af_netlink.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454
  1. /*
  2. * NETLINK Kernel-user communication protocol.
  3. *
  4. * Authors: Alan Cox <alan@redhat.com>
  5. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
  13. * added netlink_proto_exit
  14. * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
  15. * use nlk_sk, as sk->protinfo is on a diet 8)
  16. *
  17. */
  18. #include <linux/config.h>
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/init.h>
  22. #include <linux/signal.h>
  23. #include <linux/sched.h>
  24. #include <linux/errno.h>
  25. #include <linux/string.h>
  26. #include <linux/stat.h>
  27. #include <linux/socket.h>
  28. #include <linux/un.h>
  29. #include <linux/fcntl.h>
  30. #include <linux/termios.h>
  31. #include <linux/sockios.h>
  32. #include <linux/net.h>
  33. #include <linux/fs.h>
  34. #include <linux/slab.h>
  35. #include <asm/uaccess.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/netdevice.h>
  38. #include <linux/rtnetlink.h>
  39. #include <linux/proc_fs.h>
  40. #include <linux/seq_file.h>
  41. #include <linux/smp_lock.h>
  42. #include <linux/notifier.h>
  43. #include <linux/security.h>
  44. #include <linux/jhash.h>
  45. #include <linux/jiffies.h>
  46. #include <linux/random.h>
  47. #include <linux/bitops.h>
  48. #include <linux/mm.h>
  49. #include <linux/types.h>
  50. #include <linux/audit.h>
  51. #include <net/sock.h>
  52. #include <net/scm.h>
  53. #define Nprintk(a...)
  54. struct netlink_sock {
  55. /* struct sock has to be the first member of netlink_sock */
  56. struct sock sk;
  57. u32 pid;
  58. unsigned int groups;
  59. u32 dst_pid;
  60. unsigned int dst_groups;
  61. unsigned long state;
  62. wait_queue_head_t wait;
  63. struct netlink_callback *cb;
  64. spinlock_t cb_lock;
  65. void (*data_ready)(struct sock *sk, int bytes);
  66. };
  67. static inline struct netlink_sock *nlk_sk(struct sock *sk)
  68. {
  69. return (struct netlink_sock *)sk;
  70. }
  71. struct nl_pid_hash {
  72. struct hlist_head *table;
  73. unsigned long rehash_time;
  74. unsigned int mask;
  75. unsigned int shift;
  76. unsigned int entries;
  77. unsigned int max_shift;
  78. u32 rnd;
  79. };
  80. struct netlink_table {
  81. struct nl_pid_hash hash;
  82. struct hlist_head mc_list;
  83. unsigned int nl_nonroot;
  84. };
  85. static struct netlink_table *nl_table;
  86. static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
  87. static int netlink_dump(struct sock *sk);
  88. static void netlink_destroy_callback(struct netlink_callback *cb);
  89. static DEFINE_RWLOCK(nl_table_lock);
  90. static atomic_t nl_table_users = ATOMIC_INIT(0);
  91. static struct notifier_block *netlink_chain;
  92. static struct hlist_head *nl_pid_hashfn(struct nl_pid_hash *hash, u32 pid)
  93. {
  94. return &hash->table[jhash_1word(pid, hash->rnd) & hash->mask];
  95. }
  96. static void netlink_sock_destruct(struct sock *sk)
  97. {
  98. skb_queue_purge(&sk->sk_receive_queue);
  99. if (!sock_flag(sk, SOCK_DEAD)) {
  100. printk("Freeing alive netlink socket %p\n", sk);
  101. return;
  102. }
  103. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  104. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  105. BUG_TRAP(!nlk_sk(sk)->cb);
  106. }
  107. /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on SMP.
  108. * Look, when several writers sleep and reader wakes them up, all but one
  109. * immediately hit write lock and grab all the cpus. Exclusive sleep solves
  110. * this, _but_ remember, it adds useless work on UP machines.
  111. */
  112. static void netlink_table_grab(void)
  113. {
  114. write_lock_bh(&nl_table_lock);
  115. if (atomic_read(&nl_table_users)) {
  116. DECLARE_WAITQUEUE(wait, current);
  117. add_wait_queue_exclusive(&nl_table_wait, &wait);
  118. for(;;) {
  119. set_current_state(TASK_UNINTERRUPTIBLE);
  120. if (atomic_read(&nl_table_users) == 0)
  121. break;
  122. write_unlock_bh(&nl_table_lock);
  123. schedule();
  124. write_lock_bh(&nl_table_lock);
  125. }
  126. __set_current_state(TASK_RUNNING);
  127. remove_wait_queue(&nl_table_wait, &wait);
  128. }
  129. }
  130. static __inline__ void netlink_table_ungrab(void)
  131. {
  132. write_unlock_bh(&nl_table_lock);
  133. wake_up(&nl_table_wait);
  134. }
  135. static __inline__ void
  136. netlink_lock_table(void)
  137. {
  138. /* read_lock() synchronizes us to netlink_table_grab */
  139. read_lock(&nl_table_lock);
  140. atomic_inc(&nl_table_users);
  141. read_unlock(&nl_table_lock);
  142. }
  143. static __inline__ void
  144. netlink_unlock_table(void)
  145. {
  146. if (atomic_dec_and_test(&nl_table_users))
  147. wake_up(&nl_table_wait);
  148. }
  149. static __inline__ struct sock *netlink_lookup(int protocol, u32 pid)
  150. {
  151. struct nl_pid_hash *hash = &nl_table[protocol].hash;
  152. struct hlist_head *head;
  153. struct sock *sk;
  154. struct hlist_node *node;
  155. read_lock(&nl_table_lock);
  156. head = nl_pid_hashfn(hash, pid);
