tcp_input.c 171 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #include <linux/mm.h>
  63. #include <linux/slab.h>
  64. #include <linux/module.h>
  65. #include <linux/sysctl.h>
  66. #include <linux/kernel.h>
  67. #include <net/dst.h>
  68. #include <net/tcp.h>
  69. #include <net/inet_common.h>
  70. #include <linux/ipsec.h>
  71. #include <asm/unaligned.h>
  72. #include <net/netdma.h>
  73. int sysctl_tcp_timestamps __read_mostly = 1;
  74. int sysctl_tcp_window_scaling __read_mostly = 1;
  75. int sysctl_tcp_sack __read_mostly = 1;
  76. int sysctl_tcp_fack __read_mostly = 1;
  77. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  78. EXPORT_SYMBOL(sysctl_tcp_reordering);
  79. int sysctl_tcp_ecn __read_mostly = 2;
  80. EXPORT_SYMBOL(sysctl_tcp_ecn);
  81. int sysctl_tcp_dsack __read_mostly = 1;
  82. int sysctl_tcp_app_win __read_mostly = 31;
  83. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  84. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  85. int sysctl_tcp_stdurg __read_mostly;
  86. int sysctl_tcp_rfc1337 __read_mostly;
  87. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  88. int sysctl_tcp_frto __read_mostly = 2;
  89. int sysctl_tcp_frto_response __read_mostly;
  90. int sysctl_tcp_nometrics_save __read_mostly;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_abc __read_mostly;
  94. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  95. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  96. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  97. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  98. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  99. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  100. #define FLAG_ECE 0x40 /* ECE in this ACK */
  101. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  102. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  103. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  104. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  105. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  106. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  107. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  108. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  109. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  110. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  111. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  112. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  113. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  114. /* Adapt the MSS value used to make delayed ack decision to the
  115. * real world.
  116. */
  117. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  118. {
  119. struct inet_connection_sock *icsk = inet_csk(sk);
  120. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  121. unsigned int len;
  122. icsk->icsk_ack.last_seg_size = 0;
  123. /* skb->len may jitter because of SACKs, even if peer
  124. * sends good full-sized frames.
  125. */
  126. len = skb_shinfo(skb)->gso_size ? : skb->len;
  127. if (len >= icsk->icsk_ack.rcv_mss) {
  128. icsk->icsk_ack.rcv_mss = len;
  129. } else {
  130. /* Otherwise, we make more careful check taking into account,
  131. * that SACKs block is variable.
  132. *
  133. * "len" is invariant segment length, including TCP header.
  134. */
  135. len += skb->data - skb_transport_header(skb);
  136. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  137. /* If PSH is not set, packet should be
  138. * full sized, provided peer TCP is not badly broken.
  139. * This observation (if it is correct 8)) allows
  140. * to handle super-low mtu links fairly.
  141. */
  142. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  143. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  144. /* Subtract also invariant (if peer is RFC compliant),
  145. * tcp header plus fixed timestamp option length.
  146. * Resulting "len" is MSS free of SACK jitter.
  147. */
  148. len -= tcp_sk(sk)->tcp_header_len;
  149. icsk->icsk_ack.last_seg_size = len;
  150. if (len == lss) {
  151. icsk->icsk_ack.rcv_mss = len;
  152. return;
  153. }
  154. }
  155. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  156. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  157. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  158. }
  159. }
  160. static void tcp_incr_quickack(struct sock *sk)
  161. {
  162. struct inet_connection_sock *icsk = inet_csk(sk);
  163. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  164. if (quickacks == 0)
  165. quickacks = 2;
  166. if (quickacks > icsk->icsk_ack.quick)
  167. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  168. }
  169. static void tcp_enter_quickack_mode(struct sock *sk)
  170. {
  171. struct inet_connection_sock *icsk = inet_csk(sk);
  172. tcp_incr_quickack(sk);
  173. icsk->icsk_ack.pingpong = 0;
  174. icsk->icsk_ack.ato = TCP_ATO_MIN;
  175. }
  176. /* Send ACKs quickly, if "quick" count is not exhausted
  177. * and the session is not interactive.
  178. */
  179. static inline int tcp_in_quickack_mode(const struct sock *sk)
  180. {
  181. const struct inet_connection_sock *icsk = inet_csk(sk);
  182. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  183. }
  184. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  185. {
  186. if (tp->ecn_flags & TCP_ECN_OK)
  187. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  188. }
  189. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  190. {
  191. if (tcp_hdr(skb)->cwr)
  192. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  193. }
  194. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  195. {
  196. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  197. }
  198. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  199. {
  200. if (!(tp->ecn_flags & TCP_ECN_OK))
  201. return;
  202. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  203. case INET_ECN_NOT_ECT:
  204. /* Funny extension: if ECT is not set on a segment,
  205. * and we already seen ECT on a previous segment,
  206. * it is probably a retransmit.
  207. */
  208. if (tp->ecn_flags & TCP_ECN_SEEN)
  209. tcp_enter_quickack_mode((struct sock *)tp);
  210. break;
  211. case INET_ECN_CE:
  212. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  213. /* fallinto */
  214. default:
  215. tp->ecn_flags |= TCP_ECN_SEEN;
  216. }
  217. }
  218. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  219. {
  220. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  221. tp->ecn_flags &= ~TCP_ECN_OK;
  222. }
  223. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  224. {
  225. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  226. tp->ecn_flags &= ~TCP_ECN_OK;
  227. }
  228. static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  229. {
  230. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  231. return 1;
  232. return 0;
  233. }
  234. /* Buffer size and advertised window tuning.
  235. *
  236. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  237. */
  238. static void tcp_fixup_sndbuf(struct sock *sk)
  239. {
  240. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  241. sndmem *= TCP_INIT_CWND;
  242. if (sk->sk_sndbuf < sndmem)
  243. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  244. }
  245. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  246. *
  247. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  248. * forward and advertised in receiver window (tp->rcv_wnd) and
  249. * "application buffer", required to isolate scheduling/application
  250. * latencies from network.
  251. * window_clamp is maximal advertised window. It can be less than
  252. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  253. * is reserved for "application" buffer. The less window_clamp is
  254. * the smoother our behaviour from viewpoint of network, but the lower
  255. * throughput and the higher sensitivity of the connection to losses. 8)
  256. *
  257. * rcv_ssthresh is more strict window_clamp used at "slow start"
  258. * phase to predict further behaviour of this connection.
  259. * It is used for two goals:
  260. * - to enforce header prediction at sender, even when application
  261. * requires some significant "application buffer". It is check #1.
  262. * - to prevent pruning of receive queue because of misprediction
  263. * of receiver window. Check #2.
  264. *
  265. * The scheme does not work when sender sends good segments opening
  266. * window and then starts to feed us spaghetti. But it should work
  267. * in common situations. Otherwise, we have to rely on queue collapsing.
  268. */
  269. /* Slow part of check#2. */
  270. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  271. {
  272. struct tcp_sock *tp = tcp_sk(sk);
  273. /* Optimize this! */
  274. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  275. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  276. while (tp->rcv_ssthresh <= window) {
  277. if (truesize <= skb->len)
  278. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  279. truesize >>= 1;
  280. window >>= 1;
  281. }
  282. return 0;
  283. }
  284. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  285. {
  286. struct tcp_sock *tp = tcp_sk(sk);
  287. /* Check #1 */
  288. if (tp->rcv_ssthresh < tp->window_clamp &&
  289. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  290. !sk_under_memory_pressure(sk)) {
  291. int incr;
  292. /* Check #2. Increase window, if skb with such overhead
  293. * will fit to rcvbuf in future.
  294. */
  295. if (tcp_win_from_space(skb->truesize) <= skb->len)
  296. incr = 2 * tp->advmss;
  297. else
  298. incr = __tcp_grow_window(sk, skb);
  299. if (incr) {
  300. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  301. tp->window_clamp);
  302. inet_csk(sk)->icsk_ack.quick |= 1;
  303. }
  304. }
  305. }
  306. /* 3. Tuning rcvbuf, when connection enters established state. */
  307. static void tcp_fixup_rcvbuf(struct sock *sk)
  308. {
  309. u32 mss = tcp_sk(sk)->advmss;
  310. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  311. int rcvmem;
  312. /* Limit to 10 segments if mss <= 1460,
  313. * or 14600/mss segments, with a minimum of two segments.
  314. */
  315. if (mss > 1460)
  316. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  317. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  318. while (tcp_win_from_space(rcvmem) < mss)
  319. rcvmem += 128;
  320. rcvmem *= icwnd;
  321. if (sk->sk_rcvbuf < rcvmem)
  322. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  323. }
  324. /* 4. Try to fixup all. It is made immediately after connection enters
  325. * established state.
  326. */
  327. static void tcp_init_buffer_space(struct sock *sk)
  328. {
  329. struct tcp_sock *tp = tcp_sk(sk);
  330. int maxwin;
  331. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  332. tcp_fixup_rcvbuf(sk);
  333. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  334. tcp_fixup_sndbuf(sk);
  335. tp->rcvq_space.space = tp->rcv_wnd;
  336. maxwin = tcp_full_space(sk);
  337. if (tp->window_clamp >= maxwin) {
  338. tp->window_clamp = maxwin;
  339. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  340. tp->window_clamp = max(maxwin -
  341. (maxwin >> sysctl_tcp_app_win),
  342. 4 * tp->advmss);
  343. }
  344. /* Force reservation of one segment. */
  345. if (sysctl_tcp_app_win &&
  346. tp->window_clamp > 2 * tp->advmss &&
  347. tp->window_clamp + tp->advmss > maxwin)
  348. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  349. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  350. tp->snd_cwnd_stamp = tcp_time_stamp;
  351. }
  352. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  353. static void tcp_clamp_window(struct sock *sk)
  354. {
  355. struct tcp_sock *tp = tcp_sk(sk);
  356. struct inet_connection_sock *icsk = inet_csk(sk);
  357. icsk->icsk_ack.quick = 0;
  358. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  359. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  360. !sk_under_memory_pressure(sk) &&
  361. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  362. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  363. sysctl_tcp_rmem[2]);
  364. }
  365. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  366. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  367. }
  368. /* Initialize RCV_MSS value.
  369. * RCV_MSS is an our guess about MSS used by the peer.
  370. * We haven't any direct information about the MSS.
  371. * It's better to underestimate the RCV_MSS rather than overestimate.
  372. * Overestimations make us ACKing less frequently than needed.
  373. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  374. */
  375. void tcp_initialize_rcv_mss(struct sock *sk)
  376. {
  377. const struct tcp_sock *tp = tcp_sk(sk);
  378. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  379. hint = min(hint, tp->rcv_wnd / 2);
  380. hint = min(hint, TCP_MSS_DEFAULT);
  381. hint = max(hint, TCP_MIN_MSS);
  382. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  383. }
  384. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  385. /* Receiver "autotuning" code.
  386. *
  387. * The algorithm for RTT estimation w/o timestamps is based on
  388. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  389. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  390. *
  391. * More detail on this code can be found at
  392. * <http://staff.psc.edu/jheffner/>,
  393. * though this reference is out of date. A new paper
  394. * is pending.
  395. */
  396. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  397. {
  398. u32 new_sample = tp->rcv_rtt_est.rtt;
  399. long m = sample;
  400. if (m == 0)
  401. m = 1;
  402. if (new_sample != 0) {
  403. /* If we sample in larger samples in the non-timestamp
  404. * case, we could grossly overestimate the RTT especially
  405. * with chatty applications or bulk transfer apps which
  406. * are stalled on filesystem I/O.
  407. *
  408. * Also, since we are only going for a minimum in the
  409. * non-timestamp case, we do not smooth things out
  410. * else with timestamps disabled convergence takes too
  411. * long.
  412. */
  413. if (!win_dep) {
  414. m -= (new_sample >> 3);
  415. new_sample += m;
  416. } else if (m < new_sample)
  417. new_sample = m << 3;
  418. } else {
  419. /* No previous measure. */
  420. new_sample = m << 3;
  421. }
  422. if (tp->rcv_rtt_est.rtt != new_sample)
  423. tp->rcv_rtt_est.rtt = new_sample;
  424. }
  425. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  426. {
  427. if (tp->rcv_rtt_est.time == 0)
  428. goto new_measure;
  429. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  430. return;
  431. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  432. new_measure:
  433. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  434. tp->rcv_rtt_est.time = tcp_time_stamp;
  435. }
  436. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  437. const struct sk_buff *skb)
  438. {
  439. struct tcp_sock *tp = tcp_sk(sk);
  440. if (tp->rx_opt.rcv_tsecr &&
  441. (TCP_SKB_CB(skb)->end_seq -
  442. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  443. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  444. }
  445. /*
  446. * This function should be called every time data is copied to user space.
  447. * It calculates the appropriate TCP receive buffer space.
  448. */
  449. void tcp_rcv_space_adjust(struct sock *sk)
  450. {
  451. struct tcp_sock *tp = tcp_sk(sk);
  452. int time;
  453. int space;
  454. if (tp->rcvq_space.time == 0)
  455. goto new_measure;
  456. time = tcp_time_stamp - tp->rcvq_space.time;
  457. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  458. return;
  459. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  460. space = max(tp->rcvq_space.space, space);
  461. if (tp->rcvq_space.space != space) {
  462. int rcvmem;
  463. tp->rcvq_space.space = space;
  464. if (sysctl_tcp_moderate_rcvbuf &&
  465. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  466. int new_clamp = space;
  467. /* Receive space grows, normalize in order to
  468. * take into account packet headers and sk_buff
  469. * structure overhead.
  470. */
  471. space /= tp->advmss;
  472. if (!space)
  473. space = 1;
  474. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  475. while (tcp_win_from_space(rcvmem) < tp->advmss)
  476. rcvmem += 128;
  477. space *= rcvmem;
  478. space = min(space, sysctl_tcp_rmem[2]);
  479. if (space > sk->sk_rcvbuf) {
  480. sk->sk_rcvbuf = space;
  481. /* Make the window clamp follow along. */
  482. tp->window_clamp = new_clamp;
  483. }
  484. }
  485. }
  486. new_measure:
  487. tp->rcvq_space.seq = tp->copied_seq;
  488. tp->rcvq_space.time = tcp_time_stamp;
  489. }
  490. /* There is something which you must keep in mind when you analyze the
  491. * behavior of the tp->ato delayed ack timeout interval. When a
  492. * connection starts up, we want to ack as quickly as possible. The
  493. * problem is that "good" TCP's do slow start at the beginning of data
  494. * transmission. The means that until we send the first few ACK's the
  495. * sender will sit on his end and only queue most of his data, because
  496. * he can only send snd_cwnd unacked packets at any given time. For
  497. * each ACK we send, he increments snd_cwnd and transmits more of his
  498. * queue. -DaveM
  499. */
  500. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  501. {
  502. struct tcp_sock *tp = tcp_sk(sk);
  503. struct inet_connection_sock *icsk = inet_csk(sk);
  504. u32 now;
  505. inet_csk_schedule_ack(sk);
  506. tcp_measure_rcv_mss(sk, skb);
  507. tcp_rcv_rtt_measure(tp);
  508. now = tcp_time_stamp;
  509. if (!icsk->icsk_ack.ato) {
  510. /* The _first_ data packet received, initialize
  511. * delayed ACK engine.
  512. */
  513. tcp_incr_quickack(sk);
  514. icsk->icsk_ack.ato = TCP_ATO_MIN;
  515. } else {
  516. int m = now - icsk->icsk_ack.lrcvtime;
  517. if (m <= TCP_ATO_MIN / 2) {
  518. /* The fastest case is the first. */
  519. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  520. } else if (m < icsk->icsk_ack.ato) {
  521. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  522. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  523. icsk->icsk_ack.ato = icsk->icsk_rto;
  524. } else if (m > icsk->icsk_rto) {
  525. /* Too long gap. Apparently sender failed to
  526. * restart window, so that we send ACKs quickly.
  527. */
  528. tcp_incr_quickack(sk);
  529. sk_mem_reclaim(sk);
  530. }
  531. }
  532. icsk->icsk_ack.lrcvtime = now;
  533. TCP_ECN_check_ce(tp, skb);
  534. if (skb->len >= 128)
  535. tcp_grow_window(sk, skb);
  536. }
  537. /* Called to compute a smoothed rtt estimate. The data fed to this
  538. * routine either comes from timestamps, or from segments that were
  539. * known _not_ to have been retransmitted [see Karn/Partridge
  540. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  541. * piece by Van Jacobson.
  542. * NOTE: the next three routines used to be one big routine.
  543. * To save cycles in the RFC 1323 implementation it was better to break
  544. * it up into three procedures. -- erics
  545. */
  546. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  547. {
  548. struct tcp_sock *tp = tcp_sk(sk);
  549. long m = mrtt; /* RTT */
  550. /* The following amusing code comes from Jacobson's
  551. * article in SIGCOMM '88. Note that rtt and mdev
  552. * are scaled versions of rtt and mean deviation.
  553. * This is designed to be as fast as possible
  554. * m stands for "measurement".
  555. *
  556. * On a 1990 paper the rto value is changed to:
  557. * RTO = rtt + 4 * mdev
  558. *
  559. * Funny. This algorithm seems to be very broken.
  560. * These formulae increase RTO, when it should be decreased, increase
  561. * too slowly, when it should be increased quickly, decrease too quickly
  562. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  563. * does not matter how to _calculate_ it. Seems, it was trap
  564. * that VJ failed to avoid. 8)
  565. */
  566. if (m == 0)
  567. m = 1;
  568. if (tp->srtt != 0) {
  569. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  570. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  571. if (m < 0) {
  572. m = -m; /* m is now abs(error) */
  573. m -= (tp->mdev >> 2); /* similar update on mdev */
  574. /* This is similar to one of Eifel findings.
  575. * Eifel blocks mdev updates when rtt decreases.
  576. * This solution is a bit different: we use finer gain
  577. * for mdev in this case (alpha*beta).
  578. * Like Eifel it also prevents growth of rto,
  579. * but also it limits too fast rto decreases,
  580. * happening in pure Eifel.
  581. */
  582. if (m > 0)
  583. m >>= 3;
  584. } else {
  585. m -= (tp->mdev >> 2); /* similar update on mdev */
  586. }
  587. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  588. if (tp->mdev > tp->mdev_max) {
  589. tp->mdev_max = tp->mdev;
  590. if (tp->mdev_max > tp->rttvar)
  591. tp->rttvar = tp->mdev_max;
  592. }
  593. if (after(tp->snd_una, tp->rtt_seq)) {
  594. if (tp->mdev_max < tp->rttvar)
  595. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  596. tp->rtt_seq = tp->snd_nxt;
  597. tp->mdev_max = tcp_rto_min(sk);
  598. }
  599. } else {
  600. /* no previous measure. */
  601. tp->srtt = m << 3; /* take the measured time to be rtt */
  602. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  603. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  604. tp->rtt_seq = tp->snd_nxt;
  605. }
  606. }
  607. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  608. * routine referred to above.
  609. */
  610. static inline void tcp_set_rto(struct sock *sk)
  611. {
  612. const struct tcp_sock *tp = tcp_sk(sk);
  613. /* Old crap is replaced with new one. 8)
  614. *
  615. * More seriously:
  616. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  617. * It cannot be less due to utterly erratic ACK generation made
  618. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  619. * to do with delayed acks, because at cwnd>2 true delack timeout
  620. * is invisible. Actually, Linux-2.4 also generates erratic
  621. * ACKs in some circumstances.
  622. */
  623. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  624. /* 2. Fixups made earlier cannot be right.
  625. * If we do not estimate RTO correctly without them,
  626. * all the algo is pure shit and should be replaced
  627. * with correct one. It is exactly, which we pretend to do.
  628. */
  629. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  630. * guarantees that rto is higher.
  631. */
  632. tcp_bound_rto(sk);
  633. }
  634. /* Save metrics learned by this TCP session.
  635. This function is called only, when TCP finishes successfully
  636. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  637. */
  638. void tcp_update_metrics(struct sock *sk)
  639. {
  640. struct tcp_sock *tp = tcp_sk(sk);
  641. struct dst_entry *dst = __sk_dst_get(sk);
  642. if (sysctl_tcp_nometrics_save)
  643. return;
  644. dst_confirm(dst);
  645. if (dst && (dst->flags & DST_HOST)) {
  646. const struct inet_connection_sock *icsk = inet_csk(sk);
  647. int m;
  648. unsigned long rtt;
  649. if (icsk->icsk_backoff || !tp->srtt) {
  650. /* This session failed to estimate rtt. Why?
  651. * Probably, no packets returned in time.
  652. * Reset our results.
  653. */
  654. if (!(dst_metric_locked(dst, RTAX_RTT)))
  655. dst_metric_set(dst, RTAX_RTT, 0);
  656. return;
  657. }
  658. rtt = dst_metric_rtt(dst, RTAX_RTT);
  659. m = rtt - tp->srtt;
  660. /* If newly calculated rtt larger than stored one,
  661. * store new one. Otherwise, use EWMA. Remember,
  662. * rtt overestimation is always better than underestimation.
  663. */
  664. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  665. if (m <= 0)
  666. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  667. else
  668. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  669. }
  670. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  671. unsigned long var;
  672. if (m < 0)
  673. m = -m;
  674. /* Scale deviation to rttvar fixed point */
  675. m >>= 1;
  676. if (m < tp->mdev)
  677. m = tp->mdev;
  678. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  679. if (m >= var)
  680. var = m;
  681. else
  682. var -= (var - m) >> 2;
  683. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  684. }
  685. if (tcp_in_initial_slowstart(tp)) {
  686. /* Slow start still did not finish. */
  687. if (dst_metric(dst, RTAX_SSTHRESH) &&
  688. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  689. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  690. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
  691. if (!dst_metric_locked(dst, RTAX_CWND) &&
  692. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  693. dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
  694. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  695. icsk->icsk_ca_state == TCP_CA_Open) {
  696. /* Cong. avoidance phase, cwnd is reliable. */
  697. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  698. dst_metric_set(dst, RTAX_SSTHRESH,
  699. max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
  700. if (!dst_metric_locked(dst, RTAX_CWND))
  701. dst_metric_set(dst, RTAX_CWND,
  702. (dst_metric(dst, RTAX_CWND) +
  703. tp->snd_cwnd) >> 1);
  704. } else {
  705. /* Else slow start did not finish, cwnd is non-sense,
  706. ssthresh may be also invalid.
