btrfs_set_header_bytenr(split, split->start);
  1210. btrfs_set_header_generation(split, trans->transid);
  1211. btrfs_set_header_owner(split, root->root_key.objectid);
  1212. write_extent_buffer(split, root->fs_info->fsid,
  1213. (unsigned long)btrfs_header_fsid(split),
  1214. BTRFS_FSID_SIZE);
  1215. mid = (c_nritems + 1) / 2;
  1216. copy_extent_buffer(split, c,
  1217. btrfs_node_key_ptr_offset(0),
  1218. btrfs_node_key_ptr_offset(mid),
  1219. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1220. btrfs_set_header_nritems(split, c_nritems - mid);
  1221. btrfs_set_header_nritems(c, mid);
  1222. ret = 0;
  1223. btrfs_mark_buffer_dirty(c);
  1224. btrfs_mark_buffer_dirty(split);
  1225. btrfs_node_key(split, &disk_key, 0);
  1226. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1227. path->slots[level + 1] + 1,
  1228. level + 1);
  1229. if (wret)
  1230. ret = wret;
  1231. if (path->slots[level] >= mid) {
  1232. path->slots[level] -= mid;
  1233. free_extent_buffer(c);
  1234. path->nodes[level] = split;
  1235. path->slots[level + 1] += 1;
  1236. } else {
  1237. free_extent_buffer(split);
  1238. }
  1239. return ret;
  1240. }
  1241. /*
  1242. * how many bytes are required to store the items in a leaf. start
  1243. * and nr indicate which items in the leaf to check. This totals up the
  1244. * space used both by the item structs and the item data
  1245. */
  1246. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1247. {
  1248. int data_len;
  1249. int nritems = btrfs_header_nritems(l);
  1250. int end = min(nritems, start + nr) - 1;
  1251. if (!nr)
  1252. return 0;
  1253. data_len = btrfs_item_end_nr(l, start);
  1254. data_len = data_len - btrfs_item_offset_nr(l, end);
  1255. data_len += sizeof(struct btrfs_item) * nr;
  1256. WARN_ON(data_len < 0);
  1257. return data_len;
  1258. }
  1259. /*
  1260. * The space between the end of the leaf items and
  1261. * the start of the leaf data. IOW, how much room
  1262. * the leaf has left for both items and data
  1263. */
  1264. int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
  1265. {
  1266. int nritems = btrfs_header_nritems(leaf);
  1267. int ret;
  1268. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1269. if (ret < 0) {
  1270. printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
  1271. ret, BTRFS_LEAF_DATA_SIZE(root),
  1272. leaf_space_used(leaf, 0, nritems), nritems);
  1273. }
  1274. return ret;
  1275. }
  1276. /*
  1277. * push some data in the path leaf to the right, trying to free up at
  1278. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1279. *
  1280. * returns 1 if the push failed because the other node didn't have enough
  1281. * room, 0 if everything worked out and < 0 if there were major errors.
  1282. */
  1283. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1284. *root, struct btrfs_path *path, int data_size)
  1285. {
  1286. struct extent_buffer *left = path->nodes[0];
  1287. struct extent_buffer *right;
  1288. struct extent_buffer *upper;
  1289. struct btrfs_disk_key disk_key;
  1290. int slot;
  1291. int i;
  1292. int free_space;
  1293. int push_space = 0;
  1294. int push_items = 0;
  1295. struct btrfs_item *item;
  1296. u32 left_nritems;
  1297. u32 right_nritems;
  1298. u32 data_end;
  1299. u32 this_item_size;
  1300. int ret;
  1301. slot = path->slots[1];
  1302. if (!path->nodes[1]) {
  1303. return 1;
  1304. }
  1305. upper = path->nodes[1];
  1306. if (slot >= btrfs_header_nritems(upper) - 1)
  1307. return 1;
  1308. right = read_tree_block(root, btrfs_node_blockptr(upper, slot + 1),
  1309. root->leafsize);
  1310. free_space = btrfs_leaf_free_space(root, right);
  1311. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1312. free_extent_buffer(right);
  1313. return 1;
  1314. }
  1315. /* cow and double check */
  1316. ret = btrfs_cow_block(trans, root, right, upper,
  1317. slot + 1, &right);
  1318. if (ret) {
  1319. free_extent_buffer(right);
  1320. return 1;
  1321. }
  1322. free_space = btrfs_leaf_free_space(root, right);
  1323. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1324. free_extent_buffer(right);
  1325. return 1;
  1326. }
  1327. left_nritems = btrfs_header_nritems(left);
  1328. if (left_nritems == 0) {
  1329. free_extent_buffer(right);
  1330. return 1;
  1331. }
  1332. for (i = left_nritems - 1; i >= 1; i--) {
  1333. item = btrfs_item_nr(left, i);
  1334. if (path->slots[0] == i)
  1335. push_space += data_size + sizeof(*item);
  1336. if (!left->map_token) {
  1337. map_extent_buffer(left, (unsigned long)item,