  157. sk_for_each(sk, node, head) {
  158. if (nlk_sk(sk)->pid == pid) {
  159. sock_hold(sk);
  160. goto found;
  161. }
  162. }
  163. sk = NULL;
  164. found:
  165. read_unlock(&nl_table_lock);
  166. return sk;
  167. }
  168. static inline struct hlist_head *nl_pid_hash_alloc(size_t size)
  169. {
  170. if (size <= PAGE_SIZE)
  171. return kmalloc(size, GFP_ATOMIC);
  172. else
  173. return (struct hlist_head *)
  174. __get_free_pages(GFP_ATOMIC, get_order(size));
  175. }
  176. static inline void nl_pid_hash_free(struct hlist_head *table, size_t size)
  177. {
  178. if (size <= PAGE_SIZE)
  179. kfree(table);
  180. else
  181. free_pages((unsigned long)table, get_order(size));
  182. }
  183. static int nl_pid_hash_rehash(struct nl_pid_hash *hash, int grow)
  184. {
  185. unsigned int omask, mask, shift;
  186. size_t osize, size;
  187. struct hlist_head *otable, *table;
  188. int i;
  189. omask = mask = hash->mask;
  190. osize = size = (mask + 1) * sizeof(*table);
  191. shift = hash->shift;
  192. if (grow) {
  193. if (++shift > hash->max_shift)
  194. return 0;
  195. mask = mask * 2 + 1;
  196. size *= 2;
  197. }
  198. table = nl_pid_hash_alloc(size);
  199. if (!table)
  200. return 0;
  201. memset(table, 0, size);
  202. otable = hash->table;
  203. hash->table = table;
  204. hash->mask = mask;
  205. hash->shift = shift;
  206. get_random_bytes(&hash->rnd, sizeof(hash->rnd));
  207. for (i = 0; i <= omask; i++) {
  208. struct sock *sk;
  209. struct hlist_node *node, *tmp;
  210. sk_for_each_safe(sk, node, tmp, &otable[i])
  211. __sk_add_node(sk, nl_pid_hashfn(hash, nlk_sk(sk)->pid));
  212. }
  213. nl_pid_hash_free(otable, osize);
  214. hash->rehash_time = jiffies + 10 * 60 * HZ;
  215. return 1;
  216. }
  217. static inline int nl_pid_hash_dilute(struct nl_pid_hash *hash, int len)
  218. {
  219. int avg = hash->entries >> hash->shift;
  220. if (unlikely(avg > 1) && nl_pid_hash_rehash(hash, 1))
  221. return 1;
  222. if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
  223. nl_pid_hash_rehash(hash, 0);
  224. return 1;
  225. }
  226. return 0;
  227. }
  228. static struct proto_ops netlink_ops;
  229. static int netlink_insert(struct sock *sk, u32 pid)
  230. {
  231. struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
  232. struct hlist_head *head;
  233. int err = -EADDRINUSE;
  234. struct sock *osk;
  235. struct hlist_node *node;
  236. int len;
  237. netlink_table_grab();
  238. head = nl_pid_hashfn(hash, pid);
  239. len = 0;
  240. sk_for_each(osk, node, head) {
  241. if (nlk_sk(osk)->pid == pid)
  242. break;
  243. len++;
  244. }
  245. if (node)
  246. goto err;
  247. err = -EBUSY;
  248. if (nlk_sk(sk)->pid)
  249. goto err;
  250. err = -ENOMEM;
  251. if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
  252. goto err;
  253. if (len && nl_pid_hash_dilute(hash, len))
  254. head = nl_pid_hashfn(hash, pid);
  255. hash->entries++;
  256. nlk_sk(sk)->pid = pid;
  257. sk_add_node(sk, head);
  258. err = 0;
  259. err:
  260. netlink_table_ungrab();
  261. return err;
  262. }
  263. static void netlink_remove(struct sock *sk)
  264. {
  265. netlink_table_grab();
  266. nl_table[sk->sk_protocol].hash.entries--;
  267. sk_del_node_init(sk);
  268. if (nlk_sk(sk)->groups)
  269. __sk_del_bind_node(sk);
  270. netlink_table_ungrab();
  271. }
  272. static struct proto netlink_proto = {
  273. .name = "NETLINK",
  274. .owner = THIS_MODULE,
  275. .obj_size = sizeof(struct netlink_sock),
  276. };
  277. static int netlink_create(struct socket *sock, int protocol)
  278. {
  279. struct sock *sk;
  280. struct netlink_sock *nlk;
  281. sock->state = SS_UNCONNECTED;
  282. if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
  283. return -ESOCKTNOSUPPORT;
  284. if (protocol<0 || protocol >= MAX_LINKS)
  285. return -EPROTONOSUPPORT;
  286. sock->ops = &netlink_ops;
  287. sk = sk_alloc(PF_NETLINK, GFP_KERNEL, &netlink_proto, 1);
  288. if (!sk)
  289. return -ENOMEM;
  290. sock_init_data(sock, sk);
  291. nlk = nlk_sk(sk);
  292. spin_lock_init(&nlk->cb_lock);
  293. init_waitqueue_head(&nlk->wait);
  294. sk->sk_destruct = netlink_sock_destruct;
  295. sk->sk_protocol = protocol;
  296. return 0;
  297. }
  298. static int netlink_release(struct socket *sock)
  299. {
  300. struct sock *sk = sock->sk;
  301. struct netlink_sock *nlk;
  302. if (!sk)
  303. return 0;
  304. netlink_remove(sk);
  305. nlk = nlk_sk(sk);
  306. spin_lock(&nlk->cb_lock);
  307. if (nlk->cb) {
  308. nlk->cb->done(nlk->cb);
  309. netlink_destroy_callback(nlk->cb);
  310. nlk->cb = NULL;
  311. }
  312. spin_unlock(&nlk->cb_lock);
  313. /* OK. Socket is unlinked, and, therefore,
  314. no new packets will arrive */
  315. sock_orphan(sk);
  316. sock->sk = NULL;
  317. wake_up_interruptible_all(&nlk->wait);
  318. skb_queue_purge(&sk->sk_write_queue);
  319. if (nlk->pid && !nlk->groups) {
  320. struct netlink_notify n = {
  321. .protocol = sk->sk_protocol,
  322. .pid = nlk->pid,