  707. */
  708. if (!dst_metric_locked(dst, RTAX_CWND))
  709. dst_metric_set(dst, RTAX_CWND,
  710. (dst_metric(dst, RTAX_CWND) +
  711. tp->snd_ssthresh) >> 1);
  712. if (dst_metric(dst, RTAX_SSTHRESH) &&
  713. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  714. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  715. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
  716. }
  717. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  718. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  719. tp->reordering != sysctl_tcp_reordering)
  720. dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
  721. }
  722. }
  723. }
  724. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  725. {
  726. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  727. if (!cwnd)
  728. cwnd = TCP_INIT_CWND;
  729. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  730. }
  731. /* Set slow start threshold and cwnd not falling to slow start */
  732. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  733. {
  734. struct tcp_sock *tp = tcp_sk(sk);
  735. const struct inet_connection_sock *icsk = inet_csk(sk);
  736. tp->prior_ssthresh = 0;
  737. tp->bytes_acked = 0;
  738. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  739. tp->undo_marker = 0;
  740. if (set_ssthresh)
  741. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  742. tp->snd_cwnd = min(tp->snd_cwnd,
  743. tcp_packets_in_flight(tp) + 1U);
  744. tp->snd_cwnd_cnt = 0;
  745. tp->high_seq = tp->snd_nxt;
  746. tp->snd_cwnd_stamp = tcp_time_stamp;
  747. TCP_ECN_queue_cwr(tp);
  748. tcp_set_ca_state(sk, TCP_CA_CWR);
  749. }
  750. }
  751. /*
  752. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  753. * disables it when reordering is detected
  754. */
  755. static void tcp_disable_fack(struct tcp_sock *tp)
  756. {
  757. /* RFC3517 uses different metric in lost marker => reset on change */
  758. if (tcp_is_fack(tp))
  759. tp->lost_skb_hint = NULL;
  760. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  761. }
  762. /* Take a notice that peer is sending D-SACKs */
  763. static void tcp_dsack_seen(struct tcp_sock *tp)
  764. {
  765. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  766. }
  767. /* Initialize metrics on socket. */
  768. static void tcp_init_metrics(struct sock *sk)
  769. {
  770. struct tcp_sock *tp = tcp_sk(sk);
  771. struct dst_entry *dst = __sk_dst_get(sk);
  772. if (dst == NULL)
  773. goto reset;
  774. dst_confirm(dst);
  775. if (dst_metric_locked(dst, RTAX_CWND))
  776. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  777. if (dst_metric(dst, RTAX_SSTHRESH)) {
  778. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  779. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  780. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  781. } else {
  782. /* ssthresh may have been reduced unnecessarily during.
  783. * 3WHS. Restore it back to its initial default.
  784. */
  785. tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
  786. }
  787. if (dst_metric(dst, RTAX_REORDERING) &&
  788. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  789. tcp_disable_fack(tp);
  790. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  791. }
  792. if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
  793. goto reset;
  794. /* Initial rtt is determined from SYN,SYN-ACK.
  795. * The segment is small and rtt may appear much
  796. * less than real one. Use per-dst memory
  797. * to make it more realistic.
  798. *
  799. * A bit of theory. RTT is time passed after "normal" sized packet
  800. * is sent until it is ACKed. In normal circumstances sending small
  801. * packets force peer to delay ACKs and calculation is correct too.
  802. * The algorithm is adaptive and, provided we follow specs, it
  803. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  804. * tricks sort of "quick acks" for time long enough to decrease RTT
  805. * to low value, and then abruptly stops to do it and starts to delay
  806. * ACKs, wait for troubles.
  807. */
  808. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  809. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  810. tp->rtt_seq = tp->snd_nxt;
  811. }
  812. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  813. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  814. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  815. }
  816. tcp_set_rto(sk);
  817. reset:
  818. if (tp->srtt == 0) {
  819. /* RFC2988bis: We've failed to get a valid RTT sample from
  820. * 3WHS. This is most likely due to retransmission,
  821. * including spurious one. Reset the RTO back to 3secs
  822. * from the more aggressive 1sec to avoid more spurious
  823. * retransmission.
  824. */
  825. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
  826. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
  827. }
  828. /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
  829. * retransmitted. In light of RFC2988bis' more aggressive 1sec
  830. * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
  831. * retransmission has occurred.
  832. */
  833. if (tp->total_retrans > 1)
  834. tp->snd_cwnd = 1;
  835. else
  836. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  837. tp->snd_cwnd_stamp = tcp_time_stamp;
  838. }
  839. static void tcp_update_reordering(struct sock *sk, const int metric,
  840. const int ts)
  841. {
  842. struct tcp_sock *tp = tcp_sk(sk);
  843. if (metric > tp->reordering) {
  844. int mib_idx;
  845. tp->reordering = min(TCP_MAX_REORDERING, metric);
  846. /* This exciting event is worth to be remembered. 8) */
  847. if (ts)
  848. mib_idx = LINUX_MIB_TCPTSREORDER;
  849. else if (tcp_is_reno(tp))
  850. mib_idx = LINUX_MIB_TCPRENOREORDER;
  851. else if (tcp_is_fack(tp))
  852. mib_idx = LINUX_MIB_TCPFACKREORDER;
  853. else
  854. mib_idx = LINUX_MIB_TCPSACKREORDER;
  855. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  856. #if FASTRETRANS_DEBUG > 1
  857. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  858. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  859. tp->reordering,
  860. tp->fackets_out,
  861. tp->sacked_out,
  862. tp->undo_marker ? tp->undo_retrans : 0);
  863. #endif
  864. tcp_disable_fack(tp);
  865. }
  866. }
  867. /* This must be called before lost_out is incremented */
  868. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  869. {
  870. if ((tp->retransmit_skb_hint == NULL) ||
  871. before(TCP_SKB_CB(skb)->seq,
  872. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  873. tp->retransmit_skb_hint = skb;
  874. if (!tp->lost_out ||
  875. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  876. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  877. }
  878. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  879. {
  880. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  881. tcp_verify_retransmit_hint(tp, skb);
  882. tp->lost_out += tcp_skb_pcount(skb);
  883. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  884. }
  885. }
  886. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  887. struct sk_buff *skb)
  888. {
  889. tcp_verify_retransmit_hint(tp, skb);
  890. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  891. tp->lost_out += tcp_skb_pcount(skb);
  892. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  893. }
  894. }
  895. /* This procedure tags the retransmission queue when SACKs arrive.
  896. *
  897. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  898. * Packets in queue with these bits set are counted in variables
  899. * sacked_out, retrans_out and lost_out, correspondingly.
  900. *
  901. * Valid combinations are:
  902. * Tag InFlight Description
  903. * 0 1 - orig segment is in flight.
  904. * S 0 - nothing flies, orig reached receiver.
  905. * L 0 - nothing flies, orig lost by net.
  906. * R 2 - both orig and retransmit are in flight.
  907. * L|R 1 - orig is lost, retransmit is in flight.
  908. * S|R 1 - orig reached receiver, retrans is still in flight.
  909. * (L|S|R is logically valid, it could occur when L|R is sacked,
  910. * but it is equivalent to plain S and code short-curcuits it to S.
  911. * L|S is logically invalid, it would mean -1 packet in flight 8))
  912. *
  913. * These 6 states form finite state machine, controlled by the following events:
  914. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  915. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  916. * 3. Loss detection event of two flavors:
  917. * A. Scoreboard estimator decided the packet is lost.
  918. * A'. Reno "three dupacks" marks head of queue lost.
  919. * A''. Its FACK modification, head until snd.fack is lost.
  920. * B. SACK arrives sacking SND.NXT at the moment, when the
  921. * segment was retransmitted.
  922. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  923. *
  924. * It is pleasant to note, that state diagram turns out to be commutative,
  925. * so that we are allowed not to be bothered by order of our actions,
  926. * when multiple events arrive simultaneously. (see the function below).
  927. *
  928. * Reordering detection.
  929. * --------------------
  930. * Reordering metric is maximal distance, which a packet can be displaced
  931. * in packet stream. With SACKs we can estimate it:
  932. *
  933. * 1. SACK fills old hole and the corresponding segment was not
  934. * ever retransmitted -> reordering. Alas, we cannot use it
  935. * when segment was retransmitted.
  936. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  937. * for retransmitted and already SACKed segment -> reordering..
  938. * Both of these heuristics are not used in Loss state, when we cannot
  939. * account for retransmits accurately.
  940. *
  941. * SACK block validation.
  942. * ----------------------
  943. *
  944. * SACK block range validation checks that the received SACK block fits to
  945. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  946. * Note that SND.UNA is not included to the range though being valid because
  947. * it means that the receiver is rather inconsistent with itself reporting
  948. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  949. * perfectly valid, however, in light of RFC2018 which explicitly states
  950. * that "SACK block MUST reflect the newest segment. Even if the newest
  951. * segment is going to be discarded ...", not that it looks very clever
  952. * in case of head skb. Due to potentional receiver driven attacks, we
  953. * choose to avoid immediate execution of a walk in write queue due to
  954. * reneging and defer head skb's loss recovery to standard loss recovery
  955. * procedure that will eventually trigger (nothing forbids us doing this).
  956. *
  957. * Implements also blockage to start_seq wrap-around. Problem lies in the
  958. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  959. * there's no guarantee that it will be before snd_nxt (n). The problem
  960. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  961. * wrap (s_w):
  962. *
  963. * <- outs wnd -> <- wrapzone ->
  964. * u e n u_w e_w s n_w
  965. * | | | | | | |
  966. * |<------------+------+----- TCP seqno space --------------+---------->|
  967. * ...-- <2^31 ->| |<--------...
  968. * ...---- >2^31 ------>| |<--------...
  969. *
  970. * Current code wouldn't be vulnerable but it's better still to discard such
  971. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  972. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  973. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  974. * equal to the ideal case (infinite seqno space without wrap caused issues).
  975. *
  976. * With D-SACK the lower bound is extended to cover sequence space below
  977. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  978. * again, D-SACK block must not to go across snd_una (for the same reason as
  979. * for the normal SACK blocks, explained above). But there all simplicity
  980. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  981. * fully below undo_marker they do not affect behavior in anyway and can
  982. * therefore be safely ignored. In rare cases (which are more or less
  983. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  984. * fragmentation and packet reordering past skb's retransmission. To consider
  985. * them correctly, the acceptable range must be extended even more though
  986. * the exact amount is rather hard to quantify. However, tp->max_window can
  987. * be used as an exaggerated estimate.
  988. */
  989. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  990. u32 start_seq, u32 end_seq)
  991. {
  992. /* Too far in future, or reversed (interpretation is ambiguous) */
  993. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  994. return 0;
  995. /* Nasty start_seq wrap-around check (see comments above) */
  996. if (!before(start_seq, tp->snd_nxt))
  997. return 0;
  998. /* In outstanding window? ...This is valid exit for D-SACKs too.
  999. * start_seq == snd_una is non-sensical (see comments above)
  1000. */
  1001. if (after(start_seq, tp->snd_una))
  1002. return 1;
  1003. if (!is_dsack || !tp->undo_marker)
  1004. return 0;
  1005. /* ...Then it's D-SACK, and must reside below snd_una completely */
  1006. if (after(end_seq, tp->snd_una))
  1007. return 0;
  1008. if (!before(start_seq, tp->undo_marker))
  1009. return 1;
  1010. /* Too old */
  1011. if (!after(end_seq, tp->undo_marker))
  1012. return 0;
  1013. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1014. * start_seq < undo_marker and end_seq >= undo_marker.
  1015. */
  1016. return !before(start_seq, end_seq - tp->max_window);
  1017. }
  1018. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1019. * Event "B". Later note: FACK people cheated me again 8), we have to account
  1020. * for reordering! Ugly, but should help.
  1021. *
  1022. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1023. * less than what is now known to be received by the other end (derived from
  1024. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1025. * retransmitted skbs to avoid some costly processing per ACKs.
  1026. */
  1027. static void tcp_mark_lost_retrans(struct sock *sk)
  1028. {
  1029. const struct inet_connection_sock *icsk = inet_csk(sk);
  1030. struct tcp_sock *tp = tcp_sk(sk);
  1031. struct sk_buff *skb;
  1032. int cnt = 0;
  1033. u32 new_low_seq = tp->snd_nxt;
  1034. u32 received_upto = tcp_highest_sack_seq(tp);
  1035. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1036. !after(received_upto, tp->lost_retrans_low) ||
  1037. icsk->icsk_ca_state != TCP_CA_Recovery)
  1038. return;
  1039. tcp_for_write_queue(skb, sk) {
  1040. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1041. if (skb == tcp_send_head(sk))
  1042. break;
  1043. if (cnt == tp->retrans_out)
  1044. break;
  1045. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1046. continue;
  1047. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1048. continue;
  1049. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1050. * constraint here (see above) but figuring out that at
  1051. * least tp->reordering SACK blocks reside between ack_seq
  1052. * and received_upto is not easy task to do cheaply with
  1053. * the available datastructures.
  1054. *
  1055. * Whether FACK should check here for tp->reordering segs
  1056. * in-between one could argue for either way (it would be
  1057. * rather simple to implement as we could count fack_count
  1058. * during the walk and do tp->fackets_out - fack_count).
  1059. */
  1060. if (after(received_upto, ack_seq)) {
  1061. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1062. tp->retrans_out -= tcp_skb_pcount(skb);
  1063. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1064. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1065. } else {
  1066. if (before(ack_seq, new_low_seq))
  1067. new_low_seq = ack_seq;
  1068. cnt += tcp_skb_pcount(skb);
  1069. }
  1070. }
  1071. if (tp->retrans_out)
  1072. tp->lost_retrans_low = new_low_seq;
  1073. }
  1074. static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  1075. struct tcp_sack_block_wire *sp, int num_sacks,
  1076. u32 prior_snd_una)
  1077. {
  1078. struct tcp_sock *tp = tcp_sk(sk);
  1079. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1080. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1081. int dup_sack = 0;
  1082. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1083. dup_sack = 1;
  1084. tcp_dsack_seen(tp);
  1085. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1086. } else if (num_sacks > 1) {
  1087. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1088. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1089. if (!after(end_seq_0, end_seq_1) &&
  1090. !before(start_seq_0, start_seq_1)) {
  1091. dup_sack = 1;
  1092. tcp_dsack_seen(tp);
  1093. NET_INC_STATS_BH(sock_net(sk),
  1094. LINUX_MIB_TCPDSACKOFORECV);
  1095. }
  1096. }
  1097. /* D-SACK for already forgotten data... Do dumb counting. */
  1098. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  1099. !after(end_seq_0, prior_snd_una) &&
  1100. after(end_seq_0, tp->undo_marker))
  1101. tp->undo_retrans--;
  1102. return dup_sack;
  1103. }
  1104. struct tcp_sacktag_state {
  1105. int reord;
  1106. int fack_count;
  1107. int flag;
  1108. };
  1109. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1110. * the incoming SACK may not exactly match but we can find smaller MSS
  1111. * aligned portion of it that matches. Therefore we might need to fragment
  1112. * which may fail and creates some hassle (caller must handle error case
  1113. * returns).
  1114. *
  1115. * FIXME: this could be merged to shift decision code
  1116. */
  1117. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1118. u32 start_seq, u32 end_seq)
  1119. {
  1120. int in_sack, err;
  1121. unsigned int pkt_len;
  1122. unsigned int mss;
  1123. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1124. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1125. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1126. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1127. mss = tcp_skb_mss(skb);
  1128. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1129. if (!in_sack) {
  1130. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1131. if (pkt_len < mss)
  1132. pkt_len = mss;
  1133. } else {
  1134. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1135. if (pkt_len < mss)
  1136. return -EINVAL;
  1137. }
  1138. /* Round if necessary so that SACKs cover only full MSSes
  1139. * and/or the remaining small portion (if present)
  1140. */
  1141. if (pkt_len > mss) {
  1142. unsigned int new_len = (pkt_len / mss) * mss;
  1143. if (!in_sack && new_len < pkt_len) {
  1144. new_len += mss;
  1145. if (new_len > skb->len)
  1146. return 0;
  1147. }
  1148. pkt_len = new_len;
  1149. }
  1150. err = tcp_fragment(sk, skb, pkt_len, mss);
  1151. if (err < 0)
  1152. return err;
  1153. }
  1154. return in_sack;
  1155. }
  1156. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1157. static u8 tcp_sacktag_one(struct sock *sk,
  1158. struct tcp_sacktag_state *state, u8 sacked,
  1159. u32 start_seq, u32 end_seq,
  1160. int dup_sack, int pcount)
  1161. {
  1162. struct tcp_sock *tp = tcp_sk(sk);
  1163. int fack_count = state->fack_count;
  1164. /* Account D-SACK for retransmitted packet. */
  1165. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1166. if (tp->undo_marker && tp->undo_retrans &&
  1167. after(end_seq, tp->undo_marker))
  1168. tp->undo_retrans--;
  1169. if (sacked & TCPCB_SACKED_ACKED)
  1170. state->reord = min(fack_count, state->reord);
  1171. }
  1172. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1173. if (!after(end_seq, tp->snd_una))
  1174. return sacked;
  1175. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1176. if (sacked & TCPCB_SACKED_RETRANS) {
  1177. /* If the segment is not tagged as lost,
  1178. * we do not clear RETRANS, believing
  1179. * that retransmission is still in flight.
  1180. */
  1181. if (sacked & TCPCB_LOST) {
  1182. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1183. tp->lost_out -= pcount;
  1184. tp->retrans_out -= pcount;
  1185. }
  1186. } else {
  1187. if (!(sacked & TCPCB_RETRANS)) {
  1188. /* New sack for not retransmitted frame,
  1189. * which was in hole. It is reordering.
  1190. */
  1191. if (before(start_seq,
  1192. tcp_highest_sack_seq(tp)))
  1193. state->reord = min(fack_count,
  1194. state->reord);
  1195. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1196. if (!after(end_seq, tp->frto_highmark))
  1197. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1198. }
  1199. if (sacked & TCPCB_LOST) {
  1200. sacked &= ~TCPCB_LOST;
  1201. tp->lost_out -= pcount;
  1202. }
  1203. }
  1204. sacked |= TCPCB_SACKED_ACKED;
  1205. state->flag |= FLAG_DATA_SACKED;
  1206. tp->sacked_out += pcount;
  1207. fack_count += pcount;
  1208. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1209. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1210. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1211. tp->lost_cnt_hint += pcount;
  1212. if (fack_count > tp->fackets_out)
  1213. tp->fackets_out = fack_count;
  1214. }
  1215. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1216. * frames and clear it. undo_retrans is decreased above, L|R frames
  1217. * are accounted above as well.
  1218. */
  1219. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1220. sacked &= ~TCPCB_SACKED_RETRANS;
  1221. tp->retrans_out -= pcount;
  1222. }
  1223. return sacked;
  1224. }
  1225. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1226. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1227. */
  1228. static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1229. struct tcp_sacktag_state *state,
  1230. unsigned int pcount, int shifted, int mss,
  1231. int dup_sack)
  1232. {
  1233. struct tcp_sock *tp = tcp_sk(sk);
  1234. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1235. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1236. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1237. BUG_ON(!pcount);
  1238. TCP_SKB_CB(prev)->end_seq += shifted;
  1239. TCP_SKB_CB(skb)->seq += shifted;
  1240. skb_shinfo(prev)->gso_segs += pcount;
  1241. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1242. skb_shinfo(skb)->gso_segs -= pcount;
  1243. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1244. * in theory this shouldn't be necessary but as long as DSACK
  1245. * code can come after this skb later on it's better to keep
  1246. * setting gso_size to something.
  1247. */
  1248. if (!skb_shinfo(prev)->gso_size) {
  1249. skb_shinfo(prev)->gso_size = mss;
  1250. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1251. }
  1252. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1253. if (skb_shinfo(skb)->gso_segs <= 1) {
  1254. skb_shinfo(skb)->gso_size = 0;
  1255. skb_shinfo(skb)->gso_type = 0;
  1256. }
  1257. /* Adjust counters and hints for the newly sacked sequence range but
  1258. * discard the return value since prev is already marked.
  1259. */
  1260. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1261. start_seq, end_seq, dup_sack, pcount);
  1262. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1263. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1264. if (skb->len > 0) {
  1265. BUG_ON(!tcp_skb_pcount(skb));
  1266. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1267. return 0;
  1268. }
  1269. /* Whole SKB was eaten :-) */
  1270. if (skb == tp->retransmit_skb_hint)
  1271. tp->retransmit_skb_hint = prev;
  1272. if (skb == tp->scoreboard_skb_hint)
  1273. tp->scoreboard_skb_hint = prev;
  1274. if (skb == tp->lost_skb_hint) {
  1275. tp->lost_skb_hint = prev;
  1276. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1277. }
  1278. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1279. if (skb == tcp_highest_sack(sk))
  1280. tcp_advance_highest_sack(sk, skb);
  1281. tcp_unlink_write_queue(skb, sk);
  1282. sk_wmem_free_skb(sk, skb);
  1283. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1284. return 1;
  1285. }
  1286. /* I wish gso_size would have a bit more sane initialization than
  1287. * something-or-zero which complicates things
  1288. */
  1289. static int tcp_skb_seglen(const struct sk_buff *skb)
  1290. {
  1291. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1292. }
  1293. /* Shifting pages past head area doesn't work */
  1294. static int skb_can_shift(const struct sk_buff *skb)
  1295. {
  1296. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1297. }
  1298. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1299. * skb.
  1300. */
  1301. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1302. struct tcp_sacktag_state *state,
  1303. u32 start_seq, u32 end_seq,
  1304. int dup_sack)
  1305. {
  1306. struct tcp_sock *tp = tcp_sk(sk);
  1307. struct sk_buff *prev;
  1308. int mss;
  1309. int pcount = 0;
  1310. int len;
  1311. int in_sack;
  1312. if (!sk_can_gso(sk))
  1313. goto fallback;
  1314. /* Normally R but no L won't result in plain S */
  1315. if (!dup_sack &&
  1316. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1317. goto fallback;
  1318. if (!skb_can_shift(skb))
  1319. goto fallback;
  1320. /* This frame is about to be dropped (was ACKed). */
  1321. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1322. goto fallback;
  1323. /* Can only happen with delayed DSACK + discard craziness */
  1324. if (unlikely(skb == tcp_write_queue_head(sk)))
  1325. goto fallback;
  1326. prev = tcp_write_queue_prev(sk, skb);
  1327. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1328. goto fallback;
  1329. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1330. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1331. if (in_sack) {
  1332. len = skb->len;
  1333. pcount = tcp_skb_pcount(skb);
  1334. mss = tcp_skb_seglen(skb);
  1335. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1336. * drop this restriction as unnecessary
  1337. */
  1338. if (mss != tcp_skb_seglen(prev))
  1339. goto fallback;
  1340. } else {
  1341. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1342. goto noop;
  1343. /* CHECKME: This is non-MSS split case only?, this will
  1344. * cause skipped skbs due to advancing loop btw, original
  1345. * has that feature too
  1346. */
  1347. if (tcp_skb_pcount(skb) <= 1)
  1348. goto noop;
  1349. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1350. if (!in_sack) {
  1351. /* TODO: head merge to next could be attempted here
  1352. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1353. * though it might not be worth of the additional hassle
  1354. *
  1355. * ...we can probably just fallback to what was done
  1356. * previously. We could try merging non-SACKed ones
  1357. * as well but it probably isn't going to buy off
  1358. * because later SACKs might again split them, and
  1359. * it would make skb timestamp tracking considerably
  1360. * harder problem.
