slab.c 110 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/poison.h>
  92. #include <linux/swap.h>
  93. #include <linux/cache.h>
  94. #include <linux/interrupt.h>
  95. #include <linux/init.h>
  96. #include <linux/compiler.h>
  97. #include <linux/cpuset.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/rcupdate.h>
  105. #include <linux/string.h>
  106. #include <linux/nodemask.h>
  107. #include <linux/mempolicy.h>
  108. #include <linux/mutex.h>
  109. #include <linux/rtmutex.h>
  110. #include <asm/uaccess.h>
  111. #include <asm/cacheflush.h>
  112. #include <asm/tlbflush.h>
  113. #include <asm/page.h>
  114. /*
  115. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  116. * SLAB_RED_ZONE & SLAB_POISON.
  117. * 0 for faster, smaller code (especially in the critical paths).
  118. *
  119. * STATS - 1 to collect stats for /proc/slabinfo.
  120. * 0 for faster, smaller code (especially in the critical paths).
  121. *
  122. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  123. */
  124. #ifdef CONFIG_DEBUG_SLAB
  125. #define DEBUG 1
  126. #define STATS 1
  127. #define FORCED_DEBUG 1
  128. #else
  129. #define DEBUG 0
  130. #define STATS 0
  131. #define FORCED_DEBUG 0
  132. #endif
  133. /* Shouldn't this be in a header file somewhere? */
  134. #define BYTES_PER_WORD sizeof(void *)
  135. #ifndef cache_line_size
  136. #define cache_line_size() L1_CACHE_BYTES
  137. #endif
  138. #ifndef ARCH_KMALLOC_MINALIGN
  139. /*
  140. * Enforce a minimum alignment for the kmalloc caches.
  141. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  142. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  143. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  144. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  145. * Note that this flag disables some debug features.
  146. */
  147. #define ARCH_KMALLOC_MINALIGN 0
  148. #endif
  149. #ifndef ARCH_SLAB_MINALIGN
  150. /*
  151. * Enforce a minimum alignment for all caches.
  152. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  153. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  154. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  155. * some debug features.
  156. */
  157. #define ARCH_SLAB_MINALIGN 0
  158. #endif
  159. #ifndef ARCH_KMALLOC_FLAGS
  160. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  161. #endif
  162. /* Legal flag mask for kmem_cache_create(). */
  163. #if DEBUG
  164. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  165. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  166. SLAB_CACHE_DMA | \
  167. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  168. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  169. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  170. #else
  171. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  172. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  173. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  174. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  175. #endif
  176. /*
  177. * kmem_bufctl_t:
  178. *
  179. * Bufctl's are used for linking objs within a slab
  180. * linked offsets.
  181. *
  182. * This implementation relies on "struct page" for locating the cache &
  183. * slab an object belongs to.
  184. * This allows the bufctl structure to be small (one int), but limits
  185. * the number of objects a slab (not a cache) can contain when off-slab
  186. * bufctls are used. The limit is the size of the largest general cache
  187. * that does not use off-slab slabs.
  188. * For 32bit archs with 4 kB pages, is this 56.
  189. * This is not serious, as it is only for large objects, when it is unwise
  190. * to have too many per slab.
  191. * Note: This limit can be raised by introducing a general cache whose size
  192. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  193. */
  194. typedef unsigned int kmem_bufctl_t;
  195. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  196. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  197. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  198. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  199. /*
  200. * struct slab
  201. *
  202. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  203. * for a slab, or allocated from an general cache.
  204. * Slabs are chained into three list: fully used, partial, fully free slabs.
  205. */
  206. struct slab {
  207. struct list_head list;
  208. unsigned long colouroff;
  209. void *s_mem; /* including colour offset */
  210. unsigned int inuse; /* num of objs active in slab */
  211. kmem_bufctl_t free;
  212. unsigned short nodeid;
  213. };
  214. /*
  215. * struct slab_rcu
  216. *
  217. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  218. * arrange for kmem_freepages to be called via RCU. This is useful if
  219. * we need to approach a kernel structure obliquely, from its address
  220. * obtained without the usual locking. We can lock the structure to
  221. * stabilize it and check it's still at the given address, only if we
  222. * can be sure that the memory has not been meanwhile reused for some
  223. * other kind of object (which our subsystem's lock might corrupt).
  224. *
  225. * rcu_read_lock before reading the address, then rcu_read_unlock after
  226. * taking the spinlock within the structure expected at that address.
  227. *
  228. * We assume struct slab_rcu can overlay struct slab when destroying.
  229. */
  230. struct slab_rcu {
  231. struct rcu_head head;
  232. struct kmem_cache *cachep;
  233. void *addr;
  234. };
  235. /*
  236. * struct array_cache
  237. *
  238. * Purpose:
  239. * - LIFO ordering, to hand out cache-warm objects from _alloc
  240. * - reduce the number of linked list operations
  241. * - reduce spinlock operations
  242. *
  243. * The limit is stored in the per-cpu structure to reduce the data cache
  244. * footprint.
  245. *
  246. */
  247. struct array_cache {
  248. unsigned int avail;
  249. unsigned int limit;
  250. unsigned int batchcount;
  251. unsigned int touched;
  252. spinlock_t lock;
  253. void *entry[0]; /*
  254. * Must have this definition in here for the proper
  255. * alignment of array_cache. Also simplifies accessing
  256. * the entries.
  257. * [0] is for gcc 2.95. It should really be [].
  258. */
  259. };
  260. /*
  261. * bootstrap: The caches do not work without cpuarrays anymore, but the
  262. * cpuarrays are allocated from the generic caches...
  263. */
  264. #define BOOT_CPUCACHE_ENTRIES 1
  265. struct arraycache_init {
  266. struct array_cache cache;
  267. void *entries[BOOT_CPUCACHE_ENTRIES];
  268. };
  269. /*
  270. * The slab lists for all objects.
  271. */
  272. struct kmem_list3 {
  273. struct list_head slabs_partial; /* partial list first, better asm code */
  274. struct list_head slabs_full;
  275. struct list_head slabs_free;
  276. unsigned long free_objects;
  277. unsigned int free_limit;
  278. unsigned int colour_next; /* Per-node cache coloring */
  279. spinlock_t list_lock;
  280. struct array_cache *shared; /* shared per node */
  281. struct array_cache **alien; /* on other nodes */
  282. unsigned long next_reap; /* updated without locking */
  283. int free_touched; /* updated without locking */
  284. };
  285. /*
  286. * Need this for bootstrapping a per node allocator.
  287. */
  288. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  289. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  290. #define CACHE_CACHE 0
  291. #define SIZE_AC 1
  292. #define SIZE_L3 (1 + MAX_NUMNODES)
  293. static int drain_freelist(struct kmem_cache *cache,
  294. struct kmem_list3 *l3, int tofree);
  295. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  296. int node);
  297. static int enable_cpucache(struct kmem_cache *cachep);
  298. static void cache_reap(void *unused);
  299. /*
  300. * This function must be completely optimized away if a constant is passed to
  301. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  302. */
  303. static __always_inline int index_of(const size_t size)
  304. {
  305. extern void __bad_size(void);
  306. if (__builtin_constant_p(size)) {
  307. int i = 0;
  308. #define CACHE(x) \
  309. if (size <=x) \
  310. return i; \
  311. else \
  312. i++;
  313. #include "linux/kmalloc_sizes.h"
  314. #undef CACHE
  315. __bad_size();
  316. } else
  317. __bad_size();
  318. return 0;
  319. }
  320. static int slab_early_init = 1;
  321. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  322. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  323. static void kmem_list3_init(struct kmem_list3 *parent)
  324. {
  325. INIT_LIST_HEAD(&parent->slabs_full);
  326. INIT_LIST_HEAD(&parent->slabs_partial);
  327. INIT_LIST_HEAD(&parent->slabs_free);
  328. parent->shared = NULL;
  329. parent->alien = NULL;
  330. parent->colour_next = 0;
  331. spin_lock_init(&parent->list_lock);
  332. parent->free_objects = 0;
  333. parent->free_touched = 0;
  334. }
  335. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  336. do { \
  337. INIT_LIST_HEAD(listp); \
  338. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  339. } while (0)
  340. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  341. do { \
  342. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  343. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  344. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  345. } while (0)
  346. /*
  347. * struct kmem_cache
  348. *
  349. * manages a cache.
  350. */
  351. struct kmem_cache {
  352. /* 1) per-cpu data, touched during every alloc/free */
  353. struct array_cache *array[NR_CPUS];
  354. /* 2) Cache tunables. Protected by cache_chain_mutex */
  355. unsigned int batchcount;
  356. unsigned int limit;
  357. unsigned int shared;
  358. unsigned int buffer_size;
  359. /* 3) touched by every alloc & free from the backend */
  360. struct kmem_list3 *nodelists[MAX_NUMNODES];
  361. unsigned int flags; /* constant flags */
  362. unsigned int num; /* # of objs per slab */
  363. /* 4) cache_grow/shrink */
  364. /* order of pgs per slab (2^n) */
  365. unsigned int gfporder;
  366. /* force GFP flags, e.g. GFP_DMA */
  367. gfp_t gfpflags;
  368. size_t colour; /* cache colouring range */
  369. unsigned int colour_off; /* colour offset */
  370. struct kmem_cache *slabp_cache;
  371. unsigned int slab_size;
  372. unsigned int dflags; /* dynamic flags */
  373. /* constructor func */
  374. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  375. /* de-constructor func */
  376. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  377. /* 5) cache creation/removal */
  378. const char *name;
  379. struct list_head next;
  380. /* 6) statistics */
  381. #if STATS
  382. unsigned long num_active;
  383. unsigned long num_allocations;
  384. unsigned long high_mark;
  385. unsigned long grown;
  386. unsigned long reaped;
  387. unsigned long errors;
  388. unsigned long max_freeable;
  389. unsigned long node_allocs;
  390. unsigned long node_frees;
  391. unsigned long node_overflow;
  392. atomic_t allochit;
  393. atomic_t allocmiss;
  394. atomic_t freehit;
  395. atomic_t freemiss;
  396. #endif
  397. #if DEBUG
  398. /*
  399. * If debugging is enabled, then the allocator can add additional
  400. * fields and/or padding to every object. buffer_size contains the total
  401. * object size including these internal fields, the following two
  402. * variables contain the offset to the user object and its size.
  403. */
  404. int obj_offset;
  405. int obj_size;
  406. #endif
  407. };
  408. #define CFLGS_OFF_SLAB (0x80000000UL)
  409. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  410. #define BATCHREFILL_LIMIT 16
  411. /*
  412. * Optimization question: fewer reaps means less probability for unnessary
  413. * cpucache drain/refill cycles.
  414. *
  415. * OTOH the cpuarrays can contain lots of objects,
  416. * which could lock up otherwise freeable slabs.
  417. */
  418. #define REAPTIMEOUT_CPUC (2*HZ)
  419. #define REAPTIMEOUT_LIST3 (4*HZ)
  420. #if STATS
  421. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  422. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  423. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  424. #define STATS_INC_GROWN(x) ((x)->grown++)
  425. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  426. #define STATS_SET_HIGH(x) \
  427. do { \
  428. if ((x)->num_active > (x)->high_mark) \
  429. (x)->high_mark = (x)->num_active; \
  430. } while (0)
  431. #define STATS_INC_ERR(x) ((x)->errors++)
  432. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  433. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  434. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  435. #define STATS_SET_FREEABLE(x, i) \
  436. do { \
  437. if ((x)->max_freeable < i) \
  438. (x)->max_freeable = i; \
  439. } while (0)
  440. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  441. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  442. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  443. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  444. #else
  445. #define STATS_INC_ACTIVE(x) do { } while (0)
  446. #define STATS_DEC_ACTIVE(x) do { } while (0)
  447. #define STATS_INC_ALLOCED(x) do { } while (0)
  448. #define STATS_INC_GROWN(x) do { } while (0)
  449. #define STATS_ADD_REAPED(x,y) do { } while (0)
  450. #define STATS_SET_HIGH(x) do { } while (0)
  451. #define STATS_INC_ERR(x) do { } while (0)
  452. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  453. #define STATS_INC_NODEFREES(x) do { } while (0)
  454. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  455. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  456. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  457. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  458. #define STATS_INC_FREEHIT(x) do { } while (0)
  459. #define STATS_INC_FREEMISS(x) do { } while (0)
  460. #endif
  461. #if DEBUG
  462. /*
  463. * memory layout of objects:
  464. * 0 : objp
  465. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  466. * the end of an object is aligned with the end of the real
  467. * allocation. Catches writes behind the end of the allocation.
  468. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  469. * redzone word.
  470. * cachep->obj_offset: The real object.
  471. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  472. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  473. * [BYTES_PER_WORD long]
  474. */
  475. static int obj_offset(struct kmem_cache *cachep)
  476. {
  477. return cachep->obj_offset;
  478. }
  479. static int obj_size(struct kmem_cache *cachep)
  480. {
  481. return cachep->obj_size;
  482. }
  483. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  484. {
  485. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  486. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  487. }
  488. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  489. {
  490. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  491. if (cachep->flags & SLAB_STORE_USER)
  492. return (unsigned long *)(objp + cachep->buffer_size -
  493. 2 * BYTES_PER_WORD);
  494. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  495. }
  496. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  497. {
  498. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  499. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  500. }
  501. #else
  502. #define obj_offset(x) 0
  503. #define obj_size(cachep) (cachep->buffer_size)
  504. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  505. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  506. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  507. #endif
  508. /*
  509. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  510. * order.
  511. */
  512. #if defined(CONFIG_LARGE_ALLOCS)
  513. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  514. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  515. #elif defined(CONFIG_MMU)
  516. #define MAX_OBJ_ORDER 5 /* 32 pages */
  517. #define MAX_GFP_ORDER 5 /* 32 pages */
  518. #else
  519. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  520. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  521. #endif
  522. /*
  523. * Do not go above this order unless 0 objects fit into the slab.
  524. */
  525. #define BREAK_GFP_ORDER_HI 1
  526. #define BREAK_GFP_ORDER_LO 0
  527. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  528. /*
  529. * Functions for storing/retrieving the cachep and or slab from the page
  530. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  531. * these are used to find the cache which an obj belongs to.
  532. */
  533. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  534. {
  535. page->lru.next = (struct list_head *)cache;
  536. }
  537. static inline struct kmem_cache *page_get_cache(struct page *page)
  538. {
  539. if (unlikely(PageCompound(page)))
  540. page = (struct page *)page_private(page);
  541. BUG_ON(!PageSlab(page));
  542. return (struct kmem_cache *)page->lru.next;
  543. }
  544. static inline void page_set_slab(struct page *page, struct slab *slab)
  545. {
  546. page->lru.prev = (struct list_head *)slab;
  547. }
  548. static inline struct slab *page_get_slab(struct page *page)
  549. {
  550. if (unlikely(PageCompound(page)))
  551. page = (struct page *)page_private(page);
  552. BUG_ON(!PageSlab(page));
  553. return (struct slab *)page->lru.prev;
  554. }
  555. static inline struct kmem_cache *virt_to_cache(const void *obj)
  556. {
  557. struct page *page = virt_to_page(obj);
  558. return page_get_cache(page);
  559. }
  560. static inline struct slab *virt_to_slab(const void *obj)
  561. {
  562. struct page *page = virt_to_page(obj);
  563. return page_get_slab(page);
  564. }
  565. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  566. unsigned int idx)
  567. {
  568. return slab->s_mem + cache->buffer_size * idx;
  569. }
  570. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  571. struct slab *slab, void *obj)
  572. {
  573. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  574. }
  575. /*
  576. * These are the default caches for kmalloc. Custom caches can have other sizes.
