sched.c 178 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/kthread.h>
  55. #include <linux/seq_file.h>
  56. #include <linux/sysctl.h>
  57. #include <linux/syscalls.h>
  58. #include <linux/times.h>
  59. #include <linux/tsacct_kern.h>
  60. #include <linux/kprobes.h>
  61. #include <linux/delayacct.h>
  62. #include <linux/reciprocal_div.h>
  63. #include <linux/unistd.h>
  64. #include <linux/pagemap.h>
  65. #include <asm/tlb.h>
  66. #include <asm/irq_regs.h>
  67. /*
  68. * Scheduler clock - returns current time in nanosec units.
  69. * This is default implementation.
  70. * Architectures and sub-architectures can override this.
  71. */
  72. unsigned long long __attribute__((weak)) sched_clock(void)
  73. {
  74. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  75. }
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Some helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. static inline int rt_policy(int policy)
  126. {
  127. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  128. return 1;
  129. return 0;
  130. }
  131. static inline int task_has_rt_policy(struct task_struct *p)
  132. {
  133. return rt_policy(p->policy);
  134. }
  135. /*
  136. * This is the priority-queue data structure of the RT scheduling class:
  137. */
  138. struct rt_prio_array {
  139. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  140. struct list_head queue[MAX_RT_PRIO];
  141. };
  142. #ifdef CONFIG_FAIR_GROUP_SCHED
  143. #include <linux/cgroup.h>
  144. struct cfs_rq;
  145. /* task group related information */
  146. struct task_group {
  147. #ifdef CONFIG_FAIR_CGROUP_SCHED
  148. struct cgroup_subsys_state css;
  149. #endif
  150. /* schedulable entities of this group on each cpu */
  151. struct sched_entity **se;
  152. /* runqueue "owned" by this group on each cpu */
  153. struct cfs_rq **cfs_rq;
  154. unsigned long shares;
  155. /* spinlock to serialize modification to shares */
  156. spinlock_t lock;
  157. struct rcu_head rcu;
  158. };
  159. /* Default task group's sched entity on each cpu */
  160. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  161. /* Default task group's cfs_rq on each cpu */
  162. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  163. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  164. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  165. /* Default task group.
  166. * Every task in system belong to this group at bootup.
  167. */
  168. struct task_group init_task_group = {
  169. .se = init_sched_entity_p,
  170. .cfs_rq = init_cfs_rq_p,
  171. };
  172. #ifdef CONFIG_FAIR_USER_SCHED
  173. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  174. #else
  175. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  176. #endif
  177. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  178. /* return group to which a task belongs */
  179. static inline struct task_group *task_group(struct task_struct *p)
  180. {
  181. struct task_group *tg;
  182. #ifdef CONFIG_FAIR_USER_SCHED
  183. tg = p->user->tg;
  184. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  185. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  186. struct task_group, css);
  187. #else
  188. tg = &init_task_group;
  189. #endif
  190. return tg;
  191. }
  192. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  193. static inline void set_task_cfs_rq(struct task_struct *p)
  194. {
  195. p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
  196. p->se.parent = task_group(p)->se[task_cpu(p)];
  197. }
  198. #else
  199. static inline void set_task_cfs_rq(struct task_struct *p) { }
  200. #endif /* CONFIG_FAIR_GROUP_SCHED */
  201. /* CFS-related fields in a runqueue */
  202. struct cfs_rq {
  203. struct load_weight load;
  204. unsigned long nr_running;
  205. u64 exec_clock;
  206. u64 min_vruntime;
  207. struct rb_root tasks_timeline;
  208. struct rb_node *rb_leftmost;
  209. struct rb_node *rb_load_balance_curr;
  210. /* 'curr' points to currently running entity on this cfs_rq.
  211. * It is set to NULL otherwise (i.e when none are currently running).
  212. */
  213. struct sched_entity *curr;
  214. unsigned long nr_spread_over;
  215. #ifdef CONFIG_FAIR_GROUP_SCHED
  216. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  217. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  218. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  219. * (like users, containers etc.)
  220. *
  221. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  222. * list is used during load balance.
  223. */
  224. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  225. struct task_group *tg; /* group that "owns" this runqueue */
  226. #endif
  227. };
  228. /* Real-Time classes' related field in a runqueue: */
  229. struct rt_rq {
  230. struct rt_prio_array active;
  231. int rt_load_balance_idx;
  232. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  233. };
  234. /*
  235. * This is the main, per-CPU runqueue data structure.
  236. *
  237. * Locking rule: those places that want to lock multiple runqueues
  238. * (such as the load balancing or the thread migration code), lock
  239. * acquire operations must be ordered by ascending &runqueue.
  240. */
  241. struct rq {
  242. /* runqueue lock: */
  243. spinlock_t lock;
  244. /*
  245. * nr_running and cpu_load should be in the same cacheline because
  246. * remote CPUs use both these fields when doing load calculation.
  247. */
  248. unsigned long nr_running;
  249. #define CPU_LOAD_IDX_MAX 5
  250. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  251. unsigned char idle_at_tick;
  252. #ifdef CONFIG_NO_HZ
  253. unsigned char in_nohz_recently;
  254. #endif
  255. /* capture load from *all* tasks on this cpu: */
  256. struct load_weight load;
  257. unsigned long nr_load_updates;
  258. u64 nr_switches;
  259. struct cfs_rq cfs;
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. /* list of leaf cfs_rq on this cpu: */
  262. struct list_head leaf_cfs_rq_list;
  263. #endif
  264. struct rt_rq rt;
  265. /*
  266. * This is part of a global counter where only the total sum
  267. * over all CPUs matters. A task can increase this counter on
  268. * one CPU and if it got migrated afterwards it may decrease
  269. * it on another CPU. Always updated under the runqueue lock:
  270. */
  271. unsigned long nr_uninterruptible;
  272. struct task_struct *curr, *idle;
  273. unsigned long next_balance;
  274. struct mm_struct *prev_mm;
  275. u64 clock, prev_clock_raw;
  276. s64 clock_max_delta;
  277. unsigned int clock_warps, clock_overflows;
  278. u64 idle_clock;
  279. unsigned int clock_deep_idle_events;
  280. u64 tick_timestamp;
  281. atomic_t nr_iowait;
  282. #ifdef CONFIG_SMP
  283. struct sched_domain *sd;
  284. /* For active balancing */
  285. int active_balance;
  286. int push_cpu;
  287. /* cpu of this runqueue: */
  288. int cpu;
  289. struct task_struct *migration_thread;
  290. struct list_head migration_queue;
  291. #endif
  292. #ifdef CONFIG_SCHEDSTATS
  293. /* latency stats */
  294. struct sched_info rq_sched_info;
  295. /* sys_sched_yield() stats */
  296. unsigned int yld_exp_empty;
  297. unsigned int yld_act_empty;
  298. unsigned int yld_both_empty;
  299. unsigned int yld_count;
  300. /* schedule() stats */
  301. unsigned int sched_switch;
  302. unsigned int sched_count;
  303. unsigned int sched_goidle;
  304. /* try_to_wake_up() stats */
  305. unsigned int ttwu_count;
  306. unsigned int ttwu_local;
  307. /* BKL stats */
  308. unsigned int bkl_count;
  309. #endif
  310. struct lock_class_key rq_lock_key;
  311. };
  312. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  313. static DEFINE_MUTEX(sched_hotcpu_mutex);
  314. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  315. {
  316. rq->curr->sched_class->check_preempt_curr(rq, p);
  317. }
  318. static inline int cpu_of(struct rq *rq)
  319. {
  320. #ifdef CONFIG_SMP
  321. return rq->cpu;
  322. #else
  323. return 0;
  324. #endif
  325. }
  326. /*
  327. * Update the per-runqueue clock, as finegrained as the platform can give
  328. * us, but without assuming monotonicity, etc.:
  329. */
  330. static void __update_rq_clock(struct rq *rq)
  331. {
  332. u64 prev_raw = rq->prev_clock_raw;
  333. u64 now = sched_clock();
  334. s64 delta = now - prev_raw;
  335. u64 clock = rq->clock;
  336. #ifdef CONFIG_SCHED_DEBUG
  337. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  338. #endif
  339. /*
  340. * Protect against sched_clock() occasionally going backwards:
  341. */
  342. if (unlikely(delta < 0)) {
  343. clock++;
  344. rq->clock_warps++;
  345. } else {
  346. /*
  347. * Catch too large forward jumps too:
  348. */
  349. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  350. if (clock < rq->tick_timestamp + TICK_NSEC)
  351. clock = rq->tick_timestamp + TICK_NSEC;
  352. else
  353. clock++;
  354. rq->clock_overflows++;
  355. } else {
  356. if (unlikely(delta > rq->clock_max_delta))
  357. rq->clock_max_delta = delta;
  358. clock += delta;
  359. }
  360. }
  361. rq->prev_clock_raw = now;
  362. rq->clock = clock;
  363. }
  364. static void update_rq_clock(struct rq *rq)
  365. {
  366. if (likely(smp_processor_id() == cpu_of(rq)))
  367. __update_rq_clock(rq);
  368. }
  369. /*
  370. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  371. * See detach_destroy_domains: synchronize_sched for details.
  372. *
  373. * The domain tree of any CPU may only be accessed from within
  374. * preempt-disabled sections.
  375. */
  376. #define for_each_domain(cpu, __sd) \
  377. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  378. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  379. #define this_rq() (&__get_cpu_var(runqueues))
  380. #define task_rq(p) cpu_rq(task_cpu(p))
  381. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  382. /*
  383. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  384. */
  385. #ifdef CONFIG_SCHED_DEBUG
  386. # define const_debug __read_mostly
  387. #else
  388. # define const_debug static const
  389. #endif
  390. /*
  391. * Debugging: various feature bits
  392. */
  393. enum {
  394. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  395. SCHED_FEAT_START_DEBIT = 2,
  396. SCHED_FEAT_TREE_AVG = 4,
  397. SCHED_FEAT_APPROX_AVG = 8,
  398. SCHED_FEAT_WAKEUP_PREEMPT = 16,
  399. };
  400. const_debug unsigned int sysctl_sched_features =
  401. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  402. SCHED_FEAT_START_DEBIT * 1 |
  403. SCHED_FEAT_TREE_AVG * 0 |
  404. SCHED_FEAT_APPROX_AVG * 0 |
  405. SCHED_FEAT_WAKEUP_PREEMPT * 1;
  406. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  407. /*
  408. * Number of tasks to iterate in a single balance run.
  409. * Limited because this is done with IRQs disabled.
  410. */
  411. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  412. /*
  413. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  414. * clock constructed from sched_clock():
  415. */
  416. unsigned long long cpu_clock(int cpu)
  417. {
  418. unsigned long long now;
  419. unsigned long flags;
  420. struct rq *rq;
  421. local_irq_save(flags);
  422. rq = cpu_rq(cpu);
  423. update_rq_clock(rq);
  424. now = rq->clock;
  425. local_irq_restore(flags);
  426. return now;
  427. }
  428. EXPORT_SYMBOL_GPL(cpu_clock);
  429. #ifndef prepare_arch_switch
  430. # define prepare_arch_switch(next) do { } while (0)
  431. #endif
  432. #ifndef finish_arch_switch
  433. # define finish_arch_switch(prev) do { } while (0)
  434. #endif
  435. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  436. static inline int task_running(struct rq *rq, struct task_struct *p)
  437. {
  438. return rq->curr == p;
  439. }
  440. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  441. {
  442. }
  443. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  444. {
  445. #ifdef CONFIG_DEBUG_SPINLOCK
  446. /* this is a valid case when another task releases the spinlock */
  447. rq->lock.owner = current;
  448. #endif
  449. /*
  450. * If we are tracking spinlock dependencies then we have to
  451. * fix up the runqueue lock - which gets 'carried over' from
  452. * prev into current:
  453. */
  454. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  455. spin_unlock_irq(&rq->lock);
  456. }
  457. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  458. static inline int task_running(struct rq *rq, struct task_struct *p)
  459. {
  460. #ifdef CONFIG_SMP
  461. return p->oncpu;
  462. #else
  463. return rq->curr == p;
  464. #endif
  465. }
  466. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  467. {
  468. #ifdef CONFIG_SMP
  469. /*
  470. * We can optimise this out completely for !SMP, because the
  471. * SMP rebalancing from interrupt is the only thing that cares
  472. * here.
  473. */
  474. next->oncpu = 1;
  475. #endif
  476. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  477. spin_unlock_irq(&rq->lock);
  478. #else
  479. spin_unlock(&rq->lock);
  480. #endif
  481. }
  482. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  483. {
  484. #ifdef CONFIG_SMP
  485. /*
  486. * After ->oncpu is cleared, the task can be moved to a different CPU.
  487. * We must ensure this doesn't happen until the switch is completely
  488. * finished.
  489. */
  490. smp_wmb();
  491. prev->oncpu = 0;
  492. #endif
  493. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  494. local_irq_enable();
  495. #endif
  496. }
  497. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  498. /*
  499. * __task_rq_lock - lock the runqueue a given task resides on.
  500. * Must be called interrupts disabled.
  501. */
  502. static inline struct rq *__task_rq_lock(struct task_struct *p)
  503. __acquires(rq->lock)
  504. {
  505. for (;;) {
  506. struct rq *rq = task_rq(p);
  507. spin_lock(&rq->lock);
  508. if (likely(rq == task_rq(p)))
  509. return rq;
  510. spin_unlock(&rq->lock);
  511. }
  512. }
  513. /*
  514. * task_rq_lock - lock the runqueue a given task resides on and disable
  515. * interrupts. Note the ordering: we can safely lookup the task_rq without
  516. * explicitly disabling preemption.
  517. */
  518. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  519. __acquires(rq->lock)
  520. {
  521. struct rq *rq;
  522. for (;;) {
  523. local_irq_save(*flags);
  524. rq = task_rq(p);
  525. spin_lock(&rq->lock);
  526. if (likely(rq == task_rq(p)))
  527. return rq;
  528. spin_unlock_irqrestore(&rq->lock, *flags);
  529. }
  530. }
  531. static void __task_rq_unlock(struct rq *rq)
  532. __releases(rq->lock)
  533. {
  534. spin_unlock(&rq->lock);
  535. }
  536. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  537. __releases(rq->lock)
  538. {
  539. spin_unlock_irqrestore(&rq->lock, *flags);
  540. }
  541. /*
  542. * this_rq_lock - lock this runqueue and disable interrupts.
  543. */
  544. static struct rq *this_rq_lock(void)
  545. __acquires(rq->lock)
  546. {
  547. struct rq *rq;
  548. local_irq_disable();
  549. rq = this_rq();
  550. spin_lock(&rq->lock);
  551. return rq;
  552. }
  553. /*
  554. * We are going deep-idle (irqs are disabled):
  555. */
  556. void sched_clock_idle_sleep_event(void)
  557. {
  558. struct rq *rq = cpu_rq(smp_processor_id());
  559. spin_lock(&rq->lock);
  560. __update_rq_clock(rq);
  561. spin_unlock(&rq->lock);
  562. rq->clock_deep_idle_events++;
  563. }
  564. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  565. /*
  566. * We just idled delta nanoseconds (called with irqs disabled):
  567. */
  568. void sched_clock_idle_wakeup_event(u64 delta_ns)
  569. {
  570. struct rq *rq = cpu_rq(smp_processor_id());
  571. u64 now = sched_clock();
  572. rq->idle_clock += delta_ns;
  573. /*
  574. * Override the previous timestamp and ignore all
  575. * sched_clock() deltas that occured while we idled,
  576. * and use the PM-provided delta_ns to advance the
  577. * rq clock:
  578. */
  579. spin_lock(&rq->lock);
  580. rq->prev_clock_raw = now;
  581. rq->clock += delta_ns;
  582. spin_unlock(&rq->lock);
  583. }
  584. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  585. /*
  586. * resched_task - mark a task 'to be rescheduled now'.
  587. *
  588. * On UP this means the setting of the need_resched flag, on SMP it
  589. * might also involve a cross-CPU call to trigger the scheduler on
  590. * the target CPU.
  591. */
  592. #ifdef CONFIG_SMP
  593. #ifndef tsk_is_polling
  594. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  595. #endif
  596. static void resched_task(struct task_struct *p)
  597. {
  598. int cpu;
  599. assert_spin_locked(&task_rq(p)->lock);
  600. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  601. return;
  602. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  603. cpu = task_cpu(p);
  604. if (cpu == smp_processor_id())
  605. return;
  606. /* NEED_RESCHED must be visible before we test polling */
  607. smp_mb();
  608. if (!tsk_is_polling(p))
  609. smp_send_reschedule(cpu);
  610. }
  611. static void resched_cpu(int cpu)
  612. {
  613. struct rq *rq = cpu_rq(cpu);
  614. unsigned long flags;
  615. if (!spin_trylock_irqsave(&rq->lock, flags))
  616. return;
  617. resched_task(cpu_curr(cpu));
  618. spin_unlock_irqrestore(&rq->lock, flags);
  619. }
  620. #else
  621. static inline void resched_task(struct task_struct *p)
  622. {
  623. assert_spin_locked(&task_rq(p)->lock);
  624. set_tsk_need_resched(p);
  625. }
  626. #endif
  627. #if BITS_PER_LONG == 32
  628. # define WMULT_CONST (~0UL)
  629. #else
  630. # define WMULT_CONST (1UL << 32)
  631. #endif
  632. #define WMULT_SHIFT 32
  633. /*
  634. * Shift right and round:
  635. */
  636. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  637. static unsigned long
  638. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  639. struct load_weight *lw)
  640. {
  641. u64 tmp;
  642. if (unlikely(!lw->inv_weight))
  643. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  644. tmp = (u64)delta_exec * weight;
  645. /*
  646. * Check whether we'd overflow the 64-bit multiplication:
  647. */
  648. if (unlikely(tmp > WMULT_CONST))
  649. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  650. WMULT_SHIFT/2);
  651. else
  652. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  653. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  654. }
  655. static inline unsigned long
  656. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  657. {
  658. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  659. }
  660. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  661. {
  662. lw->weight += inc;
  663. }
  664. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  665. {
  666. lw->weight -= dec;
  667. }
  668. /*
  669. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  670. * of tasks with abnormal "nice" values across CPUs the contribution that
  671. * each task makes to its run queue's load is weighted according to its
  672. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  673. * scaled version of the new time slice allocation that they receive on time
  674. * slice expiry etc.
  675. */
  676. #define WEIGHT_IDLEPRIO 2
  677. #define WMULT_IDLEPRIO (1 << 31)
  678. /*
  679. * Nice levels are multiplicative, with a gentle 10% change for every
  680. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  681. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  682. * that remained on nice 0.
  683. *
  684. * The "10% effect" is relative and cumulative: from _any_ nice level,
  685. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  686. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  687. * If a task goes up by ~10% and another task goes down by ~10% then
  688. * the relative distance between them is ~25%.)
  689. */
  690. static const int prio_to_weight[40] = {
  691. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  692. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  693. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  694. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  695. /* 0 */ 1024, 820, 655, 526, 423,
  696. /* 5 */ 335, 272, 215, 172, 137,
  697. /* 10 */ 110, 87, 70, 56, 45,
  698. /* 15 */ 36, 29, 23, 18, 15,
  699. };
  700. /*
  701. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  702. *
  703. * In cases where the weight does not change often, we can use the
  704. * precalculated inverse to speed up arithmetics by turning divisions
  705. * into multiplications:
  706. */
  707. static const u32 prio_to_wmult[40] = {
  708. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  709. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  710. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  711. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  712. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  713. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  714. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  715. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  716. };
  717. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  718. /*
  719. * runqueue iterator, to support SMP load-balancing between different
  720. * scheduling classes, without having to expose their internal data
  721. * structures to the load-balancing proper:
  722. */
  723. struct rq_iterator {
  724. void *arg;
  725. struct task_struct *(*start)(void *);
  726. struct task_struct *(*next)(void *);
  727. };
  728. #ifdef CONFIG_SMP
  729. static unsigned long
  730. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  731. unsigned long max_load_move, struct sched_domain *sd,
  732. enum cpu_idle_type idle, int *all_pinned,
  733. int *this_best_prio, struct rq_iterator *iterator);
  734. static int
  735. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  736. struct sched_domain *sd, enum cpu_idle_type idle,
  737. struct rq_iterator *iterator);
  738. #endif
  739. #include "sched_stats.h"
  740. #include "sched_idletask.c"
  741. #include "sched_fair.c"
  742. #include "sched_rt.c"
  743. #ifdef CONFIG_SCHED_DEBUG
  744. # include "sched_debug.c"
  745. #endif
  746. #define sched_class_highest (&rt_sched_class)
  747. /*
  748. * Update delta_exec, delta_fair fields for rq.
  749. *
  750. * delta_fair clock advances at a rate inversely proportional to
  751. * total load (rq->load.weight) on the runqueue, while
  752. * delta_exec advances at the same rate as wall-clock (provided
  753. * cpu is not idle).
  754. *
  755. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  756. * runqueue over any given interval. This (smoothened) load is used
  757. * during load balance.
  758. *
  759. * This function is called /before/ updating rq->load
  760. * and when switching tasks.
  761. */
  762. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  763. {
  764. update_load_add(&rq->load, p->se.load.weight);
  765. }
  766. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  767. {
  768. update_load_sub(&rq->load, p->se.load.weight);
  769. }
  770. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  771. {
  772. rq->nr_running++;
  773. inc_load(rq, p);
  774. }
  775. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  776. {
  777. rq->nr_running--;
  778. dec_load(rq, p);
  779. }
  780. static void set_load_weight(struct task_struct *p)
  781. {
  782. if (task_has_rt_policy(p)) {
  783. p->se.load.weight = prio_to_weight[0] * 2;
  784. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  785. return;
  786. }
  787. /*
  788. * SCHED_IDLE tasks get minimal weight:
  789. */
  790. if (p->policy == SCHED_IDLE) {
  791. p->se.load.weight = WEIGHT_IDLEPRIO;
  792. p->se.load.inv_weight = WMULT_IDLEPRIO;
  793. return;
  794. }
  795. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  796. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  797. }
  798. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  799. {
  800. sched_info_queued(p);
  801. p->sched_class->enqueue_task(rq, p, wakeup);
  802. p->se.on_rq = 1;
  803. }
  804. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  805. {
  806. p->sched_class->dequeue_task(rq, p, sleep);
  807. p->se.on_rq = 0;
  808. }
  809. /*
  810. * __normal_prio - return the priority that is based on the static prio
  811. */
  812. static inline int __normal_prio(struct task_struct *p)
  813. {
  814. return p->static_prio;
  815. }
  816. /*
  817. * Calculate the expected normal priority: i.e. priority
  818. * without taking RT-inheritance into account. Might be
  819. * boosted by interactivity modifiers. Changes upon fork,
  820. * setprio syscalls, and whenever the interactivity
  821. * estimator recalculates.
  822. */
  823. static inline int normal_prio(struct task_struct *p)
  824. {
  825. int prio;
  826. if (task_has_rt_policy(p))
  827. prio = MAX_RT_PRIO-1 - p->rt_priority;
  828. else
  829. prio = __normal_prio(p);
  830. return prio;
  831. }
  832. /*
  833. * Calculate the current priority, i.e. the priority
  834. * taken into account by the scheduler. This value might
  835. * be boosted by RT tasks, or might be boosted by
  836. * interactivity modifiers. Will be RT if the task got
  837. * RT-boosted. If not then it returns p->normal_prio.
  838. */
  839. static int effective_prio(struct task_struct *p)
  840. {
  841. p->normal_prio = normal_prio(p);
  842. /*
  843. * If we are RT tasks or we were boosted to RT priority,
  844. * keep the priority unchanged. Otherwise, update priority
  845. * to the normal priority:
  846. */
  847. if (!rt_prio(p->prio))
  848. return p->normal_prio;
  849. return p->prio;
  850. }
  851. /*
  852. * activate_task - move a task to the runqueue.
  853. */
  854. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  855. {
  856. if (p->state == TASK_UNINTERRUPTIBLE)
  857. rq->nr_uninterruptible--;
  858. enqueue_task(rq, p, wakeup);
  859. inc_nr_running(p, rq);
  860. }
  861. /*
  862. * deactivate_task - remove a task from the runqueue.
  863. */
  864. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  865. {
  866. if (p->state == TASK_UNINTERRUPTIBLE)
  867. rq->nr_uninterruptible++;
  868. dequeue_task(rq, p, sleep);
  869. dec_nr_running(p, rq);
  870. }
  871. /**
  872. * task_curr - is this task currently executing on a CPU?
  873. * @p: the task in question.
  874. */
  875. inline int task_curr(const struct task_struct *p)
  876. {
  877. return cpu_curr(task_cpu(p)) == p;
  878. }
  879. /* Used instead of source_load when we know the type == 0 */
  880. unsigned long weighted_cpuload(const int cpu)
  881. {
  882. return cpu_rq(cpu)->load.weight;
  883. }
  884. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  885. {
  886. #ifdef CONFIG_SMP
  887. task_thread_info(p)->cpu = cpu;
  888. #endif
  889. set_task_cfs_rq(p);
  890. }
  891. #ifdef CONFIG_SMP
  892. /*
  893. * Is this task likely cache-hot:
  894. */
  895. static inline int
  896. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  897. {
  898. s64 delta;
  899. if (p->sched_class != &fair_sched_class)
  900. return 0;
  901. if (sysctl_sched_migration_cost == -1)
  902. return 1;
  903. if (sysctl_sched_migration_cost == 0)
  904. return 0;
  905. delta = now - p->se.exec_start;
  906. return delta < (s64)sysctl_sched_migration_cost;
  907. }
  908. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  909. {
  910. int old_cpu = task_cpu(p);
  911. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  912. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  913. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  914. u64 clock_offset;
  915. clock_offset = old_rq->clock - new_rq->clock;
  916. #ifdef CONFIG_SCHEDSTATS
  917. if (p->se.wait_start)
  918. p->se.wait_start -= clock_offset;
  919. if (p->se.sleep_start)
  920. p->se.sleep_start -= clock_offset;
  921. if (p->se.block_start)
  922. p->se.block_start -= clock_offset;
  923. if (old_cpu != new_cpu) {
  924. schedstat_inc(p, se.nr_migrations);
  925. if (task_hot(p, old_rq->clock, NULL))
  926. schedstat_inc(p, se.nr_forced2_migrations);
  927. }
  928. #endif
  929. p->se.vruntime -= old_cfsrq->min_vruntime -
  930. new_cfsrq->min_vruntime;
  931. __set_task_cpu(p, new_cpu);
  932. }
  933. struct migration_req {
  934. struct list_head list;
  935. struct task_struct *task;
  936. int dest_cpu;
  937. struct completion done;
  938. };
  939. /*
  940. * The task's runqueue lock must be held.
  941. * Returns true if you have to wait for migration thread.
  942. */
  943. static int
  944. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  945. {
  946. struct rq *rq = task_rq(p);
  947. /*
  948. * If the task is not on a runqueue (and not running), then
  949. * it is sufficient to simply update the task's cpu field.