  1361. */
  1362. goto fallback;
  1363. }
  1364. len = end_seq - TCP_SKB_CB(skb)->seq;
  1365. BUG_ON(len < 0);
  1366. BUG_ON(len > skb->len);
  1367. /* MSS boundaries should be honoured or else pcount will
  1368. * severely break even though it makes things bit trickier.
  1369. * Optimize common case to avoid most of the divides
  1370. */
  1371. mss = tcp_skb_mss(skb);
  1372. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1373. * drop this restriction as unnecessary
  1374. */
  1375. if (mss != tcp_skb_seglen(prev))
  1376. goto fallback;
  1377. if (len == mss) {
  1378. pcount = 1;
  1379. } else if (len < mss) {
  1380. goto noop;
  1381. } else {
  1382. pcount = len / mss;
  1383. len = pcount * mss;
  1384. }
  1385. }
  1386. if (!skb_shift(prev, skb, len))
  1387. goto fallback;
  1388. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1389. goto out;
  1390. /* Hole filled allows collapsing with the next as well, this is very
  1391. * useful when hole on every nth skb pattern happens
  1392. */
  1393. if (prev == tcp_write_queue_tail(sk))
  1394. goto out;
  1395. skb = tcp_write_queue_next(sk, prev);
  1396. if (!skb_can_shift(skb) ||
  1397. (skb == tcp_send_head(sk)) ||
  1398. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1399. (mss != tcp_skb_seglen(skb)))
  1400. goto out;
  1401. len = skb->len;
  1402. if (skb_shift(prev, skb, len)) {
  1403. pcount += tcp_skb_pcount(skb);
  1404. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1405. }
  1406. out:
  1407. state->fack_count += pcount;
  1408. return prev;
  1409. noop:
  1410. return skb;
  1411. fallback:
  1412. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1413. return NULL;
  1414. }
  1415. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1416. struct tcp_sack_block *next_dup,
  1417. struct tcp_sacktag_state *state,
  1418. u32 start_seq, u32 end_seq,
  1419. int dup_sack_in)
  1420. {
  1421. struct tcp_sock *tp = tcp_sk(sk);
  1422. struct sk_buff *tmp;
  1423. tcp_for_write_queue_from(skb, sk) {
  1424. int in_sack = 0;
  1425. int dup_sack = dup_sack_in;
  1426. if (skb == tcp_send_head(sk))
  1427. break;
  1428. /* queue is in-order => we can short-circuit the walk early */
  1429. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1430. break;
  1431. if ((next_dup != NULL) &&
  1432. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1433. in_sack = tcp_match_skb_to_sack(sk, skb,
  1434. next_dup->start_seq,
  1435. next_dup->end_seq);
  1436. if (in_sack > 0)
  1437. dup_sack = 1;
  1438. }
  1439. /* skb reference here is a bit tricky to get right, since
  1440. * shifting can eat and free both this skb and the next,
  1441. * so not even _safe variant of the loop is enough.
  1442. */
  1443. if (in_sack <= 0) {
  1444. tmp = tcp_shift_skb_data(sk, skb, state,
  1445. start_seq, end_seq, dup_sack);
  1446. if (tmp != NULL) {
  1447. if (tmp != skb) {
  1448. skb = tmp;
  1449. continue;
  1450. }
  1451. in_sack = 0;
  1452. } else {
  1453. in_sack = tcp_match_skb_to_sack(sk, skb,
  1454. start_seq,
  1455. end_seq);
  1456. }
  1457. }
  1458. if (unlikely(in_sack < 0))
  1459. break;
  1460. if (in_sack) {
  1461. TCP_SKB_CB(skb)->sacked =
  1462. tcp_sacktag_one(sk,
  1463. state,
  1464. TCP_SKB_CB(skb)->sacked,
  1465. TCP_SKB_CB(skb)->seq,
  1466. TCP_SKB_CB(skb)->end_seq,
  1467. dup_sack,
  1468. tcp_skb_pcount(skb));
  1469. if (!before(TCP_SKB_CB(skb)->seq,
  1470. tcp_highest_sack_seq(tp)))
  1471. tcp_advance_highest_sack(sk, skb);
  1472. }
  1473. state->fack_count += tcp_skb_pcount(skb);
  1474. }
  1475. return skb;
  1476. }
  1477. /* Avoid all extra work that is being done by sacktag while walking in
  1478. * a normal way
  1479. */
  1480. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1481. struct tcp_sacktag_state *state,
  1482. u32 skip_to_seq)
  1483. {
  1484. tcp_for_write_queue_from(skb, sk) {
  1485. if (skb == tcp_send_head(sk))
  1486. break;
  1487. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1488. break;
  1489. state->fack_count += tcp_skb_pcount(skb);
  1490. }
  1491. return skb;
  1492. }
  1493. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1494. struct sock *sk,
  1495. struct tcp_sack_block *next_dup,
  1496. struct tcp_sacktag_state *state,
  1497. u32 skip_to_seq)
  1498. {
  1499. if (next_dup == NULL)
  1500. return skb;
  1501. if (before(next_dup->start_seq, skip_to_seq)) {
  1502. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1503. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1504. next_dup->start_seq, next_dup->end_seq,
  1505. 1);
  1506. }
  1507. return skb;
  1508. }
  1509. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1510. {
  1511. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1512. }
  1513. static int
  1514. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1515. u32 prior_snd_una)
  1516. {
  1517. const struct inet_connection_sock *icsk = inet_csk(sk);
  1518. struct tcp_sock *tp = tcp_sk(sk);
  1519. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1520. TCP_SKB_CB(ack_skb)->sacked);
  1521. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1522. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1523. struct tcp_sack_block *cache;
  1524. struct tcp_sacktag_state state;
  1525. struct sk_buff *skb;
  1526. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1527. int used_sacks;
  1528. int found_dup_sack = 0;
  1529. int i, j;
  1530. int first_sack_index;
  1531. state.flag = 0;
  1532. state.reord = tp->packets_out;
  1533. if (!tp->sacked_out) {
  1534. if (WARN_ON(tp->fackets_out))
  1535. tp->fackets_out = 0;
  1536. tcp_highest_sack_reset(sk);
  1537. }
  1538. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1539. num_sacks, prior_snd_una);
  1540. if (found_dup_sack)
  1541. state.flag |= FLAG_DSACKING_ACK;
  1542. /* Eliminate too old ACKs, but take into
  1543. * account more or less fresh ones, they can
  1544. * contain valid SACK info.
  1545. */
  1546. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1547. return 0;
  1548. if (!tp->packets_out)
  1549. goto out;
  1550. used_sacks = 0;
  1551. first_sack_index = 0;
  1552. for (i = 0; i < num_sacks; i++) {
  1553. int dup_sack = !i && found_dup_sack;
  1554. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1555. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1556. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1557. sp[used_sacks].start_seq,
  1558. sp[used_sacks].end_seq)) {
  1559. int mib_idx;
  1560. if (dup_sack) {
  1561. if (!tp->undo_marker)
  1562. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1563. else
  1564. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1565. } else {
  1566. /* Don't count olds caused by ACK reordering */
  1567. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1568. !after(sp[used_sacks].end_seq, tp->snd_una))
  1569. continue;
  1570. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1571. }
  1572. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1573. if (i == 0)
  1574. first_sack_index = -1;
  1575. continue;
  1576. }
  1577. /* Ignore very old stuff early */
  1578. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1579. continue;
  1580. used_sacks++;
  1581. }
  1582. /* order SACK blocks to allow in order walk of the retrans queue */
  1583. for (i = used_sacks - 1; i > 0; i--) {
  1584. for (j = 0; j < i; j++) {
  1585. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1586. swap(sp[j], sp[j + 1]);
  1587. /* Track where the first SACK block goes to */
  1588. if (j == first_sack_index)
  1589. first_sack_index = j + 1;
  1590. }
  1591. }
  1592. }
  1593. skb = tcp_write_queue_head(sk);
  1594. state.fack_count = 0;
  1595. i = 0;
  1596. if (!tp->sacked_out) {
  1597. /* It's already past, so skip checking against it */
  1598. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1599. } else {
  1600. cache = tp->recv_sack_cache;
  1601. /* Skip empty blocks in at head of the cache */
  1602. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1603. !cache->end_seq)
  1604. cache++;
  1605. }
  1606. while (i < used_sacks) {
  1607. u32 start_seq = sp[i].start_seq;
  1608. u32 end_seq = sp[i].end_seq;
  1609. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1610. struct tcp_sack_block *next_dup = NULL;
  1611. if (found_dup_sack && ((i + 1) == first_sack_index))
  1612. next_dup = &sp[i + 1];
  1613. /* Skip too early cached blocks */
  1614. while (tcp_sack_cache_ok(tp, cache) &&
  1615. !before(start_seq, cache->end_seq))
  1616. cache++;
  1617. /* Can skip some work by looking recv_sack_cache? */
  1618. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1619. after(end_seq, cache->start_seq)) {
  1620. /* Head todo? */
  1621. if (before(start_seq, cache->start_seq)) {
  1622. skb = tcp_sacktag_skip(skb, sk, &state,
  1623. start_seq);
  1624. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1625. &state,
  1626. start_seq,
  1627. cache->start_seq,
  1628. dup_sack);
  1629. }
  1630. /* Rest of the block already fully processed? */
  1631. if (!after(end_seq, cache->end_seq))
  1632. goto advance_sp;
  1633. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1634. &state,
  1635. cache->end_seq);
  1636. /* ...tail remains todo... */
  1637. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1638. /* ...but better entrypoint exists! */
  1639. skb = tcp_highest_sack(sk);
  1640. if (skb == NULL)
  1641. break;
  1642. state.fack_count = tp->fackets_out;
  1643. cache++;
  1644. goto walk;
  1645. }
  1646. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1647. /* Check overlap against next cached too (past this one already) */
  1648. cache++;
  1649. continue;
  1650. }
  1651. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1652. skb = tcp_highest_sack(sk);
  1653. if (skb == NULL)
  1654. break;
  1655. state.fack_count = tp->fackets_out;
  1656. }
  1657. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1658. walk:
  1659. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1660. start_seq, end_seq, dup_sack);
  1661. advance_sp:
  1662. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1663. * due to in-order walk
  1664. */
  1665. if (after(end_seq, tp->frto_highmark))
  1666. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1667. i++;
  1668. }
  1669. /* Clear the head of the cache sack blocks so we can skip it next time */
  1670. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1671. tp->recv_sack_cache[i].start_seq = 0;
  1672. tp->recv_sack_cache[i].end_seq = 0;
  1673. }
  1674. for (j = 0; j < used_sacks; j++)
  1675. tp->recv_sack_cache[i++] = sp[j];
  1676. tcp_mark_lost_retrans(sk);
  1677. tcp_verify_left_out(tp);
  1678. if ((state.reord < tp->fackets_out) &&
  1679. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1680. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1681. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1682. out:
  1683. #if FASTRETRANS_DEBUG > 0
  1684. WARN_ON((int)tp->sacked_out < 0);
  1685. WARN_ON((int)tp->lost_out < 0);
  1686. WARN_ON((int)tp->retrans_out < 0);
  1687. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1688. #endif
  1689. return state.flag;
  1690. }
  1691. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1692. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1693. */
  1694. static int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1695. {
  1696. u32 holes;
  1697. holes = max(tp->lost_out, 1U);
  1698. holes = min(holes, tp->packets_out);
  1699. if ((tp->sacked_out + holes) > tp->packets_out) {
  1700. tp->sacked_out = tp->packets_out - holes;
  1701. return 1;
  1702. }
  1703. return 0;
  1704. }
  1705. /* If we receive more dupacks than we expected counting segments
  1706. * in assumption of absent reordering, interpret this as reordering.
  1707. * The only another reason could be bug in receiver TCP.
  1708. */
  1709. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1710. {
  1711. struct tcp_sock *tp = tcp_sk(sk);
  1712. if (tcp_limit_reno_sacked(tp))
  1713. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1714. }
  1715. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1716. static void tcp_add_reno_sack(struct sock *sk)
  1717. {
  1718. struct tcp_sock *tp = tcp_sk(sk);
  1719. tp->sacked_out++;
  1720. tcp_check_reno_reordering(sk, 0);
  1721. tcp_verify_left_out(tp);
  1722. }
  1723. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1724. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1725. {
  1726. struct tcp_sock *tp = tcp_sk(sk);
  1727. if (acked > 0) {
  1728. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1729. if (acked - 1 >= tp->sacked_out)
  1730. tp->sacked_out = 0;
  1731. else
  1732. tp->sacked_out -= acked - 1;
  1733. }
  1734. tcp_check_reno_reordering(sk, acked);
  1735. tcp_verify_left_out(tp);
  1736. }
  1737. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1738. {
  1739. tp->sacked_out = 0;
  1740. }
  1741. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1742. {
  1743. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1744. }
  1745. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1746. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1747. */
  1748. int tcp_use_frto(struct sock *sk)
  1749. {
  1750. const struct tcp_sock *tp = tcp_sk(sk);
  1751. const struct inet_connection_sock *icsk = inet_csk(sk);
  1752. struct sk_buff *skb;
  1753. if (!sysctl_tcp_frto)
  1754. return 0;
  1755. /* MTU probe and F-RTO won't really play nicely along currently */
  1756. if (icsk->icsk_mtup.probe_size)
  1757. return 0;
  1758. if (tcp_is_sackfrto(tp))
  1759. return 1;
  1760. /* Avoid expensive walking of rexmit queue if possible */
  1761. if (tp->retrans_out > 1)
  1762. return 0;
  1763. skb = tcp_write_queue_head(sk);
  1764. if (tcp_skb_is_last(sk, skb))
  1765. return 1;
  1766. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1767. tcp_for_write_queue_from(skb, sk) {
  1768. if (skb == tcp_send_head(sk))
  1769. break;
  1770. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1771. return 0;
  1772. /* Short-circuit when first non-SACKed skb has been checked */
  1773. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1774. break;
  1775. }
  1776. return 1;
  1777. }
  1778. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1779. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1780. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1781. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1782. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1783. * bits are handled if the Loss state is really to be entered (in
  1784. * tcp_enter_frto_loss).
  1785. *
  1786. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1787. * does:
  1788. * "Reduce ssthresh if it has not yet been made inside this window."
  1789. */
  1790. void tcp_enter_frto(struct sock *sk)
  1791. {
  1792. const struct inet_connection_sock *icsk = inet_csk(sk);
  1793. struct tcp_sock *tp = tcp_sk(sk);
  1794. struct sk_buff *skb;
  1795. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1796. tp->snd_una == tp->high_seq ||
  1797. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1798. !icsk->icsk_retransmits)) {
  1799. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1800. /* Our state is too optimistic in ssthresh() call because cwnd
  1801. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1802. * recovery has not yet completed. Pattern would be this: RTO,
  1803. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1804. * up here twice).
  1805. * RFC4138 should be more specific on what to do, even though
  1806. * RTO is quite unlikely to occur after the first Cumulative ACK
  1807. * due to back-off and complexity of triggering events ...
  1808. */
  1809. if (tp->frto_counter) {
  1810. u32 stored_cwnd;
  1811. stored_cwnd = tp->snd_cwnd;
  1812. tp->snd_cwnd = 2;
  1813. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1814. tp->snd_cwnd = stored_cwnd;
  1815. } else {
  1816. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1817. }
  1818. /* ... in theory, cong.control module could do "any tricks" in
  1819. * ssthresh(), which means that ca_state, lost bits and lost_out
  1820. * counter would have to be faked before the call occurs. We
  1821. * consider that too expensive, unlikely and hacky, so modules
  1822. * using these in ssthresh() must deal these incompatibility
  1823. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1824. */
  1825. tcp_ca_event(sk, CA_EVENT_FRTO);
  1826. }
  1827. tp->undo_marker = tp->snd_una;
  1828. tp->undo_retrans = 0;
  1829. skb = tcp_write_queue_head(sk);
  1830. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1831. tp->undo_marker = 0;
  1832. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1833. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1834. tp->retrans_out -= tcp_skb_pcount(skb);
  1835. }
  1836. tcp_verify_left_out(tp);
  1837. /* Too bad if TCP was application limited */
  1838. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1839. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1840. * The last condition is necessary at least in tp->frto_counter case.
  1841. */
  1842. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1843. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1844. after(tp->high_seq, tp->snd_una)) {
  1845. tp->frto_highmark = tp->high_seq;
  1846. } else {
  1847. tp->frto_highmark = tp->snd_nxt;
  1848. }
  1849. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1850. tp->high_seq = tp->snd_nxt;
  1851. tp->frto_counter = 1;
  1852. }
  1853. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1854. * which indicates that we should follow the traditional RTO recovery,
  1855. * i.e. mark everything lost and do go-back-N retransmission.
  1856. */
  1857. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1858. {
  1859. struct tcp_sock *tp = tcp_sk(sk);
  1860. struct sk_buff *skb;
  1861. tp->lost_out = 0;
  1862. tp->retrans_out = 0;
  1863. if (tcp_is_reno(tp))
  1864. tcp_reset_reno_sack(tp);
  1865. tcp_for_write_queue(skb, sk) {
  1866. if (skb == tcp_send_head(sk))
  1867. break;
  1868. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1869. /*
  1870. * Count the retransmission made on RTO correctly (only when
  1871. * waiting for the first ACK and did not get it)...
  1872. */
  1873. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1874. /* For some reason this R-bit might get cleared? */
  1875. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1876. tp->retrans_out += tcp_skb_pcount(skb);
  1877. /* ...enter this if branch just for the first segment */
  1878. flag |= FLAG_DATA_ACKED;
  1879. } else {
  1880. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1881. tp->undo_marker = 0;
  1882. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1883. }
  1884. /* Marking forward transmissions that were made after RTO lost
  1885. * can cause unnecessary retransmissions in some scenarios,
  1886. * SACK blocks will mitigate that in some but not in all cases.
  1887. * We used to not mark them but it was causing break-ups with
  1888. * receivers that do only in-order receival.
  1889. *
  1890. * TODO: we could detect presence of such receiver and select
  1891. * different behavior per flow.
  1892. */
  1893. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1894. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1895. tp->lost_out += tcp_skb_pcount(skb);
  1896. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1897. }
  1898. }
  1899. tcp_verify_left_out(tp);
  1900. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1901. tp->snd_cwnd_cnt = 0;
  1902. tp->snd_cwnd_stamp = tcp_time_stamp;
  1903. tp->frto_counter = 0;
  1904. tp->bytes_acked = 0;
  1905. tp->reordering = min_t(unsigned int, tp->reordering,
  1906. sysctl_tcp_reordering);
  1907. tcp_set_ca_state(sk, TCP_CA_Loss);
  1908. tp->high_seq = tp->snd_nxt;
  1909. TCP_ECN_queue_cwr(tp);
  1910. tcp_clear_all_retrans_hints(tp);
  1911. }
  1912. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1913. {
  1914. tp->retrans_out = 0;
  1915. tp->lost_out = 0;
  1916. tp->undo_marker = 0;
  1917. tp->undo_retrans = 0;
  1918. }
  1919. void tcp_clear_retrans(struct tcp_sock *tp)
  1920. {
  1921. tcp_clear_retrans_partial(tp);
  1922. tp->fackets_out = 0;
  1923. tp->sacked_out = 0;
  1924. }
  1925. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1926. * and reset tags completely, otherwise preserve SACKs. If receiver
  1927. * dropped its ofo queue, we will know this due to reneging detection.
  1928. */
  1929. void tcp_enter_loss(struct sock *sk, int how)
  1930. {
  1931. const struct inet_connection_sock *icsk = inet_csk(sk);
  1932. struct tcp_sock *tp = tcp_sk(sk);
  1933. struct sk_buff *skb;
  1934. /* Reduce ssthresh if it has not yet been made inside this window. */
  1935. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1936. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1937. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1938. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1939. tcp_ca_event(sk, CA_EVENT_LOSS);
  1940. }
  1941. tp->snd_cwnd = 1;
  1942. tp->snd_cwnd_cnt = 0;
  1943. tp->snd_cwnd_stamp = tcp_time_stamp;
  1944. tp->bytes_acked = 0;
  1945. tcp_clear_retrans_partial(tp);
  1946. if (tcp_is_reno(tp))
  1947. tcp_reset_reno_sack(tp);
  1948. if (!how) {
  1949. /* Push undo marker, if it was plain RTO and nothing
  1950. * was retransmitted. */
  1951. tp->undo_marker = tp->snd_una;
  1952. } else {
  1953. tp->sacked_out = 0;
  1954. tp->fackets_out = 0;
  1955. }
  1956. tcp_clear_all_retrans_hints(tp);
  1957. tcp_for_write_queue(skb, sk) {
  1958. if (skb == tcp_send_head(sk))
  1959. break;
  1960. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1961. tp->undo_marker = 0;
  1962. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1963. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1964. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1965. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1966. tp->lost_out += tcp_skb_pcount(skb);
  1967. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1968. }
  1969. }
  1970. tcp_verify_left_out(tp);
  1971. tp->reordering = min_t(unsigned int, tp->reordering,
  1972. sysctl_tcp_reordering);
  1973. tcp_set_ca_state(sk, TCP_CA_Loss);
  1974. tp->high_seq = tp->snd_nxt;
  1975. TCP_ECN_queue_cwr(tp);
  1976. /* Abort F-RTO algorithm if one is in progress */
  1977. tp->frto_counter = 0;
  1978. }
  1979. /* If ACK arrived pointing to a remembered SACK, it means that our
  1980. * remembered SACKs do not reflect real state of receiver i.e.
  1981. * receiver _host_ is heavily congested (or buggy).
  1982. *
  1983. * Do processing similar to RTO timeout.
  1984. */
  1985. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1986. {
  1987. if (flag & FLAG_SACK_RENEGING) {
  1988. struct inet_connection_sock *icsk = inet_csk(sk);
  1989. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1990. tcp_enter_loss(sk, 1);
  1991. icsk->icsk_retransmits++;
  1992. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1993. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1994. icsk->icsk_rto, TCP_RTO_MAX);
  1995. return 1;
  1996. }
  1997. return 0;
  1998. }
  1999. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  2000. {
  2001. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  2002. }
  2003. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  2004. * counter when SACK is enabled (without SACK, sacked_out is used for
  2005. * that purpose).
  2006. *
  2007. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  2008. * segments up to the highest received SACK block so far and holes in
  2009. * between them.
