disk-io.c 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include "compat.h"
  32. #include "ctree.h"
  33. #include "disk-io.h"
  34. #include "transaction.h"
  35. #include "btrfs_inode.h"
  36. #include "volumes.h"
  37. #include "print-tree.h"
  38. #include "async-thread.h"
  39. #include "locking.h"
  40. #include "tree-log.h"
  41. #include "free-space-cache.h"
  42. static struct extent_io_ops btree_extent_io_ops;
  43. static void end_workqueue_fn(struct btrfs_work *work);
  44. static void free_fs_root(struct btrfs_root *root);
  45. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  46. int read_only);
  47. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  48. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  49. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  50. struct btrfs_root *root);
  51. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  52. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  53. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  54. struct extent_io_tree *dirty_pages,
  55. int mark);
  56. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  57. struct extent_io_tree *pinned_extents);
  58. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  59. /*
  60. * end_io_wq structs are used to do processing in task context when an IO is
  61. * complete. This is used during reads to verify checksums, and it is used
  62. * by writes to insert metadata for new file extents after IO is complete.
  63. */
  64. struct end_io_wq {
  65. struct bio *bio;
  66. bio_end_io_t *end_io;
  67. void *private;
  68. struct btrfs_fs_info *info;
  69. int error;
  70. int metadata;
  71. struct list_head list;
  72. struct btrfs_work work;
  73. };
  74. /*
  75. * async submit bios are used to offload expensive checksumming
  76. * onto the worker threads. They checksum file and metadata bios
  77. * just before they are sent down the IO stack.
  78. */
  79. struct async_submit_bio {
  80. struct inode *inode;
  81. struct bio *bio;
  82. struct list_head list;
  83. extent_submit_bio_hook_t *submit_bio_start;
  84. extent_submit_bio_hook_t *submit_bio_done;
  85. int rw;
  86. int mirror_num;
  87. unsigned long bio_flags;
  88. /*
  89. * bio_offset is optional, can be used if the pages in the bio
  90. * can't tell us where in the file the bio should go
  91. */
  92. u64 bio_offset;
  93. struct btrfs_work work;
  94. };
  95. /* These are used to set the lockdep class on the extent buffer locks.
  96. * The class is set by the readpage_end_io_hook after the buffer has
  97. * passed csum validation but before the pages are unlocked.
  98. *
  99. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  100. * allocated blocks.
  101. *
  102. * The class is based on the level in the tree block, which allows lockdep
  103. * to know that lower nodes nest inside the locks of higher nodes.
  104. *
  105. * We also add a check to make sure the highest level of the tree is
  106. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  107. * code needs update as well.
  108. */
  109. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  110. # if BTRFS_MAX_LEVEL != 8
  111. # error
  112. # endif
  113. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  114. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  115. /* leaf */
  116. "btrfs-extent-00",
  117. "btrfs-extent-01",
  118. "btrfs-extent-02",
  119. "btrfs-extent-03",
  120. "btrfs-extent-04",
  121. "btrfs-extent-05",
  122. "btrfs-extent-06",
  123. "btrfs-extent-07",
  124. /* highest possible level */
  125. "btrfs-extent-08",
  126. };
  127. #endif
  128. /*
  129. * extents on the btree inode are pretty simple, there's one extent
  130. * that covers the entire device
  131. */
  132. static struct extent_map *btree_get_extent(struct inode *inode,
  133. struct page *page, size_t page_offset, u64 start, u64 len,
  134. int create)
  135. {
  136. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  137. struct extent_map *em;
  138. int ret;
  139. read_lock(&em_tree->lock);
  140. em = lookup_extent_mapping(em_tree, start, len);
  141. if (em) {
  142. em->bdev =
  143. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  144. read_unlock(&em_tree->lock);
  145. goto out;
  146. }
  147. read_unlock(&em_tree->lock);
  148. em = alloc_extent_map(GFP_NOFS);
  149. if (!em) {
  150. em = ERR_PTR(-ENOMEM);
  151. goto out;
  152. }
  153. em->start = 0;
  154. em->len = (u64)-1;
  155. em->block_len = (u64)-1;
  156. em->block_start = 0;
  157. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  158. write_lock(&em_tree->lock);
  159. ret = add_extent_mapping(em_tree, em);
  160. if (ret == -EEXIST) {
  161. u64 failed_start = em->start;
  162. u64 failed_len = em->len;
  163. free_extent_map(em);
  164. em = lookup_extent_mapping(em_tree, start, len);
  165. if (em) {
  166. ret = 0;
  167. } else {
  168. em = lookup_extent_mapping(em_tree, failed_start,
  169. failed_len);
  170. ret = -EIO;
  171. }
  172. } else if (ret) {
  173. free_extent_map(em);
  174. em = NULL;
  175. }
  176. write_unlock(&em_tree->lock);
  177. if (ret)
  178. em = ERR_PTR(ret);
  179. out:
  180. return em;
  181. }
  182. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  183. {
  184. return crc32c(seed, data, len);
  185. }
  186. void btrfs_csum_final(u32 crc, char *result)
  187. {
  188. *(__le32 *)result = ~cpu_to_le32(crc);
  189. }
  190. /*
  191. * compute the csum for a btree block, and either verify it or write it
  192. * into the csum field of the block.
  193. */
  194. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  195. int verify)
  196. {
  197. u16 csum_size =
  198. btrfs_super_csum_size(&root->fs_info->super_copy);
  199. char *result = NULL;
  200. unsigned long len;
  201. unsigned long cur_len;
  202. unsigned long offset = BTRFS_CSUM_SIZE;
  203. char *map_token = NULL;
  204. char *kaddr;
  205. unsigned long map_start;
  206. unsigned long map_len;
  207. int err;
  208. u32 crc = ~(u32)0;
  209. unsigned long inline_result;
  210. len = buf->len - offset;
  211. while (len > 0) {
  212. err = map_private_extent_buffer(buf, offset, 32,
  213. &map_token, &kaddr,
  214. &map_start, &map_len, KM_USER0);
  215. if (err)
  216. return 1;
  217. cur_len = min(len, map_len - (offset - map_start));
  218. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  219. crc, cur_len);
  220. len -= cur_len;
  221. offset += cur_len;
  222. unmap_extent_buffer(buf, map_token, KM_USER0);
  223. }
  224. if (csum_size > sizeof(inline_result)) {
  225. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  226. if (!result)
  227. return 1;
  228. } else {
  229. result = (char *)&inline_result;
  230. }
  231. btrfs_csum_final(crc, result);
  232. if (verify) {
  233. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  234. u32 val;
  235. u32 found = 0;
  236. memcpy(&found, result, csum_size);
  237. read_extent_buffer(buf, &val, 0, csum_size);
  238. if (printk_ratelimit()) {
  239. printk(KERN_INFO "btrfs: %s checksum verify "
  240. "failed on %llu wanted %X found %X "
  241. "level %d\n",
  242. root->fs_info->sb->s_id,
  243. (unsigned long long)buf->start, val, found,
  244. btrfs_header_level(buf));
  245. }
  246. if (result != (char *)&inline_result)
  247. kfree(result);
  248. return 1;
  249. }
  250. } else {
  251. write_extent_buffer(buf, result, 0, csum_size);
  252. }
  253. if (result != (char *)&inline_result)
  254. kfree(result);
  255. return 0;
  256. }
  257. /*
  258. * we can't consider a given block up to date unless the transid of the
  259. * block matches the transid in the parent node's pointer. This is how we
  260. * detect blocks that either didn't get written at all or got written
  261. * in the wrong place.
  262. */
  263. static int verify_parent_transid(struct extent_io_tree *io_tree,
  264. struct extent_buffer *eb, u64 parent_transid)
  265. {
  266. struct extent_state *cached_state = NULL;
  267. int ret;
  268. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  269. return 0;
  270. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  271. 0, &cached_state, GFP_NOFS);
  272. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  273. btrfs_header_generation(eb) == parent_transid) {
  274. ret = 0;
  275. goto out;
  276. }
  277. if (printk_ratelimit()) {
  278. printk("parent transid verify failed on %llu wanted %llu "
  279. "found %llu\n",
  280. (unsigned long long)eb->start,
  281. (unsigned long long)parent_transid,
  282. (unsigned long long)btrfs_header_generation(eb));
  283. }
  284. ret = 1;
  285. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  286. out:
  287. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  288. &cached_state, GFP_NOFS);
  289. return ret;
  290. }
  291. /*
  292. * helper to read a given tree block, doing retries as required when
  293. * the checksums don't match and we have alternate mirrors to try.
  294. */
  295. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  296. struct extent_buffer *eb,
  297. u64 start, u64 parent_transid)
  298. {
  299. struct extent_io_tree *io_tree;
  300. int ret;
  301. int num_copies = 0;
  302. int mirror_num = 0;
  303. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  304. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  305. while (1) {
  306. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  307. btree_get_extent, mirror_num);
  308. if (!ret &&
  309. !verify_parent_transid(io_tree, eb, parent_transid))
  310. return ret;
  311. /*
  312. * This buffer's crc is fine, but its contents are corrupted, so
  313. * there is no reason to read the other copies, they won't be
  314. * any less wrong.
  315. */
  316. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  317. return ret;
  318. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  319. eb->start, eb->len);
  320. if (num_copies == 1)
  321. return ret;
  322. mirror_num++;
  323. if (mirror_num > num_copies)
  324. return ret;
  325. }
  326. return -EIO;
  327. }
  328. /*
  329. * checksum a dirty tree block before IO. This has extra checks to make sure
  330. * we only fill in the checksum field in the first page of a multi-page block
  331. */
  332. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  333. {
  334. struct extent_io_tree *tree;
  335. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  336. u64 found_start;
  337. unsigned long len;
  338. struct extent_buffer *eb;
  339. int ret;
  340. tree = &BTRFS_I(page->mapping->host)->io_tree;
  341. if (page->private == EXTENT_PAGE_PRIVATE) {
  342. WARN_ON(1);
  343. goto out;
  344. }
  345. if (!page->private) {
  346. WARN_ON(1);
  347. goto out;
  348. }
  349. len = page->private >> 2;
  350. WARN_ON(len == 0);
  351. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  352. if (eb == NULL) {
  353. WARN_ON(1);
  354. goto out;
  355. }
  356. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  357. btrfs_header_generation(eb));
  358. BUG_ON(ret);
  359. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  360. found_start = btrfs_header_bytenr(eb);
  361. if (found_start != start) {
  362. WARN_ON(1);
  363. goto err;
  364. }
  365. if (eb->first_page != page) {
  366. WARN_ON(1);
  367. goto err;
  368. }
  369. if (!PageUptodate(page)) {
  370. WARN_ON(1);
  371. goto err;
  372. }
  373. csum_tree_block(root, eb, 0);
  374. err:
  375. free_extent_buffer(eb);
  376. out:
  377. return 0;
  378. }
  379. static int check_tree_block_fsid(struct btrfs_root *root,
  380. struct extent_buffer *eb)
  381. {
  382. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  383. u8 fsid[BTRFS_UUID_SIZE];
  384. int ret = 1;
  385. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  386. BTRFS_FSID_SIZE);
  387. while (fs_devices) {
  388. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  389. ret = 0;
  390. break;
  391. }
  392. fs_devices = fs_devices->seed;
  393. }
  394. return ret;
  395. }
  396. #define CORRUPT(reason, eb, root, slot) \
  397. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  398. "root=%llu, slot=%d\n", reason, \
  399. (unsigned long long)btrfs_header_bytenr(eb), \
  400. (unsigned long long)root->objectid, slot)
  401. static noinline int check_leaf(struct btrfs_root *root,
  402. struct extent_buffer *leaf)
  403. {
  404. struct btrfs_key key;
  405. struct btrfs_key leaf_key;
  406. u32 nritems = btrfs_header_nritems(leaf);
  407. int slot;
  408. if (nritems == 0)
  409. return 0;
  410. /* Check the 0 item */
  411. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  412. BTRFS_LEAF_DATA_SIZE(root)) {
  413. CORRUPT("invalid item offset size pair", leaf, root, 0);
  414. return -EIO;
  415. }
  416. /*
  417. * Check to make sure each items keys are in the correct order and their
  418. * offsets make sense. We only have to loop through nritems-1 because
  419. * we check the current slot against the next slot, which verifies the
  420. * next slot's offset+size makes sense and that the current's slot
  421. * offset is correct.
