mv_udc_core.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277
  1. /*
  2. * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
  3. * Author: Chao Xie <chao.xie@marvell.com>
  4. * Neil Zhang <zhangwm@marvell.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the
  8. * Free Software Foundation; either version 2 of the License, or (at your
  9. * option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/dmapool.h>
  15. #include <linux/kernel.h>
  16. #include <linux/delay.h>
  17. #include <linux/ioport.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/errno.h>
  21. #include <linux/init.h>
  22. #include <linux/timer.h>
  23. #include <linux/list.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/device.h>
  27. #include <linux/usb/ch9.h>
  28. #include <linux/usb/gadget.h>
  29. #include <linux/usb/otg.h>
  30. #include <linux/pm.h>
  31. #include <linux/io.h>
  32. #include <linux/irq.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/clk.h>
  35. #include <linux/platform_data/mv_usb.h>
  36. #include <asm/system.h>
  37. #include <asm/unaligned.h>
  38. #include "mv_udc.h"
  39. #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
  40. #define DRIVER_VERSION "8 Nov 2010"
  41. #define ep_dir(ep) (((ep)->ep_num == 0) ? \
  42. ((ep)->udc->ep0_dir) : ((ep)->direction))
  43. /* timeout value -- usec */
  44. #define RESET_TIMEOUT 10000
  45. #define FLUSH_TIMEOUT 10000
  46. #define EPSTATUS_TIMEOUT 10000
  47. #define PRIME_TIMEOUT 10000
  48. #define READSAFE_TIMEOUT 1000
  49. #define DTD_TIMEOUT 1000
  50. #define LOOPS_USEC_SHIFT 4
  51. #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
  52. #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
  53. static DECLARE_COMPLETION(release_done);
  54. static const char driver_name[] = "mv_udc";
  55. static const char driver_desc[] = DRIVER_DESC;
  56. /* controller device global variable */
  57. static struct mv_udc *the_controller;
  58. int mv_usb_otgsc;
  59. static void nuke(struct mv_ep *ep, int status);
  60. /* for endpoint 0 operations */
  61. static const struct usb_endpoint_descriptor mv_ep0_desc = {
  62. .bLength = USB_DT_ENDPOINT_SIZE,
  63. .bDescriptorType = USB_DT_ENDPOINT,
  64. .bEndpointAddress = 0,
  65. .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
  66. .wMaxPacketSize = EP0_MAX_PKT_SIZE,
  67. };
  68. static void ep0_reset(struct mv_udc *udc)
  69. {
  70. struct mv_ep *ep;
  71. u32 epctrlx;
  72. int i = 0;
  73. /* ep0 in and out */
  74. for (i = 0; i < 2; i++) {
  75. ep = &udc->eps[i];
  76. ep->udc = udc;
  77. /* ep0 dQH */
  78. ep->dqh = &udc->ep_dqh[i];
  79. /* configure ep0 endpoint capabilities in dQH */
  80. ep->dqh->max_packet_length =
  81. (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
  82. | EP_QUEUE_HEAD_IOS;
  83. ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
  84. epctrlx = readl(&udc->op_regs->epctrlx[0]);
  85. if (i) { /* TX */
  86. epctrlx |= EPCTRL_TX_ENABLE
  87. | (USB_ENDPOINT_XFER_CONTROL
  88. << EPCTRL_TX_EP_TYPE_SHIFT);
  89. } else { /* RX */
  90. epctrlx |= EPCTRL_RX_ENABLE
  91. | (USB_ENDPOINT_XFER_CONTROL
  92. << EPCTRL_RX_EP_TYPE_SHIFT);
  93. }
  94. writel(epctrlx, &udc->op_regs->epctrlx[0]);
  95. }
  96. }
  97. /* protocol ep0 stall, will automatically be cleared on new transaction */
  98. static void ep0_stall(struct mv_udc *udc)
  99. {
  100. u32 epctrlx;
  101. /* set TX and RX to stall */
  102. epctrlx = readl(&udc->op_regs->epctrlx[0]);
  103. epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
  104. writel(epctrlx, &udc->op_regs->epctrlx[0]);
  105. /* update ep0 state */
  106. udc->ep0_state = WAIT_FOR_SETUP;
  107. udc->ep0_dir = EP_DIR_OUT;
  108. }
  109. static int process_ep_req(struct mv_udc *udc, int index,
  110. struct mv_req *curr_req)
  111. {
  112. struct mv_dtd *curr_dtd;
  113. struct mv_dqh *curr_dqh;
  114. int td_complete, actual, remaining_length;
  115. int i, direction;
  116. int retval = 0;
  117. u32 errors;
  118. u32 bit_pos;
  119. curr_dqh = &udc->ep_dqh[index];
  120. direction = index % 2;
  121. curr_dtd = curr_req->head;
  122. td_complete = 0;
  123. actual = curr_req->req.length;
  124. for (i = 0; i < curr_req->dtd_count; i++) {
  125. if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
  126. dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
  127. udc->eps[index].name);
  128. return 1;
  129. }
  130. errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
  131. if (!errors) {
  132. remaining_length =
  133. (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
  134. >> DTD_LENGTH_BIT_POS;
  135. actual -= remaining_length;
  136. if (remaining_length) {
  137. if (direction) {
  138. dev_dbg(&udc->dev->dev,
  139. "TX dTD remains data\n");
  140. retval = -EPROTO;
  141. break;
  142. } else
  143. break;
  144. }
  145. } else {
  146. dev_info(&udc->dev->dev,
  147. "complete_tr error: ep=%d %s: error = 0x%x\n",
  148. index >> 1, direction ? "SEND" : "RECV",
  149. errors);
  150. if (errors & DTD_STATUS_HALTED) {
  151. /* Clear the errors and Halt condition */
  152. curr_dqh->size_ioc_int_sts &= ~errors;
  153. retval = -EPIPE;
  154. } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
  155. retval = -EPROTO;
  156. } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
  157. retval = -EILSEQ;
  158. }
  159. }
  160. if (i != curr_req->dtd_count - 1)
  161. curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
  162. }
  163. if (retval)
  164. return retval;
  165. if (direction == EP_DIR_OUT)
  166. bit_pos = 1 << curr_req->ep->ep_num;
  167. else
  168. bit_pos = 1 << (16 + curr_req->ep->ep_num);
  169. while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
  170. if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
  171. while (readl(&udc->op_regs->epstatus) & bit_pos)
  172. udelay(1);
  173. break;
  174. }
  175. udelay(1);
  176. }
  177. curr_req->req.actual = actual;
  178. return 0;
  179. }
  180. /*
  181. * done() - retire a request; caller blocked irqs
  182. * @status : request status to be set, only works when
  183. * request is still in progress.
  184. */
  185. static void done(struct mv_ep *ep, struct mv_req *req, int status)
  186. {
  187. struct mv_udc *udc = NULL;
  188. unsigned char stopped = ep->stopped;
  189. struct mv_dtd *curr_td, *next_td;
  190. int j;
  191. udc = (struct mv_udc *)ep->udc;
  192. /* Removed the req from fsl_ep->queue */
  193. list_del_init(&req->queue);
  194. /* req.status should be set as -EINPROGRESS in ep_queue() */
  195. if (req->req.status == -EINPROGRESS)
  196. req->req.status = status;
  197. else
  198. status = req->req.status;
  199. /* Free dtd for the request */
  200. next_td = req->head;
  201. for (j = 0; j < req->dtd_count; j++) {
  202. curr_td = next_td;
  203. if (j != req->dtd_count - 1)
  204. next_td = curr_td->next_dtd_virt;
  205. dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
  206. }
  207. if (req->mapped) {
  208. dma_unmap_single(ep->udc->gadget.dev.parent,
  209. req->req.dma, req->req.length,
  210. ((ep_dir(ep) == EP_DIR_IN) ?
  211. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  212. req->req.dma = DMA_ADDR_INVALID;
  213. req->mapped = 0;
  214. } else
  215. dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
  216. req->req.dma, req->req.length,
  217. ((ep_dir(ep) == EP_DIR_IN) ?
  218. DMA_TO_DEVICE : DMA_FROM_DEVICE));
  219. if (status && (status != -ESHUTDOWN))
  220. dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
  221. ep->ep.name, &req->req, status,
  222. req->req.actual, req->req.length);
  223. ep->stopped = 1;
  224. spin_unlock(&ep->udc->lock);
  225. /*
  226. * complete() is from gadget layer,
  227. * eg fsg->bulk_in_complete()
  228. */
  229. if (req->req.complete)
  230. req->req.complete(&ep->ep, &req->req);
  231. spin_lock(&ep->udc->lock);
  232. ep->stopped = stopped;
  233. }
  234. static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
  235. {
  236. u32 tmp, epstatus, bit_pos, direction;
  237. struct mv_udc *udc;
  238. struct mv_dqh *dqh;
  239. unsigned int loops;
  240. int readsafe, retval = 0;
  241. udc = ep->udc;
  242. direction = ep_dir(ep);
  243. dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
  244. bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
  245. /* check if the pipe is empty */
  246. if (!(list_empty(&ep->queue))) {
  247. struct mv_req *lastreq;
  248. lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
  249. lastreq->tail->dtd_next =
  250. req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
  251. if (readl(&udc->op_regs->epprime) & bit_pos) {
  252. loops = LOOPS(PRIME_TIMEOUT);
  253. while (readl(&udc->op_regs->epprime) & bit_pos) {
  254. if (loops == 0) {
  255. retval = -ETIME;
  256. goto done;
  257. }
  258. udelay(LOOPS_USEC);
  259. loops--;
  260. }
  261. if (readl(&udc->op_regs->epstatus) & bit_pos)
  262. goto done;
  263. }
  264. readsafe = 0;
  265. loops = LOOPS(READSAFE_TIMEOUT);
  266. while (readsafe == 0) {
  267. if (loops == 0) {
  268. retval = -ETIME;
  269. goto done;
  270. }
  271. /* start with setting the semaphores */
  272. tmp = readl(&udc->op_regs->usbcmd);
  273. tmp |= USBCMD_ATDTW_TRIPWIRE_SET;
  274. writel(tmp, &udc->op_regs->usbcmd);
  275. /* read the endpoint status */
  276. epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
  277. /*
  278. * Reread the ATDTW semaphore bit to check if it is
  279. * cleared. When hardware see a hazard, it will clear
  280. * the bit or else we remain set to 1 and we can
  281. * proceed with priming of endpoint if not already
  282. * primed.