  950. */
  951. if (!p->se.on_rq && !task_running(rq, p)) {
  952. set_task_cpu(p, dest_cpu);
  953. return 0;
  954. }
  955. init_completion(&req->done);
  956. req->task = p;
  957. req->dest_cpu = dest_cpu;
  958. list_add(&req->list, &rq->migration_queue);
  959. return 1;
  960. }
  961. /*
  962. * wait_task_inactive - wait for a thread to unschedule.
  963. *
  964. * The caller must ensure that the task *will* unschedule sometime soon,
  965. * else this function might spin for a *long* time. This function can't
  966. * be called with interrupts off, or it may introduce deadlock with
  967. * smp_call_function() if an IPI is sent by the same process we are
  968. * waiting to become inactive.
  969. */
  970. void wait_task_inactive(struct task_struct *p)
  971. {
  972. unsigned long flags;
  973. int running, on_rq;
  974. struct rq *rq;
  975. for (;;) {
  976. /*
  977. * We do the initial early heuristics without holding
  978. * any task-queue locks at all. We'll only try to get
  979. * the runqueue lock when things look like they will
  980. * work out!
  981. */
  982. rq = task_rq(p);
  983. /*
  984. * If the task is actively running on another CPU
  985. * still, just relax and busy-wait without holding
  986. * any locks.
  987. *
  988. * NOTE! Since we don't hold any locks, it's not
  989. * even sure that "rq" stays as the right runqueue!
  990. * But we don't care, since "task_running()" will
  991. * return false if the runqueue has changed and p
  992. * is actually now running somewhere else!
  993. */
  994. while (task_running(rq, p))
  995. cpu_relax();
  996. /*
  997. * Ok, time to look more closely! We need the rq
  998. * lock now, to be *sure*. If we're wrong, we'll
  999. * just go back and repeat.
  1000. */
  1001. rq = task_rq_lock(p, &flags);
  1002. running = task_running(rq, p);
  1003. on_rq = p->se.on_rq;
  1004. task_rq_unlock(rq, &flags);
  1005. /*
  1006. * Was it really running after all now that we
  1007. * checked with the proper locks actually held?
  1008. *
  1009. * Oops. Go back and try again..
  1010. */
  1011. if (unlikely(running)) {
  1012. cpu_relax();
  1013. continue;
  1014. }
  1015. /*
  1016. * It's not enough that it's not actively running,
  1017. * it must be off the runqueue _entirely_, and not
  1018. * preempted!
  1019. *
  1020. * So if it wa still runnable (but just not actively
  1021. * running right now), it's preempted, and we should
  1022. * yield - it could be a while.
  1023. */
  1024. if (unlikely(on_rq)) {
  1025. schedule_timeout_uninterruptible(1);
  1026. continue;
  1027. }
  1028. /*
  1029. * Ahh, all good. It wasn't running, and it wasn't
  1030. * runnable, which means that it will never become
  1031. * running in the future either. We're all done!
  1032. */
  1033. break;
  1034. }
  1035. }
  1036. /***
  1037. * kick_process - kick a running thread to enter/exit the kernel
  1038. * @p: the to-be-kicked thread
  1039. *
  1040. * Cause a process which is running on another CPU to enter
  1041. * kernel-mode, without any delay. (to get signals handled.)
  1042. *
  1043. * NOTE: this function doesnt have to take the runqueue lock,
  1044. * because all it wants to ensure is that the remote task enters
  1045. * the kernel. If the IPI races and the task has been migrated
  1046. * to another CPU then no harm is done and the purpose has been
  1047. * achieved as well.
  1048. */
  1049. void kick_process(struct task_struct *p)
  1050. {
  1051. int cpu;
  1052. preempt_disable();
  1053. cpu = task_cpu(p);
  1054. if ((cpu != smp_processor_id()) && task_curr(p))
  1055. smp_send_reschedule(cpu);
  1056. preempt_enable();
  1057. }
  1058. /*
  1059. * Return a low guess at the load of a migration-source cpu weighted
  1060. * according to the scheduling class and "nice" value.
  1061. *
  1062. * We want to under-estimate the load of migration sources, to
  1063. * balance conservatively.
  1064. */
  1065. static unsigned long source_load(int cpu, int type)
  1066. {
  1067. struct rq *rq = cpu_rq(cpu);
  1068. unsigned long total = weighted_cpuload(cpu);
  1069. if (type == 0)
  1070. return total;
  1071. return min(rq->cpu_load[type-1], total);
  1072. }
  1073. /*
  1074. * Return a high guess at the load of a migration-target cpu weighted
  1075. * according to the scheduling class and "nice" value.
  1076. */
  1077. static unsigned long target_load(int cpu, int type)
  1078. {
  1079. struct rq *rq = cpu_rq(cpu);
  1080. unsigned long total = weighted_cpuload(cpu);
  1081. if (type == 0)
  1082. return total;
  1083. return max(rq->cpu_load[type-1], total);
  1084. }
  1085. /*
  1086. * Return the average load per task on the cpu's run queue
  1087. */
  1088. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1089. {
  1090. struct rq *rq = cpu_rq(cpu);
  1091. unsigned long total = weighted_cpuload(cpu);
  1092. unsigned long n = rq->nr_running;
  1093. return n ? total / n : SCHED_LOAD_SCALE;
  1094. }
  1095. /*
  1096. * find_idlest_group finds and returns the least busy CPU group within the
  1097. * domain.
  1098. */
  1099. static struct sched_group *
  1100. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1101. {
  1102. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1103. unsigned long min_load = ULONG_MAX, this_load = 0;
  1104. int load_idx = sd->forkexec_idx;
  1105. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1106. do {
  1107. unsigned long load, avg_load;
  1108. int local_group;
  1109. int i;
  1110. /* Skip over this group if it has no CPUs allowed */
  1111. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1112. continue;
  1113. local_group = cpu_isset(this_cpu, group->cpumask);
  1114. /* Tally up the load of all CPUs in the group */
  1115. avg_load = 0;
  1116. for_each_cpu_mask(i, group->cpumask) {
  1117. /* Bias balancing toward cpus of our domain */
  1118. if (local_group)
  1119. load = source_load(i, load_idx);
  1120. else
  1121. load = target_load(i, load_idx);
  1122. avg_load += load;
  1123. }
  1124. /* Adjust by relative CPU power of the group */
  1125. avg_load = sg_div_cpu_power(group,
  1126. avg_load * SCHED_LOAD_SCALE);
  1127. if (local_group) {
  1128. this_load = avg_load;
  1129. this = group;
  1130. } else if (avg_load < min_load) {
  1131. min_load = avg_load;
  1132. idlest = group;
  1133. }
  1134. } while (group = group->next, group != sd->groups);
  1135. if (!idlest || 100*this_load < imbalance*min_load)
  1136. return NULL;
  1137. return idlest;
  1138. }
  1139. /*
  1140. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1141. */
  1142. static int
  1143. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1144. {
  1145. cpumask_t tmp;
  1146. unsigned long load, min_load = ULONG_MAX;
  1147. int idlest = -1;
  1148. int i;
  1149. /* Traverse only the allowed CPUs */
  1150. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1151. for_each_cpu_mask(i, tmp) {
  1152. load = weighted_cpuload(i);
  1153. if (load < min_load || (load == min_load && i == this_cpu)) {
  1154. min_load = load;
  1155. idlest = i;
  1156. }
  1157. }
  1158. return idlest;
  1159. }
  1160. /*
  1161. * sched_balance_self: balance the current task (running on cpu) in domains
  1162. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1163. * SD_BALANCE_EXEC.
  1164. *
  1165. * Balance, ie. select the least loaded group.
  1166. *
  1167. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1168. *
  1169. * preempt must be disabled.
  1170. */
  1171. static int sched_balance_self(int cpu, int flag)
  1172. {
  1173. struct task_struct *t = current;
  1174. struct sched_domain *tmp, *sd = NULL;
  1175. for_each_domain(cpu, tmp) {
  1176. /*
  1177. * If power savings logic is enabled for a domain, stop there.
  1178. */
  1179. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1180. break;
  1181. if (tmp->flags & flag)
  1182. sd = tmp;
  1183. }
  1184. while (sd) {
  1185. cpumask_t span;
  1186. struct sched_group *group;
  1187. int new_cpu, weight;
  1188. if (!(sd->flags & flag)) {
  1189. sd = sd->child;
  1190. continue;
  1191. }
  1192. span = sd->span;
  1193. group = find_idlest_group(sd, t, cpu);
  1194. if (!group) {
  1195. sd = sd->child;
  1196. continue;
  1197. }
  1198. new_cpu = find_idlest_cpu(group, t, cpu);
  1199. if (new_cpu == -1 || new_cpu == cpu) {
  1200. /* Now try balancing at a lower domain level of cpu */
  1201. sd = sd->child;
  1202. continue;
  1203. }
  1204. /* Now try balancing at a lower domain level of new_cpu */
  1205. cpu = new_cpu;
  1206. sd = NULL;
  1207. weight = cpus_weight(span);
  1208. for_each_domain(cpu, tmp) {
  1209. if (weight <= cpus_weight(tmp->span))
  1210. break;
  1211. if (tmp->flags & flag)
  1212. sd = tmp;
  1213. }
  1214. /* while loop will break here if sd == NULL */
  1215. }
  1216. return cpu;
  1217. }
  1218. #endif /* CONFIG_SMP */
  1219. /*
  1220. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1221. * not idle and an idle cpu is available. The span of cpus to
  1222. * search starts with cpus closest then further out as needed,
  1223. * so we always favor a closer, idle cpu.
  1224. *
  1225. * Returns the CPU we should wake onto.
  1226. */
  1227. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1228. static int wake_idle(int cpu, struct task_struct *p)
  1229. {
  1230. cpumask_t tmp;
  1231. struct sched_domain *sd;
  1232. int i;
  1233. /*
  1234. * If it is idle, then it is the best cpu to run this task.
  1235. *
  1236. * This cpu is also the best, if it has more than one task already.
  1237. * Siblings must be also busy(in most cases) as they didn't already
  1238. * pickup the extra load from this cpu and hence we need not check
  1239. * sibling runqueue info. This will avoid the checks and cache miss
  1240. * penalities associated with that.
  1241. */
  1242. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1243. return cpu;
  1244. for_each_domain(cpu, sd) {
  1245. if (sd->flags & SD_WAKE_IDLE) {
  1246. cpus_and(tmp, sd->span, p->cpus_allowed);
  1247. for_each_cpu_mask(i, tmp) {
  1248. if (idle_cpu(i)) {
  1249. if (i != task_cpu(p)) {
  1250. schedstat_inc(p,
  1251. se.nr_wakeups_idle);
  1252. }
  1253. return i;
  1254. }
  1255. }
  1256. } else {
  1257. break;
  1258. }
  1259. }
  1260. return cpu;
  1261. }
  1262. #else
  1263. static inline int wake_idle(int cpu, struct task_struct *p)
  1264. {
  1265. return cpu;
  1266. }
  1267. #endif
  1268. /***
  1269. * try_to_wake_up - wake up a thread
  1270. * @p: the to-be-woken-up thread
  1271. * @state: the mask of task states that can be woken
  1272. * @sync: do a synchronous wakeup?
  1273. *
  1274. * Put it on the run-queue if it's not already there. The "current"
  1275. * thread is always on the run-queue (except when the actual
  1276. * re-schedule is in progress), and as such you're allowed to do
  1277. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1278. * runnable without the overhead of this.
  1279. *
  1280. * returns failure only if the task is already active.
  1281. */
  1282. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1283. {
  1284. int cpu, orig_cpu, this_cpu, success = 0;
  1285. unsigned long flags;
  1286. long old_state;
  1287. struct rq *rq;
  1288. #ifdef CONFIG_SMP
  1289. struct sched_domain *sd, *this_sd = NULL;
  1290. unsigned long load, this_load;
  1291. int new_cpu;
  1292. #endif
  1293. rq = task_rq_lock(p, &flags);
  1294. old_state = p->state;
  1295. if (!(old_state & state))
  1296. goto out;
  1297. if (p->se.on_rq)
  1298. goto out_running;
  1299. cpu = task_cpu(p);
  1300. orig_cpu = cpu;
  1301. this_cpu = smp_processor_id();
  1302. #ifdef CONFIG_SMP
  1303. if (unlikely(task_running(rq, p)))
  1304. goto out_activate;
  1305. new_cpu = cpu;
  1306. schedstat_inc(rq, ttwu_count);
  1307. if (cpu == this_cpu) {
  1308. schedstat_inc(rq, ttwu_local);
  1309. goto out_set_cpu;
  1310. }
  1311. for_each_domain(this_cpu, sd) {
  1312. if (cpu_isset(cpu, sd->span)) {
  1313. schedstat_inc(sd, ttwu_wake_remote);
  1314. this_sd = sd;
  1315. break;
  1316. }
  1317. }
  1318. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1319. goto out_set_cpu;
  1320. /*
  1321. * Check for affine wakeup and passive balancing possibilities.
  1322. */
  1323. if (this_sd) {
  1324. int idx = this_sd->wake_idx;
  1325. unsigned int imbalance;
  1326. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1327. load = source_load(cpu, idx);
  1328. this_load = target_load(this_cpu, idx);
  1329. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1330. if (this_sd->flags & SD_WAKE_AFFINE) {
  1331. unsigned long tl = this_load;
  1332. unsigned long tl_per_task;
  1333. /*
  1334. * Attract cache-cold tasks on sync wakeups:
  1335. */
  1336. if (sync && !task_hot(p, rq->clock, this_sd))
  1337. goto out_set_cpu;
  1338. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1339. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1340. /*
  1341. * If sync wakeup then subtract the (maximum possible)
  1342. * effect of the currently running task from the load
  1343. * of the current CPU:
  1344. */
  1345. if (sync)
  1346. tl -= current->se.load.weight;
  1347. if ((tl <= load &&
  1348. tl + target_load(cpu, idx) <= tl_per_task) ||
  1349. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1350. /*
  1351. * This domain has SD_WAKE_AFFINE and
  1352. * p is cache cold in this domain, and
  1353. * there is no bad imbalance.
  1354. */
  1355. schedstat_inc(this_sd, ttwu_move_affine);
  1356. schedstat_inc(p, se.nr_wakeups_affine);
  1357. goto out_set_cpu;
  1358. }
  1359. }
  1360. /*
  1361. * Start passive balancing when half the imbalance_pct
  1362. * limit is reached.
  1363. */
  1364. if (this_sd->flags & SD_WAKE_BALANCE) {
  1365. if (imbalance*this_load <= 100*load) {
  1366. schedstat_inc(this_sd, ttwu_move_balance);
  1367. schedstat_inc(p, se.nr_wakeups_passive);
  1368. goto out_set_cpu;
  1369. }
  1370. }
  1371. }
  1372. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1373. out_set_cpu:
  1374. new_cpu = wake_idle(new_cpu, p);
  1375. if (new_cpu != cpu) {
  1376. set_task_cpu(p, new_cpu);
  1377. task_rq_unlock(rq, &flags);
  1378. /* might preempt at this point */
  1379. rq = task_rq_lock(p, &flags);
  1380. old_state = p->state;
  1381. if (!(old_state & state))
  1382. goto out;
  1383. if (p->se.on_rq)
  1384. goto out_running;
  1385. this_cpu = smp_processor_id();
  1386. cpu = task_cpu(p);
  1387. }
  1388. out_activate:
  1389. #endif /* CONFIG_SMP */
  1390. schedstat_inc(p, se.nr_wakeups);
  1391. if (sync)
  1392. schedstat_inc(p, se.nr_wakeups_sync);
  1393. if (orig_cpu != cpu)
  1394. schedstat_inc(p, se.nr_wakeups_migrate);
  1395. if (cpu == this_cpu)
  1396. schedstat_inc(p, se.nr_wakeups_local);
  1397. else
  1398. schedstat_inc(p, se.nr_wakeups_remote);
  1399. update_rq_clock(rq);
  1400. activate_task(rq, p, 1);
  1401. check_preempt_curr(rq, p);
  1402. success = 1;
  1403. out_running:
  1404. p->state = TASK_RUNNING;
  1405. out:
  1406. task_rq_unlock(rq, &flags);
  1407. return success;
  1408. }
  1409. int fastcall wake_up_process(struct task_struct *p)
  1410. {
  1411. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1412. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1413. }
  1414. EXPORT_SYMBOL(wake_up_process);
  1415. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1416. {
  1417. return try_to_wake_up(p, state, 0);
  1418. }
  1419. /*
  1420. * Perform scheduler related setup for a newly forked process p.
  1421. * p is forked by current.
  1422. *
  1423. * __sched_fork() is basic setup used by init_idle() too:
  1424. */
  1425. static void __sched_fork(struct task_struct *p)
  1426. {
  1427. p->se.exec_start = 0;
  1428. p->se.sum_exec_runtime = 0;
  1429. p->se.prev_sum_exec_runtime = 0;
  1430. #ifdef CONFIG_SCHEDSTATS
  1431. p->se.wait_start = 0;
  1432. p->se.sum_sleep_runtime = 0;
  1433. p->se.sleep_start = 0;
  1434. p->se.block_start = 0;
  1435. p->se.sleep_max = 0;
  1436. p->se.block_max = 0;
  1437. p->se.exec_max = 0;
  1438. p->se.slice_max = 0;
  1439. p->se.wait_max = 0;
  1440. #endif
  1441. INIT_LIST_HEAD(&p->run_list);
  1442. p->se.on_rq = 0;
  1443. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1444. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1445. #endif
  1446. /*
  1447. * We mark the process as running here, but have not actually
  1448. * inserted it onto the runqueue yet. This guarantees that
  1449. * nobody will actually run it, and a signal or other external
  1450. * event cannot wake it up and insert it on the runqueue either.
  1451. */
  1452. p->state = TASK_RUNNING;
  1453. }
  1454. /*
  1455. * fork()/clone()-time setup:
  1456. */
  1457. void sched_fork(struct task_struct *p, int clone_flags)
  1458. {
  1459. int cpu = get_cpu();
  1460. __sched_fork(p);
  1461. #ifdef CONFIG_SMP
  1462. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1463. #endif
  1464. set_task_cpu(p, cpu);
  1465. /*
  1466. * Make sure we do not leak PI boosting priority to the child:
  1467. */
  1468. p->prio = current->normal_prio;
  1469. if (!rt_prio(p->prio))
  1470. p->sched_class = &fair_sched_class;
  1471. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1472. if (likely(sched_info_on()))
  1473. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1474. #endif
  1475. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1476. p->oncpu = 0;
  1477. #endif
  1478. #ifdef CONFIG_PREEMPT
  1479. /* Want to start with kernel preemption disabled. */
  1480. task_thread_info(p)->preempt_count = 1;
  1481. #endif
  1482. put_cpu();
  1483. }
  1484. /*
  1485. * wake_up_new_task - wake up a newly created task for the first time.
  1486. *
  1487. * This function will do some initial scheduler statistics housekeeping
  1488. * that must be done for every newly created context, then puts the task
  1489. * on the runqueue and wakes it.
  1490. */
  1491. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1492. {
  1493. unsigned long flags;
  1494. struct rq *rq;
  1495. rq = task_rq_lock(p, &flags);
  1496. BUG_ON(p->state != TASK_RUNNING);
  1497. update_rq_clock(rq);
  1498. p->prio = effective_prio(p);
  1499. if (!p->sched_class->task_new || !current->se.on_rq) {
  1500. activate_task(rq, p, 0);
  1501. } else {
  1502. /*
  1503. * Let the scheduling class do new task startup
  1504. * management (if any):
  1505. */
  1506. p->sched_class->task_new(rq, p);
  1507. inc_nr_running(p, rq);
  1508. }
  1509. check_preempt_curr(rq, p);
  1510. task_rq_unlock(rq, &flags);
  1511. }
  1512. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1513. /**
  1514. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1515. * @notifier: notifier struct to register
  1516. */
  1517. void preempt_notifier_register(struct preempt_notifier *notifier)
  1518. {
  1519. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1520. }
  1521. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1522. /**
  1523. * preempt_notifier_unregister - no longer interested in preemption notifications
  1524. * @notifier: notifier struct to unregister
  1525. *
  1526. * This is safe to call from within a preemption notifier.
  1527. */
  1528. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1529. {
  1530. hlist_del(&notifier->link);
  1531. }
  1532. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1533. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1534. {
  1535. struct preempt_notifier *notifier;
  1536. struct hlist_node *node;
  1537. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1538. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1539. }
  1540. static void
  1541. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1542. struct task_struct *next)
  1543. {
  1544. struct preempt_notifier *notifier;
  1545. struct hlist_node *node;
  1546. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1547. notifier->ops->sched_out(notifier, next);
  1548. }
  1549. #else
  1550. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1551. {
  1552. }
  1553. static void
  1554. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1555. struct task_struct *next)
  1556. {
  1557. }
  1558. #endif
  1559. /**
  1560. * prepare_task_switch - prepare to switch tasks
  1561. * @rq: the runqueue preparing to switch
  1562. * @prev: the current task that is being switched out
  1563. * @next: the task we are going to switch to.
  1564. *
  1565. * This is called with the rq lock held and interrupts off. It must
  1566. * be paired with a subsequent finish_task_switch after the context
  1567. * switch.
  1568. *
  1569. * prepare_task_switch sets up locking and calls architecture specific
  1570. * hooks.
  1571. */
  1572. static inline void
  1573. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1574. struct task_struct *next)
  1575. {
  1576. fire_sched_out_preempt_notifiers(prev, next);
  1577. prepare_lock_switch(rq, next);
  1578. prepare_arch_switch(next);
  1579. }
  1580. /**
  1581. * finish_task_switch - clean up after a task-switch
  1582. * @rq: runqueue associated with task-switch
  1583. * @prev: the thread we just switched away from.
  1584. *
  1585. * finish_task_switch must be called after the context switch, paired
  1586. * with a prepare_task_switch call before the context switch.
  1587. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1588. * and do any other architecture-specific cleanup actions.
  1589. *
  1590. * Note that we may have delayed dropping an mm in context_switch(). If
  1591. * so, we finish that here outside of the runqueue lock. (Doing it
  1592. * with the lock held can cause deadlocks; see schedule() for
  1593. * details.)
  1594. */
  1595. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1596. __releases(rq->lock)
  1597. {
  1598. struct mm_struct *mm = rq->prev_mm;
  1599. long prev_state;
  1600. rq->prev_mm = NULL;
  1601. /*
  1602. * A task struct has one reference for the use as "current".
  1603. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1604. * schedule one last time. The schedule call will never return, and
  1605. * the scheduled task must drop that reference.
  1606. * The test for TASK_DEAD must occur while the runqueue locks are
  1607. * still held, otherwise prev could be scheduled on another cpu, die
  1608. * there before we look at prev->state, and then the reference would
  1609. * be dropped twice.
  1610. * Manfred Spraul <manfred@colorfullife.com>
  1611. */
  1612. prev_state = prev->state;
  1613. finish_arch_switch(prev);
  1614. finish_lock_switch(rq, prev);
  1615. fire_sched_in_preempt_notifiers(current);
  1616. if (mm)
  1617. mmdrop(mm);
  1618. if (unlikely(prev_state == TASK_DEAD)) {
  1619. /*
  1620. * Remove function-return probe instances associated with this
  1621. * task and put them back on the free list.
  1622. */
  1623. kprobe_flush_task(prev);
  1624. put_task_struct(prev);
  1625. }
  1626. }
  1627. /**
  1628. * schedule_tail - first thing a freshly forked thread must call.
  1629. * @prev: the thread we just switched away from.
  1630. */
  1631. asmlinkage void schedule_tail(struct task_struct *prev)
  1632. __releases(rq->lock)
  1633. {
  1634. struct rq *rq = this_rq();
  1635. finish_task_switch(rq, prev);
  1636. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1637. /* In this case, finish_task_switch does not reenable preemption */
  1638. preempt_enable();
  1639. #endif
  1640. if (current->set_child_tid)
  1641. put_user(task_pid_vnr(current), current->set_child_tid);
  1642. }
  1643. /*
  1644. * context_switch - switch to the new MM and the new
  1645. * thread's register state.
  1646. */
  1647. static inline void
  1648. context_switch(struct rq *rq, struct task_struct *prev,
  1649. struct task_struct *next)
  1650. {
  1651. struct mm_struct *mm, *oldmm;
  1652. prepare_task_switch(rq, prev, next);
  1653. mm = next->mm;
  1654. oldmm = prev->active_mm;
  1655. /*
  1656. * For paravirt, this is coupled with an exit in switch_to to
  1657. * combine the page table reload and the switch backend into
  1658. * one hypercall.
  1659. */
  1660. arch_enter_lazy_cpu_mode();
  1661. if (unlikely(!mm)) {
  1662. next->active_mm = oldmm;
  1663. atomic_inc(&oldmm->mm_count);
  1664. enter_lazy_tlb(oldmm, next);
  1665. } else
  1666. switch_mm(oldmm, mm, next);
  1667. if (unlikely(!prev->mm)) {
  1668. prev->active_mm = NULL;
  1669. rq->prev_mm = oldmm;
  1670. }
  1671. /*
  1672. * Since the runqueue lock will be released by the next
  1673. * task (which is an invalid locking op but in the case
  1674. * of the scheduler it's an obvious special-case), so we
  1675. * do an early lockdep release here:
  1676. */
  1677. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1678. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1679. #endif
  1680. /* Here we just switch the register state and the stack. */
  1681. switch_to(prev, next, prev);
  1682. barrier();
  1683. /*
  1684. * this_rq must be evaluated again because prev may have moved
  1685. * CPUs since it called schedule(), thus the 'rq' on its stack
  1686. * frame will be invalid.
  1687. */
  1688. finish_task_switch(this_rq(), prev);
  1689. }
  1690. /*
  1691. * nr_running, nr_uninterruptible and nr_context_switches:
  1692. *
  1693. * externally visible scheduler statistics: current number of runnable
  1694. * threads, current number of uninterruptible-sleeping threads, total
  1695. * number of context switches performed since bootup.
  1696. */
  1697. unsigned long nr_running(void)
  1698. {
  1699. unsigned long i, sum = 0;
  1700. for_each_online_cpu(i)
  1701. sum += cpu_rq(i)->nr_running;
  1702. return sum;
  1703. }
  1704. unsigned long nr_uninterruptible(void)
  1705. {
  1706. unsigned long i, sum = 0;
  1707. for_each_possible_cpu(i)
  1708. sum += cpu_rq(i)->nr_uninterruptible;
  1709. /*
  1710. * Since we read the counters lockless, it might be slightly
  1711. * inaccurate. Do not allow it to go below zero though:
  1712. */
  1713. if (unlikely((long)sum < 0))
  1714. sum = 0;
  1715. return sum;
  1716. }
  1717. unsigned long long nr_context_switches(void)
  1718. {
  1719. int i;
  1720. unsigned long long sum = 0;
  1721. for_each_possible_cpu(i)
  1722. sum += cpu_rq(i)->nr_switches;
  1723. return sum;
  1724. }
  1725. unsigned long nr_iowait(void)
  1726. {
  1727. unsigned long i, sum = 0;
  1728. for_each_possible_cpu(i)
  1729. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1730. return sum;
  1731. }
  1732. unsigned long nr_active(void)
  1733. {
  1734. unsigned long i, running = 0, uninterruptible = 0;
  1735. for_each_online_cpu(i) {
  1736. running += cpu_rq(i)->nr_running;
  1737. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1738. }
  1739. if (unlikely((long)uninterruptible < 0))
  1740. uninterruptible = 0;
  1741. return running + uninterruptible;
  1742. }
  1743. /*
  1744. * Update rq->cpu_load[] statistics. This function is usually called every
  1745. * scheduler tick (TICK_NSEC).