  1338. sizeof(struct btrfs_item),
  1339. &left->map_token, &left->kaddr,
  1340. &left->map_start, &left->map_len,
  1341. KM_USER1);
  1342. }
  1343. this_item_size = btrfs_item_size(left, item);
  1344. if (this_item_size + sizeof(*item) + push_space > free_space)
  1345. break;
  1346. push_items++;
  1347. push_space += this_item_size + sizeof(*item);
  1348. }
  1349. if (left->map_token) {
  1350. unmap_extent_buffer(left, left->map_token, KM_USER1);
  1351. left->map_token = NULL;
  1352. }
  1353. if (push_items == 0) {
  1354. free_extent_buffer(right);
  1355. return 1;
  1356. }
  1357. if (push_items == left_nritems)
  1358. WARN_ON(1);
  1359. /* push left to right */
  1360. right_nritems = btrfs_header_nritems(right);
  1361. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  1362. push_space -= leaf_data_end(root, left);
  1363. /* make room in the right data area */
  1364. data_end = leaf_data_end(root, right);
  1365. memmove_extent_buffer(right,
  1366. btrfs_leaf_data(right) + data_end - push_space,
  1367. btrfs_leaf_data(right) + data_end,
  1368. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  1369. /* copy from the left data area */
  1370. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  1371. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1372. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1373. push_space);
  1374. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  1375. btrfs_item_nr_offset(0),
  1376. right_nritems * sizeof(struct btrfs_item));
  1377. /* copy the items from left to right */
  1378. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  1379. btrfs_item_nr_offset(left_nritems - push_items),
  1380. push_items * sizeof(struct btrfs_item));
  1381. /* update the item pointers */
  1382. right_nritems += push_items;
  1383. btrfs_set_header_nritems(right, right_nritems);
  1384. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1385. for (i = 0; i < right_nritems; i++) {
  1386. item = btrfs_item_nr(right, i);
  1387. if (!right->map_token) {
  1388. map_extent_buffer(right, (unsigned long)item,
  1389. sizeof(struct btrfs_item),
  1390. &right->map_token, &right->kaddr,
  1391. &right->map_start, &right->map_len,
  1392. KM_USER1);
  1393. }
  1394. push_space -= btrfs_item_size(right, item);
  1395. btrfs_set_item_offset(right, item, push_space);
  1396. }
  1397. if (right->map_token) {
  1398. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1399. right->map_token = NULL;
  1400. }
  1401. left_nritems -= push_items;
  1402. btrfs_set_header_nritems(left, left_nritems);
  1403. btrfs_mark_buffer_dirty(left);
  1404. btrfs_mark_buffer_dirty(right);
  1405. btrfs_item_key(right, &disk_key, 0);
  1406. btrfs_set_node_key(upper, &disk_key, slot + 1);
  1407. btrfs_mark_buffer_dirty(upper);
  1408. /* then fixup the leaf pointer in the path */
  1409. if (path->slots[0] >= left_nritems) {
  1410. path->slots[0] -= left_nritems;
  1411. free_extent_buffer(path->nodes[0]);
  1412. path->nodes[0] = right;
  1413. path->slots[1] += 1;
  1414. } else {
  1415. free_extent_buffer(right);
  1416. }
  1417. return 0;
  1418. }
  1419. /*
  1420. * push some data in the path leaf to the left, trying to free up at
  1421. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1422. */
  1423. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1424. *root, struct btrfs_path *path, int data_size)
  1425. {
  1426. struct btrfs_disk_key disk_key;
  1427. struct extent_buffer *right = path->nodes[0];
  1428. struct extent_buffer *left;
  1429. int slot;
  1430. int i;
  1431. int free_space;
  1432. int push_space = 0;
  1433. int push_items = 0;
  1434. struct btrfs_item *item;
  1435. u32 old_left_nritems;
  1436. u32 right_nritems;
  1437. int ret = 0;
  1438. int wret;
  1439. u32 this_item_size;
  1440. u32 old_left_item_size;
  1441. slot = path->slots[1];
  1442. if (slot == 0)
  1443. return 1;
  1444. if (!path->nodes[1])
  1445. return 1;
  1446. left = read_tree_block(root, btrfs_node_blockptr(path->nodes[1],
  1447. slot - 1), root->leafsize);
  1448. free_space = btrfs_leaf_free_space(root, left);
  1449. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1450. free_extent_buffer(left);
  1451. return 1;
  1452. }
  1453. /* cow and double check */
  1454. ret = btrfs_cow_block(trans, root, left,
  1455. path->nodes[1], slot - 1, &left);
  1456. if (ret) {
  1457. /* we hit -ENOSPC, but it isn't fatal here */
  1458. free_extent_buffer(left);
  1459. return 1;
  1460. }
  1461. free_space = btrfs_leaf_free_space(root, left);
  1462. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1463. free_extent_buffer(left);
