sh_eth.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2009 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/delay.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/mdio-bitbang.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/phy.h>
  34. #include <linux/cache.h>
  35. #include <linux/io.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/pm_runtime.h>
  38. #include <linux/slab.h>
  39. #include <linux/ethtool.h>
  40. #include <linux/sh_eth.h>
  41. #include "sh_eth.h"
  42. #define SH_ETH_DEF_MSG_ENABLE \
  43. (NETIF_MSG_LINK | \
  44. NETIF_MSG_TIMER | \
  45. NETIF_MSG_RX_ERR| \
  46. NETIF_MSG_TX_ERR)
  47. /* There is CPU dependent code */
  48. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  49. #define SH_ETH_RESET_DEFAULT 1
  50. static void sh_eth_set_duplex(struct net_device *ndev)
  51. {
  52. struct sh_eth_private *mdp = netdev_priv(ndev);
  53. if (mdp->duplex) /* Full */
  54. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  55. else /* Half */
  56. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  57. }
  58. static void sh_eth_set_rate(struct net_device *ndev)
  59. {
  60. struct sh_eth_private *mdp = netdev_priv(ndev);
  61. switch (mdp->speed) {
  62. case 10: /* 10BASE */
  63. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  64. break;
  65. case 100:/* 100BASE */
  66. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  67. break;
  68. default:
  69. break;
  70. }
  71. }
  72. /* SH7724 */
  73. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  74. .set_duplex = sh_eth_set_duplex,
  75. .set_rate = sh_eth_set_rate,
  76. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  77. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  78. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  79. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  80. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  81. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  82. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  83. .apr = 1,
  84. .mpr = 1,
  85. .tpauser = 1,
  86. .hw_swap = 1,
  87. .rpadir = 1,
  88. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  89. };
  90. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  91. #define SH_ETH_HAS_BOTH_MODULES 1
  92. #define SH_ETH_HAS_TSU 1
  93. static void sh_eth_set_duplex(struct net_device *ndev)
  94. {
  95. struct sh_eth_private *mdp = netdev_priv(ndev);
  96. if (mdp->duplex) /* Full */
  97. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  98. else /* Half */
  99. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  100. }
  101. static void sh_eth_set_rate(struct net_device *ndev)
  102. {
  103. struct sh_eth_private *mdp = netdev_priv(ndev);
  104. switch (mdp->speed) {
  105. case 10: /* 10BASE */
  106. sh_eth_write(ndev, 0, RTRATE);
  107. break;
  108. case 100:/* 100BASE */
  109. sh_eth_write(ndev, 1, RTRATE);
  110. break;
  111. default:
  112. break;
  113. }
  114. }
  115. /* SH7757 */
  116. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  117. .set_duplex = sh_eth_set_duplex,
  118. .set_rate = sh_eth_set_rate,
  119. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  120. .rmcr_value = 0x00000001,
  121. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  122. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  123. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  124. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  125. .apr = 1,
  126. .mpr = 1,
  127. .tpauser = 1,
  128. .hw_swap = 1,
  129. .no_ade = 1,
  130. .rpadir = 1,
  131. .rpadir_value = 2 << 16,
  132. };
  133. #define SH_GIGA_ETH_BASE 0xfee00000
  134. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  135. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  136. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  137. {
  138. int i;
  139. unsigned long mahr[2], malr[2];
  140. /* save MAHR and MALR */
  141. for (i = 0; i < 2; i++) {
  142. malr[i] = ioread32((void *)GIGA_MALR(i));
  143. mahr[i] = ioread32((void *)GIGA_MAHR(i));
  144. }
  145. /* reset device */
  146. iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
  147. mdelay(1);
  148. /* restore MAHR and MALR */
  149. for (i = 0; i < 2; i++) {
  150. iowrite32(malr[i], (void *)GIGA_MALR(i));
  151. iowrite32(mahr[i], (void *)GIGA_MAHR(i));
  152. }
  153. }