  422. */
  423. for (slot = 0; slot < nritems - 1; slot++) {
  424. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  425. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  426. /* Make sure the keys are in the right order */
  427. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  428. CORRUPT("bad key order", leaf, root, slot);
  429. return -EIO;
  430. }
  431. /*
  432. * Make sure the offset and ends are right, remember that the
  433. * item data starts at the end of the leaf and grows towards the
  434. * front.
  435. */
  436. if (btrfs_item_offset_nr(leaf, slot) !=
  437. btrfs_item_end_nr(leaf, slot + 1)) {
  438. CORRUPT("slot offset bad", leaf, root, slot);
  439. return -EIO;
  440. }
  441. /*
  442. * Check to make sure that we don't point outside of the leaf,
  443. * just incase all the items are consistent to eachother, but
  444. * all point outside of the leaf.
  445. */
  446. if (btrfs_item_end_nr(leaf, slot) >
  447. BTRFS_LEAF_DATA_SIZE(root)) {
  448. CORRUPT("slot end outside of leaf", leaf, root, slot);
  449. return -EIO;
  450. }
  451. }
  452. return 0;
  453. }
  454. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  455. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  456. {
  457. lockdep_set_class_and_name(&eb->lock,
  458. &btrfs_eb_class[level],
  459. btrfs_eb_name[level]);
  460. }
  461. #endif
  462. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  463. struct extent_state *state)
  464. {
  465. struct extent_io_tree *tree;
  466. u64 found_start;
  467. int found_level;
  468. unsigned long len;
  469. struct extent_buffer *eb;
  470. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  471. int ret = 0;
  472. tree = &BTRFS_I(page->mapping->host)->io_tree;
  473. if (page->private == EXTENT_PAGE_PRIVATE)
  474. goto out;
  475. if (!page->private)
  476. goto out;
  477. len = page->private >> 2;
  478. WARN_ON(len == 0);
  479. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  480. if (eb == NULL) {
  481. ret = -EIO;
  482. goto out;
  483. }
  484. found_start = btrfs_header_bytenr(eb);
  485. if (found_start != start) {
  486. if (printk_ratelimit()) {
  487. printk(KERN_INFO "btrfs bad tree block start "
  488. "%llu %llu\n",
  489. (unsigned long long)found_start,
  490. (unsigned long long)eb->start);
  491. }
  492. ret = -EIO;
  493. goto err;
  494. }
  495. if (eb->first_page != page) {
  496. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  497. eb->first_page->index, page->index);
  498. WARN_ON(1);
  499. ret = -EIO;
  500. goto err;
  501. }
  502. if (check_tree_block_fsid(root, eb)) {
  503. if (printk_ratelimit()) {
  504. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  505. (unsigned long long)eb->start);
  506. }
  507. ret = -EIO;
  508. goto err;
  509. }
  510. found_level = btrfs_header_level(eb);
  511. btrfs_set_buffer_lockdep_class(eb, found_level);
  512. ret = csum_tree_block(root, eb, 1);
  513. if (ret) {
  514. ret = -EIO;
  515. goto err;
  516. }
  517. /*
  518. * If this is a leaf block and it is corrupt, set the corrupt bit so
  519. * that we don't try and read the other copies of this block, just
  520. * return -EIO.
  521. */
  522. if (found_level == 0 && check_leaf(root, eb)) {
  523. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  524. ret = -EIO;
  525. }
  526. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  527. end = eb->start + end - 1;
  528. err:
  529. free_extent_buffer(eb);
  530. out:
  531. return ret;
  532. }
  533. static void end_workqueue_bio(struct bio *bio, int err)
  534. {
  535. struct end_io_wq *end_io_wq = bio->bi_private;
  536. struct btrfs_fs_info *fs_info;
  537. fs_info = end_io_wq->info;
  538. end_io_wq->error = err;
  539. end_io_wq->work.func = end_workqueue_fn;
  540. end_io_wq->work.flags = 0;
  541. if (bio->bi_rw & REQ_WRITE) {
  542. if (end_io_wq->metadata == 1)
  543. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  544. &end_io_wq->work);
  545. else if (end_io_wq->metadata == 2)
  546. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  547. &end_io_wq->work);
  548. else
  549. btrfs_queue_worker(&fs_info->endio_write_workers,
  550. &end_io_wq->work);
  551. } else {
  552. if (end_io_wq->metadata)
  553. btrfs_queue_worker(&fs_info->endio_meta_workers,
  554. &end_io_wq->work);
  555. else
  556. btrfs_queue_worker(&fs_info->endio_workers,
  557. &end_io_wq->work);
  558. }
  559. }
  560. /*
  561. * For the metadata arg you want
  562. *
  563. * 0 - if data
  564. * 1 - if normal metadta
  565. * 2 - if writing to the free space cache area
  566. */
  567. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  568. int metadata)
  569. {
  570. struct end_io_wq *end_io_wq;
  571. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  572. if (!end_io_wq)
  573. return -ENOMEM;
  574. end_io_wq->private = bio->bi_private;
  575. end_io_wq->end_io = bio->bi_end_io;
  576. end_io_wq->info = info;
  577. end_io_wq->error = 0;
  578. end_io_wq->bio = bio;
  579. end_io_wq->metadata = metadata;
  580. bio->bi_private = end_io_wq;
  581. bio->bi_end_io = end_workqueue_bio;
  582. return 0;
  583. }
  584. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  585. {
  586. unsigned long limit = min_t(unsigned long,
  587. info->workers.max_workers,
  588. info->fs_devices->open_devices);
  589. return 256 * limit;
  590. }
  591. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  592. {
  593. return atomic_read(&info->nr_async_bios) >
  594. btrfs_async_submit_limit(info);
  595. }
  596. static void run_one_async_start(struct btrfs_work *work)
  597. {
  598. struct async_submit_bio *async;
  599. async = container_of(work, struct async_submit_bio, work);
  600. async->submit_bio_start(async->inode, async->rw, async->bio,
  601. async->mirror_num, async->bio_flags,
  602. async->bio_offset);
  603. }
  604. static void run_one_async_done(struct btrfs_work *work)
  605. {
  606. struct btrfs_fs_info *fs_info;
  607. struct async_submit_bio *async;
  608. int limit;
  609. async = container_of(work, struct async_submit_bio, work);
  610. fs_info = BTRFS_I(async->inode)->root->fs_info;
  611. limit = btrfs_async_submit_limit(fs_info);
  612. limit = limit * 2 / 3;
  613. atomic_dec(&fs_info->nr_async_submits);
  614. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  615. waitqueue_active(&fs_info->async_submit_wait))
  616. wake_up(&fs_info->async_submit_wait);
  617. async->submit_bio_done(async->inode, async->rw, async->bio,
  618. async->mirror_num, async->bio_flags,
  619. async->bio_offset);
  620. }
  621. static void run_one_async_free(struct btrfs_work *work)
  622. {
  623. struct async_submit_bio *async;
  624. async = container_of(work, struct async_submit_bio, work);
  625. kfree(async);
  626. }
  627. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  628. int rw, struct bio *bio, int mirror_num,
  629. unsigned long bio_flags,
  630. u64 bio_offset,
  631. extent_submit_bio_hook_t *submit_bio_start,
  632. extent_submit_bio_hook_t *submit_bio_done)
  633. {
  634. struct async_submit_bio *async;
  635. async = kmalloc(sizeof(*async), GFP_NOFS);
  636. if (!async)
  637. return -ENOMEM;
  638. async->inode = inode;
  639. async->rw = rw;
  640. async->bio = bio;
  641. async->mirror_num = mirror_num;
  642. async->submit_bio_start = submit_bio_start;
  643. async->submit_bio_done = submit_bio_done;
  644. async->work.func = run_one_async_start;
  645. async->work.ordered_func = run_one_async_done;
  646. async->work.ordered_free = run_one_async_free;
  647. async->work.flags = 0;
  648. async->bio_flags = bio_flags;
  649. async->bio_offset = bio_offset;
  650. atomic_inc(&fs_info->nr_async_submits);
  651. if (rw & REQ_SYNC)
  652. btrfs_set_work_high_prio(&async->work);
  653. btrfs_queue_worker(&fs_info->workers, &async->work);
  654. while (atomic_read(&fs_info->async_submit_draining) &&
  655. atomic_read(&fs_info->nr_async_submits)) {
  656. wait_event(fs_info->async_submit_wait,
  657. (atomic_read(&fs_info->nr_async_submits) == 0));
  658. }
  659. return 0;
  660. }
  661. static int btree_csum_one_bio(struct bio *bio)
  662. {
  663. struct bio_vec *bvec = bio->bi_io_vec;
  664. int bio_index = 0;
  665. struct btrfs_root *root;
  666. WARN_ON(bio->bi_vcnt <= 0);
  667. while (bio_index < bio->bi_vcnt) {
  668. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  669. csum_dirty_buffer(root, bvec->bv_page);
  670. bio_index++;
  671. bvec++;
  672. }
  673. return 0;
  674. }
  675. static int __btree_submit_bio_start(struct inode *inode, int rw,
  676. struct bio *bio, int mirror_num,
  677. unsigned long bio_flags,
  678. u64 bio_offset)
  679. {
  680. /*
  681. * when we're called for a write, we're already in the async
  682. * submission context. Just jump into btrfs_map_bio
  683. */
  684. btree_csum_one_bio(bio);
  685. return 0;
  686. }
  687. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  688. int mirror_num, unsigned long bio_flags,
  689. u64 bio_offset)
  690. {
  691. /*
  692. * when we're called for a write, we're already in the async
  693. * submission context. Just jump into btrfs_map_bio
  694. */
  695. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  696. }
  697. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  698. int mirror_num, unsigned long bio_flags,
  699. u64 bio_offset)
  700. {
  701. int ret;
  702. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  703. bio, 1);
  704. BUG_ON(ret);
  705. if (!(rw & REQ_WRITE)) {
  706. /*
  707. * called for a read, do the setup so that checksum validation
  708. * can happen in the async kernel threads
  709. */
  710. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  711. mirror_num, 0);
  712. }
  713. /*
  714. * kthread helpers are used to submit writes so that checksumming
  715. * can happen in parallel across all CPUs
  716. */
  717. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  718. inode, rw, bio, mirror_num, 0,
  719. bio_offset,
  720. __btree_submit_bio_start,
  721. __btree_submit_bio_done);
  722. }
  723. #ifdef CONFIG_MIGRATION
  724. static int btree_migratepage(struct address_space *mapping,
  725. struct page *newpage, struct page *page)
  726. {
  727. /*
  728. * we can't safely write a btree page from here,
  729. * we haven't done the locking hook
  730. */
  731. if (PageDirty(page))
  732. return -EAGAIN;
  733. /*
  734. * Buffers may be managed in a filesystem specific way.
  735. * We must have no buffers or drop them.