  1464. return 1;
  1465. }
  1466. right_nritems = btrfs_header_nritems(right);
  1467. if (right_nritems == 0) {
  1468. free_extent_buffer(left);
  1469. return 1;
  1470. }
  1471. for (i = 0; i < right_nritems - 1; i++) {
  1472. item = btrfs_item_nr(right, i);
  1473. if (!right->map_token) {
  1474. map_extent_buffer(right, (unsigned long)item,
  1475. sizeof(struct btrfs_item),
  1476. &right->map_token, &right->kaddr,
  1477. &right->map_start, &right->map_len,
  1478. KM_USER1);
  1479. }
  1480. if (path->slots[0] == i)
  1481. push_space += data_size + sizeof(*item);
  1482. this_item_size = btrfs_item_size(right, item);
  1483. if (this_item_size + sizeof(*item) + push_space > free_space)
  1484. break;
  1485. push_items++;
  1486. push_space += this_item_size + sizeof(*item);
  1487. }
  1488. if (right->map_token) {
  1489. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1490. right->map_token = NULL;
  1491. }
  1492. if (push_items == 0) {
  1493. free_extent_buffer(left);
  1494. return 1;
  1495. }
  1496. if (push_items == btrfs_header_nritems(right))
  1497. WARN_ON(1);
  1498. /* push data from right to left */
  1499. copy_extent_buffer(left, right,
  1500. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  1501. btrfs_item_nr_offset(0),
  1502. push_items * sizeof(struct btrfs_item));
  1503. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1504. btrfs_item_offset_nr(right, push_items -1);
  1505. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  1506. leaf_data_end(root, left) - push_space,
  1507. btrfs_leaf_data(right) +
  1508. btrfs_item_offset_nr(right, push_items - 1),
  1509. push_space);
  1510. old_left_nritems = btrfs_header_nritems(left);
  1511. BUG_ON(old_left_nritems < 0);
  1512. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  1513. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1514. u32 ioff;
  1515. item = btrfs_item_nr(left, i);
  1516. if (!left->map_token) {
  1517. map_extent_buffer(left, (unsigned long)item,
  1518. sizeof(struct btrfs_item),
  1519. &left->map_token, &left->kaddr,
  1520. &left->map_start, &left->map_len,
  1521. KM_USER1);
  1522. }
  1523. ioff = btrfs_item_offset(left, item);
  1524. btrfs_set_item_offset(left, item,
  1525. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  1526. }
  1527. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  1528. if (left->map_token) {
  1529. unmap_extent_buffer(left, left->map_token, KM_USER1);
  1530. left->map_token = NULL;
  1531. }
  1532. /* fixup right node */
  1533. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  1534. leaf_data_end(root, right);
  1535. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  1536. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1537. btrfs_leaf_data(right) +
  1538. leaf_data_end(root, right), push_space);
  1539. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  1540. btrfs_item_nr_offset(push_items),
  1541. (btrfs_header_nritems(right) - push_items) *
  1542. sizeof(struct btrfs_item));
  1543. right_nritems = btrfs_header_nritems(right) - push_items;
  1544. btrfs_set_header_nritems(right, right_nritems);
  1545. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1546. for (i = 0; i < right_nritems; i++) {
  1547. item = btrfs_item_nr(right, i);
  1548. if (!right->map_token) {
  1549. map_extent_buffer(right, (unsigned long)item,
  1550. sizeof(struct btrfs_item),
  1551. &right->map_token, &right->kaddr,
  1552. &right->map_start, &right->map_len,
  1553. KM_USER1);
  1554. }
  1555. push_space = push_space - btrfs_item_size(right, item);
  1556. btrfs_set_item_offset(right, item, push_space);
  1557. }
  1558. if (right->map_token) {
  1559. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1560. right->map_token = NULL;
  1561. }
  1562. btrfs_mark_buffer_dirty(left);
  1563. btrfs_mark_buffer_dirty(right);
  1564. btrfs_item_key(right, &disk_key, 0);
  1565. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1566. if (wret)
  1567. ret = wret;
  1568. /* then fixup the leaf pointer in the path */
  1569. if (path->slots[0] < push_items) {
  1570. path->slots[0] += old_left_nritems;
  1571. free_extent_buffer(path->nodes[0]);
  1572. path->nodes[0] = left;
  1573. path->slots[1] -= 1;
  1574. } else {
  1575. free_extent_buffer(left);
  1576. path->slots[0] -= push_items;
  1577. }
  1578. BUG_ON(path->slots[0] < 0);
  1579. return ret;
  1580. }
  1581. /*
  1582. * split the path's leaf in two, making sure there is at least data_size
  1583. * available for the resulting leaf level of the path.