  154. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  155. static void sh_eth_reset(struct net_device *ndev)
  156. {
  157. struct sh_eth_private *mdp = netdev_priv(ndev);
  158. int cnt = 100;
  159. if (sh_eth_is_gether(mdp)) {
  160. sh_eth_write(ndev, 0x03, EDSR);
  161. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  162. EDMR);
  163. while (cnt > 0) {
  164. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  165. break;
  166. mdelay(1);
  167. cnt--;
  168. }
  169. if (cnt < 0)
  170. printk(KERN_ERR "Device reset fail\n");
  171. /* Table Init */
  172. sh_eth_write(ndev, 0x0, TDLAR);
  173. sh_eth_write(ndev, 0x0, TDFAR);
  174. sh_eth_write(ndev, 0x0, TDFXR);
  175. sh_eth_write(ndev, 0x0, TDFFR);
  176. sh_eth_write(ndev, 0x0, RDLAR);
  177. sh_eth_write(ndev, 0x0, RDFAR);
  178. sh_eth_write(ndev, 0x0, RDFXR);
  179. sh_eth_write(ndev, 0x0, RDFFR);
  180. } else {
  181. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  182. EDMR);
  183. mdelay(3);
  184. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  185. EDMR);
  186. }
  187. }
  188. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  189. {
  190. struct sh_eth_private *mdp = netdev_priv(ndev);
  191. if (mdp->duplex) /* Full */
  192. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  193. else /* Half */
  194. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  195. }
  196. static void sh_eth_set_rate_giga(struct net_device *ndev)
  197. {
  198. struct sh_eth_private *mdp = netdev_priv(ndev);
  199. switch (mdp->speed) {
  200. case 10: /* 10BASE */
  201. sh_eth_write(ndev, 0x00000000, GECMR);
  202. break;
  203. case 100:/* 100BASE */
  204. sh_eth_write(ndev, 0x00000010, GECMR);
  205. break;
  206. case 1000: /* 1000BASE */
  207. sh_eth_write(ndev, 0x00000020, GECMR);
  208. break;
  209. default:
  210. break;
  211. }
  212. }
  213. /* SH7757(GETHERC) */
  214. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  215. .chip_reset = sh_eth_chip_reset_giga,
  216. .set_duplex = sh_eth_set_duplex_giga,
  217. .set_rate = sh_eth_set_rate_giga,
  218. .ecsr_value = ECSR_ICD | ECSR_MPD,
  219. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  220. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  221. .tx_check = EESR_TC1 | EESR_FTC,
  222. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  223. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  224. EESR_ECI,
  225. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  226. EESR_TFE,
  227. .fdr_value = 0x0000072f,
  228. .rmcr_value = 0x00000001,
  229. .apr = 1,
  230. .mpr = 1,
  231. .tpauser = 1,
  232. .bculr = 1,
  233. .hw_swap = 1,
  234. .rpadir = 1,
  235. .rpadir_value = 2 << 16,
  236. .no_trimd = 1,
  237. .no_ade = 1,
  238. };
  239. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  240. {
  241. if (sh_eth_is_gether(mdp))
  242. return &sh_eth_my_cpu_data_giga;
  243. else
  244. return &sh_eth_my_cpu_data;
  245. }
  246. #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
  247. #define SH_ETH_HAS_TSU 1
  248. static void sh_eth_chip_reset(struct net_device *ndev)
  249. {
  250. struct sh_eth_private *mdp = netdev_priv(ndev);
  251. /* reset device */
  252. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  253. mdelay(1);
  254. }
  255. static void sh_eth_reset(struct net_device *ndev)
  256. {
  257. int cnt = 100;
  258. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  259. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  260. while (cnt > 0) {
  261. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  262. break;
  263. mdelay(1);
  264. cnt--;
  265. }
  266. if (cnt == 0)
  267. printk(KERN_ERR "Device reset fail\n");
  268. /* Table Init */
  269. sh_eth_write(ndev, 0x0, TDLAR);
  270. sh_eth_write(ndev, 0x0, TDFAR);
  271. sh_eth_write(ndev, 0x0, TDFXR);
  272. sh_eth_write(ndev, 0x0, TDFFR);
  273. sh_eth_write(ndev, 0x0, RDLAR);
  274. sh_eth_write(ndev, 0x0, RDFAR);
  275. sh_eth_write(ndev, 0x0, RDFXR);
  276. sh_eth_write(ndev, 0x0, RDFFR);
  277. }
  278. static void sh_eth_set_duplex(struct net_device *ndev)
  279. {
  280. struct sh_eth_private *mdp = netdev_priv(ndev);
  281. if (mdp->duplex) /* Full */
  282. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  283. else /* Half */
  284. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  285. }
  286. static void sh_eth_set_rate(struct net_device *ndev)
  287. {
  288. struct sh_eth_private *mdp = netdev_priv(ndev);