  323. };
  324. notifier_call_chain(&netlink_chain, NETLINK_URELEASE, &n);
  325. }
  326. sock_put(sk);
  327. return 0;
  328. }
  329. static int netlink_autobind(struct socket *sock)
  330. {
  331. struct sock *sk = sock->sk;
  332. struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
  333. struct hlist_head *head;
  334. struct sock *osk;
  335. struct hlist_node *node;
  336. s32 pid = current->pid;
  337. int err;
  338. static s32 rover = -4097;
  339. retry:
  340. cond_resched();
  341. netlink_table_grab();
  342. head = nl_pid_hashfn(hash, pid);
  343. sk_for_each(osk, node, head) {
  344. if (nlk_sk(osk)->pid == pid) {
  345. /* Bind collision, search negative pid values. */
  346. pid = rover--;
  347. if (rover > -4097)
  348. rover = -4097;
  349. netlink_table_ungrab();
  350. goto retry;
  351. }
  352. }
  353. netlink_table_ungrab();
  354. err = netlink_insert(sk, pid);
  355. if (err == -EADDRINUSE)
  356. goto retry;
  357. return 0;
  358. }
  359. static inline int netlink_capable(struct socket *sock, unsigned int flag)
  360. {
  361. return (nl_table[sock->sk->sk_protocol].nl_nonroot & flag) ||
  362. capable(CAP_NET_ADMIN);
  363. }
  364. static int netlink_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
  365. {
  366. struct sock *sk = sock->sk;
  367. struct netlink_sock *nlk = nlk_sk(sk);
  368. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  369. int err;
  370. if (nladdr->nl_family != AF_NETLINK)
  371. return -EINVAL;
  372. /* Only superuser is allowed to listen multicasts */
  373. if (nladdr->nl_groups && !netlink_capable(sock, NL_NONROOT_RECV))
  374. return -EPERM;
  375. if (nlk->pid) {
  376. if (nladdr->nl_pid != nlk->pid)
  377. return -EINVAL;
  378. } else {
  379. err = nladdr->nl_pid ?
  380. netlink_insert(sk, nladdr->nl_pid) :
  381. netlink_autobind(sock);
  382. if (err)
  383. return err;
  384. }
  385. if (!nladdr->nl_groups && !nlk->groups)
  386. return 0;
  387. netlink_table_grab();
  388. if (nlk->groups && !nladdr->nl_groups)
  389. __sk_del_bind_node(sk);
  390. else if (!nlk->groups && nladdr->nl_groups)
  391. sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
  392. nlk->groups = nladdr->nl_groups;
  393. netlink_table_ungrab();
  394. return 0;
  395. }
  396. static int netlink_connect(struct socket *sock, struct sockaddr *addr,
  397. int alen, int flags)
  398. {
  399. int err = 0;
  400. struct sock *sk = sock->sk;
  401. struct netlink_sock *nlk = nlk_sk(sk);
  402. struct sockaddr_nl *nladdr=(struct sockaddr_nl*)addr;
  403. if (addr->sa_family == AF_UNSPEC) {
  404. sk->sk_state = NETLINK_UNCONNECTED;
  405. nlk->dst_pid = 0;
  406. nlk->dst_groups = 0;
  407. return 0;
  408. }
  409. if (addr->sa_family != AF_NETLINK)
  410. return -EINVAL;
  411. /* Only superuser is allowed to send multicasts */
  412. if (nladdr->nl_groups && !netlink_capable(sock, NL_NONROOT_SEND))
  413. return -EPERM;
  414. if (!nlk->pid)
  415. err = netlink_autobind(sock);
  416. if (err == 0) {
  417. sk->sk_state = NETLINK_CONNECTED;
  418. nlk->dst_pid = nladdr->nl_pid;
  419. nlk->dst_groups = nladdr->nl_groups;
  420. }
  421. return err;
  422. }
  423. static int netlink_getname(struct socket *sock, struct sockaddr *addr, int *addr_len, int peer)
  424. {
  425. struct sock *sk = sock->sk;
  426. struct netlink_sock *nlk = nlk_sk(sk);
  427. struct sockaddr_nl *nladdr=(struct sockaddr_nl *)addr;
  428. nladdr->nl_family = AF_NETLINK;
  429. nladdr->nl_pad = 0;
  430. *addr_len = sizeof(*nladdr);
  431. if (peer) {
  432. nladdr->nl_pid = nlk->dst_pid;
  433. nladdr->nl_groups = nlk->dst_groups;
  434. } else {
  435. nladdr->nl_pid = nlk->pid;
  436. nladdr->nl_groups = nlk->groups;
  437. }
  438. return 0;
  439. }
  440. static void netlink_overrun(struct sock *sk)
  441. {
  442. if (!test_and_set_bit(0, &nlk_sk(sk)->state)) {
  443. sk->sk_err = ENOBUFS;
  444. sk->sk_error_report(sk);
  445. }
  446. }
  447. static struct sock *netlink_getsockbypid(struct sock *ssk, u32 pid)
  448. {
  449. int protocol = ssk->sk_protocol;
  450. struct sock *sock;
  451. struct netlink_sock *nlk;
  452. sock = netlink_lookup(protocol, pid);
  453. if (!sock)
  454. return ERR_PTR(-ECONNREFUSED);
  455. /* Don't bother queuing skb if kernel socket has no input function */
  456. nlk = nlk_sk(sock);
  457. if ((nlk->pid == 0 && !nlk->data_ready) ||
  458. (sock->sk_state == NETLINK_CONNECTED &&
  459. nlk->dst_pid != nlk_sk(ssk)->pid)) {
  460. sock_put(sock);
  461. return ERR_PTR(-ECONNREFUSED);
  462. }
  463. return sock;
  464. }
  465. struct sock *netlink_getsockbyfilp(struct file *filp)
  466. {
  467. struct inode *inode = filp->f_dentry->d_inode;
  468. struct sock *sock;
  469. if (!S_ISSOCK(inode->i_mode))
  470. return ERR_PTR(-ENOTSOCK);
  471. sock = SOCKET_I(inode)->sk;
  472. if (sock->sk_family != AF_NETLINK)
  473. return ERR_PTR(-EINVAL);
  474. sock_hold(sock);
  475. return sock;
  476. }
  477. /*
  478. * Attach a skb to a netlink socket.
