fork.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/smp_lock.h>
  16. #include <linux/module.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/completion.h>
  19. #include <linux/namespace.h>
  20. #include <linux/personality.h>
  21. #include <linux/mempolicy.h>
  22. #include <linux/sem.h>
  23. #include <linux/file.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/fs.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cpuset.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/rcupdate.h>
  37. #include <linux/ptrace.h>
  38. #include <linux/mount.h>
  39. #include <linux/audit.h>
  40. #include <linux/profile.h>
  41. #include <linux/rmap.h>
  42. #include <linux/acct.h>
  43. #include <linux/cn_proc.h>
  44. #include <linux/delayacct.h>
  45. #include <linux/taskstats_kern.h>
  46. #include <linux/random.h>
  47. #include <asm/pgtable.h>
  48. #include <asm/pgalloc.h>
  49. #include <asm/uaccess.h>
  50. #include <asm/mmu_context.h>
  51. #include <asm/cacheflush.h>
  52. #include <asm/tlbflush.h>
  53. /*
  54. * Protected counters by write_lock_irq(&tasklist_lock)
  55. */
  56. unsigned long total_forks; /* Handle normal Linux uptimes. */
  57. int nr_threads; /* The idle threads do not count.. */
  58. int max_threads; /* tunable limit on nr_threads */
  59. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  60. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  61. int nr_processes(void)
  62. {
  63. int cpu;
  64. int total = 0;
  65. for_each_online_cpu(cpu)
  66. total += per_cpu(process_counts, cpu);
  67. return total;
  68. }
  69. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  70. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  71. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  72. static kmem_cache_t *task_struct_cachep;
  73. #endif
  74. /* SLAB cache for signal_struct structures (tsk->signal) */
  75. static kmem_cache_t *signal_cachep;
  76. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  77. kmem_cache_t *sighand_cachep;
  78. /* SLAB cache for files_struct structures (tsk->files) */
  79. kmem_cache_t *files_cachep;
  80. /* SLAB cache for fs_struct structures (tsk->fs) */
  81. kmem_cache_t *fs_cachep;
  82. /* SLAB cache for vm_area_struct structures */
  83. kmem_cache_t *vm_area_cachep;
  84. /* SLAB cache for mm_struct structures (tsk->mm) */
  85. static kmem_cache_t *mm_cachep;
  86. void free_task(struct task_struct *tsk)
  87. {
  88. free_thread_info(tsk->thread_info);
  89. rt_mutex_debug_task_free(tsk);
  90. free_task_struct(tsk);
  91. }
  92. EXPORT_SYMBOL(free_task);
  93. void __put_task_struct(struct task_struct *tsk)
  94. {
  95. WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
  96. WARN_ON(atomic_read(&tsk->usage));
  97. WARN_ON(tsk == current);
  98. security_task_free(tsk);
  99. free_uid(tsk->user);
  100. put_group_info(tsk->group_info);
  101. delayacct_tsk_free(tsk);
  102. if (!profile_handoff_task(tsk))
  103. free_task(tsk);
  104. }
  105. void __init fork_init(unsigned long mempages)
  106. {
  107. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  108. #ifndef ARCH_MIN_TASKALIGN
  109. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  110. #endif
  111. /* create a slab on which task_structs can be allocated */
  112. task_struct_cachep =
  113. kmem_cache_create("task_struct", sizeof(struct task_struct),
  114. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
  115. #endif
  116. /*
  117. * The default maximum number of threads is set to a safe
  118. * value: the thread structures can take up at most half
  119. * of memory.
  120. */
  121. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  122. /*
  123. * we need to allow at least 20 threads to boot a system
  124. */
  125. if(max_threads < 20)
  126. max_threads = 20;
  127. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  128. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  129. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  130. init_task.signal->rlim[RLIMIT_NPROC];
  131. }
  132. static struct task_struct *dup_task_struct(struct task_struct *orig)
  133. {
  134. struct task_struct *tsk;
  135. struct thread_info *ti;
  136. prepare_to_copy(orig);
  137. tsk = alloc_task_struct();
  138. if (!tsk)
  139. return NULL;
  140. ti = alloc_thread_info(tsk);
  141. if (!ti) {
  142. free_task_struct(tsk);
  143. return NULL;
  144. }
  145. *tsk = *orig;
  146. tsk->thread_info = ti;
  147. setup_thread_stack(tsk, orig);
  148. #ifdef CONFIG_CC_STACKPROTECTOR
  149. tsk->stack_canary = get_random_int();
  150. #endif
  151. /* One for us, one for whoever does the "release_task()" (usually parent) */
  152. atomic_set(&tsk->usage,2);
  153. atomic_set(&tsk->fs_excl, 0);
  154. #ifdef CONFIG_BLK_DEV_IO_TRACE
  155. tsk->btrace_seq = 0;
  156. #endif
  157. tsk->splice_pipe = NULL;
  158. return tsk;
  159. }
  160. #ifdef CONFIG_MMU
  161. static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  162. {
  163. struct vm_area_struct *mpnt, *tmp, **pprev;
  164. struct rb_node **rb_link, *rb_parent;
  165. int retval;
  166. unsigned long charge;
  167. struct mempolicy *pol;
  168. down_write(&oldmm->mmap_sem);
  169. flush_cache_mm(oldmm);
  170. /*
  171. * Not linked in yet - no deadlock potential:
  172. */
  173. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  174. mm->locked_vm = 0;
  175. mm->mmap = NULL;
  176. mm->mmap_cache = NULL;
  177. mm->free_area_cache = oldmm->mmap_base;
  178. mm->cached_hole_size = ~0UL;
  179. mm->map_count = 0;
  180. cpus_clear(mm->cpu_vm_mask);
  181. mm->mm_rb = RB_ROOT;
  182. rb_link = &mm->mm_rb.rb_node;
  183. rb_parent = NULL;
  184. pprev = &mm->mmap;
  185. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  186. struct file *file;
  187. if (mpnt->vm_flags & VM_DONTCOPY) {
  188. long pages = vma_pages(mpnt);
  189. mm->total_vm -= pages;
  190. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  191. -pages);
  192. continue;
  193. }
  194. charge = 0;
  195. if (mpnt->vm_flags & VM_ACCOUNT) {
  196. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  197. if (security_vm_enough_memory(len))
  198. goto fail_nomem;
  199. charge = len;
  200. }
  201. tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  202. if (!tmp)
  203. goto fail_nomem;
  204. *tmp = *mpnt;
  205. pol = mpol_copy(vma_policy(mpnt));
  206. retval = PTR_ERR(pol);
  207. if (IS_ERR(pol))
  208. goto fail_nomem_policy;
  209. vma_set_policy(tmp, pol);
  210. tmp->vm_flags &= ~VM_LOCKED;
  211. tmp->vm_mm = mm;
  212. tmp->vm_next = NULL;
  213. anon_vma_link(tmp);
  214. file = tmp->vm_file;
  215. if (file) {
  216. struct inode *inode = file->f_dentry->d_inode;
  217. get_file(file);
  218. if (tmp->vm_flags & VM_DENYWRITE)
  219. atomic_dec(&inode->i_writecount);
  220. /* insert tmp into the share list, just after mpnt */
  221. spin_lock(&file->f_mapping->i_mmap_lock);
  222. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  223. flush_dcache_mmap_lock(file->f_mapping);
  224. vma_prio_tree_add(tmp, mpnt);
  225. flush_dcache_mmap_unlock(file->f_mapping);
  226. spin_unlock(&file->f_mapping->i_mmap_lock);
  227. }
  228. /*
  229. * Link in the new vma and copy the page table entries.