  736. */
  737. if (page_has_private(page) &&
  738. !try_to_release_page(page, GFP_KERNEL))
  739. return -EAGAIN;
  740. return migrate_page(mapping, newpage, page);
  741. }
  742. #endif
  743. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  744. {
  745. struct extent_io_tree *tree;
  746. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  747. struct extent_buffer *eb;
  748. int was_dirty;
  749. tree = &BTRFS_I(page->mapping->host)->io_tree;
  750. if (!(current->flags & PF_MEMALLOC)) {
  751. return extent_write_full_page(tree, page,
  752. btree_get_extent, wbc);
  753. }
  754. redirty_page_for_writepage(wbc, page);
  755. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  756. WARN_ON(!eb);
  757. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  758. if (!was_dirty) {
  759. spin_lock(&root->fs_info->delalloc_lock);
  760. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  761. spin_unlock(&root->fs_info->delalloc_lock);
  762. }
  763. free_extent_buffer(eb);
  764. unlock_page(page);
  765. return 0;
  766. }
  767. static int btree_writepages(struct address_space *mapping,
  768. struct writeback_control *wbc)
  769. {
  770. struct extent_io_tree *tree;
  771. tree = &BTRFS_I(mapping->host)->io_tree;
  772. if (wbc->sync_mode == WB_SYNC_NONE) {
  773. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  774. u64 num_dirty;
  775. unsigned long thresh = 32 * 1024 * 1024;
  776. if (wbc->for_kupdate)
  777. return 0;
  778. /* this is a bit racy, but that's ok */
  779. num_dirty = root->fs_info->dirty_metadata_bytes;
  780. if (num_dirty < thresh)
  781. return 0;
  782. }
  783. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  784. }
  785. static int btree_readpage(struct file *file, struct page *page)
  786. {
  787. struct extent_io_tree *tree;
  788. tree = &BTRFS_I(page->mapping->host)->io_tree;
  789. return extent_read_full_page(tree, page, btree_get_extent);
  790. }
  791. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  792. {
  793. struct extent_io_tree *tree;
  794. struct extent_map_tree *map;
  795. int ret;
  796. if (PageWriteback(page) || PageDirty(page))
  797. return 0;
  798. tree = &BTRFS_I(page->mapping->host)->io_tree;
  799. map = &BTRFS_I(page->mapping->host)->extent_tree;
  800. ret = try_release_extent_state(map, tree, page, gfp_flags);
  801. if (!ret)
  802. return 0;
  803. ret = try_release_extent_buffer(tree, page);
  804. if (ret == 1) {
  805. ClearPagePrivate(page);
  806. set_page_private(page, 0);
  807. page_cache_release(page);
  808. }
  809. return ret;
  810. }
  811. static void btree_invalidatepage(struct page *page, unsigned long offset)
  812. {
  813. struct extent_io_tree *tree;
  814. tree = &BTRFS_I(page->mapping->host)->io_tree;
  815. extent_invalidatepage(tree, page, offset);
  816. btree_releasepage(page, GFP_NOFS);
  817. if (PagePrivate(page)) {
  818. printk(KERN_WARNING "btrfs warning page private not zero "
  819. "on page %llu\n", (unsigned long long)page_offset(page));
  820. ClearPagePrivate(page);
  821. set_page_private(page, 0);
  822. page_cache_release(page);
  823. }
  824. }
  825. static const struct address_space_operations btree_aops = {
  826. .readpage = btree_readpage,
  827. .writepage = btree_writepage,
  828. .writepages = btree_writepages,
  829. .releasepage = btree_releasepage,
  830. .invalidatepage = btree_invalidatepage,
  831. .sync_page = block_sync_page,
  832. #ifdef CONFIG_MIGRATION
  833. .migratepage = btree_migratepage,
  834. #endif
  835. };
  836. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  837. u64 parent_transid)
  838. {
  839. struct extent_buffer *buf = NULL;
  840. struct inode *btree_inode = root->fs_info->btree_inode;
  841. int ret = 0;
  842. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  843. if (!buf)
  844. return 0;
  845. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  846. buf, 0, 0, btree_get_extent, 0);
  847. free_extent_buffer(buf);
  848. return ret;
  849. }
  850. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  851. u64 bytenr, u32 blocksize)
  852. {
  853. struct inode *btree_inode = root->fs_info->btree_inode;
  854. struct extent_buffer *eb;
  855. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  856. bytenr, blocksize, GFP_NOFS);
  857. return eb;
  858. }
  859. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  860. u64 bytenr, u32 blocksize)
  861. {
  862. struct inode *btree_inode = root->fs_info->btree_inode;
  863. struct extent_buffer *eb;
  864. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  865. bytenr, blocksize, NULL, GFP_NOFS);
  866. return eb;
  867. }
  868. int btrfs_write_tree_block(struct extent_buffer *buf)
  869. {
  870. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  871. buf->start + buf->len - 1);
  872. }
  873. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  874. {
  875. return filemap_fdatawait_range(buf->first_page->mapping,
  876. buf->start, buf->start + buf->len - 1);
  877. }
  878. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  879. u32 blocksize, u64 parent_transid)
  880. {
  881. struct extent_buffer *buf = NULL;
  882. int ret;
  883. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  884. if (!buf)
  885. return NULL;
  886. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  887. if (ret == 0)
  888. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  889. return buf;
  890. }
  891. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  892. struct extent_buffer *buf)
  893. {
  894. struct inode *btree_inode = root->fs_info->btree_inode;
  895. if (btrfs_header_generation(buf) ==
  896. root->fs_info->running_transaction->transid) {
  897. btrfs_assert_tree_locked(buf);
  898. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  899. spin_lock(&root->fs_info->delalloc_lock);
  900. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  901. root->fs_info->dirty_metadata_bytes -= buf->len;
  902. else
  903. WARN_ON(1);
  904. spin_unlock(&root->fs_info->delalloc_lock);
  905. }
  906. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  907. btrfs_set_lock_blocking(buf);
  908. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  909. buf);
  910. }
  911. return 0;
  912. }
  913. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  914. u32 stripesize, struct btrfs_root *root,
  915. struct btrfs_fs_info *fs_info,
  916. u64 objectid)
  917. {
  918. root->node = NULL;
  919. root->commit_root = NULL;
  920. root->sectorsize = sectorsize;
  921. root->nodesize = nodesize;
  922. root->leafsize = leafsize;
  923. root->stripesize = stripesize;
  924. root->ref_cows = 0;
  925. root->track_dirty = 0;
  926. root->in_radix = 0;
  927. root->orphan_item_inserted = 0;
  928. root->orphan_cleanup_state = 0;
  929. root->fs_info = fs_info;
  930. root->objectid = objectid;
  931. root->last_trans = 0;
  932. root->highest_objectid = 0;
  933. root->name = NULL;
  934. root->in_sysfs = 0;
  935. root->inode_tree = RB_ROOT;
  936. root->block_rsv = NULL;
  937. root->orphan_block_rsv = NULL;
  938. INIT_LIST_HEAD(&root->dirty_list);
  939. INIT_LIST_HEAD(&root->orphan_list);
  940. INIT_LIST_HEAD(&root->root_list);
  941. spin_lock_init(&root->node_lock);
  942. spin_lock_init(&root->orphan_lock);
  943. spin_lock_init(&root->inode_lock);
  944. spin_lock_init(&root->accounting_lock);
  945. mutex_init(&root->objectid_mutex);
  946. mutex_init(&root->log_mutex);
  947. init_waitqueue_head(&root->log_writer_wait);
  948. init_waitqueue_head(&root->log_commit_wait[0]);
  949. init_waitqueue_head(&root->log_commit_wait[1]);
  950. atomic_set(&root->log_commit[0], 0);
  951. atomic_set(&root->log_commit[1], 0);
  952. atomic_set(&root->log_writers, 0);
  953. root->log_batch = 0;
  954. root->log_transid = 0;
  955. root->last_log_commit = 0;
  956. extent_io_tree_init(&root->dirty_log_pages,
  957. fs_info->btree_inode->i_mapping, GFP_NOFS);
  958. memset(&root->root_key, 0, sizeof(root->root_key));
  959. memset(&root->root_item, 0, sizeof(root->root_item));
  960. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  961. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  962. root->defrag_trans_start = fs_info->generation;
  963. init_completion(&root->kobj_unregister);
  964. root->defrag_running = 0;
  965. root->root_key.objectid = objectid;
  966. root->anon_super.s_root = NULL;
  967. root->anon_super.s_dev = 0;
  968. INIT_LIST_HEAD(&root->anon_super.s_list);
  969. INIT_LIST_HEAD(&root->anon_super.s_instances);
  970. init_rwsem(&root->anon_super.s_umount);
  971. return 0;
  972. }
  973. static int find_and_setup_root(struct btrfs_root *tree_root,
  974. struct btrfs_fs_info *fs_info,
  975. u64 objectid,
  976. struct btrfs_root *root)
  977. {
  978. int ret;
  979. u32 blocksize;
  980. u64 generation;
  981. __setup_root(tree_root->nodesize, tree_root->leafsize,
  982. tree_root->sectorsize, tree_root->stripesize,
  983. root, fs_info, objectid);
  984. ret = btrfs_find_last_root(tree_root, objectid,
  985. &root->root_item, &root->root_key);
  986. if (ret > 0)
  987. return -ENOENT;
  988. BUG_ON(ret);
  989. generation = btrfs_root_generation(&root->root_item);
  990. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  991. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  992. blocksize, generation);
  993. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  994. free_extent_buffer(root->node);
  995. return -EIO;
  996. }
  997. root->commit_root = btrfs_root_node(root);
  998. return 0;
  999. }
  1000. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1001. struct btrfs_fs_info *fs_info)
  1002. {
  1003. struct btrfs_root *root;
  1004. struct btrfs_root *tree_root = fs_info->tree_root;
  1005. struct extent_buffer *leaf;
  1006. root = kzalloc(sizeof(*root), GFP_NOFS);
  1007. if (!root)
  1008. return ERR_PTR(-ENOMEM);
  1009. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1010. tree_root->sectorsize, tree_root->stripesize,
  1011. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1012. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1013. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1014. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1015. /*
  1016. * log trees do not get reference counted because they go away
  1017. * before a real commit is actually done. They do store pointers
  1018. * to file data extents, and those reference counts still get
  1019. * updated (along with back refs to the log tree).