  289. switch (mdp->speed) {
  290. case 10: /* 10BASE */
  291. sh_eth_write(ndev, GECMR_10, GECMR);
  292. break;
  293. case 100:/* 100BASE */
  294. sh_eth_write(ndev, GECMR_100, GECMR);
  295. break;
  296. case 1000: /* 1000BASE */
  297. sh_eth_write(ndev, GECMR_1000, GECMR);
  298. break;
  299. default:
  300. break;
  301. }
  302. }
  303. /* sh7763 */
  304. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  305. .chip_reset = sh_eth_chip_reset,
  306. .set_duplex = sh_eth_set_duplex,
  307. .set_rate = sh_eth_set_rate,
  308. .ecsr_value = ECSR_ICD | ECSR_MPD,
  309. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  310. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  311. .tx_check = EESR_TC1 | EESR_FTC,
  312. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  313. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  314. EESR_ECI,
  315. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  316. EESR_TFE,
  317. .apr = 1,
  318. .mpr = 1,
  319. .tpauser = 1,
  320. .bculr = 1,
  321. .hw_swap = 1,
  322. .no_trimd = 1,
  323. .no_ade = 1,
  324. .tsu = 1,
  325. };
  326. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  327. #define SH_ETH_RESET_DEFAULT 1
  328. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  329. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  330. .apr = 1,
  331. .mpr = 1,
  332. .tpauser = 1,
  333. .hw_swap = 1,
  334. };
  335. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  336. #define SH_ETH_RESET_DEFAULT 1
  337. #define SH_ETH_HAS_TSU 1
  338. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  339. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  340. .tsu = 1,
  341. };
  342. #endif
  343. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  344. {
  345. if (!cd->ecsr_value)
  346. cd->ecsr_value = DEFAULT_ECSR_INIT;
  347. if (!cd->ecsipr_value)
  348. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  349. if (!cd->fcftr_value)
  350. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  351. DEFAULT_FIFO_F_D_RFD;
  352. if (!cd->fdr_value)
  353. cd->fdr_value = DEFAULT_FDR_INIT;
  354. if (!cd->rmcr_value)
  355. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  356. if (!cd->tx_check)
  357. cd->tx_check = DEFAULT_TX_CHECK;
  358. if (!cd->eesr_err_check)
  359. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  360. if (!cd->tx_error_check)
  361. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  362. }
  363. #if defined(SH_ETH_RESET_DEFAULT)
  364. /* Chip Reset */
  365. static void sh_eth_reset(struct net_device *ndev)
  366. {
  367. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  368. mdelay(3);
  369. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  370. }
  371. #endif
  372. #if defined(CONFIG_CPU_SH4)
  373. static void sh_eth_set_receive_align(struct sk_buff *skb)
  374. {
  375. int reserve;
  376. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  377. if (reserve)
  378. skb_reserve(skb, reserve);
  379. }
  380. #else
  381. static void sh_eth_set_receive_align(struct sk_buff *skb)
  382. {
  383. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  384. }
  385. #endif
  386. /* CPU <-> EDMAC endian convert */
  387. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  388. {
  389. switch (mdp->edmac_endian) {
  390. case EDMAC_LITTLE_ENDIAN:
  391. return cpu_to_le32(x);
  392. case EDMAC_BIG_ENDIAN:
  393. return cpu_to_be32(x);
  394. }
  395. return x;
  396. }
  397. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  398. {
  399. switch (mdp->edmac_endian) {
  400. case EDMAC_LITTLE_ENDIAN:
  401. return le32_to_cpu(x);
  402. case EDMAC_BIG_ENDIAN:
  403. return be32_to_cpu(x);
  404. }
  405. return x;
  406. }
  407. /*
  408. * Program the hardware MAC address from dev->dev_addr.
  409. */
  410. static void update_mac_address(struct net_device *ndev)
  411. {
  412. sh_eth_write(ndev,
  413. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  414. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  415. sh_eth_write(ndev,
  416. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  417. }
  418. /*
  419. * Get MAC address from SuperH MAC address register
  420. *
  421. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  422. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  423. * When you want use this device, you must set MAC address in bootloader.