  230. */
  231. *pprev = tmp;
  232. pprev = &tmp->vm_next;
  233. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  234. rb_link = &tmp->vm_rb.rb_right;
  235. rb_parent = &tmp->vm_rb;
  236. mm->map_count++;
  237. retval = copy_page_range(mm, oldmm, mpnt);
  238. if (tmp->vm_ops && tmp->vm_ops->open)
  239. tmp->vm_ops->open(tmp);
  240. if (retval)
  241. goto out;
  242. }
  243. retval = 0;
  244. out:
  245. up_write(&mm->mmap_sem);
  246. flush_tlb_mm(oldmm);
  247. up_write(&oldmm->mmap_sem);
  248. return retval;
  249. fail_nomem_policy:
  250. kmem_cache_free(vm_area_cachep, tmp);
  251. fail_nomem:
  252. retval = -ENOMEM;
  253. vm_unacct_memory(charge);
  254. goto out;
  255. }
  256. static inline int mm_alloc_pgd(struct mm_struct * mm)
  257. {
  258. mm->pgd = pgd_alloc(mm);
  259. if (unlikely(!mm->pgd))
  260. return -ENOMEM;
  261. return 0;
  262. }
  263. static inline void mm_free_pgd(struct mm_struct * mm)
  264. {
  265. pgd_free(mm->pgd);
  266. }
  267. #else
  268. #define dup_mmap(mm, oldmm) (0)
  269. #define mm_alloc_pgd(mm) (0)
  270. #define mm_free_pgd(mm)
  271. #endif /* CONFIG_MMU */
  272. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  273. #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
  274. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  275. #include <linux/init_task.h>
  276. static struct mm_struct * mm_init(struct mm_struct * mm)
  277. {
  278. atomic_set(&mm->mm_users, 1);
  279. atomic_set(&mm->mm_count, 1);
  280. init_rwsem(&mm->mmap_sem);
  281. INIT_LIST_HEAD(&mm->mmlist);
  282. mm->core_waiters = 0;
  283. mm->nr_ptes = 0;
  284. set_mm_counter(mm, file_rss, 0);
  285. set_mm_counter(mm, anon_rss, 0);
  286. spin_lock_init(&mm->page_table_lock);
  287. rwlock_init(&mm->ioctx_list_lock);
  288. mm->ioctx_list = NULL;
  289. mm->free_area_cache = TASK_UNMAPPED_BASE;
  290. mm->cached_hole_size = ~0UL;
  291. if (likely(!mm_alloc_pgd(mm))) {
  292. mm->def_flags = 0;
  293. return mm;
  294. }
  295. free_mm(mm);
  296. return NULL;
  297. }
  298. /*
  299. * Allocate and initialize an mm_struct.
  300. */
  301. struct mm_struct * mm_alloc(void)
  302. {
  303. struct mm_struct * mm;
  304. mm = allocate_mm();
  305. if (mm) {
  306. memset(mm, 0, sizeof(*mm));
  307. mm = mm_init(mm);
  308. }
  309. return mm;
  310. }
  311. /*
  312. * Called when the last reference to the mm
  313. * is dropped: either by a lazy thread or by
  314. * mmput. Free the page directory and the mm.
  315. */
  316. void fastcall __mmdrop(struct mm_struct *mm)
  317. {
  318. BUG_ON(mm == &init_mm);
  319. mm_free_pgd(mm);
  320. destroy_context(mm);
  321. free_mm(mm);
  322. }
  323. /*
  324. * Decrement the use count and release all resources for an mm.
  325. */
  326. void mmput(struct mm_struct *mm)
  327. {
  328. might_sleep();
  329. if (atomic_dec_and_test(&mm->mm_users)) {
  330. exit_aio(mm);
  331. exit_mmap(mm);
  332. if (!list_empty(&mm->mmlist)) {
  333. spin_lock(&mmlist_lock);
  334. list_del(&mm->mmlist);
  335. spin_unlock(&mmlist_lock);
  336. }
  337. put_swap_token(mm);
  338. mmdrop(mm);
  339. }
  340. }
  341. EXPORT_SYMBOL_GPL(mmput);
  342. /**
  343. * get_task_mm - acquire a reference to the task's mm
  344. *
  345. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  346. * this kernel workthread has transiently adopted a user mm with use_mm,
  347. * to do its AIO) is not set and if so returns a reference to it, after
  348. * bumping up the use count. User must release the mm via mmput()
  349. * after use. Typically used by /proc and ptrace.
  350. */
  351. struct mm_struct *get_task_mm(struct task_struct *task)
  352. {
  353. struct mm_struct *mm;
  354. task_lock(task);
  355. mm = task->mm;
  356. if (mm) {
  357. if (task->flags & PF_BORROWED_MM)
  358. mm = NULL;
  359. else
  360. atomic_inc(&mm->mm_users);
  361. }
  362. task_unlock(task);
  363. return mm;
  364. }
  365. EXPORT_SYMBOL_GPL(get_task_mm);
  366. /* Please note the differences between mmput and mm_release.
  367. * mmput is called whenever we stop holding onto a mm_struct,
  368. * error success whatever.
  369. *
  370. * mm_release is called after a mm_struct has been removed
  371. * from the current process.
  372. *
  373. * This difference is important for error handling, when we
  374. * only half set up a mm_struct for a new process and need to restore
  375. * the old one. Because we mmput the new mm_struct before
  376. * restoring the old one. . .