  1746. */
  1747. static void update_cpu_load(struct rq *this_rq)
  1748. {
  1749. unsigned long this_load = this_rq->load.weight;
  1750. int i, scale;
  1751. this_rq->nr_load_updates++;
  1752. /* Update our load: */
  1753. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1754. unsigned long old_load, new_load;
  1755. /* scale is effectively 1 << i now, and >> i divides by scale */
  1756. old_load = this_rq->cpu_load[i];
  1757. new_load = this_load;
  1758. /*
  1759. * Round up the averaging division if load is increasing. This
  1760. * prevents us from getting stuck on 9 if the load is 10, for
  1761. * example.
  1762. */
  1763. if (new_load > old_load)
  1764. new_load += scale-1;
  1765. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1766. }
  1767. }
  1768. #ifdef CONFIG_SMP
  1769. /*
  1770. * double_rq_lock - safely lock two runqueues
  1771. *
  1772. * Note this does not disable interrupts like task_rq_lock,
  1773. * you need to do so manually before calling.
  1774. */
  1775. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1776. __acquires(rq1->lock)
  1777. __acquires(rq2->lock)
  1778. {
  1779. BUG_ON(!irqs_disabled());
  1780. if (rq1 == rq2) {
  1781. spin_lock(&rq1->lock);
  1782. __acquire(rq2->lock); /* Fake it out ;) */
  1783. } else {
  1784. if (rq1 < rq2) {
  1785. spin_lock(&rq1->lock);
  1786. spin_lock(&rq2->lock);
  1787. } else {
  1788. spin_lock(&rq2->lock);
  1789. spin_lock(&rq1->lock);
  1790. }
  1791. }
  1792. update_rq_clock(rq1);
  1793. update_rq_clock(rq2);
  1794. }
  1795. /*
  1796. * double_rq_unlock - safely unlock two runqueues
  1797. *
  1798. * Note this does not restore interrupts like task_rq_unlock,
  1799. * you need to do so manually after calling.
  1800. */
  1801. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1802. __releases(rq1->lock)
  1803. __releases(rq2->lock)
  1804. {
  1805. spin_unlock(&rq1->lock);
  1806. if (rq1 != rq2)
  1807. spin_unlock(&rq2->lock);
  1808. else
  1809. __release(rq2->lock);
  1810. }
  1811. /*
  1812. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1813. */
  1814. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1815. __releases(this_rq->lock)
  1816. __acquires(busiest->lock)
  1817. __acquires(this_rq->lock)
  1818. {
  1819. if (unlikely(!irqs_disabled())) {
  1820. /* printk() doesn't work good under rq->lock */
  1821. spin_unlock(&this_rq->lock);
  1822. BUG_ON(1);
  1823. }
  1824. if (unlikely(!spin_trylock(&busiest->lock))) {
  1825. if (busiest < this_rq) {
  1826. spin_unlock(&this_rq->lock);
  1827. spin_lock(&busiest->lock);
  1828. spin_lock(&this_rq->lock);
  1829. } else
  1830. spin_lock(&busiest->lock);
  1831. }
  1832. }
  1833. /*
  1834. * If dest_cpu is allowed for this process, migrate the task to it.
  1835. * This is accomplished by forcing the cpu_allowed mask to only
  1836. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1837. * the cpu_allowed mask is restored.
  1838. */
  1839. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1840. {
  1841. struct migration_req req;
  1842. unsigned long flags;
  1843. struct rq *rq;
  1844. rq = task_rq_lock(p, &flags);
  1845. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1846. || unlikely(cpu_is_offline(dest_cpu)))
  1847. goto out;
  1848. /* force the process onto the specified CPU */
  1849. if (migrate_task(p, dest_cpu, &req)) {
  1850. /* Need to wait for migration thread (might exit: take ref). */
  1851. struct task_struct *mt = rq->migration_thread;
  1852. get_task_struct(mt);
  1853. task_rq_unlock(rq, &flags);
  1854. wake_up_process(mt);
  1855. put_task_struct(mt);
  1856. wait_for_completion(&req.done);
  1857. return;
  1858. }
  1859. out:
  1860. task_rq_unlock(rq, &flags);
  1861. }
  1862. /*
  1863. * sched_exec - execve() is a valuable balancing opportunity, because at
  1864. * this point the task has the smallest effective memory and cache footprint.
  1865. */
  1866. void sched_exec(void)
  1867. {
  1868. int new_cpu, this_cpu = get_cpu();
  1869. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1870. put_cpu();
  1871. if (new_cpu != this_cpu)
  1872. sched_migrate_task(current, new_cpu);
  1873. }
  1874. /*
  1875. * pull_task - move a task from a remote runqueue to the local runqueue.
  1876. * Both runqueues must be locked.
  1877. */
  1878. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1879. struct rq *this_rq, int this_cpu)
  1880. {
  1881. deactivate_task(src_rq, p, 0);
  1882. set_task_cpu(p, this_cpu);
  1883. activate_task(this_rq, p, 0);
  1884. /*
  1885. * Note that idle threads have a prio of MAX_PRIO, for this test
  1886. * to be always true for them.
  1887. */
  1888. check_preempt_curr(this_rq, p);
  1889. }
  1890. /*
  1891. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1892. */
  1893. static
  1894. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1895. struct sched_domain *sd, enum cpu_idle_type idle,
  1896. int *all_pinned)
  1897. {
  1898. /*
  1899. * We do not migrate tasks that are:
  1900. * 1) running (obviously), or
  1901. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1902. * 3) are cache-hot on their current CPU.
  1903. */
  1904. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1905. schedstat_inc(p, se.nr_failed_migrations_affine);
  1906. return 0;
  1907. }
  1908. *all_pinned = 0;
  1909. if (task_running(rq, p)) {
  1910. schedstat_inc(p, se.nr_failed_migrations_running);
  1911. return 0;
  1912. }
  1913. /*
  1914. * Aggressive migration if:
  1915. * 1) task is cache cold, or
  1916. * 2) too many balance attempts have failed.
  1917. */
  1918. if (!task_hot(p, rq->clock, sd) ||
  1919. sd->nr_balance_failed > sd->cache_nice_tries) {
  1920. #ifdef CONFIG_SCHEDSTATS
  1921. if (task_hot(p, rq->clock, sd)) {
  1922. schedstat_inc(sd, lb_hot_gained[idle]);
  1923. schedstat_inc(p, se.nr_forced_migrations);
  1924. }
  1925. #endif
  1926. return 1;
  1927. }
  1928. if (task_hot(p, rq->clock, sd)) {
  1929. schedstat_inc(p, se.nr_failed_migrations_hot);
  1930. return 0;
  1931. }
  1932. return 1;
  1933. }
  1934. static unsigned long
  1935. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1936. unsigned long max_load_move, struct sched_domain *sd,
  1937. enum cpu_idle_type idle, int *all_pinned,
  1938. int *this_best_prio, struct rq_iterator *iterator)
  1939. {
  1940. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  1941. struct task_struct *p;
  1942. long rem_load_move = max_load_move;
  1943. if (max_load_move == 0)
  1944. goto out;
  1945. pinned = 1;
  1946. /*
  1947. * Start the load-balancing iterator:
  1948. */
  1949. p = iterator->start(iterator->arg);
  1950. next:
  1951. if (!p || loops++ > sysctl_sched_nr_migrate)
  1952. goto out;
  1953. /*
  1954. * To help distribute high priority tasks across CPUs we don't
  1955. * skip a task if it will be the highest priority task (i.e. smallest
  1956. * prio value) on its new queue regardless of its load weight
  1957. */
  1958. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1959. SCHED_LOAD_SCALE_FUZZ;
  1960. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1961. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1962. p = iterator->next(iterator->arg);
  1963. goto next;
  1964. }
  1965. pull_task(busiest, p, this_rq, this_cpu);
  1966. pulled++;
  1967. rem_load_move -= p->se.load.weight;
  1968. /*
  1969. * We only want to steal up to the prescribed amount of weighted load.
  1970. */
  1971. if (rem_load_move > 0) {
  1972. if (p->prio < *this_best_prio)
  1973. *this_best_prio = p->prio;
  1974. p = iterator->next(iterator->arg);
  1975. goto next;
  1976. }
  1977. out:
  1978. /*
  1979. * Right now, this is one of only two places pull_task() is called,
  1980. * so we can safely collect pull_task() stats here rather than
  1981. * inside pull_task().
  1982. */
  1983. schedstat_add(sd, lb_gained[idle], pulled);
  1984. if (all_pinned)
  1985. *all_pinned = pinned;
  1986. return max_load_move - rem_load_move;
  1987. }
  1988. /*
  1989. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1990. * this_rq, as part of a balancing operation within domain "sd".
  1991. * Returns 1 if successful and 0 otherwise.
  1992. *
  1993. * Called with both runqueues locked.
  1994. */
  1995. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1996. unsigned long max_load_move,
  1997. struct sched_domain *sd, enum cpu_idle_type idle,
  1998. int *all_pinned)
  1999. {
  2000. const struct sched_class *class = sched_class_highest;
  2001. unsigned long total_load_moved = 0;
  2002. int this_best_prio = this_rq->curr->prio;
  2003. do {
  2004. total_load_moved +=
  2005. class->load_balance(this_rq, this_cpu, busiest,
  2006. max_load_move - total_load_moved,
  2007. sd, idle, all_pinned, &this_best_prio);
  2008. class = class->next;
  2009. } while (class && max_load_move > total_load_moved);
  2010. return total_load_moved > 0;
  2011. }
  2012. static int
  2013. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2014. struct sched_domain *sd, enum cpu_idle_type idle,
  2015. struct rq_iterator *iterator)
  2016. {
  2017. struct task_struct *p = iterator->start(iterator->arg);
  2018. int pinned = 0;
  2019. while (p) {
  2020. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2021. pull_task(busiest, p, this_rq, this_cpu);
  2022. /*
  2023. * Right now, this is only the second place pull_task()
  2024. * is called, so we can safely collect pull_task()
  2025. * stats here rather than inside pull_task().
  2026. */
  2027. schedstat_inc(sd, lb_gained[idle]);
  2028. return 1;
  2029. }
  2030. p = iterator->next(iterator->arg);
  2031. }
  2032. return 0;
  2033. }
  2034. /*
  2035. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2036. * part of active balancing operations within "domain".
  2037. * Returns 1 if successful and 0 otherwise.
  2038. *
  2039. * Called with both runqueues locked.
  2040. */
  2041. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2042. struct sched_domain *sd, enum cpu_idle_type idle)
  2043. {
  2044. const struct sched_class *class;
  2045. for (class = sched_class_highest; class; class = class->next)
  2046. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2047. return 1;
  2048. return 0;
  2049. }
  2050. /*
  2051. * find_busiest_group finds and returns the busiest CPU group within the
  2052. * domain. It calculates and returns the amount of weighted load which
  2053. * should be moved to restore balance via the imbalance parameter.
  2054. */
  2055. static struct sched_group *
  2056. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2057. unsigned long *imbalance, enum cpu_idle_type idle,
  2058. int *sd_idle, cpumask_t *cpus, int *balance)
  2059. {
  2060. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2061. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2062. unsigned long max_pull;
  2063. unsigned long busiest_load_per_task, busiest_nr_running;
  2064. unsigned long this_load_per_task, this_nr_running;
  2065. int load_idx, group_imb = 0;
  2066. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2067. int power_savings_balance = 1;
  2068. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2069. unsigned long min_nr_running = ULONG_MAX;
  2070. struct sched_group *group_min = NULL, *group_leader = NULL;
  2071. #endif
  2072. max_load = this_load = total_load = total_pwr = 0;
  2073. busiest_load_per_task = busiest_nr_running = 0;
  2074. this_load_per_task = this_nr_running = 0;
  2075. if (idle == CPU_NOT_IDLE)
  2076. load_idx = sd->busy_idx;
  2077. else if (idle == CPU_NEWLY_IDLE)
  2078. load_idx = sd->newidle_idx;
  2079. else
  2080. load_idx = sd->idle_idx;
  2081. do {
  2082. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2083. int local_group;
  2084. int i;
  2085. int __group_imb = 0;
  2086. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2087. unsigned long sum_nr_running, sum_weighted_load;
  2088. local_group = cpu_isset(this_cpu, group->cpumask);
  2089. if (local_group)
  2090. balance_cpu = first_cpu(group->cpumask);
  2091. /* Tally up the load of all CPUs in the group */
  2092. sum_weighted_load = sum_nr_running = avg_load = 0;
  2093. max_cpu_load = 0;
  2094. min_cpu_load = ~0UL;
  2095. for_each_cpu_mask(i, group->cpumask) {
  2096. struct rq *rq;
  2097. if (!cpu_isset(i, *cpus))
  2098. continue;
  2099. rq = cpu_rq(i);
  2100. if (*sd_idle && rq->nr_running)
  2101. *sd_idle = 0;
  2102. /* Bias balancing toward cpus of our domain */
  2103. if (local_group) {
  2104. if (idle_cpu(i) && !first_idle_cpu) {
  2105. first_idle_cpu = 1;
  2106. balance_cpu = i;
  2107. }
  2108. load = target_load(i, load_idx);
  2109. } else {
  2110. load = source_load(i, load_idx);
  2111. if (load > max_cpu_load)
  2112. max_cpu_load = load;
  2113. if (min_cpu_load > load)
  2114. min_cpu_load = load;
  2115. }
  2116. avg_load += load;
  2117. sum_nr_running += rq->nr_running;
  2118. sum_weighted_load += weighted_cpuload(i);
  2119. }
  2120. /*
  2121. * First idle cpu or the first cpu(busiest) in this sched group
  2122. * is eligible for doing load balancing at this and above
  2123. * domains. In the newly idle case, we will allow all the cpu's
  2124. * to do the newly idle load balance.
  2125. */
  2126. if (idle != CPU_NEWLY_IDLE && local_group &&
  2127. balance_cpu != this_cpu && balance) {
  2128. *balance = 0;
  2129. goto ret;
  2130. }
  2131. total_load += avg_load;
  2132. total_pwr += group->__cpu_power;
  2133. /* Adjust by relative CPU power of the group */
  2134. avg_load = sg_div_cpu_power(group,
  2135. avg_load * SCHED_LOAD_SCALE);
  2136. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2137. __group_imb = 1;
  2138. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2139. if (local_group) {
  2140. this_load = avg_load;
  2141. this = group;
  2142. this_nr_running = sum_nr_running;
  2143. this_load_per_task = sum_weighted_load;
  2144. } else if (avg_load > max_load &&
  2145. (sum_nr_running > group_capacity || __group_imb)) {
  2146. max_load = avg_load;
  2147. busiest = group;
  2148. busiest_nr_running = sum_nr_running;
  2149. busiest_load_per_task = sum_weighted_load;
  2150. group_imb = __group_imb;
  2151. }
  2152. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2153. /*
  2154. * Busy processors will not participate in power savings
  2155. * balance.
  2156. */
  2157. if (idle == CPU_NOT_IDLE ||
  2158. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2159. goto group_next;
  2160. /*
  2161. * If the local group is idle or completely loaded
  2162. * no need to do power savings balance at this domain
  2163. */
  2164. if (local_group && (this_nr_running >= group_capacity ||
  2165. !this_nr_running))
  2166. power_savings_balance = 0;
  2167. /*
  2168. * If a group is already running at full capacity or idle,
  2169. * don't include that group in power savings calculations
  2170. */
  2171. if (!power_savings_balance || sum_nr_running >= group_capacity
  2172. || !sum_nr_running)
  2173. goto group_next;
  2174. /*
  2175. * Calculate the group which has the least non-idle load.
  2176. * This is the group from where we need to pick up the load
  2177. * for saving power
  2178. */
  2179. if ((sum_nr_running < min_nr_running) ||
  2180. (sum_nr_running == min_nr_running &&
  2181. first_cpu(group->cpumask) <
  2182. first_cpu(group_min->cpumask))) {
  2183. group_min = group;
  2184. min_nr_running = sum_nr_running;
  2185. min_load_per_task = sum_weighted_load /
  2186. sum_nr_running;
  2187. }
  2188. /*
  2189. * Calculate the group which is almost near its
  2190. * capacity but still has some space to pick up some load
  2191. * from other group and save more power
  2192. */
  2193. if (sum_nr_running <= group_capacity - 1) {
  2194. if (sum_nr_running > leader_nr_running ||
  2195. (sum_nr_running == leader_nr_running &&
  2196. first_cpu(group->cpumask) >
  2197. first_cpu(group_leader->cpumask))) {
  2198. group_leader = group;
  2199. leader_nr_running = sum_nr_running;
  2200. }
  2201. }
  2202. group_next:
  2203. #endif
  2204. group = group->next;
  2205. } while (group != sd->groups);
  2206. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2207. goto out_balanced;
  2208. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2209. if (this_load >= avg_load ||
  2210. 100*max_load <= sd->imbalance_pct*this_load)
  2211. goto out_balanced;
  2212. busiest_load_per_task /= busiest_nr_running;
  2213. if (group_imb)
  2214. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2215. /*
  2216. * We're trying to get all the cpus to the average_load, so we don't
  2217. * want to push ourselves above the average load, nor do we wish to
  2218. * reduce the max loaded cpu below the average load, as either of these
  2219. * actions would just result in more rebalancing later, and ping-pong
  2220. * tasks around. Thus we look for the minimum possible imbalance.
  2221. * Negative imbalances (*we* are more loaded than anyone else) will
  2222. * be counted as no imbalance for these purposes -- we can't fix that
  2223. * by pulling tasks to us. Be careful of negative numbers as they'll
  2224. * appear as very large values with unsigned longs.
  2225. */
  2226. if (max_load <= busiest_load_per_task)
  2227. goto out_balanced;
  2228. /*
  2229. * In the presence of smp nice balancing, certain scenarios can have
  2230. * max load less than avg load(as we skip the groups at or below
  2231. * its cpu_power, while calculating max_load..)
  2232. */
  2233. if (max_load < avg_load) {
  2234. *imbalance = 0;
  2235. goto small_imbalance;
  2236. }
  2237. /* Don't want to pull so many tasks that a group would go idle */
  2238. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2239. /* How much load to actually move to equalise the imbalance */
  2240. *imbalance = min(max_pull * busiest->__cpu_power,
  2241. (avg_load - this_load) * this->__cpu_power)
  2242. / SCHED_LOAD_SCALE;
  2243. /*
  2244. * if *imbalance is less than the average load per runnable task
  2245. * there is no gaurantee that any tasks will be moved so we'll have
  2246. * a think about bumping its value to force at least one task to be
  2247. * moved
  2248. */
  2249. if (*imbalance < busiest_load_per_task) {
  2250. unsigned long tmp, pwr_now, pwr_move;
  2251. unsigned int imbn;
  2252. small_imbalance:
  2253. pwr_move = pwr_now = 0;
  2254. imbn = 2;
  2255. if (this_nr_running) {
  2256. this_load_per_task /= this_nr_running;
  2257. if (busiest_load_per_task > this_load_per_task)
  2258. imbn = 1;
  2259. } else
  2260. this_load_per_task = SCHED_LOAD_SCALE;
  2261. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2262. busiest_load_per_task * imbn) {
  2263. *imbalance = busiest_load_per_task;
  2264. return busiest;
  2265. }
  2266. /*
  2267. * OK, we don't have enough imbalance to justify moving tasks,
  2268. * however we may be able to increase total CPU power used by
  2269. * moving them.
  2270. */
  2271. pwr_now += busiest->__cpu_power *
  2272. min(busiest_load_per_task, max_load);
  2273. pwr_now += this->__cpu_power *
  2274. min(this_load_per_task, this_load);
  2275. pwr_now /= SCHED_LOAD_SCALE;
  2276. /* Amount of load we'd subtract */
  2277. tmp = sg_div_cpu_power(busiest,
  2278. busiest_load_per_task * SCHED_LOAD_SCALE);
  2279. if (max_load > tmp)
  2280. pwr_move += busiest->__cpu_power *
  2281. min(busiest_load_per_task, max_load - tmp);
  2282. /* Amount of load we'd add */
  2283. if (max_load * busiest->__cpu_power <
  2284. busiest_load_per_task * SCHED_LOAD_SCALE)
  2285. tmp = sg_div_cpu_power(this,
  2286. max_load * busiest->__cpu_power);
  2287. else
  2288. tmp = sg_div_cpu_power(this,
  2289. busiest_load_per_task * SCHED_LOAD_SCALE);
  2290. pwr_move += this->__cpu_power *
  2291. min(this_load_per_task, this_load + tmp);
  2292. pwr_move /= SCHED_LOAD_SCALE;
  2293. /* Move if we gain throughput */
  2294. if (pwr_move > pwr_now)
  2295. *imbalance = busiest_load_per_task;
  2296. }
  2297. return busiest;
  2298. out_balanced:
  2299. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2300. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2301. goto ret;
  2302. if (this == group_leader && group_leader != group_min) {
  2303. *imbalance = min_load_per_task;
  2304. return group_min;
  2305. }
  2306. #endif
  2307. ret:
  2308. *imbalance = 0;
  2309. return NULL;
  2310. }
  2311. /*
  2312. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2313. */
  2314. static struct rq *
  2315. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2316. unsigned long imbalance, cpumask_t *cpus)
  2317. {
  2318. struct rq *busiest = NULL, *rq;
  2319. unsigned long max_load = 0;
  2320. int i;
  2321. for_each_cpu_mask(i, group->cpumask) {
  2322. unsigned long wl;
  2323. if (!cpu_isset(i, *cpus))
  2324. continue;
  2325. rq = cpu_rq(i);
  2326. wl = weighted_cpuload(i);
  2327. if (rq->nr_running == 1 && wl > imbalance)
  2328. continue;
  2329. if (wl > max_load) {
  2330. max_load = wl;
  2331. busiest = rq;
  2332. }
  2333. }
  2334. return busiest;
  2335. }
  2336. /*
  2337. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2338. * so long as it is large enough.
  2339. */
  2340. #define MAX_PINNED_INTERVAL 512
  2341. /*
  2342. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2343. * tasks if there is an imbalance.
  2344. */
  2345. static int load_balance(int this_cpu, struct rq *this_rq,
  2346. struct sched_domain *sd, enum cpu_idle_type idle,
  2347. int *balance)
  2348. {
  2349. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2350. struct sched_group *group;
  2351. unsigned long imbalance;
  2352. struct rq *busiest;
  2353. cpumask_t cpus = CPU_MASK_ALL;
  2354. unsigned long flags;
  2355. /*
  2356. * When power savings policy is enabled for the parent domain, idle
  2357. * sibling can pick up load irrespective of busy siblings. In this case,
  2358. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2359. * portraying it as CPU_NOT_IDLE.
  2360. */
  2361. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2362. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2363. sd_idle = 1;
  2364. schedstat_inc(sd, lb_count[idle]);
  2365. redo:
  2366. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2367. &cpus, balance);
  2368. if (*balance == 0)
  2369. goto out_balanced;
  2370. if (!group) {
  2371. schedstat_inc(sd, lb_nobusyg[idle]);
  2372. goto out_balanced;
  2373. }
  2374. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2375. if (!busiest) {
  2376. schedstat_inc(sd, lb_nobusyq[idle]);
  2377. goto out_balanced;
  2378. }
  2379. BUG_ON(busiest == this_rq);
  2380. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2381. ld_moved = 0;
  2382. if (busiest->nr_running > 1) {
  2383. /*
  2384. * Attempt to move tasks. If find_busiest_group has found
  2385. * an imbalance but busiest->nr_running <= 1, the group is
  2386. * still unbalanced. ld_moved simply stays zero, so it is
  2387. * correctly treated as an imbalance.
  2388. */
  2389. local_irq_save(flags);
  2390. double_rq_lock(this_rq, busiest);
  2391. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2392. imbalance, sd, idle, &all_pinned);
  2393. double_rq_unlock(this_rq, busiest);
  2394. local_irq_restore(flags);
  2395. /*
  2396. * some other cpu did the load balance for us.
  2397. */
  2398. if (ld_moved && this_cpu != smp_processor_id())
  2399. resched_cpu(this_cpu);
  2400. /* All tasks on this runqueue were pinned by CPU affinity */
  2401. if (unlikely(all_pinned)) {
  2402. cpu_clear(cpu_of(busiest), cpus);
  2403. if (!cpus_empty(cpus))
  2404. goto redo;
  2405. goto out_balanced;
  2406. }
  2407. }
  2408. if (!ld_moved) {
  2409. schedstat_inc(sd, lb_failed[idle]);
  2410. sd->nr_balance_failed++;
  2411. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2412. spin_lock_irqsave(&busiest->lock, flags);
  2413. /* don't kick the migration_thread, if the curr
  2414. * task on busiest cpu can't be moved to this_cpu
  2415. */
  2416. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2417. spin_unlock_irqrestore(&busiest->lock, flags);
  2418. all_pinned = 1;
  2419. goto out_one_pinned;
  2420. }
  2421. if (!busiest->active_balance) {
  2422. busiest->active_balance = 1;
  2423. busiest->push_cpu = this_cpu;
  2424. active_balance = 1;
  2425. }
  2426. spin_unlock_irqrestore(&busiest->lock, flags);
  2427. if (active_balance)
  2428. wake_up_process(busiest->migration_thread);
  2429. /*
  2430. * We've kicked active balancing, reset the failure
  2431. * counter.
  2432. */
  2433. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2434. }
  2435. } else
  2436. sd->nr_balance_failed = 0;
  2437. if (likely(!active_balance)) {
  2438. /* We were unbalanced, so reset the balancing interval */
  2439. sd->balance_interval = sd->min_interval;
  2440. } else {
  2441. /*
  2442. * If we've begun active balancing, start to back off. This
  2443. * case may not be covered by the all_pinned logic if there
  2444. * is only 1 task on the busy runqueue (because we don't call
  2445. * move_tasks).
  2446. */
  2447. if (sd->balance_interval < sd->max_interval)
  2448. sd->balance_interval *= 2;
  2449. }
  2450. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2451. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2452. return -1;
  2453. return ld_moved;
  2454. out_balanced:
  2455. schedstat_inc(sd, lb_balanced[idle]);
  2456. sd->nr_balance_failed = 0;
  2457. out_one_pinned:
  2458. /* tune up the balancing interval */
  2459. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2460. (sd->balance_interval < sd->max_interval))
  2461. sd->balance_interval *= 2;
  2462. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2463. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2464. return -1;
  2465. return 0;
  2466. }
  2467. /*
  2468. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2469. * tasks if there is an imbalance.