  2010. *
  2011. * With reordering, holes may still be in flight, so RFC3517 recovery
  2012. * uses pure sacked_out (total number of SACKed segments) even though
  2013. * it violates the RFC that uses duplicate ACKs, often these are equal
  2014. * but when e.g. out-of-window ACKs or packet duplication occurs,
  2015. * they differ. Since neither occurs due to loss, TCP should really
  2016. * ignore them.
  2017. */
  2018. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  2019. {
  2020. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2021. }
  2022. static inline int tcp_skb_timedout(const struct sock *sk,
  2023. const struct sk_buff *skb)
  2024. {
  2025. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  2026. }
  2027. static inline int tcp_head_timedout(const struct sock *sk)
  2028. {
  2029. const struct tcp_sock *tp = tcp_sk(sk);
  2030. return tp->packets_out &&
  2031. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2032. }
  2033. /* Linux NewReno/SACK/FACK/ECN state machine.
  2034. * --------------------------------------
  2035. *
  2036. * "Open" Normal state, no dubious events, fast path.
  2037. * "Disorder" In all the respects it is "Open",
  2038. * but requires a bit more attention. It is entered when
  2039. * we see some SACKs or dupacks. It is split of "Open"
  2040. * mainly to move some processing from fast path to slow one.
  2041. * "CWR" CWND was reduced due to some Congestion Notification event.
  2042. * It can be ECN, ICMP source quench, local device congestion.
  2043. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2044. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2045. *
  2046. * tcp_fastretrans_alert() is entered:
  2047. * - each incoming ACK, if state is not "Open"
  2048. * - when arrived ACK is unusual, namely:
  2049. * * SACK
  2050. * * Duplicate ACK.
  2051. * * ECN ECE.
  2052. *
  2053. * Counting packets in flight is pretty simple.
  2054. *
  2055. * in_flight = packets_out - left_out + retrans_out
  2056. *
  2057. * packets_out is SND.NXT-SND.UNA counted in packets.
  2058. *
  2059. * retrans_out is number of retransmitted segments.
  2060. *
  2061. * left_out is number of segments left network, but not ACKed yet.
  2062. *
  2063. * left_out = sacked_out + lost_out
  2064. *
  2065. * sacked_out: Packets, which arrived to receiver out of order
  2066. * and hence not ACKed. With SACKs this number is simply
  2067. * amount of SACKed data. Even without SACKs
  2068. * it is easy to give pretty reliable estimate of this number,
  2069. * counting duplicate ACKs.
  2070. *
  2071. * lost_out: Packets lost by network. TCP has no explicit
  2072. * "loss notification" feedback from network (for now).
  2073. * It means that this number can be only _guessed_.
  2074. * Actually, it is the heuristics to predict lossage that
  2075. * distinguishes different algorithms.
  2076. *
  2077. * F.e. after RTO, when all the queue is considered as lost,
  2078. * lost_out = packets_out and in_flight = retrans_out.
  2079. *
  2080. * Essentially, we have now two algorithms counting
  2081. * lost packets.
  2082. *
  2083. * FACK: It is the simplest heuristics. As soon as we decided
  2084. * that something is lost, we decide that _all_ not SACKed
  2085. * packets until the most forward SACK are lost. I.e.
  2086. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2087. * It is absolutely correct estimate, if network does not reorder
  2088. * packets. And it loses any connection to reality when reordering
  2089. * takes place. We use FACK by default until reordering
  2090. * is suspected on the path to this destination.
  2091. *
  2092. * NewReno: when Recovery is entered, we assume that one segment
  2093. * is lost (classic Reno). While we are in Recovery and
  2094. * a partial ACK arrives, we assume that one more packet
  2095. * is lost (NewReno). This heuristics are the same in NewReno
  2096. * and SACK.
  2097. *
  2098. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2099. * deflation etc. CWND is real congestion window, never inflated, changes
  2100. * only according to classic VJ rules.
  2101. *
  2102. * Really tricky (and requiring careful tuning) part of algorithm
  2103. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2104. * The first determines the moment _when_ we should reduce CWND and,
  2105. * hence, slow down forward transmission. In fact, it determines the moment
  2106. * when we decide that hole is caused by loss, rather than by a reorder.
  2107. *
  2108. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2109. * holes, caused by lost packets.
  2110. *
  2111. * And the most logically complicated part of algorithm is undo
  2112. * heuristics. We detect false retransmits due to both too early
  2113. * fast retransmit (reordering) and underestimated RTO, analyzing
  2114. * timestamps and D-SACKs. When we detect that some segments were
  2115. * retransmitted by mistake and CWND reduction was wrong, we undo
  2116. * window reduction and abort recovery phase. This logic is hidden
  2117. * inside several functions named tcp_try_undo_<something>.
  2118. */
  2119. /* This function decides, when we should leave Disordered state
  2120. * and enter Recovery phase, reducing congestion window.
  2121. *
  2122. * Main question: may we further continue forward transmission
  2123. * with the same cwnd?
  2124. */
  2125. static int tcp_time_to_recover(struct sock *sk)
  2126. {
  2127. struct tcp_sock *tp = tcp_sk(sk);
  2128. __u32 packets_out;
  2129. /* Do not perform any recovery during F-RTO algorithm */
  2130. if (tp->frto_counter)
  2131. return 0;
  2132. /* Trick#1: The loss is proven. */
  2133. if (tp->lost_out)
  2134. return 1;
  2135. /* Not-A-Trick#2 : Classic rule... */
  2136. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2137. return 1;
  2138. /* Trick#3 : when we use RFC2988 timer restart, fast
  2139. * retransmit can be triggered by timeout of queue head.
  2140. */
  2141. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2142. return 1;
  2143. /* Trick#4: It is still not OK... But will it be useful to delay
  2144. * recovery more?
  2145. */
  2146. packets_out = tp->packets_out;
  2147. if (packets_out <= tp->reordering &&
  2148. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2149. !tcp_may_send_now(sk)) {
  2150. /* We have nothing to send. This connection is limited
  2151. * either by receiver window or by application.
  2152. */
  2153. return 1;
  2154. }
  2155. /* If a thin stream is detected, retransmit after first
  2156. * received dupack. Employ only if SACK is supported in order
  2157. * to avoid possible corner-case series of spurious retransmissions
  2158. * Use only if there are no unsent data.
  2159. */
  2160. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2161. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2162. tcp_is_sack(tp) && !tcp_send_head(sk))
  2163. return 1;
  2164. return 0;
  2165. }
  2166. /* New heuristics: it is possible only after we switched to restart timer
  2167. * each time when something is ACKed. Hence, we can detect timed out packets
  2168. * during fast retransmit without falling to slow start.
  2169. *
  2170. * Usefulness of this as is very questionable, since we should know which of
  2171. * the segments is the next to timeout which is relatively expensive to find
  2172. * in general case unless we add some data structure just for that. The
  2173. * current approach certainly won't find the right one too often and when it
  2174. * finally does find _something_ it usually marks large part of the window
  2175. * right away (because a retransmission with a larger timestamp blocks the
  2176. * loop from advancing). -ij
  2177. */
  2178. static void tcp_timeout_skbs(struct sock *sk)
  2179. {
  2180. struct tcp_sock *tp = tcp_sk(sk);
  2181. struct sk_buff *skb;
  2182. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2183. return;
  2184. skb = tp->scoreboard_skb_hint;
  2185. if (tp->scoreboard_skb_hint == NULL)
  2186. skb = tcp_write_queue_head(sk);
  2187. tcp_for_write_queue_from(skb, sk) {
  2188. if (skb == tcp_send_head(sk))
  2189. break;
  2190. if (!tcp_skb_timedout(sk, skb))
  2191. break;
  2192. tcp_skb_mark_lost(tp, skb);
  2193. }
  2194. tp->scoreboard_skb_hint = skb;
  2195. tcp_verify_left_out(tp);
  2196. }
  2197. /* Detect loss in event "A" above by marking head of queue up as lost.
  2198. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2199. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2200. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2201. * the maximum SACKed segments to pass before reaching this limit.
  2202. */
  2203. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2204. {
  2205. struct tcp_sock *tp = tcp_sk(sk);
  2206. struct sk_buff *skb;
  2207. int cnt, oldcnt;
  2208. int err;
  2209. unsigned int mss;
  2210. /* Use SACK to deduce losses of new sequences sent during recovery */
  2211. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2212. WARN_ON(packets > tp->packets_out);
  2213. if (tp->lost_skb_hint) {
  2214. skb = tp->lost_skb_hint;
  2215. cnt = tp->lost_cnt_hint;
  2216. /* Head already handled? */
  2217. if (mark_head && skb != tcp_write_queue_head(sk))
  2218. return;
  2219. } else {
  2220. skb = tcp_write_queue_head(sk);
  2221. cnt = 0;
  2222. }
  2223. tcp_for_write_queue_from(skb, sk) {
  2224. if (skb == tcp_send_head(sk))
  2225. break;
  2226. /* TODO: do this better */
  2227. /* this is not the most efficient way to do this... */
  2228. tp->lost_skb_hint = skb;
  2229. tp->lost_cnt_hint = cnt;
  2230. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2231. break;
  2232. oldcnt = cnt;
  2233. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2234. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2235. cnt += tcp_skb_pcount(skb);
  2236. if (cnt > packets) {
  2237. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2238. (oldcnt >= packets))
  2239. break;
  2240. mss = skb_shinfo(skb)->gso_size;
  2241. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2242. if (err < 0)
  2243. break;
  2244. cnt = packets;
  2245. }
  2246. tcp_skb_mark_lost(tp, skb);
  2247. if (mark_head)
  2248. break;
  2249. }
  2250. tcp_verify_left_out(tp);
  2251. }
  2252. /* Account newly detected lost packet(s) */
  2253. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2254. {
  2255. struct tcp_sock *tp = tcp_sk(sk);
  2256. if (tcp_is_reno(tp)) {
  2257. tcp_mark_head_lost(sk, 1, 1);
  2258. } else if (tcp_is_fack(tp)) {
  2259. int lost = tp->fackets_out - tp->reordering;
  2260. if (lost <= 0)
  2261. lost = 1;
  2262. tcp_mark_head_lost(sk, lost, 0);
  2263. } else {
  2264. int sacked_upto = tp->sacked_out - tp->reordering;
  2265. if (sacked_upto >= 0)
  2266. tcp_mark_head_lost(sk, sacked_upto, 0);
  2267. else if (fast_rexmit)
  2268. tcp_mark_head_lost(sk, 1, 1);
  2269. }
  2270. tcp_timeout_skbs(sk);
  2271. }
  2272. /* CWND moderation, preventing bursts due to too big ACKs
  2273. * in dubious situations.
  2274. */
  2275. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2276. {
  2277. tp->snd_cwnd = min(tp->snd_cwnd,
  2278. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2279. tp->snd_cwnd_stamp = tcp_time_stamp;
  2280. }
  2281. /* Lower bound on congestion window is slow start threshold
  2282. * unless congestion avoidance choice decides to overide it.
  2283. */
  2284. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2285. {
  2286. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2287. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2288. }
  2289. /* Decrease cwnd each second ack. */
  2290. static void tcp_cwnd_down(struct sock *sk, int flag)
  2291. {
  2292. struct tcp_sock *tp = tcp_sk(sk);
  2293. int decr = tp->snd_cwnd_cnt + 1;
  2294. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2295. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2296. tp->snd_cwnd_cnt = decr & 1;
  2297. decr >>= 1;
  2298. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2299. tp->snd_cwnd -= decr;
  2300. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2301. tp->snd_cwnd_stamp = tcp_time_stamp;
  2302. }
  2303. }
  2304. /* Nothing was retransmitted or returned timestamp is less
  2305. * than timestamp of the first retransmission.
  2306. */
  2307. static inline int tcp_packet_delayed(const struct tcp_sock *tp)
  2308. {
  2309. return !tp->retrans_stamp ||
  2310. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2311. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2312. }
  2313. /* Undo procedures. */
  2314. #if FASTRETRANS_DEBUG > 1
  2315. static void DBGUNDO(struct sock *sk, const char *msg)
  2316. {
  2317. struct tcp_sock *tp = tcp_sk(sk);
  2318. struct inet_sock *inet = inet_sk(sk);
  2319. if (sk->sk_family == AF_INET) {
  2320. printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2321. msg,
  2322. &inet->inet_daddr, ntohs(inet->inet_dport),
  2323. tp->snd_cwnd, tcp_left_out(tp),
  2324. tp->snd_ssthresh, tp->prior_ssthresh,
  2325. tp->packets_out);
  2326. }
  2327. #if IS_ENABLED(CONFIG_IPV6)
  2328. else if (sk->sk_family == AF_INET6) {
  2329. struct ipv6_pinfo *np = inet6_sk(sk);
  2330. printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2331. msg,
  2332. &np->daddr, ntohs(inet->inet_dport),
  2333. tp->snd_cwnd, tcp_left_out(tp),
  2334. tp->snd_ssthresh, tp->prior_ssthresh,
  2335. tp->packets_out);
  2336. }
  2337. #endif
  2338. }
  2339. #else
  2340. #define DBGUNDO(x...) do { } while (0)
  2341. #endif
  2342. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2343. {
  2344. struct tcp_sock *tp = tcp_sk(sk);
  2345. if (tp->prior_ssthresh) {
  2346. const struct inet_connection_sock *icsk = inet_csk(sk);
  2347. if (icsk->icsk_ca_ops->undo_cwnd)
  2348. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2349. else
  2350. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2351. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2352. tp->snd_ssthresh = tp->prior_ssthresh;
  2353. TCP_ECN_withdraw_cwr(tp);
  2354. }
  2355. } else {
  2356. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2357. }
  2358. tp->snd_cwnd_stamp = tcp_time_stamp;
  2359. }
  2360. static inline int tcp_may_undo(const struct tcp_sock *tp)
  2361. {
  2362. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2363. }
  2364. /* People celebrate: "We love our President!" */
  2365. static int tcp_try_undo_recovery(struct sock *sk)
  2366. {
  2367. struct tcp_sock *tp = tcp_sk(sk);
  2368. if (tcp_may_undo(tp)) {
  2369. int mib_idx;
  2370. /* Happy end! We did not retransmit anything
  2371. * or our original transmission succeeded.
  2372. */
  2373. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2374. tcp_undo_cwr(sk, true);
  2375. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2376. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2377. else
  2378. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2379. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2380. tp->undo_marker = 0;
  2381. }
  2382. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2383. /* Hold old state until something *above* high_seq
  2384. * is ACKed. For Reno it is MUST to prevent false
  2385. * fast retransmits (RFC2582). SACK TCP is safe. */
  2386. tcp_moderate_cwnd(tp);
  2387. return 1;
  2388. }
  2389. tcp_set_ca_state(sk, TCP_CA_Open);
  2390. return 0;
  2391. }
  2392. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2393. static void tcp_try_undo_dsack(struct sock *sk)
  2394. {
  2395. struct tcp_sock *tp = tcp_sk(sk);
  2396. if (tp->undo_marker && !tp->undo_retrans) {
  2397. DBGUNDO(sk, "D-SACK");
  2398. tcp_undo_cwr(sk, true);
  2399. tp->undo_marker = 0;
  2400. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2401. }
  2402. }
  2403. /* We can clear retrans_stamp when there are no retransmissions in the
  2404. * window. It would seem that it is trivially available for us in
  2405. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2406. * what will happen if errors occur when sending retransmission for the
  2407. * second time. ...It could the that such segment has only
  2408. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2409. * the head skb is enough except for some reneging corner cases that
  2410. * are not worth the effort.
  2411. *
  2412. * Main reason for all this complexity is the fact that connection dying
  2413. * time now depends on the validity of the retrans_stamp, in particular,
  2414. * that successive retransmissions of a segment must not advance
  2415. * retrans_stamp under any conditions.
  2416. */
  2417. static int tcp_any_retrans_done(const struct sock *sk)
  2418. {
  2419. const struct tcp_sock *tp = tcp_sk(sk);
  2420. struct sk_buff *skb;
  2421. if (tp->retrans_out)
  2422. return 1;
  2423. skb = tcp_write_queue_head(sk);
  2424. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2425. return 1;
  2426. return 0;
  2427. }
  2428. /* Undo during fast recovery after partial ACK. */
  2429. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2430. {
  2431. struct tcp_sock *tp = tcp_sk(sk);
  2432. /* Partial ACK arrived. Force Hoe's retransmit. */
  2433. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2434. if (tcp_may_undo(tp)) {
  2435. /* Plain luck! Hole if filled with delayed
  2436. * packet, rather than with a retransmit.
  2437. */
  2438. if (!tcp_any_retrans_done(sk))
  2439. tp->retrans_stamp = 0;
  2440. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2441. DBGUNDO(sk, "Hoe");
  2442. tcp_undo_cwr(sk, false);
  2443. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2444. /* So... Do not make Hoe's retransmit yet.
  2445. * If the first packet was delayed, the rest
  2446. * ones are most probably delayed as well.
  2447. */
  2448. failed = 0;
  2449. }
  2450. return failed;
  2451. }
  2452. /* Undo during loss recovery after partial ACK. */
  2453. static int tcp_try_undo_loss(struct sock *sk)
  2454. {
  2455. struct tcp_sock *tp = tcp_sk(sk);
  2456. if (tcp_may_undo(tp)) {
  2457. struct sk_buff *skb;
  2458. tcp_for_write_queue(skb, sk) {
  2459. if (skb == tcp_send_head(sk))
  2460. break;
  2461. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2462. }
  2463. tcp_clear_all_retrans_hints(tp);
  2464. DBGUNDO(sk, "partial loss");
  2465. tp->lost_out = 0;
  2466. tcp_undo_cwr(sk, true);
  2467. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2468. inet_csk(sk)->icsk_retransmits = 0;
  2469. tp->undo_marker = 0;
  2470. if (tcp_is_sack(tp))
  2471. tcp_set_ca_state(sk, TCP_CA_Open);
  2472. return 1;
  2473. }
  2474. return 0;
  2475. }
  2476. static inline void tcp_complete_cwr(struct sock *sk)
  2477. {
  2478. struct tcp_sock *tp = tcp_sk(sk);
  2479. /* Do not moderate cwnd if it's already undone in cwr or recovery. */
  2480. if (tp->undo_marker) {
  2481. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
  2482. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2483. else /* PRR */
  2484. tp->snd_cwnd = tp->snd_ssthresh;
  2485. tp->snd_cwnd_stamp = tcp_time_stamp;
  2486. }
  2487. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2488. }
  2489. static void tcp_try_keep_open(struct sock *sk)
  2490. {
  2491. struct tcp_sock *tp = tcp_sk(sk);
  2492. int state = TCP_CA_Open;
  2493. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2494. state = TCP_CA_Disorder;
  2495. if (inet_csk(sk)->icsk_ca_state != state) {
  2496. tcp_set_ca_state(sk, state);
  2497. tp->high_seq = tp->snd_nxt;
  2498. }
  2499. }
  2500. static void tcp_try_to_open(struct sock *sk, int flag)
  2501. {
  2502. struct tcp_sock *tp = tcp_sk(sk);
  2503. tcp_verify_left_out(tp);
  2504. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2505. tp->retrans_stamp = 0;
  2506. if (flag & FLAG_ECE)
  2507. tcp_enter_cwr(sk, 1);
  2508. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2509. tcp_try_keep_open(sk);
  2510. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2511. tcp_moderate_cwnd(tp);
  2512. } else {
  2513. tcp_cwnd_down(sk, flag);
  2514. }
  2515. }
  2516. static void tcp_mtup_probe_failed(struct sock *sk)
  2517. {
  2518. struct inet_connection_sock *icsk = inet_csk(sk);
  2519. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2520. icsk->icsk_mtup.probe_size = 0;
  2521. }
  2522. static void tcp_mtup_probe_success(struct sock *sk)
  2523. {
  2524. struct tcp_sock *tp = tcp_sk(sk);
  2525. struct inet_connection_sock *icsk = inet_csk(sk);
  2526. /* FIXME: breaks with very large cwnd */
  2527. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2528. tp->snd_cwnd = tp->snd_cwnd *
  2529. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2530. icsk->icsk_mtup.probe_size;
  2531. tp->snd_cwnd_cnt = 0;
  2532. tp->snd_cwnd_stamp = tcp_time_stamp;
  2533. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2534. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2535. icsk->icsk_mtup.probe_size = 0;
  2536. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2537. }
  2538. /* Do a simple retransmit without using the backoff mechanisms in
  2539. * tcp_timer. This is used for path mtu discovery.
  2540. * The socket is already locked here.
  2541. */
  2542. void tcp_simple_retransmit(struct sock *sk)
  2543. {
  2544. const struct inet_connection_sock *icsk = inet_csk(sk);
  2545. struct tcp_sock *tp = tcp_sk(sk);
  2546. struct sk_buff *skb;
  2547. unsigned int mss = tcp_current_mss(sk);
  2548. u32 prior_lost = tp->lost_out;
  2549. tcp_for_write_queue(skb, sk) {
  2550. if (skb == tcp_send_head(sk))
  2551. break;
  2552. if (tcp_skb_seglen(skb) > mss &&
  2553. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2554. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2555. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2556. tp->retrans_out -= tcp_skb_pcount(skb);
  2557. }
  2558. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2559. }
  2560. }
  2561. tcp_clear_retrans_hints_partial(tp);
  2562. if (prior_lost == tp->lost_out)
  2563. return;
  2564. if (tcp_is_reno(tp))
  2565. tcp_limit_reno_sacked(tp);
  2566. tcp_verify_left_out(tp);
  2567. /* Don't muck with the congestion window here.
  2568. * Reason is that we do not increase amount of _data_
  2569. * in network, but units changed and effective
  2570. * cwnd/ssthresh really reduced now.
  2571. */
  2572. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2573. tp->high_seq = tp->snd_nxt;
  2574. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2575. tp->prior_ssthresh = 0;
  2576. tp->undo_marker = 0;
  2577. tcp_set_ca_state(sk, TCP_CA_Loss);
  2578. }
  2579. tcp_xmit_retransmit_queue(sk);
  2580. }
  2581. EXPORT_SYMBOL(tcp_simple_retransmit);
  2582. /* This function implements the PRR algorithm, specifcally the PRR-SSRB
  2583. * (proportional rate reduction with slow start reduction bound) as described in
  2584. * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
  2585. * It computes the number of packets to send (sndcnt) based on packets newly
  2586. * delivered:
  2587. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2588. * cwnd reductions across a full RTT.
  2589. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2590. * losses and/or application stalls), do not perform any further cwnd
  2591. * reductions, but instead slow start up to ssthresh.
  2592. */
  2593. static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
  2594. int fast_rexmit, int flag)
  2595. {
  2596. struct tcp_sock *tp = tcp_sk(sk);
  2597. int sndcnt = 0;
  2598. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2599. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2600. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2601. tp->prior_cwnd - 1;
  2602. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2603. } else {
  2604. sndcnt = min_t(int, delta,
  2605. max_t(int, tp->prr_delivered - tp->prr_out,
  2606. newly_acked_sacked) + 1);
  2607. }
  2608. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2609. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2610. }
  2611. /* Process an event, which can update packets-in-flight not trivially.