  424. *
  425. */
  426. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  427. {
  428. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  429. memcpy(ndev->dev_addr, mac, 6);
  430. } else {
  431. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  432. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  433. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  434. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  435. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  436. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  437. }
  438. }
  439. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  440. {
  441. if (mdp->reg_offset == sh_eth_offset_gigabit)
  442. return 1;
  443. else
  444. return 0;
  445. }
  446. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  447. {
  448. if (sh_eth_is_gether(mdp))
  449. return EDTRR_TRNS_GETHER;
  450. else
  451. return EDTRR_TRNS_ETHER;
  452. }
  453. struct bb_info {
  454. void (*set_gate)(void *addr);
  455. struct mdiobb_ctrl ctrl;
  456. void *addr;
  457. u32 mmd_msk;/* MMD */
  458. u32 mdo_msk;
  459. u32 mdi_msk;
  460. u32 mdc_msk;
  461. };
  462. /* PHY bit set */
  463. static void bb_set(void *addr, u32 msk)
  464. {
  465. iowrite32(ioread32(addr) | msk, addr);
  466. }
  467. /* PHY bit clear */
  468. static void bb_clr(void *addr, u32 msk)
  469. {
  470. iowrite32((ioread32(addr) & ~msk), addr);
  471. }
  472. /* PHY bit read */
  473. static int bb_read(void *addr, u32 msk)
  474. {
  475. return (ioread32(addr) & msk) != 0;
  476. }
  477. /* Data I/O pin control */
  478. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  479. {
  480. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  481. if (bitbang->set_gate)
  482. bitbang->set_gate(bitbang->addr);
  483. if (bit)
  484. bb_set(bitbang->addr, bitbang->mmd_msk);
  485. else
  486. bb_clr(bitbang->addr, bitbang->mmd_msk);
  487. }
  488. /* Set bit data*/
  489. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  490. {
  491. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  492. if (bitbang->set_gate)
  493. bitbang->set_gate(bitbang->addr);
  494. if (bit)
  495. bb_set(bitbang->addr, bitbang->mdo_msk);
  496. else
  497. bb_clr(bitbang->addr, bitbang->mdo_msk);
  498. }
  499. /* Get bit data*/
  500. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  501. {
  502. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  503. if (bitbang->set_gate)
  504. bitbang->set_gate(bitbang->addr);
  505. return bb_read(bitbang->addr, bitbang->mdi_msk);
  506. }
  507. /* MDC pin control */
  508. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  509. {
  510. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  511. if (bitbang->set_gate)
  512. bitbang->set_gate(bitbang->addr);
  513. if (bit)
  514. bb_set(bitbang->addr, bitbang->mdc_msk);
  515. else
  516. bb_clr(bitbang->addr, bitbang->mdc_msk);
  517. }
  518. /* mdio bus control struct */
  519. static struct mdiobb_ops bb_ops = {
  520. .owner = THIS_MODULE,
  521. .set_mdc = sh_mdc_ctrl,
  522. .set_mdio_dir = sh_mmd_ctrl,
  523. .set_mdio_data = sh_set_mdio,
  524. .get_mdio_data = sh_get_mdio,
  525. };
  526. /* free skb and descriptor buffer */
  527. static void sh_eth_ring_free(struct net_device *ndev)
  528. {
  529. struct sh_eth_private *mdp = netdev_priv(ndev);
  530. int i;
  531. /* Free Rx skb ringbuffer */
  532. if (mdp->rx_skbuff) {
  533. for (i = 0; i < RX_RING_SIZE; i++) {
  534. if (mdp->rx_skbuff[i])
  535. dev_kfree_skb(mdp->rx_skbuff[i]);
  536. }
  537. }
  538. kfree(mdp->rx_skbuff);
  539. /* Free Tx skb ringbuffer */
  540. if (mdp->tx_skbuff) {
  541. for (i = 0; i < TX_RING_SIZE; i++) {
  542. if (mdp->tx_skbuff[i])
  543. dev_kfree_skb(mdp->tx_skbuff[i]);
  544. }
  545. }
  546. kfree(mdp->tx_skbuff);
  547. }
  548. /* format skb and descriptor buffer */
  549. static void sh_eth_ring_format(struct net_device *ndev)
  550. {
  551. struct sh_eth_private *mdp = netdev_priv(ndev);
  552. int i;
  553. struct sk_buff *skb;
  554. struct sh_eth_rxdesc *rxdesc = NULL;
  555. struct sh_eth_txdesc *txdesc = NULL;
  556. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  557. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  558. mdp->cur_rx = mdp->cur_tx = 0;
  559. mdp->dirty_rx = mdp->dirty_tx = 0;
  560. memset(mdp->rx_ring, 0, rx_ringsize);
  561. /* build Rx ring buffer */
  562. for (i = 0; i < RX_RING_SIZE; i++) {
  563. /* skb */
  564. mdp->rx_skbuff[i] = NULL;
  565. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  566. mdp->rx_skbuff[i] = skb;
  567. if (skb == NULL)
  568. break;
  569. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  570. DMA_FROM_DEVICE);
  571. sh_eth_set_receive_align(skb);
  572. /* RX descriptor */
  573. rxdesc = &mdp->rx_ring[i];
  574. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  575. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  576. /* The size of the buffer is 16 byte boundary. */
  577. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  578. /* Rx descriptor address set */
  579. if (i == 0) {
  580. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  581. if (sh_eth_is_gether(mdp))
  582. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  583. }
  584. }
  585. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  586. /* Mark the last entry as wrapping the ring. */
  587. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  588. memset(mdp->tx_ring, 0, tx_ringsize);
  589. /* build Tx ring buffer */
  590. for (i = 0; i < TX_RING_SIZE; i++) {
  591. mdp->tx_skbuff[i] = NULL;
  592. txdesc = &mdp->tx_ring[i];
  593. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  594. txdesc->buffer_length = 0;
  595. if (i == 0) {
  596. /* Tx descriptor address set */
  597. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  598. if (sh_eth_is_gether(mdp))
  599. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  600. }
  601. }
  602. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  603. }
  604. /* Get skb and descriptor buffer */
  605. static int sh_eth_ring_init(struct net_device *ndev)
  606. {
  607. struct sh_eth_private *mdp = netdev_priv(ndev);
  608. int rx_ringsize, tx_ringsize, ret = 0;
  609. /*
  610. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  611. * card needs room to do 8 byte alignment, +2 so we can reserve
  612. * the first 2 bytes, and +16 gets room for the status word from the
  613. * card.