  2470. *
  2471. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2472. * this_rq is locked.
  2473. */
  2474. static int
  2475. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2476. {
  2477. struct sched_group *group;
  2478. struct rq *busiest = NULL;
  2479. unsigned long imbalance;
  2480. int ld_moved = 0;
  2481. int sd_idle = 0;
  2482. int all_pinned = 0;
  2483. cpumask_t cpus = CPU_MASK_ALL;
  2484. /*
  2485. * When power savings policy is enabled for the parent domain, idle
  2486. * sibling can pick up load irrespective of busy siblings. In this case,
  2487. * let the state of idle sibling percolate up as IDLE, instead of
  2488. * portraying it as CPU_NOT_IDLE.
  2489. */
  2490. if (sd->flags & SD_SHARE_CPUPOWER &&
  2491. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2492. sd_idle = 1;
  2493. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2494. redo:
  2495. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2496. &sd_idle, &cpus, NULL);
  2497. if (!group) {
  2498. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2499. goto out_balanced;
  2500. }
  2501. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2502. &cpus);
  2503. if (!busiest) {
  2504. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2505. goto out_balanced;
  2506. }
  2507. BUG_ON(busiest == this_rq);
  2508. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2509. ld_moved = 0;
  2510. if (busiest->nr_running > 1) {
  2511. /* Attempt to move tasks */
  2512. double_lock_balance(this_rq, busiest);
  2513. /* this_rq->clock is already updated */
  2514. update_rq_clock(busiest);
  2515. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2516. imbalance, sd, CPU_NEWLY_IDLE,
  2517. &all_pinned);
  2518. spin_unlock(&busiest->lock);
  2519. if (unlikely(all_pinned)) {
  2520. cpu_clear(cpu_of(busiest), cpus);
  2521. if (!cpus_empty(cpus))
  2522. goto redo;
  2523. }
  2524. }
  2525. if (!ld_moved) {
  2526. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2527. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2528. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2529. return -1;
  2530. } else
  2531. sd->nr_balance_failed = 0;
  2532. return ld_moved;
  2533. out_balanced:
  2534. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2535. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2536. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2537. return -1;
  2538. sd->nr_balance_failed = 0;
  2539. return 0;
  2540. }
  2541. /*
  2542. * idle_balance is called by schedule() if this_cpu is about to become
  2543. * idle. Attempts to pull tasks from other CPUs.
  2544. */
  2545. static void idle_balance(int this_cpu, struct rq *this_rq)
  2546. {
  2547. struct sched_domain *sd;
  2548. int pulled_task = -1;
  2549. unsigned long next_balance = jiffies + HZ;
  2550. for_each_domain(this_cpu, sd) {
  2551. unsigned long interval;
  2552. if (!(sd->flags & SD_LOAD_BALANCE))
  2553. continue;
  2554. if (sd->flags & SD_BALANCE_NEWIDLE)
  2555. /* If we've pulled tasks over stop searching: */
  2556. pulled_task = load_balance_newidle(this_cpu,
  2557. this_rq, sd);
  2558. interval = msecs_to_jiffies(sd->balance_interval);
  2559. if (time_after(next_balance, sd->last_balance + interval))
  2560. next_balance = sd->last_balance + interval;
  2561. if (pulled_task)
  2562. break;
  2563. }
  2564. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2565. /*
  2566. * We are going idle. next_balance may be set based on
  2567. * a busy processor. So reset next_balance.
  2568. */
  2569. this_rq->next_balance = next_balance;
  2570. }
  2571. }
  2572. /*
  2573. * active_load_balance is run by migration threads. It pushes running tasks
  2574. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2575. * running on each physical CPU where possible, and avoids physical /
  2576. * logical imbalances.
  2577. *
  2578. * Called with busiest_rq locked.
  2579. */
  2580. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2581. {
  2582. int target_cpu = busiest_rq->push_cpu;
  2583. struct sched_domain *sd;
  2584. struct rq *target_rq;
  2585. /* Is there any task to move? */
  2586. if (busiest_rq->nr_running <= 1)
  2587. return;
  2588. target_rq = cpu_rq(target_cpu);
  2589. /*
  2590. * This condition is "impossible", if it occurs
  2591. * we need to fix it. Originally reported by
  2592. * Bjorn Helgaas on a 128-cpu setup.
  2593. */
  2594. BUG_ON(busiest_rq == target_rq);
  2595. /* move a task from busiest_rq to target_rq */
  2596. double_lock_balance(busiest_rq, target_rq);
  2597. update_rq_clock(busiest_rq);
  2598. update_rq_clock(target_rq);
  2599. /* Search for an sd spanning us and the target CPU. */
  2600. for_each_domain(target_cpu, sd) {
  2601. if ((sd->flags & SD_LOAD_BALANCE) &&
  2602. cpu_isset(busiest_cpu, sd->span))
  2603. break;
  2604. }
  2605. if (likely(sd)) {
  2606. schedstat_inc(sd, alb_count);
  2607. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2608. sd, CPU_IDLE))
  2609. schedstat_inc(sd, alb_pushed);
  2610. else
  2611. schedstat_inc(sd, alb_failed);
  2612. }
  2613. spin_unlock(&target_rq->lock);
  2614. }
  2615. #ifdef CONFIG_NO_HZ
  2616. static struct {
  2617. atomic_t load_balancer;
  2618. cpumask_t cpu_mask;
  2619. } nohz ____cacheline_aligned = {
  2620. .load_balancer = ATOMIC_INIT(-1),
  2621. .cpu_mask = CPU_MASK_NONE,
  2622. };
  2623. /*
  2624. * This routine will try to nominate the ilb (idle load balancing)
  2625. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2626. * load balancing on behalf of all those cpus. If all the cpus in the system
  2627. * go into this tickless mode, then there will be no ilb owner (as there is
  2628. * no need for one) and all the cpus will sleep till the next wakeup event
  2629. * arrives...
  2630. *
  2631. * For the ilb owner, tick is not stopped. And this tick will be used
  2632. * for idle load balancing. ilb owner will still be part of
  2633. * nohz.cpu_mask..
  2634. *
  2635. * While stopping the tick, this cpu will become the ilb owner if there
  2636. * is no other owner. And will be the owner till that cpu becomes busy
  2637. * or if all cpus in the system stop their ticks at which point
  2638. * there is no need for ilb owner.
  2639. *
  2640. * When the ilb owner becomes busy, it nominates another owner, during the
  2641. * next busy scheduler_tick()
  2642. */
  2643. int select_nohz_load_balancer(int stop_tick)
  2644. {
  2645. int cpu = smp_processor_id();
  2646. if (stop_tick) {
  2647. cpu_set(cpu, nohz.cpu_mask);
  2648. cpu_rq(cpu)->in_nohz_recently = 1;
  2649. /*
  2650. * If we are going offline and still the leader, give up!
  2651. */
  2652. if (cpu_is_offline(cpu) &&
  2653. atomic_read(&nohz.load_balancer) == cpu) {
  2654. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2655. BUG();
  2656. return 0;
  2657. }
  2658. /* time for ilb owner also to sleep */
  2659. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2660. if (atomic_read(&nohz.load_balancer) == cpu)
  2661. atomic_set(&nohz.load_balancer, -1);
  2662. return 0;
  2663. }
  2664. if (atomic_read(&nohz.load_balancer) == -1) {
  2665. /* make me the ilb owner */
  2666. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2667. return 1;
  2668. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2669. return 1;
  2670. } else {
  2671. if (!cpu_isset(cpu, nohz.cpu_mask))
  2672. return 0;
  2673. cpu_clear(cpu, nohz.cpu_mask);
  2674. if (atomic_read(&nohz.load_balancer) == cpu)
  2675. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2676. BUG();
  2677. }
  2678. return 0;
  2679. }
  2680. #endif
  2681. static DEFINE_SPINLOCK(balancing);
  2682. /*
  2683. * It checks each scheduling domain to see if it is due to be balanced,
  2684. * and initiates a balancing operation if so.
  2685. *
  2686. * Balancing parameters are set up in arch_init_sched_domains.
  2687. */
  2688. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2689. {
  2690. int balance = 1;
  2691. struct rq *rq = cpu_rq(cpu);
  2692. unsigned long interval;
  2693. struct sched_domain *sd;
  2694. /* Earliest time when we have to do rebalance again */
  2695. unsigned long next_balance = jiffies + 60*HZ;
  2696. int update_next_balance = 0;
  2697. for_each_domain(cpu, sd) {
  2698. if (!(sd->flags & SD_LOAD_BALANCE))
  2699. continue;
  2700. interval = sd->balance_interval;
  2701. if (idle != CPU_IDLE)
  2702. interval *= sd->busy_factor;
  2703. /* scale ms to jiffies */
  2704. interval = msecs_to_jiffies(interval);
  2705. if (unlikely(!interval))
  2706. interval = 1;
  2707. if (interval > HZ*NR_CPUS/10)
  2708. interval = HZ*NR_CPUS/10;
  2709. if (sd->flags & SD_SERIALIZE) {
  2710. if (!spin_trylock(&balancing))
  2711. goto out;
  2712. }
  2713. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2714. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2715. /*
  2716. * We've pulled tasks over so either we're no
  2717. * longer idle, or one of our SMT siblings is
  2718. * not idle.
  2719. */
  2720. idle = CPU_NOT_IDLE;
  2721. }
  2722. sd->last_balance = jiffies;
  2723. }
  2724. if (sd->flags & SD_SERIALIZE)
  2725. spin_unlock(&balancing);
  2726. out:
  2727. if (time_after(next_balance, sd->last_balance + interval)) {
  2728. next_balance = sd->last_balance + interval;
  2729. update_next_balance = 1;
  2730. }
  2731. /*
  2732. * Stop the load balance at this level. There is another
  2733. * CPU in our sched group which is doing load balancing more
  2734. * actively.
  2735. */
  2736. if (!balance)
  2737. break;
  2738. }
  2739. /*
  2740. * next_balance will be updated only when there is a need.
  2741. * When the cpu is attached to null domain for ex, it will not be
  2742. * updated.
  2743. */
  2744. if (likely(update_next_balance))
  2745. rq->next_balance = next_balance;
  2746. }
  2747. /*
  2748. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2749. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2750. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2751. */
  2752. static void run_rebalance_domains(struct softirq_action *h)
  2753. {
  2754. int this_cpu = smp_processor_id();
  2755. struct rq *this_rq = cpu_rq(this_cpu);
  2756. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2757. CPU_IDLE : CPU_NOT_IDLE;
  2758. rebalance_domains(this_cpu, idle);
  2759. #ifdef CONFIG_NO_HZ
  2760. /*
  2761. * If this cpu is the owner for idle load balancing, then do the
  2762. * balancing on behalf of the other idle cpus whose ticks are
  2763. * stopped.
  2764. */
  2765. if (this_rq->idle_at_tick &&
  2766. atomic_read(&nohz.load_balancer) == this_cpu) {
  2767. cpumask_t cpus = nohz.cpu_mask;
  2768. struct rq *rq;
  2769. int balance_cpu;
  2770. cpu_clear(this_cpu, cpus);
  2771. for_each_cpu_mask(balance_cpu, cpus) {
  2772. /*
  2773. * If this cpu gets work to do, stop the load balancing
  2774. * work being done for other cpus. Next load
  2775. * balancing owner will pick it up.
  2776. */
  2777. if (need_resched())
  2778. break;
  2779. rebalance_domains(balance_cpu, CPU_IDLE);
  2780. rq = cpu_rq(balance_cpu);
  2781. if (time_after(this_rq->next_balance, rq->next_balance))
  2782. this_rq->next_balance = rq->next_balance;
  2783. }
  2784. }
  2785. #endif
  2786. }
  2787. /*
  2788. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2789. *
  2790. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2791. * idle load balancing owner or decide to stop the periodic load balancing,
  2792. * if the whole system is idle.
  2793. */
  2794. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2795. {
  2796. #ifdef CONFIG_NO_HZ
  2797. /*
  2798. * If we were in the nohz mode recently and busy at the current
  2799. * scheduler tick, then check if we need to nominate new idle
  2800. * load balancer.
  2801. */
  2802. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2803. rq->in_nohz_recently = 0;
  2804. if (atomic_read(&nohz.load_balancer) == cpu) {
  2805. cpu_clear(cpu, nohz.cpu_mask);
  2806. atomic_set(&nohz.load_balancer, -1);
  2807. }
  2808. if (atomic_read(&nohz.load_balancer) == -1) {
  2809. /*
  2810. * simple selection for now: Nominate the
  2811. * first cpu in the nohz list to be the next
  2812. * ilb owner.
  2813. *
  2814. * TBD: Traverse the sched domains and nominate
  2815. * the nearest cpu in the nohz.cpu_mask.
  2816. */
  2817. int ilb = first_cpu(nohz.cpu_mask);
  2818. if (ilb != NR_CPUS)
  2819. resched_cpu(ilb);
  2820. }
  2821. }
  2822. /*
  2823. * If this cpu is idle and doing idle load balancing for all the
  2824. * cpus with ticks stopped, is it time for that to stop?
  2825. */
  2826. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2827. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2828. resched_cpu(cpu);
  2829. return;
  2830. }
  2831. /*
  2832. * If this cpu is idle and the idle load balancing is done by
  2833. * someone else, then no need raise the SCHED_SOFTIRQ
  2834. */
  2835. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2836. cpu_isset(cpu, nohz.cpu_mask))
  2837. return;
  2838. #endif
  2839. if (time_after_eq(jiffies, rq->next_balance))
  2840. raise_softirq(SCHED_SOFTIRQ);
  2841. }
  2842. #else /* CONFIG_SMP */
  2843. /*
  2844. * on UP we do not need to balance between CPUs:
  2845. */
  2846. static inline void idle_balance(int cpu, struct rq *rq)
  2847. {
  2848. }
  2849. #endif
  2850. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2851. EXPORT_PER_CPU_SYMBOL(kstat);
  2852. /*
  2853. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2854. * that have not yet been banked in case the task is currently running.
  2855. */
  2856. unsigned long long task_sched_runtime(struct task_struct *p)
  2857. {
  2858. unsigned long flags;
  2859. u64 ns, delta_exec;
  2860. struct rq *rq;
  2861. rq = task_rq_lock(p, &flags);
  2862. ns = p->se.sum_exec_runtime;
  2863. if (rq->curr == p) {
  2864. update_rq_clock(rq);
  2865. delta_exec = rq->clock - p->se.exec_start;
  2866. if ((s64)delta_exec > 0)
  2867. ns += delta_exec;
  2868. }
  2869. task_rq_unlock(rq, &flags);
  2870. return ns;
  2871. }
  2872. /*
  2873. * Account user cpu time to a process.
  2874. * @p: the process that the cpu time gets accounted to
  2875. * @cputime: the cpu time spent in user space since the last update
  2876. */
  2877. void account_user_time(struct task_struct *p, cputime_t cputime)
  2878. {
  2879. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2880. cputime64_t tmp;
  2881. p->utime = cputime_add(p->utime, cputime);
  2882. /* Add user time to cpustat. */
  2883. tmp = cputime_to_cputime64(cputime);
  2884. if (TASK_NICE(p) > 0)
  2885. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2886. else
  2887. cpustat->user = cputime64_add(cpustat->user, tmp);
  2888. }
  2889. /*
  2890. * Account guest cpu time to a process.
  2891. * @p: the process that the cpu time gets accounted to
  2892. * @cputime: the cpu time spent in virtual machine since the last update
  2893. */
  2894. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2895. {
  2896. cputime64_t tmp;
  2897. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2898. tmp = cputime_to_cputime64(cputime);
  2899. p->utime = cputime_add(p->utime, cputime);
  2900. p->gtime = cputime_add(p->gtime, cputime);
  2901. cpustat->user = cputime64_add(cpustat->user, tmp);
  2902. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2903. }
  2904. /*
  2905. * Account scaled user cpu time to a process.
  2906. * @p: the process that the cpu time gets accounted to
  2907. * @cputime: the cpu time spent in user space since the last update
  2908. */
  2909. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2910. {
  2911. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2912. }
  2913. /*
  2914. * Account system cpu time to a process.
  2915. * @p: the process that the cpu time gets accounted to
  2916. * @hardirq_offset: the offset to subtract from hardirq_count()
  2917. * @cputime: the cpu time spent in kernel space since the last update
  2918. */
  2919. void account_system_time(struct task_struct *p, int hardirq_offset,
  2920. cputime_t cputime)
  2921. {
  2922. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2923. struct rq *rq = this_rq();
  2924. cputime64_t tmp;
  2925. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  2926. return account_guest_time(p, cputime);
  2927. p->stime = cputime_add(p->stime, cputime);
  2928. /* Add system time to cpustat. */
  2929. tmp = cputime_to_cputime64(cputime);
  2930. if (hardirq_count() - hardirq_offset)
  2931. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2932. else if (softirq_count())
  2933. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2934. else if (p != rq->idle)
  2935. cpustat->system = cputime64_add(cpustat->system, tmp);
  2936. else if (atomic_read(&rq->nr_iowait) > 0)
  2937. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2938. else
  2939. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2940. /* Account for system time used */
  2941. acct_update_integrals(p);
  2942. }
  2943. /*
  2944. * Account scaled system cpu time to a process.
  2945. * @p: the process that the cpu time gets accounted to
  2946. * @hardirq_offset: the offset to subtract from hardirq_count()
  2947. * @cputime: the cpu time spent in kernel space since the last update
  2948. */
  2949. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2950. {
  2951. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2952. }
  2953. /*
  2954. * Account for involuntary wait time.
  2955. * @p: the process from which the cpu time has been stolen
  2956. * @steal: the cpu time spent in involuntary wait
  2957. */
  2958. void account_steal_time(struct task_struct *p, cputime_t steal)
  2959. {
  2960. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2961. cputime64_t tmp = cputime_to_cputime64(steal);
  2962. struct rq *rq = this_rq();
  2963. if (p == rq->idle) {
  2964. p->stime = cputime_add(p->stime, steal);
  2965. if (atomic_read(&rq->nr_iowait) > 0)
  2966. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2967. else
  2968. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2969. } else
  2970. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2971. }
  2972. /*
  2973. * This function gets called by the timer code, with HZ frequency.
  2974. * We call it with interrupts disabled.
  2975. *
  2976. * It also gets called by the fork code, when changing the parent's
  2977. * timeslices.
  2978. */
  2979. void scheduler_tick(void)
  2980. {
  2981. int cpu = smp_processor_id();
  2982. struct rq *rq = cpu_rq(cpu);
  2983. struct task_struct *curr = rq->curr;
  2984. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2985. spin_lock(&rq->lock);
  2986. __update_rq_clock(rq);
  2987. /*
  2988. * Let rq->clock advance by at least TICK_NSEC:
  2989. */
  2990. if (unlikely(rq->clock < next_tick))
  2991. rq->clock = next_tick;
  2992. rq->tick_timestamp = rq->clock;
  2993. update_cpu_load(rq);
  2994. if (curr != rq->idle) /* FIXME: needed? */
  2995. curr->sched_class->task_tick(rq, curr);
  2996. spin_unlock(&rq->lock);
  2997. #ifdef CONFIG_SMP
  2998. rq->idle_at_tick = idle_cpu(cpu);
  2999. trigger_load_balance(rq, cpu);
  3000. #endif
  3001. }
  3002. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3003. void fastcall add_preempt_count(int val)
  3004. {
  3005. /*
  3006. * Underflow?
  3007. */
  3008. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3009. return;
  3010. preempt_count() += val;
  3011. /*
  3012. * Spinlock count overflowing soon?
  3013. */
  3014. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3015. PREEMPT_MASK - 10);
  3016. }
  3017. EXPORT_SYMBOL(add_preempt_count);
  3018. void fastcall sub_preempt_count(int val)
  3019. {
  3020. /*
  3021. * Underflow?
  3022. */
  3023. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3024. return;
  3025. /*
  3026. * Is the spinlock portion underflowing?
  3027. */
  3028. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3029. !(preempt_count() & PREEMPT_MASK)))
  3030. return;
  3031. preempt_count() -= val;
  3032. }
  3033. EXPORT_SYMBOL(sub_preempt_count);
  3034. #endif
  3035. /*
  3036. * Print scheduling while atomic bug:
  3037. */
  3038. static noinline void __schedule_bug(struct task_struct *prev)
  3039. {
  3040. struct pt_regs *regs = get_irq_regs();
  3041. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3042. prev->comm, prev->pid, preempt_count());
  3043. debug_show_held_locks(prev);
  3044. if (irqs_disabled())
  3045. print_irqtrace_events(prev);
  3046. if (regs)
  3047. show_regs(regs);
  3048. else
  3049. dump_stack();
  3050. }
  3051. /*
  3052. * Various schedule()-time debugging checks and statistics:
  3053. */
  3054. static inline void schedule_debug(struct task_struct *prev)
  3055. {
  3056. /*
  3057. * Test if we are atomic. Since do_exit() needs to call into
  3058. * schedule() atomically, we ignore that path for now.
  3059. * Otherwise, whine if we are scheduling when we should not be.
  3060. */
  3061. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3062. __schedule_bug(prev);
  3063. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3064. schedstat_inc(this_rq(), sched_count);
  3065. #ifdef CONFIG_SCHEDSTATS
  3066. if (unlikely(prev->lock_depth >= 0)) {
  3067. schedstat_inc(this_rq(), bkl_count);
  3068. schedstat_inc(prev, sched_info.bkl_count);
  3069. }
  3070. #endif
  3071. }
  3072. /*
  3073. * Pick up the highest-prio task:
  3074. */
  3075. static inline struct task_struct *
  3076. pick_next_task(struct rq *rq, struct task_struct *prev)
  3077. {
  3078. const struct sched_class *class;
  3079. struct task_struct *p;
  3080. /*
  3081. * Optimization: we know that if all tasks are in
  3082. * the fair class we can call that function directly:
  3083. */
  3084. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3085. p = fair_sched_class.pick_next_task(rq);
  3086. if (likely(p))
  3087. return p;
  3088. }
  3089. class = sched_class_highest;
  3090. for ( ; ; ) {
  3091. p = class->pick_next_task(rq);
  3092. if (p)
  3093. return p;
  3094. /*
  3095. * Will never be NULL as the idle class always
  3096. * returns a non-NULL p:
  3097. */
  3098. class = class->next;
  3099. }
  3100. }
  3101. /*
  3102. * schedule() is the main scheduler function.
  3103. */
  3104. asmlinkage void __sched schedule(void)
  3105. {
  3106. struct task_struct *prev, *next;
  3107. long *switch_count;
  3108. struct rq *rq;
  3109. int cpu;
  3110. need_resched:
  3111. preempt_disable();
  3112. cpu = smp_processor_id();
  3113. rq = cpu_rq(cpu);
  3114. rcu_qsctr_inc(cpu);
  3115. prev = rq->curr;
  3116. switch_count = &prev->nivcsw;
  3117. release_kernel_lock(prev);
  3118. need_resched_nonpreemptible:
  3119. schedule_debug(prev);
  3120. /*
  3121. * Do the rq-clock update outside the rq lock:
  3122. */
  3123. local_irq_disable();
  3124. __update_rq_clock(rq);
  3125. spin_lock(&rq->lock);
  3126. clear_tsk_need_resched(prev);
  3127. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3128. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3129. unlikely(signal_pending(prev)))) {
  3130. prev->state = TASK_RUNNING;
  3131. } else {
  3132. deactivate_task(rq, prev, 1);
  3133. }
  3134. switch_count = &prev->nvcsw;
  3135. }
  3136. if (unlikely(!rq->nr_running))
  3137. idle_balance(cpu, rq);
  3138. prev->sched_class->put_prev_task(rq, prev);
  3139. next = pick_next_task(rq, prev);
  3140. sched_info_switch(prev, next);
  3141. if (likely(prev != next)) {
  3142. rq->nr_switches++;
  3143. rq->curr = next;
  3144. ++*switch_count;
  3145. context_switch(rq, prev, next); /* unlocks the rq */
  3146. } else
  3147. spin_unlock_irq(&rq->lock);
  3148. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3149. cpu = smp_processor_id();
  3150. rq = cpu_rq(cpu);
  3151. goto need_resched_nonpreemptible;
  3152. }
  3153. preempt_enable_no_resched();
  3154. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3155. goto need_resched;
  3156. }
  3157. EXPORT_SYMBOL(schedule);
  3158. #ifdef CONFIG_PREEMPT
  3159. /*
  3160. * this is the entry point to schedule() from in-kernel preemption
  3161. * off of preempt_enable. Kernel preemptions off return from interrupt
  3162. * occur there and call schedule directly.
  3163. */
  3164. asmlinkage void __sched preempt_schedule(void)
  3165. {
  3166. struct thread_info *ti = current_thread_info();
  3167. #ifdef CONFIG_PREEMPT_BKL
  3168. struct task_struct *task = current;
  3169. int saved_lock_depth;
  3170. #endif
  3171. /*
  3172. * If there is a non-zero preempt_count or interrupts are disabled,
  3173. * we do not want to preempt the current task. Just return..
  3174. */
  3175. if (likely(ti->preempt_count || irqs_disabled()))
  3176. return;
  3177. do {
  3178. add_preempt_count(PREEMPT_ACTIVE);
  3179. /*
  3180. * We keep the big kernel semaphore locked, but we
  3181. * clear ->lock_depth so that schedule() doesnt
  3182. * auto-release the semaphore:
  3183. */
  3184. #ifdef CONFIG_PREEMPT_BKL
  3185. saved_lock_depth = task->lock_depth;
  3186. task->lock_depth = -1;
  3187. #endif
  3188. schedule();
  3189. #ifdef CONFIG_PREEMPT_BKL
  3190. task->lock_depth = saved_lock_depth;
  3191. #endif
  3192. sub_preempt_count(PREEMPT_ACTIVE);
  3193. /*
  3194. * Check again in case we missed a preemption opportunity
  3195. * between schedule and now.
  3196. */
  3197. barrier();
  3198. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3199. }
  3200. EXPORT_SYMBOL(preempt_schedule);
  3201. /*
  3202. * this is the entry point to schedule() from kernel preemption
  3203. * off of irq context.
  3204. * Note, that this is called and return with irqs disabled. This will
  3205. * protect us against recursive calling from irq.