  1020. */
  1021. root->ref_cows = 0;
  1022. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1023. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  1024. if (IS_ERR(leaf)) {
  1025. kfree(root);
  1026. return ERR_CAST(leaf);
  1027. }
  1028. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1029. btrfs_set_header_bytenr(leaf, leaf->start);
  1030. btrfs_set_header_generation(leaf, trans->transid);
  1031. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1032. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1033. root->node = leaf;
  1034. write_extent_buffer(root->node, root->fs_info->fsid,
  1035. (unsigned long)btrfs_header_fsid(root->node),
  1036. BTRFS_FSID_SIZE);
  1037. btrfs_mark_buffer_dirty(root->node);
  1038. btrfs_tree_unlock(root->node);
  1039. return root;
  1040. }
  1041. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1042. struct btrfs_fs_info *fs_info)
  1043. {
  1044. struct btrfs_root *log_root;
  1045. log_root = alloc_log_tree(trans, fs_info);
  1046. if (IS_ERR(log_root))
  1047. return PTR_ERR(log_root);
  1048. WARN_ON(fs_info->log_root_tree);
  1049. fs_info->log_root_tree = log_root;
  1050. return 0;
  1051. }
  1052. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1053. struct btrfs_root *root)
  1054. {
  1055. struct btrfs_root *log_root;
  1056. struct btrfs_inode_item *inode_item;
  1057. log_root = alloc_log_tree(trans, root->fs_info);
  1058. if (IS_ERR(log_root))
  1059. return PTR_ERR(log_root);
  1060. log_root->last_trans = trans->transid;
  1061. log_root->root_key.offset = root->root_key.objectid;
  1062. inode_item = &log_root->root_item.inode;
  1063. inode_item->generation = cpu_to_le64(1);
  1064. inode_item->size = cpu_to_le64(3);
  1065. inode_item->nlink = cpu_to_le32(1);
  1066. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1067. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1068. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1069. WARN_ON(root->log_root);
  1070. root->log_root = log_root;
  1071. root->log_transid = 0;
  1072. root->last_log_commit = 0;
  1073. return 0;
  1074. }
  1075. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1076. struct btrfs_key *location)
  1077. {
  1078. struct btrfs_root *root;
  1079. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1080. struct btrfs_path *path;
  1081. struct extent_buffer *l;
  1082. u64 generation;
  1083. u32 blocksize;
  1084. int ret = 0;
  1085. root = kzalloc(sizeof(*root), GFP_NOFS);
  1086. if (!root)
  1087. return ERR_PTR(-ENOMEM);
  1088. if (location->offset == (u64)-1) {
  1089. ret = find_and_setup_root(tree_root, fs_info,
  1090. location->objectid, root);
  1091. if (ret) {
  1092. kfree(root);
  1093. return ERR_PTR(ret);
  1094. }
  1095. goto out;
  1096. }
  1097. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1098. tree_root->sectorsize, tree_root->stripesize,
  1099. root, fs_info, location->objectid);
  1100. path = btrfs_alloc_path();
  1101. if (!path) {
  1102. kfree(root);
  1103. return ERR_PTR(-ENOMEM);
  1104. }
  1105. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1106. if (ret == 0) {
  1107. l = path->nodes[0];
  1108. read_extent_buffer(l, &root->root_item,
  1109. btrfs_item_ptr_offset(l, path->slots[0]),
  1110. sizeof(root->root_item));
  1111. memcpy(&root->root_key, location, sizeof(*location));
  1112. }
  1113. btrfs_free_path(path);
  1114. if (ret) {
  1115. kfree(root);
  1116. if (ret > 0)
  1117. ret = -ENOENT;
  1118. return ERR_PTR(ret);
  1119. }
  1120. generation = btrfs_root_generation(&root->root_item);
  1121. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1122. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1123. blocksize, generation);
  1124. root->commit_root = btrfs_root_node(root);
  1125. BUG_ON(!root->node);
  1126. out:
  1127. if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
  1128. root->ref_cows = 1;
  1129. return root;
  1130. }
  1131. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1132. u64 root_objectid)
  1133. {
  1134. struct btrfs_root *root;
  1135. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1136. return fs_info->tree_root;
  1137. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1138. return fs_info->extent_root;
  1139. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1140. (unsigned long)root_objectid);
  1141. return root;
  1142. }
  1143. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1144. struct btrfs_key *location)
  1145. {
  1146. struct btrfs_root *root;
  1147. int ret;
  1148. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1149. return fs_info->tree_root;
  1150. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1151. return fs_info->extent_root;
  1152. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1153. return fs_info->chunk_root;
  1154. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1155. return fs_info->dev_root;
  1156. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1157. return fs_info->csum_root;
  1158. again:
  1159. spin_lock(&fs_info->fs_roots_radix_lock);
  1160. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1161. (unsigned long)location->objectid);
  1162. spin_unlock(&fs_info->fs_roots_radix_lock);
  1163. if (root)
  1164. return root;
  1165. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1166. if (IS_ERR(root))
  1167. return root;
  1168. set_anon_super(&root->anon_super, NULL);
  1169. if (btrfs_root_refs(&root->root_item) == 0) {
  1170. ret = -ENOENT;
  1171. goto fail;
  1172. }
  1173. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1174. if (ret < 0)
  1175. goto fail;
  1176. if (ret == 0)
  1177. root->orphan_item_inserted = 1;
  1178. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1179. if (ret)
  1180. goto fail;
  1181. spin_lock(&fs_info->fs_roots_radix_lock);
  1182. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1183. (unsigned long)root->root_key.objectid,
  1184. root);
  1185. if (ret == 0)
  1186. root->in_radix = 1;
  1187. spin_unlock(&fs_info->fs_roots_radix_lock);
  1188. radix_tree_preload_end();
  1189. if (ret) {
  1190. if (ret == -EEXIST) {
  1191. free_fs_root(root);
  1192. goto again;
  1193. }
  1194. goto fail;
  1195. }
  1196. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1197. root->root_key.objectid);
  1198. WARN_ON(ret);
  1199. return root;
  1200. fail:
  1201. free_fs_root(root);
  1202. return ERR_PTR(ret);
  1203. }
  1204. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1205. struct btrfs_key *location,
  1206. const char *name, int namelen)
  1207. {
  1208. return btrfs_read_fs_root_no_name(fs_info, location);
  1209. #if 0
  1210. struct btrfs_root *root;
  1211. int ret;
  1212. root = btrfs_read_fs_root_no_name(fs_info, location);
  1213. if (!root)
  1214. return NULL;
  1215. if (root->in_sysfs)
  1216. return root;
  1217. ret = btrfs_set_root_name(root, name, namelen);
  1218. if (ret) {
  1219. free_extent_buffer(root->node);
  1220. kfree(root);
  1221. return ERR_PTR(ret);
  1222. }
  1223. ret = btrfs_sysfs_add_root(root);
  1224. if (ret) {
  1225. free_extent_buffer(root->node);
  1226. kfree(root->name);
  1227. kfree(root);
  1228. return ERR_PTR(ret);
  1229. }
  1230. root->in_sysfs = 1;
  1231. return root;
  1232. #endif
  1233. }
  1234. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1235. {
  1236. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1237. int ret = 0;
  1238. struct btrfs_device *device;
  1239. struct backing_dev_info *bdi;
  1240. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1241. if (!device->bdev)
  1242. continue;
  1243. bdi = blk_get_backing_dev_info(device->bdev);
  1244. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1245. ret = 1;
  1246. break;
  1247. }
  1248. }
  1249. return ret;
  1250. }
  1251. /*
  1252. * this unplugs every device on the box, and it is only used when page
  1253. * is null
  1254. */
  1255. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1256. {
  1257. struct btrfs_device *device;
  1258. struct btrfs_fs_info *info;
  1259. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1260. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1261. if (!device->bdev)
  1262. continue;
  1263. bdi = blk_get_backing_dev_info(device->bdev);
  1264. if (bdi->unplug_io_fn)
  1265. bdi->unplug_io_fn(bdi, page);
  1266. }
  1267. }
  1268. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1269. {
  1270. struct inode *inode;
  1271. struct extent_map_tree *em_tree;
  1272. struct extent_map *em;
  1273. struct address_space *mapping;
  1274. u64 offset;
  1275. /* the generic O_DIRECT read code does this */
  1276. if (1 || !page) {
  1277. __unplug_io_fn(bdi, page);
  1278. return;
  1279. }
  1280. /*
  1281. * page->mapping may change at any time. Get a consistent copy
  1282. * and use that for everything below
  1283. */
  1284. smp_mb();
  1285. mapping = page->mapping;
  1286. if (!mapping)
  1287. return;
  1288. inode = mapping->host;
  1289. /*
  1290. * don't do the expensive searching for a small number of
  1291. * devices
  1292. */
  1293. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1294. __unplug_io_fn(bdi, page);
  1295. return;
  1296. }
  1297. offset = page_offset(page);
  1298. em_tree = &BTRFS_I(inode)->extent_tree;
  1299. read_lock(&em_tree->lock);
  1300. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1301. read_unlock(&em_tree->lock);
  1302. if (!em) {
  1303. __unplug_io_fn(bdi, page);
  1304. return;
  1305. }
  1306. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1307. free_extent_map(em);
  1308. __unplug_io_fn(bdi, page);
  1309. return;
  1310. }
  1311. offset = offset - em->start;
  1312. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1313. em->block_start + offset, page);
  1314. free_extent_map(em);
  1315. }
  1316. /*
  1317. * If this fails, caller must call bdi_destroy() to get rid of the
  1318. * bdi again.
  1319. */
  1320. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1321. {
  1322. int err;
  1323. bdi->capabilities = BDI_CAP_MAP_COPY;
  1324. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1325. if (err)
  1326. return err;
  1327. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1328. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1329. bdi->unplug_io_data = info;
  1330. bdi->congested_fn = btrfs_congested_fn;
  1331. bdi->congested_data = info;
  1332. return 0;
  1333. }
  1334. static int bio_ready_for_csum(struct bio *bio)
  1335. {
  1336. u64 length = 0;
  1337. u64 buf_len = 0;
  1338. u64 start = 0;
  1339. struct page *page;
  1340. struct extent_io_tree *io_tree = NULL;
  1341. struct bio_vec *bvec;
  1342. int i;
  1343. int ret;
  1344. bio_for_each_segment(bvec, bio, i) {
  1345. page = bvec->bv_page;
  1346. if (page->private == EXTENT_PAGE_PRIVATE) {
  1347. length += bvec->bv_len;
  1348. continue;
  1349. }
  1350. if (!page->private) {
  1351. length += bvec->bv_len;
  1352. continue;
  1353. }
  1354. length = bvec->bv_len;
  1355. buf_len = page->private >> 2;
  1356. start = page_offset(page) + bvec->bv_offset;
  1357. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1358. }
  1359. /* are we fully contained in this bio? */
  1360. if (buf_len <= length)
  1361. return 1;
  1362. ret = extent_range_uptodate(io_tree, start + length,
  1363. start + buf_len - 1);
  1364. return ret;
  1365. }
  1366. /*
  1367. * called by the kthread helper functions to finally call the bio end_io
  1368. * functions. This is where read checksum verification actually happens
  1369. */
  1370. static void end_workqueue_fn(struct btrfs_work *work)
  1371. {
  1372. struct bio *bio;
  1373. struct end_io_wq *end_io_wq;
  1374. struct btrfs_fs_info *fs_info;
  1375. int error;
  1376. end_io_wq = container_of(work, struct end_io_wq, work);
  1377. bio = end_io_wq->bio;
  1378. fs_info = end_io_wq->info;
  1379. /* metadata bio reads are special because the whole tree block must
  1380. * be checksummed at once. This makes sure the entire block is in
  1381. * ram and up to date before trying to verify things. For
  1382. * blocksize <= pagesize, it is basically a noop
  1383. */