  479. * The caller must hold a reference to the destination socket. On error, the
  480. * reference is dropped. The skb is not send to the destination, just all
  481. * all error checks are performed and memory in the queue is reserved.
  482. * Return values:
  483. * < 0: error. skb freed, reference to sock dropped.
  484. * 0: continue
  485. * 1: repeat lookup - reference dropped while waiting for socket memory.
  486. */
  487. int netlink_attachskb(struct sock *sk, struct sk_buff *skb, int nonblock, long timeo)
  488. {
  489. struct netlink_sock *nlk;
  490. nlk = nlk_sk(sk);
  491. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  492. test_bit(0, &nlk->state)) {
  493. DECLARE_WAITQUEUE(wait, current);
  494. if (!timeo) {
  495. if (!nlk->pid)
  496. netlink_overrun(sk);
  497. sock_put(sk);
  498. kfree_skb(skb);
  499. return -EAGAIN;
  500. }
  501. __set_current_state(TASK_INTERRUPTIBLE);
  502. add_wait_queue(&nlk->wait, &wait);
  503. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  504. test_bit(0, &nlk->state)) &&
  505. !sock_flag(sk, SOCK_DEAD))
  506. timeo = schedule_timeout(timeo);
  507. __set_current_state(TASK_RUNNING);
  508. remove_wait_queue(&nlk->wait, &wait);
  509. sock_put(sk);
  510. if (signal_pending(current)) {
  511. kfree_skb(skb);
  512. return sock_intr_errno(timeo);
  513. }
  514. return 1;
  515. }
  516. skb_set_owner_r(skb, sk);
  517. return 0;
  518. }
  519. int netlink_sendskb(struct sock *sk, struct sk_buff *skb, int protocol)
  520. {
  521. struct netlink_sock *nlk;
  522. int len = skb->len;
  523. nlk = nlk_sk(sk);
  524. skb_queue_tail(&sk->sk_receive_queue, skb);
  525. sk->sk_data_ready(sk, len);
  526. sock_put(sk);
  527. return len;
  528. }
  529. void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
  530. {
  531. kfree_skb(skb);
  532. sock_put(sk);
  533. }
  534. static inline struct sk_buff *netlink_trim(struct sk_buff *skb, int allocation)
  535. {
  536. int delta;
  537. skb_orphan(skb);
  538. delta = skb->end - skb->tail;
  539. if (delta * 2 < skb->truesize)
  540. return skb;
  541. if (skb_shared(skb)) {
  542. struct sk_buff *nskb = skb_clone(skb, allocation);
  543. if (!nskb)
  544. return skb;
  545. kfree_skb(skb);
  546. skb = nskb;
  547. }
  548. if (!pskb_expand_head(skb, 0, -delta, allocation))
  549. skb->truesize -= delta;
  550. return skb;
  551. }
  552. int netlink_unicast(struct sock *ssk, struct sk_buff *skb, u32 pid, int nonblock)
  553. {
  554. struct sock *sk;
  555. int err;
  556. long timeo;
  557. skb = netlink_trim(skb, gfp_any());
  558. timeo = sock_sndtimeo(ssk, nonblock);
  559. retry:
  560. sk = netlink_getsockbypid(ssk, pid);
  561. if (IS_ERR(sk)) {
  562. kfree_skb(skb);
  563. return PTR_ERR(sk);
  564. }
  565. err = netlink_attachskb(sk, skb, nonblock, timeo);
  566. if (err == 1)
  567. goto retry;
  568. if (err)
  569. return err;
  570. return netlink_sendskb(sk, skb, ssk->sk_protocol);
  571. }
  572. static __inline__ int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
  573. {
  574. struct netlink_sock *nlk = nlk_sk(sk);
  575. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  576. !test_bit(0, &nlk->state)) {
  577. skb_orphan(skb);
  578. skb_set_owner_r(skb, sk);
  579. skb_queue_tail(&sk->sk_receive_queue, skb);
  580. sk->sk_data_ready(sk, skb->len);
  581. return atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf;
  582. }
  583. return -1;
  584. }
  585. struct netlink_broadcast_data {
  586. struct sock *exclude_sk;
  587. u32 pid;
  588. u32 group;
  589. int failure;
  590. int congested;
  591. int delivered;
  592. int allocation;
  593. struct sk_buff *skb, *skb2;
  594. };
  595. static inline int do_one_broadcast(struct sock *sk,
  596. struct netlink_broadcast_data *p)
  597. {
  598. struct netlink_sock *nlk = nlk_sk(sk);
  599. int val;
  600. if (p->exclude_sk == sk)
  601. goto out;
  602. if (nlk->pid == p->pid || !(nlk->groups & p->group))
  603. goto out;
  604. if (p->failure) {
  605. netlink_overrun(sk);
  606. goto out;
  607. }
  608. sock_hold(sk);
  609. if (p->skb2 == NULL) {
  610. if (atomic_read(&p->skb->users) != 1) {
  611. p->skb2 = skb_clone(p->skb, p->allocation);
  612. } else {
  613. p->skb2 = p->skb;
  614. atomic_inc(&p->skb->users);
  615. }
  616. }
  617. if (p->skb2 == NULL) {
  618. netlink_overrun(sk);
  619. /* Clone failed. Notify ALL listeners. */
  620. p->failure = 1;
  621. } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