  577. */
  578. struct cache_sizes malloc_sizes[] = {
  579. #define CACHE(x) { .cs_size = (x) },
  580. #include <linux/kmalloc_sizes.h>
  581. CACHE(ULONG_MAX)
  582. #undef CACHE
  583. };
  584. EXPORT_SYMBOL(malloc_sizes);
  585. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  586. struct cache_names {
  587. char *name;
  588. char *name_dma;
  589. };
  590. static struct cache_names __initdata cache_names[] = {
  591. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  592. #include <linux/kmalloc_sizes.h>
  593. {NULL,}
  594. #undef CACHE
  595. };
  596. static struct arraycache_init initarray_cache __initdata =
  597. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  598. static struct arraycache_init initarray_generic =
  599. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  600. /* internal cache of cache description objs */
  601. static struct kmem_cache cache_cache = {
  602. .batchcount = 1,
  603. .limit = BOOT_CPUCACHE_ENTRIES,
  604. .shared = 1,
  605. .buffer_size = sizeof(struct kmem_cache),
  606. .name = "kmem_cache",
  607. #if DEBUG
  608. .obj_size = sizeof(struct kmem_cache),
  609. #endif
  610. };
  611. #define BAD_ALIEN_MAGIC 0x01020304ul
  612. #ifdef CONFIG_LOCKDEP
  613. /*
  614. * Slab sometimes uses the kmalloc slabs to store the slab headers
  615. * for other slabs "off slab".
  616. * The locking for this is tricky in that it nests within the locks
  617. * of all other slabs in a few places; to deal with this special
  618. * locking we put on-slab caches into a separate lock-class.
  619. *
  620. * We set lock class for alien array caches which are up during init.
  621. * The lock annotation will be lost if all cpus of a node goes down and
  622. * then comes back up during hotplug
  623. */
  624. static struct lock_class_key on_slab_l3_key;
  625. static struct lock_class_key on_slab_alc_key;
  626. static inline void init_lock_keys(void)
  627. {
  628. int q;
  629. struct cache_sizes *s = malloc_sizes;
  630. while (s->cs_size != ULONG_MAX) {
  631. for_each_node(q) {
  632. struct array_cache **alc;
  633. int r;
  634. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  635. if (!l3 || OFF_SLAB(s->cs_cachep))
  636. continue;
  637. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  638. alc = l3->alien;
  639. /*
  640. * FIXME: This check for BAD_ALIEN_MAGIC
  641. * should go away when common slab code is taught to
  642. * work even without alien caches.
  643. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  644. * for alloc_alien_cache,
  645. */
  646. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  647. continue;
  648. for_each_node(r) {
  649. if (alc[r])
  650. lockdep_set_class(&alc[r]->lock,
  651. &on_slab_alc_key);
  652. }
  653. }
  654. s++;
  655. }
  656. }
  657. #else
  658. static inline void init_lock_keys(void)
  659. {
  660. }
  661. #endif
  662. /* Guard access to the cache-chain. */
  663. static DEFINE_MUTEX(cache_chain_mutex);
  664. static struct list_head cache_chain;
  665. /*
  666. * chicken and egg problem: delay the per-cpu array allocation
  667. * until the general caches are up.
  668. */
  669. static enum {
  670. NONE,
  671. PARTIAL_AC,
  672. PARTIAL_L3,
  673. FULL
  674. } g_cpucache_up;
  675. /*
  676. * used by boot code to determine if it can use slab based allocator
  677. */
  678. int slab_is_available(void)
  679. {
  680. return g_cpucache_up == FULL;
  681. }
  682. static DEFINE_PER_CPU(struct work_struct, reap_work);
  683. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  684. {
  685. return cachep->array[smp_processor_id()];
  686. }
  687. static inline struct kmem_cache *__find_general_cachep(size_t size,
  688. gfp_t gfpflags)
  689. {
  690. struct cache_sizes *csizep = malloc_sizes;
  691. #if DEBUG
  692. /* This happens if someone tries to call
  693. * kmem_cache_create(), or __kmalloc(), before
  694. * the generic caches are initialized.
  695. */
  696. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  697. #endif
  698. while (size > csizep->cs_size)
  699. csizep++;
  700. /*
  701. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  702. * has cs_{dma,}cachep==NULL. Thus no special case
  703. * for large kmalloc calls required.
  704. */
  705. if (unlikely(gfpflags & GFP_DMA))
  706. return csizep->cs_dmacachep;
  707. return csizep->cs_cachep;
  708. }
  709. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  710. {
  711. return __find_general_cachep(size, gfpflags);
  712. }
  713. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  714. {
  715. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  716. }
  717. /*
  718. * Calculate the number of objects and left-over bytes for a given buffer size.
  719. */
  720. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  721. size_t align, int flags, size_t *left_over,
  722. unsigned int *num)
  723. {
  724. int nr_objs;
  725. size_t mgmt_size;
  726. size_t slab_size = PAGE_SIZE << gfporder;
  727. /*
  728. * The slab management structure can be either off the slab or
  729. * on it. For the latter case, the memory allocated for a
  730. * slab is used for:
  731. *
  732. * - The struct slab
  733. * - One kmem_bufctl_t for each object
  734. * - Padding to respect alignment of @align
  735. * - @buffer_size bytes for each object
  736. *
  737. * If the slab management structure is off the slab, then the
  738. * alignment will already be calculated into the size. Because
  739. * the slabs are all pages aligned, the objects will be at the
  740. * correct alignment when allocated.
  741. */
  742. if (flags & CFLGS_OFF_SLAB) {
  743. mgmt_size = 0;
  744. nr_objs = slab_size / buffer_size;
  745. if (nr_objs > SLAB_LIMIT)
  746. nr_objs = SLAB_LIMIT;
  747. } else {
  748. /*
  749. * Ignore padding for the initial guess. The padding
  750. * is at most @align-1 bytes, and @buffer_size is at
  751. * least @align. In the worst case, this result will
  752. * be one greater than the number of objects that fit
  753. * into the memory allocation when taking the padding
  754. * into account.
  755. */
  756. nr_objs = (slab_size - sizeof(struct slab)) /
  757. (buffer_size + sizeof(kmem_bufctl_t));
  758. /*
  759. * This calculated number will be either the right
  760. * amount, or one greater than what we want.
  761. */
  762. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  763. > slab_size)
  764. nr_objs--;
  765. if (nr_objs > SLAB_LIMIT)
  766. nr_objs = SLAB_LIMIT;
  767. mgmt_size = slab_mgmt_size(nr_objs, align);
  768. }
  769. *num = nr_objs;
  770. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  771. }
  772. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  773. static void __slab_error(const char *function, struct kmem_cache *cachep,
  774. char *msg)
  775. {
  776. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  777. function, cachep->name, msg);
  778. dump_stack();
  779. }
  780. #ifdef CONFIG_NUMA
  781. /*
  782. * Special reaping functions for NUMA systems called from cache_reap().
  783. * These take care of doing round robin flushing of alien caches (containing
  784. * objects freed on different nodes from which they were allocated) and the
  785. * flushing of remote pcps by calling drain_node_pages.
  786. */
  787. static DEFINE_PER_CPU(unsigned long, reap_node);
  788. static void init_reap_node(int cpu)
  789. {
  790. int node;
  791. node = next_node(cpu_to_node(cpu), node_online_map);
  792. if (node == MAX_NUMNODES)
  793. node = first_node(node_online_map);
  794. __get_cpu_var(reap_node) = node;
  795. }
  796. static void next_reap_node(void)
  797. {
  798. int node = __get_cpu_var(reap_node);
  799. /*
  800. * Also drain per cpu pages on remote zones
  801. */
  802. if (node != numa_node_id())
  803. drain_node_pages(node);
  804. node = next_node(node, node_online_map);
  805. if (unlikely(node >= MAX_NUMNODES))
  806. node = first_node(node_online_map);
  807. __get_cpu_var(reap_node) = node;
  808. }
  809. #else
  810. #define init_reap_node(cpu) do { } while (0)
  811. #define next_reap_node(void) do { } while (0)
  812. #endif
  813. /*
  814. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  815. * via the workqueue/eventd.
  816. * Add the CPU number into the expiration time to minimize the possibility of
  817. * the CPUs getting into lockstep and contending for the global cache chain
  818. * lock.
  819. */
  820. static void __devinit start_cpu_timer(int cpu)
  821. {
  822. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  823. /*
  824. * When this gets called from do_initcalls via cpucache_init(),
  825. * init_workqueues() has already run, so keventd will be setup
  826. * at that time.
  827. */
  828. if (keventd_up() && reap_work->func == NULL) {
  829. init_reap_node(cpu);
  830. INIT_WORK(reap_work, cache_reap, NULL);
  831. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  832. }
  833. }
  834. static struct array_cache *alloc_arraycache(int node, int entries,
  835. int batchcount)
  836. {
  837. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  838. struct array_cache *nc = NULL;
  839. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  840. if (nc) {
  841. nc->avail = 0;
  842. nc->limit = entries;
  843. nc->batchcount = batchcount;
  844. nc->touched = 0;
  845. spin_lock_init(&nc->lock);
  846. }
  847. return nc;
  848. }
  849. /*
  850. * Transfer objects in one arraycache to another.
  851. * Locking must be handled by the caller.
  852. *
  853. * Return the number of entries transferred.
  854. */
  855. static int transfer_objects(struct array_cache *to,
  856. struct array_cache *from, unsigned int max)
  857. {
  858. /* Figure out how many entries to transfer */
  859. int nr = min(min(from->avail, max), to->limit - to->avail);
  860. if (!nr)
  861. return 0;
  862. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  863. sizeof(void *) *nr);
  864. from->avail -= nr;
  865. to->avail += nr;
  866. to->touched = 1;
  867. return nr;
  868. }
  869. #ifndef CONFIG_NUMA
  870. #define drain_alien_cache(cachep, alien) do { } while (0)
  871. #define reap_alien(cachep, l3) do { } while (0)
  872. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  873. {
  874. return (struct array_cache **)BAD_ALIEN_MAGIC;
  875. }
  876. static inline void free_alien_cache(struct array_cache **ac_ptr)
  877. {
  878. }
  879. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  880. {
  881. return 0;
  882. }
  883. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  884. gfp_t flags)
  885. {
  886. return NULL;
  887. }
  888. static inline void *__cache_alloc_node(struct kmem_cache *cachep,
  889. gfp_t flags, int nodeid)
  890. {
  891. return NULL;
  892. }
  893. #else /* CONFIG_NUMA */
  894. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  895. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  896. static struct array_cache **alloc_alien_cache(int node, int limit)
  897. {
  898. struct array_cache **ac_ptr;
  899. int memsize = sizeof(void *) * MAX_NUMNODES;
  900. int i;
  901. if (limit > 1)
  902. limit = 12;
  903. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  904. if (ac_ptr) {
  905. for_each_node(i) {
  906. if (i == node || !node_online(i)) {
  907. ac_ptr[i] = NULL;
  908. continue;
  909. }
  910. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  911. if (!ac_ptr[i]) {
  912. for (i--; i <= 0; i--)
  913. kfree(ac_ptr[i]);
  914. kfree(ac_ptr);
  915. return NULL;
  916. }
  917. }
  918. }
  919. return ac_ptr;
  920. }
  921. static void free_alien_cache(struct array_cache **ac_ptr)
  922. {
  923. int i;
  924. if (!ac_ptr)
  925. return;
  926. for_each_node(i)
  927. kfree(ac_ptr[i]);
  928. kfree(ac_ptr);
  929. }
  930. static void __drain_alien_cache(struct kmem_cache *cachep,
  931. struct array_cache *ac, int node)
  932. {
  933. struct kmem_list3 *rl3 = cachep->nodelists[node];
  934. if (ac->avail) {
  935. spin_lock(&rl3->list_lock);
  936. /*
  937. * Stuff objects into the remote nodes shared array first.
  938. * That way we could avoid the overhead of putting the objects
  939. * into the free lists and getting them back later.
  940. */
  941. if (rl3->shared)
  942. transfer_objects(rl3->shared, ac, ac->limit);
  943. free_block(cachep, ac->entry, ac->avail, node);
  944. ac->avail = 0;
  945. spin_unlock(&rl3->list_lock);
  946. }
  947. }
  948. /*
  949. * Called from cache_reap() to regularly drain alien caches round robin.
  950. */
  951. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  952. {
  953. int node = __get_cpu_var(reap_node);
  954. if (l3->alien) {
  955. struct array_cache *ac = l3->alien[node];
  956. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  957. __drain_alien_cache(cachep, ac, node);
  958. spin_unlock_irq(&ac->lock);
  959. }
  960. }
  961. }
  962. static void drain_alien_cache(struct kmem_cache *cachep,
  963. struct array_cache **alien)
  964. {
  965. int i = 0;
  966. struct array_cache *ac;
  967. unsigned long flags;
  968. for_each_online_node(i) {
  969. ac = alien[i];
  970. if (ac) {
  971. spin_lock_irqsave(&ac->lock, flags);
  972. __drain_alien_cache(cachep, ac, i);
  973. spin_unlock_irqrestore(&ac->lock, flags);
  974. }
  975. }
  976. }
  977. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  978. {
  979. struct slab *slabp = virt_to_slab(objp);
  980. int nodeid = slabp->nodeid;
  981. struct kmem_list3 *l3;
  982. struct array_cache *alien = NULL;
  983. /*
  984. * Make sure we are not freeing a object from another node to the array
  985. * cache on this cpu.
  986. */
  987. if (likely(slabp->nodeid == numa_node_id()))
  988. return 0;
  989. l3 = cachep->nodelists[numa_node_id()];
  990. STATS_INC_NODEFREES(cachep);
  991. if (l3->alien && l3->alien[nodeid]) {
  992. alien = l3->alien[nodeid];
  993. spin_lock(&alien->lock);
  994. if (unlikely(alien->avail == alien->limit)) {
  995. STATS_INC_ACOVERFLOW(cachep);
  996. __drain_alien_cache(cachep, alien, nodeid);
  997. }
  998. alien->entry[alien->avail++] = objp;
  999. spin_unlock(&alien->lock);
  1000. } else {
  1001. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  1002. free_block(cachep, &objp, 1, nodeid);
  1003. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  1004. }
  1005. return 1;
  1006. }
  1007. #endif
  1008. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1009. unsigned long action, void *hcpu)
  1010. {
  1011. long cpu = (long)hcpu;
  1012. struct kmem_cache *cachep;
  1013. struct kmem_list3 *l3 = NULL;
  1014. int node = cpu_to_node(cpu);
  1015. int memsize = sizeof(struct kmem_list3);
  1016. switch (action) {
  1017. case CPU_UP_PREPARE:
  1018. mutex_lock(&cache_chain_mutex);
  1019. /*
  1020. * We need to do this right in the beginning since
  1021. * alloc_arraycache's are going to use this list.
  1022. * kmalloc_node allows us to add the slab to the right
  1023. * kmem_list3 and not this cpu's kmem_list3
  1024. */
  1025. list_for_each_entry(cachep, &cache_chain, next) {
  1026. /*
  1027. * Set up the size64 kmemlist for cpu before we can
  1028. * begin anything. Make sure some other cpu on this
  1029. * node has not already allocated this
  1030. */
  1031. if (!cachep->nodelists[node]) {
  1032. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1033. if (!l3)
  1034. goto bad;
  1035. kmem_list3_init(l3);
  1036. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1037. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1038. /*
  1039. * The l3s don't come and go as CPUs come and
  1040. * go. cache_chain_mutex is sufficient
  1041. * protection here.