  283. */
  284. if (readl(&udc->op_regs->usbcmd)
  285. & USBCMD_ATDTW_TRIPWIRE_SET) {
  286. readsafe = 1;
  287. }
  288. loops--;
  289. udelay(LOOPS_USEC);
  290. }
  291. /* Clear the semaphore */
  292. tmp = readl(&udc->op_regs->usbcmd);
  293. tmp &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
  294. writel(tmp, &udc->op_regs->usbcmd);
  295. /* If endpoint is not active, we activate it now. */
  296. if (!epstatus) {
  297. if (direction == EP_DIR_IN) {
  298. struct mv_dtd *curr_dtd = dma_to_virt(
  299. &udc->dev->dev, dqh->curr_dtd_ptr);
  300. loops = LOOPS(DTD_TIMEOUT);
  301. while (curr_dtd->size_ioc_sts
  302. & DTD_STATUS_ACTIVE) {
  303. if (loops == 0) {
  304. retval = -ETIME;
  305. goto done;
  306. }
  307. loops--;
  308. udelay(LOOPS_USEC);
  309. }
  310. }
  311. /* No other transfers on the queue */
  312. /* Write dQH next pointer and terminate bit to 0 */
  313. dqh->next_dtd_ptr = req->head->td_dma
  314. & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
  315. dqh->size_ioc_int_sts = 0;
  316. /*
  317. * Ensure that updates to the QH will
  318. * occur before priming.
  319. */
  320. wmb();
  321. /* Prime the Endpoint */
  322. writel(bit_pos, &udc->op_regs->epprime);
  323. }
  324. } else {
  325. /* Write dQH next pointer and terminate bit to 0 */
  326. dqh->next_dtd_ptr = req->head->td_dma
  327. & EP_QUEUE_HEAD_NEXT_POINTER_MASK;;
  328. dqh->size_ioc_int_sts = 0;
  329. /* Ensure that updates to the QH will occur before priming. */
  330. wmb();
  331. /* Prime the Endpoint */
  332. writel(bit_pos, &udc->op_regs->epprime);
  333. if (direction == EP_DIR_IN) {
  334. /* FIXME add status check after prime the IN ep */
  335. int prime_again;
  336. u32 curr_dtd_ptr = dqh->curr_dtd_ptr;
  337. loops = LOOPS(DTD_TIMEOUT);
  338. prime_again = 0;
  339. while ((curr_dtd_ptr != req->head->td_dma)) {
  340. curr_dtd_ptr = dqh->curr_dtd_ptr;
  341. if (loops == 0) {
  342. dev_err(&udc->dev->dev,
  343. "failed to prime %s\n",
  344. ep->name);
  345. retval = -ETIME;
  346. goto done;
  347. }
  348. loops--;
  349. udelay(LOOPS_USEC);
  350. if (loops == (LOOPS(DTD_TIMEOUT) >> 2)) {
  351. if (prime_again)
  352. goto done;
  353. dev_info(&udc->dev->dev,
  354. "prime again\n");
  355. writel(bit_pos,
  356. &udc->op_regs->epprime);
  357. prime_again = 1;
  358. }
  359. }
  360. }
  361. }
  362. done:
  363. return retval;;
  364. }
  365. static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
  366. dma_addr_t *dma, int *is_last)
  367. {
  368. u32 temp;
  369. struct mv_dtd *dtd;
  370. struct mv_udc *udc;
  371. /* how big will this transfer be? */
  372. *length = min(req->req.length - req->req.actual,
  373. (unsigned)EP_MAX_LENGTH_TRANSFER);
  374. udc = req->ep->udc;
  375. /*
  376. * Be careful that no _GFP_HIGHMEM is set,
  377. * or we can not use dma_to_virt
  378. */
  379. dtd = dma_pool_alloc(udc->dtd_pool, GFP_KERNEL, dma);
  380. if (dtd == NULL)
  381. return dtd;
  382. dtd->td_dma = *dma;
  383. /* initialize buffer page pointers */
  384. temp = (u32)(req->req.dma + req->req.actual);
  385. dtd->buff_ptr0 = cpu_to_le32(temp);
  386. temp &= ~0xFFF;
  387. dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
  388. dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
  389. dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
  390. dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
  391. req->req.actual += *length;
  392. /* zlp is needed if req->req.zero is set */
  393. if (req->req.zero) {
  394. if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
  395. *is_last = 1;
  396. else
  397. *is_last = 0;
  398. } else if (req->req.length == req->req.actual)
  399. *is_last = 1;
  400. else
  401. *is_last = 0;
  402. /* Fill in the transfer size; set active bit */
  403. temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
  404. /* Enable interrupt for the last dtd of a request */
  405. if (*is_last && !req->req.no_interrupt)
  406. temp |= DTD_IOC;
  407. dtd->size_ioc_sts = temp;
  408. mb();
  409. return dtd;
  410. }
  411. /* generate dTD linked list for a request */
  412. static int req_to_dtd(struct mv_req *req)
  413. {
  414. unsigned count;
  415. int is_last, is_first = 1;
  416. struct mv_dtd *dtd, *last_dtd = NULL;
  417. struct mv_udc *udc;
  418. dma_addr_t dma;
  419. udc = req->ep->udc;
  420. do {
  421. dtd = build_dtd(req, &count, &dma, &is_last);
  422. if (dtd == NULL)
  423. return -ENOMEM;
  424. if (is_first) {
  425. is_first = 0;
  426. req->head = dtd;
  427. } else {
  428. last_dtd->dtd_next = dma;
  429. last_dtd->next_dtd_virt = dtd;
  430. }
  431. last_dtd = dtd;
  432. req->dtd_count++;
  433. } while (!is_last);
  434. /* set terminate bit to 1 for the last dTD */
  435. dtd->dtd_next = DTD_NEXT_TERMINATE;
  436. req->tail = dtd;
  437. return 0;
  438. }
  439. static int mv_ep_enable(struct usb_ep *_ep,
  440. const struct usb_endpoint_descriptor *desc)
  441. {
  442. struct mv_udc *udc;
  443. struct mv_ep *ep;
  444. struct mv_dqh *dqh;
  445. u16 max = 0;
  446. u32 bit_pos, epctrlx, direction;
  447. unsigned char zlt = 0, ios = 0, mult = 0;
  448. unsigned long flags;
  449. ep = container_of(_ep, struct mv_ep, ep);
  450. udc = ep->udc;
  451. if (!_ep || !desc || ep->desc
  452. || desc->bDescriptorType != USB_DT_ENDPOINT)
  453. return -EINVAL;
  454. if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
  455. return -ESHUTDOWN;
  456. direction = ep_dir(ep);
  457. max = usb_endpoint_maxp(desc);
  458. /*
  459. * disable HW zero length termination select
  460. * driver handles zero length packet through req->req.zero
  461. */
  462. zlt = 1;
  463. bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
  464. /* Check if the Endpoint is Primed */
  465. if ((readl(&udc->op_regs->epprime) & bit_pos)
  466. || (readl(&udc->op_regs->epstatus) & bit_pos)) {
  467. dev_info(&udc->dev->dev,
  468. "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
  469. " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
  470. (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
  471. (unsigned)readl(&udc->op_regs->epprime),
  472. (unsigned)readl(&udc->op_regs->epstatus),
  473. (unsigned)bit_pos);
  474. goto en_done;
  475. }
  476. /* Set the max packet length, interrupt on Setup and Mult fields */
  477. switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
  478. case USB_ENDPOINT_XFER_BULK:
  479. zlt = 1;
  480. mult = 0;
  481. break;
  482. case USB_ENDPOINT_XFER_CONTROL:
  483. ios = 1;
  484. case USB_ENDPOINT_XFER_INT:
  485. mult = 0;
  486. break;
  487. case USB_ENDPOINT_XFER_ISOC:
  488. /* Calculate transactions needed for high bandwidth iso */
  489. mult = (unsigned char)(1 + ((max >> 11) & 0x03));
  490. max = max & 0x7ff; /* bit 0~10 */
  491. /* 3 transactions at most */
  492. if (mult > 3)
  493. goto en_done;
  494. break;
  495. default:
  496. goto en_done;
  497. }
  498. spin_lock_irqsave(&udc->lock, flags);
  499. /* Get the endpoint queue head address */
  500. dqh = ep->dqh;
  501. dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
  502. | (mult << EP_QUEUE_HEAD_MULT_POS)
  503. | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
  504. | (ios ? EP_QUEUE_HEAD_IOS : 0);
  505. dqh->next_dtd_ptr = 1;
  506. dqh->size_ioc_int_sts = 0;
  507. ep->ep.maxpacket = max;
  508. ep->desc = desc;
  509. ep->stopped = 0;
  510. /* Enable the endpoint for Rx or Tx and set the endpoint type */
  511. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  512. if (direction == EP_DIR_IN) {
  513. epctrlx &= ~EPCTRL_TX_ALL_MASK;
  514. epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
  515. | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
  516. << EPCTRL_TX_EP_TYPE_SHIFT);
  517. } else {
  518. epctrlx &= ~EPCTRL_RX_ALL_MASK;
  519. epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
  520. | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
  521. << EPCTRL_RX_EP_TYPE_SHIFT);
  522. }
  523. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  524. /*
  525. * Implement Guideline (GL# USB-7) The unused endpoint type must
  526. * be programmed to bulk.