  622. netlink_overrun(sk);
  623. } else {
  624. p->congested |= val;
  625. p->delivered = 1;
  626. p->skb2 = NULL;
  627. }
  628. sock_put(sk);
  629. out:
  630. return 0;
  631. }
  632. int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 pid,
  633. u32 group, int allocation)
  634. {
  635. struct netlink_broadcast_data info;
  636. struct hlist_node *node;
  637. struct sock *sk;
  638. skb = netlink_trim(skb, allocation);
  639. info.exclude_sk = ssk;
  640. info.pid = pid;
  641. info.group = group;
  642. info.failure = 0;
  643. info.congested = 0;
  644. info.delivered = 0;
  645. info.allocation = allocation;
  646. info.skb = skb;
  647. info.skb2 = NULL;
  648. /* While we sleep in clone, do not allow to change socket list */
  649. netlink_lock_table();
  650. sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
  651. do_one_broadcast(sk, &info);
  652. netlink_unlock_table();
  653. if (info.skb2)
  654. kfree_skb(info.skb2);
  655. kfree_skb(skb);
  656. if (info.delivered) {
  657. if (info.congested && (allocation & __GFP_WAIT))
  658. yield();
  659. return 0;
  660. }
  661. if (info.failure)
  662. return -ENOBUFS;
  663. return -ESRCH;
  664. }
  665. struct netlink_set_err_data {
  666. struct sock *exclude_sk;
  667. u32 pid;
  668. u32 group;
  669. int code;
  670. };
  671. static inline int do_one_set_err(struct sock *sk,
  672. struct netlink_set_err_data *p)
  673. {
  674. struct netlink_sock *nlk = nlk_sk(sk);
  675. if (sk == p->exclude_sk)
  676. goto out;
  677. if (nlk->pid == p->pid || !(nlk->groups & p->group))
  678. goto out;
  679. sk->sk_err = p->code;
  680. sk->sk_error_report(sk);
  681. out:
  682. return 0;
  683. }
  684. void netlink_set_err(struct sock *ssk, u32 pid, u32 group, int code)
  685. {
  686. struct netlink_set_err_data info;
  687. struct hlist_node *node;
  688. struct sock *sk;
  689. info.exclude_sk = ssk;
  690. info.pid = pid;
  691. info.group = group;
  692. info.code = code;
  693. read_lock(&nl_table_lock);
  694. sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
  695. do_one_set_err(sk, &info);
  696. read_unlock(&nl_table_lock);
  697. }
  698. static inline void netlink_rcv_wake(struct sock *sk)
  699. {
  700. struct netlink_sock *nlk = nlk_sk(sk);
  701. if (!skb_queue_len(&sk->sk_receive_queue))
  702. clear_bit(0, &nlk->state);
  703. if (!test_bit(0, &nlk->state))
  704. wake_up_interruptible(&nlk->wait);
  705. }
  706. static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
  707. struct msghdr *msg, size_t len)
  708. {
  709. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  710. struct sock *sk = sock->sk;
  711. struct netlink_sock *nlk = nlk_sk(sk);
  712. struct sockaddr_nl *addr=msg->msg_name;
  713. u32 dst_pid;
  714. u32 dst_groups;
  715. struct sk_buff *skb;
  716. int err;
  717. struct scm_cookie scm;
  718. if (msg->msg_flags&MSG_OOB)
  719. return -EOPNOTSUPP;
  720. if (NULL == siocb->scm)
  721. siocb->scm = &scm;
  722. err = scm_send(sock, msg, siocb->scm);
  723. if (err < 0)
  724. return err;
  725. if (msg->msg_namelen) {
  726. if (addr->nl_family != AF_NETLINK)
  727. return -EINVAL;
  728. dst_pid = addr->nl_pid;
  729. dst_groups = addr->nl_groups;
  730. if (dst_groups && !netlink_capable(sock, NL_NONROOT_SEND))
  731. return -EPERM;
  732. } else {
  733. dst_pid = nlk->dst_pid;
  734. dst_groups = nlk->dst_groups;
  735. }
  736. if (!nlk->pid) {
  737. err = netlink_autobind(sock);
  738. if (err)
  739. goto out;
  740. }
  741. err = -EMSGSIZE;
  742. if (len > sk->sk_sndbuf - 32)
  743. goto out;
  744. err = -ENOBUFS;
  745. skb = alloc_skb(len, GFP_KERNEL);
  746. if (skb==NULL)
  747. goto out;
  748. NETLINK_CB(skb).pid = nlk->pid;
  749. NETLINK_CB(skb).groups = nlk->groups;
  750. NETLINK_CB(skb).dst_pid = dst_pid;
  751. NETLINK_CB(skb).dst_groups = dst_groups;
  752. NETLINK_CB(skb).loginuid = audit_get_loginuid(current->audit_context);
  753. memcpy(NETLINK_CREDS(skb), &siocb->scm->creds, sizeof(struct ucred));
  754. /* What can I do? Netlink is asynchronous, so that
  755. we will have to save current capabilities to
  756. check them, when this message will be delivered
  757. to corresponding kernel module. --ANK (980802)
  758. */
  759. err = -EFAULT;
  760. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len)) {
  761. kfree_skb(skb);
  762. goto out;
  763. }
  764. err = security_netlink_send(sk, skb);
  765. if (err) {
  766. kfree_skb(skb);
  767. goto out;
  768. }
  769. if (dst_groups) {