  1042. */
  1043. cachep->nodelists[node] = l3;
  1044. }
  1045. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1046. cachep->nodelists[node]->free_limit =
  1047. (1 + nr_cpus_node(node)) *
  1048. cachep->batchcount + cachep->num;
  1049. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1050. }
  1051. /*
  1052. * Now we can go ahead with allocating the shared arrays and
  1053. * array caches
  1054. */
  1055. list_for_each_entry(cachep, &cache_chain, next) {
  1056. struct array_cache *nc;
  1057. struct array_cache *shared;
  1058. struct array_cache **alien;
  1059. nc = alloc_arraycache(node, cachep->limit,
  1060. cachep->batchcount);
  1061. if (!nc)
  1062. goto bad;
  1063. shared = alloc_arraycache(node,
  1064. cachep->shared * cachep->batchcount,
  1065. 0xbaadf00d);
  1066. if (!shared)
  1067. goto bad;
  1068. alien = alloc_alien_cache(node, cachep->limit);
  1069. if (!alien)
  1070. goto bad;
  1071. cachep->array[cpu] = nc;
  1072. l3 = cachep->nodelists[node];
  1073. BUG_ON(!l3);
  1074. spin_lock_irq(&l3->list_lock);
  1075. if (!l3->shared) {
  1076. /*
  1077. * We are serialised from CPU_DEAD or
  1078. * CPU_UP_CANCELLED by the cpucontrol lock
  1079. */
  1080. l3->shared = shared;
  1081. shared = NULL;
  1082. }
  1083. #ifdef CONFIG_NUMA
  1084. if (!l3->alien) {
  1085. l3->alien = alien;
  1086. alien = NULL;
  1087. }
  1088. #endif
  1089. spin_unlock_irq(&l3->list_lock);
  1090. kfree(shared);
  1091. free_alien_cache(alien);
  1092. }
  1093. mutex_unlock(&cache_chain_mutex);
  1094. break;
  1095. case CPU_ONLINE:
  1096. start_cpu_timer(cpu);
  1097. break;
  1098. #ifdef CONFIG_HOTPLUG_CPU
  1099. case CPU_DEAD:
  1100. /*
  1101. * Even if all the cpus of a node are down, we don't free the
  1102. * kmem_list3 of any cache. This to avoid a race between
  1103. * cpu_down, and a kmalloc allocation from another cpu for
  1104. * memory from the node of the cpu going down. The list3
  1105. * structure is usually allocated from kmem_cache_create() and
  1106. * gets destroyed at kmem_cache_destroy().
  1107. */
  1108. /* fall thru */
  1109. case CPU_UP_CANCELED:
  1110. mutex_lock(&cache_chain_mutex);
  1111. list_for_each_entry(cachep, &cache_chain, next) {
  1112. struct array_cache *nc;
  1113. struct array_cache *shared;
  1114. struct array_cache **alien;
  1115. cpumask_t mask;
  1116. mask = node_to_cpumask(node);
  1117. /* cpu is dead; no one can alloc from it. */
  1118. nc = cachep->array[cpu];
  1119. cachep->array[cpu] = NULL;
  1120. l3 = cachep->nodelists[node];
  1121. if (!l3)
  1122. goto free_array_cache;
  1123. spin_lock_irq(&l3->list_lock);
  1124. /* Free limit for this kmem_list3 */
  1125. l3->free_limit -= cachep->batchcount;
  1126. if (nc)
  1127. free_block(cachep, nc->entry, nc->avail, node);
  1128. if (!cpus_empty(mask)) {
  1129. spin_unlock_irq(&l3->list_lock);
  1130. goto free_array_cache;
  1131. }
  1132. shared = l3->shared;
  1133. if (shared) {
  1134. free_block(cachep, l3->shared->entry,
  1135. l3->shared->avail, node);
  1136. l3->shared = NULL;
  1137. }
  1138. alien = l3->alien;
  1139. l3->alien = NULL;
  1140. spin_unlock_irq(&l3->list_lock);
  1141. kfree(shared);
  1142. if (alien) {
  1143. drain_alien_cache(cachep, alien);
  1144. free_alien_cache(alien);
  1145. }
  1146. free_array_cache:
  1147. kfree(nc);
  1148. }
  1149. /*
  1150. * In the previous loop, all the objects were freed to
  1151. * the respective cache's slabs, now we can go ahead and
  1152. * shrink each nodelist to its limit.
  1153. */
  1154. list_for_each_entry(cachep, &cache_chain, next) {
  1155. l3 = cachep->nodelists[node];
  1156. if (!l3)
  1157. continue;
  1158. drain_freelist(cachep, l3, l3->free_objects);
  1159. }
  1160. mutex_unlock(&cache_chain_mutex);
  1161. break;
  1162. #endif
  1163. }
  1164. return NOTIFY_OK;
  1165. bad:
  1166. mutex_unlock(&cache_chain_mutex);
  1167. return NOTIFY_BAD;
  1168. }
  1169. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1170. &cpuup_callback, NULL, 0
  1171. };
  1172. /*
  1173. * swap the static kmem_list3 with kmalloced memory
  1174. */
  1175. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1176. int nodeid)
  1177. {
  1178. struct kmem_list3 *ptr;
  1179. BUG_ON(cachep->nodelists[nodeid] != list);
  1180. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1181. BUG_ON(!ptr);
  1182. local_irq_disable();
  1183. memcpy(ptr, list, sizeof(struct kmem_list3));
  1184. /*
  1185. * Do not assume that spinlocks can be initialized via memcpy:
  1186. */
  1187. spin_lock_init(&ptr->list_lock);
  1188. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1189. cachep->nodelists[nodeid] = ptr;
  1190. local_irq_enable();
  1191. }
  1192. /*
  1193. * Initialisation. Called after the page allocator have been initialised and
  1194. * before smp_init().
  1195. */
  1196. void __init kmem_cache_init(void)
  1197. {
  1198. size_t left_over;
  1199. struct cache_sizes *sizes;
  1200. struct cache_names *names;
  1201. int i;
  1202. int order;
  1203. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1204. kmem_list3_init(&initkmem_list3[i]);
  1205. if (i < MAX_NUMNODES)
  1206. cache_cache.nodelists[i] = NULL;
  1207. }
  1208. /*
  1209. * Fragmentation resistance on low memory - only use bigger
  1210. * page orders on machines with more than 32MB of memory.
  1211. */
  1212. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1213. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1214. /* Bootstrap is tricky, because several objects are allocated
  1215. * from caches that do not exist yet:
  1216. * 1) initialize the cache_cache cache: it contains the struct
  1217. * kmem_cache structures of all caches, except cache_cache itself:
  1218. * cache_cache is statically allocated.
  1219. * Initially an __init data area is used for the head array and the
  1220. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1221. * array at the end of the bootstrap.
  1222. * 2) Create the first kmalloc cache.
  1223. * The struct kmem_cache for the new cache is allocated normally.
  1224. * An __init data area is used for the head array.
  1225. * 3) Create the remaining kmalloc caches, with minimally sized
  1226. * head arrays.
  1227. * 4) Replace the __init data head arrays for cache_cache and the first
  1228. * kmalloc cache with kmalloc allocated arrays.
  1229. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1230. * the other cache's with kmalloc allocated memory.
  1231. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1232. */
  1233. /* 1) create the cache_cache */
  1234. INIT_LIST_HEAD(&cache_chain);
  1235. list_add(&cache_cache.next, &cache_chain);
  1236. cache_cache.colour_off = cache_line_size();
  1237. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1238. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1239. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1240. cache_line_size());
  1241. for (order = 0; order < MAX_ORDER; order++) {
  1242. cache_estimate(order, cache_cache.buffer_size,
  1243. cache_line_size(), 0, &left_over, &cache_cache.num);
  1244. if (cache_cache.num)
  1245. break;
  1246. }
  1247. BUG_ON(!cache_cache.num);
  1248. cache_cache.gfporder = order;
  1249. cache_cache.colour = left_over / cache_cache.colour_off;
  1250. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1251. sizeof(struct slab), cache_line_size());
  1252. /* 2+3) create the kmalloc caches */
  1253. sizes = malloc_sizes;
  1254. names = cache_names;
  1255. /*
  1256. * Initialize the caches that provide memory for the array cache and the
  1257. * kmem_list3 structures first. Without this, further allocations will
  1258. * bug.
  1259. */
  1260. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1261. sizes[INDEX_AC].cs_size,
  1262. ARCH_KMALLOC_MINALIGN,
  1263. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1264. NULL, NULL);
  1265. if (INDEX_AC != INDEX_L3) {
  1266. sizes[INDEX_L3].cs_cachep =
  1267. kmem_cache_create(names[INDEX_L3].name,
  1268. sizes[INDEX_L3].cs_size,
  1269. ARCH_KMALLOC_MINALIGN,
  1270. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1271. NULL, NULL);
  1272. }
  1273. slab_early_init = 0;
  1274. while (sizes->cs_size != ULONG_MAX) {
  1275. /*
  1276. * For performance, all the general caches are L1 aligned.
  1277. * This should be particularly beneficial on SMP boxes, as it
  1278. * eliminates "false sharing".
  1279. * Note for systems short on memory removing the alignment will
  1280. * allow tighter packing of the smaller caches.
  1281. */
  1282. if (!sizes->cs_cachep) {
  1283. sizes->cs_cachep = kmem_cache_create(names->name,
  1284. sizes->cs_size,
  1285. ARCH_KMALLOC_MINALIGN,
  1286. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1287. NULL, NULL);
  1288. }
  1289. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1290. sizes->cs_size,
  1291. ARCH_KMALLOC_MINALIGN,
  1292. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1293. SLAB_PANIC,
  1294. NULL, NULL);
  1295. sizes++;
  1296. names++;
  1297. }
  1298. /* 4) Replace the bootstrap head arrays */
  1299. {
  1300. struct array_cache *ptr;
  1301. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1302. local_irq_disable();
  1303. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1304. memcpy(ptr, cpu_cache_get(&cache_cache),
  1305. sizeof(struct arraycache_init));
  1306. /*
  1307. * Do not assume that spinlocks can be initialized via memcpy:
  1308. */
  1309. spin_lock_init(&ptr->lock);
  1310. cache_cache.array[smp_processor_id()] = ptr;
  1311. local_irq_enable();
  1312. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1313. local_irq_disable();
  1314. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1315. != &initarray_generic.cache);
  1316. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1317. sizeof(struct arraycache_init));
  1318. /*
  1319. * Do not assume that spinlocks can be initialized via memcpy:
  1320. */
  1321. spin_lock_init(&ptr->lock);
  1322. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1323. ptr;
  1324. local_irq_enable();
  1325. }
  1326. /* 5) Replace the bootstrap kmem_list3's */
  1327. {
  1328. int node;
  1329. /* Replace the static kmem_list3 structures for the boot cpu */
  1330. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1331. numa_node_id());
  1332. for_each_online_node(node) {
  1333. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1334. &initkmem_list3[SIZE_AC + node], node);
  1335. if (INDEX_AC != INDEX_L3) {
  1336. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1337. &initkmem_list3[SIZE_L3 + node],
  1338. node);
  1339. }
  1340. }
  1341. }
  1342. /* 6) resize the head arrays to their final sizes */
  1343. {
  1344. struct kmem_cache *cachep;
  1345. mutex_lock(&cache_chain_mutex);
  1346. list_for_each_entry(cachep, &cache_chain, next)
  1347. if (enable_cpucache(cachep))
  1348. BUG();
  1349. mutex_unlock(&cache_chain_mutex);
  1350. }
  1351. /* Annotate slab for lockdep -- annotate the malloc caches */
  1352. init_lock_keys();
  1353. /* Done! */
  1354. g_cpucache_up = FULL;
  1355. /*
  1356. * Register a cpu startup notifier callback that initializes
  1357. * cpu_cache_get for all new cpus
  1358. */
  1359. register_cpu_notifier(&cpucache_notifier);
  1360. /*
  1361. * The reap timers are started later, with a module init call: That part
  1362. * of the kernel is not yet operational.
  1363. */
  1364. }
  1365. static int __init cpucache_init(void)
  1366. {
  1367. int cpu;
  1368. /*
  1369. * Register the timers that return unneeded pages to the page allocator
  1370. */
  1371. for_each_online_cpu(cpu)
  1372. start_cpu_timer(cpu);
  1373. return 0;
  1374. }
  1375. __initcall(cpucache_init);
  1376. /*
  1377. * Interface to system's page allocator. No need to hold the cache-lock.
  1378. *
  1379. * If we requested dmaable memory, we will get it. Even if we
  1380. * did not request dmaable memory, we might get it, but that
  1381. * would be relatively rare and ignorable.
  1382. */
  1383. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1384. {
  1385. struct page *page;
  1386. int nr_pages;
  1387. int i;
  1388. #ifndef CONFIG_MMU
  1389. /*
  1390. * Nommu uses slab's for process anonymous memory allocations, and thus
  1391. * requires __GFP_COMP to properly refcount higher order allocations
  1392. */
  1393. flags |= __GFP_COMP;
  1394. #endif
  1395. /*
  1396. * Under NUMA we want memory on the indicated node. We will handle
  1397. * the needed fallback ourselves since we want to serve from our
  1398. * per node object lists first for other nodes.
  1399. */
  1400. flags |= cachep->gfpflags | GFP_THISNODE;
  1401. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1402. if (!page)
  1403. return NULL;
  1404. nr_pages = (1 << cachep->gfporder);
  1405. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1406. add_zone_page_state(page_zone(page),
  1407. NR_SLAB_RECLAIMABLE, nr_pages);
  1408. else
  1409. add_zone_page_state(page_zone(page),
  1410. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1411. for (i = 0; i < nr_pages; i++)
  1412. __SetPageSlab(page + i);
  1413. return page_address(page);
  1414. }
  1415. /*
  1416. * Interface to system's page release.