  1584. *
  1585. * returns 0 if all went well and < 0 on failure.
  1586. */
  1587. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1588. *root, struct btrfs_key *ins_key,
  1589. struct btrfs_path *path, int data_size)
  1590. {
  1591. struct extent_buffer *l;
  1592. u32 nritems;
  1593. int mid;
  1594. int slot;
  1595. struct extent_buffer *right;
  1596. int space_needed = data_size + sizeof(struct btrfs_item);
  1597. int data_copy_size;
  1598. int rt_data_off;
  1599. int i;
  1600. int ret = 0;
  1601. int wret;
  1602. int double_split = 0;
  1603. struct btrfs_disk_key disk_key;
  1604. /* first try to make some room by pushing left and right */
  1605. wret = push_leaf_left(trans, root, path, data_size);
  1606. if (wret < 0)
  1607. return wret;
  1608. if (wret) {
  1609. wret = push_leaf_right(trans, root, path, data_size);
  1610. if (wret < 0)
  1611. return wret;
  1612. }
  1613. l = path->nodes[0];
  1614. /* did the pushes work? */
  1615. if (btrfs_leaf_free_space(root, l) >=
  1616. sizeof(struct btrfs_item) + data_size)
  1617. return 0;
  1618. if (!path->nodes[1]) {
  1619. ret = insert_new_root(trans, root, path, 1);
  1620. if (ret)
  1621. return ret;
  1622. }
  1623. slot = path->slots[0];
  1624. nritems = btrfs_header_nritems(l);
  1625. mid = (nritems + 1)/ 2;
  1626. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  1627. l->start, 0);
  1628. if (IS_ERR(right))
  1629. return PTR_ERR(right);
  1630. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  1631. btrfs_set_header_bytenr(right, right->start);
  1632. btrfs_set_header_generation(right, trans->transid);
  1633. btrfs_set_header_owner(right, root->root_key.objectid);
  1634. btrfs_set_header_level(right, 0);
  1635. write_extent_buffer(right, root->fs_info->fsid,
  1636. (unsigned long)btrfs_header_fsid(right),
  1637. BTRFS_FSID_SIZE);
  1638. if (mid <= slot) {
  1639. if (nritems == 1 ||
  1640. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1641. BTRFS_LEAF_DATA_SIZE(root)) {
  1642. if (slot >= nritems) {
  1643. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1644. btrfs_set_header_nritems(right, 0);
  1645. wret = insert_ptr(trans, root, path,
  1646. &disk_key, right->start,
  1647. path->slots[1] + 1, 1);
  1648. if (wret)
  1649. ret = wret;
  1650. free_extent_buffer(path->nodes[0]);
  1651. path->nodes[0] = right;
  1652. path->slots[0] = 0;
  1653. path->slots[1] += 1;
  1654. return ret;
  1655. }
  1656. mid = slot;
  1657. double_split = 1;
  1658. }
  1659. } else {
  1660. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1661. BTRFS_LEAF_DATA_SIZE(root)) {
  1662. if (slot == 0) {
  1663. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1664. btrfs_set_header_nritems(right, 0);
  1665. wret = insert_ptr(trans, root, path,
  1666. &disk_key,
  1667. right->start,
  1668. path->slots[1], 1);
  1669. if (wret)
  1670. ret = wret;
  1671. free_extent_buffer(path->nodes[0]);
  1672. path->nodes[0] = right;
  1673. path->slots[0] = 0;
  1674. if (path->slots[1] == 0) {
  1675. wret = fixup_low_keys(trans, root,
  1676. path, &disk_key, 1);
  1677. if (wret)
  1678. ret = wret;
  1679. }
  1680. return ret;
  1681. }
  1682. mid = slot;
  1683. double_split = 1;
  1684. }
  1685. }
  1686. nritems = nritems - mid;
  1687. btrfs_set_header_nritems(right, nritems);
  1688. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  1689. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  1690. btrfs_item_nr_offset(mid),
  1691. nritems * sizeof(struct btrfs_item));
  1692. copy_extent_buffer(right, l,
  1693. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1694. data_copy_size, btrfs_leaf_data(l) +
  1695. leaf_data_end(root, l), data_copy_size);
  1696. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1697. btrfs_item_end_nr(l, mid);
  1698. for (i = 0; i < nritems; i++) {
  1699. struct btrfs_item *item = btrfs_item_nr(right, i);
  1700. u32 ioff;
  1701. if (!right->map_token) {
  1702. map_extent_buffer(right, (unsigned long)item,
  1703. sizeof(struct btrfs_item),
  1704. &right->map_token, &right->kaddr,
  1705. &right->map_start, &right->map_len,
  1706. KM_USER1);
  1707. }
  1708. ioff = btrfs_item_offset(right, item);
  1709. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  1710. }
  1711. if (right->map_token) {
  1712. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1713. right->map_token = NULL;
  1714. }
  1715. btrfs_set_header_nritems(l, mid);
  1716. ret = 0;
  1717. btrfs_item_key(right, &disk_key, 0);