  377. * Eric Biederman 10 January 1998
  378. */
  379. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  380. {
  381. struct completion *vfork_done = tsk->vfork_done;
  382. /* Get rid of any cached register state */
  383. deactivate_mm(tsk, mm);
  384. /* notify parent sleeping on vfork() */
  385. if (vfork_done) {
  386. tsk->vfork_done = NULL;
  387. complete(vfork_done);
  388. }
  389. if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
  390. u32 __user * tidptr = tsk->clear_child_tid;
  391. tsk->clear_child_tid = NULL;
  392. /*
  393. * We don't check the error code - if userspace has
  394. * not set up a proper pointer then tough luck.
  395. */
  396. put_user(0, tidptr);
  397. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  398. }
  399. }
  400. /*
  401. * Allocate a new mm structure and copy contents from the
  402. * mm structure of the passed in task structure.
  403. */
  404. static struct mm_struct *dup_mm(struct task_struct *tsk)
  405. {
  406. struct mm_struct *mm, *oldmm = current->mm;
  407. int err;
  408. if (!oldmm)
  409. return NULL;
  410. mm = allocate_mm();
  411. if (!mm)
  412. goto fail_nomem;
  413. memcpy(mm, oldmm, sizeof(*mm));
  414. if (!mm_init(mm))
  415. goto fail_nomem;
  416. if (init_new_context(tsk, mm))
  417. goto fail_nocontext;
  418. err = dup_mmap(mm, oldmm);
  419. if (err)
  420. goto free_pt;
  421. mm->hiwater_rss = get_mm_rss(mm);
  422. mm->hiwater_vm = mm->total_vm;
  423. return mm;
  424. free_pt:
  425. mmput(mm);
  426. fail_nomem:
  427. return NULL;
  428. fail_nocontext:
  429. /*
  430. * If init_new_context() failed, we cannot use mmput() to free the mm
  431. * because it calls destroy_context()
  432. */
  433. mm_free_pgd(mm);
  434. free_mm(mm);
  435. return NULL;
  436. }
  437. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  438. {
  439. struct mm_struct * mm, *oldmm;
  440. int retval;
  441. tsk->min_flt = tsk->maj_flt = 0;
  442. tsk->nvcsw = tsk->nivcsw = 0;
  443. tsk->mm = NULL;
  444. tsk->active_mm = NULL;
  445. /*
  446. * Are we cloning a kernel thread?
  447. *
  448. * We need to steal a active VM for that..
  449. */
  450. oldmm = current->mm;
  451. if (!oldmm)
  452. return 0;
  453. if (clone_flags & CLONE_VM) {
  454. atomic_inc(&oldmm->mm_users);
  455. mm = oldmm;
  456. goto good_mm;
  457. }
  458. retval = -ENOMEM;
  459. mm = dup_mm(tsk);
  460. if (!mm)
  461. goto fail_nomem;
  462. good_mm:
  463. tsk->mm = mm;
  464. tsk->active_mm = mm;
  465. return 0;
  466. fail_nomem:
  467. return retval;
  468. }
  469. static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  470. {
  471. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  472. /* We don't need to lock fs - think why ;-) */
  473. if (fs) {
  474. atomic_set(&fs->count, 1);
  475. rwlock_init(&fs->lock);
  476. fs->umask = old->umask;
  477. read_lock(&old->lock);
  478. fs->rootmnt = mntget(old->rootmnt);
  479. fs->root = dget(old->root);
  480. fs->pwdmnt = mntget(old->pwdmnt);
  481. fs->pwd = dget(old->pwd);
  482. if (old->altroot) {
  483. fs->altrootmnt = mntget(old->altrootmnt);
  484. fs->altroot = dget(old->altroot);
  485. } else {
  486. fs->altrootmnt = NULL;
  487. fs->altroot = NULL;
  488. }
  489. read_unlock(&old->lock);
  490. }
  491. return fs;
  492. }
  493. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  494. {
  495. return __copy_fs_struct(old);
  496. }
  497. EXPORT_SYMBOL_GPL(copy_fs_struct);
  498. static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
  499. {
  500. if (clone_flags & CLONE_FS) {
  501. atomic_inc(&current->fs->count);
  502. return 0;
  503. }
  504. tsk->fs = __copy_fs_struct(current->fs);
  505. if (!tsk->fs)
  506. return -ENOMEM;
  507. return 0;
  508. }
  509. static int count_open_files(struct fdtable *fdt)
  510. {
  511. int size = fdt->max_fdset;
  512. int i;
  513. /* Find the last open fd */
  514. for (i = size/(8*sizeof(long)); i > 0; ) {
  515. if (fdt->open_fds->fds_bits[--i])
  516. break;
  517. }
  518. i = (i+1) * 8 * sizeof(long);
  519. return i;
  520. }
  521. static struct files_struct *alloc_files(void)
  522. {
  523. struct files_struct *newf;
  524. struct fdtable *fdt;
  525. newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
  526. if (!newf)
  527. goto out;
  528. atomic_set(&newf->count, 1);
  529. spin_lock_init(&newf->file_lock);
  530. newf->next_fd = 0;
  531. fdt = &newf->fdtab;
  532. fdt->max_fds = NR_OPEN_DEFAULT;
  533. fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
  534. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  535. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  536. fdt->fd = &newf->fd_array[0];
  537. INIT_RCU_HEAD(&fdt->rcu);
  538. fdt->free_files = NULL;
  539. fdt->next = NULL;
  540. rcu_assign_pointer(newf->fdt, fdt);
  541. out:
  542. return newf;
  543. }
  544. /*
  545. * Allocate a new files structure and copy contents from the
  546. * passed in files structure.
  547. * errorp will be valid only when the returned files_struct is NULL.
  548. */
  549. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  550. {
  551. struct files_struct *newf;
  552. struct file **old_fds, **new_fds;
  553. int open_files, size, i, expand;
  554. struct fdtable *old_fdt, *new_fdt;
  555. *errorp = -ENOMEM;
  556. newf = alloc_files();
  557. if (!newf)
  558. goto out;
  559. spin_lock(&oldf->file_lock);
  560. old_fdt = files_fdtable(oldf);
  561. new_fdt = files_fdtable(newf);
  562. size = old_fdt->max_fdset;
  563. open_files = count_open_files(old_fdt);
  564. expand = 0;
  565. /*
  566. * Check whether we need to allocate a larger fd array or fd set.
  567. * Note: we're not a clone task, so the open count won't change.