  2612. * Main goal of this function is to calculate new estimate for left_out,
  2613. * taking into account both packets sitting in receiver's buffer and
  2614. * packets lost by network.
  2615. *
  2616. * Besides that it does CWND reduction, when packet loss is detected
  2617. * and changes state of machine.
  2618. *
  2619. * It does _not_ decide what to send, it is made in function
  2620. * tcp_xmit_retransmit_queue().
  2621. */
  2622. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2623. int newly_acked_sacked, bool is_dupack,
  2624. int flag)
  2625. {
  2626. struct inet_connection_sock *icsk = inet_csk(sk);
  2627. struct tcp_sock *tp = tcp_sk(sk);
  2628. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2629. (tcp_fackets_out(tp) > tp->reordering));
  2630. int fast_rexmit = 0, mib_idx;
  2631. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2632. tp->sacked_out = 0;
  2633. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2634. tp->fackets_out = 0;
  2635. /* Now state machine starts.
  2636. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2637. if (flag & FLAG_ECE)
  2638. tp->prior_ssthresh = 0;
  2639. /* B. In all the states check for reneging SACKs. */
  2640. if (tcp_check_sack_reneging(sk, flag))
  2641. return;
  2642. /* C. Check consistency of the current state. */
  2643. tcp_verify_left_out(tp);
  2644. /* D. Check state exit conditions. State can be terminated
  2645. * when high_seq is ACKed. */
  2646. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2647. WARN_ON(tp->retrans_out != 0);
  2648. tp->retrans_stamp = 0;
  2649. } else if (!before(tp->snd_una, tp->high_seq)) {
  2650. switch (icsk->icsk_ca_state) {
  2651. case TCP_CA_Loss:
  2652. icsk->icsk_retransmits = 0;
  2653. if (tcp_try_undo_recovery(sk))
  2654. return;
  2655. break;
  2656. case TCP_CA_CWR:
  2657. /* CWR is to be held something *above* high_seq
  2658. * is ACKed for CWR bit to reach receiver. */
  2659. if (tp->snd_una != tp->high_seq) {
  2660. tcp_complete_cwr(sk);
  2661. tcp_set_ca_state(sk, TCP_CA_Open);
  2662. }
  2663. break;
  2664. case TCP_CA_Recovery:
  2665. if (tcp_is_reno(tp))
  2666. tcp_reset_reno_sack(tp);
  2667. if (tcp_try_undo_recovery(sk))
  2668. return;
  2669. tcp_complete_cwr(sk);
  2670. break;
  2671. }
  2672. }
  2673. /* E. Process state. */
  2674. switch (icsk->icsk_ca_state) {
  2675. case TCP_CA_Recovery:
  2676. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2677. if (tcp_is_reno(tp) && is_dupack)
  2678. tcp_add_reno_sack(sk);
  2679. } else
  2680. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2681. break;
  2682. case TCP_CA_Loss:
  2683. if (flag & FLAG_DATA_ACKED)
  2684. icsk->icsk_retransmits = 0;
  2685. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2686. tcp_reset_reno_sack(tp);
  2687. if (!tcp_try_undo_loss(sk)) {
  2688. tcp_moderate_cwnd(tp);
  2689. tcp_xmit_retransmit_queue(sk);
  2690. return;
  2691. }
  2692. if (icsk->icsk_ca_state != TCP_CA_Open)
  2693. return;
  2694. /* Loss is undone; fall through to processing in Open state. */
  2695. default:
  2696. if (tcp_is_reno(tp)) {
  2697. if (flag & FLAG_SND_UNA_ADVANCED)
  2698. tcp_reset_reno_sack(tp);
  2699. if (is_dupack)
  2700. tcp_add_reno_sack(sk);
  2701. }
  2702. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2703. tcp_try_undo_dsack(sk);
  2704. if (!tcp_time_to_recover(sk)) {
  2705. tcp_try_to_open(sk, flag);
  2706. return;
  2707. }
  2708. /* MTU probe failure: don't reduce cwnd */
  2709. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2710. icsk->icsk_mtup.probe_size &&
  2711. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2712. tcp_mtup_probe_failed(sk);
  2713. /* Restores the reduction we did in tcp_mtup_probe() */
  2714. tp->snd_cwnd++;
  2715. tcp_simple_retransmit(sk);
  2716. return;
  2717. }
  2718. /* Otherwise enter Recovery state */
  2719. if (tcp_is_reno(tp))
  2720. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2721. else
  2722. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2723. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2724. tp->high_seq = tp->snd_nxt;
  2725. tp->prior_ssthresh = 0;
  2726. tp->undo_marker = tp->snd_una;
  2727. tp->undo_retrans = tp->retrans_out;
  2728. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2729. if (!(flag & FLAG_ECE))
  2730. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2731. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2732. TCP_ECN_queue_cwr(tp);
  2733. }
  2734. tp->bytes_acked = 0;
  2735. tp->snd_cwnd_cnt = 0;
  2736. tp->prior_cwnd = tp->snd_cwnd;
  2737. tp->prr_delivered = 0;
  2738. tp->prr_out = 0;
  2739. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2740. fast_rexmit = 1;
  2741. }
  2742. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2743. tcp_update_scoreboard(sk, fast_rexmit);
  2744. tp->prr_delivered += newly_acked_sacked;
  2745. tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
  2746. tcp_xmit_retransmit_queue(sk);
  2747. }
  2748. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2749. {
  2750. tcp_rtt_estimator(sk, seq_rtt);
  2751. tcp_set_rto(sk);
  2752. inet_csk(sk)->icsk_backoff = 0;
  2753. }
  2754. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2755. /* Read draft-ietf-tcplw-high-performance before mucking
  2756. * with this code. (Supersedes RFC1323)
  2757. */
  2758. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2759. {
  2760. /* RTTM Rule: A TSecr value received in a segment is used to
  2761. * update the averaged RTT measurement only if the segment
  2762. * acknowledges some new data, i.e., only if it advances the
  2763. * left edge of the send window.
  2764. *
  2765. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2766. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2767. *
  2768. * Changed: reset backoff as soon as we see the first valid sample.
  2769. * If we do not, we get strongly overestimated rto. With timestamps
  2770. * samples are accepted even from very old segments: f.e., when rtt=1
  2771. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2772. * answer arrives rto becomes 120 seconds! If at least one of segments
  2773. * in window is lost... Voila. --ANK (010210)
  2774. */
  2775. struct tcp_sock *tp = tcp_sk(sk);
  2776. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2777. }
  2778. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2779. {
  2780. /* We don't have a timestamp. Can only use
  2781. * packets that are not retransmitted to determine
  2782. * rtt estimates. Also, we must not reset the
  2783. * backoff for rto until we get a non-retransmitted
  2784. * packet. This allows us to deal with a situation
  2785. * where the network delay has increased suddenly.
  2786. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2787. */
  2788. if (flag & FLAG_RETRANS_DATA_ACKED)
  2789. return;
  2790. tcp_valid_rtt_meas(sk, seq_rtt);
  2791. }
  2792. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2793. const s32 seq_rtt)
  2794. {
  2795. const struct tcp_sock *tp = tcp_sk(sk);
  2796. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2797. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2798. tcp_ack_saw_tstamp(sk, flag);
  2799. else if (seq_rtt >= 0)
  2800. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2801. }
  2802. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2803. {
  2804. const struct inet_connection_sock *icsk = inet_csk(sk);
  2805. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2806. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2807. }
  2808. /* Restart timer after forward progress on connection.
  2809. * RFC2988 recommends to restart timer to now+rto.
  2810. */
  2811. static void tcp_rearm_rto(struct sock *sk)
  2812. {
  2813. const struct tcp_sock *tp = tcp_sk(sk);
  2814. if (!tp->packets_out) {
  2815. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2816. } else {
  2817. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2818. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2819. }
  2820. }
  2821. /* If we get here, the whole TSO packet has not been acked. */
  2822. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2823. {
  2824. struct tcp_sock *tp = tcp_sk(sk);
  2825. u32 packets_acked;
  2826. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2827. packets_acked = tcp_skb_pcount(skb);
  2828. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2829. return 0;
  2830. packets_acked -= tcp_skb_pcount(skb);
  2831. if (packets_acked) {
  2832. BUG_ON(tcp_skb_pcount(skb) == 0);
  2833. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2834. }
  2835. return packets_acked;
  2836. }
  2837. /* Remove acknowledged frames from the retransmission queue. If our packet
  2838. * is before the ack sequence we can discard it as it's confirmed to have
  2839. * arrived at the other end.
  2840. */
  2841. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2842. u32 prior_snd_una)
  2843. {
  2844. struct tcp_sock *tp = tcp_sk(sk);
  2845. const struct inet_connection_sock *icsk = inet_csk(sk);
  2846. struct sk_buff *skb;
  2847. u32 now = tcp_time_stamp;
  2848. int fully_acked = 1;
  2849. int flag = 0;
  2850. u32 pkts_acked = 0;
  2851. u32 reord = tp->packets_out;
  2852. u32 prior_sacked = tp->sacked_out;
  2853. s32 seq_rtt = -1;
  2854. s32 ca_seq_rtt = -1;
  2855. ktime_t last_ackt = net_invalid_timestamp();
  2856. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2857. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2858. u32 acked_pcount;
  2859. u8 sacked = scb->sacked;
  2860. /* Determine how many packets and what bytes were acked, tso and else */
  2861. if (after(scb->end_seq, tp->snd_una)) {
  2862. if (tcp_skb_pcount(skb) == 1 ||
  2863. !after(tp->snd_una, scb->seq))
  2864. break;
  2865. acked_pcount = tcp_tso_acked(sk, skb);
  2866. if (!acked_pcount)
  2867. break;
  2868. fully_acked = 0;
  2869. } else {
  2870. acked_pcount = tcp_skb_pcount(skb);
  2871. }
  2872. if (sacked & TCPCB_RETRANS) {
  2873. if (sacked & TCPCB_SACKED_RETRANS)
  2874. tp->retrans_out -= acked_pcount;
  2875. flag |= FLAG_RETRANS_DATA_ACKED;
  2876. ca_seq_rtt = -1;
  2877. seq_rtt = -1;
  2878. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2879. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2880. } else {
  2881. ca_seq_rtt = now - scb->when;
  2882. last_ackt = skb->tstamp;
  2883. if (seq_rtt < 0) {
  2884. seq_rtt = ca_seq_rtt;
  2885. }
  2886. if (!(sacked & TCPCB_SACKED_ACKED))
  2887. reord = min(pkts_acked, reord);
  2888. }
  2889. if (sacked & TCPCB_SACKED_ACKED)
  2890. tp->sacked_out -= acked_pcount;
  2891. if (sacked & TCPCB_LOST)
  2892. tp->lost_out -= acked_pcount;
  2893. tp->packets_out -= acked_pcount;
  2894. pkts_acked += acked_pcount;
  2895. /* Initial outgoing SYN's get put onto the write_queue
  2896. * just like anything else we transmit. It is not
  2897. * true data, and if we misinform our callers that
  2898. * this ACK acks real data, we will erroneously exit
  2899. * connection startup slow start one packet too
  2900. * quickly. This is severely frowned upon behavior.
  2901. */
  2902. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2903. flag |= FLAG_DATA_ACKED;
  2904. } else {
  2905. flag |= FLAG_SYN_ACKED;
  2906. tp->retrans_stamp = 0;
  2907. }
  2908. if (!fully_acked)
  2909. break;
  2910. tcp_unlink_write_queue(skb, sk);
  2911. sk_wmem_free_skb(sk, skb);
  2912. tp->scoreboard_skb_hint = NULL;
  2913. if (skb == tp->retransmit_skb_hint)
  2914. tp->retransmit_skb_hint = NULL;
  2915. if (skb == tp->lost_skb_hint)
  2916. tp->lost_skb_hint = NULL;
  2917. }
  2918. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2919. tp->snd_up = tp->snd_una;
  2920. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2921. flag |= FLAG_SACK_RENEGING;
  2922. if (flag & FLAG_ACKED) {
  2923. const struct tcp_congestion_ops *ca_ops
  2924. = inet_csk(sk)->icsk_ca_ops;
  2925. if (unlikely(icsk->icsk_mtup.probe_size &&
  2926. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2927. tcp_mtup_probe_success(sk);
  2928. }
  2929. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2930. tcp_rearm_rto(sk);
  2931. if (tcp_is_reno(tp)) {
  2932. tcp_remove_reno_sacks(sk, pkts_acked);
  2933. } else {
  2934. int delta;
  2935. /* Non-retransmitted hole got filled? That's reordering */
  2936. if (reord < prior_fackets)
  2937. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2938. delta = tcp_is_fack(tp) ? pkts_acked :
  2939. prior_sacked - tp->sacked_out;
  2940. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2941. }
  2942. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2943. if (ca_ops->pkts_acked) {
  2944. s32 rtt_us = -1;
  2945. /* Is the ACK triggering packet unambiguous? */
  2946. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2947. /* High resolution needed and available? */
  2948. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2949. !ktime_equal(last_ackt,
  2950. net_invalid_timestamp()))
  2951. rtt_us = ktime_us_delta(ktime_get_real(),
  2952. last_ackt);
  2953. else if (ca_seq_rtt >= 0)
  2954. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2955. }
  2956. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2957. }
  2958. }
  2959. #if FASTRETRANS_DEBUG > 0
  2960. WARN_ON((int)tp->sacked_out < 0);
  2961. WARN_ON((int)tp->lost_out < 0);
  2962. WARN_ON((int)tp->retrans_out < 0);
  2963. if (!tp->packets_out && tcp_is_sack(tp)) {
  2964. icsk = inet_csk(sk);
  2965. if (tp->lost_out) {
  2966. printk(KERN_DEBUG "Leak l=%u %d\n",
  2967. tp->lost_out, icsk->icsk_ca_state);
  2968. tp->lost_out = 0;
  2969. }
  2970. if (tp->sacked_out) {
  2971. printk(KERN_DEBUG "Leak s=%u %d\n",
  2972. tp->sacked_out, icsk->icsk_ca_state);
  2973. tp->sacked_out = 0;
  2974. }
  2975. if (tp->retrans_out) {
  2976. printk(KERN_DEBUG "Leak r=%u %d\n",
  2977. tp->retrans_out, icsk->icsk_ca_state);
  2978. tp->retrans_out = 0;
  2979. }
  2980. }
  2981. #endif
  2982. return flag;
  2983. }
  2984. static void tcp_ack_probe(struct sock *sk)
  2985. {
  2986. const struct tcp_sock *tp = tcp_sk(sk);
  2987. struct inet_connection_sock *icsk = inet_csk(sk);
  2988. /* Was it a usable window open? */
  2989. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2990. icsk->icsk_backoff = 0;
  2991. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2992. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2993. * This function is not for random using!
  2994. */
  2995. } else {
  2996. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2997. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2998. TCP_RTO_MAX);
  2999. }
  3000. }
  3001. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  3002. {
  3003. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  3004. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  3005. }
  3006. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  3007. {
  3008. const struct tcp_sock *tp = tcp_sk(sk);
  3009. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  3010. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  3011. }
  3012. /* Check that window update is acceptable.
  3013. * The function assumes that snd_una<=ack<=snd_next.
  3014. */
  3015. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  3016. const u32 ack, const u32 ack_seq,
  3017. const u32 nwin)
  3018. {
  3019. return after(ack, tp->snd_una) ||
  3020. after(ack_seq, tp->snd_wl1) ||
  3021. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  3022. }
  3023. /* Update our send window.
  3024. *
  3025. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  3026. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  3027. */
  3028. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  3029. u32 ack_seq)
  3030. {
  3031. struct tcp_sock *tp = tcp_sk(sk);
  3032. int flag = 0;
  3033. u32 nwin = ntohs(tcp_hdr(skb)->window);
  3034. if (likely(!tcp_hdr(skb)->syn))
  3035. nwin <<= tp->rx_opt.snd_wscale;
  3036. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  3037. flag |= FLAG_WIN_UPDATE;
  3038. tcp_update_wl(tp, ack_seq);
  3039. if (tp->snd_wnd != nwin) {
  3040. tp->snd_wnd = nwin;
  3041. /* Note, it is the only place, where
  3042. * fast path is recovered for sending TCP.
  3043. */
  3044. tp->pred_flags = 0;
  3045. tcp_fast_path_check(sk);
  3046. if (nwin > tp->max_window) {
  3047. tp->max_window = nwin;
  3048. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  3049. }
  3050. }
  3051. }
  3052. tp->snd_una = ack;
  3053. return flag;
  3054. }
  3055. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  3056. * continue in congestion avoidance.
  3057. */
  3058. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  3059. {
  3060. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  3061. tp->snd_cwnd_cnt = 0;
  3062. tp->bytes_acked = 0;
  3063. TCP_ECN_queue_cwr(tp);
  3064. tcp_moderate_cwnd(tp);
  3065. }
  3066. /* A conservative spurious RTO response algorithm: reduce cwnd using
  3067. * rate halving and continue in congestion avoidance.
  3068. */
  3069. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  3070. {
  3071. tcp_enter_cwr(sk, 0);
  3072. }
  3073. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  3074. {
  3075. if (flag & FLAG_ECE)
  3076. tcp_ratehalving_spur_to_response(sk);
  3077. else
  3078. tcp_undo_cwr(sk, true);
  3079. }
  3080. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3081. *
  3082. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3083. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3084. * window (but not to or beyond highest sequence sent before RTO):
  3085. * On First ACK, send two new segments out.
  3086. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3087. * algorithm is not part of the F-RTO detection algorithm
  3088. * given in RFC4138 but can be selected separately).
  3089. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3090. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3091. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3092. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3093. *
  3094. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3095. * original window even after we transmit two new data segments.
  3096. *
  3097. * SACK version:
  3098. * on first step, wait until first cumulative ACK arrives, then move to
  3099. * the second step. In second step, the next ACK decides.
  3100. *
  3101. * F-RTO is implemented (mainly) in four functions:
  3102. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3103. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3104. * called when tcp_use_frto() showed green light
  3105. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3106. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3107. * to prove that the RTO is indeed spurious. It transfers the control
  3108. * from F-RTO to the conventional RTO recovery
  3109. */
  3110. static int tcp_process_frto(struct sock *sk, int flag)
  3111. {
  3112. struct tcp_sock *tp = tcp_sk(sk);
  3113. tcp_verify_left_out(tp);
  3114. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3115. if (flag & FLAG_DATA_ACKED)
  3116. inet_csk(sk)->icsk_retransmits = 0;
  3117. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3118. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3119. tp->undo_marker = 0;
  3120. if (!before(tp->snd_una, tp->frto_highmark)) {
  3121. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3122. return 1;
  3123. }
  3124. if (!tcp_is_sackfrto(tp)) {
  3125. /* RFC4138 shortcoming in step 2; should also have case c):
  3126. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3127. * data, winupdate
  3128. */
  3129. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3130. return 1;
  3131. if (!(flag & FLAG_DATA_ACKED)) {
  3132. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3133. flag);
  3134. return 1;
  3135. }
  3136. } else {
  3137. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3138. /* Prevent sending of new data. */
  3139. tp->snd_cwnd = min(tp->snd_cwnd,
  3140. tcp_packets_in_flight(tp));
  3141. return 1;
  3142. }
  3143. if ((tp->frto_counter >= 2) &&
  3144. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3145. ((flag & FLAG_DATA_SACKED) &&
  3146. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3147. /* RFC4138 shortcoming (see comment above) */
  3148. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3149. (flag & FLAG_NOT_DUP))
  3150. return 1;
  3151. tcp_enter_frto_loss(sk, 3, flag);
  3152. return 1;
  3153. }
  3154. }
  3155. if (tp->frto_counter == 1) {
  3156. /* tcp_may_send_now needs to see updated state */
  3157. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3158. tp->frto_counter = 2;
  3159. if (!tcp_may_send_now(sk))
  3160. tcp_enter_frto_loss(sk, 2, flag);
  3161. return 1;
  3162. } else {
  3163. switch (sysctl_tcp_frto_response) {
  3164. case 2:
  3165. tcp_undo_spur_to_response(sk, flag);
  3166. break;
  3167. case 1:
  3168. tcp_conservative_spur_to_response(tp);
  3169. break;
  3170. default:
  3171. tcp_ratehalving_spur_to_response(sk);
  3172. break;
  3173. }
  3174. tp->frto_counter = 0;
  3175. tp->undo_marker = 0;
  3176. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3177. }
  3178. return 0;
  3179. }
  3180. /* This routine deals with incoming acks, but not outgoing ones. */
  3181. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3182. {
  3183. struct inet_connection_sock *icsk = inet_csk(sk);
  3184. struct tcp_sock *tp = tcp_sk(sk);
  3185. u32 prior_snd_una = tp->snd_una;
  3186. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3187. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3188. bool is_dupack = false;
  3189. u32 prior_in_flight;
  3190. u32 prior_fackets;
  3191. int prior_packets;
  3192. int prior_sacked = tp->sacked_out;
  3193. int pkts_acked = 0;
  3194. int newly_acked_sacked = 0;
  3195. int frto_cwnd = 0;
  3196. /* If the ack is older than previous acks
  3197. * then we can probably ignore it.
  3198. */
  3199. if (before(ack, prior_snd_una))
  3200. goto old_ack;
  3201. /* If the ack includes data we haven't sent yet, discard
  3202. * this segment (RFC793 Section 3.9).
  3203. */
  3204. if (after(ack, tp->snd_nxt))
  3205. goto invalid_ack;
  3206. if (after(ack, prior_snd_una))
  3207. flag |= FLAG_SND_UNA_ADVANCED;
  3208. if (sysctl_tcp_abc) {
  3209. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3210. tp->bytes_acked += ack - prior_snd_una;
  3211. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3212. /* we assume just one segment left network */
  3213. tp->bytes_acked += min(ack - prior_snd_una,
  3214. tp->mss_cache);
  3215. }
  3216. prior_fackets = tp->fackets_out;
  3217. prior_in_flight = tcp_packets_in_flight(tp);
  3218. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3219. /* Window is constant, pure forward advance.
  3220. * No more checks are required.
  3221. * Note, we use the fact that SND.UNA>=SND.WL2.
  3222. */
  3223. tcp_update_wl(tp, ack_seq);
  3224. tp->snd_una = ack;
  3225. flag |= FLAG_WIN_UPDATE;
  3226. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3227. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3228. } else {
  3229. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3230. flag |= FLAG_DATA;
  3231. else
  3232. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3233. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3234. if (TCP_SKB_CB(skb)->sacked)
  3235. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3236. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3237. flag |= FLAG_ECE;
  3238. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3239. }
  3240. /* We passed data and got it acked, remove any soft error
  3241. * log. Something worked...