  1384. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1385. !bio_ready_for_csum(bio)) {
  1386. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1387. &end_io_wq->work);
  1388. return;
  1389. }
  1390. error = end_io_wq->error;
  1391. bio->bi_private = end_io_wq->private;
  1392. bio->bi_end_io = end_io_wq->end_io;
  1393. kfree(end_io_wq);
  1394. bio_endio(bio, error);
  1395. }
  1396. static int cleaner_kthread(void *arg)
  1397. {
  1398. struct btrfs_root *root = arg;
  1399. do {
  1400. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1401. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1402. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1403. btrfs_run_delayed_iputs(root);
  1404. btrfs_clean_old_snapshots(root);
  1405. mutex_unlock(&root->fs_info->cleaner_mutex);
  1406. }
  1407. if (freezing(current)) {
  1408. refrigerator();
  1409. } else {
  1410. set_current_state(TASK_INTERRUPTIBLE);
  1411. if (!kthread_should_stop())
  1412. schedule();
  1413. __set_current_state(TASK_RUNNING);
  1414. }
  1415. } while (!kthread_should_stop());
  1416. return 0;
  1417. }
  1418. static int transaction_kthread(void *arg)
  1419. {
  1420. struct btrfs_root *root = arg;
  1421. struct btrfs_trans_handle *trans;
  1422. struct btrfs_transaction *cur;
  1423. u64 transid;
  1424. unsigned long now;
  1425. unsigned long delay;
  1426. int ret;
  1427. do {
  1428. delay = HZ * 30;
  1429. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1430. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1431. spin_lock(&root->fs_info->new_trans_lock);
  1432. cur = root->fs_info->running_transaction;
  1433. if (!cur) {
  1434. spin_unlock(&root->fs_info->new_trans_lock);
  1435. goto sleep;
  1436. }
  1437. now = get_seconds();
  1438. if (!cur->blocked &&
  1439. (now < cur->start_time || now - cur->start_time < 30)) {
  1440. spin_unlock(&root->fs_info->new_trans_lock);
  1441. delay = HZ * 5;
  1442. goto sleep;
  1443. }
  1444. transid = cur->transid;
  1445. spin_unlock(&root->fs_info->new_trans_lock);
  1446. trans = btrfs_join_transaction(root, 1);
  1447. BUG_ON(IS_ERR(trans));
  1448. if (transid == trans->transid) {
  1449. ret = btrfs_commit_transaction(trans, root);
  1450. BUG_ON(ret);
  1451. } else {
  1452. btrfs_end_transaction(trans, root);
  1453. }
  1454. sleep:
  1455. wake_up_process(root->fs_info->cleaner_kthread);
  1456. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1457. if (freezing(current)) {
  1458. refrigerator();
  1459. } else {
  1460. set_current_state(TASK_INTERRUPTIBLE);
  1461. if (!kthread_should_stop() &&
  1462. !btrfs_transaction_blocked(root->fs_info))
  1463. schedule_timeout(delay);
  1464. __set_current_state(TASK_RUNNING);
  1465. }
  1466. } while (!kthread_should_stop());
  1467. return 0;
  1468. }
  1469. struct btrfs_root *open_ctree(struct super_block *sb,
  1470. struct btrfs_fs_devices *fs_devices,
  1471. char *options)
  1472. {
  1473. u32 sectorsize;
  1474. u32 nodesize;
  1475. u32 leafsize;
  1476. u32 blocksize;
  1477. u32 stripesize;
  1478. u64 generation;
  1479. u64 features;
  1480. struct btrfs_key location;
  1481. struct buffer_head *bh;
  1482. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1483. GFP_NOFS);
  1484. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1485. GFP_NOFS);
  1486. struct btrfs_root *tree_root = btrfs_sb(sb);
  1487. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1488. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1489. GFP_NOFS);
  1490. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1491. GFP_NOFS);
  1492. struct btrfs_root *log_tree_root;
  1493. int ret;
  1494. int err = -EINVAL;
  1495. struct btrfs_super_block *disk_super;
  1496. if (!extent_root || !tree_root || !fs_info ||
  1497. !chunk_root || !dev_root || !csum_root) {
  1498. err = -ENOMEM;
  1499. goto fail;
  1500. }
  1501. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1502. if (ret) {
  1503. err = ret;
  1504. goto fail;
  1505. }
  1506. ret = setup_bdi(fs_info, &fs_info->bdi);
  1507. if (ret) {
  1508. err = ret;
  1509. goto fail_srcu;
  1510. }
  1511. fs_info->btree_inode = new_inode(sb);
  1512. if (!fs_info->btree_inode) {
  1513. err = -ENOMEM;
  1514. goto fail_bdi;
  1515. }
  1516. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1517. INIT_LIST_HEAD(&fs_info->trans_list);
  1518. INIT_LIST_HEAD(&fs_info->dead_roots);
  1519. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1520. INIT_LIST_HEAD(&fs_info->hashers);
  1521. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1522. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1523. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1524. spin_lock_init(&fs_info->delalloc_lock);
  1525. spin_lock_init(&fs_info->new_trans_lock);
  1526. spin_lock_init(&fs_info->ref_cache_lock);
  1527. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1528. spin_lock_init(&fs_info->delayed_iput_lock);
  1529. init_completion(&fs_info->kobj_unregister);
  1530. fs_info->tree_root = tree_root;
  1531. fs_info->extent_root = extent_root;
  1532. fs_info->csum_root = csum_root;
  1533. fs_info->chunk_root = chunk_root;
  1534. fs_info->dev_root = dev_root;
  1535. fs_info->fs_devices = fs_devices;
  1536. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1537. INIT_LIST_HEAD(&fs_info->space_info);
  1538. btrfs_mapping_init(&fs_info->mapping_tree);
  1539. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1540. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1541. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1542. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1543. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1544. INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
  1545. mutex_init(&fs_info->durable_block_rsv_mutex);
  1546. atomic_set(&fs_info->nr_async_submits, 0);
  1547. atomic_set(&fs_info->async_delalloc_pages, 0);
  1548. atomic_set(&fs_info->async_submit_draining, 0);
  1549. atomic_set(&fs_info->nr_async_bios, 0);
  1550. fs_info->sb = sb;
  1551. fs_info->max_inline = 8192 * 1024;
  1552. fs_info->metadata_ratio = 0;
  1553. fs_info->thread_pool_size = min_t(unsigned long,
  1554. num_online_cpus() + 2, 8);
  1555. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1556. spin_lock_init(&fs_info->ordered_extent_lock);
  1557. sb->s_blocksize = 4096;
  1558. sb->s_blocksize_bits = blksize_bits(4096);
  1559. sb->s_bdi = &fs_info->bdi;
  1560. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1561. fs_info->btree_inode->i_nlink = 1;
  1562. /*
  1563. * we set the i_size on the btree inode to the max possible int.
  1564. * the real end of the address space is determined by all of
  1565. * the devices in the system
  1566. */
  1567. fs_info->btree_inode->i_size = OFFSET_MAX;
  1568. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1569. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1570. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1571. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1572. fs_info->btree_inode->i_mapping,
  1573. GFP_NOFS);
  1574. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1575. GFP_NOFS);
  1576. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1577. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1578. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1579. sizeof(struct btrfs_key));
  1580. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1581. insert_inode_hash(fs_info->btree_inode);
  1582. spin_lock_init(&fs_info->block_group_cache_lock);
  1583. fs_info->block_group_cache_tree = RB_ROOT;
  1584. extent_io_tree_init(&fs_info->freed_extents[0],
  1585. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1586. extent_io_tree_init(&fs_info->freed_extents[1],
  1587. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1588. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1589. fs_info->do_barriers = 1;
  1590. mutex_init(&fs_info->trans_mutex);
  1591. mutex_init(&fs_info->ordered_operations_mutex);
  1592. mutex_init(&fs_info->tree_log_mutex);
  1593. mutex_init(&fs_info->chunk_mutex);
  1594. mutex_init(&fs_info->transaction_kthread_mutex);
  1595. mutex_init(&fs_info->cleaner_mutex);
  1596. mutex_init(&fs_info->volume_mutex);
  1597. init_rwsem(&fs_info->extent_commit_sem);
  1598. init_rwsem(&fs_info->cleanup_work_sem);
  1599. init_rwsem(&fs_info->subvol_sem);
  1600. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1601. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1602. init_waitqueue_head(&fs_info->transaction_throttle);
  1603. init_waitqueue_head(&fs_info->transaction_wait);
  1604. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1605. init_waitqueue_head(&fs_info->async_submit_wait);
  1606. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1607. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1608. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1609. if (!bh) {
  1610. err = -EINVAL;
  1611. goto fail_iput;
  1612. }
  1613. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1614. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1615. sizeof(fs_info->super_for_commit));
  1616. brelse(bh);
  1617. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1618. disk_super = &fs_info->super_copy;
  1619. if (!btrfs_super_root(disk_super))
  1620. goto fail_iput;
  1621. /* check FS state, whether FS is broken. */
  1622. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1623. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1624. ret = btrfs_parse_options(tree_root, options);
  1625. if (ret) {
  1626. err = ret;
  1627. goto fail_iput;
  1628. }
  1629. features = btrfs_super_incompat_flags(disk_super) &
  1630. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1631. if (features) {
  1632. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1633. "unsupported optional features (%Lx).\n",
  1634. (unsigned long long)features);
  1635. err = -EINVAL;
  1636. goto fail_iput;
  1637. }
  1638. features = btrfs_super_incompat_flags(disk_super);
  1639. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1640. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1641. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1642. btrfs_set_super_incompat_flags(disk_super, features);
  1643. features = btrfs_super_compat_ro_flags(disk_super) &
  1644. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1645. if (!(sb->s_flags & MS_RDONLY) && features) {
  1646. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1647. "unsupported option features (%Lx).\n",
  1648. (unsigned long long)features);
  1649. err = -EINVAL;
  1650. goto fail_iput;
  1651. }
  1652. btrfs_init_workers(&fs_info->generic_worker,
  1653. "genwork", 1, NULL);
  1654. btrfs_init_workers(&fs_info->workers, "worker",
  1655. fs_info->thread_pool_size,
  1656. &fs_info->generic_worker);
  1657. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1658. fs_info->thread_pool_size,
  1659. &fs_info->generic_worker);
  1660. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1661. min_t(u64, fs_devices->num_devices,
  1662. fs_info->thread_pool_size),
  1663. &fs_info->generic_worker);
  1664. /* a higher idle thresh on the submit workers makes it much more
  1665. * likely that bios will be send down in a sane order to the
  1666. * devices
  1667. */
  1668. fs_info->submit_workers.idle_thresh = 64;
  1669. fs_info->workers.idle_thresh = 16;
  1670. fs_info->workers.ordered = 1;
  1671. fs_info->delalloc_workers.idle_thresh = 2;
  1672. fs_info->delalloc_workers.ordered = 1;
  1673. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1674. &fs_info->generic_worker);
  1675. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1676. fs_info->thread_pool_size,
  1677. &fs_info->generic_worker);
  1678. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1679. fs_info->thread_pool_size,
  1680. &fs_info->generic_worker);
  1681. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1682. "endio-meta-write", fs_info->thread_pool_size,
  1683. &fs_info->generic_worker);
  1684. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1685. fs_info->thread_pool_size,
  1686. &fs_info->generic_worker);