  568. */
  569. if (open_files > new_fdt->max_fdset) {
  570. new_fdt->max_fdset = 0;
  571. expand = 1;
  572. }
  573. if (open_files > new_fdt->max_fds) {
  574. new_fdt->max_fds = 0;
  575. expand = 1;
  576. }
  577. /* if the old fdset gets grown now, we'll only copy up to "size" fds */
  578. if (expand) {
  579. spin_unlock(&oldf->file_lock);
  580. spin_lock(&newf->file_lock);
  581. *errorp = expand_files(newf, open_files-1);
  582. spin_unlock(&newf->file_lock);
  583. if (*errorp < 0)
  584. goto out_release;
  585. new_fdt = files_fdtable(newf);
  586. /*
  587. * Reacquire the oldf lock and a pointer to its fd table
  588. * who knows it may have a new bigger fd table. We need
  589. * the latest pointer.
  590. */
  591. spin_lock(&oldf->file_lock);
  592. old_fdt = files_fdtable(oldf);
  593. }
  594. old_fds = old_fdt->fd;
  595. new_fds = new_fdt->fd;
  596. memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
  597. memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
  598. for (i = open_files; i != 0; i--) {
  599. struct file *f = *old_fds++;
  600. if (f) {
  601. get_file(f);
  602. } else {
  603. /*
  604. * The fd may be claimed in the fd bitmap but not yet
  605. * instantiated in the files array if a sibling thread
  606. * is partway through open(). So make sure that this
  607. * fd is available to the new process.
  608. */
  609. FD_CLR(open_files - i, new_fdt->open_fds);
  610. }
  611. rcu_assign_pointer(*new_fds++, f);
  612. }
  613. spin_unlock(&oldf->file_lock);
  614. /* compute the remainder to be cleared */
  615. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  616. /* This is long word aligned thus could use a optimized version */
  617. memset(new_fds, 0, size);
  618. if (new_fdt->max_fdset > open_files) {
  619. int left = (new_fdt->max_fdset-open_files)/8;
  620. int start = open_files / (8 * sizeof(unsigned long));
  621. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  622. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  623. }
  624. out:
  625. return newf;
  626. out_release:
  627. free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
  628. free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
  629. free_fd_array(new_fdt->fd, new_fdt->max_fds);
  630. kmem_cache_free(files_cachep, newf);
  631. return NULL;
  632. }
  633. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  634. {
  635. struct files_struct *oldf, *newf;
  636. int error = 0;
  637. /*
  638. * A background process may not have any files ...
  639. */
  640. oldf = current->files;
  641. if (!oldf)
  642. goto out;
  643. if (clone_flags & CLONE_FILES) {
  644. atomic_inc(&oldf->count);
  645. goto out;
  646. }
  647. /*
  648. * Note: we may be using current for both targets (See exec.c)
  649. * This works because we cache current->files (old) as oldf. Don't
  650. * break this.
  651. */
  652. tsk->files = NULL;
  653. newf = dup_fd(oldf, &error);
  654. if (!newf)
  655. goto out;
  656. tsk->files = newf;
  657. error = 0;
  658. out:
  659. return error;
  660. }
  661. /*
  662. * Helper to unshare the files of the current task.
  663. * We don't want to expose copy_files internals to
  664. * the exec layer of the kernel.
  665. */
  666. int unshare_files(void)
  667. {
  668. struct files_struct *files = current->files;
  669. int rc;
  670. BUG_ON(!files);
  671. /* This can race but the race causes us to copy when we don't
  672. need to and drop the copy */
  673. if(atomic_read(&files->count) == 1)
  674. {
  675. atomic_inc(&files->count);
  676. return 0;
  677. }
  678. rc = copy_files(0, current);
  679. if(rc)
  680. current->files = files;
  681. return rc;
  682. }
  683. EXPORT_SYMBOL(unshare_files);
  684. static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
  685. {
  686. struct sighand_struct *sig;
  687. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  688. atomic_inc(&current->sighand->count);
  689. return 0;
  690. }
  691. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  692. rcu_assign_pointer(tsk->sighand, sig);
  693. if (!sig)
  694. return -ENOMEM;
  695. atomic_set(&sig->count, 1);
  696. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  697. return 0;
  698. }
  699. void __cleanup_sighand(struct sighand_struct *sighand)
  700. {
  701. if (atomic_dec_and_test(&sighand->count))
  702. kmem_cache_free(sighand_cachep, sighand);
  703. }
  704. static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
  705. {
  706. struct signal_struct *sig;
  707. int ret;
  708. if (clone_flags & CLONE_THREAD) {
  709. atomic_inc(&current->signal->count);
  710. atomic_inc(&current->signal->live);
  711. taskstats_tgid_alloc(current->signal);
  712. return 0;
  713. }
  714. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  715. tsk->signal = sig;
  716. if (!sig)
  717. return -ENOMEM;
  718. ret = copy_thread_group_keys(tsk);
  719. if (ret < 0) {
  720. kmem_cache_free(signal_cachep, sig);
  721. return ret;
  722. }
  723. atomic_set(&sig->count, 1);
  724. atomic_set(&sig->live, 1);
  725. init_waitqueue_head(&sig->wait_chldexit);
  726. sig->flags = 0;
  727. sig->group_exit_code = 0;
  728. sig->group_exit_task = NULL;
  729. sig->group_stop_count = 0;
  730. sig->curr_target = NULL;
  731. init_sigpending(&sig->shared_pending);
  732. INIT_LIST_HEAD(&sig->posix_timers);
  733. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
  734. sig->it_real_incr.tv64 = 0;
  735. sig->real_timer.function = it_real_fn;
  736. sig->tsk = tsk;
  737. sig->it_virt_expires = cputime_zero;
  738. sig->it_virt_incr = cputime_zero;
  739. sig->it_prof_expires = cputime_zero;
  740. sig->it_prof_incr = cputime_zero;
  741. sig->leader = 0; /* session leadership doesn't inherit */
  742. sig->tty_old_pgrp = 0;
  743. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  744. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  745. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  746. sig->sched_time = 0;
  747. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  748. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  749. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  750. taskstats_tgid_init(sig);
  751. task_lock(current->group_leader);
  752. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  753. task_unlock(current->group_leader);
  754. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  755. /*
  756. * New sole thread in the process gets an expiry time
  757. * of the whole CPU time limit.