  614. */
  615. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  616. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  617. if (mdp->cd->rpadir)
  618. mdp->rx_buf_sz += NET_IP_ALIGN;
  619. /* Allocate RX and TX skb rings */
  620. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  621. GFP_KERNEL);
  622. if (!mdp->rx_skbuff) {
  623. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  624. ret = -ENOMEM;
  625. return ret;
  626. }
  627. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  628. GFP_KERNEL);
  629. if (!mdp->tx_skbuff) {
  630. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  631. ret = -ENOMEM;
  632. goto skb_ring_free;
  633. }
  634. /* Allocate all Rx descriptors. */
  635. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  636. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  637. GFP_KERNEL);
  638. if (!mdp->rx_ring) {
  639. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  640. rx_ringsize);
  641. ret = -ENOMEM;
  642. goto desc_ring_free;
  643. }
  644. mdp->dirty_rx = 0;
  645. /* Allocate all Tx descriptors. */
  646. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  647. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  648. GFP_KERNEL);
  649. if (!mdp->tx_ring) {
  650. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  651. tx_ringsize);
  652. ret = -ENOMEM;
  653. goto desc_ring_free;
  654. }
  655. return ret;
  656. desc_ring_free:
  657. /* free DMA buffer */
  658. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  659. skb_ring_free:
  660. /* Free Rx and Tx skb ring buffer */
  661. sh_eth_ring_free(ndev);
  662. return ret;
  663. }
  664. static int sh_eth_dev_init(struct net_device *ndev)
  665. {
  666. int ret = 0;
  667. struct sh_eth_private *mdp = netdev_priv(ndev);
  668. u_int32_t rx_int_var, tx_int_var;
  669. u32 val;
  670. /* Soft Reset */
  671. sh_eth_reset(ndev);
  672. /* Descriptor format */
  673. sh_eth_ring_format(ndev);
  674. if (mdp->cd->rpadir)
  675. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  676. /* all sh_eth int mask */
  677. sh_eth_write(ndev, 0, EESIPR);
  678. #if defined(__LITTLE_ENDIAN__)
  679. if (mdp->cd->hw_swap)
  680. sh_eth_write(ndev, EDMR_EL, EDMR);
  681. else
  682. #endif
  683. sh_eth_write(ndev, 0, EDMR);
  684. /* FIFO size set */
  685. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  686. sh_eth_write(ndev, 0, TFTR);
  687. /* Frame recv control */
  688. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  689. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  690. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  691. sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
  692. if (mdp->cd->bculr)
  693. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  694. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  695. if (!mdp->cd->no_trimd)
  696. sh_eth_write(ndev, 0, TRIMD);
  697. /* Recv frame limit set register */
  698. sh_eth_write(ndev, RFLR_VALUE, RFLR);
  699. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  700. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  701. /* PAUSE Prohibition */
  702. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  703. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  704. sh_eth_write(ndev, val, ECMR);
  705. if (mdp->cd->set_rate)
  706. mdp->cd->set_rate(ndev);
  707. /* E-MAC Status Register clear */
  708. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  709. /* E-MAC Interrupt Enable register */
  710. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  711. /* Set MAC address */
  712. update_mac_address(ndev);
  713. /* mask reset */
  714. if (mdp->cd->apr)
  715. sh_eth_write(ndev, APR_AP, APR);
  716. if (mdp->cd->mpr)
  717. sh_eth_write(ndev, MPR_MP, MPR);
  718. if (mdp->cd->tpauser)
  719. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  720. /* Setting the Rx mode will start the Rx process. */
  721. sh_eth_write(ndev, EDRRR_R, EDRRR);
  722. netif_start_queue(ndev);
  723. return ret;
  724. }
  725. /* free Tx skb function */
  726. static int sh_eth_txfree(struct net_device *ndev)
  727. {
  728. struct sh_eth_private *mdp = netdev_priv(ndev);
