xhci-mem.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/usb.h>
  23. #include <linux/pci.h>
  24. #include <linux/slab.h>
  25. #include <linux/dmapool.h>
  26. #include "xhci.h"
  27. /*
  28. * Allocates a generic ring segment from the ring pool, sets the dma address,
  29. * initializes the segment to zero, and sets the private next pointer to NULL.
  30. *
  31. * Section 4.11.1.1:
  32. * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  33. */
  34. static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
  35. {
  36. struct xhci_segment *seg;
  37. dma_addr_t dma;
  38. seg = kzalloc(sizeof *seg, flags);
  39. if (!seg)
  40. return NULL;
  41. xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
  42. seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  43. if (!seg->trbs) {
  44. kfree(seg);
  45. return NULL;
  46. }
  47. xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
  48. seg->trbs, (unsigned long long)dma);
  49. memset(seg->trbs, 0, SEGMENT_SIZE);
  50. seg->dma = dma;
  51. seg->next = NULL;
  52. return seg;
  53. }
  54. static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  55. {
  56. if (!seg)
  57. return;
  58. if (seg->trbs) {
  59. xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
  60. seg->trbs, (unsigned long long)seg->dma);
  61. dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  62. seg->trbs = NULL;
  63. }
  64. xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
  65. kfree(seg);
  66. }
  67. /*
  68. * Make the prev segment point to the next segment.
  69. *
  70. * Change the last TRB in the prev segment to be a Link TRB which points to the
  71. * DMA address of the next segment. The caller needs to set any Link TRB
  72. * related flags, such as End TRB, Toggle Cycle, and no snoop.
  73. */
  74. static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  75. struct xhci_segment *next, bool link_trbs)
  76. {
  77. u32 val;
  78. if (!prev || !next)
  79. return;
  80. prev->next = next;
  81. if (link_trbs) {
  82. prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
  83. cpu_to_le64(next->dma);
  84. /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
  85. val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
  86. val &= ~TRB_TYPE_BITMASK;
  87. val |= TRB_TYPE(TRB_LINK);
  88. /* Always set the chain bit with 0.95 hardware */
  89. if (xhci_link_trb_quirk(xhci))
  90. val |= TRB_CHAIN;
  91. prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
  92. }
  93. xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
  94. (unsigned long long)prev->dma,
  95. (unsigned long long)next->dma);
  96. }
  97. /* XXX: Do we need the hcd structure in all these functions? */
  98. void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
  99. {
  100. struct xhci_segment *seg;
  101. struct xhci_segment *first_seg;
  102. if (!ring || !ring->first_seg)
  103. return;
  104. first_seg = ring->first_seg;
  105. seg = first_seg->next;
  106. xhci_dbg(xhci, "Freeing ring at %p\n", ring);
  107. while (seg != first_seg) {
  108. struct xhci_segment *next = seg->next;
  109. xhci_segment_free(xhci, seg);
  110. seg = next;
  111. }
  112. xhci_segment_free(xhci, first_seg);
  113. ring->first_seg = NULL;
  114. kfree(ring);
  115. }
  116. static void xhci_initialize_ring_info(struct xhci_ring *ring)
  117. {
  118. /* The ring is empty, so the enqueue pointer == dequeue pointer */
  119. ring->enqueue = ring->first_seg->trbs;
  120. ring->enq_seg = ring->first_seg;
  121. ring->dequeue = ring->enqueue;
  122. ring->deq_seg = ring->first_seg;
  123. /* The ring is initialized to 0. The producer must write 1 to the cycle
  124. * bit to handover ownership of the TRB, so PCS = 1. The consumer must
  125. * compare CCS to the cycle bit to check ownership, so CCS = 1.
  126. */
  127. ring->cycle_state = 1;
  128. /* Not necessary for new rings, but needed for re-initialized rings */
  129. ring->enq_updates = 0;
  130. ring->deq_updates = 0;
  131. }
  132. /**
  133. * Create a new ring with zero or more segments.
  134. *
  135. * Link each segment together into a ring.
  136. * Set the end flag and the cycle toggle bit on the last segment.
  137. * See section 4.9.1 and figures 15 and 16.
  138. */
  139. static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
  140. unsigned int num_segs, bool link_trbs, gfp_t flags)
  141. {
  142. struct xhci_ring *ring;
  143. struct xhci_segment *prev;
  144. ring = kzalloc(sizeof *(ring), flags);
  145. xhci_dbg(xhci, "Allocating ring at %p\n", ring);
  146. if (!ring)
  147. return NULL;
  148. INIT_LIST_HEAD(&ring->td_list);
  149. if (num_segs == 0)
  150. return ring;
  151. ring->first_seg = xhci_segment_alloc(xhci, flags);
  152. if (!ring->first_seg)
  153. goto fail;
  154. num_segs--;
  155. prev = ring->first_seg;
  156. while (num_segs > 0) {
  157. struct xhci_segment *next;
  158. next = xhci_segment_alloc(xhci, flags);
  159. if (!next)
  160. goto fail;
  161. xhci_link_segments(xhci, prev, next, link_trbs);
  162. prev = next;
  163. num_segs--;
  164. }
  165. xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
  166. if (link_trbs) {
  167. /* See section 4.9.2.1 and 6.4.4.1 */
  168. prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
  169. cpu_to_le32(LINK_TOGGLE);
  170. xhci_dbg(xhci, "Wrote link toggle flag to"
  171. " segment %p (virtual), 0x%llx (DMA)\n",
  172. prev, (unsigned long long)prev->dma);
  173. }
  174. xhci_initialize_ring_info(ring);
  175. return ring;
  176. fail:
  177. xhci_ring_free(xhci, ring);
  178. return NULL;
  179. }
  180. void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
  181. struct xhci_virt_device *virt_dev,
  182. unsigned int ep_index)
  183. {
  184. int rings_cached;
  185. rings_cached = virt_dev->num_rings_cached;
  186. if (rings_cached < XHCI_MAX_RINGS_CACHED) {
  187. virt_dev->ring_cache[rings_cached] =
  188. virt_dev->eps[ep_index].ring;
  189. virt_dev->num_rings_cached++;
  190. xhci_dbg(xhci, "Cached old ring, "
  191. "%d ring%s cached\n",
  192. virt_dev->num_rings_cached,
  193. (virt_dev->num_rings_cached > 1) ? "s" : "");
  194. } else {
  195. xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
  196. xhci_dbg(xhci, "Ring cache full (%d rings), "
  197. "freeing ring\n",
  198. virt_dev->num_rings_cached);
  199. }
  200. virt_dev->eps[ep_index].ring = NULL;
  201. }
  202. /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
  203. * pointers to the beginning of the ring.
  204. */
  205. static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
  206. struct xhci_ring *ring)
  207. {
  208. struct xhci_segment *seg = ring->first_seg;
  209. do {
  210. memset(seg->trbs, 0,
  211. sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
  212. /* All endpoint rings have link TRBs */
  213. xhci_link_segments(xhci, seg, seg->next, 1);
  214. seg = seg->next;
  215. } while (seg != ring->first_seg);
  216. xhci_initialize_ring_info(ring);
  217. /* td list should be empty since all URBs have been cancelled,
  218. * but just in case...
  219. */
  220. INIT_LIST_HEAD(&ring->td_list);
  221. }
  222. #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
  223. static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
  224. int type, gfp_t flags)
  225. {
  226. struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
  227. if (!ctx)
  228. return NULL;
  229. BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
  230. ctx->type = type;
  231. ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
  232. if (type == XHCI_CTX_TYPE_INPUT)
  233. ctx->size += CTX_SIZE(xhci->hcc_params);
  234. ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
  235. memset(ctx->bytes, 0, ctx->size);
  236. return ctx;
  237. }
  238. static void xhci_free_container_ctx(struct xhci_hcd *xhci,
  239. struct xhci_container_ctx *ctx)
  240. {
  241. if (!ctx)
  242. return;
  243. dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
  244. kfree(ctx);
  245. }
  246. struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
  247. struct xhci_container_ctx *ctx)
  248. {
  249. BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
  250. return (struct xhci_input_control_ctx *)ctx->bytes;
  251. }
  252. struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
  253. struct xhci_container_ctx *ctx)
  254. {
  255. if (ctx->type == XHCI_CTX_TYPE_DEVICE)
  256. return (struct xhci_slot_ctx *)ctx->bytes;
  257. return (struct xhci_slot_ctx *)
  258. (ctx->bytes + CTX_SIZE(xhci->hcc_params));
  259. }
  260. struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
  261. struct xhci_container_ctx *ctx,
  262. unsigned int ep_index)
  263. {
  264. /* increment ep index by offset of start of ep ctx array */
  265. ep_index++;
  266. if (ctx->type == XHCI_CTX_TYPE_INPUT)
  267. ep_index++;
  268. return (struct xhci_ep_ctx *)
  269. (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
  270. }
  271. /***************** Streams structures manipulation *************************/
  272. static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
  273. unsigned int num_stream_ctxs,
  274. struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
  275. {
  276. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  277. if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
  278. pci_free_consistent(pdev,
  279. sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
  280. stream_ctx, dma);
  281. else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
  282. return dma_pool_free(xhci->small_streams_pool,
  283. stream_ctx, dma);
  284. else
  285. return dma_pool_free(xhci->medium_streams_pool,
  286. stream_ctx, dma);
  287. }
  288. /*
  289. * The stream context array for each endpoint with bulk streams enabled can
  290. * vary in size, based on:
  291. * - how many streams the endpoint supports,
  292. * - the maximum primary stream array size the host controller supports,
  293. * - and how many streams the device driver asks for.