  758. */
  759. tsk->it_prof_expires =
  760. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  761. }
  762. acct_init_pacct(&sig->pacct);
  763. return 0;
  764. }
  765. void __cleanup_signal(struct signal_struct *sig)
  766. {
  767. exit_thread_group_keys(sig);
  768. taskstats_tgid_free(sig);
  769. kmem_cache_free(signal_cachep, sig);
  770. }
  771. static inline void cleanup_signal(struct task_struct *tsk)
  772. {
  773. struct signal_struct *sig = tsk->signal;
  774. atomic_dec(&sig->live);
  775. if (atomic_dec_and_test(&sig->count))
  776. __cleanup_signal(sig);
  777. }
  778. static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
  779. {
  780. unsigned long new_flags = p->flags;
  781. new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
  782. new_flags |= PF_FORKNOEXEC;
  783. if (!(clone_flags & CLONE_PTRACE))
  784. p->ptrace = 0;
  785. p->flags = new_flags;
  786. }
  787. asmlinkage long sys_set_tid_address(int __user *tidptr)
  788. {
  789. current->clear_child_tid = tidptr;
  790. return current->pid;
  791. }
  792. static inline void rt_mutex_init_task(struct task_struct *p)
  793. {
  794. #ifdef CONFIG_RT_MUTEXES
  795. spin_lock_init(&p->pi_lock);
  796. plist_head_init(&p->pi_waiters, &p->pi_lock);
  797. p->pi_blocked_on = NULL;
  798. #endif
  799. }
  800. /*
  801. * This creates a new process as a copy of the old one,
  802. * but does not actually start it yet.
  803. *
  804. * It copies the registers, and all the appropriate
  805. * parts of the process environment (as per the clone
  806. * flags). The actual kick-off is left to the caller.
  807. */
  808. static struct task_struct *copy_process(unsigned long clone_flags,
  809. unsigned long stack_start,
  810. struct pt_regs *regs,
  811. unsigned long stack_size,
  812. int __user *parent_tidptr,
  813. int __user *child_tidptr,
  814. int pid)
  815. {
  816. int retval;
  817. struct task_struct *p = NULL;
  818. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  819. return ERR_PTR(-EINVAL);
  820. /*
  821. * Thread groups must share signals as well, and detached threads
  822. * can only be started up within the thread group.
  823. */
  824. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  825. return ERR_PTR(-EINVAL);
  826. /*
  827. * Shared signal handlers imply shared VM. By way of the above,
  828. * thread groups also imply shared VM. Blocking this case allows
  829. * for various simplifications in other code.
  830. */
  831. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  832. return ERR_PTR(-EINVAL);
  833. retval = security_task_create(clone_flags);
  834. if (retval)
  835. goto fork_out;
  836. retval = -ENOMEM;
  837. p = dup_task_struct(current);
  838. if (!p)
  839. goto fork_out;
  840. #ifdef CONFIG_TRACE_IRQFLAGS
  841. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  842. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  843. #endif
  844. retval = -EAGAIN;
  845. if (atomic_read(&p->user->processes) >=
  846. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  847. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  848. p->user != &root_user)
  849. goto bad_fork_free;
  850. }
  851. atomic_inc(&p->user->__count);
  852. atomic_inc(&p->user->processes);
  853. get_group_info(p->group_info);
  854. /*
  855. * If multiple threads are within copy_process(), then this check
  856. * triggers too late. This doesn't hurt, the check is only there
  857. * to stop root fork bombs.
  858. */
  859. if (nr_threads >= max_threads)
  860. goto bad_fork_cleanup_count;
  861. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  862. goto bad_fork_cleanup_count;
  863. if (p->binfmt && !try_module_get(p->binfmt->module))
  864. goto bad_fork_cleanup_put_domain;
  865. p->did_exec = 0;
  866. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  867. copy_flags(clone_flags, p);
  868. p->pid = pid;
  869. retval = -EFAULT;
  870. if (clone_flags & CLONE_PARENT_SETTID)
  871. if (put_user(p->pid, parent_tidptr))
  872. goto bad_fork_cleanup_delays_binfmt;
  873. INIT_LIST_HEAD(&p->children);
  874. INIT_LIST_HEAD(&p->sibling);
  875. p->vfork_done = NULL;
  876. spin_lock_init(&p->alloc_lock);
  877. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  878. init_sigpending(&p->pending);
  879. p->utime = cputime_zero;
  880. p->stime = cputime_zero;
  881. p->sched_time = 0;
  882. p->rchar = 0; /* I/O counter: bytes read */
  883. p->wchar = 0; /* I/O counter: bytes written */
  884. p->syscr = 0; /* I/O counter: read syscalls */
  885. p->syscw = 0; /* I/O counter: write syscalls */
  886. acct_clear_integrals(p);
  887. p->it_virt_expires = cputime_zero;
  888. p->it_prof_expires = cputime_zero;
  889. p->it_sched_expires = 0;
  890. INIT_LIST_HEAD(&p->cpu_timers[0]);
  891. INIT_LIST_HEAD(&p->cpu_timers[1]);
  892. INIT_LIST_HEAD(&p->cpu_timers[2]);
  893. p->lock_depth = -1; /* -1 = no lock */
  894. do_posix_clock_monotonic_gettime(&p->start_time);
  895. p->security = NULL;
  896. p->io_context = NULL;
  897. p->io_wait = NULL;
  898. p->audit_context = NULL;
  899. cpuset_fork(p);
  900. #ifdef CONFIG_NUMA
  901. p->mempolicy = mpol_copy(p->mempolicy);
  902. if (IS_ERR(p->mempolicy)) {
  903. retval = PTR_ERR(p->mempolicy);
  904. p->mempolicy = NULL;
  905. goto bad_fork_cleanup_cpuset;
  906. }
  907. mpol_fix_fork_child_flag(p);
  908. #endif
  909. #ifdef CONFIG_TRACE_IRQFLAGS
  910. p->irq_events = 0;
  911. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  912. p->hardirqs_enabled = 1;
  913. #else
  914. p->hardirqs_enabled = 0;
  915. #endif
  916. p->hardirq_enable_ip = 0;
  917. p->hardirq_enable_event = 0;
  918. p->hardirq_disable_ip = _THIS_IP_;
  919. p->hardirq_disable_event = 0;
  920. p->softirqs_enabled = 1;
  921. p->softirq_enable_ip = _THIS_IP_;
  922. p->softirq_enable_event = 0;
  923. p->softirq_disable_ip = 0;
  924. p->softirq_disable_event = 0;
  925. p->hardirq_context = 0;
  926. p->softirq_context = 0;
  927. #endif
  928. #ifdef CONFIG_LOCKDEP
  929. p->lockdep_depth = 0; /* no locks held yet */
  930. p->curr_chain_key = 0;
  931. p->lockdep_recursion = 0;
  932. #endif
  933. rt_mutex_init_task(p);
  934. #ifdef CONFIG_DEBUG_MUTEXES
  935. p->blocked_on = NULL; /* not blocked yet */
  936. #endif
  937. p->tgid = p->pid;
  938. if (clone_flags & CLONE_THREAD)
  939. p->tgid = current->tgid;
  940. if ((retval = security_task_alloc(p)))
  941. goto bad_fork_cleanup_policy;
  942. if ((retval = audit_alloc(p)))
  943. goto bad_fork_cleanup_security;
  944. /* copy all the process information */
  945. if ((retval = copy_semundo(clone_flags, p)))
  946. goto bad_fork_cleanup_audit;
  947. if ((retval = copy_files(clone_flags, p)))
  948. goto bad_fork_cleanup_semundo;
  949. if ((retval = copy_fs(clone_flags, p)))
  950. goto bad_fork_cleanup_files;
  951. if ((retval = copy_sighand(clone_flags, p)))
  952. goto bad_fork_cleanup_fs;
  953. if ((retval = copy_signal(clone_flags, p)))
  954. goto bad_fork_cleanup_sighand;
  955. if ((retval = copy_mm(clone_flags, p)))
  956. goto bad_fork_cleanup_signal;
  957. if ((retval = copy_keys(clone_flags, p)))
  958. goto bad_fork_cleanup_mm;
  959. if ((retval = copy_namespace(clone_flags, p)))
  960. goto bad_fork_cleanup_keys;
  961. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  962. if (retval)
  963. goto bad_fork_cleanup_namespace;
  964. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  965. /*
  966. * Clear TID on mm_release()?