  1417. */
  1418. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1419. {
  1420. unsigned long i = (1 << cachep->gfporder);
  1421. struct page *page = virt_to_page(addr);
  1422. const unsigned long nr_freed = i;
  1423. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1424. sub_zone_page_state(page_zone(page),
  1425. NR_SLAB_RECLAIMABLE, nr_freed);
  1426. else
  1427. sub_zone_page_state(page_zone(page),
  1428. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1429. while (i--) {
  1430. BUG_ON(!PageSlab(page));
  1431. __ClearPageSlab(page);
  1432. page++;
  1433. }
  1434. if (current->reclaim_state)
  1435. current->reclaim_state->reclaimed_slab += nr_freed;
  1436. free_pages((unsigned long)addr, cachep->gfporder);
  1437. }
  1438. static void kmem_rcu_free(struct rcu_head *head)
  1439. {
  1440. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1441. struct kmem_cache *cachep = slab_rcu->cachep;
  1442. kmem_freepages(cachep, slab_rcu->addr);
  1443. if (OFF_SLAB(cachep))
  1444. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1445. }
  1446. #if DEBUG
  1447. #ifdef CONFIG_DEBUG_PAGEALLOC
  1448. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1449. unsigned long caller)
  1450. {
  1451. int size = obj_size(cachep);
  1452. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1453. if (size < 5 * sizeof(unsigned long))
  1454. return;
  1455. *addr++ = 0x12345678;
  1456. *addr++ = caller;
  1457. *addr++ = smp_processor_id();
  1458. size -= 3 * sizeof(unsigned long);
  1459. {
  1460. unsigned long *sptr = &caller;
  1461. unsigned long svalue;
  1462. while (!kstack_end(sptr)) {
  1463. svalue = *sptr++;
  1464. if (kernel_text_address(svalue)) {
  1465. *addr++ = svalue;
  1466. size -= sizeof(unsigned long);
  1467. if (size <= sizeof(unsigned long))
  1468. break;
  1469. }
  1470. }
  1471. }
  1472. *addr++ = 0x87654321;
  1473. }
  1474. #endif
  1475. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1476. {
  1477. int size = obj_size(cachep);
  1478. addr = &((char *)addr)[obj_offset(cachep)];
  1479. memset(addr, val, size);
  1480. *(unsigned char *)(addr + size - 1) = POISON_END;
  1481. }
  1482. static void dump_line(char *data, int offset, int limit)
  1483. {
  1484. int i;
  1485. unsigned char error = 0;
  1486. int bad_count = 0;
  1487. printk(KERN_ERR "%03x:", offset);
  1488. for (i = 0; i < limit; i++) {
  1489. if (data[offset + i] != POISON_FREE) {
  1490. error = data[offset + i];
  1491. bad_count++;
  1492. }
  1493. printk(" %02x", (unsigned char)data[offset + i]);
  1494. }
  1495. printk("\n");
  1496. if (bad_count == 1) {
  1497. error ^= POISON_FREE;
  1498. if (!(error & (error - 1))) {
  1499. printk(KERN_ERR "Single bit error detected. Probably "
  1500. "bad RAM.\n");
  1501. #ifdef CONFIG_X86
  1502. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1503. "test tool.\n");
  1504. #else
  1505. printk(KERN_ERR "Run a memory test tool.\n");
  1506. #endif
  1507. }
  1508. }
  1509. }
  1510. #endif
  1511. #if DEBUG
  1512. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1513. {
  1514. int i, size;
  1515. char *realobj;
  1516. if (cachep->flags & SLAB_RED_ZONE) {
  1517. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1518. *dbg_redzone1(cachep, objp),
  1519. *dbg_redzone2(cachep, objp));
  1520. }
  1521. if (cachep->flags & SLAB_STORE_USER) {
  1522. printk(KERN_ERR "Last user: [<%p>]",
  1523. *dbg_userword(cachep, objp));
  1524. print_symbol("(%s)",
  1525. (unsigned long)*dbg_userword(cachep, objp));
  1526. printk("\n");
  1527. }
  1528. realobj = (char *)objp + obj_offset(cachep);
  1529. size = obj_size(cachep);
  1530. for (i = 0; i < size && lines; i += 16, lines--) {
  1531. int limit;
  1532. limit = 16;
  1533. if (i + limit > size)
  1534. limit = size - i;
  1535. dump_line(realobj, i, limit);
  1536. }
  1537. }
  1538. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1539. {
  1540. char *realobj;
  1541. int size, i;
  1542. int lines = 0;
  1543. realobj = (char *)objp + obj_offset(cachep);
  1544. size = obj_size(cachep);
  1545. for (i = 0; i < size; i++) {
  1546. char exp = POISON_FREE;
  1547. if (i == size - 1)
  1548. exp = POISON_END;
  1549. if (realobj[i] != exp) {
  1550. int limit;
  1551. /* Mismatch ! */
  1552. /* Print header */
  1553. if (lines == 0) {
  1554. printk(KERN_ERR
  1555. "Slab corruption: start=%p, len=%d\n",
  1556. realobj, size);
  1557. print_objinfo(cachep, objp, 0);
  1558. }
  1559. /* Hexdump the affected line */
  1560. i = (i / 16) * 16;
  1561. limit = 16;
  1562. if (i + limit > size)
  1563. limit = size - i;
  1564. dump_line(realobj, i, limit);
  1565. i += 16;
  1566. lines++;
  1567. /* Limit to 5 lines */
  1568. if (lines > 5)
  1569. break;
  1570. }
  1571. }
  1572. if (lines != 0) {
  1573. /* Print some data about the neighboring objects, if they
  1574. * exist:
  1575. */
  1576. struct slab *slabp = virt_to_slab(objp);
  1577. unsigned int objnr;
  1578. objnr = obj_to_index(cachep, slabp, objp);
  1579. if (objnr) {
  1580. objp = index_to_obj(cachep, slabp, objnr - 1);
  1581. realobj = (char *)objp + obj_offset(cachep);
  1582. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1583. realobj, size);
  1584. print_objinfo(cachep, objp, 2);
  1585. }
  1586. if (objnr + 1 < cachep->num) {
  1587. objp = index_to_obj(cachep, slabp, objnr + 1);
  1588. realobj = (char *)objp + obj_offset(cachep);
  1589. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1590. realobj, size);
  1591. print_objinfo(cachep, objp, 2);
  1592. }
  1593. }
  1594. }
  1595. #endif
  1596. #if DEBUG
  1597. /**
  1598. * slab_destroy_objs - destroy a slab and its objects
  1599. * @cachep: cache pointer being destroyed
  1600. * @slabp: slab pointer being destroyed
  1601. *
  1602. * Call the registered destructor for each object in a slab that is being
  1603. * destroyed.
  1604. */
  1605. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1606. {
  1607. int i;
  1608. for (i = 0; i < cachep->num; i++) {
  1609. void *objp = index_to_obj(cachep, slabp, i);
  1610. if (cachep->flags & SLAB_POISON) {
  1611. #ifdef CONFIG_DEBUG_PAGEALLOC
  1612. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1613. OFF_SLAB(cachep))
  1614. kernel_map_pages(virt_to_page(objp),
  1615. cachep->buffer_size / PAGE_SIZE, 1);
  1616. else
  1617. check_poison_obj(cachep, objp);
  1618. #else
  1619. check_poison_obj(cachep, objp);
  1620. #endif
  1621. }
  1622. if (cachep->flags & SLAB_RED_ZONE) {
  1623. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1624. slab_error(cachep, "start of a freed object "
  1625. "was overwritten");
  1626. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1627. slab_error(cachep, "end of a freed object "
  1628. "was overwritten");
  1629. }
  1630. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1631. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1632. }
  1633. }
  1634. #else
  1635. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1636. {
  1637. if (cachep->dtor) {
  1638. int i;
  1639. for (i = 0; i < cachep->num; i++) {
  1640. void *objp = index_to_obj(cachep, slabp, i);
  1641. (cachep->dtor) (objp, cachep, 0);
  1642. }
  1643. }
  1644. }
  1645. #endif
  1646. /**
  1647. * slab_destroy - destroy and release all objects in a slab
  1648. * @cachep: cache pointer being destroyed
  1649. * @slabp: slab pointer being destroyed
  1650. *
  1651. * Destroy all the objs in a slab, and release the mem back to the system.
  1652. * Before calling the slab must have been unlinked from the cache. The
  1653. * cache-lock is not held/needed.
  1654. */
  1655. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1656. {
  1657. void *addr = slabp->s_mem - slabp->colouroff;
  1658. slab_destroy_objs(cachep, slabp);
  1659. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1660. struct slab_rcu *slab_rcu;
  1661. slab_rcu = (struct slab_rcu *)slabp;
  1662. slab_rcu->cachep = cachep;
  1663. slab_rcu->addr = addr;
  1664. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1665. } else {
  1666. kmem_freepages(cachep, addr);
  1667. if (OFF_SLAB(cachep))
  1668. kmem_cache_free(cachep->slabp_cache, slabp);
  1669. }
  1670. }
  1671. /*
  1672. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1673. * size of kmem_list3.
  1674. */
  1675. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1676. {
  1677. int node;
  1678. for_each_online_node(node) {
  1679. cachep->nodelists[node] = &initkmem_list3[index + node];
  1680. cachep->nodelists[node]->next_reap = jiffies +
  1681. REAPTIMEOUT_LIST3 +
  1682. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1683. }
  1684. }
  1685. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1686. {
  1687. int i;
  1688. struct kmem_list3 *l3;
  1689. for_each_online_cpu(i)
  1690. kfree(cachep->array[i]);
  1691. /* NUMA: free the list3 structures */
  1692. for_each_online_node(i) {
  1693. l3 = cachep->nodelists[i];
  1694. if (l3) {
  1695. kfree(l3->shared);
  1696. free_alien_cache(l3->alien);
  1697. kfree(l3);
  1698. }
  1699. }
  1700. kmem_cache_free(&cache_cache, cachep);
  1701. }
  1702. /**
  1703. * calculate_slab_order - calculate size (page order) of slabs
  1704. * @cachep: pointer to the cache that is being created
  1705. * @size: size of objects to be created in this cache.
  1706. * @align: required alignment for the objects.
  1707. * @flags: slab allocation flags
  1708. *
  1709. * Also calculates the number of objects per slab.
  1710. *
  1711. * This could be made much more intelligent. For now, try to avoid using
  1712. * high order pages for slabs. When the gfp() functions are more friendly
  1713. * towards high-order requests, this should be changed.
  1714. */
  1715. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1716. size_t size, size_t align, unsigned long flags)
  1717. {
  1718. unsigned long offslab_limit;
  1719. size_t left_over = 0;
  1720. int gfporder;
  1721. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1722. unsigned int num;
  1723. size_t remainder;
  1724. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1725. if (!num)
  1726. continue;
  1727. if (flags & CFLGS_OFF_SLAB) {
  1728. /*
  1729. * Max number of objs-per-slab for caches which
  1730. * use off-slab slabs. Needed to avoid a possible
  1731. * looping condition in cache_grow().
  1732. */
  1733. offslab_limit = size - sizeof(struct slab);
  1734. offslab_limit /= sizeof(kmem_bufctl_t);
  1735. if (num > offslab_limit)
  1736. break;
  1737. }
  1738. /* Found something acceptable - save it away */
  1739. cachep->num = num;
  1740. cachep->gfporder = gfporder;
  1741. left_over = remainder;
  1742. /*
  1743. * A VFS-reclaimable slab tends to have most allocations
  1744. * as GFP_NOFS and we really don't want to have to be allocating
  1745. * higher-order pages when we are unable to shrink dcache.
  1746. */
  1747. if (flags & SLAB_RECLAIM_ACCOUNT)
  1748. break;
  1749. /*
  1750. * Large number of objects is good, but very large slabs are
  1751. * currently bad for the gfp()s.
  1752. */
  1753. if (gfporder >= slab_break_gfp_order)
  1754. break;
  1755. /*
  1756. * Acceptable internal fragmentation?
  1757. */
  1758. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1759. break;
  1760. }
  1761. return left_over;
  1762. }
  1763. static int setup_cpu_cache(struct kmem_cache *cachep)
  1764. {
  1765. if (g_cpucache_up == FULL)
  1766. return enable_cpucache(cachep);
  1767. if (g_cpucache_up == NONE) {
  1768. /*
  1769. * Note: the first kmem_cache_create must create the cache
  1770. * that's used by kmalloc(24), otherwise the creation of
  1771. * further caches will BUG().
  1772. */
  1773. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1774. /*
  1775. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1776. * the first cache, then we need to set up all its list3s,
  1777. * otherwise the creation of further caches will BUG().
  1778. */
  1779. set_up_list3s(cachep, SIZE_AC);
  1780. if (INDEX_AC == INDEX_L3)
  1781. g_cpucache_up = PARTIAL_L3;
  1782. else
  1783. g_cpucache_up = PARTIAL_AC;
  1784. } else {
  1785. cachep->array[smp_processor_id()] =
  1786. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1787. if (g_cpucache_up == PARTIAL_AC) {
  1788. set_up_list3s(cachep, SIZE_L3);
  1789. g_cpucache_up = PARTIAL_L3;
  1790. } else {
  1791. int node;
  1792. for_each_online_node(node) {
  1793. cachep->nodelists[node] =
  1794. kmalloc_node(sizeof(struct kmem_list3),
  1795. GFP_KERNEL, node);
  1796. BUG_ON(!cachep->nodelists[node]);
  1797. kmem_list3_init(cachep->nodelists[node]);
  1798. }
  1799. }
  1800. }
  1801. cachep->nodelists[numa_node_id()]->next_reap =
  1802. jiffies + REAPTIMEOUT_LIST3 +
  1803. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1804. cpu_cache_get(cachep)->avail = 0;
  1805. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1806. cpu_cache_get(cachep)->batchcount = 1;
  1807. cpu_cache_get(cachep)->touched = 0;
  1808. cachep->batchcount = 1;
  1809. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1810. return 0;
  1811. }
  1812. /**
  1813. * kmem_cache_create - Create a cache.
  1814. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1815. * @size: The size of objects to be created in this cache.
  1816. * @align: The required alignment for the objects.
  1817. * @flags: SLAB flags
  1818. * @ctor: A constructor for the objects.
  1819. * @dtor: A destructor for the objects.
  1820. *
  1821. * Returns a ptr to the cache on success, NULL on failure.
  1822. * Cannot be called within a int, but can be interrupted.
  1823. * The @ctor is run when new pages are allocated by the cache
  1824. * and the @dtor is run before the pages are handed back.
  1825. *
  1826. * @name must be valid until the cache is destroyed. This implies that
  1827. * the module calling this has to destroy the cache before getting unloaded.
  1828. *
  1829. * The flags are
  1830. *
  1831. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1832. * to catch references to uninitialised memory.
  1833. *
  1834. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1835. * for buffer overruns.
  1836. *
  1837. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1838. * cacheline. This can be beneficial if you're counting cycles as closely
  1839. * as davem.
  1840. */
  1841. struct kmem_cache *
  1842. kmem_cache_create (const char *name, size_t size, size_t align,
  1843. unsigned long flags,
  1844. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1845. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1846. {
  1847. size_t left_over, slab_size, ralign;
  1848. struct kmem_cache *cachep = NULL, *pc;
  1849. /*
  1850. * Sanity checks... these are all serious usage bugs.
  1851. */
  1852. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1853. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1854. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1855. name);
  1856. BUG();
  1857. }
  1858. /*
  1859. * Prevent CPUs from coming and going.
  1860. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1861. */
  1862. lock_cpu_hotplug();
  1863. mutex_lock(&cache_chain_mutex);
  1864. list_for_each_entry(pc, &cache_chain, next) {
  1865. mm_segment_t old_fs = get_fs();
  1866. char tmp;
  1867. int res;
  1868. /*
  1869. * This happens when the module gets unloaded and doesn't
  1870. * destroy its slab cache and no-one else reuses the vmalloc
  1871. * area of the module. Print a warning.
  1872. */
  1873. set_fs(KERNEL_DS);
  1874. res = __get_user(tmp, pc->name);
  1875. set_fs(old_fs);
  1876. if (res) {
  1877. printk("SLAB: cache with size %d has lost its name\n",
  1878. pc->buffer_size);
  1879. continue;
  1880. }
  1881. if (!strcmp(pc->name, name)) {
  1882. printk("kmem_cache_create: duplicate cache %s\n", name);
  1883. dump_stack();
  1884. goto oops;
  1885. }
  1886. }
  1887. #if DEBUG
  1888. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1889. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1890. /* No constructor, but inital state check requested */
  1891. printk(KERN_ERR "%s: No con, but init state check "
  1892. "requested - %s\n", __FUNCTION__, name);
  1893. flags &= ~SLAB_DEBUG_INITIAL;
  1894. }
  1895. #if FORCED_DEBUG
  1896. /*
  1897. * Enable redzoning and last user accounting, except for caches with
  1898. * large objects, if the increased size would increase the object size
  1899. * above the next power of two: caches with object sizes just above a
  1900. * power of two have a significant amount of internal fragmentation.
  1901. */
  1902. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1903. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1904. if (!(flags & SLAB_DESTROY_BY_RCU))
  1905. flags |= SLAB_POISON;
  1906. #endif
  1907. if (flags & SLAB_DESTROY_BY_RCU)
  1908. BUG_ON(flags & SLAB_POISON);
  1909. #endif
  1910. if (flags & SLAB_DESTROY_BY_RCU)
  1911. BUG_ON(dtor);
  1912. /*
  1913. * Always checks flags, a caller might be expecting debug support which
  1914. * isn't available.
  1915. */
  1916. BUG_ON(flags & ~CREATE_MASK);
  1917. /*
  1918. * Check that size is in terms of words. This is needed to avoid
  1919. * unaligned accesses for some archs when redzoning is used, and makes
  1920. * sure any on-slab bufctl's are also correctly aligned.
  1921. */
  1922. if (size & (BYTES_PER_WORD - 1)) {
  1923. size += (BYTES_PER_WORD - 1);
  1924. size &= ~(BYTES_PER_WORD - 1);
  1925. }
  1926. /* calculate the final buffer alignment: */
  1927. /* 1) arch recommendation: can be overridden for debug */
  1928. if (flags & SLAB_HWCACHE_ALIGN) {
  1929. /*
  1930. * Default alignment: as specified by the arch code. Except if
  1931. * an object is really small, then squeeze multiple objects into
  1932. * one cacheline.
  1933. */
  1934. ralign = cache_line_size();
  1935. while (size <= ralign / 2)
  1936. ralign /= 2;
  1937. } else {
  1938. ralign = BYTES_PER_WORD;
  1939. }
  1940. /*
  1941. * Redzoning and user store require word alignment. Note this will be
  1942. * overridden by architecture or caller mandated alignment if either
  1943. * is greater than BYTES_PER_WORD.