  1718. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  1719. path->slots[1] + 1, 1);
  1720. if (wret)
  1721. ret = wret;
  1722. btrfs_mark_buffer_dirty(right);
  1723. btrfs_mark_buffer_dirty(l);
  1724. BUG_ON(path->slots[0] != slot);
  1725. if (mid <= slot) {
  1726. free_extent_buffer(path->nodes[0]);
  1727. path->nodes[0] = right;
  1728. path->slots[0] -= mid;
  1729. path->slots[1] += 1;
  1730. } else
  1731. free_extent_buffer(right);
  1732. BUG_ON(path->slots[0] < 0);
  1733. if (!double_split)
  1734. return ret;
  1735. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  1736. l->start, 0);
  1737. if (IS_ERR(right))
  1738. return PTR_ERR(right);
  1739. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  1740. btrfs_set_header_bytenr(right, right->start);
  1741. btrfs_set_header_generation(right, trans->transid);
  1742. btrfs_set_header_owner(right, root->root_key.objectid);
  1743. btrfs_set_header_level(right, 0);
  1744. write_extent_buffer(right, root->fs_info->fsid,
  1745. (unsigned long)btrfs_header_fsid(right),
  1746. BTRFS_FSID_SIZE);
  1747. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1748. btrfs_set_header_nritems(right, 0);
  1749. wret = insert_ptr(trans, root, path,
  1750. &disk_key, right->start,
  1751. path->slots[1], 1);
  1752. if (wret)
  1753. ret = wret;
  1754. if (path->slots[1] == 0) {
  1755. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1756. if (wret)
  1757. ret = wret;
  1758. }
  1759. free_extent_buffer(path->nodes[0]);
  1760. path->nodes[0] = right;
  1761. path->slots[0] = 0;
  1762. return ret;
  1763. }
  1764. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1765. struct btrfs_root *root,
  1766. struct btrfs_path *path,
  1767. u32 new_size)
  1768. {
  1769. int ret = 0;
  1770. int slot;
  1771. int slot_orig;
  1772. struct extent_buffer *leaf;
  1773. struct btrfs_item *item;
  1774. u32 nritems;
  1775. unsigned int data_end;
  1776. unsigned int old_data_start;
  1777. unsigned int old_size;
  1778. unsigned int size_diff;
  1779. int i;
  1780. slot_orig = path->slots[0];
  1781. leaf = path->nodes[0];
  1782. nritems = btrfs_header_nritems(leaf);
  1783. data_end = leaf_data_end(root, leaf);
  1784. slot = path->slots[0];
  1785. old_data_start = btrfs_item_offset_nr(leaf, slot);
  1786. old_size = btrfs_item_size_nr(leaf, slot);
  1787. BUG_ON(old_size <= new_size);
  1788. size_diff = old_size - new_size;
  1789. BUG_ON(slot < 0);
  1790. BUG_ON(slot >= nritems);
  1791. /*
  1792. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1793. */
  1794. /* first correct the data pointers */
  1795. for (i = slot; i < nritems; i++) {
  1796. u32 ioff;
  1797. item = btrfs_item_nr(leaf, i);
  1798. if (!leaf->map_token) {
  1799. map_extent_buffer(leaf, (unsigned long)item,
  1800. sizeof(struct btrfs_item),
  1801. &leaf->map_token, &leaf->kaddr,
  1802. &leaf->map_start, &leaf->map_len,
  1803. KM_USER1);
  1804. }
  1805. ioff = btrfs_item_offset(leaf, item);
  1806. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  1807. }
  1808. if (leaf->map_token) {
  1809. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  1810. leaf->map_token = NULL;
  1811. }
  1812. /* shift the data */
  1813. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1814. data_end + size_diff, btrfs_leaf_data(leaf) +
  1815. data_end, old_data_start + new_size - data_end);
  1816. item = btrfs_item_nr(leaf, slot);
  1817. btrfs_set_item_size(leaf, item, new_size);
  1818. btrfs_mark_buffer_dirty(leaf);
  1819. ret = 0;
  1820. if (btrfs_leaf_free_space(root, leaf) < 0) {
  1821. btrfs_print_leaf(root, leaf);
  1822. BUG();
  1823. }
  1824. return ret;
  1825. }
  1826. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  1827. struct btrfs_root *root, struct btrfs_path *path,
  1828. u32 data_size)
  1829. {
  1830. int ret = 0;
  1831. int slot;
  1832. int slot_orig;
  1833. struct extent_buffer *leaf;
  1834. struct btrfs_item *item;
  1835. u32 nritems;
  1836. unsigned int data_end;
  1837. unsigned int old_data;
  1838. unsigned int old_size;
  1839. int i;
  1840. slot_orig = path->slots[0];
  1841. leaf = path->nodes[0];
  1842. nritems = btrfs_header_nritems(leaf);
  1843. data_end = leaf_data_end(root, leaf);
  1844. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  1845. btrfs_print_leaf(root, leaf);
  1846. BUG();
  1847. }
  1848. slot = path->slots[0];
  1849. old_data = btrfs_item_end_nr(leaf, slot);
  1850. BUG_ON(slot < 0);
  1851. BUG_ON(slot >= nritems);
  1852. /*
  1853. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1854. */