  294. *
  295. * The stream context array must be a power of 2, and can be as small as
  296. * 64 bytes or as large as 1MB.
  297. */
  298. static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
  299. unsigned int num_stream_ctxs, dma_addr_t *dma,
  300. gfp_t mem_flags)
  301. {
  302. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  303. if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
  304. return pci_alloc_consistent(pdev,
  305. sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
  306. dma);
  307. else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
  308. return dma_pool_alloc(xhci->small_streams_pool,
  309. mem_flags, dma);
  310. else
  311. return dma_pool_alloc(xhci->medium_streams_pool,
  312. mem_flags, dma);
  313. }
  314. struct xhci_ring *xhci_dma_to_transfer_ring(
  315. struct xhci_virt_ep *ep,
  316. u64 address)
  317. {
  318. if (ep->ep_state & EP_HAS_STREAMS)
  319. return radix_tree_lookup(&ep->stream_info->trb_address_map,
  320. address >> SEGMENT_SHIFT);
  321. return ep->ring;
  322. }
  323. /* Only use this when you know stream_info is valid */
  324. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  325. static struct xhci_ring *dma_to_stream_ring(
  326. struct xhci_stream_info *stream_info,
  327. u64 address)
  328. {
  329. return radix_tree_lookup(&stream_info->trb_address_map,
  330. address >> SEGMENT_SHIFT);
  331. }
  332. #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
  333. struct xhci_ring *xhci_stream_id_to_ring(
  334. struct xhci_virt_device *dev,
  335. unsigned int ep_index,
  336. unsigned int stream_id)
  337. {
  338. struct xhci_virt_ep *ep = &dev->eps[ep_index];
  339. if (stream_id == 0)
  340. return ep->ring;
  341. if (!ep->stream_info)
  342. return NULL;
  343. if (stream_id > ep->stream_info->num_streams)
  344. return NULL;
  345. return ep->stream_info->stream_rings[stream_id];
  346. }
  347. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  348. static int xhci_test_radix_tree(struct xhci_hcd *xhci,
  349. unsigned int num_streams,
  350. struct xhci_stream_info *stream_info)
  351. {
  352. u32 cur_stream;
  353. struct xhci_ring *cur_ring;
  354. u64 addr;
  355. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  356. struct xhci_ring *mapped_ring;
  357. int trb_size = sizeof(union xhci_trb);
  358. cur_ring = stream_info->stream_rings[cur_stream];
  359. for (addr = cur_ring->first_seg->dma;
  360. addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
  361. addr += trb_size) {
  362. mapped_ring = dma_to_stream_ring(stream_info, addr);
  363. if (cur_ring != mapped_ring) {
  364. xhci_warn(xhci, "WARN: DMA address 0x%08llx "
  365. "didn't map to stream ID %u; "
  366. "mapped to ring %p\n",
  367. (unsigned long long) addr,
  368. cur_stream,
  369. mapped_ring);
  370. return -EINVAL;
  371. }
  372. }
  373. /* One TRB after the end of the ring segment shouldn't return a
  374. * pointer to the current ring (although it may be a part of a
  375. * different ring).
  376. */
  377. mapped_ring = dma_to_stream_ring(stream_info, addr);
  378. if (mapped_ring != cur_ring) {
  379. /* One TRB before should also fail */
  380. addr = cur_ring->first_seg->dma - trb_size;
  381. mapped_ring = dma_to_stream_ring(stream_info, addr);
  382. }
  383. if (mapped_ring == cur_ring) {
  384. xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
  385. "mapped to valid stream ID %u; "
  386. "mapped ring = %p\n",
  387. (unsigned long long) addr,
  388. cur_stream,
  389. mapped_ring);
  390. return -EINVAL;
  391. }
  392. }
  393. return 0;
  394. }
  395. #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
  396. /*
  397. * Change an endpoint's internal structure so it supports stream IDs. The
  398. * number of requested streams includes stream 0, which cannot be used by device
  399. * drivers.
  400. *
  401. * The number of stream contexts in the stream context array may be bigger than
  402. * the number of streams the driver wants to use. This is because the number of
  403. * stream context array entries must be a power of two.
  404. *
  405. * We need a radix tree for mapping physical addresses of TRBs to which stream
  406. * ID they belong to. We need to do this because the host controller won't tell
  407. * us which stream ring the TRB came from. We could store the stream ID in an
  408. * event data TRB, but that doesn't help us for the cancellation case, since the
  409. * endpoint may stop before it reaches that event data TRB.
  410. *
  411. * The radix tree maps the upper portion of the TRB DMA address to a ring
  412. * segment that has the same upper portion of DMA addresses. For example, say I
  413. * have segments of size 1KB, that are always 64-byte aligned. A segment may
  414. * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
  415. * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
  416. * pass the radix tree a key to get the right stream ID:
  417. *
  418. * 0x10c90fff >> 10 = 0x43243
  419. * 0x10c912c0 >> 10 = 0x43244
  420. * 0x10c91400 >> 10 = 0x43245
  421. *
  422. * Obviously, only those TRBs with DMA addresses that are within the segment
  423. * will make the radix tree return the stream ID for that ring.
  424. *
  425. * Caveats for the radix tree:
  426. *
  427. * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
  428. * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
  429. * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
  430. * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
  431. * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
  432. * extended systems (where the DMA address can be bigger than 32-bits),
  433. * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
  434. */
  435. struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
  436. unsigned int num_stream_ctxs,
  437. unsigned int num_streams, gfp_t mem_flags)
  438. {
  439. struct xhci_stream_info *stream_info;
  440. u32 cur_stream;
  441. struct xhci_ring *cur_ring;
  442. unsigned long key;
  443. u64 addr;
  444. int ret;
  445. xhci_dbg(xhci, "Allocating %u streams and %u "
  446. "stream context array entries.\n",
  447. num_streams, num_stream_ctxs);
  448. if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
  449. xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
  450. return NULL;
  451. }
  452. xhci->cmd_ring_reserved_trbs++;
  453. stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
  454. if (!stream_info)
  455. goto cleanup_trbs;
  456. stream_info->num_streams = num_streams;
  457. stream_info->num_stream_ctxs = num_stream_ctxs;
  458. /* Initialize the array of virtual pointers to stream rings. */
  459. stream_info->stream_rings = kzalloc(
  460. sizeof(struct xhci_ring *)*num_streams,
  461. mem_flags);
  462. if (!stream_info->stream_rings)
  463. goto cleanup_info;
  464. /* Initialize the array of DMA addresses for stream rings for the HW. */
  465. stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
  466. num_stream_ctxs, &stream_info->ctx_array_dma,
  467. mem_flags);
  468. if (!stream_info->stream_ctx_array)
  469. goto cleanup_ctx;
  470. memset(stream_info->stream_ctx_array, 0,
  471. sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
  472. /* Allocate everything needed to free the stream rings later */
  473. stream_info->free_streams_command =
  474. xhci_alloc_command(xhci, true, true, mem_flags);
  475. if (!stream_info->free_streams_command)
  476. goto cleanup_ctx;
  477. INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
  478. /* Allocate rings for all the streams that the driver will use,
  479. * and add their segment DMA addresses to the radix tree.
  480. * Stream 0 is reserved.
  481. */
  482. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  483. stream_info->stream_rings[cur_stream] =
  484. xhci_ring_alloc(xhci, 1, true, mem_flags);
  485. cur_ring = stream_info->stream_rings[cur_stream];
  486. if (!cur_ring)
  487. goto cleanup_rings;
  488. cur_ring->stream_id = cur_stream;
  489. /* Set deq ptr, cycle bit, and stream context type */
  490. addr = cur_ring->first_seg->dma |
  491. SCT_FOR_CTX(SCT_PRI_TR) |
  492. cur_ring->cycle_state;
  493. stream_info->stream_ctx_array[cur_stream].stream_ring =
  494. cpu_to_le64(addr);
  495. xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
  496. cur_stream, (unsigned long long) addr);
  497. key = (unsigned long)
  498. (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
  499. ret = radix_tree_insert(&stream_info->trb_address_map,
  500. key, cur_ring);
  501. if (ret) {
  502. xhci_ring_free(xhci, cur_ring);
  503. stream_info->stream_rings[cur_stream] = NULL;
  504. goto cleanup_rings;
  505. }
  506. }
  507. /* Leave the other unused stream ring pointers in the stream context
  508. * array initialized to zero. This will cause the xHC to give us an
  509. * error if the device asks for a stream ID we don't have setup (if it
  510. * was any other way, the host controller would assume the ring is
  511. * "empty" and wait forever for data to be queued to that stream ID).
