process.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680
  1. #include <linux/errno.h>
  2. #include <linux/kernel.h>
  3. #include <linux/mm.h>
  4. #include <linux/smp.h>
  5. #include <linux/prctl.h>
  6. #include <linux/slab.h>
  7. #include <linux/sched.h>
  8. #include <linux/module.h>
  9. #include <linux/pm.h>
  10. #include <linux/clockchips.h>
  11. #include <linux/random.h>
  12. #include <linux/user-return-notifier.h>
  13. #include <linux/dmi.h>
  14. #include <linux/utsname.h>
  15. #include <trace/events/power.h>
  16. #include <linux/hw_breakpoint.h>
  17. #include <asm/system.h>
  18. #include <asm/apic.h>
  19. #include <asm/syscalls.h>
  20. #include <asm/idle.h>
  21. #include <asm/uaccess.h>
  22. #include <asm/i387.h>
  23. #include <asm/ds.h>
  24. #include <asm/debugreg.h>
  25. unsigned long idle_halt;
  26. EXPORT_SYMBOL(idle_halt);
  27. unsigned long idle_nomwait;
  28. EXPORT_SYMBOL(idle_nomwait);
  29. struct kmem_cache *task_xstate_cachep;
  30. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  31. {
  32. *dst = *src;
  33. if (src->thread.xstate) {
  34. dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
  35. GFP_KERNEL);
  36. if (!dst->thread.xstate)
  37. return -ENOMEM;
  38. WARN_ON((unsigned long)dst->thread.xstate & 15);
  39. memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
  40. }
  41. return 0;
  42. }
  43. void free_thread_xstate(struct task_struct *tsk)
  44. {
  45. if (tsk->thread.xstate) {
  46. kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
  47. tsk->thread.xstate = NULL;
  48. }
  49. WARN(tsk->thread.ds_ctx, "leaking DS context\n");
  50. }
  51. void free_thread_info(struct thread_info *ti)
  52. {
  53. free_thread_xstate(ti->task);
  54. free_pages((unsigned long)ti, get_order(THREAD_SIZE));
  55. }
  56. void arch_task_cache_init(void)
  57. {
  58. task_xstate_cachep =
  59. kmem_cache_create("task_xstate", xstate_size,
  60. __alignof__(union thread_xstate),
  61. SLAB_PANIC | SLAB_NOTRACK, NULL);
  62. }
  63. /*
  64. * Free current thread data structures etc..
  65. */
  66. void exit_thread(void)
  67. {
  68. struct task_struct *me = current;
  69. struct thread_struct *t = &me->thread;
  70. unsigned long *bp = t->io_bitmap_ptr;
  71. if (bp) {
  72. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  73. t->io_bitmap_ptr = NULL;
  74. clear_thread_flag(TIF_IO_BITMAP);
  75. /*
  76. * Careful, clear this in the TSS too:
  77. */
  78. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  79. t->io_bitmap_max = 0;
  80. put_cpu();
  81. kfree(bp);
  82. }
  83. }
  84. void show_regs_common(void)
  85. {
  86. const char *board, *product;
  87. board = dmi_get_system_info(DMI_BOARD_NAME);
  88. if (!board)
  89. board = "";
  90. product = dmi_get_system_info(DMI_PRODUCT_NAME);
  91. if (!product)
  92. product = "";
  93. printk(KERN_CONT "\n");
  94. printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
  95. current->pid, current->comm, print_tainted(),
  96. init_utsname()->release,
  97. (int)strcspn(init_utsname()->version, " "),
  98. init_utsname()->version, board, product);
  99. }
  100. void flush_thread(void)
  101. {
  102. struct task_struct *tsk = current;
  103. flush_ptrace_hw_breakpoint(tsk);
  104. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  105. /*
  106. * Forget coprocessor state..