  1855. /* first correct the data pointers */
  1856. for (i = slot; i < nritems; i++) {
  1857. u32 ioff;
  1858. item = btrfs_item_nr(leaf, i);
  1859. if (!leaf->map_token) {
  1860. map_extent_buffer(leaf, (unsigned long)item,
  1861. sizeof(struct btrfs_item),
  1862. &leaf->map_token, &leaf->kaddr,
  1863. &leaf->map_start, &leaf->map_len,
  1864. KM_USER1);
  1865. }
  1866. ioff = btrfs_item_offset(leaf, item);
  1867. btrfs_set_item_offset(leaf, item, ioff - data_size);
  1868. }
  1869. if (leaf->map_token) {
  1870. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  1871. leaf->map_token = NULL;
  1872. }
  1873. /* shift the data */
  1874. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1875. data_end - data_size, btrfs_leaf_data(leaf) +
  1876. data_end, old_data - data_end);
  1877. data_end = old_data;
  1878. old_size = btrfs_item_size_nr(leaf, slot);
  1879. item = btrfs_item_nr(leaf, slot);
  1880. btrfs_set_item_size(leaf, item, old_size + data_size);
  1881. btrfs_mark_buffer_dirty(leaf);
  1882. ret = 0;
  1883. if (btrfs_leaf_free_space(root, leaf) < 0) {
  1884. btrfs_print_leaf(root, leaf);
  1885. BUG();
  1886. }
  1887. return ret;
  1888. }
  1889. /*
  1890. * Given a key and some data, insert an item into the tree.
  1891. * This does all the path init required, making room in the tree if needed.
  1892. */
  1893. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
  1894. struct btrfs_root *root,
  1895. struct btrfs_path *path,
  1896. struct btrfs_key *cpu_key, u32 data_size)
  1897. {
  1898. struct extent_buffer *leaf;
  1899. struct btrfs_item *item;
  1900. int ret = 0;
  1901. int slot;
  1902. int slot_orig;
  1903. u32 nritems;
  1904. unsigned int data_end;
  1905. struct btrfs_disk_key disk_key;
  1906. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1907. /* create a root if there isn't one */
  1908. if (!root->node)
  1909. BUG();
  1910. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  1911. if (ret == 0) {
  1912. return -EEXIST;
  1913. }
  1914. if (ret < 0)
  1915. goto out;
  1916. slot_orig = path->slots[0];
  1917. leaf = path->nodes[0];
  1918. nritems = btrfs_header_nritems(leaf);
  1919. data_end = leaf_data_end(root, leaf);
  1920. if (btrfs_leaf_free_space(root, leaf) <
  1921. sizeof(struct btrfs_item) + data_size) {
  1922. BUG();
  1923. }
  1924. slot = path->slots[0];
  1925. BUG_ON(slot < 0);
  1926. if (slot != nritems) {
  1927. int i;
  1928. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  1929. if (old_data < data_end) {
  1930. btrfs_print_leaf(root, leaf);
  1931. printk("slot %d old_data %d data_end %d\n",
  1932. slot, old_data, data_end);
  1933. BUG_ON(1);
  1934. }
  1935. /*
  1936. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1937. */
  1938. /* first correct the data pointers */
  1939. WARN_ON(leaf->map_token);
  1940. for (i = slot; i < nritems; i++) {
  1941. u32 ioff;
  1942. item = btrfs_item_nr(leaf, i);
  1943. if (!leaf->map_token) {
  1944. map_extent_buffer(leaf, (unsigned long)item,
  1945. sizeof(struct btrfs_item),
  1946. &leaf->map_token, &leaf->kaddr,
  1947. &leaf->map_start, &leaf->map_len,
  1948. KM_USER1);
  1949. }
  1950. ioff = btrfs_item_offset(leaf, item);
  1951. btrfs_set_item_offset(leaf, item, ioff - data_size);
  1952. }
  1953. if (leaf->map_token) {
  1954. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  1955. leaf->map_token = NULL;
  1956. }
  1957. /* shift the items */
  1958. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  1959. btrfs_item_nr_offset(slot),
  1960. (nritems - slot) * sizeof(struct btrfs_item));
  1961. /* shift the data */
  1962. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1963. data_end - data_size, btrfs_leaf_data(leaf) +
  1964. data_end, old_data - data_end);
  1965. data_end = old_data;
  1966. }
  1967. /* setup the item for the new data */
  1968. btrfs_set_item_key(leaf, &disk_key, slot);
  1969. item = btrfs_item_nr(leaf, slot);
  1970. btrfs_set_item_offset(leaf, item, data_end - data_size);
  1971. btrfs_set_item_size(leaf, item, data_size);
  1972. btrfs_set_header_nritems(leaf, nritems + 1);
  1973. btrfs_mark_buffer_dirty(leaf);
  1974. ret = 0;
  1975. if (slot == 0)
  1976. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1977. if (btrfs_leaf_free_space(root, leaf) < 0) {
  1978. btrfs_print_leaf(root, leaf);
  1979. BUG();
  1980. }
  1981. out:
  1982. return ret;
  1983. }
  1984. /*
  1985. * Given a key and some data, insert an item into the tree.