  512. */
  513. #if XHCI_DEBUG
  514. /* Do a little test on the radix tree to make sure it returns the
  515. * correct values.
  516. */
  517. if (xhci_test_radix_tree(xhci, num_streams, stream_info))
  518. goto cleanup_rings;
  519. #endif
  520. return stream_info;
  521. cleanup_rings:
  522. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  523. cur_ring = stream_info->stream_rings[cur_stream];
  524. if (cur_ring) {
  525. addr = cur_ring->first_seg->dma;
  526. radix_tree_delete(&stream_info->trb_address_map,
  527. addr >> SEGMENT_SHIFT);
  528. xhci_ring_free(xhci, cur_ring);
  529. stream_info->stream_rings[cur_stream] = NULL;
  530. }
  531. }
  532. xhci_free_command(xhci, stream_info->free_streams_command);
  533. cleanup_ctx:
  534. kfree(stream_info->stream_rings);
  535. cleanup_info:
  536. kfree(stream_info);
  537. cleanup_trbs:
  538. xhci->cmd_ring_reserved_trbs--;
  539. return NULL;
  540. }
  541. /*
  542. * Sets the MaxPStreams field and the Linear Stream Array field.
  543. * Sets the dequeue pointer to the stream context array.
  544. */
  545. void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
  546. struct xhci_ep_ctx *ep_ctx,
  547. struct xhci_stream_info *stream_info)
  548. {
  549. u32 max_primary_streams;
  550. /* MaxPStreams is the number of stream context array entries, not the
  551. * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
  552. * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
  553. */
  554. max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
  555. xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
  556. 1 << (max_primary_streams + 1));
  557. ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
  558. ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
  559. | EP_HAS_LSA);
  560. ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
  561. }
  562. /*
  563. * Sets the MaxPStreams field and the Linear Stream Array field to 0.
  564. * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
  565. * not at the beginning of the ring).
  566. */
  567. void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
  568. struct xhci_ep_ctx *ep_ctx,
  569. struct xhci_virt_ep *ep)
  570. {
  571. dma_addr_t addr;
  572. ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
  573. addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
  574. ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
  575. }
  576. /* Frees all stream contexts associated with the endpoint,
  577. *
  578. * Caller should fix the endpoint context streams fields.
  579. */
  580. void xhci_free_stream_info(struct xhci_hcd *xhci,
  581. struct xhci_stream_info *stream_info)
  582. {
  583. int cur_stream;
  584. struct xhci_ring *cur_ring;
  585. dma_addr_t addr;
  586. if (!stream_info)
  587. return;
  588. for (cur_stream = 1; cur_stream < stream_info->num_streams;
  589. cur_stream++) {
  590. cur_ring = stream_info->stream_rings[cur_stream];
  591. if (cur_ring) {
  592. addr = cur_ring->first_seg->dma;
  593. radix_tree_delete(&stream_info->trb_address_map,
  594. addr >> SEGMENT_SHIFT);
  595. xhci_ring_free(xhci, cur_ring);
  596. stream_info->stream_rings[cur_stream] = NULL;
  597. }
  598. }
  599. xhci_free_command(xhci, stream_info->free_streams_command);
  600. xhci->cmd_ring_reserved_trbs--;
  601. if (stream_info->stream_ctx_array)
  602. xhci_free_stream_ctx(xhci,
  603. stream_info->num_stream_ctxs,
  604. stream_info->stream_ctx_array,
  605. stream_info->ctx_array_dma);
  606. if (stream_info)
  607. kfree(stream_info->stream_rings);
  608. kfree(stream_info);
  609. }
  610. /***************** Device context manipulation *************************/
  611. static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
  612. struct xhci_virt_ep *ep)
  613. {
  614. init_timer(&ep->stop_cmd_timer);
  615. ep->stop_cmd_timer.data = (unsigned long) ep;
  616. ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
  617. ep->xhci = xhci;
  618. }
  619. /* All the xhci_tds in the ring's TD list should be freed at this point */
  620. void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
  621. {
  622. struct xhci_virt_device *dev;
  623. int i;
  624. /* Slot ID 0 is reserved */
  625. if (slot_id == 0 || !xhci->devs[slot_id])
  626. return;
  627. dev = xhci->devs[slot_id];
  628. xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
  629. if (!dev)
  630. return;
  631. for (i = 0; i < 31; ++i) {
  632. if (dev->eps[i].ring)
  633. xhci_ring_free(xhci, dev->eps[i].ring);
  634. if (dev->eps[i].stream_info)
  635. xhci_free_stream_info(xhci,
  636. dev->eps[i].stream_info);
  637. }
  638. if (dev->ring_cache) {
  639. for (i = 0; i < dev->num_rings_cached; i++)
  640. xhci_ring_free(xhci, dev->ring_cache[i]);
  641. kfree(dev->ring_cache);
  642. }
  643. if (dev->in_ctx)
  644. xhci_free_container_ctx(xhci, dev->in_ctx);
  645. if (dev->out_ctx)
  646. xhci_free_container_ctx(xhci, dev->out_ctx);
  647. kfree(xhci->devs[slot_id]);
  648. xhci->devs[slot_id] = NULL;
  649. }
  650. int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
  651. struct usb_device *udev, gfp_t flags)
  652. {
  653. struct xhci_virt_device *dev;
  654. int i;
  655. /* Slot ID 0 is reserved */
  656. if (slot_id == 0 || xhci->devs[slot_id]) {
  657. xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
  658. return 0;
  659. }
  660. xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
  661. if (!xhci->devs[slot_id])
  662. return 0;
  663. dev = xhci->devs[slot_id];
  664. /* Allocate the (output) device context that will be used in the HC. */
  665. dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
  666. if (!dev->out_ctx)
  667. goto fail;
  668. xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
  669. (unsigned long long)dev->out_ctx->dma);
  670. /* Allocate the (input) device context for address device command */
  671. dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
  672. if (!dev->in_ctx)
  673. goto fail;
  674. xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
  675. (unsigned long long)dev->in_ctx->dma);
  676. /* Initialize the cancellation list and watchdog timers for each ep */
  677. for (i = 0; i < 31; i++) {
  678. xhci_init_endpoint_timer(xhci, &dev->eps[i]);
  679. INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
  680. }
  681. /* Allocate endpoint 0 ring */
  682. dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
  683. if (!dev->eps[0].ring)
  684. goto fail;
  685. /* Allocate pointers to the ring cache */
  686. dev->ring_cache = kzalloc(
  687. sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
  688. flags);
  689. if (!dev->ring_cache)
  690. goto fail;
  691. dev->num_rings_cached = 0;
  692. init_completion(&dev->cmd_completion);
  693. INIT_LIST_HEAD(&dev->cmd_list);
  694. dev->udev = udev;
  695. /* Point to output device context in dcbaa. */
  696. xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
  697. xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
  698. slot_id,
  699. &xhci->dcbaa->dev_context_ptrs[slot_id],
  700. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
  701. return 1;
  702. fail:
  703. xhci_free_virt_device(xhci, slot_id);
  704. return 0;
  705. }
  706. void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
  707. struct usb_device *udev)
  708. {
  709. struct xhci_virt_device *virt_dev;
  710. struct xhci_ep_ctx *ep0_ctx;
  711. struct xhci_ring *ep_ring;
  712. virt_dev = xhci->devs[udev->slot_id];
  713. ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
  714. ep_ring = virt_dev->eps[0].ring;
  715. /*
  716. * FIXME we don't keep track of the dequeue pointer very well after a
  717. * Set TR dequeue pointer, so we're setting the dequeue pointer of the
  718. * host to our enqueue pointer. This should only be called after a
  719. * configured device has reset, so all control transfers should have
  720. * been completed or cancelled before the reset.
  721. */
  722. ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
  723. ep_ring->enqueue)
  724. | ep_ring->cycle_state);
  725. }
  726. /*
  727. * The xHCI roothub may have ports of differing speeds in any order in the port
  728. * status registers. xhci->port_array provides an array of the port speed for
  729. * each offset into the port status registers.
  730. *
  731. * The xHCI hardware wants to know the roothub port number that the USB device
  732. * is attached to (or the roothub port its ancestor hub is attached to). All we
  733. * know is the index of that port under either the USB 2.0 or the USB 3.0
  734. * roothub, but that doesn't give us the real index into the HW port status
  735. * registers. Scan through the xHCI roothub port array, looking for the Nth
  736. * entry of the correct port speed. Return the port number of that entry.