  3206. */
  3207. asmlinkage void __sched preempt_schedule_irq(void)
  3208. {
  3209. struct thread_info *ti = current_thread_info();
  3210. #ifdef CONFIG_PREEMPT_BKL
  3211. struct task_struct *task = current;
  3212. int saved_lock_depth;
  3213. #endif
  3214. /* Catch callers which need to be fixed */
  3215. BUG_ON(ti->preempt_count || !irqs_disabled());
  3216. do {
  3217. add_preempt_count(PREEMPT_ACTIVE);
  3218. /*
  3219. * We keep the big kernel semaphore locked, but we
  3220. * clear ->lock_depth so that schedule() doesnt
  3221. * auto-release the semaphore:
  3222. */
  3223. #ifdef CONFIG_PREEMPT_BKL
  3224. saved_lock_depth = task->lock_depth;
  3225. task->lock_depth = -1;
  3226. #endif
  3227. local_irq_enable();
  3228. schedule();
  3229. local_irq_disable();
  3230. #ifdef CONFIG_PREEMPT_BKL
  3231. task->lock_depth = saved_lock_depth;
  3232. #endif
  3233. sub_preempt_count(PREEMPT_ACTIVE);
  3234. /*
  3235. * Check again in case we missed a preemption opportunity
  3236. * between schedule and now.
  3237. */
  3238. barrier();
  3239. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3240. }
  3241. #endif /* CONFIG_PREEMPT */
  3242. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3243. void *key)
  3244. {
  3245. return try_to_wake_up(curr->private, mode, sync);
  3246. }
  3247. EXPORT_SYMBOL(default_wake_function);
  3248. /*
  3249. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3250. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3251. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3252. *
  3253. * There are circumstances in which we can try to wake a task which has already
  3254. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3255. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3256. */
  3257. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3258. int nr_exclusive, int sync, void *key)
  3259. {
  3260. wait_queue_t *curr, *next;
  3261. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3262. unsigned flags = curr->flags;
  3263. if (curr->func(curr, mode, sync, key) &&
  3264. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3265. break;
  3266. }
  3267. }
  3268. /**
  3269. * __wake_up - wake up threads blocked on a waitqueue.
  3270. * @q: the waitqueue
  3271. * @mode: which threads
  3272. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3273. * @key: is directly passed to the wakeup function
  3274. */
  3275. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3276. int nr_exclusive, void *key)
  3277. {
  3278. unsigned long flags;
  3279. spin_lock_irqsave(&q->lock, flags);
  3280. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3281. spin_unlock_irqrestore(&q->lock, flags);
  3282. }
  3283. EXPORT_SYMBOL(__wake_up);
  3284. /*
  3285. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3286. */
  3287. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3288. {
  3289. __wake_up_common(q, mode, 1, 0, NULL);
  3290. }
  3291. /**
  3292. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3293. * @q: the waitqueue
  3294. * @mode: which threads
  3295. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3296. *
  3297. * The sync wakeup differs that the waker knows that it will schedule
  3298. * away soon, so while the target thread will be woken up, it will not
  3299. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3300. * with each other. This can prevent needless bouncing between CPUs.
  3301. *
  3302. * On UP it can prevent extra preemption.
  3303. */
  3304. void fastcall
  3305. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3306. {
  3307. unsigned long flags;
  3308. int sync = 1;
  3309. if (unlikely(!q))
  3310. return;
  3311. if (unlikely(!nr_exclusive))
  3312. sync = 0;
  3313. spin_lock_irqsave(&q->lock, flags);
  3314. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3315. spin_unlock_irqrestore(&q->lock, flags);
  3316. }
  3317. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3318. void complete(struct completion *x)
  3319. {
  3320. unsigned long flags;
  3321. spin_lock_irqsave(&x->wait.lock, flags);
  3322. x->done++;
  3323. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3324. 1, 0, NULL);
  3325. spin_unlock_irqrestore(&x->wait.lock, flags);
  3326. }
  3327. EXPORT_SYMBOL(complete);
  3328. void complete_all(struct completion *x)
  3329. {
  3330. unsigned long flags;
  3331. spin_lock_irqsave(&x->wait.lock, flags);
  3332. x->done += UINT_MAX/2;
  3333. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3334. 0, 0, NULL);
  3335. spin_unlock_irqrestore(&x->wait.lock, flags);
  3336. }
  3337. EXPORT_SYMBOL(complete_all);
  3338. static inline long __sched
  3339. do_wait_for_common(struct completion *x, long timeout, int state)
  3340. {
  3341. if (!x->done) {
  3342. DECLARE_WAITQUEUE(wait, current);
  3343. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3344. __add_wait_queue_tail(&x->wait, &wait);
  3345. do {
  3346. if (state == TASK_INTERRUPTIBLE &&
  3347. signal_pending(current)) {
  3348. __remove_wait_queue(&x->wait, &wait);
  3349. return -ERESTARTSYS;
  3350. }
  3351. __set_current_state(state);
  3352. spin_unlock_irq(&x->wait.lock);
  3353. timeout = schedule_timeout(timeout);
  3354. spin_lock_irq(&x->wait.lock);
  3355. if (!timeout) {
  3356. __remove_wait_queue(&x->wait, &wait);
  3357. return timeout;
  3358. }
  3359. } while (!x->done);
  3360. __remove_wait_queue(&x->wait, &wait);
  3361. }
  3362. x->done--;
  3363. return timeout;
  3364. }
  3365. static long __sched
  3366. wait_for_common(struct completion *x, long timeout, int state)
  3367. {
  3368. might_sleep();
  3369. spin_lock_irq(&x->wait.lock);
  3370. timeout = do_wait_for_common(x, timeout, state);
  3371. spin_unlock_irq(&x->wait.lock);
  3372. return timeout;
  3373. }
  3374. void __sched wait_for_completion(struct completion *x)
  3375. {
  3376. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3377. }
  3378. EXPORT_SYMBOL(wait_for_completion);
  3379. unsigned long __sched
  3380. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3381. {
  3382. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3383. }
  3384. EXPORT_SYMBOL(wait_for_completion_timeout);
  3385. int __sched wait_for_completion_interruptible(struct completion *x)
  3386. {
  3387. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3388. if (t == -ERESTARTSYS)
  3389. return t;
  3390. return 0;
  3391. }
  3392. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3393. unsigned long __sched
  3394. wait_for_completion_interruptible_timeout(struct completion *x,
  3395. unsigned long timeout)
  3396. {
  3397. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3398. }
  3399. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3400. static long __sched
  3401. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3402. {
  3403. unsigned long flags;
  3404. wait_queue_t wait;
  3405. init_waitqueue_entry(&wait, current);
  3406. __set_current_state(state);
  3407. spin_lock_irqsave(&q->lock, flags);
  3408. __add_wait_queue(q, &wait);
  3409. spin_unlock(&q->lock);
  3410. timeout = schedule_timeout(timeout);
  3411. spin_lock_irq(&q->lock);
  3412. __remove_wait_queue(q, &wait);
  3413. spin_unlock_irqrestore(&q->lock, flags);
  3414. return timeout;
  3415. }
  3416. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3417. {
  3418. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3419. }
  3420. EXPORT_SYMBOL(interruptible_sleep_on);
  3421. long __sched
  3422. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3423. {
  3424. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3425. }
  3426. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3427. void __sched sleep_on(wait_queue_head_t *q)
  3428. {
  3429. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3430. }
  3431. EXPORT_SYMBOL(sleep_on);
  3432. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3433. {
  3434. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3435. }
  3436. EXPORT_SYMBOL(sleep_on_timeout);
  3437. #ifdef CONFIG_RT_MUTEXES
  3438. /*
  3439. * rt_mutex_setprio - set the current priority of a task
  3440. * @p: task
  3441. * @prio: prio value (kernel-internal form)
  3442. *
  3443. * This function changes the 'effective' priority of a task. It does
  3444. * not touch ->normal_prio like __setscheduler().
  3445. *
  3446. * Used by the rt_mutex code to implement priority inheritance logic.
  3447. */
  3448. void rt_mutex_setprio(struct task_struct *p, int prio)
  3449. {
  3450. unsigned long flags;
  3451. int oldprio, on_rq, running;
  3452. struct rq *rq;
  3453. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3454. rq = task_rq_lock(p, &flags);
  3455. update_rq_clock(rq);
  3456. oldprio = p->prio;
  3457. on_rq = p->se.on_rq;
  3458. running = task_running(rq, p);
  3459. if (on_rq) {
  3460. dequeue_task(rq, p, 0);
  3461. if (running)
  3462. p->sched_class->put_prev_task(rq, p);
  3463. }
  3464. if (rt_prio(prio))
  3465. p->sched_class = &rt_sched_class;
  3466. else
  3467. p->sched_class = &fair_sched_class;
  3468. p->prio = prio;
  3469. if (on_rq) {
  3470. if (running)
  3471. p->sched_class->set_curr_task(rq);
  3472. enqueue_task(rq, p, 0);
  3473. /*
  3474. * Reschedule if we are currently running on this runqueue and
  3475. * our priority decreased, or if we are not currently running on
  3476. * this runqueue and our priority is higher than the current's
  3477. */
  3478. if (running) {
  3479. if (p->prio > oldprio)
  3480. resched_task(rq->curr);
  3481. } else {
  3482. check_preempt_curr(rq, p);
  3483. }
  3484. }
  3485. task_rq_unlock(rq, &flags);
  3486. }
  3487. #endif
  3488. void set_user_nice(struct task_struct *p, long nice)
  3489. {
  3490. int old_prio, delta, on_rq;
  3491. unsigned long flags;
  3492. struct rq *rq;
  3493. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3494. return;
  3495. /*
  3496. * We have to be careful, if called from sys_setpriority(),
  3497. * the task might be in the middle of scheduling on another CPU.
  3498. */
  3499. rq = task_rq_lock(p, &flags);
  3500. update_rq_clock(rq);
  3501. /*
  3502. * The RT priorities are set via sched_setscheduler(), but we still
  3503. * allow the 'normal' nice value to be set - but as expected
  3504. * it wont have any effect on scheduling until the task is
  3505. * SCHED_FIFO/SCHED_RR:
  3506. */
  3507. if (task_has_rt_policy(p)) {
  3508. p->static_prio = NICE_TO_PRIO(nice);
  3509. goto out_unlock;
  3510. }
  3511. on_rq = p->se.on_rq;
  3512. if (on_rq) {
  3513. dequeue_task(rq, p, 0);
  3514. dec_load(rq, p);
  3515. }
  3516. p->static_prio = NICE_TO_PRIO(nice);
  3517. set_load_weight(p);
  3518. old_prio = p->prio;
  3519. p->prio = effective_prio(p);
  3520. delta = p->prio - old_prio;
  3521. if (on_rq) {
  3522. enqueue_task(rq, p, 0);
  3523. inc_load(rq, p);
  3524. /*
  3525. * If the task increased its priority or is running and
  3526. * lowered its priority, then reschedule its CPU:
  3527. */
  3528. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3529. resched_task(rq->curr);
  3530. }
  3531. out_unlock:
  3532. task_rq_unlock(rq, &flags);
  3533. }
  3534. EXPORT_SYMBOL(set_user_nice);
  3535. /*
  3536. * can_nice - check if a task can reduce its nice value
  3537. * @p: task
  3538. * @nice: nice value
  3539. */
  3540. int can_nice(const struct task_struct *p, const int nice)
  3541. {
  3542. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3543. int nice_rlim = 20 - nice;
  3544. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3545. capable(CAP_SYS_NICE));
  3546. }
  3547. #ifdef __ARCH_WANT_SYS_NICE
  3548. /*
  3549. * sys_nice - change the priority of the current process.
  3550. * @increment: priority increment
  3551. *
  3552. * sys_setpriority is a more generic, but much slower function that
  3553. * does similar things.
  3554. */
  3555. asmlinkage long sys_nice(int increment)
  3556. {
  3557. long nice, retval;
  3558. /*
  3559. * Setpriority might change our priority at the same moment.
  3560. * We don't have to worry. Conceptually one call occurs first
  3561. * and we have a single winner.
  3562. */
  3563. if (increment < -40)
  3564. increment = -40;
  3565. if (increment > 40)
  3566. increment = 40;
  3567. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3568. if (nice < -20)
  3569. nice = -20;
  3570. if (nice > 19)
  3571. nice = 19;
  3572. if (increment < 0 && !can_nice(current, nice))
  3573. return -EPERM;
  3574. retval = security_task_setnice(current, nice);
  3575. if (retval)
  3576. return retval;
  3577. set_user_nice(current, nice);
  3578. return 0;
  3579. }
  3580. #endif
  3581. /**
  3582. * task_prio - return the priority value of a given task.
  3583. * @p: the task in question.
  3584. *
  3585. * This is the priority value as seen by users in /proc.
  3586. * RT tasks are offset by -200. Normal tasks are centered
  3587. * around 0, value goes from -16 to +15.
  3588. */
  3589. int task_prio(const struct task_struct *p)
  3590. {
  3591. return p->prio - MAX_RT_PRIO;
  3592. }
  3593. /**
  3594. * task_nice - return the nice value of a given task.
  3595. * @p: the task in question.
  3596. */
  3597. int task_nice(const struct task_struct *p)
  3598. {
  3599. return TASK_NICE(p);
  3600. }
  3601. EXPORT_SYMBOL_GPL(task_nice);
  3602. /**
  3603. * idle_cpu - is a given cpu idle currently?
  3604. * @cpu: the processor in question.
  3605. */
  3606. int idle_cpu(int cpu)
  3607. {
  3608. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3609. }
  3610. /**
  3611. * idle_task - return the idle task for a given cpu.
  3612. * @cpu: the processor in question.
  3613. */
  3614. struct task_struct *idle_task(int cpu)
  3615. {
  3616. return cpu_rq(cpu)->idle;
  3617. }
  3618. /**
  3619. * find_process_by_pid - find a process with a matching PID value.
  3620. * @pid: the pid in question.
  3621. */
  3622. static struct task_struct *find_process_by_pid(pid_t pid)
  3623. {
  3624. return pid ? find_task_by_vpid(pid) : current;
  3625. }
  3626. /* Actually do priority change: must hold rq lock. */
  3627. static void
  3628. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3629. {
  3630. BUG_ON(p->se.on_rq);
  3631. p->policy = policy;
  3632. switch (p->policy) {
  3633. case SCHED_NORMAL:
  3634. case SCHED_BATCH:
  3635. case SCHED_IDLE:
  3636. p->sched_class = &fair_sched_class;
  3637. break;
  3638. case SCHED_FIFO:
  3639. case SCHED_RR:
  3640. p->sched_class = &rt_sched_class;
  3641. break;
  3642. }
  3643. p->rt_priority = prio;
  3644. p->normal_prio = normal_prio(p);
  3645. /* we are holding p->pi_lock already */
  3646. p->prio = rt_mutex_getprio(p);
  3647. set_load_weight(p);
  3648. }
  3649. /**
  3650. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3651. * @p: the task in question.
  3652. * @policy: new policy.
  3653. * @param: structure containing the new RT priority.
  3654. *
  3655. * NOTE that the task may be already dead.
  3656. */
  3657. int sched_setscheduler(struct task_struct *p, int policy,
  3658. struct sched_param *param)
  3659. {
  3660. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3661. unsigned long flags;
  3662. struct rq *rq;
  3663. /* may grab non-irq protected spin_locks */
  3664. BUG_ON(in_interrupt());
  3665. recheck:
  3666. /* double check policy once rq lock held */
  3667. if (policy < 0)
  3668. policy = oldpolicy = p->policy;
  3669. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3670. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3671. policy != SCHED_IDLE)
  3672. return -EINVAL;
  3673. /*
  3674. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3675. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3676. * SCHED_BATCH and SCHED_IDLE is 0.
  3677. */
  3678. if (param->sched_priority < 0 ||
  3679. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3680. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3681. return -EINVAL;
  3682. if (rt_policy(policy) != (param->sched_priority != 0))
  3683. return -EINVAL;
  3684. /*
  3685. * Allow unprivileged RT tasks to decrease priority:
  3686. */
  3687. if (!capable(CAP_SYS_NICE)) {
  3688. if (rt_policy(policy)) {
  3689. unsigned long rlim_rtprio;
  3690. if (!lock_task_sighand(p, &flags))
  3691. return -ESRCH;
  3692. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3693. unlock_task_sighand(p, &flags);
  3694. /* can't set/change the rt policy */
  3695. if (policy != p->policy && !rlim_rtprio)
  3696. return -EPERM;
  3697. /* can't increase priority */
  3698. if (param->sched_priority > p->rt_priority &&
  3699. param->sched_priority > rlim_rtprio)
  3700. return -EPERM;
  3701. }
  3702. /*
  3703. * Like positive nice levels, dont allow tasks to
  3704. * move out of SCHED_IDLE either:
  3705. */
  3706. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3707. return -EPERM;
  3708. /* can't change other user's priorities */
  3709. if ((current->euid != p->euid) &&
  3710. (current->euid != p->uid))
  3711. return -EPERM;
  3712. }
  3713. retval = security_task_setscheduler(p, policy, param);
  3714. if (retval)
  3715. return retval;
  3716. /*
  3717. * make sure no PI-waiters arrive (or leave) while we are
  3718. * changing the priority of the task:
  3719. */
  3720. spin_lock_irqsave(&p->pi_lock, flags);
  3721. /*
  3722. * To be able to change p->policy safely, the apropriate
  3723. * runqueue lock must be held.
  3724. */
  3725. rq = __task_rq_lock(p);
  3726. /* recheck policy now with rq lock held */
  3727. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3728. policy = oldpolicy = -1;
  3729. __task_rq_unlock(rq);
  3730. spin_unlock_irqrestore(&p->pi_lock, flags);
  3731. goto recheck;
  3732. }
  3733. update_rq_clock(rq);
  3734. on_rq = p->se.on_rq;
  3735. running = task_running(rq, p);
  3736. if (on_rq) {
  3737. deactivate_task(rq, p, 0);
  3738. if (running)
  3739. p->sched_class->put_prev_task(rq, p);
  3740. }
  3741. oldprio = p->prio;
  3742. __setscheduler(rq, p, policy, param->sched_priority);
  3743. if (on_rq) {
  3744. if (running)
  3745. p->sched_class->set_curr_task(rq);
  3746. activate_task(rq, p, 0);
  3747. /*
  3748. * Reschedule if we are currently running on this runqueue and
  3749. * our priority decreased, or if we are not currently running on
  3750. * this runqueue and our priority is higher than the current's
  3751. */
  3752. if (running) {
  3753. if (p->prio > oldprio)
  3754. resched_task(rq->curr);
  3755. } else {
  3756. check_preempt_curr(rq, p);
  3757. }
  3758. }
  3759. __task_rq_unlock(rq);
  3760. spin_unlock_irqrestore(&p->pi_lock, flags);
  3761. rt_mutex_adjust_pi(p);
  3762. return 0;
  3763. }
  3764. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3765. static int
  3766. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3767. {
  3768. struct sched_param lparam;
  3769. struct task_struct *p;
  3770. int retval;
  3771. if (!param || pid < 0)
  3772. return -EINVAL;
  3773. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3774. return -EFAULT;
  3775. rcu_read_lock();
  3776. retval = -ESRCH;
  3777. p = find_process_by_pid(pid);
  3778. if (p != NULL)
  3779. retval = sched_setscheduler(p, policy, &lparam);
  3780. rcu_read_unlock();
  3781. return retval;
  3782. }
  3783. /**
  3784. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3785. * @pid: the pid in question.
  3786. * @policy: new policy.
  3787. * @param: structure containing the new RT priority.
  3788. */
  3789. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3790. struct sched_param __user *param)
  3791. {
  3792. /* negative values for policy are not valid */
  3793. if (policy < 0)
  3794. return -EINVAL;
  3795. return do_sched_setscheduler(pid, policy, param);
  3796. }
  3797. /**
  3798. * sys_sched_setparam - set/change the RT priority of a thread
  3799. * @pid: the pid in question.
  3800. * @param: structure containing the new RT priority.
  3801. */
  3802. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3803. {
  3804. return do_sched_setscheduler(pid, -1, param);
  3805. }
  3806. /**
  3807. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3808. * @pid: the pid in question.
  3809. */
  3810. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3811. {
  3812. struct task_struct *p;
  3813. int retval;
  3814. if (pid < 0)
  3815. return -EINVAL;
  3816. retval = -ESRCH;
  3817. read_lock(&tasklist_lock);
  3818. p = find_process_by_pid(pid);
  3819. if (p) {
  3820. retval = security_task_getscheduler(p);
  3821. if (!retval)
  3822. retval = p->policy;
  3823. }
  3824. read_unlock(&tasklist_lock);
  3825. return retval;
  3826. }
  3827. /**
  3828. * sys_sched_getscheduler - get the RT priority of a thread
  3829. * @pid: the pid in question.
  3830. * @param: structure containing the RT priority.
  3831. */
  3832. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3833. {
  3834. struct sched_param lp;
  3835. struct task_struct *p;
  3836. int retval;
  3837. if (!param || pid < 0)
  3838. return -EINVAL;
  3839. read_lock(&tasklist_lock);
  3840. p = find_process_by_pid(pid);
  3841. retval = -ESRCH;
  3842. if (!p)
  3843. goto out_unlock;
  3844. retval = security_task_getscheduler(p);
  3845. if (retval)
  3846. goto out_unlock;
  3847. lp.sched_priority = p->rt_priority;
  3848. read_unlock(&tasklist_lock);
  3849. /*
  3850. * This one might sleep, we cannot do it with a spinlock held ...
  3851. */
  3852. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3853. return retval;
  3854. out_unlock:
  3855. read_unlock(&tasklist_lock);
  3856. return retval;
  3857. }
  3858. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3859. {
  3860. cpumask_t cpus_allowed;
  3861. struct task_struct *p;
  3862. int retval;
  3863. mutex_lock(&sched_hotcpu_mutex);
  3864. read_lock(&tasklist_lock);
  3865. p = find_process_by_pid(pid);
  3866. if (!p) {
  3867. read_unlock(&tasklist_lock);
  3868. mutex_unlock(&sched_hotcpu_mutex);
  3869. return -ESRCH;
  3870. }
  3871. /*
  3872. * It is not safe to call set_cpus_allowed with the
  3873. * tasklist_lock held. We will bump the task_struct's
  3874. * usage count and then drop tasklist_lock.
  3875. */
  3876. get_task_struct(p);
  3877. read_unlock(&tasklist_lock);
  3878. retval = -EPERM;
  3879. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3880. !capable(CAP_SYS_NICE))
  3881. goto out_unlock;
  3882. retval = security_task_setscheduler(p, 0, NULL);
  3883. if (retval)
  3884. goto out_unlock;
  3885. cpus_allowed = cpuset_cpus_allowed(p);
  3886. cpus_and(new_mask, new_mask, cpus_allowed);
  3887. again:
  3888. retval = set_cpus_allowed(p, new_mask);
  3889. if (!retval) {
  3890. cpus_allowed = cpuset_cpus_allowed(p);
  3891. if (!cpus_subset(new_mask, cpus_allowed)) {
  3892. /*
  3893. * We must have raced with a concurrent cpuset
  3894. * update. Just reset the cpus_allowed to the
  3895. * cpuset's cpus_allowed
  3896. */
  3897. new_mask = cpus_allowed;
  3898. goto again;
  3899. }
  3900. }
  3901. out_unlock:
  3902. put_task_struct(p);
  3903. mutex_unlock(&sched_hotcpu_mutex);
  3904. return retval;
  3905. }
  3906. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3907. cpumask_t *new_mask)
  3908. {
  3909. if (len < sizeof(cpumask_t)) {
  3910. memset(new_mask, 0, sizeof(cpumask_t));
  3911. } else if (len > sizeof(cpumask_t)) {
  3912. len = sizeof(cpumask_t);
  3913. }
  3914. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3915. }
  3916. /**
  3917. * sys_sched_setaffinity - set the cpu affinity of a process
  3918. * @pid: pid of the process
  3919. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3920. * @user_mask_ptr: user-space pointer to the new cpu mask
  3921. */
  3922. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3923. unsigned long __user *user_mask_ptr)
  3924. {
  3925. cpumask_t new_mask;
  3926. int retval;
  3927. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3928. if (retval)
  3929. return retval;
  3930. return sched_setaffinity(pid, new_mask);
  3931. }
  3932. /*
  3933. * Represents all cpu's present in the system
  3934. * In systems capable of hotplug, this map could dynamically grow
  3935. * as new cpu's are detected in the system via any platform specific
  3936. * method, such as ACPI for e.g.
  3937. */
  3938. cpumask_t cpu_present_map __read_mostly;
  3939. EXPORT_SYMBOL(cpu_present_map);
  3940. #ifndef CONFIG_SMP
  3941. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3942. EXPORT_SYMBOL(cpu_online_map);
  3943. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3944. EXPORT_SYMBOL(cpu_possible_map);
  3945. #endif
  3946. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3947. {
  3948. struct task_struct *p;
  3949. int retval;
  3950. mutex_lock(&sched_hotcpu_mutex);
  3951. read_lock(&tasklist_lock);
  3952. retval = -ESRCH;
  3953. p = find_process_by_pid(pid);
  3954. if (!p)
  3955. goto out_unlock;
  3956. retval = security_task_getscheduler(p);
  3957. if (retval)
  3958. goto out_unlock;
  3959. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3960. out_unlock:
  3961. read_unlock(&tasklist_lock);
  3962. mutex_unlock(&sched_hotcpu_mutex);
  3963. return retval;
  3964. }
  3965. /**
  3966. * sys_sched_getaffinity - get the cpu affinity of a process
  3967. * @pid: pid of the process
  3968. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3969. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3970. */
  3971. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3972. unsigned long __user *user_mask_ptr)
  3973. {
  3974. int ret;
  3975. cpumask_t mask;
  3976. if (len < sizeof(cpumask_t))
  3977. return -EINVAL;
  3978. ret = sched_getaffinity(pid, &mask);
  3979. if (ret < 0)
  3980. return ret;
  3981. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3982. return -EFAULT;
  3983. return sizeof(cpumask_t);
  3984. }
  3985. /**
  3986. * sys_sched_yield - yield the current processor to other threads.
  3987. *
  3988. * This function yields the current CPU to other tasks. If there are no
  3989. * other threads running on this CPU then this function will return.
  3990. */
  3991. asmlinkage long sys_sched_yield(void)
  3992. {
  3993. struct rq *rq = this_rq_lock();
  3994. schedstat_inc(rq, yld_count);
  3995. current->sched_class->yield_task(rq);
  3996. /*
  3997. * Since we are going to call schedule() anyway, there's
  3998. * no need to preempt or enable interrupts:
  3999. */
  4000. __release(rq->lock);
  4001. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4002. _raw_spin_unlock(&rq->lock);
  4003. preempt_enable_no_resched();
  4004. schedule();
  4005. return 0;
  4006. }
  4007. static void __cond_resched(void)
  4008. {
  4009. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4010. __might_sleep(__FILE__, __LINE__);
  4011. #endif
  4012. /*
  4013. * The BKS might be reacquired before we have dropped
  4014. * PREEMPT_ACTIVE, which could trigger a second
  4015. * cond_resched() call.
  4016. */
  4017. do {
  4018. add_preempt_count(PREEMPT_ACTIVE);
  4019. schedule();
  4020. sub_preempt_count(PREEMPT_ACTIVE);
  4021. } while (need_resched());
  4022. }
  4023. int __sched cond_resched(void)
  4024. {
  4025. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4026. system_state == SYSTEM_RUNNING) {
  4027. __cond_resched();
  4028. return 1;
  4029. }
  4030. return 0;
  4031. }
  4032. EXPORT_SYMBOL(cond_resched);
  4033. /*
  4034. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4035. * call schedule, and on return reacquire the lock.