  107. */
  108. tsk->fpu_counter = 0;
  109. clear_fpu(tsk);
  110. clear_used_math();
  111. }
  112. static void hard_disable_TSC(void)
  113. {
  114. write_cr4(read_cr4() | X86_CR4_TSD);
  115. }
  116. void disable_TSC(void)
  117. {
  118. preempt_disable();
  119. if (!test_and_set_thread_flag(TIF_NOTSC))
  120. /*
  121. * Must flip the CPU state synchronously with
  122. * TIF_NOTSC in the current running context.
  123. */
  124. hard_disable_TSC();
  125. preempt_enable();
  126. }
  127. static void hard_enable_TSC(void)
  128. {
  129. write_cr4(read_cr4() & ~X86_CR4_TSD);
  130. }
  131. static void enable_TSC(void)
  132. {
  133. preempt_disable();
  134. if (test_and_clear_thread_flag(TIF_NOTSC))
  135. /*
  136. * Must flip the CPU state synchronously with
  137. * TIF_NOTSC in the current running context.
  138. */
  139. hard_enable_TSC();
  140. preempt_enable();
  141. }
  142. int get_tsc_mode(unsigned long adr)
  143. {
  144. unsigned int val;
  145. if (test_thread_flag(TIF_NOTSC))
  146. val = PR_TSC_SIGSEGV;
  147. else
  148. val = PR_TSC_ENABLE;
  149. return put_user(val, (unsigned int __user *)adr);
  150. }
  151. int set_tsc_mode(unsigned int val)
  152. {
  153. if (val == PR_TSC_SIGSEGV)
  154. disable_TSC();
  155. else if (val == PR_TSC_ENABLE)
  156. enable_TSC();
  157. else
  158. return -EINVAL;
  159. return 0;
  160. }
  161. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  162. struct tss_struct *tss)
  163. {
  164. struct thread_struct *prev, *next;
  165. prev = &prev_p->thread;
  166. next = &next_p->thread;
  167. if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
  168. test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
  169. ds_switch_to(prev_p, next_p);
  170. else if (next->debugctlmsr != prev->debugctlmsr)
  171. update_debugctlmsr(next->debugctlmsr);
  172. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  173. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  174. /* prev and next are different */
  175. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  176. hard_disable_TSC();
  177. else
  178. hard_enable_TSC();
  179. }
  180. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  181. /*
  182. * Copy the relevant range of the IO bitmap.
  183. * Normally this is 128 bytes or less:
  184. */
  185. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  186. max(prev->io_bitmap_max, next->io_bitmap_max));
  187. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  188. /*
  189. * Clear any possible leftover bits:
  190. */
  191. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  192. }
  193. propagate_user_return_notify(prev_p, next_p);
  194. }
  195. int sys_fork(struct pt_regs *regs)
  196. {
  197. return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
  198. }
  199. /*
  200. * This is trivial, and on the face of it looks like it
  201. * could equally well be done in user mode.
  202. *
  203. * Not so, for quite unobvious reasons - register pressure.
  204. * In user mode vfork() cannot have a stack frame, and if
  205. * done by calling the "clone()" system call directly, you
  206. * do not have enough call-clobbered registers to hold all
  207. * the information you need.
  208. */
  209. int sys_vfork(struct pt_regs *regs)
  210. {
  211. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
  212. NULL, NULL);
  213. }
  214. long
  215. sys_clone(unsigned long clone_flags, unsigned long newsp,
  216. void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
  217. {
  218. if (!newsp)
  219. newsp = regs->sp;
  220. return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
  221. }
  222. /*
  223. * This gets run with %si containing the
  224. * function to call, and %di containing
  225. * the "args".