  737. */
  738. static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
  739. struct usb_device *udev)
  740. {
  741. struct usb_device *top_dev;
  742. unsigned int num_similar_speed_ports;
  743. unsigned int faked_port_num;
  744. int i;
  745. for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
  746. top_dev = top_dev->parent)
  747. /* Found device below root hub */;
  748. faked_port_num = top_dev->portnum;
  749. for (i = 0, num_similar_speed_ports = 0;
  750. i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
  751. u8 port_speed = xhci->port_array[i];
  752. /*
  753. * Skip ports that don't have known speeds, or have duplicate
  754. * Extended Capabilities port speed entries.
  755. */
  756. if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
  757. continue;
  758. /*
  759. * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
  760. * 1.1 ports are under the USB 2.0 hub. If the port speed
  761. * matches the device speed, it's a similar speed port.
  762. */
  763. if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
  764. num_similar_speed_ports++;
  765. if (num_similar_speed_ports == faked_port_num)
  766. /* Roothub ports are numbered from 1 to N */
  767. return i+1;
  768. }
  769. return 0;
  770. }
  771. /* Setup an xHCI virtual device for a Set Address command */
  772. int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
  773. {
  774. struct xhci_virt_device *dev;
  775. struct xhci_ep_ctx *ep0_ctx;
  776. struct xhci_slot_ctx *slot_ctx;
  777. struct xhci_input_control_ctx *ctrl_ctx;
  778. u32 port_num;
  779. struct usb_device *top_dev;
  780. dev = xhci->devs[udev->slot_id];
  781. /* Slot ID 0 is reserved */
  782. if (udev->slot_id == 0 || !dev) {
  783. xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
  784. udev->slot_id);
  785. return -EINVAL;
  786. }
  787. ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
  788. ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
  789. slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
  790. /* 2) New slot context and endpoint 0 context are valid*/
  791. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
  792. /* 3) Only the control endpoint is valid - one endpoint context */
  793. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
  794. switch (udev->speed) {
  795. case USB_SPEED_SUPER:
  796. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
  797. break;
  798. case USB_SPEED_HIGH:
  799. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
  800. break;
  801. case USB_SPEED_FULL:
  802. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
  803. break;
  804. case USB_SPEED_LOW:
  805. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
  806. break;
  807. case USB_SPEED_WIRELESS:
  808. xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
  809. return -EINVAL;
  810. break;
  811. default:
  812. /* Speed was set earlier, this shouldn't happen. */
  813. BUG();
  814. }
  815. /* Find the root hub port this device is under */
  816. port_num = xhci_find_real_port_number(xhci, udev);
  817. if (!port_num)
  818. return -EINVAL;
  819. slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
  820. /* Set the port number in the virtual_device to the faked port number */
  821. for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
  822. top_dev = top_dev->parent)
  823. /* Found device below root hub */;
  824. dev->port = top_dev->portnum;
  825. xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
  826. xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
  827. /* Is this a LS/FS device under an external HS hub? */
  828. if (udev->tt && udev->tt->hub->parent) {
  829. slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
  830. (udev->ttport << 8));
  831. if (udev->tt->multi)
  832. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  833. }
  834. xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
  835. xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
  836. /* Step 4 - ring already allocated */
  837. /* Step 5 */
  838. ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
  839. /*
  840. * XXX: Not sure about wireless USB devices.
  841. */
  842. switch (udev->speed) {
  843. case USB_SPEED_SUPER:
  844. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
  845. break;
  846. case USB_SPEED_HIGH:
  847. /* USB core guesses at a 64-byte max packet first for FS devices */
  848. case USB_SPEED_FULL:
  849. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
  850. break;
  851. case USB_SPEED_LOW:
  852. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
  853. break;
  854. case USB_SPEED_WIRELESS:
  855. xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
  856. return -EINVAL;
  857. break;
  858. default:
  859. /* New speed? */
  860. BUG();
  861. }
  862. /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
  863. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
  864. ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
  865. dev->eps[0].ring->cycle_state);
  866. /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
  867. return 0;
  868. }
  869. /*
  870. * Convert interval expressed as 2^(bInterval - 1) == interval into
  871. * straight exponent value 2^n == interval.
  872. *
  873. */
  874. static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
  875. struct usb_host_endpoint *ep)
  876. {
  877. unsigned int interval;
  878. interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
  879. if (interval != ep->desc.bInterval - 1)
  880. dev_warn(&udev->dev,
  881. "ep %#x - rounding interval to %d microframes\n",
  882. ep->desc.bEndpointAddress,
  883. 1 << interval);
  884. return interval;
  885. }
  886. /*
  887. * Convert bInterval expressed in frames (in 1-255 range) to exponent of
  888. * microframes, rounded down to nearest power of 2.
  889. */
  890. static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
  891. struct usb_host_endpoint *ep)
  892. {
  893. unsigned int interval;
  894. interval = fls(8 * ep->desc.bInterval) - 1;
  895. interval = clamp_val(interval, 3, 10);
  896. if ((1 << interval) != 8 * ep->desc.bInterval)
  897. dev_warn(&udev->dev,
  898. "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
  899. ep->desc.bEndpointAddress,
  900. 1 << interval,
  901. 8 * ep->desc.bInterval);
  902. return interval;
  903. }
  904. /* Return the polling or NAK interval.
  905. *
  906. * The polling interval is expressed in "microframes". If xHCI's Interval field
  907. * is set to N, it will service the endpoint every 2^(Interval)*125us.
  908. *
  909. * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
  910. * is set to 0.
  911. */
  912. static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
  913. struct usb_host_endpoint *ep)
  914. {
  915. unsigned int interval = 0;
  916. switch (udev->speed) {
  917. case USB_SPEED_HIGH:
  918. /* Max NAK rate */
  919. if (usb_endpoint_xfer_control(&ep->desc) ||
  920. usb_endpoint_xfer_bulk(&ep->desc)) {
  921. interval = ep->desc.bInterval;
  922. break;
  923. }
  924. /* Fall through - SS and HS isoc/int have same decoding */
  925. case USB_SPEED_SUPER:
  926. if (usb_endpoint_xfer_int(&ep->desc) ||
  927. usb_endpoint_xfer_isoc(&ep->desc)) {
  928. interval = xhci_parse_exponent_interval(udev, ep);
  929. }
  930. break;
  931. case USB_SPEED_FULL:
  932. if (usb_endpoint_xfer_isoc(&ep->desc)) {
  933. interval = xhci_parse_exponent_interval(udev, ep);
  934. break;
  935. }
  936. /*
  937. * Fall through for interrupt endpoint interval decoding
  938. * since it uses the same rules as low speed interrupt
  939. * endpoints.
  940. */
  941. case USB_SPEED_LOW:
  942. if (usb_endpoint_xfer_int(&ep->desc) ||
  943. usb_endpoint_xfer_isoc(&ep->desc)) {
  944. interval = xhci_parse_frame_interval(udev, ep);
  945. }
  946. break;
  947. default:
  948. BUG();
  949. }
  950. return EP_INTERVAL(interval);
  951. }
  952. /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
  953. * High speed endpoint descriptors can define "the number of additional
  954. * transaction opportunities per microframe", but that goes in the Max Burst
  955. * endpoint context field.
  956. */
  957. static u32 xhci_get_endpoint_mult(struct usb_device *udev,
  958. struct usb_host_endpoint *ep)
  959. {
  960. if (udev->speed != USB_SPEED_SUPER ||
  961. !usb_endpoint_xfer_isoc(&ep->desc))
  962. return 0;
  963. return ep->ss_ep_comp.bmAttributes;
  964. }
  965. static u32 xhci_get_endpoint_type(struct usb_device *udev,
  966. struct usb_host_endpoint *ep)
  967. {
  968. int in;
  969. u32 type;
  970. in = usb_endpoint_dir_in(&ep->desc);
  971. if (usb_endpoint_xfer_control(&ep->desc)) {
  972. type = EP_TYPE(CTRL_EP);
  973. } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
  974. if (in)
  975. type = EP_TYPE(BULK_IN_EP);
  976. else
  977. type = EP_TYPE(BULK_OUT_EP);
  978. } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
  979. if (in)
  980. type = EP_TYPE(ISOC_IN_EP);
  981. else
  982. type = EP_TYPE(ISOC_OUT_EP);
  983. } else if (usb_endpoint_xfer_int(&ep->desc)) {
  984. if (in)
  985. type = EP_TYPE(INT_IN_EP);
  986. else
  987. type = EP_TYPE(INT_OUT_EP);
  988. } else {
  989. BUG();
  990. }
  991. return type;
  992. }
  993. /* Return the maximum endpoint service interval time (ESIT) payload.
  994. * Basically, this is the maxpacket size, multiplied by the burst size
  995. * and mult size.