  1687. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1688. 1, &fs_info->generic_worker);
  1689. /*
  1690. * endios are largely parallel and should have a very
  1691. * low idle thresh
  1692. */
  1693. fs_info->endio_workers.idle_thresh = 4;
  1694. fs_info->endio_meta_workers.idle_thresh = 4;
  1695. fs_info->endio_write_workers.idle_thresh = 2;
  1696. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1697. btrfs_start_workers(&fs_info->workers, 1);
  1698. btrfs_start_workers(&fs_info->generic_worker, 1);
  1699. btrfs_start_workers(&fs_info->submit_workers, 1);
  1700. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1701. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1702. btrfs_start_workers(&fs_info->endio_workers, 1);
  1703. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1704. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1705. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1706. btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
  1707. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1708. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1709. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1710. nodesize = btrfs_super_nodesize(disk_super);
  1711. leafsize = btrfs_super_leafsize(disk_super);
  1712. sectorsize = btrfs_super_sectorsize(disk_super);
  1713. stripesize = btrfs_super_stripesize(disk_super);
  1714. tree_root->nodesize = nodesize;
  1715. tree_root->leafsize = leafsize;
  1716. tree_root->sectorsize = sectorsize;
  1717. tree_root->stripesize = stripesize;
  1718. sb->s_blocksize = sectorsize;
  1719. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1720. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1721. sizeof(disk_super->magic))) {
  1722. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1723. goto fail_sb_buffer;
  1724. }
  1725. mutex_lock(&fs_info->chunk_mutex);
  1726. ret = btrfs_read_sys_array(tree_root);
  1727. mutex_unlock(&fs_info->chunk_mutex);
  1728. if (ret) {
  1729. printk(KERN_WARNING "btrfs: failed to read the system "
  1730. "array on %s\n", sb->s_id);
  1731. goto fail_sb_buffer;
  1732. }
  1733. blocksize = btrfs_level_size(tree_root,
  1734. btrfs_super_chunk_root_level(disk_super));
  1735. generation = btrfs_super_chunk_root_generation(disk_super);
  1736. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1737. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1738. chunk_root->node = read_tree_block(chunk_root,
  1739. btrfs_super_chunk_root(disk_super),
  1740. blocksize, generation);
  1741. BUG_ON(!chunk_root->node);
  1742. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1743. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1744. sb->s_id);
  1745. goto fail_chunk_root;
  1746. }
  1747. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1748. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1749. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1750. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1751. BTRFS_UUID_SIZE);
  1752. mutex_lock(&fs_info->chunk_mutex);
  1753. ret = btrfs_read_chunk_tree(chunk_root);
  1754. mutex_unlock(&fs_info->chunk_mutex);
  1755. if (ret) {
  1756. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1757. sb->s_id);
  1758. goto fail_chunk_root;
  1759. }
  1760. btrfs_close_extra_devices(fs_devices);
  1761. blocksize = btrfs_level_size(tree_root,
  1762. btrfs_super_root_level(disk_super));
  1763. generation = btrfs_super_generation(disk_super);
  1764. tree_root->node = read_tree_block(tree_root,
  1765. btrfs_super_root(disk_super),
  1766. blocksize, generation);
  1767. if (!tree_root->node)
  1768. goto fail_chunk_root;
  1769. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1770. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1771. sb->s_id);
  1772. goto fail_tree_root;
  1773. }
  1774. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1775. tree_root->commit_root = btrfs_root_node(tree_root);
  1776. ret = find_and_setup_root(tree_root, fs_info,
  1777. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1778. if (ret)
  1779. goto fail_tree_root;
  1780. extent_root->track_dirty = 1;
  1781. ret = find_and_setup_root(tree_root, fs_info,
  1782. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1783. if (ret)
  1784. goto fail_extent_root;
  1785. dev_root->track_dirty = 1;
  1786. ret = find_and_setup_root(tree_root, fs_info,
  1787. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1788. if (ret)
  1789. goto fail_dev_root;
  1790. csum_root->track_dirty = 1;
  1791. fs_info->generation = generation;
  1792. fs_info->last_trans_committed = generation;
  1793. fs_info->data_alloc_profile = (u64)-1;
  1794. fs_info->metadata_alloc_profile = (u64)-1;
  1795. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1796. ret = btrfs_read_block_groups(extent_root);
  1797. if (ret) {
  1798. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1799. goto fail_block_groups;
  1800. }
  1801. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1802. "btrfs-cleaner");
  1803. if (IS_ERR(fs_info->cleaner_kthread))
  1804. goto fail_block_groups;
  1805. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1806. tree_root,
  1807. "btrfs-transaction");
  1808. if (IS_ERR(fs_info->transaction_kthread))
  1809. goto fail_cleaner;
  1810. if (!btrfs_test_opt(tree_root, SSD) &&
  1811. !btrfs_test_opt(tree_root, NOSSD) &&
  1812. !fs_info->fs_devices->rotating) {
  1813. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1814. "mode\n");
  1815. btrfs_set_opt(fs_info->mount_opt, SSD);
  1816. }
  1817. /* do not make disk changes in broken FS */
  1818. if (btrfs_super_log_root(disk_super) != 0 &&
  1819. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  1820. u64 bytenr = btrfs_super_log_root(disk_super);
  1821. if (fs_devices->rw_devices == 0) {
  1822. printk(KERN_WARNING "Btrfs log replay required "
  1823. "on RO media\n");
  1824. err = -EIO;
  1825. goto fail_trans_kthread;
  1826. }
  1827. blocksize =
  1828. btrfs_level_size(tree_root,
  1829. btrfs_super_log_root_level(disk_super));
  1830. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1831. if (!log_tree_root) {
  1832. err = -ENOMEM;
  1833. goto fail_trans_kthread;
  1834. }
  1835. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1836. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1837. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1838. blocksize,
  1839. generation + 1);
  1840. ret = btrfs_recover_log_trees(log_tree_root);
  1841. BUG_ON(ret);
  1842. if (sb->s_flags & MS_RDONLY) {
  1843. ret = btrfs_commit_super(tree_root);
  1844. BUG_ON(ret);
  1845. }
  1846. }
  1847. ret = btrfs_find_orphan_roots(tree_root);
  1848. BUG_ON(ret);
  1849. if (!(sb->s_flags & MS_RDONLY)) {
  1850. ret = btrfs_cleanup_fs_roots(fs_info);
  1851. BUG_ON(ret);
  1852. ret = btrfs_recover_relocation(tree_root);
  1853. if (ret < 0) {
  1854. printk(KERN_WARNING
  1855. "btrfs: failed to recover relocation\n");
  1856. err = -EINVAL;
  1857. goto fail_trans_kthread;
  1858. }
  1859. }
  1860. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1861. location.type = BTRFS_ROOT_ITEM_KEY;
  1862. location.offset = (u64)-1;
  1863. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1864. if (!fs_info->fs_root)
  1865. goto fail_trans_kthread;
  1866. if (IS_ERR(fs_info->fs_root)) {
  1867. err = PTR_ERR(fs_info->fs_root);
  1868. goto fail_trans_kthread;
  1869. }
  1870. if (!(sb->s_flags & MS_RDONLY)) {
  1871. down_read(&fs_info->cleanup_work_sem);
  1872. err = btrfs_orphan_cleanup(fs_info->fs_root);
  1873. if (!err)
  1874. err = btrfs_orphan_cleanup(fs_info->tree_root);
  1875. up_read(&fs_info->cleanup_work_sem);
  1876. if (err) {
  1877. close_ctree(tree_root);
  1878. return ERR_PTR(err);
  1879. }
  1880. }
  1881. return tree_root;
  1882. fail_trans_kthread:
  1883. kthread_stop(fs_info->transaction_kthread);
  1884. fail_cleaner:
  1885. kthread_stop(fs_info->cleaner_kthread);
  1886. /*
  1887. * make sure we're done with the btree inode before we stop our
  1888. * kthreads
  1889. */
  1890. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1891. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1892. fail_block_groups:
  1893. btrfs_free_block_groups(fs_info);
  1894. free_extent_buffer(csum_root->node);
  1895. free_extent_buffer(csum_root->commit_root);
  1896. fail_dev_root:
  1897. free_extent_buffer(dev_root->node);
  1898. free_extent_buffer(dev_root->commit_root);
  1899. fail_extent_root:
  1900. free_extent_buffer(extent_root->node);
  1901. free_extent_buffer(extent_root->commit_root);
  1902. fail_tree_root:
  1903. free_extent_buffer(tree_root->node);
  1904. free_extent_buffer(tree_root->commit_root);
  1905. fail_chunk_root:
  1906. free_extent_buffer(chunk_root->node);
  1907. free_extent_buffer(chunk_root->commit_root);
  1908. fail_sb_buffer:
  1909. btrfs_stop_workers(&fs_info->generic_worker);
  1910. btrfs_stop_workers(&fs_info->fixup_workers);
  1911. btrfs_stop_workers(&fs_info->delalloc_workers);
  1912. btrfs_stop_workers(&fs_info->workers);
  1913. btrfs_stop_workers(&fs_info->endio_workers);
  1914. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1915. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1916. btrfs_stop_workers(&fs_info->endio_write_workers);
  1917. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1918. btrfs_stop_workers(&fs_info->submit_workers);
  1919. fail_iput:
  1920. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1921. iput(fs_info->btree_inode);
  1922. btrfs_close_devices(fs_info->fs_devices);
  1923. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1924. fail_bdi:
  1925. bdi_destroy(&fs_info->bdi);
  1926. fail_srcu:
  1927. cleanup_srcu_struct(&fs_info->subvol_srcu);
  1928. fail:
  1929. kfree(extent_root);
  1930. kfree(tree_root);
  1931. kfree(fs_info);
  1932. kfree(chunk_root);
  1933. kfree(dev_root);
  1934. kfree(csum_root);
  1935. return ERR_PTR(err);
  1936. }
  1937. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1938. {
  1939. char b[BDEVNAME_SIZE];
  1940. if (uptodate) {
  1941. set_buffer_uptodate(bh);
  1942. } else {
  1943. if (printk_ratelimit()) {
  1944. printk(KERN_WARNING "lost page write due to "
  1945. "I/O error on %s\n",
  1946. bdevname(bh->b_bdev, b));
  1947. }
  1948. /* note, we dont' set_buffer_write_io_error because we have
  1949. * our own ways of dealing with the IO errors
  1950. */
  1951. clear_buffer_uptodate(bh);
  1952. }
  1953. unlock_buffer(bh);
  1954. put_bh(bh);
  1955. }
  1956. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1957. {
  1958. struct buffer_head *bh;
  1959. struct buffer_head *latest = NULL;
  1960. struct btrfs_super_block *super;
  1961. int i;
  1962. u64 transid = 0;
  1963. u64 bytenr;
  1964. /* we would like to check all the supers, but that would make
  1965. * a btrfs mount succeed after a mkfs from a different FS.
  1966. * So, we need to add a special mount option to scan for
  1967. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1968. */
  1969. for (i = 0; i < 1; i++) {
  1970. bytenr = btrfs_sb_offset(i);
  1971. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1972. break;
  1973. bh = __bread(bdev, bytenr / 4096, 4096);
  1974. if (!bh)
  1975. continue;
  1976. super = (struct btrfs_super_block *)bh->b_data;
  1977. if (btrfs_super_bytenr(super) != bytenr ||
  1978. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1979. sizeof(super->magic))) {
  1980. brelse(bh);
  1981. continue;
  1982. }
  1983. if (!latest || btrfs_super_generation(super) > transid) {
  1984. brelse(latest);
  1985. latest = bh;
  1986. transid = btrfs_super_generation(super);
  1987. } else {
  1988. brelse(bh);
  1989. }
  1990. }
  1991. return latest;
  1992. }
  1993. /*
  1994. * this should be called twice, once with wait == 0 and
  1995. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1996. * we write are pinned.
  1997. *
  1998. * They are released when wait == 1 is done.
  1999. * max_mirrors must be the same for both runs, and it indicates how
  2000. * many supers on this one device should be written.
  2001. *
  2002. * max_mirrors == 0 means to write them all.