  226. */
  227. extern void kernel_thread_helper(void);
  228. /*
  229. * Create a kernel thread
  230. */
  231. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  232. {
  233. struct pt_regs regs;
  234. memset(&regs, 0, sizeof(regs));
  235. regs.si = (unsigned long) fn;
  236. regs.di = (unsigned long) arg;
  237. #ifdef CONFIG_X86_32
  238. regs.ds = __USER_DS;
  239. regs.es = __USER_DS;
  240. regs.fs = __KERNEL_PERCPU;
  241. regs.gs = __KERNEL_STACK_CANARY;
  242. #else
  243. regs.ss = __KERNEL_DS;
  244. #endif
  245. regs.orig_ax = -1;
  246. regs.ip = (unsigned long) kernel_thread_helper;
  247. regs.cs = __KERNEL_CS | get_kernel_rpl();
  248. regs.flags = X86_EFLAGS_IF | 0x2;
  249. /* Ok, create the new process.. */
  250. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  251. }
  252. EXPORT_SYMBOL(kernel_thread);
  253. /*
  254. * sys_execve() executes a new program.
  255. */
  256. long sys_execve(char __user *name, char __user * __user *argv,
  257. char __user * __user *envp, struct pt_regs *regs)
  258. {
  259. long error;
  260. char *filename;
  261. filename = getname(name);
  262. error = PTR_ERR(filename);
  263. if (IS_ERR(filename))
  264. return error;
  265. error = do_execve(filename, argv, envp, regs);
  266. #ifdef CONFIG_X86_32
  267. if (error == 0) {
  268. /* Make sure we don't return using sysenter.. */
  269. set_thread_flag(TIF_IRET);
  270. }
  271. #endif
  272. putname(filename);
  273. return error;
  274. }
  275. /*
  276. * Idle related variables and functions
  277. */
  278. unsigned long boot_option_idle_override = 0;
  279. EXPORT_SYMBOL(boot_option_idle_override);
  280. /*
  281. * Powermanagement idle function, if any..
  282. */
  283. void (*pm_idle)(void);
  284. EXPORT_SYMBOL(pm_idle);
  285. #ifdef CONFIG_X86_32
  286. /*
  287. * This halt magic was a workaround for ancient floppy DMA
  288. * wreckage. It should be safe to remove.
  289. */
  290. static int hlt_counter;
  291. void disable_hlt(void)
  292. {
  293. hlt_counter++;
  294. }
  295. EXPORT_SYMBOL(disable_hlt);
  296. void enable_hlt(void)
  297. {
  298. hlt_counter--;
  299. }
  300. EXPORT_SYMBOL(enable_hlt);
  301. static inline int hlt_use_halt(void)
  302. {
  303. return (!hlt_counter && boot_cpu_data.hlt_works_ok);
  304. }
  305. #else
  306. static inline int hlt_use_halt(void)
  307. {
  308. return 1;
  309. }
  310. #endif
  311. /*
  312. * We use this if we don't have any better
  313. * idle routine..
  314. */
  315. void default_idle(void)
  316. {
  317. if (hlt_use_halt()) {
  318. trace_power_start(POWER_CSTATE, 1);
  319. current_thread_info()->status &= ~TS_POLLING;
  320. /*
  321. * TS_POLLING-cleared state must be visible before we
  322. * test NEED_RESCHED:
  323. */
  324. smp_mb();
  325. if (!need_resched())
  326. safe_halt(); /* enables interrupts racelessly */
  327. else
  328. local_irq_enable();
  329. current_thread_info()->status |= TS_POLLING;
  330. } else {
  331. local_irq_enable();
  332. /* loop is done by the caller */
  333. cpu_relax();
  334. }
  335. }
  336. #ifdef CONFIG_APM_MODULE
  337. EXPORT_SYMBOL(default_idle);
  338. #endif
  339. void stop_this_cpu(void *dummy)
  340. {
  341. local_irq_disable();
  342. /*
  343. * Remove this CPU:
  344. */
  345. set_cpu_online(smp_processor_id(), false);
  346. disable_local_APIC();
  347. for (;;) {
  348. if (hlt_works(smp_processor_id()))
  349. halt();
  350. }
  351. }
  352. static void do_nothing(void *unused)
  353. {
  354. }
  355. /*
  356. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  357. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  358. * handler on SMP systems.