  996. */
  997. static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
  998. struct usb_device *udev,
  999. struct usb_host_endpoint *ep)
  1000. {
  1001. int max_burst;
  1002. int max_packet;
  1003. /* Only applies for interrupt or isochronous endpoints */
  1004. if (usb_endpoint_xfer_control(&ep->desc) ||
  1005. usb_endpoint_xfer_bulk(&ep->desc))
  1006. return 0;
  1007. if (udev->speed == USB_SPEED_SUPER)
  1008. return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
  1009. max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
  1010. max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
  1011. /* A 0 in max burst means 1 transfer per ESIT */
  1012. return max_packet * (max_burst + 1);
  1013. }
  1014. /* Set up an endpoint with one ring segment. Do not allocate stream rings.
  1015. * Drivers will have to call usb_alloc_streams() to do that.
  1016. */
  1017. int xhci_endpoint_init(struct xhci_hcd *xhci,
  1018. struct xhci_virt_device *virt_dev,
  1019. struct usb_device *udev,
  1020. struct usb_host_endpoint *ep,
  1021. gfp_t mem_flags)
  1022. {
  1023. unsigned int ep_index;
  1024. struct xhci_ep_ctx *ep_ctx;
  1025. struct xhci_ring *ep_ring;
  1026. unsigned int max_packet;
  1027. unsigned int max_burst;
  1028. u32 max_esit_payload;
  1029. ep_index = xhci_get_endpoint_index(&ep->desc);
  1030. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
  1031. /* Set up the endpoint ring */
  1032. /*
  1033. * Isochronous endpoint ring needs bigger size because one isoc URB
  1034. * carries multiple packets and it will insert multiple tds to the
  1035. * ring.
  1036. * This should be replaced with dynamic ring resizing in the future.
  1037. */
  1038. if (usb_endpoint_xfer_isoc(&ep->desc))
  1039. virt_dev->eps[ep_index].new_ring =
  1040. xhci_ring_alloc(xhci, 8, true, mem_flags);
  1041. else
  1042. virt_dev->eps[ep_index].new_ring =
  1043. xhci_ring_alloc(xhci, 1, true, mem_flags);
  1044. if (!virt_dev->eps[ep_index].new_ring) {
  1045. /* Attempt to use the ring cache */
  1046. if (virt_dev->num_rings_cached == 0)
  1047. return -ENOMEM;
  1048. virt_dev->eps[ep_index].new_ring =
  1049. virt_dev->ring_cache[virt_dev->num_rings_cached];
  1050. virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
  1051. virt_dev->num_rings_cached--;
  1052. xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
  1053. }
  1054. virt_dev->eps[ep_index].skip = false;
  1055. ep_ring = virt_dev->eps[ep_index].new_ring;
  1056. ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
  1057. ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
  1058. | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
  1059. /* FIXME dig Mult and streams info out of ep companion desc */
  1060. /* Allow 3 retries for everything but isoc;
  1061. * CErr shall be set to 0 for Isoch endpoints.
  1062. */
  1063. if (!usb_endpoint_xfer_isoc(&ep->desc))
  1064. ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
  1065. else
  1066. ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
  1067. ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
  1068. /* Set the max packet size and max burst */
  1069. switch (udev->speed) {
  1070. case USB_SPEED_SUPER:
  1071. max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
  1072. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
  1073. /* dig out max burst from ep companion desc */
  1074. max_packet = ep->ss_ep_comp.bMaxBurst;
  1075. if (!max_packet)
  1076. xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
  1077. ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
  1078. break;
  1079. case USB_SPEED_HIGH:
  1080. /* bits 11:12 specify the number of additional transaction
  1081. * opportunities per microframe (USB 2.0, section 9.6.6)
  1082. */
  1083. if (usb_endpoint_xfer_isoc(&ep->desc) ||
  1084. usb_endpoint_xfer_int(&ep->desc)) {
  1085. max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
  1086. & 0x1800) >> 11;
  1087. ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
  1088. }
  1089. /* Fall through */
  1090. case USB_SPEED_FULL:
  1091. case USB_SPEED_LOW:
  1092. max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
  1093. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
  1094. break;
  1095. default:
  1096. BUG();
  1097. }
  1098. max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
  1099. ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
  1100. /*
  1101. * XXX no idea how to calculate the average TRB buffer length for bulk
  1102. * endpoints, as the driver gives us no clue how big each scatter gather
  1103. * list entry (or buffer) is going to be.
  1104. *
  1105. * For isochronous and interrupt endpoints, we set it to the max
  1106. * available, until we have new API in the USB core to allow drivers to
  1107. * declare how much bandwidth they actually need.
  1108. *
  1109. * Normally, it would be calculated by taking the total of the buffer
  1110. * lengths in the TD and then dividing by the number of TRBs in a TD,
  1111. * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
  1112. * use Event Data TRBs, and we don't chain in a link TRB on short
  1113. * transfers, we're basically dividing by 1.
  1114. *
  1115. * xHCI 1.0 specification indicates that the Average TRB Length should
  1116. * be set to 8 for control endpoints.
  1117. */
  1118. if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
  1119. ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
  1120. else
  1121. ep_ctx->tx_info |=
  1122. cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
  1123. /* FIXME Debug endpoint context */
  1124. return 0;
  1125. }
  1126. void xhci_endpoint_zero(struct xhci_hcd *xhci,
  1127. struct xhci_virt_device *virt_dev,
  1128. struct usb_host_endpoint *ep)
  1129. {
  1130. unsigned int ep_index;
  1131. struct xhci_ep_ctx *ep_ctx;
  1132. ep_index = xhci_get_endpoint_index(&ep->desc);
  1133. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
  1134. ep_ctx->ep_info = 0;
  1135. ep_ctx->ep_info2 = 0;
  1136. ep_ctx->deq = 0;
  1137. ep_ctx->tx_info = 0;
  1138. /* Don't free the endpoint ring until the set interface or configuration
  1139. * request succeeds.
  1140. */
  1141. }
  1142. /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
  1143. * Useful when you want to change one particular aspect of the endpoint and then
  1144. * issue a configure endpoint command.
  1145. */
  1146. void xhci_endpoint_copy(struct xhci_hcd *xhci,
  1147. struct xhci_container_ctx *in_ctx,
  1148. struct xhci_container_ctx *out_ctx,
  1149. unsigned int ep_index)
  1150. {
  1151. struct xhci_ep_ctx *out_ep_ctx;
  1152. struct xhci_ep_ctx *in_ep_ctx;
  1153. out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1154. in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  1155. in_ep_ctx->ep_info = out_ep_ctx->ep_info;
  1156. in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
  1157. in_ep_ctx->deq = out_ep_ctx->deq;
  1158. in_ep_ctx->tx_info = out_ep_ctx->tx_info;
  1159. }
  1160. /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
  1161. * Useful when you want to change one particular aspect of the endpoint and then
  1162. * issue a configure endpoint command. Only the context entries field matters,
  1163. * but we'll copy the whole thing anyway.