  3242. */
  3243. sk->sk_err_soft = 0;
  3244. icsk->icsk_probes_out = 0;
  3245. tp->rcv_tstamp = tcp_time_stamp;
  3246. prior_packets = tp->packets_out;
  3247. if (!prior_packets)
  3248. goto no_queue;
  3249. /* See if we can take anything off of the retransmit queue. */
  3250. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3251. pkts_acked = prior_packets - tp->packets_out;
  3252. newly_acked_sacked = (prior_packets - prior_sacked) -
  3253. (tp->packets_out - tp->sacked_out);
  3254. if (tp->frto_counter)
  3255. frto_cwnd = tcp_process_frto(sk, flag);
  3256. /* Guarantee sacktag reordering detection against wrap-arounds */
  3257. if (before(tp->frto_highmark, tp->snd_una))
  3258. tp->frto_highmark = 0;
  3259. if (tcp_ack_is_dubious(sk, flag)) {
  3260. /* Advance CWND, if state allows this. */
  3261. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3262. tcp_may_raise_cwnd(sk, flag))
  3263. tcp_cong_avoid(sk, ack, prior_in_flight);
  3264. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3265. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3266. is_dupack, flag);
  3267. } else {
  3268. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3269. tcp_cong_avoid(sk, ack, prior_in_flight);
  3270. }
  3271. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3272. dst_confirm(__sk_dst_get(sk));
  3273. return 1;
  3274. no_queue:
  3275. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3276. if (flag & FLAG_DSACKING_ACK)
  3277. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3278. is_dupack, flag);
  3279. /* If this ack opens up a zero window, clear backoff. It was
  3280. * being used to time the probes, and is probably far higher than
  3281. * it needs to be for normal retransmission.
  3282. */
  3283. if (tcp_send_head(sk))
  3284. tcp_ack_probe(sk);
  3285. return 1;
  3286. invalid_ack:
  3287. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3288. return -1;
  3289. old_ack:
  3290. /* If data was SACKed, tag it and see if we should send more data.
  3291. * If data was DSACKed, see if we can undo a cwnd reduction.
  3292. */
  3293. if (TCP_SKB_CB(skb)->sacked) {
  3294. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3295. newly_acked_sacked = tp->sacked_out - prior_sacked;
  3296. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3297. is_dupack, flag);
  3298. }
  3299. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3300. return 0;
  3301. }
  3302. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3303. * But, this can also be called on packets in the established flow when
  3304. * the fast version below fails.
  3305. */
  3306. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3307. const u8 **hvpp, int estab)
  3308. {
  3309. const unsigned char *ptr;
  3310. const struct tcphdr *th = tcp_hdr(skb);
  3311. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3312. ptr = (const unsigned char *)(th + 1);
  3313. opt_rx->saw_tstamp = 0;
  3314. while (length > 0) {
  3315. int opcode = *ptr++;
  3316. int opsize;
  3317. switch (opcode) {
  3318. case TCPOPT_EOL:
  3319. return;
  3320. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3321. length--;
  3322. continue;
  3323. default:
  3324. opsize = *ptr++;
  3325. if (opsize < 2) /* "silly options" */
  3326. return;
  3327. if (opsize > length)
  3328. return; /* don't parse partial options */
  3329. switch (opcode) {
  3330. case TCPOPT_MSS:
  3331. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3332. u16 in_mss = get_unaligned_be16(ptr);
  3333. if (in_mss) {
  3334. if (opt_rx->user_mss &&
  3335. opt_rx->user_mss < in_mss)
  3336. in_mss = opt_rx->user_mss;
  3337. opt_rx->mss_clamp = in_mss;
  3338. }
  3339. }
  3340. break;
  3341. case TCPOPT_WINDOW:
  3342. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3343. !estab && sysctl_tcp_window_scaling) {
  3344. __u8 snd_wscale = *(__u8 *)ptr;
  3345. opt_rx->wscale_ok = 1;
  3346. if (snd_wscale > 14) {
  3347. if (net_ratelimit())
  3348. printk(KERN_INFO "tcp_parse_options: Illegal window "
  3349. "scaling value %d >14 received.\n",
  3350. snd_wscale);
  3351. snd_wscale = 14;
  3352. }
  3353. opt_rx->snd_wscale = snd_wscale;
  3354. }
  3355. break;
  3356. case TCPOPT_TIMESTAMP:
  3357. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3358. ((estab && opt_rx->tstamp_ok) ||
  3359. (!estab && sysctl_tcp_timestamps))) {
  3360. opt_rx->saw_tstamp = 1;
  3361. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3362. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3363. }
  3364. break;
  3365. case TCPOPT_SACK_PERM:
  3366. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3367. !estab && sysctl_tcp_sack) {
  3368. opt_rx->sack_ok = TCP_SACK_SEEN;
  3369. tcp_sack_reset(opt_rx);
  3370. }
  3371. break;
  3372. case TCPOPT_SACK:
  3373. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3374. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3375. opt_rx->sack_ok) {
  3376. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3377. }
  3378. break;
  3379. #ifdef CONFIG_TCP_MD5SIG
  3380. case TCPOPT_MD5SIG:
  3381. /*
  3382. * The MD5 Hash has already been
  3383. * checked (see tcp_v{4,6}_do_rcv()).
  3384. */
  3385. break;
  3386. #endif
  3387. case TCPOPT_COOKIE:
  3388. /* This option is variable length.
  3389. */
  3390. switch (opsize) {
  3391. case TCPOLEN_COOKIE_BASE:
  3392. /* not yet implemented */
  3393. break;
  3394. case TCPOLEN_COOKIE_PAIR:
  3395. /* not yet implemented */
  3396. break;
  3397. case TCPOLEN_COOKIE_MIN+0:
  3398. case TCPOLEN_COOKIE_MIN+2:
  3399. case TCPOLEN_COOKIE_MIN+4:
  3400. case TCPOLEN_COOKIE_MIN+6:
  3401. case TCPOLEN_COOKIE_MAX:
  3402. /* 16-bit multiple */
  3403. opt_rx->cookie_plus = opsize;
  3404. *hvpp = ptr;
  3405. break;
  3406. default:
  3407. /* ignore option */
  3408. break;
  3409. }
  3410. break;
  3411. }
  3412. ptr += opsize-2;
  3413. length -= opsize;
  3414. }
  3415. }
  3416. }
  3417. EXPORT_SYMBOL(tcp_parse_options);
  3418. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3419. {
  3420. const __be32 *ptr = (const __be32 *)(th + 1);
  3421. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3422. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3423. tp->rx_opt.saw_tstamp = 1;
  3424. ++ptr;
  3425. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3426. ++ptr;
  3427. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3428. return 1;
  3429. }
  3430. return 0;
  3431. }
  3432. /* Fast parse options. This hopes to only see timestamps.
  3433. * If it is wrong it falls back on tcp_parse_options().
  3434. */
  3435. static int tcp_fast_parse_options(const struct sk_buff *skb,
  3436. const struct tcphdr *th,
  3437. struct tcp_sock *tp, const u8 **hvpp)
  3438. {
  3439. /* In the spirit of fast parsing, compare doff directly to constant
  3440. * values. Because equality is used, short doff can be ignored here.
  3441. */
  3442. if (th->doff == (sizeof(*th) / 4)) {
  3443. tp->rx_opt.saw_tstamp = 0;
  3444. return 0;
  3445. } else if (tp->rx_opt.tstamp_ok &&
  3446. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3447. if (tcp_parse_aligned_timestamp(tp, th))
  3448. return 1;
  3449. }
  3450. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
  3451. return 1;
  3452. }
  3453. #ifdef CONFIG_TCP_MD5SIG
  3454. /*
  3455. * Parse MD5 Signature option
  3456. */
  3457. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3458. {
  3459. int length = (th->doff << 2) - sizeof(*th);
  3460. const u8 *ptr = (const u8 *)(th + 1);
  3461. /* If the TCP option is too short, we can short cut */
  3462. if (length < TCPOLEN_MD5SIG)
  3463. return NULL;
  3464. while (length > 0) {
  3465. int opcode = *ptr++;
  3466. int opsize;
  3467. switch(opcode) {
  3468. case TCPOPT_EOL:
  3469. return NULL;
  3470. case TCPOPT_NOP:
  3471. length--;
  3472. continue;
  3473. default:
  3474. opsize = *ptr++;
  3475. if (opsize < 2 || opsize > length)
  3476. return NULL;
  3477. if (opcode == TCPOPT_MD5SIG)
  3478. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3479. }
  3480. ptr += opsize - 2;
  3481. length -= opsize;
  3482. }
  3483. return NULL;
  3484. }
  3485. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3486. #endif
  3487. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3488. {
  3489. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3490. tp->rx_opt.ts_recent_stamp = get_seconds();
  3491. }
  3492. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3493. {
  3494. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3495. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3496. * extra check below makes sure this can only happen
  3497. * for pure ACK frames. -DaveM
  3498. *
  3499. * Not only, also it occurs for expired timestamps.
  3500. */
  3501. if (tcp_paws_check(&tp->rx_opt, 0))
  3502. tcp_store_ts_recent(tp);
  3503. }
  3504. }
  3505. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3506. *
  3507. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3508. * it can pass through stack. So, the following predicate verifies that
  3509. * this segment is not used for anything but congestion avoidance or
  3510. * fast retransmit. Moreover, we even are able to eliminate most of such
  3511. * second order effects, if we apply some small "replay" window (~RTO)
  3512. * to timestamp space.
  3513. *
  3514. * All these measures still do not guarantee that we reject wrapped ACKs
  3515. * on networks with high bandwidth, when sequence space is recycled fastly,
  3516. * but it guarantees that such events will be very rare and do not affect
  3517. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3518. * buggy extension.
  3519. *
  3520. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3521. * states that events when retransmit arrives after original data are rare.
  3522. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3523. * the biggest problem on large power networks even with minor reordering.
  3524. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3525. * up to bandwidth of 18Gigabit/sec. 8) ]
  3526. */
  3527. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3528. {
  3529. const struct tcp_sock *tp = tcp_sk(sk);
  3530. const struct tcphdr *th = tcp_hdr(skb);
  3531. u32 seq = TCP_SKB_CB(skb)->seq;
  3532. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3533. return (/* 1. Pure ACK with correct sequence number. */
  3534. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3535. /* 2. ... and duplicate ACK. */
  3536. ack == tp->snd_una &&
  3537. /* 3. ... and does not update window. */
  3538. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3539. /* 4. ... and sits in replay window. */
  3540. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3541. }
  3542. static inline int tcp_paws_discard(const struct sock *sk,
  3543. const struct sk_buff *skb)
  3544. {
  3545. const struct tcp_sock *tp = tcp_sk(sk);
  3546. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3547. !tcp_disordered_ack(sk, skb);
  3548. }
  3549. /* Check segment sequence number for validity.
  3550. *
  3551. * Segment controls are considered valid, if the segment
  3552. * fits to the window after truncation to the window. Acceptability
  3553. * of data (and SYN, FIN, of course) is checked separately.
  3554. * See tcp_data_queue(), for example.
  3555. *
  3556. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3557. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3558. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3559. * (borrowed from freebsd)
  3560. */
  3561. static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3562. {
  3563. return !before(end_seq, tp->rcv_wup) &&
  3564. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3565. }
  3566. /* When we get a reset we do this. */
  3567. static void tcp_reset(struct sock *sk)
  3568. {
  3569. /* We want the right error as BSD sees it (and indeed as we do). */
  3570. switch (sk->sk_state) {
  3571. case TCP_SYN_SENT:
  3572. sk->sk_err = ECONNREFUSED;
  3573. break;
  3574. case TCP_CLOSE_WAIT:
  3575. sk->sk_err = EPIPE;
  3576. break;
  3577. case TCP_CLOSE:
  3578. return;
  3579. default:
  3580. sk->sk_err = ECONNRESET;
  3581. }
  3582. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3583. smp_wmb();
  3584. if (!sock_flag(sk, SOCK_DEAD))
  3585. sk->sk_error_report(sk);
  3586. tcp_done(sk);
  3587. }
  3588. /*
  3589. * Process the FIN bit. This now behaves as it is supposed to work
  3590. * and the FIN takes effect when it is validly part of sequence
  3591. * space. Not before when we get holes.
  3592. *
  3593. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3594. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3595. * TIME-WAIT)
  3596. *
  3597. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3598. * close and we go into CLOSING (and later onto TIME-WAIT)
  3599. *
  3600. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3601. */
  3602. static void tcp_fin(struct sock *sk)
  3603. {
  3604. struct tcp_sock *tp = tcp_sk(sk);
  3605. inet_csk_schedule_ack(sk);
  3606. sk->sk_shutdown |= RCV_SHUTDOWN;
  3607. sock_set_flag(sk, SOCK_DONE);
  3608. switch (sk->sk_state) {
  3609. case TCP_SYN_RECV:
  3610. case TCP_ESTABLISHED:
  3611. /* Move to CLOSE_WAIT */
  3612. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3613. inet_csk(sk)->icsk_ack.pingpong = 1;
  3614. break;
  3615. case TCP_CLOSE_WAIT:
  3616. case TCP_CLOSING:
  3617. /* Received a retransmission of the FIN, do
  3618. * nothing.
  3619. */
  3620. break;
  3621. case TCP_LAST_ACK:
  3622. /* RFC793: Remain in the LAST-ACK state. */
  3623. break;
  3624. case TCP_FIN_WAIT1:
  3625. /* This case occurs when a simultaneous close
  3626. * happens, we must ack the received FIN and
  3627. * enter the CLOSING state.
  3628. */
  3629. tcp_send_ack(sk);
  3630. tcp_set_state(sk, TCP_CLOSING);
  3631. break;
  3632. case TCP_FIN_WAIT2:
  3633. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3634. tcp_send_ack(sk);
  3635. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3636. break;
  3637. default:
  3638. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3639. * cases we should never reach this piece of code.
  3640. */
  3641. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  3642. __func__, sk->sk_state);
  3643. break;
  3644. }
  3645. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3646. * Probably, we should reset in this case. For now drop them.
  3647. */
  3648. __skb_queue_purge(&tp->out_of_order_queue);
  3649. if (tcp_is_sack(tp))
  3650. tcp_sack_reset(&tp->rx_opt);
  3651. sk_mem_reclaim(sk);
  3652. if (!sock_flag(sk, SOCK_DEAD)) {
  3653. sk->sk_state_change(sk);
  3654. /* Do not send POLL_HUP for half duplex close. */
  3655. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3656. sk->sk_state == TCP_CLOSE)
  3657. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3658. else
  3659. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3660. }
  3661. }
  3662. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3663. u32 end_seq)
  3664. {
  3665. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3666. if (before(seq, sp->start_seq))
  3667. sp->start_seq = seq;
  3668. if (after(end_seq, sp->end_seq))
  3669. sp->end_seq = end_seq;
  3670. return 1;
  3671. }
  3672. return 0;
  3673. }
  3674. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3675. {
  3676. struct tcp_sock *tp = tcp_sk(sk);
  3677. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3678. int mib_idx;
  3679. if (before(seq, tp->rcv_nxt))
  3680. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3681. else
  3682. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3683. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3684. tp->rx_opt.dsack = 1;
  3685. tp->duplicate_sack[0].start_seq = seq;
  3686. tp->duplicate_sack[0].end_seq = end_seq;
  3687. }
  3688. }
  3689. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3690. {
  3691. struct tcp_sock *tp = tcp_sk(sk);
  3692. if (!tp->rx_opt.dsack)
  3693. tcp_dsack_set(sk, seq, end_seq);
  3694. else
  3695. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3696. }
  3697. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3698. {
  3699. struct tcp_sock *tp = tcp_sk(sk);
  3700. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3701. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3702. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3703. tcp_enter_quickack_mode(sk);
  3704. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3705. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3706. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3707. end_seq = tp->rcv_nxt;
  3708. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3709. }
  3710. }
  3711. tcp_send_ack(sk);
  3712. }
  3713. /* These routines update the SACK block as out-of-order packets arrive or
  3714. * in-order packets close up the sequence space.
  3715. */
  3716. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3717. {
  3718. int this_sack;
  3719. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3720. struct tcp_sack_block *swalk = sp + 1;
  3721. /* See if the recent change to the first SACK eats into
  3722. * or hits the sequence space of other SACK blocks, if so coalesce.
  3723. */
  3724. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3725. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3726. int i;
  3727. /* Zap SWALK, by moving every further SACK up by one slot.
  3728. * Decrease num_sacks.
  3729. */
  3730. tp->rx_opt.num_sacks--;
  3731. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3732. sp[i] = sp[i + 1];
  3733. continue;
  3734. }
  3735. this_sack++, swalk++;
  3736. }
  3737. }
  3738. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3739. {
  3740. struct tcp_sock *tp = tcp_sk(sk);
  3741. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3742. int cur_sacks = tp->rx_opt.num_sacks;
  3743. int this_sack;
  3744. if (!cur_sacks)
  3745. goto new_sack;
  3746. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3747. if (tcp_sack_extend(sp, seq, end_seq)) {
  3748. /* Rotate this_sack to the first one. */
  3749. for (; this_sack > 0; this_sack--, sp--)
  3750. swap(*sp, *(sp - 1));
  3751. if (cur_sacks > 1)
  3752. tcp_sack_maybe_coalesce(tp);
  3753. return;
  3754. }
  3755. }
  3756. /* Could not find an adjacent existing SACK, build a new one,
  3757. * put it at the front, and shift everyone else down. We
  3758. * always know there is at least one SACK present already here.
  3759. *
  3760. * If the sack array is full, forget about the last one.
  3761. */
  3762. if (this_sack >= TCP_NUM_SACKS) {
  3763. this_sack--;
  3764. tp->rx_opt.num_sacks--;
  3765. sp--;
  3766. }
  3767. for (; this_sack > 0; this_sack--, sp--)
  3768. *sp = *(sp - 1);
  3769. new_sack:
  3770. /* Build the new head SACK, and we're done. */
  3771. sp->start_seq = seq;
  3772. sp->end_seq = end_seq;
  3773. tp->rx_opt.num_sacks++;
  3774. }
  3775. /* RCV.NXT advances, some SACKs should be eaten. */
  3776. static void tcp_sack_remove(struct tcp_sock *tp)
  3777. {
  3778. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3779. int num_sacks = tp->rx_opt.num_sacks;
  3780. int this_sack;
  3781. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3782. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3783. tp->rx_opt.num_sacks = 0;
  3784. return;
  3785. }
  3786. for (this_sack = 0; this_sack < num_sacks;) {
  3787. /* Check if the start of the sack is covered by RCV.NXT. */
  3788. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3789. int i;
  3790. /* RCV.NXT must cover all the block! */
  3791. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3792. /* Zap this SACK, by moving forward any other SACKS. */
  3793. for (i=this_sack+1; i < num_sacks; i++)
  3794. tp->selective_acks[i-1] = tp->selective_acks[i];
  3795. num_sacks--;
  3796. continue;
  3797. }
  3798. this_sack++;
  3799. sp++;
  3800. }
  3801. tp->rx_opt.num_sacks = num_sacks;
  3802. }
  3803. /* This one checks to see if we can put data from the
  3804. * out_of_order queue into the receive_queue.
  3805. */
  3806. static void tcp_ofo_queue(struct sock *sk)
  3807. {
  3808. struct tcp_sock *tp = tcp_sk(sk);
  3809. __u32 dsack_high = tp->rcv_nxt;
  3810. struct sk_buff *skb;
  3811. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3812. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3813. break;
  3814. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3815. __u32 dsack = dsack_high;
  3816. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3817. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3818. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3819. }
  3820. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3821. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3822. __skb_unlink(skb, &tp->out_of_order_queue);
  3823. __kfree_skb(skb);
  3824. continue;
  3825. }
  3826. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3827. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3828. TCP_SKB_CB(skb)->end_seq);
  3829. __skb_unlink(skb, &tp->out_of_order_queue);
  3830. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3831. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3832. if (tcp_hdr(skb)->fin)
  3833. tcp_fin(sk);
  3834. }
  3835. }
  3836. static int tcp_prune_ofo_queue(struct sock *sk);
  3837. static int tcp_prune_queue(struct sock *sk);
  3838. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3839. {
  3840. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3841. !sk_rmem_schedule(sk, size)) {
  3842. if (tcp_prune_queue(sk) < 0)
  3843. return -1;
  3844. if (!sk_rmem_schedule(sk, size)) {
  3845. if (!tcp_prune_ofo_queue(sk))
  3846. return -1;
  3847. if (!sk_rmem_schedule(sk, size))
  3848. return -1;
  3849. }
  3850. }
  3851. return 0;
  3852. }
  3853. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3854. {
  3855. const struct tcphdr *th = tcp_hdr(skb);
  3856. struct tcp_sock *tp = tcp_sk(sk);
  3857. int eaten = -1;
  3858. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3859. goto drop;
  3860. skb_dst_drop(skb);
  3861. __skb_pull(skb, th->doff * 4);
  3862. TCP_ECN_accept_cwr(tp, skb);
  3863. tp->rx_opt.dsack = 0;
  3864. /* Queue data for delivery to the user.
  3865. * Packets in sequence go to the receive queue.
  3866. * Out of sequence packets to the out_of_order_queue.
  3867. */
  3868. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3869. if (tcp_receive_window(tp) == 0)
  3870. goto out_of_window;
  3871. /* Ok. In sequence. In window. */
  3872. if (tp->ucopy.task == current &&
  3873. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3874. sock_owned_by_user(sk) && !tp->urg_data) {
  3875. int chunk = min_t(unsigned int, skb->len,
  3876. tp->ucopy.len);
  3877. __set_current_state(TASK_RUNNING);
  3878. local_bh_enable();
  3879. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3880. tp->ucopy.len -= chunk;
  3881. tp->copied_seq += chunk;
  3882. eaten = (chunk == skb->len);
  3883. tcp_rcv_space_adjust(sk);
  3884. }
  3885. local_bh_disable();
  3886. }
  3887. if (eaten <= 0) {
  3888. queue_and_out:
  3889. if (eaten < 0 &&
  3890. tcp_try_rmem_schedule(sk, skb->truesize))
  3891. goto drop;
  3892. skb_set_owner_r(skb, sk);
  3893. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3894. }
  3895. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3896. if (skb->len)
  3897. tcp_event_data_recv(sk, skb);
  3898. if (th->fin)
  3899. tcp_fin(sk);
  3900. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3901. tcp_ofo_queue(sk);
  3902. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3903. * gap in queue is filled.