  1986. * This does all the path init required, making room in the tree if needed.
  1987. */
  1988. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1989. *root, struct btrfs_key *cpu_key, void *data, u32
  1990. data_size)
  1991. {
  1992. int ret = 0;
  1993. struct btrfs_path *path;
  1994. struct extent_buffer *leaf;
  1995. unsigned long ptr;
  1996. path = btrfs_alloc_path();
  1997. BUG_ON(!path);
  1998. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  1999. if (!ret) {
  2000. leaf = path->nodes[0];
  2001. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2002. write_extent_buffer(leaf, data, ptr, data_size);
  2003. btrfs_mark_buffer_dirty(leaf);
  2004. }
  2005. btrfs_free_path(path);
  2006. return ret;
  2007. }
  2008. /*
  2009. * delete the pointer from a given node.
  2010. *
  2011. * If the delete empties a node, the node is removed from the tree,
  2012. * continuing all the way the root if required. The root is converted into
  2013. * a leaf if all the nodes are emptied.
  2014. */
  2015. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2016. struct btrfs_path *path, int level, int slot)
  2017. {
  2018. struct extent_buffer *parent = path->nodes[level];
  2019. u32 nritems;
  2020. int ret = 0;
  2021. int wret;
  2022. nritems = btrfs_header_nritems(parent);
  2023. if (slot != nritems -1) {
  2024. memmove_extent_buffer(parent,
  2025. btrfs_node_key_ptr_offset(slot),
  2026. btrfs_node_key_ptr_offset(slot + 1),
  2027. sizeof(struct btrfs_key_ptr) *
  2028. (nritems - slot - 1));
  2029. }
  2030. nritems--;
  2031. btrfs_set_header_nritems(parent, nritems);
  2032. if (nritems == 0 && parent == root->node) {
  2033. BUG_ON(btrfs_header_level(root->node) != 1);
  2034. /* just turn the root into a leaf and break */
  2035. btrfs_set_header_level(root->node, 0);
  2036. } else if (slot == 0) {
  2037. struct btrfs_disk_key disk_key;
  2038. btrfs_node_key(parent, &disk_key, 0);
  2039. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  2040. if (wret)
  2041. ret = wret;
  2042. }
  2043. btrfs_mark_buffer_dirty(parent);
  2044. return ret;
  2045. }
  2046. /*
  2047. * delete the item at the leaf level in path. If that empties
  2048. * the leaf, remove it from the tree
  2049. */
  2050. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2051. struct btrfs_path *path)
  2052. {
  2053. int slot;
  2054. struct extent_buffer *leaf;
  2055. struct btrfs_item *item;
  2056. int doff;
  2057. int dsize;
  2058. int ret = 0;
  2059. int wret;
  2060. u32 nritems;
  2061. leaf = path->nodes[0];
  2062. slot = path->slots[0];
  2063. doff = btrfs_item_offset_nr(leaf, slot);
  2064. dsize = btrfs_item_size_nr(leaf, slot);
  2065. nritems = btrfs_header_nritems(leaf);
  2066. if (slot != nritems - 1) {
  2067. int i;
  2068. int data_end = leaf_data_end(root, leaf);
  2069. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2070. data_end + dsize,
  2071. btrfs_leaf_data(leaf) + data_end,
  2072. doff - data_end);
  2073. for (i = slot + 1; i < nritems; i++) {
  2074. u32 ioff;
  2075. item = btrfs_item_nr(leaf, i);
  2076. if (!leaf->map_token) {
  2077. map_extent_buffer(leaf, (unsigned long)item,
  2078. sizeof(struct btrfs_item),
  2079. &leaf->map_token, &leaf->kaddr,
  2080. &leaf->map_start, &leaf->map_len,
  2081. KM_USER1);
  2082. }
  2083. ioff = btrfs_item_offset(leaf, item);
  2084. btrfs_set_item_offset(leaf, item, ioff + dsize);
  2085. }
  2086. if (leaf->map_token) {
  2087. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2088. leaf->map_token = NULL;
  2089. }
  2090. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  2091. btrfs_item_nr_offset(slot + 1),