  729. struct sh_eth_txdesc *txdesc;
  730. int freeNum = 0;
  731. int entry = 0;
  732. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  733. entry = mdp->dirty_tx % TX_RING_SIZE;
  734. txdesc = &mdp->tx_ring[entry];
  735. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  736. break;
  737. /* Free the original skb. */
  738. if (mdp->tx_skbuff[entry]) {
  739. dma_unmap_single(&ndev->dev, txdesc->addr,
  740. txdesc->buffer_length, DMA_TO_DEVICE);
  741. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  742. mdp->tx_skbuff[entry] = NULL;
  743. freeNum++;
  744. }
  745. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  746. if (entry >= TX_RING_SIZE - 1)
  747. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  748. ndev->stats.tx_packets++;
  749. ndev->stats.tx_bytes += txdesc->buffer_length;
  750. }
  751. return freeNum;
  752. }
  753. /* Packet receive function */
  754. static int sh_eth_rx(struct net_device *ndev)
  755. {
  756. struct sh_eth_private *mdp = netdev_priv(ndev);
  757. struct sh_eth_rxdesc *rxdesc;
  758. int entry = mdp->cur_rx % RX_RING_SIZE;
  759. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  760. struct sk_buff *skb;
  761. u16 pkt_len = 0;
  762. u32 desc_status;
  763. rxdesc = &mdp->rx_ring[entry];
  764. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  765. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  766. pkt_len = rxdesc->frame_length;
  767. if (--boguscnt < 0)
  768. break;
  769. if (!(desc_status & RDFEND))
  770. ndev->stats.rx_length_errors++;
  771. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  772. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  773. ndev->stats.rx_errors++;
  774. if (desc_status & RD_RFS1)
  775. ndev->stats.rx_crc_errors++;
  776. if (desc_status & RD_RFS2)
  777. ndev->stats.rx_frame_errors++;
  778. if (desc_status & RD_RFS3)
  779. ndev->stats.rx_length_errors++;
  780. if (desc_status & RD_RFS4)
  781. ndev->stats.rx_length_errors++;
  782. if (desc_status & RD_RFS6)
  783. ndev->stats.rx_missed_errors++;
  784. if (desc_status & RD_RFS10)
  785. ndev->stats.rx_over_errors++;
  786. } else {
  787. if (!mdp->cd->hw_swap)
  788. sh_eth_soft_swap(
  789. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  790. pkt_len + 2);
  791. skb = mdp->rx_skbuff[entry];
  792. mdp->rx_skbuff[entry] = NULL;
  793. if (mdp->cd->rpadir)
  794. skb_reserve(skb, NET_IP_ALIGN);
  795. skb_put(skb, pkt_len);
  796. skb->protocol = eth_type_trans(skb, ndev);
  797. netif_rx(skb);
  798. ndev->stats.rx_packets++;
  799. ndev->stats.rx_bytes += pkt_len;
  800. }
  801. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  802. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  803. rxdesc = &mdp->rx_ring[entry];
  804. }
  805. /* Refill the Rx ring buffers. */
  806. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  807. entry = mdp->dirty_rx % RX_RING_SIZE;
  808. rxdesc = &mdp->rx_ring[entry];
  809. /* The size of the buffer is 16 byte boundary. */
  810. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  811. if (mdp->rx_skbuff[entry] == NULL) {
  812. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  813. mdp->rx_skbuff[entry] = skb;
  814. if (skb == NULL)
  815. break; /* Better luck next round. */
  816. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  817. DMA_FROM_DEVICE);
  818. sh_eth_set_receive_align(skb);
  819. skb_checksum_none_assert(skb);
  820. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  821. }
  822. if (entry >= RX_RING_SIZE - 1)
  823. rxdesc->status |=
  824. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  825. else
  826. rxdesc->status |=
  827. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  828. }
  829. /* Restart Rx engine if stopped. */
  830. /* If we don't need to check status, don't. -KDU */
  831. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
  832. sh_eth_write(ndev, EDRRR_R, EDRRR);
  833. return 0;
  834. }
  835. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  836. {
  837. /* disable tx and rx */
  838. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  839. ~(ECMR_RE | ECMR_TE), ECMR);
  840. }