  1164. */
  1165. void xhci_slot_copy(struct xhci_hcd *xhci,
  1166. struct xhci_container_ctx *in_ctx,
  1167. struct xhci_container_ctx *out_ctx)
  1168. {
  1169. struct xhci_slot_ctx *in_slot_ctx;
  1170. struct xhci_slot_ctx *out_slot_ctx;
  1171. in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1172. out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
  1173. in_slot_ctx->dev_info = out_slot_ctx->dev_info;
  1174. in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
  1175. in_slot_ctx->tt_info = out_slot_ctx->tt_info;
  1176. in_slot_ctx->dev_state = out_slot_ctx->dev_state;
  1177. }
  1178. /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
  1179. static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
  1180. {
  1181. int i;
  1182. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  1183. int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
  1184. xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
  1185. if (!num_sp)
  1186. return 0;
  1187. xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
  1188. if (!xhci->scratchpad)
  1189. goto fail_sp;
  1190. xhci->scratchpad->sp_array =
  1191. pci_alloc_consistent(to_pci_dev(dev),
  1192. num_sp * sizeof(u64),
  1193. &xhci->scratchpad->sp_dma);
  1194. if (!xhci->scratchpad->sp_array)
  1195. goto fail_sp2;
  1196. xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
  1197. if (!xhci->scratchpad->sp_buffers)
  1198. goto fail_sp3;
  1199. xhci->scratchpad->sp_dma_buffers =
  1200. kzalloc(sizeof(dma_addr_t) * num_sp, flags);
  1201. if (!xhci->scratchpad->sp_dma_buffers)
  1202. goto fail_sp4;
  1203. xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
  1204. for (i = 0; i < num_sp; i++) {
  1205. dma_addr_t dma;
  1206. void *buf = pci_alloc_consistent(to_pci_dev(dev),
  1207. xhci->page_size, &dma);
  1208. if (!buf)
  1209. goto fail_sp5;
  1210. xhci->scratchpad->sp_array[i] = dma;
  1211. xhci->scratchpad->sp_buffers[i] = buf;
  1212. xhci->scratchpad->sp_dma_buffers[i] = dma;
  1213. }
  1214. return 0;
  1215. fail_sp5:
  1216. for (i = i - 1; i >= 0; i--) {
  1217. pci_free_consistent(to_pci_dev(dev), xhci->page_size,
  1218. xhci->scratchpad->sp_buffers[i],
  1219. xhci->scratchpad->sp_dma_buffers[i]);
  1220. }
  1221. kfree(xhci->scratchpad->sp_dma_buffers);
  1222. fail_sp4:
  1223. kfree(xhci->scratchpad->sp_buffers);
  1224. fail_sp3:
  1225. pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
  1226. xhci->scratchpad->sp_array,
  1227. xhci->scratchpad->sp_dma);
  1228. fail_sp2:
  1229. kfree(xhci->scratchpad);
  1230. xhci->scratchpad = NULL;
  1231. fail_sp:
  1232. return -ENOMEM;
  1233. }
  1234. static void scratchpad_free(struct xhci_hcd *xhci)
  1235. {
  1236. int num_sp;
  1237. int i;
  1238. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  1239. if (!xhci->scratchpad)
  1240. return;
  1241. num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
  1242. for (i = 0; i < num_sp; i++) {
  1243. pci_free_consistent(pdev, xhci->page_size,
  1244. xhci->scratchpad->sp_buffers[i],
  1245. xhci->scratchpad->sp_dma_buffers[i]);
  1246. }
  1247. kfree(xhci->scratchpad->sp_dma_buffers);
  1248. kfree(xhci->scratchpad->sp_buffers);
  1249. pci_free_consistent(pdev, num_sp * sizeof(u64),
  1250. xhci->scratchpad->sp_array,
  1251. xhci->scratchpad->sp_dma);
  1252. kfree(xhci->scratchpad);
  1253. xhci->scratchpad = NULL;
  1254. }
  1255. struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
  1256. bool allocate_in_ctx, bool allocate_completion,
  1257. gfp_t mem_flags)
  1258. {
  1259. struct xhci_command *command;
  1260. command = kzalloc(sizeof(*command), mem_flags);
  1261. if (!command)
  1262. return NULL;
  1263. if (allocate_in_ctx) {
  1264. command->in_ctx =
  1265. xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
  1266. mem_flags);
  1267. if (!command->in_ctx) {
  1268. kfree(command);
  1269. return NULL;
  1270. }
  1271. }
  1272. if (allocate_completion) {
  1273. command->completion =
  1274. kzalloc(sizeof(struct completion), mem_flags);
  1275. if (!command->completion) {
  1276. xhci_free_container_ctx(xhci, command->in_ctx);
  1277. kfree(command);
  1278. return NULL;
  1279. }
  1280. init_completion(command->completion);
  1281. }
  1282. command->status = 0;
  1283. INIT_LIST_HEAD(&command->cmd_list);
  1284. return command;
  1285. }
  1286. void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
  1287. {
  1288. int last;
  1289. if (!urb_priv)
  1290. return;
  1291. last = urb_priv->length - 1;
  1292. if (last >= 0) {
  1293. int i;
  1294. for (i = 0; i <= last; i++)
  1295. kfree(urb_priv->td[i]);
  1296. }
  1297. kfree(urb_priv);
  1298. }
  1299. void xhci_free_command(struct xhci_hcd *xhci,
  1300. struct xhci_command *command)
  1301. {
  1302. xhci_free_container_ctx(xhci,
  1303. command->in_ctx);
  1304. kfree(command->completion);
  1305. kfree(command);
  1306. }
  1307. void xhci_mem_cleanup(struct xhci_hcd *xhci)
  1308. {
  1309. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  1310. int size;
  1311. int i;
  1312. /* Free the Event Ring Segment Table and the actual Event Ring */
  1313. if (xhci->ir_set) {
  1314. xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
  1315. xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
  1316. xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
  1317. }
  1318. size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
  1319. if (xhci->erst.entries)
  1320. pci_free_consistent(pdev, size,
  1321. xhci->erst.entries, xhci->erst.erst_dma_addr);
  1322. xhci->erst.entries = NULL;
  1323. xhci_dbg(xhci, "Freed ERST\n");
  1324. if (xhci->event_ring)
  1325. xhci_ring_free(xhci, xhci->event_ring);
  1326. xhci->event_ring = NULL;
  1327. xhci_dbg(xhci, "Freed event ring\n");
  1328. xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
  1329. if (xhci->cmd_ring)
  1330. xhci_ring_free(xhci, xhci->cmd_ring);
  1331. xhci->cmd_ring = NULL;
  1332. xhci_dbg(xhci, "Freed command ring\n");
  1333. for (i = 1; i < MAX_HC_SLOTS; ++i)
  1334. xhci_free_virt_device(xhci, i);
  1335. if (xhci->segment_pool)
  1336. dma_pool_destroy(xhci->segment_pool);
  1337. xhci->segment_pool = NULL;
  1338. xhci_dbg(xhci, "Freed segment pool\n");
  1339. if (xhci->device_pool)
  1340. dma_pool_destroy(xhci->device_pool);
  1341. xhci->device_pool = NULL;
  1342. xhci_dbg(xhci, "Freed device context pool\n");
  1343. if (xhci->small_streams_pool)
  1344. dma_pool_destroy(xhci->small_streams_pool);
  1345. xhci->small_streams_pool = NULL;
  1346. xhci_dbg(xhci, "Freed small stream array pool\n");
  1347. if (xhci->medium_streams_pool)
  1348. dma_pool_destroy(xhci->medium_streams_pool);
  1349. xhci->medium_streams_pool = NULL;
  1350. xhci_dbg(xhci, "Freed medium stream array pool\n");
  1351. xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
  1352. if (xhci->dcbaa)
  1353. pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
  1354. xhci->dcbaa, xhci->dcbaa->dma);
  1355. xhci->dcbaa = NULL;
  1356. scratchpad_free(xhci);
  1357. xhci->num_usb2_ports = 0;
  1358. xhci->num_usb3_ports = 0;
  1359. kfree(xhci->usb2_ports);
  1360. kfree(xhci->usb3_ports);
  1361. kfree(xhci->port_array);
  1362. xhci->page_size = 0;
  1363. xhci->page_shift = 0;
  1364. xhci->bus_state[0].bus_suspended = 0;
  1365. xhci->bus_state[1].bus_suspended = 0;
  1366. }
  1367. static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
  1368. struct xhci_segment *input_seg,
  1369. union xhci_trb *start_trb,
  1370. union xhci_trb *end_trb,
  1371. dma_addr_t input_dma,
  1372. struct xhci_segment *result_seg,
  1373. char *test_name, int test_number)
  1374. {
  1375. unsigned long long start_dma;
  1376. unsigned long long end_dma;
  1377. struct xhci_segment *seg;
  1378. start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
  1379. end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
  1380. seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
  1381. if (seg != result_seg) {
  1382. xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
  1383. test_name, test_number);
  1384. xhci_warn(xhci, "Tested TRB math w/ seg %p and "
  1385. "input DMA 0x%llx\n",
  1386. input_seg,
  1387. (unsigned long long) input_dma);
  1388. xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
  1389. "ending TRB %p (0x%llx DMA)\n",
  1390. start_trb, start_dma,
  1391. end_trb, end_dma);
  1392. xhci_warn(xhci, "Expected seg %p, got seg %p\n",
  1393. result_seg, seg);
  1394. return -1;
  1395. }
  1396. return 0;
  1397. }
  1398. /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
  1399. static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
  1400. {
  1401. struct {
  1402. dma_addr_t input_dma;
  1403. struct xhci_segment *result_seg;
  1404. } simple_test_vector [] = {
  1405. /* A zeroed DMA field should fail */
  1406. { 0, NULL },
  1407. /* One TRB before the ring start should fail */
  1408. { xhci->event_ring->first_seg->dma - 16, NULL },
  1409. /* One byte before the ring start should fail */
  1410. { xhci->event_ring->first_seg->dma - 1, NULL },
  1411. /* Starting TRB should succeed */
  1412. { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
  1413. /* Ending TRB should succeed */
  1414. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
  1415. xhci->event_ring->first_seg },
  1416. /* One byte after the ring end should fail */