  527. */
  528. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  529. if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
  530. epctrlx |= (USB_ENDPOINT_XFER_BULK
  531. << EPCTRL_RX_EP_TYPE_SHIFT);
  532. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  533. }
  534. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  535. if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
  536. epctrlx |= (USB_ENDPOINT_XFER_BULK
  537. << EPCTRL_TX_EP_TYPE_SHIFT);
  538. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  539. }
  540. spin_unlock_irqrestore(&udc->lock, flags);
  541. return 0;
  542. en_done:
  543. return -EINVAL;
  544. }
  545. static int mv_ep_disable(struct usb_ep *_ep)
  546. {
  547. struct mv_udc *udc;
  548. struct mv_ep *ep;
  549. struct mv_dqh *dqh;
  550. u32 bit_pos, epctrlx, direction;
  551. unsigned long flags;
  552. ep = container_of(_ep, struct mv_ep, ep);
  553. if ((_ep == NULL) || !ep->desc)
  554. return -EINVAL;
  555. udc = ep->udc;
  556. /* Get the endpoint queue head address */
  557. dqh = ep->dqh;
  558. spin_lock_irqsave(&udc->lock, flags);
  559. direction = ep_dir(ep);
  560. bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
  561. /* Reset the max packet length and the interrupt on Setup */
  562. dqh->max_packet_length = 0;
  563. /* Disable the endpoint for Rx or Tx and reset the endpoint type */
  564. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  565. epctrlx &= ~((direction == EP_DIR_IN)
  566. ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
  567. : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
  568. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  569. /* nuke all pending requests (does flush) */
  570. nuke(ep, -ESHUTDOWN);
  571. ep->desc = NULL;
  572. ep->stopped = 1;
  573. spin_unlock_irqrestore(&udc->lock, flags);
  574. return 0;
  575. }
  576. static struct usb_request *
  577. mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
  578. {
  579. struct mv_req *req = NULL;
  580. req = kzalloc(sizeof *req, gfp_flags);
  581. if (!req)
  582. return NULL;
  583. req->req.dma = DMA_ADDR_INVALID;
  584. INIT_LIST_HEAD(&req->queue);
  585. return &req->req;
  586. }
  587. static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
  588. {
  589. struct mv_req *req = NULL;
  590. req = container_of(_req, struct mv_req, req);
  591. if (_req)
  592. kfree(req);
  593. }
  594. static void mv_ep_fifo_flush(struct usb_ep *_ep)
  595. {
  596. struct mv_udc *udc;
  597. u32 bit_pos, direction;
  598. struct mv_ep *ep;
  599. unsigned int loops;
  600. if (!_ep)
  601. return;
  602. ep = container_of(_ep, struct mv_ep, ep);
  603. if (!ep->desc)
  604. return;
  605. udc = ep->udc;
  606. direction = ep_dir(ep);
  607. if (ep->ep_num == 0)
  608. bit_pos = (1 << 16) | 1;
  609. else if (direction == EP_DIR_OUT)
  610. bit_pos = 1 << ep->ep_num;
  611. else
  612. bit_pos = 1 << (16 + ep->ep_num);
  613. loops = LOOPS(EPSTATUS_TIMEOUT);
  614. do {
  615. unsigned int inter_loops;
  616. if (loops == 0) {
  617. dev_err(&udc->dev->dev,
  618. "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
  619. (unsigned)readl(&udc->op_regs->epstatus),
  620. (unsigned)bit_pos);
  621. return;
  622. }
  623. /* Write 1 to the Flush register */
  624. writel(bit_pos, &udc->op_regs->epflush);
  625. /* Wait until flushing completed */
  626. inter_loops = LOOPS(FLUSH_TIMEOUT);
  627. while (readl(&udc->op_regs->epflush)) {
  628. /*
  629. * ENDPTFLUSH bit should be cleared to indicate this
  630. * operation is complete
  631. */
  632. if (inter_loops == 0) {
  633. dev_err(&udc->dev->dev,
  634. "TIMEOUT for ENDPTFLUSH=0x%x,"
  635. "bit_pos=0x%x\n",
  636. (unsigned)readl(&udc->op_regs->epflush),
  637. (unsigned)bit_pos);
  638. return;
  639. }
  640. inter_loops--;
  641. udelay(LOOPS_USEC);
  642. }
  643. loops--;
  644. } while (readl(&udc->op_regs->epstatus) & bit_pos);
  645. }
  646. /* queues (submits) an I/O request to an endpoint */
  647. static int
  648. mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
  649. {
  650. struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
  651. struct mv_req *req = container_of(_req, struct mv_req, req);
  652. struct mv_udc *udc = ep->udc;
  653. unsigned long flags;
  654. /* catch various bogus parameters */
  655. if (!_req || !req->req.complete || !req->req.buf
  656. || !list_empty(&req->queue)) {
  657. dev_err(&udc->dev->dev, "%s, bad params", __func__);
  658. return -EINVAL;
  659. }
  660. if (unlikely(!_ep || !ep->desc)) {
  661. dev_err(&udc->dev->dev, "%s, bad ep", __func__);
  662. return -EINVAL;
  663. }
  664. if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
  665. if (req->req.length > ep->ep.maxpacket)
  666. return -EMSGSIZE;
  667. }
  668. udc = ep->udc;
  669. if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
  670. return -ESHUTDOWN;
  671. req->ep = ep;
  672. /* map virtual address to hardware */
  673. if (req->req.dma == DMA_ADDR_INVALID) {
  674. req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
  675. req->req.buf,
  676. req->req.length, ep_dir(ep)
  677. ? DMA_TO_DEVICE
  678. : DMA_FROM_DEVICE);
  679. req->mapped = 1;
  680. } else {
  681. dma_sync_single_for_device(ep->udc->gadget.dev.parent,
  682. req->req.dma, req->req.length,
  683. ep_dir(ep)
  684. ? DMA_TO_DEVICE
  685. : DMA_FROM_DEVICE);
  686. req->mapped = 0;
  687. }
  688. req->req.status = -EINPROGRESS;
  689. req->req.actual = 0;
  690. req->dtd_count = 0;
  691. spin_lock_irqsave(&udc->lock, flags);
  692. /* build dtds and push them to device queue */
  693. if (!req_to_dtd(req)) {
  694. int retval;
  695. retval = queue_dtd(ep, req);
  696. if (retval) {
  697. spin_unlock_irqrestore(&udc->lock, flags);
  698. return retval;
  699. }
  700. } else {
  701. spin_unlock_irqrestore(&udc->lock, flags);
  702. return -ENOMEM;
  703. }
  704. /* Update ep0 state */
  705. if (ep->ep_num == 0)
  706. udc->ep0_state = DATA_STATE_XMIT;
  707. /* irq handler advances the queue */
  708. if (req != NULL)
  709. list_add_tail(&req->queue, &ep->queue);
  710. spin_unlock_irqrestore(&udc->lock, flags);
  711. return 0;
  712. }
  713. /* dequeues (cancels, unlinks) an I/O request from an endpoint */
  714. static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
  715. {
  716. struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
  717. struct mv_req *req;
  718. struct mv_udc *udc = ep->udc;
  719. unsigned long flags;
  720. int stopped, ret = 0;
  721. u32 epctrlx;
  722. if (!_ep || !_req)
  723. return -EINVAL;
  724. spin_lock_irqsave(&ep->udc->lock, flags);
  725. stopped = ep->stopped;
  726. /* Stop the ep before we deal with the queue */
  727. ep->stopped = 1;
  728. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  729. if (ep_dir(ep) == EP_DIR_IN)
  730. epctrlx &= ~EPCTRL_TX_ENABLE;
  731. else
  732. epctrlx &= ~EPCTRL_RX_ENABLE;
  733. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  734. /* make sure it's actually queued on this endpoint */
  735. list_for_each_entry(req, &ep->queue, queue) {
  736. if (&req->req == _req)
  737. break;
  738. }
  739. if (&req->req != _req) {
  740. ret = -EINVAL;
  741. goto out;
  742. }
  743. /* The request is in progress, or completed but not dequeued */
  744. if (ep->queue.next == &req->queue) {
  745. _req->status = -ECONNRESET;
  746. mv_ep_fifo_flush(_ep); /* flush current transfer */
  747. /* The request isn't the last request in this ep queue */
  748. if (req->queue.next != &ep->queue) {
  749. struct mv_dqh *qh;
  750. struct mv_req *next_req;
  751. qh = ep->dqh;
  752. next_req = list_entry(req->queue.next, struct mv_req,