  967. */
  968. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  969. p->robust_list = NULL;
  970. #ifdef CONFIG_COMPAT
  971. p->compat_robust_list = NULL;
  972. #endif
  973. INIT_LIST_HEAD(&p->pi_state_list);
  974. p->pi_state_cache = NULL;
  975. /*
  976. * sigaltstack should be cleared when sharing the same VM
  977. */
  978. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  979. p->sas_ss_sp = p->sas_ss_size = 0;
  980. /*
  981. * Syscall tracing should be turned off in the child regardless
  982. * of CLONE_PTRACE.
  983. */
  984. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  985. #ifdef TIF_SYSCALL_EMU
  986. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  987. #endif
  988. /* Our parent execution domain becomes current domain
  989. These must match for thread signalling to apply */
  990. p->parent_exec_id = p->self_exec_id;
  991. /* ok, now we should be set up.. */
  992. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  993. p->pdeath_signal = 0;
  994. p->exit_state = 0;
  995. /*
  996. * Ok, make it visible to the rest of the system.
  997. * We dont wake it up yet.
  998. */
  999. p->group_leader = p;
  1000. INIT_LIST_HEAD(&p->thread_group);
  1001. INIT_LIST_HEAD(&p->ptrace_children);
  1002. INIT_LIST_HEAD(&p->ptrace_list);
  1003. /* Perform scheduler related setup. Assign this task to a CPU. */
  1004. sched_fork(p, clone_flags);
  1005. /* Need tasklist lock for parent etc handling! */
  1006. write_lock_irq(&tasklist_lock);
  1007. /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
  1008. p->ioprio = current->ioprio;
  1009. /*
  1010. * The task hasn't been attached yet, so its cpus_allowed mask will
  1011. * not be changed, nor will its assigned CPU.
  1012. *
  1013. * The cpus_allowed mask of the parent may have changed after it was
  1014. * copied first time - so re-copy it here, then check the child's CPU
  1015. * to ensure it is on a valid CPU (and if not, just force it back to
  1016. * parent's CPU). This avoids alot of nasty races.
  1017. */
  1018. p->cpus_allowed = current->cpus_allowed;
  1019. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1020. !cpu_online(task_cpu(p))))
  1021. set_task_cpu(p, smp_processor_id());
  1022. /* CLONE_PARENT re-uses the old parent */
  1023. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1024. p->real_parent = current->real_parent;
  1025. else
  1026. p->real_parent = current;
  1027. p->parent = p->real_parent;
  1028. spin_lock(&current->sighand->siglock);
  1029. /*
  1030. * Process group and session signals need to be delivered to just the
  1031. * parent before the fork or both the parent and the child after the
  1032. * fork. Restart if a signal comes in before we add the new process to
  1033. * it's process group.
  1034. * A fatal signal pending means that current will exit, so the new
  1035. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1036. */
  1037. recalc_sigpending();
  1038. if (signal_pending(current)) {
  1039. spin_unlock(&current->sighand->siglock);
  1040. write_unlock_irq(&tasklist_lock);
  1041. retval = -ERESTARTNOINTR;
  1042. goto bad_fork_cleanup_namespace;
  1043. }
  1044. if (clone_flags & CLONE_THREAD) {
  1045. p->group_leader = current->group_leader;
  1046. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1047. if (!cputime_eq(current->signal->it_virt_expires,
  1048. cputime_zero) ||
  1049. !cputime_eq(current->signal->it_prof_expires,
  1050. cputime_zero) ||
  1051. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1052. !list_empty(&current->signal->cpu_timers[0]) ||
  1053. !list_empty(&current->signal->cpu_timers[1]) ||
  1054. !list_empty(&current->signal->cpu_timers[2])) {
  1055. /*
  1056. * Have child wake up on its first tick to check
  1057. * for process CPU timers.