  1417. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
  1418. /* One TRB after the ring end should fail */
  1419. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
  1420. /* An address of all ones should fail */
  1421. { (dma_addr_t) (~0), NULL },
  1422. };
  1423. struct {
  1424. struct xhci_segment *input_seg;
  1425. union xhci_trb *start_trb;
  1426. union xhci_trb *end_trb;
  1427. dma_addr_t input_dma;
  1428. struct xhci_segment *result_seg;
  1429. } complex_test_vector [] = {
  1430. /* Test feeding a valid DMA address from a different ring */
  1431. { .input_seg = xhci->event_ring->first_seg,
  1432. .start_trb = xhci->event_ring->first_seg->trbs,
  1433. .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1434. .input_dma = xhci->cmd_ring->first_seg->dma,
  1435. .result_seg = NULL,
  1436. },
  1437. /* Test feeding a valid end TRB from a different ring */
  1438. { .input_seg = xhci->event_ring->first_seg,
  1439. .start_trb = xhci->event_ring->first_seg->trbs,
  1440. .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1441. .input_dma = xhci->cmd_ring->first_seg->dma,
  1442. .result_seg = NULL,
  1443. },
  1444. /* Test feeding a valid start and end TRB from a different ring */
  1445. { .input_seg = xhci->event_ring->first_seg,
  1446. .start_trb = xhci->cmd_ring->first_seg->trbs,
  1447. .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1448. .input_dma = xhci->cmd_ring->first_seg->dma,
  1449. .result_seg = NULL,
  1450. },
  1451. /* TRB in this ring, but after this TD */
  1452. { .input_seg = xhci->event_ring->first_seg,
  1453. .start_trb = &xhci->event_ring->first_seg->trbs[0],
  1454. .end_trb = &xhci->event_ring->first_seg->trbs[3],
  1455. .input_dma = xhci->event_ring->first_seg->dma + 4*16,
  1456. .result_seg = NULL,
  1457. },
  1458. /* TRB in this ring, but before this TD */
  1459. { .input_seg = xhci->event_ring->first_seg,
  1460. .start_trb = &xhci->event_ring->first_seg->trbs[3],
  1461. .end_trb = &xhci->event_ring->first_seg->trbs[6],
  1462. .input_dma = xhci->event_ring->first_seg->dma + 2*16,
  1463. .result_seg = NULL,
  1464. },
  1465. /* TRB in this ring, but after this wrapped TD */
  1466. { .input_seg = xhci->event_ring->first_seg,
  1467. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1468. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1469. .input_dma = xhci->event_ring->first_seg->dma + 2*16,
  1470. .result_seg = NULL,
  1471. },
  1472. /* TRB in this ring, but before this wrapped TD */
  1473. { .input_seg = xhci->event_ring->first_seg,
  1474. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1475. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1476. .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
  1477. .result_seg = NULL,
  1478. },
  1479. /* TRB not in this ring, and we have a wrapped TD */
  1480. { .input_seg = xhci->event_ring->first_seg,
  1481. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1482. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1483. .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
  1484. .result_seg = NULL,
  1485. },
  1486. };
  1487. unsigned int num_tests;
  1488. int i, ret;
  1489. num_tests = ARRAY_SIZE(simple_test_vector);
  1490. for (i = 0; i < num_tests; i++) {
  1491. ret = xhci_test_trb_in_td(xhci,
  1492. xhci->event_ring->first_seg,
  1493. xhci->event_ring->first_seg->trbs,
  1494. &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1495. simple_test_vector[i].input_dma,
  1496. simple_test_vector[i].result_seg,
  1497. "Simple", i);
  1498. if (ret < 0)
  1499. return ret;
  1500. }
  1501. num_tests = ARRAY_SIZE(complex_test_vector);
  1502. for (i = 0; i < num_tests; i++) {
  1503. ret = xhci_test_trb_in_td(xhci,
  1504. complex_test_vector[i].input_seg,
  1505. complex_test_vector[i].start_trb,
  1506. complex_test_vector[i].end_trb,
  1507. complex_test_vector[i].input_dma,
  1508. complex_test_vector[i].result_seg,
  1509. "Complex", i);
  1510. if (ret < 0)
  1511. return ret;
  1512. }
  1513. xhci_dbg(xhci, "TRB math tests passed.\n");
  1514. return 0;
  1515. }
  1516. static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
  1517. {
  1518. u64 temp;
  1519. dma_addr_t deq;
  1520. deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
  1521. xhci->event_ring->dequeue);
  1522. if (deq == 0 && !in_interrupt())
  1523. xhci_warn(xhci, "WARN something wrong with SW event ring "
  1524. "dequeue ptr.\n");
  1525. /* Update HC event ring dequeue pointer */
  1526. temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  1527. temp &= ERST_PTR_MASK;
  1528. /* Don't clear the EHB bit (which is RW1C) because
  1529. * there might be more events to service.
  1530. */
  1531. temp &= ~ERST_EHB;
  1532. xhci_dbg(xhci, "// Write event ring dequeue pointer, "
  1533. "preserving EHB bit\n");
  1534. xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
  1535. &xhci->ir_set->erst_dequeue);
  1536. }
  1537. static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
  1538. __le32 __iomem *addr, u8 major_revision)
  1539. {
  1540. u32 temp, port_offset, port_count;
  1541. int i;
  1542. if (major_revision > 0x03) {
  1543. xhci_warn(xhci, "Ignoring unknown port speed, "
  1544. "Ext Cap %p, revision = 0x%x\n",
  1545. addr, major_revision);
  1546. /* Ignoring port protocol we can't understand. FIXME */
  1547. return;
  1548. }
  1549. /* Port offset and count in the third dword, see section 7.2 */
  1550. temp = xhci_readl(xhci, addr + 2);
  1551. port_offset = XHCI_EXT_PORT_OFF(temp);
  1552. port_count = XHCI_EXT_PORT_COUNT(temp);
  1553. xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
  1554. "count = %u, revision = 0x%x\n",
  1555. addr, port_offset, port_count, major_revision);
  1556. /* Port count includes the current port offset */
  1557. if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
  1558. /* WTF? "Valid values are ‘1’ to MaxPorts" */
  1559. return;
  1560. port_offset--;
  1561. for (i = port_offset; i < (port_offset + port_count); i++) {
  1562. /* Duplicate entry. Ignore the port if the revisions differ. */
  1563. if (xhci->port_array[i] != 0) {
  1564. xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
  1565. " port %u\n", addr, i);
  1566. xhci_warn(xhci, "Port was marked as USB %u, "
  1567. "duplicated as USB %u\n",
  1568. xhci->port_array[i], major_revision);
  1569. /* Only adjust the roothub port counts if we haven't
  1570. * found a similar duplicate.
  1571. */
  1572. if (xhci->port_array[i] != major_revision &&
  1573. xhci->port_array[i] != DUPLICATE_ENTRY) {
  1574. if (xhci->port_array[i] == 0x03)
  1575. xhci->num_usb3_ports--;
  1576. else
  1577. xhci->num_usb2_ports--;
  1578. xhci->port_array[i] = DUPLICATE_ENTRY;
  1579. }
  1580. /* FIXME: Should we disable the port? */
  1581. continue;
  1582. }
  1583. xhci->port_array[i] = major_revision;
  1584. if (major_revision == 0x03)
  1585. xhci->num_usb3_ports++;
  1586. else
  1587. xhci->num_usb2_ports++;
  1588. }
  1589. /* FIXME: Should we disable ports not in the Extended Capabilities? */
  1590. }
  1591. /*
  1592. * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
  1593. * specify what speeds each port is supposed to be. We can't count on the port
  1594. * speed bits in the PORTSC register being correct until a device is connected,
  1595. * but we need to set up the two fake roothubs with the correct number of USB
  1596. * 3.0 and USB 2.0 ports at host controller initialization time.
  1597. */
  1598. static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
  1599. {
  1600. __le32 __iomem *addr;
  1601. u32 offset;
  1602. unsigned int num_ports;
  1603. int i, port_index;
  1604. addr = &xhci->cap_regs->hcc_params;
  1605. offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
  1606. if (offset == 0) {
  1607. xhci_err(xhci, "No Extended Capability registers, "
  1608. "unable to set up roothub.\n");
  1609. return -ENODEV;
  1610. }
  1611. num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
  1612. xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
  1613. if (!xhci->port_array)
  1614. return -ENOMEM;
  1615. /*
  1616. * For whatever reason, the first capability offset is from the
  1617. * capability register base, not from the HCCPARAMS register.
  1618. * See section 5.3.6 for offset calculation.
  1619. */
  1620. addr = &xhci->cap_regs->hc_capbase + offset;
  1621. while (1) {
  1622. u32 cap_id;
  1623. cap_id = xhci_readl(xhci, addr);
  1624. if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
  1625. xhci_add_in_port(xhci, num_ports, addr,
  1626. (u8) XHCI_EXT_PORT_MAJOR(cap_id));
  1627. offset = XHCI_EXT_CAPS_NEXT(cap_id);
  1628. if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
  1629. == num_ports)
  1630. break;
  1631. /*
  1632. * Once you're into the Extended Capabilities, the offset is
  1633. * always relative to the register holding the offset.
  1634. */
  1635. addr += offset;
  1636. }
  1637. if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
  1638. xhci_warn(xhci, "No ports on the roothubs?\n");
  1639. return -ENODEV;
  1640. }
  1641. xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
  1642. xhci->num_usb2_ports, xhci->num_usb3_ports);
  1643. /* Place limits on the number of roothub ports so that the hub
  1644. * descriptors aren't longer than the USB core will allocate.