  753. queue);
  754. /* Point the QH to the first TD of next request */
  755. writel((u32) next_req->head, &qh->curr_dtd_ptr);
  756. } else {
  757. struct mv_dqh *qh;
  758. qh = ep->dqh;
  759. qh->next_dtd_ptr = 1;
  760. qh->size_ioc_int_sts = 0;
  761. }
  762. /* The request hasn't been processed, patch up the TD chain */
  763. } else {
  764. struct mv_req *prev_req;
  765. prev_req = list_entry(req->queue.prev, struct mv_req, queue);
  766. writel(readl(&req->tail->dtd_next),
  767. &prev_req->tail->dtd_next);
  768. }
  769. done(ep, req, -ECONNRESET);
  770. /* Enable EP */
  771. out:
  772. epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
  773. if (ep_dir(ep) == EP_DIR_IN)
  774. epctrlx |= EPCTRL_TX_ENABLE;
  775. else
  776. epctrlx |= EPCTRL_RX_ENABLE;
  777. writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
  778. ep->stopped = stopped;
  779. spin_unlock_irqrestore(&ep->udc->lock, flags);
  780. return ret;
  781. }
  782. static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
  783. {
  784. u32 epctrlx;
  785. epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
  786. if (stall) {
  787. if (direction == EP_DIR_IN)
  788. epctrlx |= EPCTRL_TX_EP_STALL;
  789. else
  790. epctrlx |= EPCTRL_RX_EP_STALL;
  791. } else {
  792. if (direction == EP_DIR_IN) {
  793. epctrlx &= ~EPCTRL_TX_EP_STALL;
  794. epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
  795. } else {
  796. epctrlx &= ~EPCTRL_RX_EP_STALL;
  797. epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
  798. }
  799. }
  800. writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
  801. }
  802. static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
  803. {
  804. u32 epctrlx;
  805. epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
  806. if (direction == EP_DIR_OUT)
  807. return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
  808. else
  809. return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
  810. }
  811. static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
  812. {
  813. struct mv_ep *ep;
  814. unsigned long flags = 0;
  815. int status = 0;
  816. struct mv_udc *udc;
  817. ep = container_of(_ep, struct mv_ep, ep);
  818. udc = ep->udc;
  819. if (!_ep || !ep->desc) {
  820. status = -EINVAL;
  821. goto out;
  822. }
  823. if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
  824. status = -EOPNOTSUPP;
  825. goto out;
  826. }
  827. /*
  828. * Attempt to halt IN ep will fail if any transfer requests
  829. * are still queue
  830. */
  831. if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
  832. status = -EAGAIN;
  833. goto out;
  834. }
  835. spin_lock_irqsave(&ep->udc->lock, flags);
  836. ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
  837. if (halt && wedge)
  838. ep->wedge = 1;
  839. else if (!halt)
  840. ep->wedge = 0;
  841. spin_unlock_irqrestore(&ep->udc->lock, flags);
  842. if (ep->ep_num == 0) {
  843. udc->ep0_state = WAIT_FOR_SETUP;
  844. udc->ep0_dir = EP_DIR_OUT;
  845. }
  846. out:
  847. return status;
  848. }
  849. static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
  850. {
  851. return mv_ep_set_halt_wedge(_ep, halt, 0);
  852. }
  853. static int mv_ep_set_wedge(struct usb_ep *_ep)
  854. {
  855. return mv_ep_set_halt_wedge(_ep, 1, 1);
  856. }
  857. static struct usb_ep_ops mv_ep_ops = {
  858. .enable = mv_ep_enable,
  859. .disable = mv_ep_disable,
  860. .alloc_request = mv_alloc_request,
  861. .free_request = mv_free_request,
  862. .queue = mv_ep_queue,
  863. .dequeue = mv_ep_dequeue,
  864. .set_wedge = mv_ep_set_wedge,
  865. .set_halt = mv_ep_set_halt,
  866. .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
  867. };
  868. static void udc_clock_enable(struct mv_udc *udc)
  869. {
  870. unsigned int i;
  871. for (i = 0; i < udc->clknum; i++)
  872. clk_enable(udc->clk[i]);
  873. }
  874. static void udc_clock_disable(struct mv_udc *udc)
  875. {
  876. unsigned int i;
  877. for (i = 0; i < udc->clknum; i++)
  878. clk_disable(udc->clk[i]);
  879. }
  880. static void udc_stop(struct mv_udc *udc)
  881. {
  882. u32 tmp;
  883. /* Disable interrupts */
  884. tmp = readl(&udc->op_regs->usbintr);
  885. tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
  886. USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
  887. writel(tmp, &udc->op_regs->usbintr);
  888. /* Reset the Run the bit in the command register to stop VUSB */
  889. tmp = readl(&udc->op_regs->usbcmd);
  890. tmp &= ~USBCMD_RUN_STOP;
  891. writel(tmp, &udc->op_regs->usbcmd);
  892. }
  893. static void udc_start(struct mv_udc *udc)
  894. {
  895. u32 usbintr;
  896. usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
  897. | USBINTR_PORT_CHANGE_DETECT_EN
  898. | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
  899. /* Enable interrupts */
  900. writel(usbintr, &udc->op_regs->usbintr);
  901. /* Set the Run bit in the command register */
  902. writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
  903. }
  904. static int udc_reset(struct mv_udc *udc)
  905. {
  906. unsigned int loops;
  907. u32 tmp, portsc;
  908. /* Stop the controller */
  909. tmp = readl(&udc->op_regs->usbcmd);
  910. tmp &= ~USBCMD_RUN_STOP;
  911. writel(tmp, &udc->op_regs->usbcmd);
  912. /* Reset the controller to get default values */
  913. writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
  914. /* wait for reset to complete */
  915. loops = LOOPS(RESET_TIMEOUT);
  916. while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
  917. if (loops == 0) {
  918. dev_err(&udc->dev->dev,
  919. "Wait for RESET completed TIMEOUT\n");
  920. return -ETIMEDOUT;
  921. }
  922. loops--;
  923. udelay(LOOPS_USEC);
  924. }
  925. /* set controller to device mode */
  926. tmp = readl(&udc->op_regs->usbmode);
  927. tmp |= USBMODE_CTRL_MODE_DEVICE;
  928. /* turn setup lockout off, require setup tripwire in usbcmd */
  929. tmp |= USBMODE_SETUP_LOCK_OFF | USBMODE_STREAM_DISABLE;
  930. writel(tmp, &udc->op_regs->usbmode);
  931. writel(0x0, &udc->op_regs->epsetupstat);
  932. /* Configure the Endpoint List Address */
  933. writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
  934. &udc->op_regs->eplistaddr);
  935. portsc = readl(&udc->op_regs->portsc[0]);
  936. if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
  937. portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
  938. if (udc->force_fs)
  939. portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
  940. else
  941. portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
  942. writel(portsc, &udc->op_regs->portsc[0]);
  943. tmp = readl(&udc->op_regs->epctrlx[0]);
  944. tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
  945. writel(tmp, &udc->op_regs->epctrlx[0]);
  946. return 0;
  947. }
  948. static int mv_udc_get_frame(struct usb_gadget *gadget)
  949. {
  950. struct mv_udc *udc;
  951. u16 retval;
  952. if (!gadget)
  953. return -ENODEV;
  954. udc = container_of(gadget, struct mv_udc, gadget);
  955. retval = readl(udc->op_regs->frindex) & USB_FRINDEX_MASKS;
  956. return retval;
  957. }
  958. /* Tries to wake up the host connected to this gadget */
  959. static int mv_udc_wakeup(struct usb_gadget *gadget)
  960. {
  961. struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
  962. u32 portsc;
  963. /* Remote wakeup feature not enabled by host */
  964. if (!udc->remote_wakeup)
  965. return -ENOTSUPP;
  966. portsc = readl(&udc->op_regs->portsc);
  967. /* not suspended? */
  968. if (!(portsc & PORTSCX_PORT_SUSPEND))
  969. return 0;
  970. /* trigger force resume */
  971. portsc |= PORTSCX_PORT_FORCE_RESUME;
  972. writel(portsc, &udc->op_regs->portsc[0]);