  4036. *
  4037. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4038. * operations here to prevent schedule() from being called twice (once via
  4039. * spin_unlock(), once by hand).
  4040. */
  4041. int cond_resched_lock(spinlock_t *lock)
  4042. {
  4043. int ret = 0;
  4044. if (need_lockbreak(lock)) {
  4045. spin_unlock(lock);
  4046. cpu_relax();
  4047. ret = 1;
  4048. spin_lock(lock);
  4049. }
  4050. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4051. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4052. _raw_spin_unlock(lock);
  4053. preempt_enable_no_resched();
  4054. __cond_resched();
  4055. ret = 1;
  4056. spin_lock(lock);
  4057. }
  4058. return ret;
  4059. }
  4060. EXPORT_SYMBOL(cond_resched_lock);
  4061. int __sched cond_resched_softirq(void)
  4062. {
  4063. BUG_ON(!in_softirq());
  4064. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4065. local_bh_enable();
  4066. __cond_resched();
  4067. local_bh_disable();
  4068. return 1;
  4069. }
  4070. return 0;
  4071. }
  4072. EXPORT_SYMBOL(cond_resched_softirq);
  4073. /**
  4074. * yield - yield the current processor to other threads.
  4075. *
  4076. * This is a shortcut for kernel-space yielding - it marks the
  4077. * thread runnable and calls sys_sched_yield().
  4078. */
  4079. void __sched yield(void)
  4080. {
  4081. set_current_state(TASK_RUNNING);
  4082. sys_sched_yield();
  4083. }
  4084. EXPORT_SYMBOL(yield);
  4085. /*
  4086. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4087. * that process accounting knows that this is a task in IO wait state.
  4088. *
  4089. * But don't do that if it is a deliberate, throttling IO wait (this task
  4090. * has set its backing_dev_info: the queue against which it should throttle)
  4091. */
  4092. void __sched io_schedule(void)
  4093. {
  4094. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4095. delayacct_blkio_start();
  4096. atomic_inc(&rq->nr_iowait);
  4097. schedule();
  4098. atomic_dec(&rq->nr_iowait);
  4099. delayacct_blkio_end();
  4100. }
  4101. EXPORT_SYMBOL(io_schedule);
  4102. long __sched io_schedule_timeout(long timeout)
  4103. {
  4104. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4105. long ret;
  4106. delayacct_blkio_start();
  4107. atomic_inc(&rq->nr_iowait);
  4108. ret = schedule_timeout(timeout);
  4109. atomic_dec(&rq->nr_iowait);
  4110. delayacct_blkio_end();
  4111. return ret;
  4112. }
  4113. /**
  4114. * sys_sched_get_priority_max - return maximum RT priority.
  4115. * @policy: scheduling class.
  4116. *
  4117. * this syscall returns the maximum rt_priority that can be used
  4118. * by a given scheduling class.
  4119. */
  4120. asmlinkage long sys_sched_get_priority_max(int policy)
  4121. {
  4122. int ret = -EINVAL;
  4123. switch (policy) {
  4124. case SCHED_FIFO:
  4125. case SCHED_RR:
  4126. ret = MAX_USER_RT_PRIO-1;
  4127. break;
  4128. case SCHED_NORMAL:
  4129. case SCHED_BATCH:
  4130. case SCHED_IDLE:
  4131. ret = 0;
  4132. break;
  4133. }
  4134. return ret;
  4135. }
  4136. /**
  4137. * sys_sched_get_priority_min - return minimum RT priority.
  4138. * @policy: scheduling class.
  4139. *
  4140. * this syscall returns the minimum rt_priority that can be used
  4141. * by a given scheduling class.
  4142. */
  4143. asmlinkage long sys_sched_get_priority_min(int policy)
  4144. {
  4145. int ret = -EINVAL;
  4146. switch (policy) {
  4147. case SCHED_FIFO:
  4148. case SCHED_RR:
  4149. ret = 1;
  4150. break;
  4151. case SCHED_NORMAL:
  4152. case SCHED_BATCH:
  4153. case SCHED_IDLE:
  4154. ret = 0;
  4155. }
  4156. return ret;
  4157. }
  4158. /**
  4159. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4160. * @pid: pid of the process.
  4161. * @interval: userspace pointer to the timeslice value.
  4162. *
  4163. * this syscall writes the default timeslice value of a given process
  4164. * into the user-space timespec buffer. A value of '0' means infinity.
  4165. */
  4166. asmlinkage
  4167. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4168. {
  4169. struct task_struct *p;
  4170. unsigned int time_slice;
  4171. int retval;
  4172. struct timespec t;
  4173. if (pid < 0)
  4174. return -EINVAL;
  4175. retval = -ESRCH;
  4176. read_lock(&tasklist_lock);
  4177. p = find_process_by_pid(pid);
  4178. if (!p)
  4179. goto out_unlock;
  4180. retval = security_task_getscheduler(p);
  4181. if (retval)
  4182. goto out_unlock;
  4183. if (p->policy == SCHED_FIFO)
  4184. time_slice = 0;
  4185. else if (p->policy == SCHED_RR)
  4186. time_slice = DEF_TIMESLICE;
  4187. else {
  4188. struct sched_entity *se = &p->se;
  4189. unsigned long flags;
  4190. struct rq *rq;
  4191. rq = task_rq_lock(p, &flags);
  4192. time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  4193. task_rq_unlock(rq, &flags);
  4194. }
  4195. read_unlock(&tasklist_lock);
  4196. jiffies_to_timespec(time_slice, &t);
  4197. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4198. return retval;
  4199. out_unlock:
  4200. read_unlock(&tasklist_lock);
  4201. return retval;
  4202. }
  4203. static const char stat_nam[] = "RSDTtZX";
  4204. static void show_task(struct task_struct *p)
  4205. {
  4206. unsigned long free = 0;
  4207. unsigned state;
  4208. state = p->state ? __ffs(p->state) + 1 : 0;
  4209. printk(KERN_INFO "%-13.13s %c", p->comm,
  4210. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4211. #if BITS_PER_LONG == 32
  4212. if (state == TASK_RUNNING)
  4213. printk(KERN_CONT " running ");
  4214. else
  4215. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4216. #else
  4217. if (state == TASK_RUNNING)
  4218. printk(KERN_CONT " running task ");
  4219. else
  4220. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4221. #endif
  4222. #ifdef CONFIG_DEBUG_STACK_USAGE
  4223. {
  4224. unsigned long *n = end_of_stack(p);
  4225. while (!*n)
  4226. n++;
  4227. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4228. }
  4229. #endif
  4230. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4231. task_pid_nr(p), task_pid_nr(p->parent));
  4232. if (state != TASK_RUNNING)
  4233. show_stack(p, NULL);
  4234. }
  4235. void show_state_filter(unsigned long state_filter)
  4236. {
  4237. struct task_struct *g, *p;
  4238. #if BITS_PER_LONG == 32
  4239. printk(KERN_INFO
  4240. " task PC stack pid father\n");
  4241. #else
  4242. printk(KERN_INFO
  4243. " task PC stack pid father\n");
  4244. #endif
  4245. read_lock(&tasklist_lock);
  4246. do_each_thread(g, p) {
  4247. /*
  4248. * reset the NMI-timeout, listing all files on a slow
  4249. * console might take alot of time:
  4250. */
  4251. touch_nmi_watchdog();
  4252. if (!state_filter || (p->state & state_filter))
  4253. show_task(p);
  4254. } while_each_thread(g, p);
  4255. touch_all_softlockup_watchdogs();
  4256. #ifdef CONFIG_SCHED_DEBUG
  4257. sysrq_sched_debug_show();
  4258. #endif
  4259. read_unlock(&tasklist_lock);
  4260. /*
  4261. * Only show locks if all tasks are dumped:
  4262. */
  4263. if (state_filter == -1)
  4264. debug_show_all_locks();
  4265. }
  4266. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4267. {
  4268. idle->sched_class = &idle_sched_class;
  4269. }
  4270. /**
  4271. * init_idle - set up an idle thread for a given CPU
  4272. * @idle: task in question
  4273. * @cpu: cpu the idle task belongs to
  4274. *
  4275. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4276. * flag, to make booting more robust.
  4277. */
  4278. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4279. {
  4280. struct rq *rq = cpu_rq(cpu);
  4281. unsigned long flags;
  4282. __sched_fork(idle);
  4283. idle->se.exec_start = sched_clock();
  4284. idle->prio = idle->normal_prio = MAX_PRIO;
  4285. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4286. __set_task_cpu(idle, cpu);
  4287. spin_lock_irqsave(&rq->lock, flags);
  4288. rq->curr = rq->idle = idle;
  4289. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4290. idle->oncpu = 1;
  4291. #endif
  4292. spin_unlock_irqrestore(&rq->lock, flags);
  4293. /* Set the preempt count _outside_ the spinlocks! */
  4294. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4295. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4296. #else
  4297. task_thread_info(idle)->preempt_count = 0;
  4298. #endif
  4299. /*
  4300. * The idle tasks have their own, simple scheduling class:
  4301. */
  4302. idle->sched_class = &idle_sched_class;
  4303. }
  4304. /*
  4305. * In a system that switches off the HZ timer nohz_cpu_mask
  4306. * indicates which cpus entered this state. This is used
  4307. * in the rcu update to wait only for active cpus. For system
  4308. * which do not switch off the HZ timer nohz_cpu_mask should
  4309. * always be CPU_MASK_NONE.
  4310. */
  4311. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4312. /*
  4313. * Increase the granularity value when there are more CPUs,
  4314. * because with more CPUs the 'effective latency' as visible
  4315. * to users decreases. But the relationship is not linear,
  4316. * so pick a second-best guess by going with the log2 of the
  4317. * number of CPUs.
  4318. *
  4319. * This idea comes from the SD scheduler of Con Kolivas:
  4320. */
  4321. static inline void sched_init_granularity(void)
  4322. {
  4323. unsigned int factor = 1 + ilog2(num_online_cpus());
  4324. const unsigned long limit = 200000000;
  4325. sysctl_sched_min_granularity *= factor;
  4326. if (sysctl_sched_min_granularity > limit)
  4327. sysctl_sched_min_granularity = limit;
  4328. sysctl_sched_latency *= factor;
  4329. if (sysctl_sched_latency > limit)
  4330. sysctl_sched_latency = limit;
  4331. sysctl_sched_wakeup_granularity *= factor;
  4332. sysctl_sched_batch_wakeup_granularity *= factor;
  4333. }
  4334. #ifdef CONFIG_SMP
  4335. /*
  4336. * This is how migration works:
  4337. *
  4338. * 1) we queue a struct migration_req structure in the source CPU's
  4339. * runqueue and wake up that CPU's migration thread.
  4340. * 2) we down() the locked semaphore => thread blocks.
  4341. * 3) migration thread wakes up (implicitly it forces the migrated
  4342. * thread off the CPU)
  4343. * 4) it gets the migration request and checks whether the migrated
  4344. * task is still in the wrong runqueue.
  4345. * 5) if it's in the wrong runqueue then the migration thread removes
  4346. * it and puts it into the right queue.
  4347. * 6) migration thread up()s the semaphore.
  4348. * 7) we wake up and the migration is done.
  4349. */
  4350. /*
  4351. * Change a given task's CPU affinity. Migrate the thread to a
  4352. * proper CPU and schedule it away if the CPU it's executing on
  4353. * is removed from the allowed bitmask.
  4354. *
  4355. * NOTE: the caller must have a valid reference to the task, the
  4356. * task must not exit() & deallocate itself prematurely. The
  4357. * call is not atomic; no spinlocks may be held.
  4358. */
  4359. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4360. {
  4361. struct migration_req req;
  4362. unsigned long flags;
  4363. struct rq *rq;
  4364. int ret = 0;
  4365. rq = task_rq_lock(p, &flags);
  4366. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4367. ret = -EINVAL;
  4368. goto out;
  4369. }
  4370. p->cpus_allowed = new_mask;
  4371. /* Can the task run on the task's current CPU? If so, we're done */
  4372. if (cpu_isset(task_cpu(p), new_mask))
  4373. goto out;
  4374. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4375. /* Need help from migration thread: drop lock and wait. */
  4376. task_rq_unlock(rq, &flags);
  4377. wake_up_process(rq->migration_thread);
  4378. wait_for_completion(&req.done);
  4379. tlb_migrate_finish(p->mm);
  4380. return 0;
  4381. }
  4382. out:
  4383. task_rq_unlock(rq, &flags);
  4384. return ret;
  4385. }
  4386. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4387. /*
  4388. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4389. * this because either it can't run here any more (set_cpus_allowed()
  4390. * away from this CPU, or CPU going down), or because we're
  4391. * attempting to rebalance this task on exec (sched_exec).
  4392. *
  4393. * So we race with normal scheduler movements, but that's OK, as long
  4394. * as the task is no longer on this CPU.
  4395. *
  4396. * Returns non-zero if task was successfully migrated.
  4397. */
  4398. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4399. {
  4400. struct rq *rq_dest, *rq_src;
  4401. int ret = 0, on_rq;
  4402. if (unlikely(cpu_is_offline(dest_cpu)))
  4403. return ret;
  4404. rq_src = cpu_rq(src_cpu);
  4405. rq_dest = cpu_rq(dest_cpu);
  4406. double_rq_lock(rq_src, rq_dest);
  4407. /* Already moved. */
  4408. if (task_cpu(p) != src_cpu)
  4409. goto out;
  4410. /* Affinity changed (again). */
  4411. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4412. goto out;
  4413. on_rq = p->se.on_rq;
  4414. if (on_rq)
  4415. deactivate_task(rq_src, p, 0);
  4416. set_task_cpu(p, dest_cpu);
  4417. if (on_rq) {
  4418. activate_task(rq_dest, p, 0);
  4419. check_preempt_curr(rq_dest, p);
  4420. }
  4421. ret = 1;
  4422. out:
  4423. double_rq_unlock(rq_src, rq_dest);
  4424. return ret;
  4425. }
  4426. /*
  4427. * migration_thread - this is a highprio system thread that performs
  4428. * thread migration by bumping thread off CPU then 'pushing' onto
  4429. * another runqueue.
  4430. */
  4431. static int migration_thread(void *data)
  4432. {
  4433. int cpu = (long)data;
  4434. struct rq *rq;
  4435. rq = cpu_rq(cpu);
  4436. BUG_ON(rq->migration_thread != current);
  4437. set_current_state(TASK_INTERRUPTIBLE);
  4438. while (!kthread_should_stop()) {
  4439. struct migration_req *req;
  4440. struct list_head *head;
  4441. spin_lock_irq(&rq->lock);
  4442. if (cpu_is_offline(cpu)) {
  4443. spin_unlock_irq(&rq->lock);
  4444. goto wait_to_die;
  4445. }
  4446. if (rq->active_balance) {
  4447. active_load_balance(rq, cpu);
  4448. rq->active_balance = 0;
  4449. }
  4450. head = &rq->migration_queue;
  4451. if (list_empty(head)) {
  4452. spin_unlock_irq(&rq->lock);
  4453. schedule();
  4454. set_current_state(TASK_INTERRUPTIBLE);
  4455. continue;
  4456. }
  4457. req = list_entry(head->next, struct migration_req, list);
  4458. list_del_init(head->next);
  4459. spin_unlock(&rq->lock);
  4460. __migrate_task(req->task, cpu, req->dest_cpu);
  4461. local_irq_enable();
  4462. complete(&req->done);
  4463. }
  4464. __set_current_state(TASK_RUNNING);
  4465. return 0;
  4466. wait_to_die:
  4467. /* Wait for kthread_stop */
  4468. set_current_state(TASK_INTERRUPTIBLE);
  4469. while (!kthread_should_stop()) {
  4470. schedule();
  4471. set_current_state(TASK_INTERRUPTIBLE);
  4472. }
  4473. __set_current_state(TASK_RUNNING);
  4474. return 0;
  4475. }
  4476. #ifdef CONFIG_HOTPLUG_CPU
  4477. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4478. {
  4479. int ret;
  4480. local_irq_disable();
  4481. ret = __migrate_task(p, src_cpu, dest_cpu);
  4482. local_irq_enable();
  4483. return ret;
  4484. }
  4485. /*
  4486. * Figure out where task on dead CPU should go, use force if necessary.
  4487. * NOTE: interrupts should be disabled by the caller
  4488. */
  4489. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4490. {
  4491. unsigned long flags;
  4492. cpumask_t mask;
  4493. struct rq *rq;
  4494. int dest_cpu;
  4495. do {
  4496. /* On same node? */
  4497. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4498. cpus_and(mask, mask, p->cpus_allowed);
  4499. dest_cpu = any_online_cpu(mask);
  4500. /* On any allowed CPU? */
  4501. if (dest_cpu == NR_CPUS)
  4502. dest_cpu = any_online_cpu(p->cpus_allowed);
  4503. /* No more Mr. Nice Guy. */
  4504. if (dest_cpu == NR_CPUS) {
  4505. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4506. /*
  4507. * Try to stay on the same cpuset, where the
  4508. * current cpuset may be a subset of all cpus.
  4509. * The cpuset_cpus_allowed_locked() variant of
  4510. * cpuset_cpus_allowed() will not block. It must be
  4511. * called within calls to cpuset_lock/cpuset_unlock.
  4512. */
  4513. rq = task_rq_lock(p, &flags);
  4514. p->cpus_allowed = cpus_allowed;
  4515. dest_cpu = any_online_cpu(p->cpus_allowed);
  4516. task_rq_unlock(rq, &flags);
  4517. /*
  4518. * Don't tell them about moving exiting tasks or
  4519. * kernel threads (both mm NULL), since they never
  4520. * leave kernel.
  4521. */
  4522. if (p->mm && printk_ratelimit())
  4523. printk(KERN_INFO "process %d (%s) no "
  4524. "longer affine to cpu%d\n",
  4525. task_pid_nr(p), p->comm, dead_cpu);
  4526. }
  4527. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4528. }
  4529. /*
  4530. * While a dead CPU has no uninterruptible tasks queued at this point,
  4531. * it might still have a nonzero ->nr_uninterruptible counter, because
  4532. * for performance reasons the counter is not stricly tracking tasks to
  4533. * their home CPUs. So we just add the counter to another CPU's counter,
  4534. * to keep the global sum constant after CPU-down:
  4535. */
  4536. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4537. {
  4538. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4539. unsigned long flags;
  4540. local_irq_save(flags);
  4541. double_rq_lock(rq_src, rq_dest);
  4542. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4543. rq_src->nr_uninterruptible = 0;
  4544. double_rq_unlock(rq_src, rq_dest);
  4545. local_irq_restore(flags);
  4546. }
  4547. /* Run through task list and migrate tasks from the dead cpu. */
  4548. static void migrate_live_tasks(int src_cpu)
  4549. {
  4550. struct task_struct *p, *t;
  4551. read_lock(&tasklist_lock);
  4552. do_each_thread(t, p) {
  4553. if (p == current)
  4554. continue;
  4555. if (task_cpu(p) == src_cpu)
  4556. move_task_off_dead_cpu(src_cpu, p);
  4557. } while_each_thread(t, p);
  4558. read_unlock(&tasklist_lock);
  4559. }
  4560. /*
  4561. * activate_idle_task - move idle task to the _front_ of runqueue.
  4562. */
  4563. static void activate_idle_task(struct task_struct *p, struct rq *rq)
  4564. {
  4565. update_rq_clock(rq);
  4566. if (p->state == TASK_UNINTERRUPTIBLE)
  4567. rq->nr_uninterruptible--;
  4568. enqueue_task(rq, p, 0);
  4569. inc_nr_running(p, rq);
  4570. }
  4571. /*
  4572. * Schedules idle task to be the next runnable task on current CPU.
  4573. * It does so by boosting its priority to highest possible and adding it to
  4574. * the _front_ of the runqueue. Used by CPU offline code.
  4575. */
  4576. void sched_idle_next(void)
  4577. {
  4578. int this_cpu = smp_processor_id();
  4579. struct rq *rq = cpu_rq(this_cpu);
  4580. struct task_struct *p = rq->idle;
  4581. unsigned long flags;
  4582. /* cpu has to be offline */
  4583. BUG_ON(cpu_online(this_cpu));
  4584. /*
  4585. * Strictly not necessary since rest of the CPUs are stopped by now
  4586. * and interrupts disabled on the current cpu.
  4587. */
  4588. spin_lock_irqsave(&rq->lock, flags);
  4589. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4590. /* Add idle task to the _front_ of its priority queue: */
  4591. activate_idle_task(p, rq);
  4592. spin_unlock_irqrestore(&rq->lock, flags);
  4593. }
  4594. /*
  4595. * Ensures that the idle task is using init_mm right before its cpu goes
  4596. * offline.
  4597. */
  4598. void idle_task_exit(void)
  4599. {
  4600. struct mm_struct *mm = current->active_mm;
  4601. BUG_ON(cpu_online(smp_processor_id()));
  4602. if (mm != &init_mm)
  4603. switch_mm(mm, &init_mm, current);
  4604. mmdrop(mm);
  4605. }
  4606. /* called under rq->lock with disabled interrupts */
  4607. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4608. {
  4609. struct rq *rq = cpu_rq(dead_cpu);
  4610. /* Must be exiting, otherwise would be on tasklist. */
  4611. BUG_ON(!p->exit_state);
  4612. /* Cannot have done final schedule yet: would have vanished. */
  4613. BUG_ON(p->state == TASK_DEAD);
  4614. get_task_struct(p);
  4615. /*
  4616. * Drop lock around migration; if someone else moves it,
  4617. * that's OK. No task can be added to this CPU, so iteration is
  4618. * fine.
  4619. */
  4620. spin_unlock_irq(&rq->lock);
  4621. move_task_off_dead_cpu(dead_cpu, p);
  4622. spin_lock_irq(&rq->lock);
  4623. put_task_struct(p);
  4624. }
  4625. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4626. static void migrate_dead_tasks(unsigned int dead_cpu)
  4627. {
  4628. struct rq *rq = cpu_rq(dead_cpu);
  4629. struct task_struct *next;
  4630. for ( ; ; ) {
  4631. if (!rq->nr_running)
  4632. break;
  4633. update_rq_clock(rq);
  4634. next = pick_next_task(rq, rq->curr);
  4635. if (!next)
  4636. break;
  4637. migrate_dead(dead_cpu, next);
  4638. }
  4639. }
  4640. #endif /* CONFIG_HOTPLUG_CPU */
  4641. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4642. static struct ctl_table sd_ctl_dir[] = {
  4643. {
  4644. .procname = "sched_domain",
  4645. .mode = 0555,
  4646. },
  4647. {0, },
  4648. };
  4649. static struct ctl_table sd_ctl_root[] = {
  4650. {
  4651. .ctl_name = CTL_KERN,
  4652. .procname = "kernel",
  4653. .mode = 0555,
  4654. .child = sd_ctl_dir,
  4655. },
  4656. {0, },
  4657. };
  4658. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4659. {
  4660. struct ctl_table *entry =
  4661. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4662. return entry;
  4663. }
  4664. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4665. {
  4666. struct ctl_table *entry;
  4667. /*
  4668. * In the intermediate directories, both the child directory and
  4669. * procname are dynamically allocated and could fail but the mode
  4670. * will always be set. In the lowest directory the names are
  4671. * static strings and all have proc handlers.
  4672. */
  4673. for (entry = *tablep; entry->mode; entry++) {
  4674. if (entry->child)
  4675. sd_free_ctl_entry(&entry->child);
  4676. if (entry->proc_handler == NULL)
  4677. kfree(entry->procname);
  4678. }
  4679. kfree(*tablep);
  4680. *tablep = NULL;
  4681. }
  4682. static void
  4683. set_table_entry(struct ctl_table *entry,
  4684. const char *procname, void *data, int maxlen,
  4685. mode_t mode, proc_handler *proc_handler)
  4686. {
  4687. entry->procname = procname;
  4688. entry->data = data;
  4689. entry->maxlen = maxlen;
  4690. entry->mode = mode;
  4691. entry->proc_handler = proc_handler;
  4692. }
  4693. static struct ctl_table *
  4694. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4695. {
  4696. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4697. if (table == NULL)
  4698. return NULL;
  4699. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4700. sizeof(long), 0644, proc_doulongvec_minmax);
  4701. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4702. sizeof(long), 0644, proc_doulongvec_minmax);
  4703. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4704. sizeof(int), 0644, proc_dointvec_minmax);
  4705. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4706. sizeof(int), 0644, proc_dointvec_minmax);
  4707. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4708. sizeof(int), 0644, proc_dointvec_minmax);
  4709. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4710. sizeof(int), 0644, proc_dointvec_minmax);
  4711. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4712. sizeof(int), 0644, proc_dointvec_minmax);
  4713. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4714. sizeof(int), 0644, proc_dointvec_minmax);
  4715. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4716. sizeof(int), 0644, proc_dointvec_minmax);
  4717. set_table_entry(&table[9], "cache_nice_tries",
  4718. &sd->cache_nice_tries,
  4719. sizeof(int), 0644, proc_dointvec_minmax);
  4720. set_table_entry(&table[10], "flags", &sd->flags,
  4721. sizeof(int), 0644, proc_dointvec_minmax);
  4722. /* &table[11] is terminator */
  4723. return table;
  4724. }
  4725. static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
  4726. {
  4727. struct ctl_table *entry, *table;
  4728. struct sched_domain *sd;
  4729. int domain_num = 0, i;
  4730. char buf[32];
  4731. for_each_domain(cpu, sd)
  4732. domain_num++;
  4733. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4734. if (table == NULL)
  4735. return NULL;
  4736. i = 0;
  4737. for_each_domain(cpu, sd) {
  4738. snprintf(buf, 32, "domain%d", i);
  4739. entry->procname = kstrdup(buf, GFP_KERNEL);
  4740. entry->mode = 0555;
  4741. entry->child = sd_alloc_ctl_domain_table(sd);
  4742. entry++;
  4743. i++;
  4744. }
  4745. return table;
  4746. }
  4747. static struct ctl_table_header *sd_sysctl_header;
  4748. static void register_sched_domain_sysctl(void)
  4749. {
  4750. int i, cpu_num = num_online_cpus();
  4751. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4752. char buf[32];
  4753. WARN_ON(sd_ctl_dir[0].child);
  4754. sd_ctl_dir[0].child = entry;
  4755. if (entry == NULL)
  4756. return;
  4757. for_each_online_cpu(i) {
  4758. snprintf(buf, 32, "cpu%d", i);
  4759. entry->procname = kstrdup(buf, GFP_KERNEL);
  4760. entry->mode = 0555;
  4761. entry->child = sd_alloc_ctl_cpu_table(i);
  4762. entry++;
  4763. }
  4764. WARN_ON(sd_sysctl_header);
  4765. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4766. }
  4767. /* may be called multiple times per register */
  4768. static void unregister_sched_domain_sysctl(void)
  4769. {
  4770. if (sd_sysctl_header)
  4771. unregister_sysctl_table(sd_sysctl_header);
  4772. sd_sysctl_header = NULL;
  4773. if (sd_ctl_dir[0].child)
  4774. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4775. }
  4776. #else
  4777. static void register_sched_domain_sysctl(void)
  4778. {
  4779. }
  4780. static void unregister_sched_domain_sysctl(void)
  4781. {
  4782. }
  4783. #endif
  4784. /*
  4785. * migration_call - callback that gets triggered when a CPU is added.