  2092. sizeof(struct btrfs_item) *
  2093. (nritems - slot - 1));
  2094. }
  2095. btrfs_set_header_nritems(leaf, nritems - 1);
  2096. nritems--;
  2097. /* delete the leaf if we've emptied it */
  2098. if (nritems == 0) {
  2099. if (leaf == root->node) {
  2100. btrfs_set_header_level(leaf, 0);
  2101. } else {
  2102. clean_tree_block(trans, root, leaf);
  2103. wait_on_tree_block_writeback(root, leaf);
  2104. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  2105. if (wret)
  2106. ret = wret;
  2107. wret = btrfs_free_extent(trans, root,
  2108. leaf->start, leaf->len, 1);
  2109. if (wret)
  2110. ret = wret;
  2111. }
  2112. } else {
  2113. int used = leaf_space_used(leaf, 0, nritems);
  2114. if (slot == 0) {
  2115. struct btrfs_disk_key disk_key;
  2116. btrfs_item_key(leaf, &disk_key, 0);
  2117. wret = fixup_low_keys(trans, root, path,
  2118. &disk_key, 1);
  2119. if (wret)
  2120. ret = wret;
  2121. }
  2122. /* delete the leaf if it is mostly empty */
  2123. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  2124. /* push_leaf_left fixes the path.
  2125. * make sure the path still points to our leaf
  2126. * for possible call to del_ptr below
  2127. */
  2128. slot = path->slots[1];
  2129. extent_buffer_get(leaf);
  2130. wret = push_leaf_left(trans, root, path, 1);
  2131. if (wret < 0 && wret != -ENOSPC)
  2132. ret = wret;
  2133. if (path->nodes[0] == leaf &&
  2134. btrfs_header_nritems(leaf)) {
  2135. wret = push_leaf_right(trans, root, path, 1);
  2136. if (wret < 0 && wret != -ENOSPC)
  2137. ret = wret;
  2138. }
  2139. if (btrfs_header_nritems(leaf) == 0) {
  2140. u64 bytenr = leaf->start;
  2141. u32 blocksize = leaf->len;
  2142. clean_tree_block(trans, root, leaf);
  2143. wait_on_tree_block_writeback(root, leaf);
  2144. wret = del_ptr(trans, root, path, 1, slot);
  2145. if (wret)
  2146. ret = wret;
  2147. free_extent_buffer(leaf);
  2148. wret = btrfs_free_extent(trans, root, bytenr,
  2149. blocksize, 1);
  2150. if (wret)
  2151. ret = wret;
  2152. } else {
  2153. btrfs_mark_buffer_dirty(leaf);
  2154. free_extent_buffer(leaf);
  2155. }
  2156. } else {
  2157. btrfs_mark_buffer_dirty(leaf);
  2158. }
  2159. }
  2160. return ret;
  2161. }
  2162. /*
  2163. * walk up the tree as far as required to find the next leaf.
  2164. * returns 0 if it found something or 1 if there are no greater leaves.
  2165. * returns < 0 on io errors.
  2166. */
  2167. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2168. {
  2169. int slot;
  2170. int level = 1;
  2171. u64 bytenr;
  2172. struct extent_buffer *c;
  2173. struct extent_buffer *next = NULL;
  2174. while(level < BTRFS_MAX_LEVEL) {
  2175. if (!path->nodes[level])
  2176. return 1;
  2177. slot = path->slots[level] + 1;
  2178. c = path->nodes[level];
  2179. if (slot >= btrfs_header_nritems(c)) {
  2180. level++;
  2181. continue;
  2182. }
  2183. bytenr = btrfs_node_blockptr(c, slot);
  2184. if (next)
  2185. free_extent_buffer(next);
  2186. if (path->reada)
  2187. reada_for_search(root, path, level, slot);
  2188. next = read_tree_block(root, bytenr,
  2189. btrfs_level_size(root, level -1));
  2190. break;
  2191. }
  2192. path->slots[level] = slot;
  2193. while(1) {
  2194. level--;
  2195. c = path->nodes[level];
  2196. free_extent_buffer(c);
  2197. path->nodes[level] = next;
  2198. path->slots[level] = 0;
  2199. if (!level)
  2200. break;
  2201. if (path->reada)
  2202. reada_for_search(root, path, level, 0);
  2203. next = read_tree_block(root, btrfs_node_blockptr(next, 0),
  2204. btrfs_level_size(root, level - 1));
  2205. }
  2206. return 0;
  2207. }