  2003. */
  2004. static int write_dev_supers(struct btrfs_device *device,
  2005. struct btrfs_super_block *sb,
  2006. int do_barriers, int wait, int max_mirrors)
  2007. {
  2008. struct buffer_head *bh;
  2009. int i;
  2010. int ret;
  2011. int errors = 0;
  2012. u32 crc;
  2013. u64 bytenr;
  2014. int last_barrier = 0;
  2015. if (max_mirrors == 0)
  2016. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2017. /* make sure only the last submit_bh does a barrier */
  2018. if (do_barriers) {
  2019. for (i = 0; i < max_mirrors; i++) {
  2020. bytenr = btrfs_sb_offset(i);
  2021. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2022. device->total_bytes)
  2023. break;
  2024. last_barrier = i;
  2025. }
  2026. }
  2027. for (i = 0; i < max_mirrors; i++) {
  2028. bytenr = btrfs_sb_offset(i);
  2029. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2030. break;
  2031. if (wait) {
  2032. bh = __find_get_block(device->bdev, bytenr / 4096,
  2033. BTRFS_SUPER_INFO_SIZE);
  2034. BUG_ON(!bh);
  2035. wait_on_buffer(bh);
  2036. if (!buffer_uptodate(bh))
  2037. errors++;
  2038. /* drop our reference */
  2039. brelse(bh);
  2040. /* drop the reference from the wait == 0 run */
  2041. brelse(bh);
  2042. continue;
  2043. } else {
  2044. btrfs_set_super_bytenr(sb, bytenr);
  2045. crc = ~(u32)0;
  2046. crc = btrfs_csum_data(NULL, (char *)sb +
  2047. BTRFS_CSUM_SIZE, crc,
  2048. BTRFS_SUPER_INFO_SIZE -
  2049. BTRFS_CSUM_SIZE);
  2050. btrfs_csum_final(crc, sb->csum);
  2051. /*
  2052. * one reference for us, and we leave it for the
  2053. * caller
  2054. */
  2055. bh = __getblk(device->bdev, bytenr / 4096,
  2056. BTRFS_SUPER_INFO_SIZE);
  2057. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2058. /* one reference for submit_bh */
  2059. get_bh(bh);
  2060. set_buffer_uptodate(bh);
  2061. lock_buffer(bh);
  2062. bh->b_end_io = btrfs_end_buffer_write_sync;
  2063. }
  2064. if (i == last_barrier && do_barriers)
  2065. ret = submit_bh(WRITE_FLUSH_FUA, bh);
  2066. else
  2067. ret = submit_bh(WRITE_SYNC, bh);
  2068. if (ret)
  2069. errors++;
  2070. }
  2071. return errors < i ? 0 : -1;
  2072. }
  2073. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2074. {
  2075. struct list_head *head;
  2076. struct btrfs_device *dev;
  2077. struct btrfs_super_block *sb;
  2078. struct btrfs_dev_item *dev_item;
  2079. int ret;
  2080. int do_barriers;
  2081. int max_errors;
  2082. int total_errors = 0;
  2083. u64 flags;
  2084. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  2085. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2086. sb = &root->fs_info->super_for_commit;
  2087. dev_item = &sb->dev_item;
  2088. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2089. head = &root->fs_info->fs_devices->devices;
  2090. list_for_each_entry(dev, head, dev_list) {
  2091. if (!dev->bdev) {
  2092. total_errors++;
  2093. continue;
  2094. }
  2095. if (!dev->in_fs_metadata || !dev->writeable)
  2096. continue;
  2097. btrfs_set_stack_device_generation(dev_item, 0);
  2098. btrfs_set_stack_device_type(dev_item, dev->type);
  2099. btrfs_set_stack_device_id(dev_item, dev->devid);
  2100. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2101. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2102. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2103. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2104. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2105. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2106. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2107. flags = btrfs_super_flags(sb);
  2108. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2109. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2110. if (ret)
  2111. total_errors++;
  2112. }
  2113. if (total_errors > max_errors) {
  2114. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2115. total_errors);
  2116. BUG();
  2117. }
  2118. total_errors = 0;
  2119. list_for_each_entry(dev, head, dev_list) {
  2120. if (!dev->bdev)
  2121. continue;
  2122. if (!dev->in_fs_metadata || !dev->writeable)
  2123. continue;
  2124. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2125. if (ret)
  2126. total_errors++;
  2127. }
  2128. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2129. if (total_errors > max_errors) {
  2130. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2131. total_errors);
  2132. BUG();
  2133. }
  2134. return 0;
  2135. }
  2136. int write_ctree_super(struct btrfs_trans_handle *trans,
  2137. struct btrfs_root *root, int max_mirrors)
  2138. {
  2139. int ret;
  2140. ret = write_all_supers(root, max_mirrors);
  2141. return ret;
  2142. }
  2143. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2144. {
  2145. spin_lock(&fs_info->fs_roots_radix_lock);
  2146. radix_tree_delete(&fs_info->fs_roots_radix,
  2147. (unsigned long)root->root_key.objectid);
  2148. spin_unlock(&fs_info->fs_roots_radix_lock);
  2149. if (btrfs_root_refs(&root->root_item) == 0)
  2150. synchronize_srcu(&fs_info->subvol_srcu);
  2151. free_fs_root(root);
  2152. return 0;
  2153. }
  2154. static void free_fs_root(struct btrfs_root *root)
  2155. {
  2156. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2157. if (root->anon_super.s_dev) {
  2158. down_write(&root->anon_super.s_umount);
  2159. kill_anon_super(&root->anon_super);
  2160. }
  2161. free_extent_buffer(root->node);
  2162. free_extent_buffer(root->commit_root);
  2163. kfree(root->name);
  2164. kfree(root);
  2165. }
  2166. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2167. {
  2168. int ret;
  2169. struct btrfs_root *gang[8];
  2170. int i;
  2171. while (!list_empty(&fs_info->dead_roots)) {
  2172. gang[0] = list_entry(fs_info->dead_roots.next,
  2173. struct btrfs_root, root_list);
  2174. list_del(&gang[0]->root_list);
  2175. if (gang[0]->in_radix) {
  2176. btrfs_free_fs_root(fs_info, gang[0]);
  2177. } else {
  2178. free_extent_buffer(gang[0]->node);
  2179. free_extent_buffer(gang[0]->commit_root);
  2180. kfree(gang[0]);
  2181. }
  2182. }
  2183. while (1) {
  2184. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2185. (void **)gang, 0,
  2186. ARRAY_SIZE(gang));
  2187. if (!ret)
  2188. break;
  2189. for (i = 0; i < ret; i++)
  2190. btrfs_free_fs_root(fs_info, gang[i]);
  2191. }
  2192. return 0;
  2193. }
  2194. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2195. {
  2196. u64 root_objectid = 0;
  2197. struct btrfs_root *gang[8];
  2198. int i;
  2199. int ret;
  2200. while (1) {
  2201. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2202. (void **)gang, root_objectid,
  2203. ARRAY_SIZE(gang));
  2204. if (!ret)
  2205. break;
  2206. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2207. for (i = 0; i < ret; i++) {
  2208. int err;
  2209. root_objectid = gang[i]->root_key.objectid;
  2210. err = btrfs_orphan_cleanup(gang[i]);
  2211. if (err)
  2212. return err;
  2213. }
  2214. root_objectid++;
  2215. }
  2216. return 0;
  2217. }
  2218. int btrfs_commit_super(struct btrfs_root *root)
  2219. {
  2220. struct btrfs_trans_handle *trans;
  2221. int ret;
  2222. mutex_lock(&root->fs_info->cleaner_mutex);
  2223. btrfs_run_delayed_iputs(root);
  2224. btrfs_clean_old_snapshots(root);
  2225. mutex_unlock(&root->fs_info->cleaner_mutex);
  2226. /* wait until ongoing cleanup work done */
  2227. down_write(&root->fs_info->cleanup_work_sem);
  2228. up_write(&root->fs_info->cleanup_work_sem);
  2229. trans = btrfs_join_transaction(root, 1);
  2230. if (IS_ERR(trans))
  2231. return PTR_ERR(trans);
  2232. ret = btrfs_commit_transaction(trans, root);
  2233. BUG_ON(ret);
  2234. /* run commit again to drop the original snapshot */
  2235. trans = btrfs_join_transaction(root, 1);
  2236. if (IS_ERR(trans))
  2237. return PTR_ERR(trans);
  2238. btrfs_commit_transaction(trans, root);
  2239. ret = btrfs_write_and_wait_transaction(NULL, root);
  2240. BUG_ON(ret);
  2241. ret = write_ctree_super(NULL, root, 0);
  2242. return ret;
  2243. }
  2244. int close_ctree(struct btrfs_root *root)
  2245. {
  2246. struct btrfs_fs_info *fs_info = root->fs_info;
  2247. int ret;
  2248. fs_info->closing = 1;
  2249. smp_mb();
  2250. btrfs_put_block_group_cache(fs_info);
  2251. /*
  2252. * Here come 2 situations when btrfs is broken to flip readonly:
  2253. *
  2254. * 1. when btrfs flips readonly somewhere else before
  2255. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2256. * and btrfs will skip to write sb directly to keep
  2257. * ERROR state on disk.
  2258. *
  2259. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2260. * and in such case, btrfs cannnot write sb via btrfs_commit_super,
  2261. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2262. * btrfs will cleanup all FS resources first and write sb then.
  2263. */
  2264. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2265. ret = btrfs_commit_super(root);
  2266. if (ret)
  2267. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2268. }
  2269. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2270. ret = btrfs_error_commit_super(root);
  2271. if (ret)
  2272. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2273. }
  2274. kthread_stop(root->fs_info->transaction_kthread);
  2275. kthread_stop(root->fs_info->cleaner_kthread);
  2276. fs_info->closing = 2;
  2277. smp_mb();
  2278. if (fs_info->delalloc_bytes) {
  2279. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2280. (unsigned long long)fs_info->delalloc_bytes);
  2281. }
  2282. if (fs_info->total_ref_cache_size) {
  2283. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2284. (unsigned long long)fs_info->total_ref_cache_size);
  2285. }
  2286. free_extent_buffer(fs_info->extent_root->node);
  2287. free_extent_buffer(fs_info->extent_root->commit_root);
  2288. free_extent_buffer(fs_info->tree_root->node);
  2289. free_extent_buffer(fs_info->tree_root->commit_root);
  2290. free_extent_buffer(root->fs_info->chunk_root->node);
  2291. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2292. free_extent_buffer(root->fs_info->dev_root->node);
  2293. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2294. free_extent_buffer(root->fs_info->csum_root->node);
  2295. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2296. btrfs_free_block_groups(root->fs_info);
  2297. del_fs_roots(fs_info);
  2298. iput(fs_info->btree_inode);
  2299. btrfs_stop_workers(&fs_info->generic_worker);
  2300. btrfs_stop_workers(&fs_info->fixup_workers);
  2301. btrfs_stop_workers(&fs_info->delalloc_workers);
  2302. btrfs_stop_workers(&fs_info->workers);
  2303. btrfs_stop_workers(&fs_info->endio_workers);
  2304. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2305. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2306. btrfs_stop_workers(&fs_info->endio_write_workers);
  2307. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2308. btrfs_stop_workers(&fs_info->submit_workers);
  2309. btrfs_close_devices(fs_info->fs_devices);
  2310. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2311. bdi_destroy(&fs_info->bdi);
  2312. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2313. kfree(fs_info->extent_root);
  2314. kfree(fs_info->tree_root);
  2315. kfree(fs_info->chunk_root);
  2316. kfree(fs_info->dev_root);
  2317. kfree(fs_info->csum_root);
  2318. kfree(fs_info);
  2319. return 0;
  2320. }
  2321. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2322. {
  2323. int ret;
  2324. struct inode *btree_inode = buf->first_page->mapping->host;
  2325. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2326. NULL);
  2327. if (!ret)
  2328. return ret;
  2329. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2330. parent_transid);
  2331. return !ret;
  2332. }
  2333. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2334. {
  2335. struct inode *btree_inode = buf->first_page->mapping->host;
  2336. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2337. buf);
  2338. }
  2339. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2340. {
  2341. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2342. u64 transid = btrfs_header_generation(buf);
  2343. struct inode *btree_inode = root->fs_info->btree_inode;
  2344. int was_dirty;
  2345. btrfs_assert_tree_locked(buf);