  973. return 0;
  974. }
  975. static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
  976. {
  977. struct mv_udc *udc;
  978. unsigned long flags;
  979. udc = container_of(gadget, struct mv_udc, gadget);
  980. spin_lock_irqsave(&udc->lock, flags);
  981. udc->softconnect = (is_on != 0);
  982. if (udc->driver && udc->softconnect)
  983. udc_start(udc);
  984. else
  985. udc_stop(udc);
  986. spin_unlock_irqrestore(&udc->lock, flags);
  987. return 0;
  988. }
  989. static int mv_udc_start(struct usb_gadget_driver *driver,
  990. int (*bind)(struct usb_gadget *));
  991. static int mv_udc_stop(struct usb_gadget_driver *driver);
  992. /* device controller usb_gadget_ops structure */
  993. static const struct usb_gadget_ops mv_ops = {
  994. /* returns the current frame number */
  995. .get_frame = mv_udc_get_frame,
  996. /* tries to wake up the host connected to this gadget */
  997. .wakeup = mv_udc_wakeup,
  998. /* D+ pullup, software-controlled connect/disconnect to USB host */
  999. .pullup = mv_udc_pullup,
  1000. .start = mv_udc_start,
  1001. .stop = mv_udc_stop,
  1002. };
  1003. static void mv_udc_testmode(struct mv_udc *udc, u16 index, bool enter)
  1004. {
  1005. dev_info(&udc->dev->dev, "Test Mode is not support yet\n");
  1006. }
  1007. static int eps_init(struct mv_udc *udc)
  1008. {
  1009. struct mv_ep *ep;
  1010. char name[14];
  1011. int i;
  1012. /* initialize ep0 */
  1013. ep = &udc->eps[0];
  1014. ep->udc = udc;
  1015. strncpy(ep->name, "ep0", sizeof(ep->name));
  1016. ep->ep.name = ep->name;
  1017. ep->ep.ops = &mv_ep_ops;
  1018. ep->wedge = 0;
  1019. ep->stopped = 0;
  1020. ep->ep.maxpacket = EP0_MAX_PKT_SIZE;
  1021. ep->ep_num = 0;
  1022. ep->desc = &mv_ep0_desc;
  1023. INIT_LIST_HEAD(&ep->queue);
  1024. ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
  1025. /* initialize other endpoints */
  1026. for (i = 2; i < udc->max_eps * 2; i++) {
  1027. ep = &udc->eps[i];
  1028. if (i % 2) {
  1029. snprintf(name, sizeof(name), "ep%din", i / 2);
  1030. ep->direction = EP_DIR_IN;
  1031. } else {
  1032. snprintf(name, sizeof(name), "ep%dout", i / 2);
  1033. ep->direction = EP_DIR_OUT;
  1034. }
  1035. ep->udc = udc;
  1036. strncpy(ep->name, name, sizeof(ep->name));
  1037. ep->ep.name = ep->name;
  1038. ep->ep.ops = &mv_ep_ops;
  1039. ep->stopped = 0;
  1040. ep->ep.maxpacket = (unsigned short) ~0;
  1041. ep->ep_num = i / 2;
  1042. INIT_LIST_HEAD(&ep->queue);
  1043. list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
  1044. ep->dqh = &udc->ep_dqh[i];
  1045. }
  1046. return 0;
  1047. }
  1048. /* delete all endpoint requests, called with spinlock held */
  1049. static void nuke(struct mv_ep *ep, int status)
  1050. {
  1051. /* called with spinlock held */
  1052. ep->stopped = 1;
  1053. /* endpoint fifo flush */
  1054. mv_ep_fifo_flush(&ep->ep);
  1055. while (!list_empty(&ep->queue)) {
  1056. struct mv_req *req = NULL;
  1057. req = list_entry(ep->queue.next, struct mv_req, queue);
  1058. done(ep, req, status);
  1059. }
  1060. }
  1061. /* stop all USB activities */
  1062. static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
  1063. {
  1064. struct mv_ep *ep;
  1065. nuke(&udc->eps[0], -ESHUTDOWN);
  1066. list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
  1067. nuke(ep, -ESHUTDOWN);
  1068. }
  1069. /* report disconnect; the driver is already quiesced */
  1070. if (driver) {
  1071. spin_unlock(&udc->lock);
  1072. driver->disconnect(&udc->gadget);
  1073. spin_lock(&udc->lock);
  1074. }
  1075. }
  1076. static int mv_udc_start(struct usb_gadget_driver *driver,
  1077. int (*bind)(struct usb_gadget *))
  1078. {
  1079. struct mv_udc *udc = the_controller;
  1080. int retval = 0;
  1081. unsigned long flags;
  1082. if (!udc)
  1083. return -ENODEV;
  1084. if (udc->driver)
  1085. return -EBUSY;
  1086. spin_lock_irqsave(&udc->lock, flags);
  1087. /* hook up the driver ... */
  1088. driver->driver.bus = NULL;
  1089. udc->driver = driver;
  1090. udc->gadget.dev.driver = &driver->driver;
  1091. udc->usb_state = USB_STATE_ATTACHED;
  1092. udc->ep0_state = WAIT_FOR_SETUP;
  1093. udc->ep0_dir = USB_DIR_OUT;
  1094. spin_unlock_irqrestore(&udc->lock, flags);
  1095. retval = bind(&udc->gadget);
  1096. if (retval) {
  1097. dev_err(&udc->dev->dev, "bind to driver %s --> %d\n",
  1098. driver->driver.name, retval);
  1099. udc->driver = NULL;
  1100. udc->gadget.dev.driver = NULL;
  1101. return retval;
  1102. }
  1103. udc_reset(udc);
  1104. ep0_reset(udc);
  1105. udc_start(udc);
  1106. return 0;
  1107. }
  1108. static int mv_udc_stop(struct usb_gadget_driver *driver)
  1109. {
  1110. struct mv_udc *udc = the_controller;
  1111. unsigned long flags;
  1112. if (!udc)
  1113. return -ENODEV;
  1114. udc_stop(udc);
  1115. spin_lock_irqsave(&udc->lock, flags);
  1116. /* stop all usb activities */
  1117. udc->gadget.speed = USB_SPEED_UNKNOWN;
  1118. stop_activity(udc, driver);
  1119. spin_unlock_irqrestore(&udc->lock, flags);
  1120. /* unbind gadget driver */
  1121. driver->unbind(&udc->gadget);
  1122. udc->gadget.dev.driver = NULL;
  1123. udc->driver = NULL;
  1124. return 0;
  1125. }
  1126. static int
  1127. udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
  1128. {
  1129. int retval = 0;
  1130. struct mv_req *req;
  1131. struct mv_ep *ep;
  1132. ep = &udc->eps[0];
  1133. udc->ep0_dir = direction;
  1134. udc->ep0_state = WAIT_FOR_OUT_STATUS;
  1135. req = udc->status_req;
  1136. /* fill in the reqest structure */
  1137. if (empty == false) {
  1138. *((u16 *) req->req.buf) = cpu_to_le16(status);
  1139. req->req.length = 2;
  1140. } else
  1141. req->req.length = 0;
  1142. req->ep = ep;
  1143. req->req.status = -EINPROGRESS;
  1144. req->req.actual = 0;
  1145. req->req.complete = NULL;
  1146. req->dtd_count = 0;
  1147. /* prime the data phase */
  1148. if (!req_to_dtd(req))
  1149. retval = queue_dtd(ep, req);
  1150. else{ /* no mem */
  1151. retval = -ENOMEM;
  1152. goto out;
  1153. }
  1154. if (retval) {
  1155. dev_err(&udc->dev->dev, "response error on GET_STATUS request\n");
  1156. goto out;
  1157. }
  1158. list_add_tail(&req->queue, &ep->queue);
  1159. return 0;
  1160. out:
  1161. return retval;
  1162. }
  1163. static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
  1164. {
  1165. udc->dev_addr = (u8)setup->wValue;
  1166. /* update usb state */
  1167. udc->usb_state = USB_STATE_ADDRESS;
  1168. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1169. ep0_stall(udc);
  1170. }
  1171. static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
  1172. struct usb_ctrlrequest *setup)
  1173. {
  1174. u16 status;
  1175. int retval;
  1176. if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
  1177. != (USB_DIR_IN | USB_TYPE_STANDARD))
  1178. return;
  1179. if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
  1180. status = 1 << USB_DEVICE_SELF_POWERED;
  1181. status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
  1182. } else if ((setup->bRequestType & USB_RECIP_MASK)
  1183. == USB_RECIP_INTERFACE) {
  1184. /* get interface status */
  1185. status = 0;
  1186. } else if ((setup->bRequestType & USB_RECIP_MASK)
  1187. == USB_RECIP_ENDPOINT) {
  1188. u8 ep_num, direction;
  1189. ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
  1190. direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
  1191. ? EP_DIR_IN : EP_DIR_OUT;
  1192. status = ep_is_stall(udc, ep_num, direction)
  1193. << USB_ENDPOINT_HALT;
  1194. }
  1195. retval = udc_prime_status(udc, EP_DIR_IN, status, false);
  1196. if (retval)
  1197. ep0_stall(udc);
  1198. else
  1199. udc->ep0_state = DATA_STATE_XMIT;