  841. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  842. {
  843. /* enable tx and rx */
  844. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  845. (ECMR_RE | ECMR_TE), ECMR);
  846. }
  847. /* error control function */
  848. static void sh_eth_error(struct net_device *ndev, int intr_status)
  849. {
  850. struct sh_eth_private *mdp = netdev_priv(ndev);
  851. u32 felic_stat;
  852. u32 link_stat;
  853. u32 mask;
  854. if (intr_status & EESR_ECI) {
  855. felic_stat = sh_eth_read(ndev, ECSR);
  856. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  857. if (felic_stat & ECSR_ICD)
  858. ndev->stats.tx_carrier_errors++;
  859. if (felic_stat & ECSR_LCHNG) {
  860. /* Link Changed */
  861. if (mdp->cd->no_psr || mdp->no_ether_link) {
  862. if (mdp->link == PHY_DOWN)
  863. link_stat = 0;
  864. else
  865. link_stat = PHY_ST_LINK;
  866. } else {
  867. link_stat = (sh_eth_read(ndev, PSR));
  868. if (mdp->ether_link_active_low)
  869. link_stat = ~link_stat;
  870. }
  871. if (!(link_stat & PHY_ST_LINK))
  872. sh_eth_rcv_snd_disable(ndev);
  873. else {
  874. /* Link Up */
  875. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  876. ~DMAC_M_ECI, EESIPR);
  877. /*clear int */
  878. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  879. ECSR);
  880. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  881. DMAC_M_ECI, EESIPR);
  882. /* enable tx and rx */
  883. sh_eth_rcv_snd_enable(ndev);
  884. }
  885. }
  886. }
  887. if (intr_status & EESR_TWB) {
  888. /* Write buck end. unused write back interrupt */
  889. if (intr_status & EESR_TABT) /* Transmit Abort int */
  890. ndev->stats.tx_aborted_errors++;
  891. if (netif_msg_tx_err(mdp))
  892. dev_err(&ndev->dev, "Transmit Abort\n");
  893. }
  894. if (intr_status & EESR_RABT) {
  895. /* Receive Abort int */
  896. if (intr_status & EESR_RFRMER) {
  897. /* Receive Frame Overflow int */
  898. ndev->stats.rx_frame_errors++;
  899. if (netif_msg_rx_err(mdp))
  900. dev_err(&ndev->dev, "Receive Abort\n");
  901. }
  902. }
  903. if (intr_status & EESR_TDE) {
  904. /* Transmit Descriptor Empty int */
  905. ndev->stats.tx_fifo_errors++;
  906. if (netif_msg_tx_err(mdp))
  907. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  908. }
  909. if (intr_status & EESR_TFE) {
  910. /* FIFO under flow */
  911. ndev->stats.tx_fifo_errors++;
  912. if (netif_msg_tx_err(mdp))
  913. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  914. }
  915. if (intr_status & EESR_RDE) {
  916. /* Receive Descriptor Empty int */
  917. ndev->stats.rx_over_errors++;
  918. if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
  919. sh_eth_write(ndev, EDRRR_R, EDRRR);
  920. if (netif_msg_rx_err(mdp))
  921. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  922. }
  923. if (intr_status & EESR_RFE) {
  924. /* Receive FIFO Overflow int */
  925. ndev->stats.rx_fifo_errors++;
  926. if (netif_msg_rx_err(mdp))
  927. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  928. }
  929. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  930. /* Address Error */
  931. ndev->stats.tx_fifo_errors++;
  932. if (netif_msg_tx_err(mdp))
  933. dev_err(&ndev->dev, "Address Error\n");
  934. }
  935. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  936. if (mdp->cd->no_ade)
  937. mask &= ~EESR_ADE;
  938. if (intr_status & mask) {
  939. /* Tx error */
  940. u32 edtrr = sh_eth_read(ndev, EDTRR);
  941. /* dmesg */
  942. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  943. intr_status, mdp->cur_tx);
  944. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  945. mdp->dirty_tx, (u32) ndev->state, edtrr);
  946. /* dirty buffer free */
  947. sh_eth_txfree(ndev);
  948. /* SH7712 BUG */
  949. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  950. /* tx dma start */
  951. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  952. }
  953. /* wakeup */
  954. netif_wake_queue(ndev);
  955. }
  956. }
  957. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  958. {
  959. struct net_device *ndev = netdev;
  960. struct sh_eth_private *mdp = netdev_priv(ndev);
  961. struct sh_eth_cpu_data *cd = mdp->cd;
  962. irqreturn_t ret = IRQ_NONE;