  4786. * Here we can start up the necessary migration thread for the new CPU.
  4787. */
  4788. static int __cpuinit
  4789. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4790. {
  4791. struct task_struct *p;
  4792. int cpu = (long)hcpu;
  4793. unsigned long flags;
  4794. struct rq *rq;
  4795. switch (action) {
  4796. case CPU_LOCK_ACQUIRE:
  4797. mutex_lock(&sched_hotcpu_mutex);
  4798. break;
  4799. case CPU_UP_PREPARE:
  4800. case CPU_UP_PREPARE_FROZEN:
  4801. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4802. if (IS_ERR(p))
  4803. return NOTIFY_BAD;
  4804. kthread_bind(p, cpu);
  4805. /* Must be high prio: stop_machine expects to yield to it. */
  4806. rq = task_rq_lock(p, &flags);
  4807. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4808. task_rq_unlock(rq, &flags);
  4809. cpu_rq(cpu)->migration_thread = p;
  4810. break;
  4811. case CPU_ONLINE:
  4812. case CPU_ONLINE_FROZEN:
  4813. /* Strictly unnecessary, as first user will wake it. */
  4814. wake_up_process(cpu_rq(cpu)->migration_thread);
  4815. break;
  4816. #ifdef CONFIG_HOTPLUG_CPU
  4817. case CPU_UP_CANCELED:
  4818. case CPU_UP_CANCELED_FROZEN:
  4819. if (!cpu_rq(cpu)->migration_thread)
  4820. break;
  4821. /* Unbind it from offline cpu so it can run. Fall thru. */
  4822. kthread_bind(cpu_rq(cpu)->migration_thread,
  4823. any_online_cpu(cpu_online_map));
  4824. kthread_stop(cpu_rq(cpu)->migration_thread);
  4825. cpu_rq(cpu)->migration_thread = NULL;
  4826. break;
  4827. case CPU_DEAD:
  4828. case CPU_DEAD_FROZEN:
  4829. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4830. migrate_live_tasks(cpu);
  4831. rq = cpu_rq(cpu);
  4832. kthread_stop(rq->migration_thread);
  4833. rq->migration_thread = NULL;
  4834. /* Idle task back to normal (off runqueue, low prio) */
  4835. spin_lock_irq(&rq->lock);
  4836. update_rq_clock(rq);
  4837. deactivate_task(rq, rq->idle, 0);
  4838. rq->idle->static_prio = MAX_PRIO;
  4839. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4840. rq->idle->sched_class = &idle_sched_class;
  4841. migrate_dead_tasks(cpu);
  4842. spin_unlock_irq(&rq->lock);
  4843. cpuset_unlock();
  4844. migrate_nr_uninterruptible(rq);
  4845. BUG_ON(rq->nr_running != 0);
  4846. /* No need to migrate the tasks: it was best-effort if
  4847. * they didn't take sched_hotcpu_mutex. Just wake up
  4848. * the requestors. */
  4849. spin_lock_irq(&rq->lock);
  4850. while (!list_empty(&rq->migration_queue)) {
  4851. struct migration_req *req;
  4852. req = list_entry(rq->migration_queue.next,
  4853. struct migration_req, list);
  4854. list_del_init(&req->list);
  4855. complete(&req->done);
  4856. }
  4857. spin_unlock_irq(&rq->lock);
  4858. break;
  4859. #endif
  4860. case CPU_LOCK_RELEASE:
  4861. mutex_unlock(&sched_hotcpu_mutex);
  4862. break;
  4863. }
  4864. return NOTIFY_OK;
  4865. }
  4866. /* Register at highest priority so that task migration (migrate_all_tasks)
  4867. * happens before everything else.
  4868. */
  4869. static struct notifier_block __cpuinitdata migration_notifier = {
  4870. .notifier_call = migration_call,
  4871. .priority = 10
  4872. };
  4873. void __init migration_init(void)
  4874. {
  4875. void *cpu = (void *)(long)smp_processor_id();
  4876. int err;
  4877. /* Start one for the boot CPU: */
  4878. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4879. BUG_ON(err == NOTIFY_BAD);
  4880. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4881. register_cpu_notifier(&migration_notifier);
  4882. }
  4883. #endif
  4884. #ifdef CONFIG_SMP
  4885. /* Number of possible processor ids */
  4886. int nr_cpu_ids __read_mostly = NR_CPUS;
  4887. EXPORT_SYMBOL(nr_cpu_ids);
  4888. #ifdef CONFIG_SCHED_DEBUG
  4889. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4890. {
  4891. struct sched_group *group = sd->groups;
  4892. cpumask_t groupmask;
  4893. char str[NR_CPUS];
  4894. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4895. cpus_clear(groupmask);
  4896. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4897. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4898. printk("does not load-balance\n");
  4899. if (sd->parent)
  4900. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4901. " has parent");
  4902. return -1;
  4903. }
  4904. printk(KERN_CONT "span %s\n", str);
  4905. if (!cpu_isset(cpu, sd->span)) {
  4906. printk(KERN_ERR "ERROR: domain->span does not contain "
  4907. "CPU%d\n", cpu);
  4908. }
  4909. if (!cpu_isset(cpu, group->cpumask)) {
  4910. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4911. " CPU%d\n", cpu);
  4912. }
  4913. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4914. do {
  4915. if (!group) {
  4916. printk("\n");
  4917. printk(KERN_ERR "ERROR: group is NULL\n");
  4918. break;
  4919. }
  4920. if (!group->__cpu_power) {
  4921. printk(KERN_CONT "\n");
  4922. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4923. "set\n");
  4924. break;
  4925. }
  4926. if (!cpus_weight(group->cpumask)) {
  4927. printk(KERN_CONT "\n");
  4928. printk(KERN_ERR "ERROR: empty group\n");
  4929. break;
  4930. }
  4931. if (cpus_intersects(groupmask, group->cpumask)) {
  4932. printk(KERN_CONT "\n");
  4933. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4934. break;
  4935. }
  4936. cpus_or(groupmask, groupmask, group->cpumask);
  4937. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4938. printk(KERN_CONT " %s", str);
  4939. group = group->next;
  4940. } while (group != sd->groups);
  4941. printk(KERN_CONT "\n");
  4942. if (!cpus_equal(sd->span, groupmask))
  4943. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4944. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4945. printk(KERN_ERR "ERROR: parent span is not a superset "
  4946. "of domain->span\n");
  4947. return 0;
  4948. }
  4949. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4950. {
  4951. int level = 0;
  4952. if (!sd) {
  4953. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4954. return;
  4955. }
  4956. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4957. for (;;) {
  4958. if (sched_domain_debug_one(sd, cpu, level))
  4959. break;
  4960. level++;
  4961. sd = sd->parent;
  4962. if (!sd)
  4963. break;
  4964. }
  4965. }
  4966. #else
  4967. # define sched_domain_debug(sd, cpu) do { } while (0)
  4968. #endif
  4969. static int sd_degenerate(struct sched_domain *sd)
  4970. {
  4971. if (cpus_weight(sd->span) == 1)
  4972. return 1;
  4973. /* Following flags need at least 2 groups */
  4974. if (sd->flags & (SD_LOAD_BALANCE |
  4975. SD_BALANCE_NEWIDLE |
  4976. SD_BALANCE_FORK |
  4977. SD_BALANCE_EXEC |
  4978. SD_SHARE_CPUPOWER |
  4979. SD_SHARE_PKG_RESOURCES)) {
  4980. if (sd->groups != sd->groups->next)
  4981. return 0;
  4982. }
  4983. /* Following flags don't use groups */
  4984. if (sd->flags & (SD_WAKE_IDLE |
  4985. SD_WAKE_AFFINE |
  4986. SD_WAKE_BALANCE))
  4987. return 0;
  4988. return 1;
  4989. }
  4990. static int
  4991. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4992. {
  4993. unsigned long cflags = sd->flags, pflags = parent->flags;
  4994. if (sd_degenerate(parent))
  4995. return 1;
  4996. if (!cpus_equal(sd->span, parent->span))
  4997. return 0;
  4998. /* Does parent contain flags not in child? */
  4999. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5000. if (cflags & SD_WAKE_AFFINE)
  5001. pflags &= ~SD_WAKE_BALANCE;
  5002. /* Flags needing groups don't count if only 1 group in parent */
  5003. if (parent->groups == parent->groups->next) {
  5004. pflags &= ~(SD_LOAD_BALANCE |
  5005. SD_BALANCE_NEWIDLE |
  5006. SD_BALANCE_FORK |
  5007. SD_BALANCE_EXEC |
  5008. SD_SHARE_CPUPOWER |
  5009. SD_SHARE_PKG_RESOURCES);
  5010. }
  5011. if (~cflags & pflags)
  5012. return 0;
  5013. return 1;
  5014. }
  5015. /*
  5016. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5017. * hold the hotplug lock.
  5018. */
  5019. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  5020. {
  5021. struct rq *rq = cpu_rq(cpu);
  5022. struct sched_domain *tmp;
  5023. /* Remove the sched domains which do not contribute to scheduling. */
  5024. for (tmp = sd; tmp; tmp = tmp->parent) {
  5025. struct sched_domain *parent = tmp->parent;
  5026. if (!parent)
  5027. break;
  5028. if (sd_parent_degenerate(tmp, parent)) {
  5029. tmp->parent = parent->parent;
  5030. if (parent->parent)
  5031. parent->parent->child = tmp;
  5032. }
  5033. }
  5034. if (sd && sd_degenerate(sd)) {
  5035. sd = sd->parent;
  5036. if (sd)
  5037. sd->child = NULL;
  5038. }
  5039. sched_domain_debug(sd, cpu);
  5040. rcu_assign_pointer(rq->sd, sd);
  5041. }
  5042. /* cpus with isolated domains */
  5043. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5044. /* Setup the mask of cpus configured for isolated domains */
  5045. static int __init isolated_cpu_setup(char *str)
  5046. {
  5047. int ints[NR_CPUS], i;
  5048. str = get_options(str, ARRAY_SIZE(ints), ints);
  5049. cpus_clear(cpu_isolated_map);
  5050. for (i = 1; i <= ints[0]; i++)
  5051. if (ints[i] < NR_CPUS)
  5052. cpu_set(ints[i], cpu_isolated_map);
  5053. return 1;
  5054. }
  5055. __setup("isolcpus=", isolated_cpu_setup);
  5056. /*
  5057. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5058. * to a function which identifies what group(along with sched group) a CPU
  5059. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5060. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5061. *
  5062. * init_sched_build_groups will build a circular linked list of the groups
  5063. * covered by the given span, and will set each group's ->cpumask correctly,
  5064. * and ->cpu_power to 0.
  5065. */
  5066. static void
  5067. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5068. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5069. struct sched_group **sg))
  5070. {
  5071. struct sched_group *first = NULL, *last = NULL;
  5072. cpumask_t covered = CPU_MASK_NONE;
  5073. int i;
  5074. for_each_cpu_mask(i, span) {
  5075. struct sched_group *sg;
  5076. int group = group_fn(i, cpu_map, &sg);
  5077. int j;
  5078. if (cpu_isset(i, covered))
  5079. continue;
  5080. sg->cpumask = CPU_MASK_NONE;
  5081. sg->__cpu_power = 0;
  5082. for_each_cpu_mask(j, span) {
  5083. if (group_fn(j, cpu_map, NULL) != group)
  5084. continue;
  5085. cpu_set(j, covered);
  5086. cpu_set(j, sg->cpumask);
  5087. }
  5088. if (!first)
  5089. first = sg;
  5090. if (last)
  5091. last->next = sg;
  5092. last = sg;
  5093. }
  5094. last->next = first;
  5095. }
  5096. #define SD_NODES_PER_DOMAIN 16
  5097. #ifdef CONFIG_NUMA
  5098. /**
  5099. * find_next_best_node - find the next node to include in a sched_domain
  5100. * @node: node whose sched_domain we're building
  5101. * @used_nodes: nodes already in the sched_domain
  5102. *
  5103. * Find the next node to include in a given scheduling domain. Simply
  5104. * finds the closest node not already in the @used_nodes map.
  5105. *
  5106. * Should use nodemask_t.
  5107. */
  5108. static int find_next_best_node(int node, unsigned long *used_nodes)
  5109. {
  5110. int i, n, val, min_val, best_node = 0;
  5111. min_val = INT_MAX;
  5112. for (i = 0; i < MAX_NUMNODES; i++) {
  5113. /* Start at @node */
  5114. n = (node + i) % MAX_NUMNODES;
  5115. if (!nr_cpus_node(n))
  5116. continue;
  5117. /* Skip already used nodes */
  5118. if (test_bit(n, used_nodes))
  5119. continue;
  5120. /* Simple min distance search */
  5121. val = node_distance(node, n);
  5122. if (val < min_val) {
  5123. min_val = val;
  5124. best_node = n;
  5125. }
  5126. }
  5127. set_bit(best_node, used_nodes);
  5128. return best_node;
  5129. }
  5130. /**
  5131. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5132. * @node: node whose cpumask we're constructing
  5133. * @size: number of nodes to include in this span
  5134. *
  5135. * Given a node, construct a good cpumask for its sched_domain to span. It
  5136. * should be one that prevents unnecessary balancing, but also spreads tasks
  5137. * out optimally.
  5138. */
  5139. static cpumask_t sched_domain_node_span(int node)
  5140. {
  5141. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5142. cpumask_t span, nodemask;
  5143. int i;
  5144. cpus_clear(span);
  5145. bitmap_zero(used_nodes, MAX_NUMNODES);
  5146. nodemask = node_to_cpumask(node);
  5147. cpus_or(span, span, nodemask);
  5148. set_bit(node, used_nodes);
  5149. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5150. int next_node = find_next_best_node(node, used_nodes);
  5151. nodemask = node_to_cpumask(next_node);
  5152. cpus_or(span, span, nodemask);
  5153. }
  5154. return span;
  5155. }
  5156. #endif
  5157. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5158. /*
  5159. * SMT sched-domains:
  5160. */
  5161. #ifdef CONFIG_SCHED_SMT
  5162. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5163. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5164. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5165. struct sched_group **sg)
  5166. {
  5167. if (sg)
  5168. *sg = &per_cpu(sched_group_cpus, cpu);
  5169. return cpu;
  5170. }
  5171. #endif
  5172. /*
  5173. * multi-core sched-domains:
  5174. */
  5175. #ifdef CONFIG_SCHED_MC
  5176. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5177. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5178. #endif
  5179. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5180. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5181. struct sched_group **sg)
  5182. {
  5183. int group;
  5184. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5185. cpus_and(mask, mask, *cpu_map);
  5186. group = first_cpu(mask);
  5187. if (sg)
  5188. *sg = &per_cpu(sched_group_core, group);
  5189. return group;
  5190. }
  5191. #elif defined(CONFIG_SCHED_MC)
  5192. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5193. struct sched_group **sg)
  5194. {
  5195. if (sg)
  5196. *sg = &per_cpu(sched_group_core, cpu);
  5197. return cpu;
  5198. }
  5199. #endif
  5200. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5201. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5202. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5203. struct sched_group **sg)
  5204. {
  5205. int group;
  5206. #ifdef CONFIG_SCHED_MC
  5207. cpumask_t mask = cpu_coregroup_map(cpu);
  5208. cpus_and(mask, mask, *cpu_map);
  5209. group = first_cpu(mask);
  5210. #elif defined(CONFIG_SCHED_SMT)
  5211. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5212. cpus_and(mask, mask, *cpu_map);
  5213. group = first_cpu(mask);
  5214. #else
  5215. group = cpu;
  5216. #endif
  5217. if (sg)
  5218. *sg = &per_cpu(sched_group_phys, group);
  5219. return group;
  5220. }
  5221. #ifdef CONFIG_NUMA
  5222. /*
  5223. * The init_sched_build_groups can't handle what we want to do with node
  5224. * groups, so roll our own. Now each node has its own list of groups which
  5225. * gets dynamically allocated.
  5226. */
  5227. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5228. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5229. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5230. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5231. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5232. struct sched_group **sg)
  5233. {
  5234. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5235. int group;
  5236. cpus_and(nodemask, nodemask, *cpu_map);
  5237. group = first_cpu(nodemask);
  5238. if (sg)
  5239. *sg = &per_cpu(sched_group_allnodes, group);
  5240. return group;
  5241. }
  5242. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5243. {
  5244. struct sched_group *sg = group_head;
  5245. int j;
  5246. if (!sg)
  5247. return;
  5248. do {
  5249. for_each_cpu_mask(j, sg->cpumask) {
  5250. struct sched_domain *sd;
  5251. sd = &per_cpu(phys_domains, j);
  5252. if (j != first_cpu(sd->groups->cpumask)) {
  5253. /*
  5254. * Only add "power" once for each
  5255. * physical package.
  5256. */
  5257. continue;
  5258. }
  5259. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5260. }
  5261. sg = sg->next;
  5262. } while (sg != group_head);
  5263. }
  5264. #endif
  5265. #ifdef CONFIG_NUMA
  5266. /* Free memory allocated for various sched_group structures */
  5267. static void free_sched_groups(const cpumask_t *cpu_map)
  5268. {
  5269. int cpu, i;
  5270. for_each_cpu_mask(cpu, *cpu_map) {
  5271. struct sched_group **sched_group_nodes
  5272. = sched_group_nodes_bycpu[cpu];
  5273. if (!sched_group_nodes)
  5274. continue;
  5275. for (i = 0; i < MAX_NUMNODES; i++) {
  5276. cpumask_t nodemask = node_to_cpumask(i);
  5277. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5278. cpus_and(nodemask, nodemask, *cpu_map);
  5279. if (cpus_empty(nodemask))
  5280. continue;
  5281. if (sg == NULL)
  5282. continue;
  5283. sg = sg->next;
  5284. next_sg:
  5285. oldsg = sg;
  5286. sg = sg->next;
  5287. kfree(oldsg);
  5288. if (oldsg != sched_group_nodes[i])
  5289. goto next_sg;
  5290. }
  5291. kfree(sched_group_nodes);
  5292. sched_group_nodes_bycpu[cpu] = NULL;
  5293. }
  5294. }
  5295. #else
  5296. static void free_sched_groups(const cpumask_t *cpu_map)
  5297. {
  5298. }
  5299. #endif
  5300. /*
  5301. * Initialize sched groups cpu_power.
  5302. *
  5303. * cpu_power indicates the capacity of sched group, which is used while
  5304. * distributing the load between different sched groups in a sched domain.
  5305. * Typically cpu_power for all the groups in a sched domain will be same unless
  5306. * there are asymmetries in the topology. If there are asymmetries, group
  5307. * having more cpu_power will pickup more load compared to the group having
  5308. * less cpu_power.
  5309. *
  5310. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5311. * the maximum number of tasks a group can handle in the presence of other idle
  5312. * or lightly loaded groups in the same sched domain.
  5313. */
  5314. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5315. {
  5316. struct sched_domain *child;
  5317. struct sched_group *group;
  5318. WARN_ON(!sd || !sd->groups);
  5319. if (cpu != first_cpu(sd->groups->cpumask))
  5320. return;
  5321. child = sd->child;
  5322. sd->groups->__cpu_power = 0;
  5323. /*
  5324. * For perf policy, if the groups in child domain share resources
  5325. * (for example cores sharing some portions of the cache hierarchy
  5326. * or SMT), then set this domain groups cpu_power such that each group
  5327. * can handle only one task, when there are other idle groups in the
  5328. * same sched domain.
  5329. */
  5330. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5331. (child->flags &
  5332. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5333. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5334. return;
  5335. }
  5336. /*
  5337. * add cpu_power of each child group to this groups cpu_power
  5338. */
  5339. group = child->groups;
  5340. do {
  5341. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5342. group = group->next;
  5343. } while (group != child->groups);
  5344. }
  5345. /*
  5346. * Build sched domains for a given set of cpus and attach the sched domains
  5347. * to the individual cpus
  5348. */
  5349. static int build_sched_domains(const cpumask_t *cpu_map)
  5350. {
  5351. int i;
  5352. #ifdef CONFIG_NUMA
  5353. struct sched_group **sched_group_nodes = NULL;
  5354. int sd_allnodes = 0;
  5355. /*
  5356. * Allocate the per-node list of sched groups
  5357. */
  5358. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5359. GFP_KERNEL);
  5360. if (!sched_group_nodes) {
  5361. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5362. return -ENOMEM;
  5363. }
  5364. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5365. #endif
  5366. /*
  5367. * Set up domains for cpus specified by the cpu_map.
  5368. */
  5369. for_each_cpu_mask(i, *cpu_map) {
  5370. struct sched_domain *sd = NULL, *p;
  5371. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5372. cpus_and(nodemask, nodemask, *cpu_map);
  5373. #ifdef CONFIG_NUMA
  5374. if (cpus_weight(*cpu_map) >
  5375. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5376. sd = &per_cpu(allnodes_domains, i);
  5377. *sd = SD_ALLNODES_INIT;
  5378. sd->span = *cpu_map;
  5379. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5380. p = sd;
  5381. sd_allnodes = 1;
  5382. } else
  5383. p = NULL;
  5384. sd = &per_cpu(node_domains, i);
  5385. *sd = SD_NODE_INIT;
  5386. sd->span = sched_domain_node_span(cpu_to_node(i));
  5387. sd->parent = p;
  5388. if (p)
  5389. p->child = sd;
  5390. cpus_and(sd->span, sd->span, *cpu_map);
  5391. #endif
  5392. p = sd;
  5393. sd = &per_cpu(phys_domains, i);
  5394. *sd = SD_CPU_INIT;
  5395. sd->span = nodemask;
  5396. sd->parent = p;
  5397. if (p)
  5398. p->child = sd;
  5399. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5400. #ifdef CONFIG_SCHED_MC
  5401. p = sd;
  5402. sd = &per_cpu(core_domains, i);
  5403. *sd = SD_MC_INIT;
  5404. sd->span = cpu_coregroup_map(i);
  5405. cpus_and(sd->span, sd->span, *cpu_map);
  5406. sd->parent = p;
  5407. p->child = sd;
  5408. cpu_to_core_group(i, cpu_map, &sd->groups);
  5409. #endif
  5410. #ifdef CONFIG_SCHED_SMT
  5411. p = sd;
  5412. sd = &per_cpu(cpu_domains, i);
  5413. *sd = SD_SIBLING_INIT;
  5414. sd->span = per_cpu(cpu_sibling_map, i);
  5415. cpus_and(sd->span, sd->span, *cpu_map);
  5416. sd->parent = p;
  5417. p->child = sd;
  5418. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5419. #endif
  5420. }
  5421. #ifdef CONFIG_SCHED_SMT
  5422. /* Set up CPU (sibling) groups */
  5423. for_each_cpu_mask(i, *cpu_map) {
  5424. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5425. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5426. if (i != first_cpu(this_sibling_map))
  5427. continue;
  5428. init_sched_build_groups(this_sibling_map, cpu_map,
  5429. &cpu_to_cpu_group);
  5430. }
  5431. #endif
  5432. #ifdef CONFIG_SCHED_MC
  5433. /* Set up multi-core groups */
  5434. for_each_cpu_mask(i, *cpu_map) {
  5435. cpumask_t this_core_map = cpu_coregroup_map(i);
  5436. cpus_and(this_core_map, this_core_map, *cpu_map);
  5437. if (i != first_cpu(this_core_map))
  5438. continue;
  5439. init_sched_build_groups(this_core_map, cpu_map,
  5440. &cpu_to_core_group);
  5441. }
  5442. #endif
  5443. /* Set up physical groups */
  5444. for (i = 0; i < MAX_NUMNODES; i++) {
  5445. cpumask_t nodemask = node_to_cpumask(i);
  5446. cpus_and(nodemask, nodemask, *cpu_map);
  5447. if (cpus_empty(nodemask))
  5448. continue;
  5449. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5450. }
  5451. #ifdef CONFIG_NUMA
  5452. /* Set up node groups */
  5453. if (sd_allnodes)
  5454. init_sched_build_groups(*cpu_map, cpu_map,
  5455. &cpu_to_allnodes_group);
  5456. for (i = 0; i < MAX_NUMNODES; i++) {
  5457. /* Set up node groups */
  5458. struct sched_group *sg, *prev;
  5459. cpumask_t nodemask = node_to_cpumask(i);
  5460. cpumask_t domainspan;
  5461. cpumask_t covered = CPU_MASK_NONE;
  5462. int j;
  5463. cpus_and(nodemask, nodemask, *cpu_map);
  5464. if (cpus_empty(nodemask)) {
  5465. sched_group_nodes[i] = NULL;
  5466. continue;
  5467. }
  5468. domainspan = sched_domain_node_span(i);
  5469. cpus_and(domainspan, domainspan, *cpu_map);
  5470. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5471. if (!sg) {
  5472. printk(KERN_WARNING "Can not alloc domain group for "
  5473. "node %d\n", i);
  5474. goto error;
  5475. }
  5476. sched_group_nodes[i] = sg;
  5477. for_each_cpu_mask(j, nodemask) {
  5478. struct sched_domain *sd;
  5479. sd = &per_cpu(node_domains, j);
  5480. sd->groups = sg;
  5481. }
  5482. sg->__cpu_power = 0;
  5483. sg->cpumask = nodemask;
  5484. sg->next = sg;
  5485. cpus_or(covered, covered, nodemask);
  5486. prev = sg;
  5487. for (j = 0; j < MAX_NUMNODES; j++) {
  5488. cpumask_t tmp, notcovered;
  5489. int n = (i + j) % MAX_NUMNODES;
  5490. cpus_complement(notcovered, covered);
  5491. cpus_and(tmp, notcovered, *cpu_map);
  5492. cpus_and(tmp, tmp, domainspan);
  5493. if (cpus_empty(tmp))
  5494. break;
  5495. nodemask = node_to_cpumask(n);
  5496. cpus_and(tmp, tmp, nodemask);
  5497. if (cpus_empty(tmp))
  5498. continue;
  5499. sg = kmalloc_node(sizeof(struct sched_group),
  5500. GFP_KERNEL, i);
  5501. if (!sg) {
  5502. printk(KERN_WARNING
  5503. "Can not alloc domain group for node %d\n", j);
  5504. goto error;
  5505. }
  5506. sg->__cpu_power = 0;
  5507. sg->cpumask = tmp;
  5508. sg->next = prev->next;
  5509. cpus_or(covered, covered, tmp);
  5510. prev->next = sg;
  5511. prev = sg;
  5512. }
  5513. }
  5514. #endif
  5515. /* Calculate CPU power for physical packages and nodes */
  5516. #ifdef CONFIG_SCHED_SMT
  5517. for_each_cpu_mask(i, *cpu_map) {
  5518. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5519. init_sched_groups_power(i, sd);
  5520. }
  5521. #endif
  5522. #ifdef CONFIG_SCHED_MC
  5523. for_each_cpu_mask(i, *cpu_map) {
  5524. struct sched_domain *sd = &per_cpu(core_domains, i);
  5525. init_sched_groups_power(i, sd);
  5526. }
  5527. #endif
  5528. for_each_cpu_mask(i, *cpu_map) {
  5529. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5530. init_sched_groups_power(i, sd);
  5531. }
  5532. #ifdef CONFIG_NUMA
  5533. for (i = 0; i < MAX_NUMNODES; i++)
  5534. init_numa_sched_groups_power(sched_group_nodes[i]);
  5535. if (sd_allnodes) {
  5536. struct sched_group *sg;
  5537. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5538. init_numa_sched_groups_power(sg);
  5539. }
  5540. #endif
  5541. /* Attach the domains */
  5542. for_each_cpu_mask(i, *cpu_map) {
  5543. struct sched_domain *sd;
  5544. #ifdef CONFIG_SCHED_SMT
  5545. sd = &per_cpu(cpu_domains, i);
  5546. #elif defined(CONFIG_SCHED_MC)
  5547. sd = &per_cpu(core_domains, i);
  5548. #else
  5549. sd = &per_cpu(phys_domains, i);
  5550. #endif
  5551. cpu_attach_domain(sd, i);
  5552. }
  5553. return 0;
  5554. #ifdef CONFIG_NUMA
  5555. error:
  5556. free_sched_groups(cpu_map);
  5557. return -ENOMEM;
  5558. #endif
  5559. }
  5560. static cpumask_t *doms_cur; /* current sched domains */
  5561. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5562. /*
  5563. * Special case: If a kmalloc of a doms_cur partition (array of
  5564. * cpumask_t) fails, then fallback to a single sched domain,
  5565. * as determined by the single cpumask_t fallback_doms.