  1944. */
  1945. if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
  1946. ralign = BYTES_PER_WORD;
  1947. /* 2) arch mandated alignment: disables debug if necessary */
  1948. if (ralign < ARCH_SLAB_MINALIGN) {
  1949. ralign = ARCH_SLAB_MINALIGN;
  1950. if (ralign > BYTES_PER_WORD)
  1951. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1952. }
  1953. /* 3) caller mandated alignment: disables debug if necessary */
  1954. if (ralign < align) {
  1955. ralign = align;
  1956. if (ralign > BYTES_PER_WORD)
  1957. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1958. }
  1959. /*
  1960. * 4) Store it.
  1961. */
  1962. align = ralign;
  1963. /* Get cache's description obj. */
  1964. cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
  1965. if (!cachep)
  1966. goto oops;
  1967. #if DEBUG
  1968. cachep->obj_size = size;
  1969. /*
  1970. * Both debugging options require word-alignment which is calculated
  1971. * into align above.
  1972. */
  1973. if (flags & SLAB_RED_ZONE) {
  1974. /* add space for red zone words */
  1975. cachep->obj_offset += BYTES_PER_WORD;
  1976. size += 2 * BYTES_PER_WORD;
  1977. }
  1978. if (flags & SLAB_STORE_USER) {
  1979. /* user store requires one word storage behind the end of
  1980. * the real object.
  1981. */
  1982. size += BYTES_PER_WORD;
  1983. }
  1984. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1985. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1986. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1987. cachep->obj_offset += PAGE_SIZE - size;
  1988. size = PAGE_SIZE;
  1989. }
  1990. #endif
  1991. #endif
  1992. /*
  1993. * Determine if the slab management is 'on' or 'off' slab.
  1994. * (bootstrapping cannot cope with offslab caches so don't do
  1995. * it too early on.)
  1996. */
  1997. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  1998. /*
  1999. * Size is large, assume best to place the slab management obj
  2000. * off-slab (should allow better packing of objs).
  2001. */
  2002. flags |= CFLGS_OFF_SLAB;
  2003. size = ALIGN(size, align);
  2004. left_over = calculate_slab_order(cachep, size, align, flags);
  2005. if (!cachep->num) {
  2006. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  2007. kmem_cache_free(&cache_cache, cachep);
  2008. cachep = NULL;
  2009. goto oops;
  2010. }
  2011. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2012. + sizeof(struct slab), align);
  2013. /*
  2014. * If the slab has been placed off-slab, and we have enough space then
  2015. * move it on-slab. This is at the expense of any extra colouring.
  2016. */
  2017. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2018. flags &= ~CFLGS_OFF_SLAB;
  2019. left_over -= slab_size;
  2020. }
  2021. if (flags & CFLGS_OFF_SLAB) {
  2022. /* really off slab. No need for manual alignment */
  2023. slab_size =
  2024. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2025. }
  2026. cachep->colour_off = cache_line_size();
  2027. /* Offset must be a multiple of the alignment. */
  2028. if (cachep->colour_off < align)
  2029. cachep->colour_off = align;
  2030. cachep->colour = left_over / cachep->colour_off;
  2031. cachep->slab_size = slab_size;
  2032. cachep->flags = flags;
  2033. cachep->gfpflags = 0;
  2034. if (flags & SLAB_CACHE_DMA)
  2035. cachep->gfpflags |= GFP_DMA;
  2036. cachep->buffer_size = size;
  2037. if (flags & CFLGS_OFF_SLAB) {
  2038. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2039. /*
  2040. * This is a possibility for one of the malloc_sizes caches.
  2041. * But since we go off slab only for object size greater than
  2042. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2043. * this should not happen at all.
  2044. * But leave a BUG_ON for some lucky dude.
  2045. */
  2046. BUG_ON(!cachep->slabp_cache);
  2047. }
  2048. cachep->ctor = ctor;
  2049. cachep->dtor = dtor;
  2050. cachep->name = name;
  2051. if (setup_cpu_cache(cachep)) {
  2052. __kmem_cache_destroy(cachep);
  2053. cachep = NULL;
  2054. goto oops;
  2055. }
  2056. /* cache setup completed, link it into the list */
  2057. list_add(&cachep->next, &cache_chain);
  2058. oops:
  2059. if (!cachep && (flags & SLAB_PANIC))
  2060. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2061. name);
  2062. mutex_unlock(&cache_chain_mutex);
  2063. unlock_cpu_hotplug();
  2064. return cachep;
  2065. }
  2066. EXPORT_SYMBOL(kmem_cache_create);
  2067. #if DEBUG
  2068. static void check_irq_off(void)
  2069. {
  2070. BUG_ON(!irqs_disabled());
  2071. }
  2072. static void check_irq_on(void)
  2073. {
  2074. BUG_ON(irqs_disabled());
  2075. }
  2076. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2077. {
  2078. #ifdef CONFIG_SMP
  2079. check_irq_off();
  2080. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2081. #endif
  2082. }
  2083. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2084. {
  2085. #ifdef CONFIG_SMP
  2086. check_irq_off();
  2087. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2088. #endif
  2089. }
  2090. #else
  2091. #define check_irq_off() do { } while(0)
  2092. #define check_irq_on() do { } while(0)
  2093. #define check_spinlock_acquired(x) do { } while(0)
  2094. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2095. #endif
  2096. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2097. struct array_cache *ac,
  2098. int force, int node);
  2099. static void do_drain(void *arg)
  2100. {
  2101. struct kmem_cache *cachep = arg;
  2102. struct array_cache *ac;
  2103. int node = numa_node_id();
  2104. check_irq_off();
  2105. ac = cpu_cache_get(cachep);
  2106. spin_lock(&cachep->nodelists[node]->list_lock);
  2107. free_block(cachep, ac->entry, ac->avail, node);
  2108. spin_unlock(&cachep->nodelists[node]->list_lock);
  2109. ac->avail = 0;
  2110. }
  2111. static void drain_cpu_caches(struct kmem_cache *cachep)
  2112. {
  2113. struct kmem_list3 *l3;
  2114. int node;
  2115. on_each_cpu(do_drain, cachep, 1, 1);
  2116. check_irq_on();
  2117. for_each_online_node(node) {
  2118. l3 = cachep->nodelists[node];
  2119. if (l3 && l3->alien)
  2120. drain_alien_cache(cachep, l3->alien);
  2121. }
  2122. for_each_online_node(node) {
  2123. l3 = cachep->nodelists[node];
  2124. if (l3)
  2125. drain_array(cachep, l3, l3->shared, 1, node);
  2126. }
  2127. }
  2128. /*
  2129. * Remove slabs from the list of free slabs.
  2130. * Specify the number of slabs to drain in tofree.
  2131. *
  2132. * Returns the actual number of slabs released.
  2133. */
  2134. static int drain_freelist(struct kmem_cache *cache,
  2135. struct kmem_list3 *l3, int tofree)
  2136. {
  2137. struct list_head *p;
  2138. int nr_freed;
  2139. struct slab *slabp;
  2140. nr_freed = 0;
  2141. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2142. spin_lock_irq(&l3->list_lock);
  2143. p = l3->slabs_free.prev;
  2144. if (p == &l3->slabs_free) {
  2145. spin_unlock_irq(&l3->list_lock);
  2146. goto out;
  2147. }
  2148. slabp = list_entry(p, struct slab, list);
  2149. #if DEBUG
  2150. BUG_ON(slabp->inuse);
  2151. #endif
  2152. list_del(&slabp->list);
  2153. /*
  2154. * Safe to drop the lock. The slab is no longer linked
  2155. * to the cache.
  2156. */
  2157. l3->free_objects -= cache->num;
  2158. spin_unlock_irq(&l3->list_lock);
  2159. slab_destroy(cache, slabp);
  2160. nr_freed++;
  2161. }
  2162. out:
  2163. return nr_freed;
  2164. }
  2165. static int __cache_shrink(struct kmem_cache *cachep)
  2166. {
  2167. int ret = 0, i = 0;
  2168. struct kmem_list3 *l3;
  2169. drain_cpu_caches(cachep);
  2170. check_irq_on();
  2171. for_each_online_node(i) {
  2172. l3 = cachep->nodelists[i];
  2173. if (!l3)
  2174. continue;
  2175. drain_freelist(cachep, l3, l3->free_objects);
  2176. ret += !list_empty(&l3->slabs_full) ||
  2177. !list_empty(&l3->slabs_partial);
  2178. }
  2179. return (ret ? 1 : 0);
  2180. }
  2181. /**
  2182. * kmem_cache_shrink - Shrink a cache.
  2183. * @cachep: The cache to shrink.
  2184. *
  2185. * Releases as many slabs as possible for a cache.
  2186. * To help debugging, a zero exit status indicates all slabs were released.
  2187. */
  2188. int kmem_cache_shrink(struct kmem_cache *cachep)
  2189. {
  2190. BUG_ON(!cachep || in_interrupt());
  2191. return __cache_shrink(cachep);
  2192. }
  2193. EXPORT_SYMBOL(kmem_cache_shrink);
  2194. /**
  2195. * kmem_cache_destroy - delete a cache
  2196. * @cachep: the cache to destroy
  2197. *
  2198. * Remove a struct kmem_cache object from the slab cache.
  2199. *
  2200. * It is expected this function will be called by a module when it is
  2201. * unloaded. This will remove the cache completely, and avoid a duplicate
  2202. * cache being allocated each time a module is loaded and unloaded, if the
  2203. * module doesn't have persistent in-kernel storage across loads and unloads.
  2204. *
  2205. * The cache must be empty before calling this function.
  2206. *
  2207. * The caller must guarantee that noone will allocate memory from the cache
  2208. * during the kmem_cache_destroy().
  2209. */
  2210. void kmem_cache_destroy(struct kmem_cache *cachep)
  2211. {
  2212. BUG_ON(!cachep || in_interrupt());
  2213. /* Don't let CPUs to come and go */
  2214. lock_cpu_hotplug();
  2215. /* Find the cache in the chain of caches. */
  2216. mutex_lock(&cache_chain_mutex);
  2217. /*
  2218. * the chain is never empty, cache_cache is never destroyed
  2219. */
  2220. list_del(&cachep->next);
  2221. mutex_unlock(&cache_chain_mutex);
  2222. if (__cache_shrink(cachep)) {
  2223. slab_error(cachep, "Can't free all objects");
  2224. mutex_lock(&cache_chain_mutex);
  2225. list_add(&cachep->next, &cache_chain);
  2226. mutex_unlock(&cache_chain_mutex);
  2227. unlock_cpu_hotplug();
  2228. return;
  2229. }
  2230. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2231. synchronize_rcu();
  2232. __kmem_cache_destroy(cachep);
  2233. unlock_cpu_hotplug();
  2234. }
  2235. EXPORT_SYMBOL(kmem_cache_destroy);
  2236. /*
  2237. * Get the memory for a slab management obj.
  2238. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2239. * always come from malloc_sizes caches. The slab descriptor cannot
  2240. * come from the same cache which is getting created because,
  2241. * when we are searching for an appropriate cache for these
  2242. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2243. * If we are creating a malloc_sizes cache here it would not be visible to
  2244. * kmem_find_general_cachep till the initialization is complete.
  2245. * Hence we cannot have slabp_cache same as the original cache.
  2246. */
  2247. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2248. int colour_off, gfp_t local_flags,
  2249. int nodeid)
  2250. {
  2251. struct slab *slabp;
  2252. if (OFF_SLAB(cachep)) {
  2253. /* Slab management obj is off-slab. */
  2254. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2255. local_flags, nodeid);
  2256. if (!slabp)
  2257. return NULL;
  2258. } else {
  2259. slabp = objp + colour_off;
  2260. colour_off += cachep->slab_size;
  2261. }
  2262. slabp->inuse = 0;
  2263. slabp->colouroff = colour_off;
  2264. slabp->s_mem = objp + colour_off;
  2265. slabp->nodeid = nodeid;
  2266. return slabp;
  2267. }
  2268. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2269. {
  2270. return (kmem_bufctl_t *) (slabp + 1);
  2271. }
  2272. static void cache_init_objs(struct kmem_cache *cachep,
  2273. struct slab *slabp, unsigned long ctor_flags)
  2274. {
  2275. int i;
  2276. for (i = 0; i < cachep->num; i++) {
  2277. void *objp = index_to_obj(cachep, slabp, i);
  2278. #if DEBUG
  2279. /* need to poison the objs? */
  2280. if (cachep->flags & SLAB_POISON)
  2281. poison_obj(cachep, objp, POISON_FREE);
  2282. if (cachep->flags & SLAB_STORE_USER)
  2283. *dbg_userword(cachep, objp) = NULL;
  2284. if (cachep->flags & SLAB_RED_ZONE) {
  2285. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2286. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2287. }
  2288. /*
  2289. * Constructors are not allowed to allocate memory from the same
  2290. * cache which they are a constructor for. Otherwise, deadlock.
  2291. * They must also be threaded.
  2292. */
  2293. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2294. cachep->ctor(objp + obj_offset(cachep), cachep,
  2295. ctor_flags);
  2296. if (cachep->flags & SLAB_RED_ZONE) {
  2297. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2298. slab_error(cachep, "constructor overwrote the"
  2299. " end of an object");
  2300. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2301. slab_error(cachep, "constructor overwrote the"
  2302. " start of an object");
  2303. }
  2304. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2305. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2306. kernel_map_pages(virt_to_page(objp),
  2307. cachep->buffer_size / PAGE_SIZE, 0);
  2308. #else
  2309. if (cachep->ctor)
  2310. cachep->ctor(objp, cachep, ctor_flags);
  2311. #endif
  2312. slab_bufctl(slabp)[i] = i + 1;
  2313. }
  2314. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2315. slabp->free = 0;
  2316. }
  2317. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2318. {
  2319. if (flags & SLAB_DMA)
  2320. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2321. else
  2322. BUG_ON(cachep->gfpflags & GFP_DMA);
  2323. }
  2324. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2325. int nodeid)
  2326. {
  2327. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2328. kmem_bufctl_t next;
  2329. slabp->inuse++;
  2330. next = slab_bufctl(slabp)[slabp->free];
  2331. #if DEBUG
  2332. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2333. WARN_ON(slabp->nodeid != nodeid);
  2334. #endif
  2335. slabp->free = next;
  2336. return objp;
  2337. }
  2338. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2339. void *objp, int nodeid)
  2340. {
  2341. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2342. #if DEBUG
  2343. /* Verify that the slab belongs to the intended node */
  2344. WARN_ON(slabp->nodeid != nodeid);
  2345. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2346. printk(KERN_ERR "slab: double free detected in cache "
  2347. "'%s', objp %p\n", cachep->name, objp);
  2348. BUG();
  2349. }
  2350. #endif
  2351. slab_bufctl(slabp)[objnr] = slabp->free;
  2352. slabp->free = objnr;
  2353. slabp->inuse--;
  2354. }
  2355. /*
  2356. * Map pages beginning at addr to the given cache and slab. This is required
  2357. * for the slab allocator to be able to lookup the cache and slab of a
  2358. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2359. */
  2360. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2361. void *addr)
  2362. {
  2363. int nr_pages;
  2364. struct page *page;
  2365. page = virt_to_page(addr);
  2366. nr_pages = 1;
  2367. if (likely(!PageCompound(page)))
  2368. nr_pages <<= cache->gfporder;
  2369. do {
  2370. page_set_cache(page, cache);
  2371. page_set_slab(page, slab);
  2372. page++;
  2373. } while (--nr_pages);
  2374. }
  2375. /*
  2376. * Grow (by 1) the number of slabs within a cache. This is called by
  2377. * kmem_cache_alloc() when there are no active objs left in a cache.
  2378. */
  2379. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2380. {
  2381. struct slab *slabp;
  2382. void *objp;
  2383. size_t offset;
  2384. gfp_t local_flags;
  2385. unsigned long ctor_flags;
  2386. struct kmem_list3 *l3;
  2387. /*
  2388. * Be lazy and only check for valid flags here, keeping it out of the
  2389. * critical path in kmem_cache_alloc().