  1200. }
  1201. static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
  1202. {
  1203. u8 ep_num;
  1204. u8 direction;
  1205. struct mv_ep *ep;
  1206. if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1207. == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
  1208. switch (setup->wValue) {
  1209. case USB_DEVICE_REMOTE_WAKEUP:
  1210. udc->remote_wakeup = 0;
  1211. break;
  1212. case USB_DEVICE_TEST_MODE:
  1213. mv_udc_testmode(udc, 0, false);
  1214. break;
  1215. default:
  1216. goto out;
  1217. }
  1218. } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1219. == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
  1220. switch (setup->wValue) {
  1221. case USB_ENDPOINT_HALT:
  1222. ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
  1223. direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
  1224. ? EP_DIR_IN : EP_DIR_OUT;
  1225. if (setup->wValue != 0 || setup->wLength != 0
  1226. || ep_num > udc->max_eps)
  1227. goto out;
  1228. ep = &udc->eps[ep_num * 2 + direction];
  1229. if (ep->wedge == 1)
  1230. break;
  1231. spin_unlock(&udc->lock);
  1232. ep_set_stall(udc, ep_num, direction, 0);
  1233. spin_lock(&udc->lock);
  1234. break;
  1235. default:
  1236. goto out;
  1237. }
  1238. } else
  1239. goto out;
  1240. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1241. ep0_stall(udc);
  1242. out:
  1243. return;
  1244. }
  1245. static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
  1246. {
  1247. u8 ep_num;
  1248. u8 direction;
  1249. if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1250. == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
  1251. switch (setup->wValue) {
  1252. case USB_DEVICE_REMOTE_WAKEUP:
  1253. udc->remote_wakeup = 1;
  1254. break;
  1255. case USB_DEVICE_TEST_MODE:
  1256. if (setup->wIndex & 0xFF
  1257. && udc->gadget.speed != USB_SPEED_HIGH)
  1258. goto out;
  1259. if (udc->usb_state == USB_STATE_CONFIGURED
  1260. || udc->usb_state == USB_STATE_ADDRESS
  1261. || udc->usb_state == USB_STATE_DEFAULT)
  1262. mv_udc_testmode(udc,
  1263. setup->wIndex & 0xFF00, true);
  1264. else
  1265. goto out;
  1266. break;
  1267. default:
  1268. goto out;
  1269. }
  1270. } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
  1271. == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
  1272. switch (setup->wValue) {
  1273. case USB_ENDPOINT_HALT:
  1274. ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
  1275. direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
  1276. ? EP_DIR_IN : EP_DIR_OUT;
  1277. if (setup->wValue != 0 || setup->wLength != 0
  1278. || ep_num > udc->max_eps)
  1279. goto out;
  1280. spin_unlock(&udc->lock);
  1281. ep_set_stall(udc, ep_num, direction, 1);
  1282. spin_lock(&udc->lock);
  1283. break;
  1284. default:
  1285. goto out;
  1286. }
  1287. } else
  1288. goto out;
  1289. if (udc_prime_status(udc, EP_DIR_IN, 0, true))
  1290. ep0_stall(udc);
  1291. out:
  1292. return;
  1293. }
  1294. static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
  1295. struct usb_ctrlrequest *setup)
  1296. {
  1297. bool delegate = false;
  1298. nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
  1299. dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
  1300. setup->bRequestType, setup->bRequest,
  1301. setup->wValue, setup->wIndex, setup->wLength);
  1302. /* We process some stardard setup requests here */
  1303. if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
  1304. switch (setup->bRequest) {
  1305. case USB_REQ_GET_STATUS:
  1306. ch9getstatus(udc, ep_num, setup);
  1307. break;
  1308. case USB_REQ_SET_ADDRESS:
  1309. ch9setaddress(udc, setup);
  1310. break;
  1311. case USB_REQ_CLEAR_FEATURE:
  1312. ch9clearfeature(udc, setup);
  1313. break;
  1314. case USB_REQ_SET_FEATURE:
  1315. ch9setfeature(udc, setup);
  1316. break;
  1317. default:
  1318. delegate = true;
  1319. }
  1320. } else
  1321. delegate = true;
  1322. /* delegate USB standard requests to the gadget driver */
  1323. if (delegate == true) {
  1324. /* USB requests handled by gadget */
  1325. if (setup->wLength) {
  1326. /* DATA phase from gadget, STATUS phase from udc */
  1327. udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
  1328. ? EP_DIR_IN : EP_DIR_OUT;
  1329. spin_unlock(&udc->lock);
  1330. if (udc->driver->setup(&udc->gadget,
  1331. &udc->local_setup_buff) < 0)
  1332. ep0_stall(udc);
  1333. spin_lock(&udc->lock);
  1334. udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
  1335. ? DATA_STATE_XMIT : DATA_STATE_RECV;
  1336. } else {
  1337. /* no DATA phase, IN STATUS phase from gadget */
  1338. udc->ep0_dir = EP_DIR_IN;
  1339. spin_unlock(&udc->lock);
  1340. if (udc->driver->setup(&udc->gadget,
  1341. &udc->local_setup_buff) < 0)
  1342. ep0_stall(udc);
  1343. spin_lock(&udc->lock);
  1344. udc->ep0_state = WAIT_FOR_OUT_STATUS;
  1345. }
  1346. }
  1347. }
  1348. /* complete DATA or STATUS phase of ep0 prime status phase if needed */
  1349. static void ep0_req_complete(struct mv_udc *udc,
  1350. struct mv_ep *ep0, struct mv_req *req)
  1351. {
  1352. u32 new_addr;
  1353. if (udc->usb_state == USB_STATE_ADDRESS) {
  1354. /* set the new address */
  1355. new_addr = (u32)udc->dev_addr;
  1356. writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
  1357. &udc->op_regs->deviceaddr);
  1358. }
  1359. done(ep0, req, 0);
  1360. switch (udc->ep0_state) {
  1361. case DATA_STATE_XMIT:
  1362. /* receive status phase */
  1363. if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
  1364. ep0_stall(udc);
  1365. break;
  1366. case DATA_STATE_RECV:
  1367. /* send status phase */
  1368. if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
  1369. ep0_stall(udc);
  1370. break;
  1371. case WAIT_FOR_OUT_STATUS:
  1372. udc->ep0_state = WAIT_FOR_SETUP;
  1373. break;
  1374. case WAIT_FOR_SETUP:
  1375. dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
  1376. break;
  1377. default:
  1378. ep0_stall(udc);
  1379. break;
  1380. }
  1381. }
  1382. static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
  1383. {
  1384. u32 temp;
  1385. struct mv_dqh *dqh;
  1386. dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
  1387. /* Clear bit in ENDPTSETUPSTAT */
  1388. writel((1 << ep_num), &udc->op_regs->epsetupstat);
  1389. /* while a hazard exists when setup package arrives */
  1390. do {
  1391. /* Set Setup Tripwire */
  1392. temp = readl(&udc->op_regs->usbcmd);
  1393. writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
  1394. /* Copy the setup packet to local buffer */
  1395. memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
  1396. } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
  1397. /* Clear Setup Tripwire */
  1398. temp = readl(&udc->op_regs->usbcmd);
  1399. writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
  1400. }
  1401. static void irq_process_tr_complete(struct mv_udc *udc)
  1402. {
  1403. u32 tmp, bit_pos;
  1404. int i, ep_num = 0, direction = 0;
  1405. struct mv_ep *curr_ep;
  1406. struct mv_req *curr_req, *temp_req;
  1407. int status;
  1408. /*
  1409. * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
  1410. * because the setup packets are to be read ASAP
  1411. */
  1412. /* Process all Setup packet received interrupts */
  1413. tmp = readl(&udc->op_regs->epsetupstat);
  1414. if (tmp) {
  1415. for (i = 0; i < udc->max_eps; i++) {
  1416. if (tmp & (1 << i)) {
  1417. get_setup_data(udc, i,
  1418. (u8 *)(&udc->local_setup_buff));
  1419. handle_setup_packet(udc, i,
  1420. &udc->local_setup_buff);
  1421. }
  1422. }
  1423. }
  1424. /* Don't clear the endpoint setup status register here.