  359. *
  360. * Caller must have changed pm_idle to the new value before the call. Old
  361. * pm_idle value will not be used by any CPU after the return of this function.
  362. */
  363. void cpu_idle_wait(void)
  364. {
  365. smp_mb();
  366. /* kick all the CPUs so that they exit out of pm_idle */
  367. smp_call_function(do_nothing, NULL, 1);
  368. }
  369. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  370. /*
  371. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  372. * which can obviate IPI to trigger checking of need_resched.
  373. * We execute MONITOR against need_resched and enter optimized wait state
  374. * through MWAIT. Whenever someone changes need_resched, we would be woken
  375. * up from MWAIT (without an IPI).
  376. *
  377. * New with Core Duo processors, MWAIT can take some hints based on CPU
  378. * capability.
  379. */
  380. void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
  381. {
  382. trace_power_start(POWER_CSTATE, (ax>>4)+1);
  383. if (!need_resched()) {
  384. if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
  385. clflush((void *)&current_thread_info()->flags);
  386. __monitor((void *)&current_thread_info()->flags, 0, 0);
  387. smp_mb();
  388. if (!need_resched())
  389. __mwait(ax, cx);
  390. }
  391. }
  392. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  393. static void mwait_idle(void)
  394. {
  395. if (!need_resched()) {
  396. trace_power_start(POWER_CSTATE, 1);
  397. if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
  398. clflush((void *)&current_thread_info()->flags);
  399. __monitor((void *)&current_thread_info()->flags, 0, 0);
  400. smp_mb();
  401. if (!need_resched())
  402. __sti_mwait(0, 0);
  403. else
  404. local_irq_enable();
  405. } else
  406. local_irq_enable();
  407. }
  408. /*
  409. * On SMP it's slightly faster (but much more power-consuming!)
  410. * to poll the ->work.need_resched flag instead of waiting for the
  411. * cross-CPU IPI to arrive. Use this option with caution.
  412. */
  413. static void poll_idle(void)
  414. {
  415. trace_power_start(POWER_CSTATE, 0);
  416. local_irq_enable();
  417. while (!need_resched())
  418. cpu_relax();
  419. trace_power_end(0);
  420. }
  421. /*
  422. * mwait selection logic:
  423. *
  424. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  425. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  426. * then depend on a clock divisor and current Pstate of the core. If
  427. * all cores of a processor are in halt state (C1) the processor can
  428. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  429. * happen.
  430. *
  431. * idle=mwait overrides this decision and forces the usage of mwait.
  432. */
  433. static int __cpuinitdata force_mwait;
  434. #define MWAIT_INFO 0x05
  435. #define MWAIT_ECX_EXTENDED_INFO 0x01
  436. #define MWAIT_EDX_C1 0xf0
  437. static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
  438. {
  439. u32 eax, ebx, ecx, edx;
  440. if (force_mwait)
  441. return 1;
  442. if (c->cpuid_level < MWAIT_INFO)
  443. return 0;
  444. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  445. /* Check, whether EDX has extended info about MWAIT */
  446. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  447. return 1;
  448. /*
  449. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  450. * C1 supports MWAIT
  451. */
  452. return (edx & MWAIT_EDX_C1);
  453. }
  454. /*
  455. * Check for AMD CPUs, which have potentially C1E support
  456. */
  457. static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
  458. {
  459. if (c->x86_vendor != X86_VENDOR_AMD)
  460. return 0;
  461. if (c->x86 < 0x0F)
  462. return 0;
  463. /* Family 0x0f models < rev F do not have C1E */
  464. if (c->x86 == 0x0f && c->x86_model < 0x40)
  465. return 0;
  466. return 1;
  467. }
  468. static cpumask_var_t c1e_mask;
  469. static int c1e_detected;
  470. void c1e_remove_cpu(int cpu)
  471. {
  472. if (c1e_mask != NULL)
  473. cpumask_clear_cpu(cpu, c1e_mask);
  474. }
  475. /*
  476. * C1E aware idle routine. We check for C1E active in the interrupt
  477. * pending message MSR. If we detect C1E, then we handle it the same
  478. * way as C3 power states (local apic timer and TSC stop)
  479. */
  480. static void c1e_idle(void)
  481. {
  482. if (need_resched())
  483. return;
  484. if (!c1e_detected) {
  485. u32 lo, hi;
  486. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  487. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  488. c1e_detected = 1;
  489. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  490. mark_tsc_unstable("TSC halt in AMD C1E");
  491. printk(KERN_INFO "System has AMD C1E enabled\n");
  492. set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
  493. }
  494. }
  495. if (c1e_detected) {
  496. int cpu = smp_processor_id();
  497. if (!cpumask_test_cpu(cpu, c1e_mask)) {
  498. cpumask_set_cpu(cpu, c1e_mask);
  499. /*
  500. * Force broadcast so ACPI can not interfere.