  2390. */
  2391. BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
  2392. if (flags & SLAB_NO_GROW)
  2393. return 0;
  2394. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2395. local_flags = (flags & SLAB_LEVEL_MASK);
  2396. if (!(local_flags & __GFP_WAIT))
  2397. /*
  2398. * Not allowed to sleep. Need to tell a constructor about
  2399. * this - it might need to know...
  2400. */
  2401. ctor_flags |= SLAB_CTOR_ATOMIC;
  2402. /* Take the l3 list lock to change the colour_next on this node */
  2403. check_irq_off();
  2404. l3 = cachep->nodelists[nodeid];
  2405. spin_lock(&l3->list_lock);
  2406. /* Get colour for the slab, and cal the next value. */
  2407. offset = l3->colour_next;
  2408. l3->colour_next++;
  2409. if (l3->colour_next >= cachep->colour)
  2410. l3->colour_next = 0;
  2411. spin_unlock(&l3->list_lock);
  2412. offset *= cachep->colour_off;
  2413. if (local_flags & __GFP_WAIT)
  2414. local_irq_enable();
  2415. /*
  2416. * The test for missing atomic flag is performed here, rather than
  2417. * the more obvious place, simply to reduce the critical path length
  2418. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2419. * will eventually be caught here (where it matters).
  2420. */
  2421. kmem_flagcheck(cachep, flags);
  2422. /*
  2423. * Get mem for the objs. Attempt to allocate a physical page from
  2424. * 'nodeid'.
  2425. */
  2426. objp = kmem_getpages(cachep, flags, nodeid);
  2427. if (!objp)
  2428. goto failed;
  2429. /* Get slab management. */
  2430. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
  2431. if (!slabp)
  2432. goto opps1;
  2433. slabp->nodeid = nodeid;
  2434. slab_map_pages(cachep, slabp, objp);
  2435. cache_init_objs(cachep, slabp, ctor_flags);
  2436. if (local_flags & __GFP_WAIT)
  2437. local_irq_disable();
  2438. check_irq_off();
  2439. spin_lock(&l3->list_lock);
  2440. /* Make slab active. */
  2441. list_add_tail(&slabp->list, &(l3->slabs_free));
  2442. STATS_INC_GROWN(cachep);
  2443. l3->free_objects += cachep->num;
  2444. spin_unlock(&l3->list_lock);
  2445. return 1;
  2446. opps1:
  2447. kmem_freepages(cachep, objp);
  2448. failed:
  2449. if (local_flags & __GFP_WAIT)
  2450. local_irq_disable();
  2451. return 0;
  2452. }
  2453. #if DEBUG
  2454. /*
  2455. * Perform extra freeing checks:
  2456. * - detect bad pointers.
  2457. * - POISON/RED_ZONE checking
  2458. * - destructor calls, for caches with POISON+dtor
  2459. */
  2460. static void kfree_debugcheck(const void *objp)
  2461. {
  2462. struct page *page;
  2463. if (!virt_addr_valid(objp)) {
  2464. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2465. (unsigned long)objp);
  2466. BUG();
  2467. }
  2468. page = virt_to_page(objp);
  2469. if (!PageSlab(page)) {
  2470. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2471. (unsigned long)objp);
  2472. BUG();
  2473. }
  2474. }
  2475. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2476. {
  2477. unsigned long redzone1, redzone2;
  2478. redzone1 = *dbg_redzone1(cache, obj);
  2479. redzone2 = *dbg_redzone2(cache, obj);
  2480. /*
  2481. * Redzone is ok.
  2482. */
  2483. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2484. return;
  2485. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2486. slab_error(cache, "double free detected");
  2487. else
  2488. slab_error(cache, "memory outside object was overwritten");
  2489. printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
  2490. obj, redzone1, redzone2);
  2491. }
  2492. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2493. void *caller)
  2494. {
  2495. struct page *page;
  2496. unsigned int objnr;
  2497. struct slab *slabp;
  2498. objp -= obj_offset(cachep);
  2499. kfree_debugcheck(objp);
  2500. page = virt_to_page(objp);
  2501. slabp = page_get_slab(page);
  2502. if (cachep->flags & SLAB_RED_ZONE) {
  2503. verify_redzone_free(cachep, objp);
  2504. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2505. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2506. }
  2507. if (cachep->flags & SLAB_STORE_USER)
  2508. *dbg_userword(cachep, objp) = caller;
  2509. objnr = obj_to_index(cachep, slabp, objp);
  2510. BUG_ON(objnr >= cachep->num);
  2511. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2512. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2513. /*
  2514. * Need to call the slab's constructor so the caller can
  2515. * perform a verify of its state (debugging). Called without
  2516. * the cache-lock held.
  2517. */
  2518. cachep->ctor(objp + obj_offset(cachep),
  2519. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2520. }
  2521. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2522. /* we want to cache poison the object,
  2523. * call the destruction callback
  2524. */
  2525. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2526. }
  2527. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2528. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2529. #endif
  2530. if (cachep->flags & SLAB_POISON) {
  2531. #ifdef CONFIG_DEBUG_PAGEALLOC
  2532. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2533. store_stackinfo(cachep, objp, (unsigned long)caller);
  2534. kernel_map_pages(virt_to_page(objp),
  2535. cachep->buffer_size / PAGE_SIZE, 0);
  2536. } else {
  2537. poison_obj(cachep, objp, POISON_FREE);
  2538. }
  2539. #else
  2540. poison_obj(cachep, objp, POISON_FREE);
  2541. #endif
  2542. }
  2543. return objp;
  2544. }
  2545. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2546. {
  2547. kmem_bufctl_t i;
  2548. int entries = 0;
  2549. /* Check slab's freelist to see if this obj is there. */
  2550. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2551. entries++;
  2552. if (entries > cachep->num || i >= cachep->num)
  2553. goto bad;
  2554. }
  2555. if (entries != cachep->num - slabp->inuse) {
  2556. bad:
  2557. printk(KERN_ERR "slab: Internal list corruption detected in "
  2558. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2559. cachep->name, cachep->num, slabp, slabp->inuse);
  2560. for (i = 0;
  2561. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2562. i++) {
  2563. if (i % 16 == 0)
  2564. printk("\n%03x:", i);
  2565. printk(" %02x", ((unsigned char *)slabp)[i]);
  2566. }
  2567. printk("\n");
  2568. BUG();
  2569. }
  2570. }
  2571. #else
  2572. #define kfree_debugcheck(x) do { } while(0)
  2573. #define cache_free_debugcheck(x,objp,z) (objp)
  2574. #define check_slabp(x,y) do { } while(0)
  2575. #endif
  2576. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2577. {
  2578. int batchcount;
  2579. struct kmem_list3 *l3;
  2580. struct array_cache *ac;
  2581. check_irq_off();
  2582. ac = cpu_cache_get(cachep);
  2583. retry:
  2584. batchcount = ac->batchcount;
  2585. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2586. /*
  2587. * If there was little recent activity on this cache, then
  2588. * perform only a partial refill. Otherwise we could generate
  2589. * refill bouncing.
  2590. */
  2591. batchcount = BATCHREFILL_LIMIT;
  2592. }
  2593. l3 = cachep->nodelists[numa_node_id()];
  2594. BUG_ON(ac->avail > 0 || !l3);
  2595. spin_lock(&l3->list_lock);
  2596. /* See if we can refill from the shared array */
  2597. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2598. goto alloc_done;
  2599. while (batchcount > 0) {
  2600. struct list_head *entry;
  2601. struct slab *slabp;
  2602. /* Get slab alloc is to come from. */
  2603. entry = l3->slabs_partial.next;
  2604. if (entry == &l3->slabs_partial) {
  2605. l3->free_touched = 1;
  2606. entry = l3->slabs_free.next;
  2607. if (entry == &l3->slabs_free)
  2608. goto must_grow;
  2609. }
  2610. slabp = list_entry(entry, struct slab, list);
  2611. check_slabp(cachep, slabp);
  2612. check_spinlock_acquired(cachep);
  2613. while (slabp->inuse < cachep->num && batchcount--) {
  2614. STATS_INC_ALLOCED(cachep);
  2615. STATS_INC_ACTIVE(cachep);
  2616. STATS_SET_HIGH(cachep);
  2617. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2618. numa_node_id());
  2619. }
  2620. check_slabp(cachep, slabp);
  2621. /* move slabp to correct slabp list: */
  2622. list_del(&slabp->list);
  2623. if (slabp->free == BUFCTL_END)
  2624. list_add(&slabp->list, &l3->slabs_full);
  2625. else
  2626. list_add(&slabp->list, &l3->slabs_partial);
  2627. }
  2628. must_grow:
  2629. l3->free_objects -= ac->avail;
  2630. alloc_done:
  2631. spin_unlock(&l3->list_lock);
  2632. if (unlikely(!ac->avail)) {
  2633. int x;
  2634. x = cache_grow(cachep, flags, numa_node_id());
  2635. /* cache_grow can reenable interrupts, then ac could change. */
  2636. ac = cpu_cache_get(cachep);
  2637. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2638. return NULL;
  2639. if (!ac->avail) /* objects refilled by interrupt? */
  2640. goto retry;
  2641. }
  2642. ac->touched = 1;
  2643. return ac->entry[--ac->avail];
  2644. }
  2645. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2646. gfp_t flags)
  2647. {
  2648. might_sleep_if(flags & __GFP_WAIT);
  2649. #if DEBUG
  2650. kmem_flagcheck(cachep, flags);
  2651. #endif
  2652. }
  2653. #if DEBUG
  2654. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2655. gfp_t flags, void *objp, void *caller)
  2656. {
  2657. if (!objp)
  2658. return objp;
  2659. if (cachep->flags & SLAB_POISON) {
  2660. #ifdef CONFIG_DEBUG_PAGEALLOC
  2661. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2662. kernel_map_pages(virt_to_page(objp),
  2663. cachep->buffer_size / PAGE_SIZE, 1);
  2664. else
  2665. check_poison_obj(cachep, objp);
  2666. #else
  2667. check_poison_obj(cachep, objp);
  2668. #endif
  2669. poison_obj(cachep, objp, POISON_INUSE);
  2670. }
  2671. if (cachep->flags & SLAB_STORE_USER)
  2672. *dbg_userword(cachep, objp) = caller;
  2673. if (cachep->flags & SLAB_RED_ZONE) {
  2674. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2675. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2676. slab_error(cachep, "double free, or memory outside"
  2677. " object was overwritten");
  2678. printk(KERN_ERR
  2679. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2680. objp, *dbg_redzone1(cachep, objp),
  2681. *dbg_redzone2(cachep, objp));
  2682. }
  2683. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2684. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2685. }
  2686. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2687. {
  2688. struct slab *slabp;
  2689. unsigned objnr;
  2690. slabp = page_get_slab(virt_to_page(objp));
  2691. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2692. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2693. }
  2694. #endif
  2695. objp += obj_offset(cachep);
  2696. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2697. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2698. if (!(flags & __GFP_WAIT))
  2699. ctor_flags |= SLAB_CTOR_ATOMIC;
  2700. cachep->ctor(objp, cachep, ctor_flags);
  2701. }
  2702. return objp;
  2703. }
  2704. #else
  2705. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2706. #endif
  2707. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2708. {
  2709. void *objp;
  2710. struct array_cache *ac;
  2711. check_irq_off();
  2712. ac = cpu_cache_get(cachep);
  2713. if (likely(ac->avail)) {
  2714. STATS_INC_ALLOCHIT(cachep);
  2715. ac->touched = 1;
  2716. objp = ac->entry[--ac->avail];
  2717. } else {
  2718. STATS_INC_ALLOCMISS(cachep);
  2719. objp = cache_alloc_refill(cachep, flags);
  2720. }
  2721. return objp;
  2722. }
  2723. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2724. gfp_t flags, void *caller)
  2725. {
  2726. unsigned long save_flags;
  2727. void *objp = NULL;
  2728. cache_alloc_debugcheck_before(cachep, flags);
  2729. local_irq_save(save_flags);
  2730. if (unlikely(NUMA_BUILD &&
  2731. current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
  2732. objp = alternate_node_alloc(cachep, flags);
  2733. if (!objp)
  2734. objp = ____cache_alloc(cachep, flags);
  2735. /*
  2736. * We may just have run out of memory on the local node.
  2737. * __cache_alloc_node() knows how to locate memory on other nodes
  2738. */
  2739. if (NUMA_BUILD && !objp)
  2740. objp = __cache_alloc_node(cachep, flags, numa_node_id());
  2741. local_irq_restore(save_flags);
  2742. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2743. caller);
  2744. prefetchw(objp);
  2745. return objp;
  2746. }
  2747. #ifdef CONFIG_NUMA
  2748. /*
  2749. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2750. *
  2751. * If we are in_interrupt, then process context, including cpusets and
  2752. * mempolicy, may not apply and should not be used for allocation policy.
  2753. */
  2754. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2755. {
  2756. int nid_alloc, nid_here;
  2757. if (in_interrupt() || (flags & __GFP_THISNODE))
  2758. return NULL;
  2759. nid_alloc = nid_here = numa_node_id();
  2760. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2761. nid_alloc = cpuset_mem_spread_node();
  2762. else if (current->mempolicy)
  2763. nid_alloc = slab_node(current->mempolicy);
  2764. if (nid_alloc != nid_here)
  2765. return __cache_alloc_node(cachep, flags, nid_alloc);
  2766. return NULL;
  2767. }
  2768. /*
  2769. * Fallback function if there was no memory available and no objects on a
  2770. * certain node and we are allowed to fall back. We mimick the behavior of
  2771. * the page allocator. We fall back according to a zonelist determined by
  2772. * the policy layer while obeying cpuset constraints.
  2773. */
  2774. void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2775. {
  2776. struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
  2777. ->node_zonelists[gfp_zone(flags)];
  2778. struct zone **z;
  2779. void *obj = NULL;
  2780. for (z = zonelist->zones; *z && !obj; z++)
  2781. if (zone_idx(*z) <= ZONE_NORMAL &&
  2782. cpuset_zone_allowed(*z, flags))
  2783. obj = __cache_alloc_node(cache,
  2784. flags | __GFP_THISNODE,
  2785. zone_to_nid(*z));
  2786. return obj;
  2787. }
  2788. /*
  2789. * A interface to enable slab creation on nodeid
  2790. */
  2791. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2792. int nodeid)
  2793. {
  2794. struct list_head *entry;
  2795. struct slab *slabp;
  2796. struct kmem_list3 *l3;
  2797. void *obj;
  2798. int x;
  2799. l3 = cachep->nodelists[nodeid];
  2800. BUG_ON(!l3);
  2801. retry:
  2802. check_irq_off();
  2803. spin_lock(&l3->list_lock);
  2804. entry = l3->slabs_partial.next;
  2805. if (entry == &l3->slabs_partial) {
  2806. l3->free_touched = 1;
  2807. entry = l3->slabs_free.next;
  2808. if (entry == &l3->slabs_free)
  2809. goto must_grow;
  2810. }
  2811. slabp = list_entry(entry, struct slab, list);
  2812. check_spinlock_acquired_node(cachep, nodeid);
  2813. check_slabp(cachep, slabp);
  2814. STATS_INC_NODEALLOCS(cachep);
  2815. STATS_INC_ACTIVE(cachep);
  2816. STATS_SET_HIGH(cachep);
  2817. BUG_ON(slabp->inuse == cachep->num);
  2818. obj = slab_get_obj(cachep, slabp, nodeid);
  2819. check_slabp(cachep, slabp);
  2820. l3->free_objects--;
  2821. /* move slabp to correct slabp list: */
  2822. list_del(&slabp->list);
  2823. if (slabp->free == BUFCTL_END)
  2824. list_add(&slabp->list, &l3->slabs_full);
  2825. else
  2826. list_add(&slabp->list, &l3->slabs_partial);
  2827. spin_unlock(&l3->list_lock);
  2828. goto done;
  2829. must_grow:
  2830. spin_unlock(&l3->list_lock);
  2831. x = cache_grow(cachep, flags, nodeid);
  2832. if (x)
  2833. goto retry;
  2834. if (!(flags & __GFP_THISNODE))
  2835. /* Unable to grow the cache. Fall back to other nodes. */
  2836. return fallback_alloc(cachep, flags);
  2837. return NULL;
  2838. done:
  2839. return obj;
  2840. }
  2841. #endif
  2842. /*
  2843. * Caller needs to acquire correct kmem_list's list_lock
  2844. */
  2845. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2846. int node)
  2847. {
  2848. int i;
  2849. struct kmem_list3 *l3;
  2850. for (i = 0; i < nr_objects; i++) {
  2851. void *objp = objpp[i];
  2852. struct slab *slabp;
  2853. slabp = virt_to_slab(objp);
  2854. l3 = cachep->nodelists[node];
  2855. list_del(&slabp->list);
  2856. check_spinlock_acquired_node(cachep, node);
  2857. check_slabp(cachep, slabp);
  2858. slab_put_obj(cachep, slabp, objp, node);
  2859. STATS_DEC_ACTIVE(cachep);
  2860. l3->free_objects++;
  2861. check_slabp(cachep, slabp);
  2862. /* fixup slab chains */
  2863. if (slabp->inuse == 0) {
  2864. if (l3->free_objects > l3->free_limit) {
  2865. l3->free_objects -= cachep->num;
  2866. /* No need to drop any previously held
  2867. * lock here, even if we have a off-slab slab
  2868. * descriptor it is guaranteed to come from
  2869. * a different cache, refer to comments before
  2870. * alloc_slabmgmt.