  770. atomic_inc(&skb->users);
  771. netlink_broadcast(sk, skb, dst_pid, dst_groups, GFP_KERNEL);
  772. }
  773. err = netlink_unicast(sk, skb, dst_pid, msg->msg_flags&MSG_DONTWAIT);
  774. out:
  775. return err;
  776. }
  777. static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
  778. struct msghdr *msg, size_t len,
  779. int flags)
  780. {
  781. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  782. struct scm_cookie scm;
  783. struct sock *sk = sock->sk;
  784. struct netlink_sock *nlk = nlk_sk(sk);
  785. int noblock = flags&MSG_DONTWAIT;
  786. size_t copied;
  787. struct sk_buff *skb;
  788. int err;
  789. if (flags&MSG_OOB)
  790. return -EOPNOTSUPP;
  791. copied = 0;
  792. skb = skb_recv_datagram(sk,flags,noblock,&err);
  793. if (skb==NULL)
  794. goto out;
  795. msg->msg_namelen = 0;
  796. copied = skb->len;
  797. if (len < copied) {
  798. msg->msg_flags |= MSG_TRUNC;
  799. copied = len;
  800. }
  801. skb->h.raw = skb->data;
  802. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  803. if (msg->msg_name) {
  804. struct sockaddr_nl *addr = (struct sockaddr_nl*)msg->msg_name;
  805. addr->nl_family = AF_NETLINK;
  806. addr->nl_pad = 0;
  807. addr->nl_pid = NETLINK_CB(skb).pid;
  808. addr->nl_groups = NETLINK_CB(skb).dst_groups;
  809. msg->msg_namelen = sizeof(*addr);
  810. }
  811. if (NULL == siocb->scm) {
  812. memset(&scm, 0, sizeof(scm));
  813. siocb->scm = &scm;
  814. }
  815. siocb->scm->creds = *NETLINK_CREDS(skb);
  816. skb_free_datagram(sk, skb);
  817. if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2)
  818. netlink_dump(sk);
  819. scm_recv(sock, msg, siocb->scm, flags);
  820. out:
  821. netlink_rcv_wake(sk);
  822. return err ? : copied;
  823. }
  824. static void netlink_data_ready(struct sock *sk, int len)
  825. {
  826. struct netlink_sock *nlk = nlk_sk(sk);
  827. if (nlk->data_ready)
  828. nlk->data_ready(sk, len);
  829. netlink_rcv_wake(sk);
  830. }
  831. /*
  832. * We export these functions to other modules. They provide a
  833. * complete set of kernel non-blocking support for message
  834. * queueing.
  835. */
  836. struct sock *
  837. netlink_kernel_create(int unit, void (*input)(struct sock *sk, int len))
  838. {
  839. struct socket *sock;
  840. struct sock *sk;
  841. if (!nl_table)
  842. return NULL;
  843. if (unit<0 || unit>=MAX_LINKS)
  844. return NULL;
  845. if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
  846. return NULL;
  847. if (netlink_create(sock, unit) < 0) {
  848. sock_release(sock);
  849. return NULL;
  850. }
  851. sk = sock->sk;
  852. sk->sk_data_ready = netlink_data_ready;
  853. if (input)
  854. nlk_sk(sk)->data_ready = input;
  855. if (netlink_insert(sk, 0)) {
  856. sock_release(sock);
  857. return NULL;
  858. }
  859. return sk;
  860. }
  861. void netlink_set_nonroot(int protocol, unsigned int flags)
  862. {
  863. if ((unsigned int)protocol < MAX_LINKS)
  864. nl_table[protocol].nl_nonroot = flags;
  865. }
  866. static void netlink_destroy_callback(struct netlink_callback *cb)
  867. {
  868. if (cb->skb)
  869. kfree_skb(cb->skb);
  870. kfree(cb);
  871. }
  872. /*
  873. * It looks a bit ugly.
  874. * It would be better to create kernel thread.
  875. */
  876. static int netlink_dump(struct sock *sk)
  877. {
  878. struct netlink_sock *nlk = nlk_sk(sk);
  879. struct netlink_callback *cb;
  880. struct sk_buff *skb;
  881. struct nlmsghdr *nlh;
  882. int len;
  883. skb = sock_rmalloc(sk, NLMSG_GOODSIZE, 0, GFP_KERNEL);
  884. if (!skb)
  885. return -ENOBUFS;
  886. spin_lock(&nlk->cb_lock);
  887. cb = nlk->cb;
  888. if (cb == NULL) {
  889. spin_unlock(&nlk->cb_lock);
  890. kfree_skb(skb);
  891. return -EINVAL;
  892. }
  893. len = cb->dump(skb, cb);
  894. if (len > 0) {
  895. spin_unlock(&nlk->cb_lock);
  896. skb_queue_tail(&sk->sk_receive_queue, skb);
  897. sk->sk_data_ready(sk, len);
  898. return 0;
  899. }
  900. nlh = __nlmsg_put(skb, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq, NLMSG_DONE, sizeof(int));
  901. nlh->nlmsg_flags |= NLM_F_MULTI;
  902. memcpy(NLMSG_DATA(nlh), &len, sizeof(len));
  903. skb_queue_tail(&sk->sk_receive_queue, skb);
  904. sk->sk_data_ready(sk, skb->len);
  905. cb->done(cb);
  906. nlk->cb = NULL;
  907. spin_unlock(&nlk->cb_lock);
  908. netlink_destroy_callback(cb);
  909. return 0;
  910. }
  911. int netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
  912. struct nlmsghdr *nlh,
  913. int (*dump)(struct sk_buff *skb, struct netlink_callback*),