  1425. * It is cleared as a setup packet is read out of the buffer
  1426. */
  1427. /* Process non-setup transaction complete interrupts */
  1428. tmp = readl(&udc->op_regs->epcomplete);
  1429. if (!tmp)
  1430. return;
  1431. writel(tmp, &udc->op_regs->epcomplete);
  1432. for (i = 0; i < udc->max_eps * 2; i++) {
  1433. ep_num = i >> 1;
  1434. direction = i % 2;
  1435. bit_pos = 1 << (ep_num + 16 * direction);
  1436. if (!(bit_pos & tmp))
  1437. continue;
  1438. if (i == 1)
  1439. curr_ep = &udc->eps[0];
  1440. else
  1441. curr_ep = &udc->eps[i];
  1442. /* process the req queue until an uncomplete request */
  1443. list_for_each_entry_safe(curr_req, temp_req,
  1444. &curr_ep->queue, queue) {
  1445. status = process_ep_req(udc, i, curr_req);
  1446. if (status)
  1447. break;
  1448. /* write back status to req */
  1449. curr_req->req.status = status;
  1450. /* ep0 request completion */
  1451. if (ep_num == 0) {
  1452. ep0_req_complete(udc, curr_ep, curr_req);
  1453. break;
  1454. } else {
  1455. done(curr_ep, curr_req, status);
  1456. }
  1457. }
  1458. }
  1459. }
  1460. void irq_process_reset(struct mv_udc *udc)
  1461. {
  1462. u32 tmp;
  1463. unsigned int loops;
  1464. udc->ep0_dir = EP_DIR_OUT;
  1465. udc->ep0_state = WAIT_FOR_SETUP;
  1466. udc->remote_wakeup = 0; /* default to 0 on reset */
  1467. /* The address bits are past bit 25-31. Set the address */
  1468. tmp = readl(&udc->op_regs->deviceaddr);
  1469. tmp &= ~(USB_DEVICE_ADDRESS_MASK);
  1470. writel(tmp, &udc->op_regs->deviceaddr);
  1471. /* Clear all the setup token semaphores */
  1472. tmp = readl(&udc->op_regs->epsetupstat);
  1473. writel(tmp, &udc->op_regs->epsetupstat);
  1474. /* Clear all the endpoint complete status bits */
  1475. tmp = readl(&udc->op_regs->epcomplete);
  1476. writel(tmp, &udc->op_regs->epcomplete);
  1477. /* wait until all endptprime bits cleared */
  1478. loops = LOOPS(PRIME_TIMEOUT);
  1479. while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
  1480. if (loops == 0) {
  1481. dev_err(&udc->dev->dev,
  1482. "Timeout for ENDPTPRIME = 0x%x\n",
  1483. readl(&udc->op_regs->epprime));
  1484. break;
  1485. }
  1486. loops--;
  1487. udelay(LOOPS_USEC);
  1488. }
  1489. /* Write 1s to the Flush register */
  1490. writel((u32)~0, &udc->op_regs->epflush);
  1491. if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
  1492. dev_info(&udc->dev->dev, "usb bus reset\n");
  1493. udc->usb_state = USB_STATE_DEFAULT;
  1494. /* reset all the queues, stop all USB activities */
  1495. stop_activity(udc, udc->driver);
  1496. } else {
  1497. dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
  1498. readl(&udc->op_regs->portsc));
  1499. /*
  1500. * re-initialize
  1501. * controller reset
  1502. */
  1503. udc_reset(udc);
  1504. /* reset all the queues, stop all USB activities */
  1505. stop_activity(udc, udc->driver);
  1506. /* reset ep0 dQH and endptctrl */
  1507. ep0_reset(udc);
  1508. /* enable interrupt and set controller to run state */
  1509. udc_start(udc);
  1510. udc->usb_state = USB_STATE_ATTACHED;
  1511. }
  1512. }
  1513. static void handle_bus_resume(struct mv_udc *udc)
  1514. {
  1515. udc->usb_state = udc->resume_state;
  1516. udc->resume_state = 0;
  1517. /* report resume to the driver */
  1518. if (udc->driver) {
  1519. if (udc->driver->resume) {
  1520. spin_unlock(&udc->lock);
  1521. udc->driver->resume(&udc->gadget);
  1522. spin_lock(&udc->lock);
  1523. }
  1524. }
  1525. }
  1526. static void irq_process_suspend(struct mv_udc *udc)
  1527. {
  1528. udc->resume_state = udc->usb_state;
  1529. udc->usb_state = USB_STATE_SUSPENDED;
  1530. if (udc->driver->suspend) {
  1531. spin_unlock(&udc->lock);
  1532. udc->driver->suspend(&udc->gadget);
  1533. spin_lock(&udc->lock);
  1534. }
  1535. }
  1536. static void irq_process_port_change(struct mv_udc *udc)
  1537. {
  1538. u32 portsc;
  1539. portsc = readl(&udc->op_regs->portsc[0]);
  1540. if (!(portsc & PORTSCX_PORT_RESET)) {
  1541. /* Get the speed */
  1542. u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
  1543. switch (speed) {
  1544. case PORTSCX_PORT_SPEED_HIGH:
  1545. udc->gadget.speed = USB_SPEED_HIGH;
  1546. break;
  1547. case PORTSCX_PORT_SPEED_FULL:
  1548. udc->gadget.speed = USB_SPEED_FULL;
  1549. break;
  1550. case PORTSCX_PORT_SPEED_LOW:
  1551. udc->gadget.speed = USB_SPEED_LOW;
  1552. break;
  1553. default:
  1554. udc->gadget.speed = USB_SPEED_UNKNOWN;
  1555. break;
  1556. }
  1557. }
  1558. if (portsc & PORTSCX_PORT_SUSPEND) {
  1559. udc->resume_state = udc->usb_state;
  1560. udc->usb_state = USB_STATE_SUSPENDED;
  1561. if (udc->driver->suspend) {
  1562. spin_unlock(&udc->lock);
  1563. udc->driver->suspend(&udc->gadget);
  1564. spin_lock(&udc->lock);
  1565. }
  1566. }
  1567. if (!(portsc & PORTSCX_PORT_SUSPEND)
  1568. && udc->usb_state == USB_STATE_SUSPENDED) {
  1569. handle_bus_resume(udc);
  1570. }
  1571. if (!udc->resume_state)
  1572. udc->usb_state = USB_STATE_DEFAULT;
  1573. }
  1574. static void irq_process_error(struct mv_udc *udc)
  1575. {
  1576. /* Increment the error count */
  1577. udc->errors++;
  1578. }
  1579. static irqreturn_t mv_udc_irq(int irq, void *dev)
  1580. {
  1581. struct mv_udc *udc = (struct mv_udc *)dev;
  1582. u32 status, intr;
  1583. spin_lock(&udc->lock);
  1584. status = readl(&udc->op_regs->usbsts);
  1585. intr = readl(&udc->op_regs->usbintr);
  1586. status &= intr;
  1587. if (status == 0) {
  1588. spin_unlock(&udc->lock);
  1589. return IRQ_NONE;
  1590. }
  1591. /* Clear all the interrupts occurred */
  1592. writel(status, &udc->op_regs->usbsts);
  1593. if (status & USBSTS_ERR)
  1594. irq_process_error(udc);
  1595. if (status & USBSTS_RESET)
  1596. irq_process_reset(udc);
  1597. if (status & USBSTS_PORT_CHANGE)
  1598. irq_process_port_change(udc);
  1599. if (status & USBSTS_INT)
  1600. irq_process_tr_complete(udc);
  1601. if (status & USBSTS_SUSPEND)
  1602. irq_process_suspend(udc);
  1603. spin_unlock(&udc->lock);
  1604. return IRQ_HANDLED;
  1605. }
  1606. /* release device structure */
  1607. static void gadget_release(struct device *_dev)
  1608. {
  1609. struct mv_udc *udc = the_controller;
  1610. complete(udc->done);
  1611. }
  1612. static int __devexit mv_udc_remove(struct platform_device *dev)
  1613. {
  1614. struct mv_udc *udc = the_controller;
  1615. int clk_i;
  1616. usb_del_gadget_udc(&udc->gadget);
  1617. /* free memory allocated in probe */
  1618. if (udc->dtd_pool)
  1619. dma_pool_destroy(udc->dtd_pool);
  1620. if (udc->ep_dqh)
  1621. dma_free_coherent(&dev->dev, udc->ep_dqh_size,
  1622. udc->ep_dqh, udc->ep_dqh_dma);
  1623. kfree(udc->eps);
  1624. if (udc->irq)
  1625. free_irq(udc->irq, &dev->dev);
  1626. if (udc->cap_regs)
  1627. iounmap(udc->cap_regs);
  1628. udc->cap_regs = NULL;
  1629. if (udc->phy_regs)
  1630. iounmap((void *)udc->phy_regs);
  1631. udc->phy_regs = 0;
  1632. if (udc->status_req) {
  1633. kfree(udc->status_req->req.buf);
  1634. kfree(udc->status_req);
  1635. }
  1636. for (clk_i = 0; clk_i <= udc->clknum; clk_i++)
  1637. clk_put(udc->clk[clk_i]);
  1638. device_unregister(&udc->gadget.dev);
  1639. /* free dev, wait for the release() finished */
  1640. wait_for_completion(udc->done);
  1641. kfree(udc);
  1642. the_controller = NULL;
  1643. return 0;
  1644. }
  1645. static int __devinit mv_udc_probe(struct platform_device *dev)
  1646. {
  1647. struct mv_usb_platform_data *pdata = dev->dev.platform_data;
  1648. struct mv_udc *udc;
  1649. int retval = 0;
  1650. int clk_i = 0;
  1651. struct resource *r;
  1652. size_t size;
  1653. if (pdata == NULL) {
  1654. dev_err(&dev->dev, "missing platform_data\n");
  1655. return -ENODEV;
  1656. }
  1657. size = sizeof(*udc) + sizeof(struct clk *) * pdata->clknum;
  1658. udc = kzalloc(size, GFP_KERNEL);
  1659. if (udc == NULL) {
  1660. dev_err(&dev->dev, "failed to allocate memory for udc\n");
  1661. return -ENOMEM;
  1662. }
  1663. the_controller = udc;
  1664. udc->done = &release_done;
  1665. udc->pdata = dev->dev.platform_data;
  1666. spin_lock_init(&udc->lock);
  1667. udc->dev = dev;
  1668. udc->clknum = pdata->clknum;
  1669. for (clk_i = 0; clk_i < udc->clknum; clk_i++) {
  1670. udc->clk[clk_i] = clk_get(&dev->dev, pdata->clkname[clk_i]);
  1671. if (IS_ERR(udc->clk[clk_i])) {
  1672. retval = PTR_ERR(udc->clk[clk_i]);
  1673. goto err_put_clk;
  1674. }
  1675. }
  1676. r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
  1677. if (r == NULL) {
  1678. dev_err(&dev->dev, "no I/O memory resource defined\n");
  1679. retval = -ENODEV;
  1680. goto err_put_clk;
  1681. }
  1682. udc->cap_regs = (struct mv_cap_regs __iomem *)
  1683. ioremap(r->start, resource_size(r));
  1684. if (udc->cap_regs == NULL) {
  1685. dev_err(&dev->dev, "failed to map I/O memory\n");
  1686. retval = -EBUSY;
  1687. goto err_put_clk;
  1688. }
  1689. r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
  1690. if (r == NULL) {
  1691. dev_err(&dev->dev, "no phy I/O memory resource defined\n");
  1692. retval = -ENODEV;
  1693. goto err_iounmap_capreg;
  1694. }
  1695. udc->phy_regs = (unsigned int)ioremap(r->start, resource_size(r));
  1696. if (udc->phy_regs == 0) {
  1697. dev_err(&dev->dev, "failed to map phy I/O memory\n");
  1698. retval = -EBUSY;
  1699. goto err_iounmap_capreg;
  1700. }
  1701. /* we will acces controller register, so enable the clk */
  1702. udc_clock_enable(udc);
  1703. if (pdata->phy_init) {
  1704. retval = pdata->phy_init(udc->phy_regs);
  1705. if (retval) {
  1706. dev_err(&dev->dev, "phy init error %d\n", retval);
  1707. goto err_iounmap_phyreg;
  1708. }
  1709. }
  1710. udc->op_regs = (struct mv_op_regs __iomem *)((u32)udc->cap_regs
  1711. + (readl(&udc->cap_regs->caplength_hciversion)
  1712. & CAPLENGTH_MASK));
  1713. udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
  1714. /*
  1715. * some platform will use usb to download image, it may not disconnect
  1716. * usb gadget before loading kernel. So first stop udc here.