  2871. */
  2872. slab_destroy(cachep, slabp);
  2873. } else {
  2874. list_add(&slabp->list, &l3->slabs_free);
  2875. }
  2876. } else {
  2877. /* Unconditionally move a slab to the end of the
  2878. * partial list on free - maximum time for the
  2879. * other objects to be freed, too.
  2880. */
  2881. list_add_tail(&slabp->list, &l3->slabs_partial);
  2882. }
  2883. }
  2884. }
  2885. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2886. {
  2887. int batchcount;
  2888. struct kmem_list3 *l3;
  2889. int node = numa_node_id();
  2890. batchcount = ac->batchcount;
  2891. #if DEBUG
  2892. BUG_ON(!batchcount || batchcount > ac->avail);
  2893. #endif
  2894. check_irq_off();
  2895. l3 = cachep->nodelists[node];
  2896. spin_lock(&l3->list_lock);
  2897. if (l3->shared) {
  2898. struct array_cache *shared_array = l3->shared;
  2899. int max = shared_array->limit - shared_array->avail;
  2900. if (max) {
  2901. if (batchcount > max)
  2902. batchcount = max;
  2903. memcpy(&(shared_array->entry[shared_array->avail]),
  2904. ac->entry, sizeof(void *) * batchcount);
  2905. shared_array->avail += batchcount;
  2906. goto free_done;
  2907. }
  2908. }
  2909. free_block(cachep, ac->entry, batchcount, node);
  2910. free_done:
  2911. #if STATS
  2912. {
  2913. int i = 0;
  2914. struct list_head *p;
  2915. p = l3->slabs_free.next;
  2916. while (p != &(l3->slabs_free)) {
  2917. struct slab *slabp;
  2918. slabp = list_entry(p, struct slab, list);
  2919. BUG_ON(slabp->inuse);
  2920. i++;
  2921. p = p->next;
  2922. }
  2923. STATS_SET_FREEABLE(cachep, i);
  2924. }
  2925. #endif
  2926. spin_unlock(&l3->list_lock);
  2927. ac->avail -= batchcount;
  2928. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2929. }
  2930. /*
  2931. * Release an obj back to its cache. If the obj has a constructed state, it must
  2932. * be in this state _before_ it is released. Called with disabled ints.
  2933. */
  2934. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2935. {
  2936. struct array_cache *ac = cpu_cache_get(cachep);
  2937. check_irq_off();
  2938. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2939. if (cache_free_alien(cachep, objp))
  2940. return;
  2941. if (likely(ac->avail < ac->limit)) {
  2942. STATS_INC_FREEHIT(cachep);
  2943. ac->entry[ac->avail++] = objp;
  2944. return;
  2945. } else {
  2946. STATS_INC_FREEMISS(cachep);
  2947. cache_flusharray(cachep, ac);
  2948. ac->entry[ac->avail++] = objp;
  2949. }
  2950. }
  2951. /**
  2952. * kmem_cache_alloc - Allocate an object
  2953. * @cachep: The cache to allocate from.
  2954. * @flags: See kmalloc().
  2955. *
  2956. * Allocate an object from this cache. The flags are only relevant
  2957. * if the cache has no available objects.
  2958. */
  2959. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2960. {
  2961. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2962. }
  2963. EXPORT_SYMBOL(kmem_cache_alloc);
  2964. /**
  2965. * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
  2966. * @cache: The cache to allocate from.
  2967. * @flags: See kmalloc().
  2968. *
  2969. * Allocate an object from this cache and set the allocated memory to zero.
  2970. * The flags are only relevant if the cache has no available objects.
  2971. */
  2972. void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
  2973. {
  2974. void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
  2975. if (ret)
  2976. memset(ret, 0, obj_size(cache));
  2977. return ret;
  2978. }
  2979. EXPORT_SYMBOL(kmem_cache_zalloc);
  2980. /**
  2981. * kmem_ptr_validate - check if an untrusted pointer might
  2982. * be a slab entry.
  2983. * @cachep: the cache we're checking against
  2984. * @ptr: pointer to validate
  2985. *
  2986. * This verifies that the untrusted pointer looks sane:
  2987. * it is _not_ a guarantee that the pointer is actually
  2988. * part of the slab cache in question, but it at least
  2989. * validates that the pointer can be dereferenced and
  2990. * looks half-way sane.
  2991. *
  2992. * Currently only used for dentry validation.
  2993. */
  2994. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2995. {
  2996. unsigned long addr = (unsigned long)ptr;
  2997. unsigned long min_addr = PAGE_OFFSET;
  2998. unsigned long align_mask = BYTES_PER_WORD - 1;
  2999. unsigned long size = cachep->buffer_size;
  3000. struct page *page;
  3001. if (unlikely(addr < min_addr))
  3002. goto out;
  3003. if (unlikely(addr > (unsigned long)high_memory - size))
  3004. goto out;
  3005. if (unlikely(addr & align_mask))
  3006. goto out;
  3007. if (unlikely(!kern_addr_valid(addr)))
  3008. goto out;
  3009. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3010. goto out;
  3011. page = virt_to_page(ptr);
  3012. if (unlikely(!PageSlab(page)))
  3013. goto out;
  3014. if (unlikely(page_get_cache(page) != cachep))
  3015. goto out;
  3016. return 1;
  3017. out:
  3018. return 0;
  3019. }
  3020. #ifdef CONFIG_NUMA
  3021. /**
  3022. * kmem_cache_alloc_node - Allocate an object on the specified node
  3023. * @cachep: The cache to allocate from.
  3024. * @flags: See kmalloc().
  3025. * @nodeid: node number of the target node.
  3026. *
  3027. * Identical to kmem_cache_alloc, except that this function is slow
  3028. * and can sleep. And it will allocate memory on the given node, which
  3029. * can improve the performance for cpu bound structures.
  3030. * New and improved: it will now make sure that the object gets
  3031. * put on the correct node list so that there is no false sharing.
  3032. */
  3033. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3034. {
  3035. unsigned long save_flags;
  3036. void *ptr;
  3037. cache_alloc_debugcheck_before(cachep, flags);
  3038. local_irq_save(save_flags);
  3039. if (nodeid == -1 || nodeid == numa_node_id() ||
  3040. !cachep->nodelists[nodeid])
  3041. ptr = ____cache_alloc(cachep, flags);
  3042. else
  3043. ptr = __cache_alloc_node(cachep, flags, nodeid);
  3044. local_irq_restore(save_flags);
  3045. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  3046. __builtin_return_address(0));
  3047. return ptr;
  3048. }
  3049. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3050. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3051. {
  3052. struct kmem_cache *cachep;
  3053. cachep = kmem_find_general_cachep(size, flags);
  3054. if (unlikely(cachep == NULL))
  3055. return NULL;
  3056. return kmem_cache_alloc_node(cachep, flags, node);
  3057. }
  3058. EXPORT_SYMBOL(__kmalloc_node);
  3059. #endif
  3060. /**
  3061. * __do_kmalloc - allocate memory
  3062. * @size: how many bytes of memory are required.
  3063. * @flags: the type of memory to allocate (see kmalloc).
  3064. * @caller: function caller for debug tracking of the caller
  3065. */
  3066. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3067. void *caller)
  3068. {
  3069. struct kmem_cache *cachep;
  3070. /* If you want to save a few bytes .text space: replace
  3071. * __ with kmem_.
  3072. * Then kmalloc uses the uninlined functions instead of the inline
  3073. * functions.
  3074. */
  3075. cachep = __find_general_cachep(size, flags);
  3076. if (unlikely(cachep == NULL))
  3077. return NULL;
  3078. return __cache_alloc(cachep, flags, caller);
  3079. }
  3080. void *__kmalloc(size_t size, gfp_t flags)
  3081. {
  3082. #ifndef CONFIG_DEBUG_SLAB
  3083. return __do_kmalloc(size, flags, NULL);
  3084. #else
  3085. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3086. #endif
  3087. }
  3088. EXPORT_SYMBOL(__kmalloc);
  3089. #ifdef CONFIG_DEBUG_SLAB
  3090. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  3091. {
  3092. return __do_kmalloc(size, flags, caller);
  3093. }
  3094. EXPORT_SYMBOL(__kmalloc_track_caller);
  3095. #endif
  3096. /**
  3097. * kmem_cache_free - Deallocate an object
  3098. * @cachep: The cache the allocation was from.
  3099. * @objp: The previously allocated object.
  3100. *
  3101. * Free an object which was previously allocated from this
  3102. * cache.
  3103. */
  3104. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3105. {
  3106. unsigned long flags;
  3107. BUG_ON(virt_to_cache(objp) != cachep);
  3108. local_irq_save(flags);
  3109. __cache_free(cachep, objp);
  3110. local_irq_restore(flags);
  3111. }
  3112. EXPORT_SYMBOL(kmem_cache_free);
  3113. /**
  3114. * kfree - free previously allocated memory
  3115. * @objp: pointer returned by kmalloc.
  3116. *
  3117. * If @objp is NULL, no operation is performed.
  3118. *
  3119. * Don't free memory not originally allocated by kmalloc()
  3120. * or you will run into trouble.
  3121. */
  3122. void kfree(const void *objp)
  3123. {
  3124. struct kmem_cache *c;
  3125. unsigned long flags;
  3126. if (unlikely(!objp))
  3127. return;
  3128. local_irq_save(flags);
  3129. kfree_debugcheck(objp);
  3130. c = virt_to_cache(objp);
  3131. debug_check_no_locks_freed(objp, obj_size(c));
  3132. __cache_free(c, (void *)objp);
  3133. local_irq_restore(flags);
  3134. }
  3135. EXPORT_SYMBOL(kfree);
  3136. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3137. {
  3138. return obj_size(cachep);
  3139. }
  3140. EXPORT_SYMBOL(kmem_cache_size);
  3141. const char *kmem_cache_name(struct kmem_cache *cachep)
  3142. {
  3143. return cachep->name;
  3144. }
  3145. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3146. /*
  3147. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3148. */
  3149. static int alloc_kmemlist(struct kmem_cache *cachep)
  3150. {
  3151. int node;
  3152. struct kmem_list3 *l3;
  3153. struct array_cache *new_shared;
  3154. struct array_cache **new_alien;
  3155. for_each_online_node(node) {
  3156. new_alien = alloc_alien_cache(node, cachep->limit);
  3157. if (!new_alien)
  3158. goto fail;
  3159. new_shared = alloc_arraycache(node,
  3160. cachep->shared*cachep->batchcount,
  3161. 0xbaadf00d);
  3162. if (!new_shared) {
  3163. free_alien_cache(new_alien);
  3164. goto fail;
  3165. }
  3166. l3 = cachep->nodelists[node];
  3167. if (l3) {
  3168. struct array_cache *shared = l3->shared;
  3169. spin_lock_irq(&l3->list_lock);
  3170. if (shared)
  3171. free_block(cachep, shared->entry,
  3172. shared->avail, node);
  3173. l3->shared = new_shared;
  3174. if (!l3->alien) {
  3175. l3->alien = new_alien;
  3176. new_alien = NULL;
  3177. }
  3178. l3->free_limit = (1 + nr_cpus_node(node)) *
  3179. cachep->batchcount + cachep->num;
  3180. spin_unlock_irq(&l3->list_lock);
  3181. kfree(shared);
  3182. free_alien_cache(new_alien);
  3183. continue;
  3184. }
  3185. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3186. if (!l3) {
  3187. free_alien_cache(new_alien);
  3188. kfree(new_shared);
  3189. goto fail;
  3190. }
  3191. kmem_list3_init(l3);
  3192. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3193. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3194. l3->shared = new_shared;
  3195. l3->alien = new_alien;
  3196. l3->free_limit = (1 + nr_cpus_node(node)) *
  3197. cachep->batchcount + cachep->num;
  3198. cachep->nodelists[node] = l3;
  3199. }
  3200. return 0;
  3201. fail:
  3202. if (!cachep->next.next) {
  3203. /* Cache is not active yet. Roll back what we did */
  3204. node--;
  3205. while (node >= 0) {
  3206. if (cachep->nodelists[node]) {
  3207. l3 = cachep->nodelists[node];
  3208. kfree(l3->shared);
  3209. free_alien_cache(l3->alien);
  3210. kfree(l3);
  3211. cachep->nodelists[node] = NULL;
  3212. }
  3213. node--;
  3214. }
  3215. }
  3216. return -ENOMEM;
  3217. }
  3218. struct ccupdate_struct {
  3219. struct kmem_cache *cachep;
  3220. struct array_cache *new[NR_CPUS];
  3221. };
  3222. static void do_ccupdate_local(void *info)
  3223. {
  3224. struct ccupdate_struct *new = info;
  3225. struct array_cache *old;
  3226. check_irq_off();
  3227. old = cpu_cache_get(new->cachep);
  3228. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3229. new->new[smp_processor_id()] = old;
  3230. }
  3231. /* Always called with the cache_chain_mutex held */
  3232. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3233. int batchcount, int shared)
  3234. {
  3235. struct ccupdate_struct *new;
  3236. int i;
  3237. new = kzalloc(sizeof(*new), GFP_KERNEL);
  3238. if (!new)
  3239. return -ENOMEM;
  3240. for_each_online_cpu(i) {
  3241. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3242. batchcount);
  3243. if (!new->new[i]) {
  3244. for (i--; i >= 0; i--)
  3245. kfree(new->new[i]);
  3246. kfree(new);
  3247. return -ENOMEM;
  3248. }
  3249. }
  3250. new->cachep = cachep;
  3251. on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
  3252. check_irq_on();
  3253. cachep->batchcount = batchcount;
  3254. cachep->limit = limit;
  3255. cachep->shared = shared;
  3256. for_each_online_cpu(i) {
  3257. struct array_cache *ccold = new->new[i];
  3258. if (!ccold)
  3259. continue;
  3260. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3261. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3262. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3263. kfree(ccold);
  3264. }
  3265. kfree(new);
  3266. return alloc_kmemlist(cachep);
  3267. }
  3268. /* Called with cache_chain_mutex held always */
  3269. static int enable_cpucache(struct kmem_cache *cachep)
  3270. {
  3271. int err;
  3272. int limit, shared;
  3273. /*
  3274. * The head array serves three purposes:
  3275. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3276. * - reduce the number of spinlock operations.
  3277. * - reduce the number of linked list operations on the slab and
  3278. * bufctl chains: array operations are cheaper.
  3279. * The numbers are guessed, we should auto-tune as described by
  3280. * Bonwick.