  3904. */
  3905. if (skb_queue_empty(&tp->out_of_order_queue))
  3906. inet_csk(sk)->icsk_ack.pingpong = 0;
  3907. }
  3908. if (tp->rx_opt.num_sacks)
  3909. tcp_sack_remove(tp);
  3910. tcp_fast_path_check(sk);
  3911. if (eaten > 0)
  3912. __kfree_skb(skb);
  3913. else if (!sock_flag(sk, SOCK_DEAD))
  3914. sk->sk_data_ready(sk, 0);
  3915. return;
  3916. }
  3917. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3918. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3919. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3920. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3921. out_of_window:
  3922. tcp_enter_quickack_mode(sk);
  3923. inet_csk_schedule_ack(sk);
  3924. drop:
  3925. __kfree_skb(skb);
  3926. return;
  3927. }
  3928. /* Out of window. F.e. zero window probe. */
  3929. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3930. goto out_of_window;
  3931. tcp_enter_quickack_mode(sk);
  3932. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3933. /* Partial packet, seq < rcv_next < end_seq */
  3934. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3935. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3936. TCP_SKB_CB(skb)->end_seq);
  3937. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3938. /* If window is closed, drop tail of packet. But after
  3939. * remembering D-SACK for its head made in previous line.
  3940. */
  3941. if (!tcp_receive_window(tp))
  3942. goto out_of_window;
  3943. goto queue_and_out;
  3944. }
  3945. TCP_ECN_check_ce(tp, skb);
  3946. if (tcp_try_rmem_schedule(sk, skb->truesize))
  3947. goto drop;
  3948. /* Disable header prediction. */
  3949. tp->pred_flags = 0;
  3950. inet_csk_schedule_ack(sk);
  3951. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3952. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3953. skb_set_owner_r(skb, sk);
  3954. if (!skb_peek(&tp->out_of_order_queue)) {
  3955. /* Initial out of order segment, build 1 SACK. */
  3956. if (tcp_is_sack(tp)) {
  3957. tp->rx_opt.num_sacks = 1;
  3958. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3959. tp->selective_acks[0].end_seq =
  3960. TCP_SKB_CB(skb)->end_seq;
  3961. }
  3962. __skb_queue_head(&tp->out_of_order_queue, skb);
  3963. } else {
  3964. struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3965. u32 seq = TCP_SKB_CB(skb)->seq;
  3966. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3967. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3968. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3969. if (!tp->rx_opt.num_sacks ||
  3970. tp->selective_acks[0].end_seq != seq)
  3971. goto add_sack;
  3972. /* Common case: data arrive in order after hole. */
  3973. tp->selective_acks[0].end_seq = end_seq;
  3974. return;
  3975. }
  3976. /* Find place to insert this segment. */
  3977. while (1) {
  3978. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3979. break;
  3980. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3981. skb1 = NULL;
  3982. break;
  3983. }
  3984. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3985. }
  3986. /* Do skb overlap to previous one? */
  3987. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3988. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3989. /* All the bits are present. Drop. */
  3990. __kfree_skb(skb);
  3991. tcp_dsack_set(sk, seq, end_seq);
  3992. goto add_sack;
  3993. }
  3994. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3995. /* Partial overlap. */
  3996. tcp_dsack_set(sk, seq,
  3997. TCP_SKB_CB(skb1)->end_seq);
  3998. } else {
  3999. if (skb_queue_is_first(&tp->out_of_order_queue,
  4000. skb1))
  4001. skb1 = NULL;
  4002. else
  4003. skb1 = skb_queue_prev(
  4004. &tp->out_of_order_queue,
  4005. skb1);
  4006. }
  4007. }
  4008. if (!skb1)
  4009. __skb_queue_head(&tp->out_of_order_queue, skb);
  4010. else
  4011. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  4012. /* And clean segments covered by new one as whole. */
  4013. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  4014. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  4015. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  4016. break;
  4017. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4018. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4019. end_seq);
  4020. break;
  4021. }
  4022. __skb_unlink(skb1, &tp->out_of_order_queue);
  4023. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4024. TCP_SKB_CB(skb1)->end_seq);
  4025. __kfree_skb(skb1);
  4026. }
  4027. add_sack:
  4028. if (tcp_is_sack(tp))
  4029. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  4030. }
  4031. }
  4032. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4033. struct sk_buff_head *list)
  4034. {
  4035. struct sk_buff *next = NULL;
  4036. if (!skb_queue_is_last(list, skb))
  4037. next = skb_queue_next(list, skb);
  4038. __skb_unlink(skb, list);
  4039. __kfree_skb(skb);
  4040. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4041. return next;
  4042. }
  4043. /* Collapse contiguous sequence of skbs head..tail with
  4044. * sequence numbers start..end.
  4045. *
  4046. * If tail is NULL, this means until the end of the list.
  4047. *
  4048. * Segments with FIN/SYN are not collapsed (only because this
  4049. * simplifies code)
  4050. */
  4051. static void
  4052. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4053. struct sk_buff *head, struct sk_buff *tail,
  4054. u32 start, u32 end)
  4055. {
  4056. struct sk_buff *skb, *n;
  4057. bool end_of_skbs;
  4058. /* First, check that queue is collapsible and find
  4059. * the point where collapsing can be useful. */
  4060. skb = head;
  4061. restart:
  4062. end_of_skbs = true;
  4063. skb_queue_walk_from_safe(list, skb, n) {
  4064. if (skb == tail)
  4065. break;
  4066. /* No new bits? It is possible on ofo queue. */
  4067. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4068. skb = tcp_collapse_one(sk, skb, list);
  4069. if (!skb)
  4070. break;
  4071. goto restart;
  4072. }
  4073. /* The first skb to collapse is:
  4074. * - not SYN/FIN and
  4075. * - bloated or contains data before "start" or
  4076. * overlaps to the next one.
  4077. */
  4078. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4079. (tcp_win_from_space(skb->truesize) > skb->len ||
  4080. before(TCP_SKB_CB(skb)->seq, start))) {
  4081. end_of_skbs = false;
  4082. break;
  4083. }
  4084. if (!skb_queue_is_last(list, skb)) {
  4085. struct sk_buff *next = skb_queue_next(list, skb);
  4086. if (next != tail &&
  4087. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4088. end_of_skbs = false;
  4089. break;
  4090. }
  4091. }
  4092. /* Decided to skip this, advance start seq. */
  4093. start = TCP_SKB_CB(skb)->end_seq;
  4094. }
  4095. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4096. return;
  4097. while (before(start, end)) {
  4098. struct sk_buff *nskb;
  4099. unsigned int header = skb_headroom(skb);
  4100. int copy = SKB_MAX_ORDER(header, 0);
  4101. /* Too big header? This can happen with IPv6. */
  4102. if (copy < 0)
  4103. return;
  4104. if (end - start < copy)
  4105. copy = end - start;
  4106. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4107. if (!nskb)
  4108. return;
  4109. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4110. skb_set_network_header(nskb, (skb_network_header(skb) -
  4111. skb->head));
  4112. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4113. skb->head));
  4114. skb_reserve(nskb, header);
  4115. memcpy(nskb->head, skb->head, header);
  4116. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4117. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4118. __skb_queue_before(list, skb, nskb);
  4119. skb_set_owner_r(nskb, sk);
  4120. /* Copy data, releasing collapsed skbs. */
  4121. while (copy > 0) {
  4122. int offset = start - TCP_SKB_CB(skb)->seq;
  4123. int size = TCP_SKB_CB(skb)->end_seq - start;
  4124. BUG_ON(offset < 0);
  4125. if (size > 0) {
  4126. size = min(copy, size);
  4127. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4128. BUG();
  4129. TCP_SKB_CB(nskb)->end_seq += size;
  4130. copy -= size;
  4131. start += size;
  4132. }
  4133. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4134. skb = tcp_collapse_one(sk, skb, list);
  4135. if (!skb ||
  4136. skb == tail ||
  4137. tcp_hdr(skb)->syn ||
  4138. tcp_hdr(skb)->fin)
  4139. return;
  4140. }
  4141. }
  4142. }
  4143. }
  4144. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4145. * and tcp_collapse() them until all the queue is collapsed.
  4146. */
  4147. static void tcp_collapse_ofo_queue(struct sock *sk)
  4148. {
  4149. struct tcp_sock *tp = tcp_sk(sk);
  4150. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4151. struct sk_buff *head;
  4152. u32 start, end;
  4153. if (skb == NULL)
  4154. return;
  4155. start = TCP_SKB_CB(skb)->seq;
  4156. end = TCP_SKB_CB(skb)->end_seq;
  4157. head = skb;
  4158. for (;;) {
  4159. struct sk_buff *next = NULL;
  4160. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4161. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4162. skb = next;
  4163. /* Segment is terminated when we see gap or when
  4164. * we are at the end of all the queue. */
  4165. if (!skb ||
  4166. after(TCP_SKB_CB(skb)->seq, end) ||
  4167. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4168. tcp_collapse(sk, &tp->out_of_order_queue,
  4169. head, skb, start, end);
  4170. head = skb;
  4171. if (!skb)
  4172. break;
  4173. /* Start new segment */
  4174. start = TCP_SKB_CB(skb)->seq;
  4175. end = TCP_SKB_CB(skb)->end_seq;
  4176. } else {
  4177. if (before(TCP_SKB_CB(skb)->seq, start))
  4178. start = TCP_SKB_CB(skb)->seq;
  4179. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4180. end = TCP_SKB_CB(skb)->end_seq;
  4181. }
  4182. }
  4183. }
  4184. /*
  4185. * Purge the out-of-order queue.
  4186. * Return true if queue was pruned.
  4187. */
  4188. static int tcp_prune_ofo_queue(struct sock *sk)
  4189. {
  4190. struct tcp_sock *tp = tcp_sk(sk);
  4191. int res = 0;
  4192. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4193. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4194. __skb_queue_purge(&tp->out_of_order_queue);
  4195. /* Reset SACK state. A conforming SACK implementation will
  4196. * do the same at a timeout based retransmit. When a connection
  4197. * is in a sad state like this, we care only about integrity
  4198. * of the connection not performance.
  4199. */
  4200. if (tp->rx_opt.sack_ok)
  4201. tcp_sack_reset(&tp->rx_opt);
  4202. sk_mem_reclaim(sk);
  4203. res = 1;
  4204. }
  4205. return res;
  4206. }
  4207. /* Reduce allocated memory if we can, trying to get
  4208. * the socket within its memory limits again.
  4209. *
  4210. * Return less than zero if we should start dropping frames
  4211. * until the socket owning process reads some of the data
  4212. * to stabilize the situation.
  4213. */
  4214. static int tcp_prune_queue(struct sock *sk)
  4215. {
  4216. struct tcp_sock *tp = tcp_sk(sk);
  4217. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4218. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4219. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4220. tcp_clamp_window(sk);
  4221. else if (sk_under_memory_pressure(sk))
  4222. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4223. tcp_collapse_ofo_queue(sk);
  4224. if (!skb_queue_empty(&sk->sk_receive_queue))
  4225. tcp_collapse(sk, &sk->sk_receive_queue,
  4226. skb_peek(&sk->sk_receive_queue),
  4227. NULL,
  4228. tp->copied_seq, tp->rcv_nxt);
  4229. sk_mem_reclaim(sk);
  4230. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4231. return 0;
  4232. /* Collapsing did not help, destructive actions follow.
  4233. * This must not ever occur. */
  4234. tcp_prune_ofo_queue(sk);
  4235. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4236. return 0;
  4237. /* If we are really being abused, tell the caller to silently
  4238. * drop receive data on the floor. It will get retransmitted
  4239. * and hopefully then we'll have sufficient space.
  4240. */
  4241. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4242. /* Massive buffer overcommit. */
  4243. tp->pred_flags = 0;
  4244. return -1;
  4245. }
  4246. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4247. * As additional protections, we do not touch cwnd in retransmission phases,
  4248. * and if application hit its sndbuf limit recently.
  4249. */
  4250. void tcp_cwnd_application_limited(struct sock *sk)
  4251. {
  4252. struct tcp_sock *tp = tcp_sk(sk);
  4253. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4254. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4255. /* Limited by application or receiver window. */
  4256. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4257. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4258. if (win_used < tp->snd_cwnd) {
  4259. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4260. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4261. }
  4262. tp->snd_cwnd_used = 0;
  4263. }
  4264. tp->snd_cwnd_stamp = tcp_time_stamp;
  4265. }
  4266. static int tcp_should_expand_sndbuf(const struct sock *sk)
  4267. {
  4268. const struct tcp_sock *tp = tcp_sk(sk);
  4269. /* If the user specified a specific send buffer setting, do
  4270. * not modify it.
  4271. */
  4272. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4273. return 0;
  4274. /* If we are under global TCP memory pressure, do not expand. */
  4275. if (sk_under_memory_pressure(sk))
  4276. return 0;
  4277. /* If we are under soft global TCP memory pressure, do not expand. */
  4278. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4279. return 0;
  4280. /* If we filled the congestion window, do not expand. */
  4281. if (tp->packets_out >= tp->snd_cwnd)
  4282. return 0;
  4283. return 1;
  4284. }
  4285. /* When incoming ACK allowed to free some skb from write_queue,
  4286. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4287. * on the exit from tcp input handler.
  4288. *
  4289. * PROBLEM: sndbuf expansion does not work well with largesend.
  4290. */
  4291. static void tcp_new_space(struct sock *sk)
  4292. {
  4293. struct tcp_sock *tp = tcp_sk(sk);
  4294. if (tcp_should_expand_sndbuf(sk)) {
  4295. int sndmem = SKB_TRUESIZE(max_t(u32,
  4296. tp->rx_opt.mss_clamp,
  4297. tp->mss_cache) +
  4298. MAX_TCP_HEADER);
  4299. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4300. tp->reordering + 1);
  4301. sndmem *= 2 * demanded;
  4302. if (sndmem > sk->sk_sndbuf)
  4303. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4304. tp->snd_cwnd_stamp = tcp_time_stamp;
  4305. }
  4306. sk->sk_write_space(sk);
  4307. }
  4308. static void tcp_check_space(struct sock *sk)
  4309. {
  4310. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4311. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4312. if (sk->sk_socket &&
  4313. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4314. tcp_new_space(sk);
  4315. }
  4316. }
  4317. static inline void tcp_data_snd_check(struct sock *sk)
  4318. {
  4319. tcp_push_pending_frames(sk);
  4320. tcp_check_space(sk);
  4321. }
  4322. /*
  4323. * Check if sending an ack is needed.
  4324. */
  4325. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4326. {
  4327. struct tcp_sock *tp = tcp_sk(sk);
  4328. /* More than one full frame received... */
  4329. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4330. /* ... and right edge of window advances far enough.
  4331. * (tcp_recvmsg() will send ACK otherwise). Or...
  4332. */
  4333. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4334. /* We ACK each frame or... */
  4335. tcp_in_quickack_mode(sk) ||
  4336. /* We have out of order data. */
  4337. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4338. /* Then ack it now */
  4339. tcp_send_ack(sk);
  4340. } else {
  4341. /* Else, send delayed ack. */
  4342. tcp_send_delayed_ack(sk);
  4343. }
  4344. }
  4345. static inline void tcp_ack_snd_check(struct sock *sk)
  4346. {
  4347. if (!inet_csk_ack_scheduled(sk)) {
  4348. /* We sent a data segment already. */
  4349. return;
  4350. }
  4351. __tcp_ack_snd_check(sk, 1);
  4352. }
  4353. /*
  4354. * This routine is only called when we have urgent data
  4355. * signaled. Its the 'slow' part of tcp_urg. It could be
  4356. * moved inline now as tcp_urg is only called from one
  4357. * place. We handle URGent data wrong. We have to - as
  4358. * BSD still doesn't use the correction from RFC961.
  4359. * For 1003.1g we should support a new option TCP_STDURG to permit
  4360. * either form (or just set the sysctl tcp_stdurg).
  4361. */
  4362. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4363. {
  4364. struct tcp_sock *tp = tcp_sk(sk);
  4365. u32 ptr = ntohs(th->urg_ptr);
  4366. if (ptr && !sysctl_tcp_stdurg)
  4367. ptr--;
  4368. ptr += ntohl(th->seq);
  4369. /* Ignore urgent data that we've already seen and read. */
  4370. if (after(tp->copied_seq, ptr))
  4371. return;
  4372. /* Do not replay urg ptr.
  4373. *
  4374. * NOTE: interesting situation not covered by specs.
  4375. * Misbehaving sender may send urg ptr, pointing to segment,
  4376. * which we already have in ofo queue. We are not able to fetch
  4377. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4378. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4379. * situations. But it is worth to think about possibility of some
  4380. * DoSes using some hypothetical application level deadlock.
  4381. */
  4382. if (before(ptr, tp->rcv_nxt))
  4383. return;
  4384. /* Do we already have a newer (or duplicate) urgent pointer? */
  4385. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4386. return;
  4387. /* Tell the world about our new urgent pointer. */
  4388. sk_send_sigurg(sk);
  4389. /* We may be adding urgent data when the last byte read was
  4390. * urgent. To do this requires some care. We cannot just ignore
  4391. * tp->copied_seq since we would read the last urgent byte again
  4392. * as data, nor can we alter copied_seq until this data arrives
  4393. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4394. *
  4395. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4396. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4397. * and expect that both A and B disappear from stream. This is _wrong_.
  4398. * Though this happens in BSD with high probability, this is occasional.
  4399. * Any application relying on this is buggy. Note also, that fix "works"
  4400. * only in this artificial test. Insert some normal data between A and B and we will
  4401. * decline of BSD again. Verdict: it is better to remove to trap
  4402. * buggy users.
  4403. */
  4404. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4405. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4406. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4407. tp->copied_seq++;
  4408. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4409. __skb_unlink(skb, &sk->sk_receive_queue);
  4410. __kfree_skb(skb);
  4411. }
  4412. }
  4413. tp->urg_data = TCP_URG_NOTYET;
  4414. tp->urg_seq = ptr;
  4415. /* Disable header prediction. */
  4416. tp->pred_flags = 0;
  4417. }
  4418. /* This is the 'fast' part of urgent handling. */
  4419. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4420. {
  4421. struct tcp_sock *tp = tcp_sk(sk);
  4422. /* Check if we get a new urgent pointer - normally not. */
  4423. if (th->urg)
  4424. tcp_check_urg(sk, th);
  4425. /* Do we wait for any urgent data? - normally not... */
  4426. if (tp->urg_data == TCP_URG_NOTYET) {
  4427. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4428. th->syn;
  4429. /* Is the urgent pointer pointing into this packet? */
  4430. if (ptr < skb->len) {
  4431. u8 tmp;
  4432. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4433. BUG();
  4434. tp->urg_data = TCP_URG_VALID | tmp;
  4435. if (!sock_flag(sk, SOCK_DEAD))
  4436. sk->sk_data_ready(sk, 0);
  4437. }
  4438. }
  4439. }
  4440. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4441. {
  4442. struct tcp_sock *tp = tcp_sk(sk);
  4443. int chunk = skb->len - hlen;
  4444. int err;
  4445. local_bh_enable();
  4446. if (skb_csum_unnecessary(skb))
  4447. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4448. else
  4449. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4450. tp->ucopy.iov);
  4451. if (!err) {
  4452. tp->ucopy.len -= chunk;
  4453. tp->copied_seq += chunk;
  4454. tcp_rcv_space_adjust(sk);
  4455. }
  4456. local_bh_disable();
  4457. return err;
  4458. }
  4459. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4460. struct sk_buff *skb)
  4461. {
  4462. __sum16 result;
  4463. if (sock_owned_by_user(sk)) {
  4464. local_bh_enable();
  4465. result = __tcp_checksum_complete(skb);
  4466. local_bh_disable();
  4467. } else {
  4468. result = __tcp_checksum_complete(skb);
  4469. }
  4470. return result;
  4471. }
  4472. static inline int tcp_checksum_complete_user(struct sock *sk,
  4473. struct sk_buff *skb)
  4474. {
  4475. return !skb_csum_unnecessary(skb) &&
  4476. __tcp_checksum_complete_user(sk, skb);
  4477. }
  4478. #ifdef CONFIG_NET_DMA
  4479. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4480. int hlen)
  4481. {
  4482. struct tcp_sock *tp = tcp_sk(sk);
  4483. int chunk = skb->len - hlen;
  4484. int dma_cookie;
  4485. int copied_early = 0;
  4486. if (tp->ucopy.wakeup)
  4487. return 0;
  4488. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4489. tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
  4490. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4491. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4492. skb, hlen,
  4493. tp->ucopy.iov, chunk,
  4494. tp->ucopy.pinned_list);
  4495. if (dma_cookie < 0)
  4496. goto out;
  4497. tp->ucopy.dma_cookie = dma_cookie;
  4498. copied_early = 1;
  4499. tp->ucopy.len -= chunk;
  4500. tp->copied_seq += chunk;
  4501. tcp_rcv_space_adjust(sk);
  4502. if ((tp->ucopy.len == 0) ||
  4503. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4504. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4505. tp->ucopy.wakeup = 1;
  4506. sk->sk_data_ready(sk, 0);
  4507. }
  4508. } else if (chunk > 0) {
  4509. tp->ucopy.wakeup = 1;
  4510. sk->sk_data_ready(sk, 0);
  4511. }
  4512. out:
  4513. return copied_early;
  4514. }
  4515. #endif /* CONFIG_NET_DMA */
  4516. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4517. * play significant role here.
  4518. */
  4519. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4520. const struct tcphdr *th, int syn_inerr)
  4521. {
  4522. const u8 *hash_location;
  4523. struct tcp_sock *tp = tcp_sk(sk);
  4524. /* RFC1323: H1. Apply PAWS check first. */
  4525. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4526. tp->rx_opt.saw_tstamp &&
  4527. tcp_paws_discard(sk, skb)) {
  4528. if (!th->rst) {
  4529. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4530. tcp_send_dupack(sk, skb);
  4531. goto discard;
  4532. }
  4533. /* Reset is accepted even if it did not pass PAWS. */
  4534. }
  4535. /* Step 1: check sequence number */
  4536. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4537. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4538. * (RST) segments are validated by checking their SEQ-fields."
  4539. * And page 69: "If an incoming segment is not acceptable,
  4540. * an acknowledgment should be sent in reply (unless the RST
  4541. * bit is set, if so drop the segment and return)".
  4542. */
  4543. if (!th->rst)
  4544. tcp_send_dupack(sk, skb);
  4545. goto discard;
  4546. }
  4547. /* Step 2: check RST bit */
  4548. if (th->rst) {
  4549. tcp_reset(sk);
  4550. goto discard;
  4551. }
  4552. /* ts_recent update must be made after we are sure that the packet
  4553. * is in window.
  4554. */
  4555. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4556. /* step 3: check security and precedence [ignored] */
  4557. /* step 4: Check for a SYN in window. */
  4558. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4559. if (syn_inerr)
  4560. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4561. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4562. tcp_reset(sk);
  4563. return -1;
  4564. }
  4565. return 1;
  4566. discard:
  4567. __kfree_skb(skb);
  4568. return 0;
  4569. }
  4570. /*
  4571. * TCP receive function for the ESTABLISHED state.