  1058. */
  1059. p->it_prof_expires = jiffies_to_cputime(1);
  1060. }
  1061. }
  1062. if (likely(p->pid)) {
  1063. add_parent(p);
  1064. if (unlikely(p->ptrace & PT_PTRACED))
  1065. __ptrace_link(p, current->parent);
  1066. if (thread_group_leader(p)) {
  1067. p->signal->tty = current->signal->tty;
  1068. p->signal->pgrp = process_group(current);
  1069. p->signal->session = current->signal->session;
  1070. attach_pid(p, PIDTYPE_PGID, process_group(p));
  1071. attach_pid(p, PIDTYPE_SID, p->signal->session);
  1072. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1073. __get_cpu_var(process_counts)++;
  1074. }
  1075. attach_pid(p, PIDTYPE_PID, p->pid);
  1076. nr_threads++;
  1077. }
  1078. total_forks++;
  1079. spin_unlock(&current->sighand->siglock);
  1080. write_unlock_irq(&tasklist_lock);
  1081. proc_fork_connector(p);
  1082. return p;
  1083. bad_fork_cleanup_namespace:
  1084. exit_namespace(p);
  1085. bad_fork_cleanup_keys:
  1086. exit_keys(p);
  1087. bad_fork_cleanup_mm:
  1088. if (p->mm)
  1089. mmput(p->mm);
  1090. bad_fork_cleanup_signal:
  1091. cleanup_signal(p);
  1092. bad_fork_cleanup_sighand:
  1093. __cleanup_sighand(p->sighand);
  1094. bad_fork_cleanup_fs:
  1095. exit_fs(p); /* blocking */
  1096. bad_fork_cleanup_files:
  1097. exit_files(p); /* blocking */
  1098. bad_fork_cleanup_semundo:
  1099. exit_sem(p);
  1100. bad_fork_cleanup_audit:
  1101. audit_free(p);
  1102. bad_fork_cleanup_security:
  1103. security_task_free(p);
  1104. bad_fork_cleanup_policy:
  1105. #ifdef CONFIG_NUMA
  1106. mpol_free(p->mempolicy);
  1107. bad_fork_cleanup_cpuset:
  1108. #endif
  1109. cpuset_exit(p);
  1110. bad_fork_cleanup_delays_binfmt:
  1111. delayacct_tsk_free(p);
  1112. if (p->binfmt)
  1113. module_put(p->binfmt->module);
  1114. bad_fork_cleanup_put_domain:
  1115. module_put(task_thread_info(p)->exec_domain->module);
  1116. bad_fork_cleanup_count:
  1117. put_group_info(p->group_info);
  1118. atomic_dec(&p->user->processes);
  1119. free_uid(p->user);
  1120. bad_fork_free:
  1121. free_task(p);
  1122. fork_out:
  1123. return ERR_PTR(retval);
  1124. }
  1125. struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1126. {
  1127. memset(regs, 0, sizeof(struct pt_regs));
  1128. return regs;
  1129. }
  1130. struct task_struct * __devinit fork_idle(int cpu)
  1131. {
  1132. struct task_struct *task;
  1133. struct pt_regs regs;
  1134. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
  1135. if (!task)
  1136. return ERR_PTR(-ENOMEM);
  1137. init_idle(task, cpu);
  1138. return task;
  1139. }
  1140. static inline int fork_traceflag (unsigned clone_flags)
  1141. {
  1142. if (clone_flags & CLONE_UNTRACED)
  1143. return 0;
  1144. else if (clone_flags & CLONE_VFORK) {
  1145. if (current->ptrace & PT_TRACE_VFORK)
  1146. return PTRACE_EVENT_VFORK;
  1147. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1148. if (current->ptrace & PT_TRACE_CLONE)
  1149. return PTRACE_EVENT_CLONE;
  1150. } else if (current->ptrace & PT_TRACE_FORK)
  1151. return PTRACE_EVENT_FORK;
  1152. return 0;
  1153. }
  1154. /*
  1155. * Ok, this is the main fork-routine.
  1156. *
  1157. * It copies the process, and if successful kick-starts
  1158. * it and waits for it to finish using the VM if required.
  1159. */
  1160. long do_fork(unsigned long clone_flags,
  1161. unsigned long stack_start,
  1162. struct pt_regs *regs,
  1163. unsigned long stack_size,
  1164. int __user *parent_tidptr,
  1165. int __user *child_tidptr)
  1166. {
  1167. struct task_struct *p;
  1168. int trace = 0;
  1169. struct pid *pid = alloc_pid();
  1170. long nr;
  1171. if (!pid)
  1172. return -EAGAIN;
  1173. nr = pid->nr;
  1174. if (unlikely(current->ptrace)) {
  1175. trace = fork_traceflag (clone_flags);
  1176. if (trace)
  1177. clone_flags |= CLONE_PTRACE;
  1178. }
  1179. p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
  1180. /*
  1181. * Do this prior waking up the new thread - the thread pointer
  1182. * might get invalid after that point, if the thread exits quickly.
  1183. */
  1184. if (!IS_ERR(p)) {
  1185. struct completion vfork;
  1186. if (clone_flags & CLONE_VFORK) {
  1187. p->vfork_done = &vfork;
  1188. init_completion(&vfork);
  1189. }
  1190. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1191. /*
  1192. * We'll start up with an immediate SIGSTOP.
  1193. */
  1194. sigaddset(&p->pending.signal, SIGSTOP);
  1195. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1196. }
  1197. if (!(clone_flags & CLONE_STOPPED))
  1198. wake_up_new_task(p, clone_flags);
  1199. else
  1200. p->state = TASK_STOPPED;
  1201. if (unlikely (trace)) {
  1202. current->ptrace_message = nr;
  1203. ptrace_notify ((trace << 8) | SIGTRAP);
  1204. }
  1205. if (clone_flags & CLONE_VFORK) {
  1206. wait_for_completion(&vfork);
  1207. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1208. current->ptrace_message = nr;
  1209. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1210. }
  1211. }
  1212. } else {
  1213. free_pid(pid);
  1214. nr = PTR_ERR(p);
  1215. }
  1216. return nr;
  1217. }
  1218. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1219. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1220. #endif
  1221. static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
  1222. {
  1223. struct sighand_struct *sighand = data;
  1224. if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
  1225. SLAB_CTOR_CONSTRUCTOR)
  1226. spin_lock_init(&sighand->siglock);
  1227. }
  1228. void __init proc_caches_init(void)
  1229. {
  1230. sighand_cachep = kmem_cache_create("sighand_cache",
  1231. sizeof(struct sighand_struct), 0,
  1232. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1233. sighand_ctor, NULL);
  1234. signal_cachep = kmem_cache_create("signal_cache",
  1235. sizeof(struct signal_struct), 0,
  1236. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1237. files_cachep = kmem_cache_create("files_cache",
  1238. sizeof(struct files_struct), 0,
  1239. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1240. fs_cachep = kmem_cache_create("fs_cache",
  1241. sizeof(struct fs_struct), 0,
  1242. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1243. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1244. sizeof(struct vm_area_struct), 0,
  1245. SLAB_PANIC, NULL, NULL);
  1246. mm_cachep = kmem_cache_create("mm_struct",
  1247. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1248. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1249. }
  1250. /*
  1251. * Check constraints on flags passed to the unshare system call and
  1252. * force unsharing of additional process context as appropriate.
  1253. */
  1254. static inline void check_unshare_flags(unsigned long *flags_ptr)
  1255. {
  1256. /*
  1257. * If unsharing a thread from a thread group, must also
  1258. * unshare vm.
  1259. */
  1260. if (*flags_ptr & CLONE_THREAD)
  1261. *flags_ptr |= CLONE_VM;
  1262. /*
  1263. * If unsharing vm, must also unshare signal handlers.