  914. int (*done)(struct netlink_callback*))
  915. {
  916. struct netlink_callback *cb;
  917. struct sock *sk;
  918. struct netlink_sock *nlk;
  919. cb = kmalloc(sizeof(*cb), GFP_KERNEL);
  920. if (cb == NULL)
  921. return -ENOBUFS;
  922. memset(cb, 0, sizeof(*cb));
  923. cb->dump = dump;
  924. cb->done = done;
  925. cb->nlh = nlh;
  926. atomic_inc(&skb->users);
  927. cb->skb = skb;
  928. sk = netlink_lookup(ssk->sk_protocol, NETLINK_CB(skb).pid);
  929. if (sk == NULL) {
  930. netlink_destroy_callback(cb);
  931. return -ECONNREFUSED;
  932. }
  933. nlk = nlk_sk(sk);
  934. /* A dump is in progress... */
  935. spin_lock(&nlk->cb_lock);
  936. if (nlk->cb) {
  937. spin_unlock(&nlk->cb_lock);
  938. netlink_destroy_callback(cb);
  939. sock_put(sk);
  940. return -EBUSY;
  941. }
  942. nlk->cb = cb;
  943. spin_unlock(&nlk->cb_lock);
  944. netlink_dump(sk);
  945. sock_put(sk);
  946. return 0;
  947. }
  948. void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
  949. {
  950. struct sk_buff *skb;
  951. struct nlmsghdr *rep;
  952. struct nlmsgerr *errmsg;
  953. int size;
  954. if (err == 0)
  955. size = NLMSG_SPACE(sizeof(struct nlmsgerr));
  956. else
  957. size = NLMSG_SPACE(4 + NLMSG_ALIGN(nlh->nlmsg_len));
  958. skb = alloc_skb(size, GFP_KERNEL);
  959. if (!skb) {
  960. struct sock *sk;
  961. sk = netlink_lookup(in_skb->sk->sk_protocol,
  962. NETLINK_CB(in_skb).pid);
  963. if (sk) {
  964. sk->sk_err = ENOBUFS;
  965. sk->sk_error_report(sk);
  966. sock_put(sk);
  967. }
  968. return;
  969. }
  970. rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
  971. NLMSG_ERROR, sizeof(struct nlmsgerr));
  972. errmsg = NLMSG_DATA(rep);
  973. errmsg->error = err;
  974. memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(struct nlmsghdr));
  975. netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).pid, MSG_DONTWAIT);
  976. }
  977. #ifdef CONFIG_PROC_FS
  978. struct nl_seq_iter {
  979. int link;
  980. int hash_idx;
  981. };
  982. static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
  983. {
  984. struct nl_seq_iter *iter = seq->private;
  985. int i, j;
  986. struct sock *s;
  987. struct hlist_node *node;
  988. loff_t off = 0;
  989. for (i=0; i<MAX_LINKS; i++) {
  990. struct nl_pid_hash *hash = &nl_table[i].hash;
  991. for (j = 0; j <= hash->mask; j++) {
  992. sk_for_each(s, node, &hash->table[j]) {
  993. if (off == pos) {
  994. iter->link = i;
  995. iter->hash_idx = j;
  996. return s;
  997. }
  998. ++off;
  999. }
  1000. }
  1001. }
  1002. return NULL;
  1003. }
  1004. static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
  1005. {
  1006. read_lock(&nl_table_lock);
  1007. return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
  1008. }
  1009. static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1010. {
  1011. struct sock *s;
  1012. struct nl_seq_iter *iter;
  1013. int i, j;
  1014. ++*pos;
  1015. if (v == SEQ_START_TOKEN)
  1016. return netlink_seq_socket_idx(seq, 0);
  1017. s = sk_next(v);
  1018. if (s)
  1019. return s;
  1020. iter = seq->private;
  1021. i = iter->link;
  1022. j = iter->hash_idx + 1;
  1023. do {
  1024. struct nl_pid_hash *hash = &nl_table[i].hash;
  1025. for (; j <= hash->mask; j++) {
  1026. s = sk_head(&hash->table[j]);
  1027. if (s) {
  1028. iter->link = i;
  1029. iter->hash_idx = j;
  1030. return s;
  1031. }
  1032. }
  1033. j = 0;
  1034. } while (++i < MAX_LINKS);
  1035. return NULL;
  1036. }
  1037. static void netlink_seq_stop(struct seq_file *seq, void *v)
  1038. {
  1039. read_unlock(&nl_table_lock);
  1040. }
  1041. static int netlink_seq_show(struct seq_file *seq, void *v)
  1042. {
  1043. if (v == SEQ_START_TOKEN)
  1044. seq_puts(seq,
  1045. "sk Eth Pid Groups "
  1046. "Rmem Wmem Dump Locks\n");
  1047. else {
  1048. struct sock *s = v;
  1049. struct netlink_sock *nlk = nlk_sk(s);
  1050. seq_printf(seq, "%p %-3d %-6d %08x %-8d %-8d %p %d\n",
  1051. s,
  1052. s->sk_protocol,
  1053. nlk->pid,
  1054. nlk->groups,
  1055. atomic_read(&s->sk_rmem_alloc),
  1056. atomic_read(&s->sk_wmem_alloc),
  1057. nlk->cb,
  1058. atomic_read(&s->sk_refcnt)
  1059. );
  1060. }
  1061. return 0;
  1062. }
  1063. static struct seq_operations netlink_seq_ops = {
  1064. .start = netlink_seq_start,
  1065. .next = netlink_seq_next,
  1066. .stop = netlink_seq_stop,
  1067. .show = netlink_seq_show,
  1068. };
  1069. static int netlink_seq_open(struct inode *inode, struct file *file)