  2346. if (transid != root->fs_info->generation) {
  2347. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2348. "found %llu running %llu\n",
  2349. (unsigned long long)buf->start,
  2350. (unsigned long long)transid,
  2351. (unsigned long long)root->fs_info->generation);
  2352. WARN_ON(1);
  2353. }
  2354. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2355. buf);
  2356. if (!was_dirty) {
  2357. spin_lock(&root->fs_info->delalloc_lock);
  2358. root->fs_info->dirty_metadata_bytes += buf->len;
  2359. spin_unlock(&root->fs_info->delalloc_lock);
  2360. }
  2361. }
  2362. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2363. {
  2364. /*
  2365. * looks as though older kernels can get into trouble with
  2366. * this code, they end up stuck in balance_dirty_pages forever
  2367. */
  2368. u64 num_dirty;
  2369. unsigned long thresh = 32 * 1024 * 1024;
  2370. if (current->flags & PF_MEMALLOC)
  2371. return;
  2372. num_dirty = root->fs_info->dirty_metadata_bytes;
  2373. if (num_dirty > thresh) {
  2374. balance_dirty_pages_ratelimited_nr(
  2375. root->fs_info->btree_inode->i_mapping, 1);
  2376. }
  2377. return;
  2378. }
  2379. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2380. {
  2381. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2382. int ret;
  2383. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2384. if (ret == 0)
  2385. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2386. return ret;
  2387. }
  2388. int btree_lock_page_hook(struct page *page)
  2389. {
  2390. struct inode *inode = page->mapping->host;
  2391. struct btrfs_root *root = BTRFS_I(inode)->root;
  2392. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2393. struct extent_buffer *eb;
  2394. unsigned long len;
  2395. u64 bytenr = page_offset(page);
  2396. if (page->private == EXTENT_PAGE_PRIVATE)
  2397. goto out;
  2398. len = page->private >> 2;
  2399. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2400. if (!eb)
  2401. goto out;
  2402. btrfs_tree_lock(eb);
  2403. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2404. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2405. spin_lock(&root->fs_info->delalloc_lock);
  2406. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2407. root->fs_info->dirty_metadata_bytes -= eb->len;
  2408. else
  2409. WARN_ON(1);
  2410. spin_unlock(&root->fs_info->delalloc_lock);
  2411. }
  2412. btrfs_tree_unlock(eb);
  2413. free_extent_buffer(eb);
  2414. out:
  2415. lock_page(page);
  2416. return 0;
  2417. }
  2418. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2419. int read_only)
  2420. {
  2421. if (read_only)
  2422. return;
  2423. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2424. printk(KERN_WARNING "warning: mount fs with errors, "
  2425. "running btrfsck is recommended\n");
  2426. }
  2427. int btrfs_error_commit_super(struct btrfs_root *root)
  2428. {
  2429. int ret;
  2430. mutex_lock(&root->fs_info->cleaner_mutex);
  2431. btrfs_run_delayed_iputs(root);
  2432. mutex_unlock(&root->fs_info->cleaner_mutex);
  2433. down_write(&root->fs_info->cleanup_work_sem);
  2434. up_write(&root->fs_info->cleanup_work_sem);
  2435. /* cleanup FS via transaction */
  2436. btrfs_cleanup_transaction(root);
  2437. ret = write_ctree_super(NULL, root, 0);
  2438. return ret;
  2439. }
  2440. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2441. {
  2442. struct btrfs_inode *btrfs_inode;
  2443. struct list_head splice;
  2444. INIT_LIST_HEAD(&splice);
  2445. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2446. spin_lock(&root->fs_info->ordered_extent_lock);
  2447. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2448. while (!list_empty(&splice)) {
  2449. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2450. ordered_operations);
  2451. list_del_init(&btrfs_inode->ordered_operations);
  2452. btrfs_invalidate_inodes(btrfs_inode->root);
  2453. }
  2454. spin_unlock(&root->fs_info->ordered_extent_lock);
  2455. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2456. return 0;
  2457. }
  2458. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2459. {
  2460. struct list_head splice;
  2461. struct btrfs_ordered_extent *ordered;
  2462. struct inode *inode;
  2463. INIT_LIST_HEAD(&splice);
  2464. spin_lock(&root->fs_info->ordered_extent_lock);
  2465. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2466. while (!list_empty(&splice)) {
  2467. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2468. root_extent_list);
  2469. list_del_init(&ordered->root_extent_list);
  2470. atomic_inc(&ordered->refs);
  2471. /* the inode may be getting freed (in sys_unlink path). */
  2472. inode = igrab(ordered->inode);
  2473. spin_unlock(&root->fs_info->ordered_extent_lock);
  2474. if (inode)
  2475. iput(inode);
  2476. atomic_set(&ordered->refs, 1);
  2477. btrfs_put_ordered_extent(ordered);
  2478. spin_lock(&root->fs_info->ordered_extent_lock);
  2479. }
  2480. spin_unlock(&root->fs_info->ordered_extent_lock);
  2481. return 0;
  2482. }
  2483. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2484. struct btrfs_root *root)
  2485. {
  2486. struct rb_node *node;
  2487. struct btrfs_delayed_ref_root *delayed_refs;
  2488. struct btrfs_delayed_ref_node *ref;
  2489. int ret = 0;
  2490. delayed_refs = &trans->delayed_refs;
  2491. spin_lock(&delayed_refs->lock);
  2492. if (delayed_refs->num_entries == 0) {
  2493. printk(KERN_INFO "delayed_refs has NO entry\n");
  2494. return ret;
  2495. }
  2496. node = rb_first(&delayed_refs->root);
  2497. while (node) {
  2498. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2499. node = rb_next(node);
  2500. ref->in_tree = 0;
  2501. rb_erase(&ref->rb_node, &delayed_refs->root);
  2502. delayed_refs->num_entries--;
  2503. atomic_set(&ref->refs, 1);
  2504. if (btrfs_delayed_ref_is_head(ref)) {
  2505. struct btrfs_delayed_ref_head *head;
  2506. head = btrfs_delayed_node_to_head(ref);
  2507. mutex_lock(&head->mutex);
  2508. kfree(head->extent_op);
  2509. delayed_refs->num_heads--;
  2510. if (list_empty(&head->cluster))
  2511. delayed_refs->num_heads_ready--;
  2512. list_del_init(&head->cluster);
  2513. mutex_unlock(&head->mutex);
  2514. }
  2515. spin_unlock(&delayed_refs->lock);
  2516. btrfs_put_delayed_ref(ref);
  2517. cond_resched();
  2518. spin_lock(&delayed_refs->lock);
  2519. }
  2520. spin_unlock(&delayed_refs->lock);
  2521. return ret;
  2522. }
  2523. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2524. {
  2525. struct btrfs_pending_snapshot *snapshot;
  2526. struct list_head splice;
  2527. INIT_LIST_HEAD(&splice);
  2528. list_splice_init(&t->pending_snapshots, &splice);
  2529. while (!list_empty(&splice)) {
  2530. snapshot = list_entry(splice.next,
  2531. struct btrfs_pending_snapshot,
  2532. list);
  2533. list_del_init(&snapshot->list);
  2534. kfree(snapshot);
  2535. }
  2536. return 0;
  2537. }
  2538. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2539. {
  2540. struct btrfs_inode *btrfs_inode;
  2541. struct list_head splice;
  2542. INIT_LIST_HEAD(&splice);
  2543. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2544. spin_lock(&root->fs_info->delalloc_lock);
  2545. while (!list_empty(&splice)) {
  2546. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2547. delalloc_inodes);
  2548. list_del_init(&btrfs_inode->delalloc_inodes);
  2549. btrfs_invalidate_inodes(btrfs_inode->root);
  2550. }
  2551. spin_unlock(&root->fs_info->delalloc_lock);
  2552. return 0;
  2553. }
  2554. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2555. struct extent_io_tree *dirty_pages,
  2556. int mark)
  2557. {
  2558. int ret;
  2559. struct page *page;
  2560. struct inode *btree_inode = root->fs_info->btree_inode;
  2561. struct extent_buffer *eb;
  2562. u64 start = 0;
  2563. u64 end;
  2564. u64 offset;
  2565. unsigned long index;
  2566. while (1) {
  2567. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2568. mark);
  2569. if (ret)
  2570. break;
  2571. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2572. while (start <= end) {
  2573. index = start >> PAGE_CACHE_SHIFT;
  2574. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2575. page = find_get_page(btree_inode->i_mapping, index);
  2576. if (!page)
  2577. continue;
  2578. offset = page_offset(page);
  2579. spin_lock(&dirty_pages->buffer_lock);
  2580. eb = radix_tree_lookup(
  2581. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2582. offset >> PAGE_CACHE_SHIFT);
  2583. spin_unlock(&dirty_pages->buffer_lock);
  2584. if (eb) {
  2585. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2586. &eb->bflags);
  2587. atomic_set(&eb->refs, 1);
  2588. }
  2589. if (PageWriteback(page))
  2590. end_page_writeback(page);
  2591. lock_page(page);
  2592. if (PageDirty(page)) {
  2593. clear_page_dirty_for_io(page);
  2594. spin_lock_irq(&page->mapping->tree_lock);
  2595. radix_tree_tag_clear(&page->mapping->page_tree,
  2596. page_index(page),
  2597. PAGECACHE_TAG_DIRTY);
  2598. spin_unlock_irq(&page->mapping->tree_lock);
  2599. }
  2600. page->mapping->a_ops->invalidatepage(page, 0);
  2601. unlock_page(page);
  2602. }
  2603. }
  2604. return ret;
  2605. }
  2606. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2607. struct extent_io_tree *pinned_extents)
  2608. {
  2609. struct extent_io_tree *unpin;
  2610. u64 start;
  2611. u64 end;
  2612. int ret;
  2613. unpin = pinned_extents;
  2614. while (1) {
  2615. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2616. EXTENT_DIRTY);
  2617. if (ret)
  2618. break;
  2619. /* opt_discard */
  2620. ret = btrfs_error_discard_extent(root, start, end + 1 - start);
  2621. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  2622. btrfs_error_unpin_extent_range(root, start, end);
  2623. cond_resched();
  2624. }
  2625. return 0;
  2626. }
  2627. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  2628. {
  2629. struct btrfs_transaction *t;
  2630. LIST_HEAD(list);
  2631. WARN_ON(1);
  2632. mutex_lock(&root->fs_info->trans_mutex);
  2633. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  2634. list_splice_init(&root->fs_info->trans_list, &list);
  2635. while (!list_empty(&list)) {
  2636. t = list_entry(list.next, struct btrfs_transaction, list);
  2637. if (!t)
  2638. break;
  2639. btrfs_destroy_ordered_operations(root);
  2640. btrfs_destroy_ordered_extents(root);
  2641. btrfs_destroy_delayed_refs(t, root);
  2642. btrfs_block_rsv_release(root,
  2643. &root->fs_info->trans_block_rsv,
  2644. t->dirty_pages.dirty_bytes);
  2645. /* FIXME: cleanup wait for commit */
  2646. t->in_commit = 1;
  2647. t->blocked = 1;
  2648. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  2649. wake_up(&root->fs_info->transaction_blocked_wait);
  2650. t->blocked = 0;
  2651. if (waitqueue_active(&root->fs_info->transaction_wait))
  2652. wake_up(&root->fs_info->transaction_wait);
  2653. mutex_unlock(&root->fs_info->trans_mutex);
  2654. mutex_lock(&root->fs_info->trans_mutex);
  2655. t->commit_done = 1;
  2656. if (waitqueue_active(&t->commit_wait))
  2657. wake_up(&t->commit_wait);
  2658. mutex_unlock(&root->fs_info->trans_mutex);
  2659. mutex_lock(&root->fs_info->trans_mutex);
  2660. btrfs_destroy_pending_snapshots(t);
  2661. btrfs_destroy_delalloc_inodes(root);
  2662. spin_lock(&root->fs_info->new_trans_lock);
  2663. root->fs_info->running_transaction = NULL;
  2664. spin_unlock(&root->fs_info->new_trans_lock);
  2665. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  2666. EXTENT_DIRTY);
  2667. btrfs_destroy_pinned_extent(root,
  2668. root->fs_info->pinned_extents);
  2669. t->use_count = 0;
  2670. list_del_init(&t->list);
  2671. memset(t, 0, sizeof(*t));
  2672. kmem_cache_free(btrfs_transaction_cachep, t);
  2673. }
  2674. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  2675. mutex_unlock(&root->fs_info->trans_mutex);
  2676. return 0;
  2677. }
  2678. static struct extent_io_ops btree_extent_io_ops = {
  2679. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2680. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2681. .submit_bio_hook = btree_submit_bio_hook,
  2682. /* note we're sharing with inode.c for the merge bio hook */
  2683. .merge_bio_hook = btrfs_merge_bio_hook,
  2684. };