  3281. */
  3282. if (cachep->buffer_size > 131072)
  3283. limit = 1;
  3284. else if (cachep->buffer_size > PAGE_SIZE)
  3285. limit = 8;
  3286. else if (cachep->buffer_size > 1024)
  3287. limit = 24;
  3288. else if (cachep->buffer_size > 256)
  3289. limit = 54;
  3290. else
  3291. limit = 120;
  3292. /*
  3293. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3294. * allocation behaviour: Most allocs on one cpu, most free operations
  3295. * on another cpu. For these cases, an efficient object passing between
  3296. * cpus is necessary. This is provided by a shared array. The array
  3297. * replaces Bonwick's magazine layer.
  3298. * On uniprocessor, it's functionally equivalent (but less efficient)
  3299. * to a larger limit. Thus disabled by default.
  3300. */
  3301. shared = 0;
  3302. #ifdef CONFIG_SMP
  3303. if (cachep->buffer_size <= PAGE_SIZE)
  3304. shared = 8;
  3305. #endif
  3306. #if DEBUG
  3307. /*
  3308. * With debugging enabled, large batchcount lead to excessively long
  3309. * periods with disabled local interrupts. Limit the batchcount
  3310. */
  3311. if (limit > 32)
  3312. limit = 32;
  3313. #endif
  3314. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3315. if (err)
  3316. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3317. cachep->name, -err);
  3318. return err;
  3319. }
  3320. /*
  3321. * Drain an array if it contains any elements taking the l3 lock only if
  3322. * necessary. Note that the l3 listlock also protects the array_cache
  3323. * if drain_array() is used on the shared array.
  3324. */
  3325. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3326. struct array_cache *ac, int force, int node)
  3327. {
  3328. int tofree;
  3329. if (!ac || !ac->avail)
  3330. return;
  3331. if (ac->touched && !force) {
  3332. ac->touched = 0;
  3333. } else {
  3334. spin_lock_irq(&l3->list_lock);
  3335. if (ac->avail) {
  3336. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3337. if (tofree > ac->avail)
  3338. tofree = (ac->avail + 1) / 2;
  3339. free_block(cachep, ac->entry, tofree, node);
  3340. ac->avail -= tofree;
  3341. memmove(ac->entry, &(ac->entry[tofree]),
  3342. sizeof(void *) * ac->avail);
  3343. }
  3344. spin_unlock_irq(&l3->list_lock);
  3345. }
  3346. }
  3347. /**
  3348. * cache_reap - Reclaim memory from caches.
  3349. * @unused: unused parameter
  3350. *
  3351. * Called from workqueue/eventd every few seconds.
  3352. * Purpose:
  3353. * - clear the per-cpu caches for this CPU.
  3354. * - return freeable pages to the main free memory pool.
  3355. *
  3356. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3357. * again on the next iteration.
  3358. */
  3359. static void cache_reap(void *unused)
  3360. {
  3361. struct kmem_cache *searchp;
  3362. struct kmem_list3 *l3;
  3363. int node = numa_node_id();
  3364. if (!mutex_trylock(&cache_chain_mutex)) {
  3365. /* Give up. Setup the next iteration. */
  3366. schedule_delayed_work(&__get_cpu_var(reap_work),
  3367. REAPTIMEOUT_CPUC);
  3368. return;
  3369. }
  3370. list_for_each_entry(searchp, &cache_chain, next) {
  3371. check_irq_on();
  3372. /*
  3373. * We only take the l3 lock if absolutely necessary and we
  3374. * have established with reasonable certainty that
  3375. * we can do some work if the lock was obtained.
  3376. */
  3377. l3 = searchp->nodelists[node];
  3378. reap_alien(searchp, l3);
  3379. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3380. /*
  3381. * These are racy checks but it does not matter
  3382. * if we skip one check or scan twice.
  3383. */
  3384. if (time_after(l3->next_reap, jiffies))
  3385. goto next;
  3386. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3387. drain_array(searchp, l3, l3->shared, 0, node);
  3388. if (l3->free_touched)
  3389. l3->free_touched = 0;
  3390. else {
  3391. int freed;
  3392. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3393. 5 * searchp->num - 1) / (5 * searchp->num));
  3394. STATS_ADD_REAPED(searchp, freed);
  3395. }
  3396. next:
  3397. cond_resched();
  3398. }
  3399. check_irq_on();
  3400. mutex_unlock(&cache_chain_mutex);
  3401. next_reap_node();
  3402. refresh_cpu_vm_stats(smp_processor_id());
  3403. /* Set up the next iteration */
  3404. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3405. }
  3406. #ifdef CONFIG_PROC_FS
  3407. static void print_slabinfo_header(struct seq_file *m)
  3408. {
  3409. /*
  3410. * Output format version, so at least we can change it
  3411. * without _too_ many complaints.
  3412. */
  3413. #if STATS
  3414. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3415. #else
  3416. seq_puts(m, "slabinfo - version: 2.1\n");
  3417. #endif
  3418. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3419. "<objperslab> <pagesperslab>");
  3420. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3421. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3422. #if STATS
  3423. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3424. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3425. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3426. #endif
  3427. seq_putc(m, '\n');
  3428. }
  3429. static void *s_start(struct seq_file *m, loff_t *pos)
  3430. {
  3431. loff_t n = *pos;
  3432. struct list_head *p;
  3433. mutex_lock(&cache_chain_mutex);
  3434. if (!n)
  3435. print_slabinfo_header(m);
  3436. p = cache_chain.next;
  3437. while (n--) {
  3438. p = p->next;
  3439. if (p == &cache_chain)
  3440. return NULL;
  3441. }
  3442. return list_entry(p, struct kmem_cache, next);
  3443. }
  3444. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3445. {
  3446. struct kmem_cache *cachep = p;
  3447. ++*pos;
  3448. return cachep->next.next == &cache_chain ?
  3449. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3450. }
  3451. static void s_stop(struct seq_file *m, void *p)
  3452. {
  3453. mutex_unlock(&cache_chain_mutex);
  3454. }
  3455. static int s_show(struct seq_file *m, void *p)
  3456. {
  3457. struct kmem_cache *cachep = p;
  3458. struct slab *slabp;
  3459. unsigned long active_objs;
  3460. unsigned long num_objs;
  3461. unsigned long active_slabs = 0;
  3462. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3463. const char *name;
  3464. char *error = NULL;
  3465. int node;
  3466. struct kmem_list3 *l3;
  3467. active_objs = 0;
  3468. num_slabs = 0;
  3469. for_each_online_node(node) {
  3470. l3 = cachep->nodelists[node];
  3471. if (!l3)
  3472. continue;
  3473. check_irq_on();
  3474. spin_lock_irq(&l3->list_lock);
  3475. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3476. if (slabp->inuse != cachep->num && !error)
  3477. error = "slabs_full accounting error";
  3478. active_objs += cachep->num;
  3479. active_slabs++;
  3480. }
  3481. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3482. if (slabp->inuse == cachep->num && !error)
  3483. error = "slabs_partial inuse accounting error";
  3484. if (!slabp->inuse && !error)
  3485. error = "slabs_partial/inuse accounting error";
  3486. active_objs += slabp->inuse;
  3487. active_slabs++;
  3488. }
  3489. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3490. if (slabp->inuse && !error)
  3491. error = "slabs_free/inuse accounting error";
  3492. num_slabs++;
  3493. }
  3494. free_objects += l3->free_objects;
  3495. if (l3->shared)
  3496. shared_avail += l3->shared->avail;
  3497. spin_unlock_irq(&l3->list_lock);
  3498. }
  3499. num_slabs += active_slabs;
  3500. num_objs = num_slabs * cachep->num;
  3501. if (num_objs - active_objs != free_objects && !error)
  3502. error = "free_objects accounting error";
  3503. name = cachep->name;
  3504. if (error)
  3505. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3506. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3507. name, active_objs, num_objs, cachep->buffer_size,
  3508. cachep->num, (1 << cachep->gfporder));
  3509. seq_printf(m, " : tunables %4u %4u %4u",
  3510. cachep->limit, cachep->batchcount, cachep->shared);
  3511. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3512. active_slabs, num_slabs, shared_avail);
  3513. #if STATS
  3514. { /* list3 stats */
  3515. unsigned long high = cachep->high_mark;
  3516. unsigned long allocs = cachep->num_allocations;
  3517. unsigned long grown = cachep->grown;
  3518. unsigned long reaped = cachep->reaped;
  3519. unsigned long errors = cachep->errors;
  3520. unsigned long max_freeable = cachep->max_freeable;
  3521. unsigned long node_allocs = cachep->node_allocs;
  3522. unsigned long node_frees = cachep->node_frees;
  3523. unsigned long overflows = cachep->node_overflow;
  3524. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3525. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3526. reaped, errors, max_freeable, node_allocs,
  3527. node_frees, overflows);
  3528. }
  3529. /* cpu stats */
  3530. {
  3531. unsigned long allochit = atomic_read(&cachep->allochit);
  3532. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3533. unsigned long freehit = atomic_read(&cachep->freehit);
  3534. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3535. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3536. allochit, allocmiss, freehit, freemiss);
  3537. }
  3538. #endif
  3539. seq_putc(m, '\n');
  3540. return 0;
  3541. }
  3542. /*
  3543. * slabinfo_op - iterator that generates /proc/slabinfo
  3544. *
  3545. * Output layout:
  3546. * cache-name
  3547. * num-active-objs
  3548. * total-objs
  3549. * object size
  3550. * num-active-slabs
  3551. * total-slabs
  3552. * num-pages-per-slab
  3553. * + further values on SMP and with statistics enabled
  3554. */
  3555. struct seq_operations slabinfo_op = {
  3556. .start = s_start,
  3557. .next = s_next,
  3558. .stop = s_stop,
  3559. .show = s_show,
  3560. };
  3561. #define MAX_SLABINFO_WRITE 128
  3562. /**
  3563. * slabinfo_write - Tuning for the slab allocator
  3564. * @file: unused
  3565. * @buffer: user buffer
  3566. * @count: data length
  3567. * @ppos: unused
  3568. */
  3569. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3570. size_t count, loff_t *ppos)
  3571. {
  3572. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3573. int limit, batchcount, shared, res;
  3574. struct kmem_cache *cachep;
  3575. if (count > MAX_SLABINFO_WRITE)
  3576. return -EINVAL;
  3577. if (copy_from_user(&kbuf, buffer, count))
  3578. return -EFAULT;
  3579. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3580. tmp = strchr(kbuf, ' ');
  3581. if (!tmp)
  3582. return -EINVAL;
  3583. *tmp = '\0';
  3584. tmp++;
  3585. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3586. return -EINVAL;
  3587. /* Find the cache in the chain of caches. */
  3588. mutex_lock(&cache_chain_mutex);
  3589. res = -EINVAL;
  3590. list_for_each_entry(cachep, &cache_chain, next) {
  3591. if (!strcmp(cachep->name, kbuf)) {
  3592. if (limit < 1 || batchcount < 1 ||
  3593. batchcount > limit || shared < 0) {
  3594. res = 0;
  3595. } else {
  3596. res = do_tune_cpucache(cachep, limit,
  3597. batchcount, shared);
  3598. }
  3599. break;
  3600. }
  3601. }
  3602. mutex_unlock(&cache_chain_mutex);
  3603. if (res >= 0)
  3604. res = count;
  3605. return res;
  3606. }
  3607. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3608. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3609. {
  3610. loff_t n = *pos;
  3611. struct list_head *p;
  3612. mutex_lock(&cache_chain_mutex);
  3613. p = cache_chain.next;
  3614. while (n--) {
  3615. p = p->next;
  3616. if (p == &cache_chain)
  3617. return NULL;
  3618. }
  3619. return list_entry(p, struct kmem_cache, next);
  3620. }
  3621. static inline int add_caller(unsigned long *n, unsigned long v)
  3622. {
  3623. unsigned long *p;
  3624. int l;
  3625. if (!v)
  3626. return 1;
  3627. l = n[1];
  3628. p = n + 2;
  3629. while (l) {
  3630. int i = l/2;
  3631. unsigned long *q = p + 2 * i;
  3632. if (*q == v) {
  3633. q[1]++;
  3634. return 1;
  3635. }
  3636. if (*q > v) {
  3637. l = i;
  3638. } else {
  3639. p = q + 2;
  3640. l -= i + 1;
  3641. }
  3642. }
  3643. if (++n[1] == n[0])
  3644. return 0;
  3645. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3646. p[0] = v;
  3647. p[1] = 1;
  3648. return 1;
  3649. }
  3650. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3651. {
  3652. void *p;
  3653. int i;
  3654. if (n[0] == n[1])
  3655. return;
  3656. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3657. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3658. continue;
  3659. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3660. return;
  3661. }
  3662. }
  3663. static void show_symbol(struct seq_file *m, unsigned long address)
  3664. {
  3665. #ifdef CONFIG_KALLSYMS
  3666. char *modname;
  3667. const char *name;
  3668. unsigned long offset, size;
  3669. char namebuf[KSYM_NAME_LEN+1];
  3670. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3671. if (name) {
  3672. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3673. if (modname)
  3674. seq_printf(m, " [%s]", modname);
  3675. return;
  3676. }
  3677. #endif
  3678. seq_printf(m, "%p", (void *)address);
  3679. }
  3680. static int leaks_show(struct seq_file *m, void *p)
  3681. {
  3682. struct kmem_cache *cachep = p;
  3683. struct slab *slabp;
  3684. struct kmem_list3 *l3;
  3685. const char *name;
  3686. unsigned long *n = m->private;
  3687. int node;
  3688. int i;
  3689. if (!(cachep->flags & SLAB_STORE_USER))
  3690. return 0;
  3691. if (!(cachep->flags & SLAB_RED_ZONE))
  3692. return 0;
  3693. /* OK, we can do it */
  3694. n[1] = 0;
  3695. for_each_online_node(node) {
  3696. l3 = cachep->nodelists[node];
  3697. if (!l3)
  3698. continue;
  3699. check_irq_on();
  3700. spin_lock_irq(&l3->list_lock);
  3701. list_for_each_entry(slabp, &l3->slabs_full, list)
  3702. handle_slab(n, cachep, slabp);
  3703. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3704. handle_slab(n, cachep, slabp);
  3705. spin_unlock_irq(&l3->list_lock);
  3706. }
  3707. name = cachep->name;
  3708. if (n[0] == n[1]) {
  3709. /* Increase the buffer size */
  3710. mutex_unlock(&cache_chain_mutex);
  3711. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3712. if (!m->private) {
  3713. /* Too bad, we are really out */
  3714. m->private = n;
  3715. mutex_lock(&cache_chain_mutex);
  3716. return -ENOMEM;
  3717. }
  3718. *(unsigned long *)m->private = n[0] * 2;
  3719. kfree(n);
  3720. mutex_lock(&cache_chain_mutex);
  3721. /* Now make sure this entry will be retried */
  3722. m->count = m->size;
  3723. return 0;
  3724. }
  3725. for (i = 0; i < n[1]; i++) {
  3726. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3727. show_symbol(m, n[2*i+2]);
  3728. seq_putc(m, '\n');
  3729. }
  3730. return 0;
  3731. }
  3732. struct seq_operations slabstats_op = {
  3733. .start = leaks_start,
  3734. .next = s_next,
  3735. .stop = s_stop,
  3736. .show = leaks_show,
  3737. };
  3738. #endif
  3739. #endif
  3740. /**
  3741. * ksize - get the actual amount of memory allocated for a given object
  3742. * @objp: Pointer to the object
  3743. *
  3744. * kmalloc may internally round up allocations and return more memory
  3745. * than requested. ksize() can be used to determine the actual amount of
  3746. * memory allocated. The caller may use this additional memory, even though
  3747. * a smaller amount of memory was initially specified with the kmalloc call.
  3748. * The caller must guarantee that objp points to a valid object previously
  3749. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3750. * must not be freed during the duration of the call.
  3751. */
  3752. unsigned int ksize(const void *objp)
  3753. {
  3754. if (unlikely(objp == NULL))
  3755. return 0;
  3756. return obj_size(virt_to_cache(objp));
  3757. }