  1070. {
  1071. struct seq_file *seq;
  1072. struct nl_seq_iter *iter;
  1073. int err;
  1074. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  1075. if (!iter)
  1076. return -ENOMEM;
  1077. err = seq_open(file, &netlink_seq_ops);
  1078. if (err) {
  1079. kfree(iter);
  1080. return err;
  1081. }
  1082. memset(iter, 0, sizeof(*iter));
  1083. seq = file->private_data;
  1084. seq->private = iter;
  1085. return 0;
  1086. }
  1087. static struct file_operations netlink_seq_fops = {
  1088. .owner = THIS_MODULE,
  1089. .open = netlink_seq_open,
  1090. .read = seq_read,
  1091. .llseek = seq_lseek,
  1092. .release = seq_release_private,
  1093. };
  1094. #endif
  1095. int netlink_register_notifier(struct notifier_block *nb)
  1096. {
  1097. return notifier_chain_register(&netlink_chain, nb);
  1098. }
  1099. int netlink_unregister_notifier(struct notifier_block *nb)
  1100. {
  1101. return notifier_chain_unregister(&netlink_chain, nb);
  1102. }
  1103. static struct proto_ops netlink_ops = {
  1104. .family = PF_NETLINK,
  1105. .owner = THIS_MODULE,
  1106. .release = netlink_release,
  1107. .bind = netlink_bind,
  1108. .connect = netlink_connect,
  1109. .socketpair = sock_no_socketpair,
  1110. .accept = sock_no_accept,
  1111. .getname = netlink_getname,
  1112. .poll = datagram_poll,
  1113. .ioctl = sock_no_ioctl,
  1114. .listen = sock_no_listen,
  1115. .shutdown = sock_no_shutdown,
  1116. .setsockopt = sock_no_setsockopt,
  1117. .getsockopt = sock_no_getsockopt,
  1118. .sendmsg = netlink_sendmsg,
  1119. .recvmsg = netlink_recvmsg,
  1120. .mmap = sock_no_mmap,
  1121. .sendpage = sock_no_sendpage,
  1122. };
  1123. static struct net_proto_family netlink_family_ops = {
  1124. .family = PF_NETLINK,
  1125. .create = netlink_create,
  1126. .owner = THIS_MODULE, /* for consistency 8) */
  1127. };
  1128. extern void netlink_skb_parms_too_large(void);
  1129. static int __init netlink_proto_init(void)
  1130. {
  1131. struct sk_buff *dummy_skb;
  1132. int i;
  1133. unsigned long max;
  1134. unsigned int order;
  1135. int err = proto_register(&netlink_proto, 0);
  1136. if (err != 0)
  1137. goto out;
  1138. if (sizeof(struct netlink_skb_parms) > sizeof(dummy_skb->cb))
  1139. netlink_skb_parms_too_large();
  1140. nl_table = kmalloc(sizeof(*nl_table) * MAX_LINKS, GFP_KERNEL);
  1141. if (!nl_table) {
  1142. enomem:
  1143. printk(KERN_CRIT "netlink_init: Cannot allocate nl_table\n");
  1144. return -ENOMEM;
  1145. }
  1146. memset(nl_table, 0, sizeof(*nl_table) * MAX_LINKS);
  1147. if (num_physpages >= (128 * 1024))
  1148. max = num_physpages >> (21 - PAGE_SHIFT);
  1149. else
  1150. max = num_physpages >> (23 - PAGE_SHIFT);
  1151. order = get_bitmask_order(max) - 1 + PAGE_SHIFT;
  1152. max = (1UL << order) / sizeof(struct hlist_head);
  1153. order = get_bitmask_order(max > UINT_MAX ? UINT_MAX : max) - 1;
  1154. for (i = 0; i < MAX_LINKS; i++) {
  1155. struct nl_pid_hash *hash = &nl_table[i].hash;
  1156. hash->table = nl_pid_hash_alloc(1 * sizeof(*hash->table));
  1157. if (!hash->table) {
  1158. while (i-- > 0)
  1159. nl_pid_hash_free(nl_table[i].hash.table,
  1160. 1 * sizeof(*hash->table));
  1161. kfree(nl_table);
  1162. goto enomem;
  1163. }
  1164. memset(hash->table, 0, 1 * sizeof(*hash->table));
  1165. hash->max_shift = order;
  1166. hash->shift = 0;
  1167. hash->mask = 0;
  1168. hash->rehash_time = jiffies;
  1169. }
  1170. sock_register(&netlink_family_ops);
  1171. #ifdef CONFIG_PROC_FS
  1172. proc_net_fops_create("netlink", 0, &netlink_seq_fops);
  1173. #endif
  1174. /* The netlink device handler may be needed early. */
  1175. rtnetlink_init();
  1176. out:
  1177. return err;
  1178. }
  1179. static void __exit netlink_proto_exit(void)
  1180. {
  1181. sock_unregister(PF_NETLINK);
  1182. proc_net_remove("netlink");
  1183. kfree(nl_table);
  1184. nl_table = NULL;
  1185. proto_unregister(&netlink_proto);
  1186. }
  1187. core_initcall(netlink_proto_init);
  1188. module_exit(netlink_proto_exit);
  1189. MODULE_LICENSE("GPL");
  1190. MODULE_ALIAS_NETPROTO(PF_NETLINK);
  1191. EXPORT_SYMBOL(netlink_ack);
  1192. EXPORT_SYMBOL(netlink_broadcast);
  1193. EXPORT_SYMBOL(netlink_dump_start);
  1194. EXPORT_SYMBOL(netlink_kernel_create);
  1195. EXPORT_SYMBOL(netlink_register_notifier);
  1196. EXPORT_SYMBOL(netlink_set_err);
  1197. EXPORT_SYMBOL(netlink_set_nonroot);
  1198. EXPORT_SYMBOL(netlink_unicast);
  1199. EXPORT_SYMBOL(netlink_unregister_notifier);