  5566. */
  5567. static cpumask_t fallback_doms;
  5568. /*
  5569. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5570. * For now this just excludes isolated cpus, but could be used to
  5571. * exclude other special cases in the future.
  5572. */
  5573. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5574. {
  5575. int err;
  5576. ndoms_cur = 1;
  5577. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5578. if (!doms_cur)
  5579. doms_cur = &fallback_doms;
  5580. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5581. err = build_sched_domains(doms_cur);
  5582. register_sched_domain_sysctl();
  5583. return err;
  5584. }
  5585. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5586. {
  5587. free_sched_groups(cpu_map);
  5588. }
  5589. /*
  5590. * Detach sched domains from a group of cpus specified in cpu_map
  5591. * These cpus will now be attached to the NULL domain
  5592. */
  5593. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5594. {
  5595. int i;
  5596. unregister_sched_domain_sysctl();
  5597. for_each_cpu_mask(i, *cpu_map)
  5598. cpu_attach_domain(NULL, i);
  5599. synchronize_sched();
  5600. arch_destroy_sched_domains(cpu_map);
  5601. }
  5602. /*
  5603. * Partition sched domains as specified by the 'ndoms_new'
  5604. * cpumasks in the array doms_new[] of cpumasks. This compares
  5605. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5606. * It destroys each deleted domain and builds each new domain.
  5607. *
  5608. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5609. * The masks don't intersect (don't overlap.) We should setup one
  5610. * sched domain for each mask. CPUs not in any of the cpumasks will
  5611. * not be load balanced. If the same cpumask appears both in the
  5612. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5613. * it as it is.
  5614. *
  5615. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5616. * ownership of it and will kfree it when done with it. If the caller
  5617. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5618. * and partition_sched_domains() will fallback to the single partition
  5619. * 'fallback_doms'.
  5620. *
  5621. * Call with hotplug lock held
  5622. */
  5623. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5624. {
  5625. int i, j;
  5626. /* always unregister in case we don't destroy any domains */
  5627. unregister_sched_domain_sysctl();
  5628. if (doms_new == NULL) {
  5629. ndoms_new = 1;
  5630. doms_new = &fallback_doms;
  5631. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5632. }
  5633. /* Destroy deleted domains */
  5634. for (i = 0; i < ndoms_cur; i++) {
  5635. for (j = 0; j < ndoms_new; j++) {
  5636. if (cpus_equal(doms_cur[i], doms_new[j]))
  5637. goto match1;
  5638. }
  5639. /* no match - a current sched domain not in new doms_new[] */
  5640. detach_destroy_domains(doms_cur + i);
  5641. match1:
  5642. ;
  5643. }
  5644. /* Build new domains */
  5645. for (i = 0; i < ndoms_new; i++) {
  5646. for (j = 0; j < ndoms_cur; j++) {
  5647. if (cpus_equal(doms_new[i], doms_cur[j]))
  5648. goto match2;
  5649. }
  5650. /* no match - add a new doms_new */
  5651. build_sched_domains(doms_new + i);
  5652. match2:
  5653. ;
  5654. }
  5655. /* Remember the new sched domains */
  5656. if (doms_cur != &fallback_doms)
  5657. kfree(doms_cur);
  5658. doms_cur = doms_new;
  5659. ndoms_cur = ndoms_new;
  5660. register_sched_domain_sysctl();
  5661. }
  5662. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5663. static int arch_reinit_sched_domains(void)
  5664. {
  5665. int err;
  5666. mutex_lock(&sched_hotcpu_mutex);
  5667. detach_destroy_domains(&cpu_online_map);
  5668. err = arch_init_sched_domains(&cpu_online_map);
  5669. mutex_unlock(&sched_hotcpu_mutex);
  5670. return err;
  5671. }
  5672. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5673. {
  5674. int ret;
  5675. if (buf[0] != '0' && buf[0] != '1')
  5676. return -EINVAL;
  5677. if (smt)
  5678. sched_smt_power_savings = (buf[0] == '1');
  5679. else
  5680. sched_mc_power_savings = (buf[0] == '1');
  5681. ret = arch_reinit_sched_domains();
  5682. return ret ? ret : count;
  5683. }
  5684. #ifdef CONFIG_SCHED_MC
  5685. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5686. {
  5687. return sprintf(page, "%u\n", sched_mc_power_savings);
  5688. }
  5689. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5690. const char *buf, size_t count)
  5691. {
  5692. return sched_power_savings_store(buf, count, 0);
  5693. }
  5694. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5695. sched_mc_power_savings_store);
  5696. #endif
  5697. #ifdef CONFIG_SCHED_SMT
  5698. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5699. {
  5700. return sprintf(page, "%u\n", sched_smt_power_savings);
  5701. }
  5702. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5703. const char *buf, size_t count)
  5704. {
  5705. return sched_power_savings_store(buf, count, 1);
  5706. }
  5707. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5708. sched_smt_power_savings_store);
  5709. #endif
  5710. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5711. {
  5712. int err = 0;
  5713. #ifdef CONFIG_SCHED_SMT
  5714. if (smt_capable())
  5715. err = sysfs_create_file(&cls->kset.kobj,
  5716. &attr_sched_smt_power_savings.attr);
  5717. #endif
  5718. #ifdef CONFIG_SCHED_MC
  5719. if (!err && mc_capable())
  5720. err = sysfs_create_file(&cls->kset.kobj,
  5721. &attr_sched_mc_power_savings.attr);
  5722. #endif
  5723. return err;
  5724. }
  5725. #endif
  5726. /*
  5727. * Force a reinitialization of the sched domains hierarchy. The domains
  5728. * and groups cannot be updated in place without racing with the balancing
  5729. * code, so we temporarily attach all running cpus to the NULL domain
  5730. * which will prevent rebalancing while the sched domains are recalculated.
  5731. */
  5732. static int update_sched_domains(struct notifier_block *nfb,
  5733. unsigned long action, void *hcpu)
  5734. {
  5735. switch (action) {
  5736. case CPU_UP_PREPARE:
  5737. case CPU_UP_PREPARE_FROZEN:
  5738. case CPU_DOWN_PREPARE:
  5739. case CPU_DOWN_PREPARE_FROZEN:
  5740. detach_destroy_domains(&cpu_online_map);
  5741. return NOTIFY_OK;
  5742. case CPU_UP_CANCELED:
  5743. case CPU_UP_CANCELED_FROZEN:
  5744. case CPU_DOWN_FAILED:
  5745. case CPU_DOWN_FAILED_FROZEN:
  5746. case CPU_ONLINE:
  5747. case CPU_ONLINE_FROZEN:
  5748. case CPU_DEAD:
  5749. case CPU_DEAD_FROZEN:
  5750. /*
  5751. * Fall through and re-initialise the domains.
  5752. */
  5753. break;
  5754. default:
  5755. return NOTIFY_DONE;
  5756. }
  5757. /* The hotplug lock is already held by cpu_up/cpu_down */
  5758. arch_init_sched_domains(&cpu_online_map);
  5759. return NOTIFY_OK;
  5760. }
  5761. void __init sched_init_smp(void)
  5762. {
  5763. cpumask_t non_isolated_cpus;
  5764. mutex_lock(&sched_hotcpu_mutex);
  5765. arch_init_sched_domains(&cpu_online_map);
  5766. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5767. if (cpus_empty(non_isolated_cpus))
  5768. cpu_set(smp_processor_id(), non_isolated_cpus);
  5769. mutex_unlock(&sched_hotcpu_mutex);
  5770. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5771. hotcpu_notifier(update_sched_domains, 0);
  5772. /* Move init over to a non-isolated CPU */
  5773. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5774. BUG();
  5775. sched_init_granularity();
  5776. }
  5777. #else
  5778. void __init sched_init_smp(void)
  5779. {
  5780. sched_init_granularity();
  5781. }
  5782. #endif /* CONFIG_SMP */
  5783. int in_sched_functions(unsigned long addr)
  5784. {
  5785. /* Linker adds these: start and end of __sched functions */
  5786. extern char __sched_text_start[], __sched_text_end[];
  5787. return in_lock_functions(addr) ||
  5788. (addr >= (unsigned long)__sched_text_start
  5789. && addr < (unsigned long)__sched_text_end);
  5790. }
  5791. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5792. {
  5793. cfs_rq->tasks_timeline = RB_ROOT;
  5794. #ifdef CONFIG_FAIR_GROUP_SCHED
  5795. cfs_rq->rq = rq;
  5796. #endif
  5797. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5798. }
  5799. void __init sched_init(void)
  5800. {
  5801. int highest_cpu = 0;
  5802. int i, j;
  5803. for_each_possible_cpu(i) {
  5804. struct rt_prio_array *array;
  5805. struct rq *rq;
  5806. rq = cpu_rq(i);
  5807. spin_lock_init(&rq->lock);
  5808. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5809. rq->nr_running = 0;
  5810. rq->clock = 1;
  5811. init_cfs_rq(&rq->cfs, rq);
  5812. #ifdef CONFIG_FAIR_GROUP_SCHED
  5813. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5814. {
  5815. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5816. struct sched_entity *se =
  5817. &per_cpu(init_sched_entity, i);
  5818. init_cfs_rq_p[i] = cfs_rq;
  5819. init_cfs_rq(cfs_rq, rq);
  5820. cfs_rq->tg = &init_task_group;
  5821. list_add(&cfs_rq->leaf_cfs_rq_list,
  5822. &rq->leaf_cfs_rq_list);
  5823. init_sched_entity_p[i] = se;
  5824. se->cfs_rq = &rq->cfs;
  5825. se->my_q = cfs_rq;
  5826. se->load.weight = init_task_group_load;
  5827. se->load.inv_weight =
  5828. div64_64(1ULL<<32, init_task_group_load);
  5829. se->parent = NULL;
  5830. }
  5831. init_task_group.shares = init_task_group_load;
  5832. spin_lock_init(&init_task_group.lock);
  5833. #endif
  5834. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5835. rq->cpu_load[j] = 0;
  5836. #ifdef CONFIG_SMP
  5837. rq->sd = NULL;
  5838. rq->active_balance = 0;
  5839. rq->next_balance = jiffies;
  5840. rq->push_cpu = 0;
  5841. rq->cpu = i;
  5842. rq->migration_thread = NULL;
  5843. INIT_LIST_HEAD(&rq->migration_queue);
  5844. #endif
  5845. atomic_set(&rq->nr_iowait, 0);
  5846. array = &rq->rt.active;
  5847. for (j = 0; j < MAX_RT_PRIO; j++) {
  5848. INIT_LIST_HEAD(array->queue + j);
  5849. __clear_bit(j, array->bitmap);
  5850. }
  5851. highest_cpu = i;
  5852. /* delimiter for bitsearch: */
  5853. __set_bit(MAX_RT_PRIO, array->bitmap);
  5854. }
  5855. set_load_weight(&init_task);
  5856. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5857. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5858. #endif
  5859. #ifdef CONFIG_SMP
  5860. nr_cpu_ids = highest_cpu + 1;
  5861. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5862. #endif
  5863. #ifdef CONFIG_RT_MUTEXES
  5864. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5865. #endif
  5866. /*
  5867. * The boot idle thread does lazy MMU switching as well:
  5868. */
  5869. atomic_inc(&init_mm.mm_count);
  5870. enter_lazy_tlb(&init_mm, current);
  5871. /*
  5872. * Make us the idle thread. Technically, schedule() should not be
  5873. * called from this thread, however somewhere below it might be,
  5874. * but because we are the idle thread, we just pick up running again
  5875. * when this runqueue becomes "idle".
  5876. */
  5877. init_idle(current, smp_processor_id());
  5878. /*
  5879. * During early bootup we pretend to be a normal task:
  5880. */
  5881. current->sched_class = &fair_sched_class;
  5882. }
  5883. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5884. void __might_sleep(char *file, int line)
  5885. {
  5886. #ifdef in_atomic
  5887. static unsigned long prev_jiffy; /* ratelimiting */
  5888. if ((in_atomic() || irqs_disabled()) &&
  5889. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5890. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5891. return;
  5892. prev_jiffy = jiffies;
  5893. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5894. " context at %s:%d\n", file, line);
  5895. printk("in_atomic():%d, irqs_disabled():%d\n",
  5896. in_atomic(), irqs_disabled());
  5897. debug_show_held_locks(current);
  5898. if (irqs_disabled())
  5899. print_irqtrace_events(current);
  5900. dump_stack();
  5901. }
  5902. #endif
  5903. }
  5904. EXPORT_SYMBOL(__might_sleep);
  5905. #endif
  5906. #ifdef CONFIG_MAGIC_SYSRQ
  5907. static void normalize_task(struct rq *rq, struct task_struct *p)
  5908. {
  5909. int on_rq;
  5910. update_rq_clock(rq);
  5911. on_rq = p->se.on_rq;
  5912. if (on_rq)
  5913. deactivate_task(rq, p, 0);
  5914. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5915. if (on_rq) {
  5916. activate_task(rq, p, 0);
  5917. resched_task(rq->curr);
  5918. }
  5919. }
  5920. void normalize_rt_tasks(void)
  5921. {
  5922. struct task_struct *g, *p;
  5923. unsigned long flags;
  5924. struct rq *rq;
  5925. read_lock_irq(&tasklist_lock);
  5926. do_each_thread(g, p) {
  5927. /*
  5928. * Only normalize user tasks:
  5929. */
  5930. if (!p->mm)
  5931. continue;
  5932. p->se.exec_start = 0;
  5933. #ifdef CONFIG_SCHEDSTATS
  5934. p->se.wait_start = 0;
  5935. p->se.sleep_start = 0;
  5936. p->se.block_start = 0;
  5937. #endif
  5938. task_rq(p)->clock = 0;
  5939. if (!rt_task(p)) {
  5940. /*
  5941. * Renice negative nice level userspace
  5942. * tasks back to 0:
  5943. */
  5944. if (TASK_NICE(p) < 0 && p->mm)
  5945. set_user_nice(p, 0);
  5946. continue;
  5947. }
  5948. spin_lock_irqsave(&p->pi_lock, flags);
  5949. rq = __task_rq_lock(p);
  5950. normalize_task(rq, p);
  5951. __task_rq_unlock(rq);
  5952. spin_unlock_irqrestore(&p->pi_lock, flags);
  5953. } while_each_thread(g, p);
  5954. read_unlock_irq(&tasklist_lock);
  5955. }
  5956. #endif /* CONFIG_MAGIC_SYSRQ */
  5957. #ifdef CONFIG_IA64
  5958. /*
  5959. * These functions are only useful for the IA64 MCA handling.
  5960. *
  5961. * They can only be called when the whole system has been
  5962. * stopped - every CPU needs to be quiescent, and no scheduling
  5963. * activity can take place. Using them for anything else would
  5964. * be a serious bug, and as a result, they aren't even visible
  5965. * under any other configuration.
  5966. */
  5967. /**
  5968. * curr_task - return the current task for a given cpu.
  5969. * @cpu: the processor in question.
  5970. *
  5971. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5972. */
  5973. struct task_struct *curr_task(int cpu)
  5974. {
  5975. return cpu_curr(cpu);
  5976. }
  5977. /**
  5978. * set_curr_task - set the current task for a given cpu.
  5979. * @cpu: the processor in question.
  5980. * @p: the task pointer to set.
  5981. *
  5982. * Description: This function must only be used when non-maskable interrupts
  5983. * are serviced on a separate stack. It allows the architecture to switch the
  5984. * notion of the current task on a cpu in a non-blocking manner. This function
  5985. * must be called with all CPU's synchronized, and interrupts disabled, the
  5986. * and caller must save the original value of the current task (see
  5987. * curr_task() above) and restore that value before reenabling interrupts and
  5988. * re-starting the system.
  5989. *
  5990. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5991. */
  5992. void set_curr_task(int cpu, struct task_struct *p)
  5993. {
  5994. cpu_curr(cpu) = p;
  5995. }
  5996. #endif
  5997. #ifdef CONFIG_FAIR_GROUP_SCHED
  5998. /* allocate runqueue etc for a new task group */
  5999. struct task_group *sched_create_group(void)
  6000. {
  6001. struct task_group *tg;
  6002. struct cfs_rq *cfs_rq;
  6003. struct sched_entity *se;
  6004. struct rq *rq;
  6005. int i;
  6006. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6007. if (!tg)
  6008. return ERR_PTR(-ENOMEM);
  6009. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6010. if (!tg->cfs_rq)
  6011. goto err;
  6012. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6013. if (!tg->se)
  6014. goto err;
  6015. for_each_possible_cpu(i) {
  6016. rq = cpu_rq(i);
  6017. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6018. cpu_to_node(i));
  6019. if (!cfs_rq)
  6020. goto err;
  6021. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6022. cpu_to_node(i));
  6023. if (!se)
  6024. goto err;
  6025. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6026. memset(se, 0, sizeof(struct sched_entity));
  6027. tg->cfs_rq[i] = cfs_rq;
  6028. init_cfs_rq(cfs_rq, rq);
  6029. cfs_rq->tg = tg;
  6030. tg->se[i] = se;
  6031. se->cfs_rq = &rq->cfs;
  6032. se->my_q = cfs_rq;
  6033. se->load.weight = NICE_0_LOAD;
  6034. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6035. se->parent = NULL;
  6036. }
  6037. for_each_possible_cpu(i) {
  6038. rq = cpu_rq(i);
  6039. cfs_rq = tg->cfs_rq[i];
  6040. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6041. }
  6042. tg->shares = NICE_0_LOAD;
  6043. spin_lock_init(&tg->lock);
  6044. return tg;
  6045. err:
  6046. for_each_possible_cpu(i) {
  6047. if (tg->cfs_rq)
  6048. kfree(tg->cfs_rq[i]);
  6049. if (tg->se)
  6050. kfree(tg->se[i]);
  6051. }
  6052. kfree(tg->cfs_rq);
  6053. kfree(tg->se);
  6054. kfree(tg);
  6055. return ERR_PTR(-ENOMEM);
  6056. }
  6057. /* rcu callback to free various structures associated with a task group */
  6058. static void free_sched_group(struct rcu_head *rhp)
  6059. {
  6060. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6061. struct cfs_rq *cfs_rq;
  6062. struct sched_entity *se;
  6063. int i;
  6064. /* now it should be safe to free those cfs_rqs */
  6065. for_each_possible_cpu(i) {
  6066. cfs_rq = tg->cfs_rq[i];
  6067. kfree(cfs_rq);
  6068. se = tg->se[i];
  6069. kfree(se);
  6070. }
  6071. kfree(tg->cfs_rq);
  6072. kfree(tg->se);
  6073. kfree(tg);
  6074. }
  6075. /* Destroy runqueue etc associated with a task group */
  6076. void sched_destroy_group(struct task_group *tg)
  6077. {
  6078. struct cfs_rq *cfs_rq = NULL;
  6079. int i;
  6080. for_each_possible_cpu(i) {
  6081. cfs_rq = tg->cfs_rq[i];
  6082. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6083. }
  6084. BUG_ON(!cfs_rq);
  6085. /* wait for possible concurrent references to cfs_rqs complete */
  6086. call_rcu(&tg->rcu, free_sched_group);
  6087. }
  6088. /* change task's runqueue when it moves between groups.
  6089. * The caller of this function should have put the task in its new group
  6090. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6091. * reflect its new group.
  6092. */
  6093. void sched_move_task(struct task_struct *tsk)
  6094. {
  6095. int on_rq, running;
  6096. unsigned long flags;
  6097. struct rq *rq;
  6098. rq = task_rq_lock(tsk, &flags);
  6099. if (tsk->sched_class != &fair_sched_class) {
  6100. set_task_cfs_rq(tsk);
  6101. goto done;
  6102. }
  6103. update_rq_clock(rq);
  6104. running = task_running(rq, tsk);
  6105. on_rq = tsk->se.on_rq;
  6106. if (on_rq) {
  6107. dequeue_task(rq, tsk, 0);
  6108. if (unlikely(running))
  6109. tsk->sched_class->put_prev_task(rq, tsk);
  6110. }
  6111. set_task_cfs_rq(tsk);
  6112. if (on_rq) {
  6113. if (unlikely(running))
  6114. tsk->sched_class->set_curr_task(rq);
  6115. enqueue_task(rq, tsk, 0);
  6116. }
  6117. done:
  6118. task_rq_unlock(rq, &flags);
  6119. }
  6120. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6121. {
  6122. struct cfs_rq *cfs_rq = se->cfs_rq;
  6123. struct rq *rq = cfs_rq->rq;
  6124. int on_rq;
  6125. spin_lock_irq(&rq->lock);
  6126. on_rq = se->on_rq;
  6127. if (on_rq)
  6128. dequeue_entity(cfs_rq, se, 0);
  6129. se->load.weight = shares;
  6130. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6131. if (on_rq)
  6132. enqueue_entity(cfs_rq, se, 0);
  6133. spin_unlock_irq(&rq->lock);
  6134. }
  6135. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6136. {
  6137. int i;
  6138. spin_lock(&tg->lock);
  6139. if (tg->shares == shares)
  6140. goto done;
  6141. tg->shares = shares;
  6142. for_each_possible_cpu(i)
  6143. set_se_shares(tg->se[i], shares);
  6144. done:
  6145. spin_unlock(&tg->lock);
  6146. return 0;
  6147. }
  6148. unsigned long sched_group_shares(struct task_group *tg)
  6149. {
  6150. return tg->shares;
  6151. }
  6152. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6153. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6154. /* return corresponding task_group object of a cgroup */
  6155. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6156. {
  6157. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6158. struct task_group, css);
  6159. }
  6160. static struct cgroup_subsys_state *
  6161. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6162. {
  6163. struct task_group *tg;
  6164. if (!cgrp->parent) {
  6165. /* This is early initialization for the top cgroup */
  6166. init_task_group.css.cgroup = cgrp;
  6167. return &init_task_group.css;
  6168. }
  6169. /* we support only 1-level deep hierarchical scheduler atm */
  6170. if (cgrp->parent->parent)
  6171. return ERR_PTR(-EINVAL);
  6172. tg = sched_create_group();
  6173. if (IS_ERR(tg))
  6174. return ERR_PTR(-ENOMEM);
  6175. /* Bind the cgroup to task_group object we just created */
  6176. tg->css.cgroup = cgrp;
  6177. return &tg->css;
  6178. }
  6179. static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
  6180. struct cgroup *cgrp)
  6181. {
  6182. struct task_group *tg = cgroup_tg(cgrp);
  6183. sched_destroy_group(tg);
  6184. }
  6185. static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
  6186. struct cgroup *cgrp, struct task_struct *tsk)
  6187. {
  6188. /* We don't support RT-tasks being in separate groups */
  6189. if (tsk->sched_class != &fair_sched_class)
  6190. return -EINVAL;
  6191. return 0;
  6192. }
  6193. static void
  6194. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6195. struct cgroup *old_cont, struct task_struct *tsk)
  6196. {
  6197. sched_move_task(tsk);
  6198. }
  6199. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6200. u64 shareval)
  6201. {
  6202. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6203. }
  6204. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6205. {
  6206. struct task_group *tg = cgroup_tg(cgrp);
  6207. return (u64) tg->shares;
  6208. }
  6209. static u64 cpu_usage_read(struct cgroup *cgrp, struct cftype *cft)
  6210. {
  6211. struct task_group *tg = cgroup_tg(cgrp);
  6212. unsigned long flags;
  6213. u64 res = 0;
  6214. int i;
  6215. for_each_possible_cpu(i) {
  6216. /*
  6217. * Lock to prevent races with updating 64-bit counters
  6218. * on 32-bit arches.
  6219. */
  6220. spin_lock_irqsave(&cpu_rq(i)->lock, flags);
  6221. res += tg->se[i]->sum_exec_runtime;
  6222. spin_unlock_irqrestore(&cpu_rq(i)->lock, flags);
  6223. }
  6224. /* Convert from ns to ms */
  6225. do_div(res, NSEC_PER_MSEC);
  6226. return res;
  6227. }
  6228. static struct cftype cpu_files[] = {
  6229. {
  6230. .name = "shares",
  6231. .read_uint = cpu_shares_read_uint,
  6232. .write_uint = cpu_shares_write_uint,
  6233. },
  6234. {
  6235. .name = "usage",
  6236. .read_uint = cpu_usage_read,
  6237. },
  6238. };
  6239. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6240. {
  6241. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6242. }
  6243. struct cgroup_subsys cpu_cgroup_subsys = {
  6244. .name = "cpu",
  6245. .create = cpu_cgroup_create,
  6246. .destroy = cpu_cgroup_destroy,
  6247. .can_attach = cpu_cgroup_can_attach,
  6248. .attach = cpu_cgroup_attach,
  6249. .populate = cpu_cgroup_populate,
  6250. .subsys_id = cpu_cgroup_subsys_id,
  6251. .early_init = 1,
  6252. };
  6253. #endif /* CONFIG_FAIR_CGROUP_SCHED */