  4572. *
  4573. * It is split into a fast path and a slow path. The fast path is
  4574. * disabled when:
  4575. * - A zero window was announced from us - zero window probing
  4576. * is only handled properly in the slow path.
  4577. * - Out of order segments arrived.
  4578. * - Urgent data is expected.
  4579. * - There is no buffer space left
  4580. * - Unexpected TCP flags/window values/header lengths are received
  4581. * (detected by checking the TCP header against pred_flags)
  4582. * - Data is sent in both directions. Fast path only supports pure senders
  4583. * or pure receivers (this means either the sequence number or the ack
  4584. * value must stay constant)
  4585. * - Unexpected TCP option.
  4586. *
  4587. * When these conditions are not satisfied it drops into a standard
  4588. * receive procedure patterned after RFC793 to handle all cases.
  4589. * The first three cases are guaranteed by proper pred_flags setting,
  4590. * the rest is checked inline. Fast processing is turned on in
  4591. * tcp_data_queue when everything is OK.
  4592. */
  4593. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4594. const struct tcphdr *th, unsigned int len)
  4595. {
  4596. struct tcp_sock *tp = tcp_sk(sk);
  4597. int res;
  4598. /*
  4599. * Header prediction.
  4600. * The code loosely follows the one in the famous
  4601. * "30 instruction TCP receive" Van Jacobson mail.
  4602. *
  4603. * Van's trick is to deposit buffers into socket queue
  4604. * on a device interrupt, to call tcp_recv function
  4605. * on the receive process context and checksum and copy
  4606. * the buffer to user space. smart...
  4607. *
  4608. * Our current scheme is not silly either but we take the
  4609. * extra cost of the net_bh soft interrupt processing...
  4610. * We do checksum and copy also but from device to kernel.
  4611. */
  4612. tp->rx_opt.saw_tstamp = 0;
  4613. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4614. * if header_prediction is to be made
  4615. * 'S' will always be tp->tcp_header_len >> 2
  4616. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4617. * turn it off (when there are holes in the receive
  4618. * space for instance)
  4619. * PSH flag is ignored.
  4620. */
  4621. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4622. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4623. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4624. int tcp_header_len = tp->tcp_header_len;
  4625. /* Timestamp header prediction: tcp_header_len
  4626. * is automatically equal to th->doff*4 due to pred_flags
  4627. * match.
  4628. */
  4629. /* Check timestamp */
  4630. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4631. /* No? Slow path! */
  4632. if (!tcp_parse_aligned_timestamp(tp, th))
  4633. goto slow_path;
  4634. /* If PAWS failed, check it more carefully in slow path */
  4635. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4636. goto slow_path;
  4637. /* DO NOT update ts_recent here, if checksum fails
  4638. * and timestamp was corrupted part, it will result
  4639. * in a hung connection since we will drop all
  4640. * future packets due to the PAWS test.
  4641. */
  4642. }
  4643. if (len <= tcp_header_len) {
  4644. /* Bulk data transfer: sender */
  4645. if (len == tcp_header_len) {
  4646. /* Predicted packet is in window by definition.
  4647. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4648. * Hence, check seq<=rcv_wup reduces to:
  4649. */
  4650. if (tcp_header_len ==
  4651. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4652. tp->rcv_nxt == tp->rcv_wup)
  4653. tcp_store_ts_recent(tp);
  4654. /* We know that such packets are checksummed
  4655. * on entry.
  4656. */
  4657. tcp_ack(sk, skb, 0);
  4658. __kfree_skb(skb);
  4659. tcp_data_snd_check(sk);
  4660. return 0;
  4661. } else { /* Header too small */
  4662. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4663. goto discard;
  4664. }
  4665. } else {
  4666. int eaten = 0;
  4667. int copied_early = 0;
  4668. if (tp->copied_seq == tp->rcv_nxt &&
  4669. len - tcp_header_len <= tp->ucopy.len) {
  4670. #ifdef CONFIG_NET_DMA
  4671. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4672. copied_early = 1;
  4673. eaten = 1;
  4674. }
  4675. #endif
  4676. if (tp->ucopy.task == current &&
  4677. sock_owned_by_user(sk) && !copied_early) {
  4678. __set_current_state(TASK_RUNNING);
  4679. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4680. eaten = 1;
  4681. }
  4682. if (eaten) {
  4683. /* Predicted packet is in window by definition.
  4684. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4685. * Hence, check seq<=rcv_wup reduces to:
  4686. */
  4687. if (tcp_header_len ==
  4688. (sizeof(struct tcphdr) +
  4689. TCPOLEN_TSTAMP_ALIGNED) &&
  4690. tp->rcv_nxt == tp->rcv_wup)
  4691. tcp_store_ts_recent(tp);
  4692. tcp_rcv_rtt_measure_ts(sk, skb);
  4693. __skb_pull(skb, tcp_header_len);
  4694. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4695. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4696. }
  4697. if (copied_early)
  4698. tcp_cleanup_rbuf(sk, skb->len);
  4699. }
  4700. if (!eaten) {
  4701. if (tcp_checksum_complete_user(sk, skb))
  4702. goto csum_error;
  4703. /* Predicted packet is in window by definition.
  4704. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4705. * Hence, check seq<=rcv_wup reduces to:
  4706. */
  4707. if (tcp_header_len ==
  4708. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4709. tp->rcv_nxt == tp->rcv_wup)
  4710. tcp_store_ts_recent(tp);
  4711. tcp_rcv_rtt_measure_ts(sk, skb);
  4712. if ((int)skb->truesize > sk->sk_forward_alloc)
  4713. goto step5;
  4714. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4715. /* Bulk data transfer: receiver */
  4716. __skb_pull(skb, tcp_header_len);
  4717. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4718. skb_set_owner_r(skb, sk);
  4719. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4720. }
  4721. tcp_event_data_recv(sk, skb);
  4722. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4723. /* Well, only one small jumplet in fast path... */
  4724. tcp_ack(sk, skb, FLAG_DATA);
  4725. tcp_data_snd_check(sk);
  4726. if (!inet_csk_ack_scheduled(sk))
  4727. goto no_ack;
  4728. }
  4729. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4730. __tcp_ack_snd_check(sk, 0);
  4731. no_ack:
  4732. #ifdef CONFIG_NET_DMA
  4733. if (copied_early)
  4734. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4735. else
  4736. #endif
  4737. if (eaten)
  4738. __kfree_skb(skb);
  4739. else
  4740. sk->sk_data_ready(sk, 0);
  4741. return 0;
  4742. }
  4743. }
  4744. slow_path:
  4745. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4746. goto csum_error;
  4747. /*
  4748. * Standard slow path.
  4749. */
  4750. res = tcp_validate_incoming(sk, skb, th, 1);
  4751. if (res <= 0)
  4752. return -res;
  4753. step5:
  4754. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4755. goto discard;
  4756. tcp_rcv_rtt_measure_ts(sk, skb);
  4757. /* Process urgent data. */
  4758. tcp_urg(sk, skb, th);
  4759. /* step 7: process the segment text */
  4760. tcp_data_queue(sk, skb);
  4761. tcp_data_snd_check(sk);
  4762. tcp_ack_snd_check(sk);
  4763. return 0;
  4764. csum_error:
  4765. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4766. discard:
  4767. __kfree_skb(skb);
  4768. return 0;
  4769. }
  4770. EXPORT_SYMBOL(tcp_rcv_established);
  4771. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4772. const struct tcphdr *th, unsigned int len)
  4773. {
  4774. const u8 *hash_location;
  4775. struct inet_connection_sock *icsk = inet_csk(sk);
  4776. struct tcp_sock *tp = tcp_sk(sk);
  4777. struct tcp_cookie_values *cvp = tp->cookie_values;
  4778. int saved_clamp = tp->rx_opt.mss_clamp;
  4779. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
  4780. if (th->ack) {
  4781. /* rfc793:
  4782. * "If the state is SYN-SENT then
  4783. * first check the ACK bit
  4784. * If the ACK bit is set
  4785. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4786. * a reset (unless the RST bit is set, if so drop
  4787. * the segment and return)"
  4788. *
  4789. * We do not send data with SYN, so that RFC-correct
  4790. * test reduces to:
  4791. */
  4792. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4793. goto reset_and_undo;
  4794. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4795. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4796. tcp_time_stamp)) {
  4797. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4798. goto reset_and_undo;
  4799. }
  4800. /* Now ACK is acceptable.
  4801. *
  4802. * "If the RST bit is set
  4803. * If the ACK was acceptable then signal the user "error:
  4804. * connection reset", drop the segment, enter CLOSED state,
  4805. * delete TCB, and return."
  4806. */
  4807. if (th->rst) {
  4808. tcp_reset(sk);
  4809. goto discard;
  4810. }
  4811. /* rfc793:
  4812. * "fifth, if neither of the SYN or RST bits is set then
  4813. * drop the segment and return."
  4814. *
  4815. * See note below!
  4816. * --ANK(990513)
  4817. */
  4818. if (!th->syn)
  4819. goto discard_and_undo;
  4820. /* rfc793:
  4821. * "If the SYN bit is on ...
  4822. * are acceptable then ...
  4823. * (our SYN has been ACKed), change the connection
  4824. * state to ESTABLISHED..."
  4825. */
  4826. TCP_ECN_rcv_synack(tp, th);
  4827. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4828. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4829. /* Ok.. it's good. Set up sequence numbers and
  4830. * move to established.
  4831. */
  4832. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4833. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4834. /* RFC1323: The window in SYN & SYN/ACK segments is
  4835. * never scaled.
  4836. */
  4837. tp->snd_wnd = ntohs(th->window);
  4838. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4839. if (!tp->rx_opt.wscale_ok) {
  4840. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4841. tp->window_clamp = min(tp->window_clamp, 65535U);
  4842. }
  4843. if (tp->rx_opt.saw_tstamp) {
  4844. tp->rx_opt.tstamp_ok = 1;
  4845. tp->tcp_header_len =
  4846. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4847. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4848. tcp_store_ts_recent(tp);
  4849. } else {
  4850. tp->tcp_header_len = sizeof(struct tcphdr);
  4851. }
  4852. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4853. tcp_enable_fack(tp);
  4854. tcp_mtup_init(sk);
  4855. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4856. tcp_initialize_rcv_mss(sk);
  4857. /* Remember, tcp_poll() does not lock socket!
  4858. * Change state from SYN-SENT only after copied_seq
  4859. * is initialized. */
  4860. tp->copied_seq = tp->rcv_nxt;
  4861. if (cvp != NULL &&
  4862. cvp->cookie_pair_size > 0 &&
  4863. tp->rx_opt.cookie_plus > 0) {
  4864. int cookie_size = tp->rx_opt.cookie_plus
  4865. - TCPOLEN_COOKIE_BASE;
  4866. int cookie_pair_size = cookie_size
  4867. + cvp->cookie_desired;
  4868. /* A cookie extension option was sent and returned.
  4869. * Note that each incoming SYNACK replaces the
  4870. * Responder cookie. The initial exchange is most
  4871. * fragile, as protection against spoofing relies
  4872. * entirely upon the sequence and timestamp (above).
  4873. * This replacement strategy allows the correct pair to
  4874. * pass through, while any others will be filtered via
  4875. * Responder verification later.
  4876. */
  4877. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  4878. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  4879. hash_location, cookie_size);
  4880. cvp->cookie_pair_size = cookie_pair_size;
  4881. }
  4882. }
  4883. smp_mb();
  4884. tcp_set_state(sk, TCP_ESTABLISHED);
  4885. security_inet_conn_established(sk, skb);
  4886. /* Make sure socket is routed, for correct metrics. */
  4887. icsk->icsk_af_ops->rebuild_header(sk);
  4888. tcp_init_metrics(sk);
  4889. tcp_init_congestion_control(sk);
  4890. /* Prevent spurious tcp_cwnd_restart() on first data
  4891. * packet.
  4892. */
  4893. tp->lsndtime = tcp_time_stamp;
  4894. tcp_init_buffer_space(sk);
  4895. if (sock_flag(sk, SOCK_KEEPOPEN))
  4896. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4897. if (!tp->rx_opt.snd_wscale)
  4898. __tcp_fast_path_on(tp, tp->snd_wnd);
  4899. else
  4900. tp->pred_flags = 0;
  4901. if (!sock_flag(sk, SOCK_DEAD)) {
  4902. sk->sk_state_change(sk);
  4903. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4904. }
  4905. if (sk->sk_write_pending ||
  4906. icsk->icsk_accept_queue.rskq_defer_accept ||
  4907. icsk->icsk_ack.pingpong) {
  4908. /* Save one ACK. Data will be ready after
  4909. * several ticks, if write_pending is set.
  4910. *
  4911. * It may be deleted, but with this feature tcpdumps
  4912. * look so _wonderfully_ clever, that I was not able
  4913. * to stand against the temptation 8) --ANK
  4914. */
  4915. inet_csk_schedule_ack(sk);
  4916. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4917. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4918. tcp_incr_quickack(sk);
  4919. tcp_enter_quickack_mode(sk);
  4920. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4921. TCP_DELACK_MAX, TCP_RTO_MAX);
  4922. discard:
  4923. __kfree_skb(skb);
  4924. return 0;
  4925. } else {
  4926. tcp_send_ack(sk);
  4927. }
  4928. return -1;
  4929. }
  4930. /* No ACK in the segment */
  4931. if (th->rst) {
  4932. /* rfc793:
  4933. * "If the RST bit is set
  4934. *
  4935. * Otherwise (no ACK) drop the segment and return."
  4936. */
  4937. goto discard_and_undo;
  4938. }
  4939. /* PAWS check. */
  4940. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4941. tcp_paws_reject(&tp->rx_opt, 0))
  4942. goto discard_and_undo;
  4943. if (th->syn) {
  4944. /* We see SYN without ACK. It is attempt of
  4945. * simultaneous connect with crossed SYNs.
  4946. * Particularly, it can be connect to self.
  4947. */
  4948. tcp_set_state(sk, TCP_SYN_RECV);
  4949. if (tp->rx_opt.saw_tstamp) {
  4950. tp->rx_opt.tstamp_ok = 1;
  4951. tcp_store_ts_recent(tp);
  4952. tp->tcp_header_len =
  4953. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4954. } else {
  4955. tp->tcp_header_len = sizeof(struct tcphdr);
  4956. }
  4957. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4958. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4959. /* RFC1323: The window in SYN & SYN/ACK segments is
  4960. * never scaled.
  4961. */
  4962. tp->snd_wnd = ntohs(th->window);
  4963. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4964. tp->max_window = tp->snd_wnd;
  4965. TCP_ECN_rcv_syn(tp, th);
  4966. tcp_mtup_init(sk);
  4967. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4968. tcp_initialize_rcv_mss(sk);
  4969. tcp_send_synack(sk);
  4970. #if 0
  4971. /* Note, we could accept data and URG from this segment.
  4972. * There are no obstacles to make this.
  4973. *
  4974. * However, if we ignore data in ACKless segments sometimes,
  4975. * we have no reasons to accept it sometimes.
  4976. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4977. * is not flawless. So, discard packet for sanity.
  4978. * Uncomment this return to process the data.
  4979. */
  4980. return -1;
  4981. #else
  4982. goto discard;
  4983. #endif
  4984. }
  4985. /* "fifth, if neither of the SYN or RST bits is set then
  4986. * drop the segment and return."
  4987. */
  4988. discard_and_undo:
  4989. tcp_clear_options(&tp->rx_opt);
  4990. tp->rx_opt.mss_clamp = saved_clamp;
  4991. goto discard;
  4992. reset_and_undo:
  4993. tcp_clear_options(&tp->rx_opt);
  4994. tp->rx_opt.mss_clamp = saved_clamp;
  4995. return 1;
  4996. }
  4997. /*
  4998. * This function implements the receiving procedure of RFC 793 for
  4999. * all states except ESTABLISHED and TIME_WAIT.
  5000. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5001. * address independent.
  5002. */
  5003. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5004. const struct tcphdr *th, unsigned int len)
  5005. {
  5006. struct tcp_sock *tp = tcp_sk(sk);
  5007. struct inet_connection_sock *icsk = inet_csk(sk);
  5008. int queued = 0;
  5009. int res;
  5010. tp->rx_opt.saw_tstamp = 0;
  5011. switch (sk->sk_state) {
  5012. case TCP_CLOSE:
  5013. goto discard;
  5014. case TCP_LISTEN:
  5015. if (th->ack)
  5016. return 1;
  5017. if (th->rst)
  5018. goto discard;
  5019. if (th->syn) {
  5020. if (th->fin)
  5021. goto discard;
  5022. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5023. return 1;
  5024. /* Now we have several options: In theory there is
  5025. * nothing else in the frame. KA9Q has an option to
  5026. * send data with the syn, BSD accepts data with the
  5027. * syn up to the [to be] advertised window and
  5028. * Solaris 2.1 gives you a protocol error. For now
  5029. * we just ignore it, that fits the spec precisely
  5030. * and avoids incompatibilities. It would be nice in
  5031. * future to drop through and process the data.
  5032. *
  5033. * Now that TTCP is starting to be used we ought to
  5034. * queue this data.
  5035. * But, this leaves one open to an easy denial of
  5036. * service attack, and SYN cookies can't defend
  5037. * against this problem. So, we drop the data
  5038. * in the interest of security over speed unless
  5039. * it's still in use.
  5040. */
  5041. kfree_skb(skb);
  5042. return 0;
  5043. }
  5044. goto discard;
  5045. case TCP_SYN_SENT:
  5046. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5047. if (queued >= 0)
  5048. return queued;
  5049. /* Do step6 onward by hand. */
  5050. tcp_urg(sk, skb, th);
  5051. __kfree_skb(skb);
  5052. tcp_data_snd_check(sk);
  5053. return 0;
  5054. }
  5055. res = tcp_validate_incoming(sk, skb, th, 0);
  5056. if (res <= 0)
  5057. return -res;
  5058. /* step 5: check the ACK field */
  5059. if (th->ack) {
  5060. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  5061. switch (sk->sk_state) {
  5062. case TCP_SYN_RECV:
  5063. if (acceptable) {
  5064. tp->copied_seq = tp->rcv_nxt;
  5065. smp_mb();
  5066. tcp_set_state(sk, TCP_ESTABLISHED);
  5067. sk->sk_state_change(sk);
  5068. /* Note, that this wakeup is only for marginal
  5069. * crossed SYN case. Passively open sockets
  5070. * are not waked up, because sk->sk_sleep ==
  5071. * NULL and sk->sk_socket == NULL.
  5072. */
  5073. if (sk->sk_socket)
  5074. sk_wake_async(sk,
  5075. SOCK_WAKE_IO, POLL_OUT);
  5076. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5077. tp->snd_wnd = ntohs(th->window) <<
  5078. tp->rx_opt.snd_wscale;
  5079. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5080. if (tp->rx_opt.tstamp_ok)
  5081. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5082. /* Make sure socket is routed, for
  5083. * correct metrics.
  5084. */
  5085. icsk->icsk_af_ops->rebuild_header(sk);
  5086. tcp_init_metrics(sk);
  5087. tcp_init_congestion_control(sk);
  5088. /* Prevent spurious tcp_cwnd_restart() on
  5089. * first data packet.
  5090. */
  5091. tp->lsndtime = tcp_time_stamp;
  5092. tcp_mtup_init(sk);
  5093. tcp_initialize_rcv_mss(sk);
  5094. tcp_init_buffer_space(sk);
  5095. tcp_fast_path_on(tp);
  5096. } else {
  5097. return 1;
  5098. }
  5099. break;
  5100. case TCP_FIN_WAIT1:
  5101. if (tp->snd_una == tp->write_seq) {
  5102. tcp_set_state(sk, TCP_FIN_WAIT2);
  5103. sk->sk_shutdown |= SEND_SHUTDOWN;
  5104. dst_confirm(__sk_dst_get(sk));
  5105. if (!sock_flag(sk, SOCK_DEAD))
  5106. /* Wake up lingering close() */
  5107. sk->sk_state_change(sk);
  5108. else {
  5109. int tmo;
  5110. if (tp->linger2 < 0 ||
  5111. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5112. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5113. tcp_done(sk);
  5114. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5115. return 1;
  5116. }
  5117. tmo = tcp_fin_time(sk);
  5118. if (tmo > TCP_TIMEWAIT_LEN) {
  5119. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5120. } else if (th->fin || sock_owned_by_user(sk)) {
  5121. /* Bad case. We could lose such FIN otherwise.
  5122. * It is not a big problem, but it looks confusing
  5123. * and not so rare event. We still can lose it now,
  5124. * if it spins in bh_lock_sock(), but it is really
  5125. * marginal case.
  5126. */
  5127. inet_csk_reset_keepalive_timer(sk, tmo);
  5128. } else {
  5129. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5130. goto discard;
  5131. }
  5132. }
  5133. }
  5134. break;
  5135. case TCP_CLOSING:
  5136. if (tp->snd_una == tp->write_seq) {
  5137. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5138. goto discard;
  5139. }
  5140. break;
  5141. case TCP_LAST_ACK:
  5142. if (tp->snd_una == tp->write_seq) {
  5143. tcp_update_metrics(sk);
  5144. tcp_done(sk);
  5145. goto discard;
  5146. }
  5147. break;
  5148. }
  5149. } else
  5150. goto discard;
  5151. /* step 6: check the URG bit */
  5152. tcp_urg(sk, skb, th);
  5153. /* step 7: process the segment text */
  5154. switch (sk->sk_state) {
  5155. case TCP_CLOSE_WAIT:
  5156. case TCP_CLOSING:
  5157. case TCP_LAST_ACK:
  5158. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5159. break;
  5160. case TCP_FIN_WAIT1:
  5161. case TCP_FIN_WAIT2:
  5162. /* RFC 793 says to queue data in these states,
  5163. * RFC 1122 says we MUST send a reset.
  5164. * BSD 4.4 also does reset.
  5165. */
  5166. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5167. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5168. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5169. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5170. tcp_reset(sk);
  5171. return 1;
  5172. }
  5173. }
  5174. /* Fall through */
  5175. case TCP_ESTABLISHED:
  5176. tcp_data_queue(sk, skb);
  5177. queued = 1;
  5178. break;
  5179. }
  5180. /* tcp_data could move socket to TIME-WAIT */
  5181. if (sk->sk_state != TCP_CLOSE) {
  5182. tcp_data_snd_check(sk);
  5183. tcp_ack_snd_check(sk);
  5184. }
  5185. if (!queued) {
  5186. discard:
  5187. __kfree_skb(skb);
  5188. }
  5189. return 0;
  5190. }
  5191. EXPORT_SYMBOL(tcp_rcv_state_process);