  1645. */
  1646. if (xhci->num_usb3_ports > 15) {
  1647. xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
  1648. xhci->num_usb3_ports = 15;
  1649. }
  1650. if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
  1651. xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
  1652. USB_MAXCHILDREN);
  1653. xhci->num_usb2_ports = USB_MAXCHILDREN;
  1654. }
  1655. /*
  1656. * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
  1657. * Not sure how the USB core will handle a hub with no ports...
  1658. */
  1659. if (xhci->num_usb2_ports) {
  1660. xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
  1661. xhci->num_usb2_ports, flags);
  1662. if (!xhci->usb2_ports)
  1663. return -ENOMEM;
  1664. port_index = 0;
  1665. for (i = 0; i < num_ports; i++) {
  1666. if (xhci->port_array[i] == 0x03 ||
  1667. xhci->port_array[i] == 0 ||
  1668. xhci->port_array[i] == DUPLICATE_ENTRY)
  1669. continue;
  1670. xhci->usb2_ports[port_index] =
  1671. &xhci->op_regs->port_status_base +
  1672. NUM_PORT_REGS*i;
  1673. xhci_dbg(xhci, "USB 2.0 port at index %u, "
  1674. "addr = %p\n", i,
  1675. xhci->usb2_ports[port_index]);
  1676. port_index++;
  1677. if (port_index == xhci->num_usb2_ports)
  1678. break;
  1679. }
  1680. }
  1681. if (xhci->num_usb3_ports) {
  1682. xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
  1683. xhci->num_usb3_ports, flags);
  1684. if (!xhci->usb3_ports)
  1685. return -ENOMEM;
  1686. port_index = 0;
  1687. for (i = 0; i < num_ports; i++)
  1688. if (xhci->port_array[i] == 0x03) {
  1689. xhci->usb3_ports[port_index] =
  1690. &xhci->op_regs->port_status_base +
  1691. NUM_PORT_REGS*i;
  1692. xhci_dbg(xhci, "USB 3.0 port at index %u, "
  1693. "addr = %p\n", i,
  1694. xhci->usb3_ports[port_index]);
  1695. port_index++;
  1696. if (port_index == xhci->num_usb3_ports)
  1697. break;
  1698. }
  1699. }
  1700. return 0;
  1701. }
  1702. int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
  1703. {
  1704. dma_addr_t dma;
  1705. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  1706. unsigned int val, val2;
  1707. u64 val_64;
  1708. struct xhci_segment *seg;
  1709. u32 page_size;
  1710. int i;
  1711. page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
  1712. xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
  1713. for (i = 0; i < 16; i++) {
  1714. if ((0x1 & page_size) != 0)
  1715. break;
  1716. page_size = page_size >> 1;
  1717. }
  1718. if (i < 16)
  1719. xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
  1720. else
  1721. xhci_warn(xhci, "WARN: no supported page size\n");
  1722. /* Use 4K pages, since that's common and the minimum the HC supports */
  1723. xhci->page_shift = 12;
  1724. xhci->page_size = 1 << xhci->page_shift;
  1725. xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
  1726. /*
  1727. * Program the Number of Device Slots Enabled field in the CONFIG
  1728. * register with the max value of slots the HC can handle.
  1729. */
  1730. val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
  1731. xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
  1732. (unsigned int) val);
  1733. val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
  1734. val |= (val2 & ~HCS_SLOTS_MASK);
  1735. xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
  1736. (unsigned int) val);
  1737. xhci_writel(xhci, val, &xhci->op_regs->config_reg);
  1738. /*
  1739. * Section 5.4.8 - doorbell array must be
  1740. * "physically contiguous and 64-byte (cache line) aligned".
  1741. */
  1742. xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
  1743. sizeof(*xhci->dcbaa), &dma);
  1744. if (!xhci->dcbaa)
  1745. goto fail;
  1746. memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
  1747. xhci->dcbaa->dma = dma;
  1748. xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
  1749. (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
  1750. xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
  1751. /*
  1752. * Initialize the ring segment pool. The ring must be a contiguous
  1753. * structure comprised of TRBs. The TRBs must be 16 byte aligned,
  1754. * however, the command ring segment needs 64-byte aligned segments,
  1755. * so we pick the greater alignment need.
  1756. */
  1757. xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
  1758. SEGMENT_SIZE, 64, xhci->page_size);
  1759. /* See Table 46 and Note on Figure 55 */
  1760. xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
  1761. 2112, 64, xhci->page_size);
  1762. if (!xhci->segment_pool || !xhci->device_pool)
  1763. goto fail;
  1764. /* Linear stream context arrays don't have any boundary restrictions,
  1765. * and only need to be 16-byte aligned.
  1766. */
  1767. xhci->small_streams_pool =
  1768. dma_pool_create("xHCI 256 byte stream ctx arrays",
  1769. dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
  1770. xhci->medium_streams_pool =
  1771. dma_pool_create("xHCI 1KB stream ctx arrays",
  1772. dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
  1773. /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
  1774. * will be allocated with pci_alloc_consistent()
  1775. */
  1776. if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
  1777. goto fail;
  1778. /* Set up the command ring to have one segments for now. */
  1779. xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
  1780. if (!xhci->cmd_ring)
  1781. goto fail;
  1782. xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
  1783. xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
  1784. (unsigned long long)xhci->cmd_ring->first_seg->dma);
  1785. /* Set the address in the Command Ring Control register */
  1786. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  1787. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  1788. (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
  1789. xhci->cmd_ring->cycle_state;
  1790. xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
  1791. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  1792. xhci_dbg_cmd_ptrs(xhci);
  1793. val = xhci_readl(xhci, &xhci->cap_regs->db_off);
  1794. val &= DBOFF_MASK;
  1795. xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
  1796. " from cap regs base addr\n", val);
  1797. xhci->dba = (void __iomem *) xhci->cap_regs + val;
  1798. xhci_dbg_regs(xhci);
  1799. xhci_print_run_regs(xhci);
  1800. /* Set ir_set to interrupt register set 0 */
  1801. xhci->ir_set = &xhci->run_regs->ir_set[0];
  1802. /*
  1803. * Event ring setup: Allocate a normal ring, but also setup
  1804. * the event ring segment table (ERST). Section 4.9.3.
  1805. */
  1806. xhci_dbg(xhci, "// Allocating event ring\n");
  1807. xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
  1808. if (!xhci->event_ring)
  1809. goto fail;
  1810. if (xhci_check_trb_in_td_math(xhci, flags) < 0)
  1811. goto fail;
  1812. xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
  1813. sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
  1814. if (!xhci->erst.entries)
  1815. goto fail;
  1816. xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
  1817. (unsigned long long)dma);
  1818. memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
  1819. xhci->erst.num_entries = ERST_NUM_SEGS;
  1820. xhci->erst.erst_dma_addr = dma;
  1821. xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
  1822. xhci->erst.num_entries,
  1823. xhci->erst.entries,
  1824. (unsigned long long)xhci->erst.erst_dma_addr);
  1825. /* set ring base address and size for each segment table entry */
  1826. for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
  1827. struct xhci_erst_entry *entry = &xhci->erst.entries[val];
  1828. entry->seg_addr = cpu_to_le64(seg->dma);
  1829. entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
  1830. entry->rsvd = 0;
  1831. seg = seg->next;
  1832. }
  1833. /* set ERST count with the number of entries in the segment table */
  1834. val = xhci_readl(xhci, &xhci->ir_set->erst_size);
  1835. val &= ERST_SIZE_MASK;
  1836. val |= ERST_NUM_SEGS;
  1837. xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
  1838. val);
  1839. xhci_writel(xhci, val, &xhci->ir_set->erst_size);
  1840. xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
  1841. /* set the segment table base address */
  1842. xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
  1843. (unsigned long long)xhci->erst.erst_dma_addr);
  1844. val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  1845. val_64 &= ERST_PTR_MASK;
  1846. val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
  1847. xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
  1848. /* Set the event ring dequeue address */
  1849. xhci_set_hc_event_deq(xhci);
  1850. xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
  1851. xhci_print_ir_set(xhci, 0);
  1852. /*
  1853. * XXX: Might need to set the Interrupter Moderation Register to
  1854. * something other than the default (~1ms minimum between interrupts).
  1855. * See section 5.5.1.2.
  1856. */
  1857. init_completion(&xhci->addr_dev);
  1858. for (i = 0; i < MAX_HC_SLOTS; ++i)
  1859. xhci->devs[i] = NULL;
  1860. for (i = 0; i < USB_MAXCHILDREN; ++i) {
  1861. xhci->bus_state[0].resume_done[i] = 0;
  1862. xhci->bus_state[1].resume_done[i] = 0;
  1863. }
  1864. if (scratchpad_alloc(xhci, flags))
  1865. goto fail;
  1866. if (xhci_setup_port_arrays(xhci, flags))
  1867. goto fail;
  1868. return 0;
  1869. fail:
  1870. xhci_warn(xhci, "Couldn't initialize memory\n");
  1871. xhci_mem_cleanup(xhci);
  1872. return -ENOMEM;
  1873. }