  1717. */
  1718. udc_stop(udc);
  1719. writel(0xFFFFFFFF, &udc->op_regs->usbsts);
  1720. size = udc->max_eps * sizeof(struct mv_dqh) *2;
  1721. size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
  1722. udc->ep_dqh = dma_alloc_coherent(&dev->dev, size,
  1723. &udc->ep_dqh_dma, GFP_KERNEL);
  1724. if (udc->ep_dqh == NULL) {
  1725. dev_err(&dev->dev, "allocate dQH memory failed\n");
  1726. retval = -ENOMEM;
  1727. goto err_disable_clock;
  1728. }
  1729. udc->ep_dqh_size = size;
  1730. /* create dTD dma_pool resource */
  1731. udc->dtd_pool = dma_pool_create("mv_dtd",
  1732. &dev->dev,
  1733. sizeof(struct mv_dtd),
  1734. DTD_ALIGNMENT,
  1735. DMA_BOUNDARY);
  1736. if (!udc->dtd_pool) {
  1737. retval = -ENOMEM;
  1738. goto err_free_dma;
  1739. }
  1740. size = udc->max_eps * sizeof(struct mv_ep) *2;
  1741. udc->eps = kzalloc(size, GFP_KERNEL);
  1742. if (udc->eps == NULL) {
  1743. dev_err(&dev->dev, "allocate ep memory failed\n");
  1744. retval = -ENOMEM;
  1745. goto err_destroy_dma;
  1746. }
  1747. /* initialize ep0 status request structure */
  1748. udc->status_req = kzalloc(sizeof(struct mv_req), GFP_KERNEL);
  1749. if (!udc->status_req) {
  1750. dev_err(&dev->dev, "allocate status_req memory failed\n");
  1751. retval = -ENOMEM;
  1752. goto err_free_eps;
  1753. }
  1754. INIT_LIST_HEAD(&udc->status_req->queue);
  1755. /* allocate a small amount of memory to get valid address */
  1756. udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
  1757. udc->status_req->req.dma = virt_to_phys(udc->status_req->req.buf);
  1758. udc->resume_state = USB_STATE_NOTATTACHED;
  1759. udc->usb_state = USB_STATE_POWERED;
  1760. udc->ep0_dir = EP_DIR_OUT;
  1761. udc->remote_wakeup = 0;
  1762. r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
  1763. if (r == NULL) {
  1764. dev_err(&dev->dev, "no IRQ resource defined\n");
  1765. retval = -ENODEV;
  1766. goto err_free_status_req;
  1767. }
  1768. udc->irq = r->start;
  1769. if (request_irq(udc->irq, mv_udc_irq,
  1770. IRQF_SHARED, driver_name, udc)) {
  1771. dev_err(&dev->dev, "Request irq %d for UDC failed\n",
  1772. udc->irq);
  1773. retval = -ENODEV;
  1774. goto err_free_status_req;
  1775. }
  1776. /* initialize gadget structure */
  1777. udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
  1778. udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
  1779. INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
  1780. udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
  1781. udc->gadget.is_dualspeed = 1; /* support dual speed */
  1782. /* the "gadget" abstracts/virtualizes the controller */
  1783. dev_set_name(&udc->gadget.dev, "gadget");
  1784. udc->gadget.dev.parent = &dev->dev;
  1785. udc->gadget.dev.dma_mask = dev->dev.dma_mask;
  1786. udc->gadget.dev.release = gadget_release;
  1787. udc->gadget.name = driver_name; /* gadget name */
  1788. retval = device_register(&udc->gadget.dev);
  1789. if (retval)
  1790. goto err_free_irq;
  1791. eps_init(udc);
  1792. retval = usb_add_gadget_udc(&dev->dev, &udc->gadget);
  1793. if (retval)
  1794. goto err_unregister;
  1795. return 0;
  1796. err_unregister:
  1797. device_unregister(&udc->gadget.dev);
  1798. err_free_irq:
  1799. free_irq(udc->irq, &dev->dev);
  1800. err_free_status_req:
  1801. kfree(udc->status_req->req.buf);
  1802. kfree(udc->status_req);
  1803. err_free_eps:
  1804. kfree(udc->eps);
  1805. err_destroy_dma:
  1806. dma_pool_destroy(udc->dtd_pool);
  1807. err_free_dma:
  1808. dma_free_coherent(&dev->dev, udc->ep_dqh_size,
  1809. udc->ep_dqh, udc->ep_dqh_dma);
  1810. err_disable_clock:
  1811. if (udc->pdata->phy_deinit)
  1812. udc->pdata->phy_deinit(udc->phy_regs);
  1813. udc_clock_disable(udc);
  1814. err_iounmap_phyreg:
  1815. iounmap((void *)udc->phy_regs);
  1816. err_iounmap_capreg:
  1817. iounmap(udc->cap_regs);
  1818. err_put_clk:
  1819. for (clk_i--; clk_i >= 0; clk_i--)
  1820. clk_put(udc->clk[clk_i]);
  1821. the_controller = NULL;
  1822. kfree(udc);
  1823. return retval;
  1824. }
  1825. #ifdef CONFIG_PM
  1826. static int mv_udc_suspend(struct device *_dev)
  1827. {
  1828. struct mv_udc *udc = the_controller;
  1829. udc_stop(udc);
  1830. return 0;
  1831. }
  1832. static int mv_udc_resume(struct device *_dev)
  1833. {
  1834. struct mv_udc *udc = the_controller;
  1835. int retval;
  1836. if (udc->pdata->phy_init) {
  1837. retval = udc->pdata->phy_init(udc->phy_regs);
  1838. if (retval) {
  1839. dev_err(&udc->dev->dev,
  1840. "init phy error %d when resume back\n",
  1841. retval);
  1842. return retval;
  1843. }
  1844. }
  1845. udc_reset(udc);
  1846. ep0_reset(udc);
  1847. udc_start(udc);
  1848. return 0;
  1849. }
  1850. static const struct dev_pm_ops mv_udc_pm_ops = {
  1851. .suspend = mv_udc_suspend,
  1852. .resume = mv_udc_resume,
  1853. };
  1854. #endif
  1855. static void mv_udc_shutdown(struct platform_device *dev)
  1856. {
  1857. struct mv_udc *udc = the_controller;
  1858. u32 mode;
  1859. /* reset controller mode to IDLE */
  1860. mode = readl(&udc->op_regs->usbmode);
  1861. mode &= ~3;
  1862. writel(mode, &udc->op_regs->usbmode);
  1863. }
  1864. static struct platform_driver udc_driver = {
  1865. .probe = mv_udc_probe,
  1866. .remove = __exit_p(mv_udc_remove),
  1867. .shutdown = mv_udc_shutdown,
  1868. .driver = {
  1869. .owner = THIS_MODULE,
  1870. .name = "pxa-u2o",
  1871. #ifdef CONFIG_PM
  1872. .pm = &mv_udc_pm_ops,
  1873. #endif
  1874. },
  1875. };
  1876. MODULE_ALIAS("platform:pxa-u2o");
  1877. MODULE_DESCRIPTION(DRIVER_DESC);
  1878. MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
  1879. MODULE_VERSION(DRIVER_VERSION);
  1880. MODULE_LICENSE("GPL");
  1881. static int __init init(void)
  1882. {
  1883. return platform_driver_register(&udc_driver);
  1884. }
  1885. module_init(init);
  1886. static void __exit cleanup(void)
  1887. {
  1888. platform_driver_unregister(&udc_driver);
  1889. }
  1890. module_exit(cleanup);