  1264. */
  1265. if (*flags_ptr & CLONE_VM)
  1266. *flags_ptr |= CLONE_SIGHAND;
  1267. /*
  1268. * If unsharing signal handlers and the task was created
  1269. * using CLONE_THREAD, then must unshare the thread
  1270. */
  1271. if ((*flags_ptr & CLONE_SIGHAND) &&
  1272. (atomic_read(&current->signal->count) > 1))
  1273. *flags_ptr |= CLONE_THREAD;
  1274. /*
  1275. * If unsharing namespace, must also unshare filesystem information.
  1276. */
  1277. if (*flags_ptr & CLONE_NEWNS)
  1278. *flags_ptr |= CLONE_FS;
  1279. }
  1280. /*
  1281. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1282. */
  1283. static int unshare_thread(unsigned long unshare_flags)
  1284. {
  1285. if (unshare_flags & CLONE_THREAD)
  1286. return -EINVAL;
  1287. return 0;
  1288. }
  1289. /*
  1290. * Unshare the filesystem structure if it is being shared
  1291. */
  1292. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1293. {
  1294. struct fs_struct *fs = current->fs;
  1295. if ((unshare_flags & CLONE_FS) &&
  1296. (fs && atomic_read(&fs->count) > 1)) {
  1297. *new_fsp = __copy_fs_struct(current->fs);
  1298. if (!*new_fsp)
  1299. return -ENOMEM;
  1300. }
  1301. return 0;
  1302. }
  1303. /*
  1304. * Unshare the namespace structure if it is being shared
  1305. */
  1306. static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
  1307. {
  1308. struct namespace *ns = current->namespace;
  1309. if ((unshare_flags & CLONE_NEWNS) &&
  1310. (ns && atomic_read(&ns->count) > 1)) {
  1311. if (!capable(CAP_SYS_ADMIN))
  1312. return -EPERM;
  1313. *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
  1314. if (!*new_nsp)
  1315. return -ENOMEM;
  1316. }
  1317. return 0;
  1318. }
  1319. /*
  1320. * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
  1321. * supported yet
  1322. */
  1323. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1324. {
  1325. struct sighand_struct *sigh = current->sighand;
  1326. if ((unshare_flags & CLONE_SIGHAND) &&
  1327. (sigh && atomic_read(&sigh->count) > 1))
  1328. return -EINVAL;
  1329. else
  1330. return 0;
  1331. }
  1332. /*
  1333. * Unshare vm if it is being shared
  1334. */
  1335. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1336. {
  1337. struct mm_struct *mm = current->mm;
  1338. if ((unshare_flags & CLONE_VM) &&
  1339. (mm && atomic_read(&mm->mm_users) > 1)) {
  1340. return -EINVAL;
  1341. }
  1342. return 0;
  1343. }
  1344. /*
  1345. * Unshare file descriptor table if it is being shared
  1346. */
  1347. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1348. {
  1349. struct files_struct *fd = current->files;
  1350. int error = 0;
  1351. if ((unshare_flags & CLONE_FILES) &&
  1352. (fd && atomic_read(&fd->count) > 1)) {
  1353. *new_fdp = dup_fd(fd, &error);
  1354. if (!*new_fdp)
  1355. return error;
  1356. }
  1357. return 0;
  1358. }
  1359. /*
  1360. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1361. * supported yet
  1362. */
  1363. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1364. {
  1365. if (unshare_flags & CLONE_SYSVSEM)
  1366. return -EINVAL;
  1367. return 0;
  1368. }
  1369. /*
  1370. * unshare allows a process to 'unshare' part of the process
  1371. * context which was originally shared using clone. copy_*
  1372. * functions used by do_fork() cannot be used here directly
  1373. * because they modify an inactive task_struct that is being
  1374. * constructed. Here we are modifying the current, active,
  1375. * task_struct.
  1376. */
  1377. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1378. {
  1379. int err = 0;
  1380. struct fs_struct *fs, *new_fs = NULL;
  1381. struct namespace *ns, *new_ns = NULL;
  1382. struct sighand_struct *sigh, *new_sigh = NULL;
  1383. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1384. struct files_struct *fd, *new_fd = NULL;
  1385. struct sem_undo_list *new_ulist = NULL;
  1386. check_unshare_flags(&unshare_flags);
  1387. /* Return -EINVAL for all unsupported flags */
  1388. err = -EINVAL;
  1389. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1390. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
  1391. goto bad_unshare_out;
  1392. if ((err = unshare_thread(unshare_flags)))
  1393. goto bad_unshare_out;
  1394. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1395. goto bad_unshare_cleanup_thread;
  1396. if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
  1397. goto bad_unshare_cleanup_fs;
  1398. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1399. goto bad_unshare_cleanup_ns;
  1400. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1401. goto bad_unshare_cleanup_sigh;
  1402. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1403. goto bad_unshare_cleanup_vm;
  1404. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1405. goto bad_unshare_cleanup_fd;
  1406. if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
  1407. task_lock(current);
  1408. if (new_fs) {
  1409. fs = current->fs;
  1410. current->fs = new_fs;
  1411. new_fs = fs;
  1412. }
  1413. if (new_ns) {
  1414. ns = current->namespace;
  1415. current->namespace = new_ns;
  1416. new_ns = ns;
  1417. }
  1418. if (new_sigh) {
  1419. sigh = current->sighand;
  1420. rcu_assign_pointer(current->sighand, new_sigh);
  1421. new_sigh = sigh;
  1422. }
  1423. if (new_mm) {
  1424. mm = current->mm;
  1425. active_mm = current->active_mm;
  1426. current->mm = new_mm;
  1427. current->active_mm = new_mm;
  1428. activate_mm(active_mm, new_mm);
  1429. new_mm = mm;
  1430. }
  1431. if (new_fd) {
  1432. fd = current->files;
  1433. current->files = new_fd;
  1434. new_fd = fd;
  1435. }
  1436. task_unlock(current);
  1437. }
  1438. bad_unshare_cleanup_fd:
  1439. if (new_fd)
  1440. put_files_struct(new_fd);
  1441. bad_unshare_cleanup_vm:
  1442. if (new_mm)
  1443. mmput(new_mm);
  1444. bad_unshare_cleanup_sigh:
  1445. if (new_sigh)
  1446. if (atomic_dec_and_test(&new_sigh->count))
  1447. kmem_cache_free(sighand_cachep, new_sigh);
  1448. bad_unshare_cleanup_ns:
  1449. if (new_ns)
  1450. put_namespace(new_ns);
  1451. bad_unshare_cleanup_fs:
  1452. if (new_fs)
  1453. put_fs_struct(new_fs);
  1454. bad_unshare_cleanup_thread:
  1455. bad_unshare_out:
  1456. return err;
  1457. }