  501. */
  502. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  503. &cpu);
  504. printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
  505. cpu);
  506. }
  507. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  508. default_idle();
  509. /*
  510. * The switch back from broadcast mode needs to be
  511. * called with interrupts disabled.
  512. */
  513. local_irq_disable();
  514. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  515. local_irq_enable();
  516. } else
  517. default_idle();
  518. }
  519. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  520. {
  521. #ifdef CONFIG_SMP
  522. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  523. printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
  524. " performance may degrade.\n");
  525. }
  526. #endif
  527. if (pm_idle)
  528. return;
  529. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  530. /*
  531. * One CPU supports mwait => All CPUs supports mwait
  532. */
  533. printk(KERN_INFO "using mwait in idle threads.\n");
  534. pm_idle = mwait_idle;
  535. } else if (check_c1e_idle(c)) {
  536. printk(KERN_INFO "using C1E aware idle routine\n");
  537. pm_idle = c1e_idle;
  538. } else
  539. pm_idle = default_idle;
  540. }
  541. void __init init_c1e_mask(void)
  542. {
  543. /* If we're using c1e_idle, we need to allocate c1e_mask. */
  544. if (pm_idle == c1e_idle)
  545. zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
  546. }
  547. static int __init idle_setup(char *str)
  548. {
  549. if (!str)
  550. return -EINVAL;
  551. if (!strcmp(str, "poll")) {
  552. printk("using polling idle threads.\n");
  553. pm_idle = poll_idle;
  554. } else if (!strcmp(str, "mwait"))
  555. force_mwait = 1;
  556. else if (!strcmp(str, "halt")) {
  557. /*
  558. * When the boot option of idle=halt is added, halt is
  559. * forced to be used for CPU idle. In such case CPU C2/C3
  560. * won't be used again.
  561. * To continue to load the CPU idle driver, don't touch
  562. * the boot_option_idle_override.
  563. */
  564. pm_idle = default_idle;
  565. idle_halt = 1;
  566. return 0;
  567. } else if (!strcmp(str, "nomwait")) {
  568. /*
  569. * If the boot option of "idle=nomwait" is added,
  570. * it means that mwait will be disabled for CPU C2/C3
  571. * states. In such case it won't touch the variable
  572. * of boot_option_idle_override.
  573. */
  574. idle_nomwait = 1;
  575. return 0;
  576. } else
  577. return -1;
  578. boot_option_idle_override = 1;
  579. return 0;
  580. }
  581. early_param("idle", idle_setup);
  582. unsigned long arch_align_stack(unsigned long sp)
  583. {
  584. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  585. sp -= get_random_int() % 8192;
  586. return sp & ~0xf;
  587. }
  588. unsigned long arch_randomize_brk(struct mm_struct *mm)
  589. {
  590. unsigned long range_end = mm->brk + 0x02000000;
  591. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  592. }