  963. u32 intr_status = 0;
  964. spin_lock(&mdp->lock);
  965. /* Get interrpt stat */
  966. intr_status = sh_eth_read(ndev, EESR);
  967. /* Clear interrupt */
  968. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  969. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  970. cd->tx_check | cd->eesr_err_check)) {
  971. sh_eth_write(ndev, intr_status, EESR);
  972. ret = IRQ_HANDLED;
  973. } else
  974. goto other_irq;
  975. if (intr_status & (EESR_FRC | /* Frame recv*/
  976. EESR_RMAF | /* Multi cast address recv*/
  977. EESR_RRF | /* Bit frame recv */
  978. EESR_RTLF | /* Long frame recv*/
  979. EESR_RTSF | /* short frame recv */
  980. EESR_PRE | /* PHY-LSI recv error */
  981. EESR_CERF)){ /* recv frame CRC error */
  982. sh_eth_rx(ndev);
  983. }
  984. /* Tx Check */
  985. if (intr_status & cd->tx_check) {
  986. sh_eth_txfree(ndev);
  987. netif_wake_queue(ndev);
  988. }
  989. if (intr_status & cd->eesr_err_check)
  990. sh_eth_error(ndev, intr_status);
  991. other_irq:
  992. spin_unlock(&mdp->lock);
  993. return ret;
  994. }
  995. static void sh_eth_timer(unsigned long data)
  996. {
  997. struct net_device *ndev = (struct net_device *)data;
  998. struct sh_eth_private *mdp = netdev_priv(ndev);
  999. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  1000. }
  1001. /* PHY state control function */
  1002. static void sh_eth_adjust_link(struct net_device *ndev)
  1003. {
  1004. struct sh_eth_private *mdp = netdev_priv(ndev);
  1005. struct phy_device *phydev = mdp->phydev;
  1006. int new_state = 0;
  1007. if (phydev->link != PHY_DOWN) {
  1008. if (phydev->duplex != mdp->duplex) {
  1009. new_state = 1;
  1010. mdp->duplex = phydev->duplex;
  1011. if (mdp->cd->set_duplex)
  1012. mdp->cd->set_duplex(ndev);
  1013. }
  1014. if (phydev->speed != mdp->speed) {
  1015. new_state = 1;
  1016. mdp->speed = phydev->speed;
  1017. if (mdp->cd->set_rate)
  1018. mdp->cd->set_rate(ndev);
  1019. }
  1020. if (mdp->link == PHY_DOWN) {
  1021. sh_eth_write(ndev,
  1022. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1023. new_state = 1;
  1024. mdp->link = phydev->link;
  1025. }
  1026. } else if (mdp->link) {
  1027. new_state = 1;
  1028. mdp->link = PHY_DOWN;
  1029. mdp->speed = 0;
  1030. mdp->duplex = -1;
  1031. }
  1032. if (new_state && netif_msg_link(mdp))
  1033. phy_print_status(phydev);
  1034. }
  1035. /* PHY init function */
  1036. static int sh_eth_phy_init(struct net_device *ndev)
  1037. {
  1038. struct sh_eth_private *mdp = netdev_priv(ndev);
  1039. char phy_id[MII_BUS_ID_SIZE + 3];
  1040. struct phy_device *phydev = NULL;
  1041. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1042. mdp->mii_bus->id , mdp->phy_id);
  1043. mdp->link = PHY_DOWN;
  1044. mdp->speed = 0;
  1045. mdp->duplex = -1;
  1046. /* Try connect to PHY */
  1047. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1048. 0, mdp->phy_interface);
  1049. if (IS_ERR(phydev)) {
  1050. dev_err(&ndev->dev, "phy_connect failed\n");
  1051. return PTR_ERR(phydev);
  1052. }
  1053. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1054. phydev->addr, phydev->drv->name);
  1055. mdp->phydev = phydev;
  1056. return 0;
  1057. }
  1058. /* PHY control start function */
  1059. static int sh_eth_phy_start(struct net_device *ndev)
  1060. {
  1061. struct sh_eth_private *mdp = netdev_priv(ndev);
  1062. int ret;
  1063. ret = sh_eth_phy_init(ndev);
  1064. if (ret)
  1065. return ret;
  1066. /* reset phy - this also wakes it from PDOWN */
  1067. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1068. phy_start(mdp->phydev);
  1069. return 0;
  1070. }
  1071. static int sh_eth_get_settings(struct net_device *ndev,
  1072. struct ethtool_cmd *ecmd)
  1073. {
  1074. struct sh_eth_private *mdp = netdev_priv(ndev);
  1075. unsigned long flags;
  1076. int ret;
  1077. spin_lock_irqsave(&mdp->lock, flags);
  1078. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1079. spin_unlock_irqrestore(&mdp->lock, flags);
  1080. return ret;
  1081. }
  1082. static int sh_eth_set_settings(struct net_device *ndev,
  1083. struct ethtool_cmd *ecmd)
  1084. {
  1085. struct sh_eth_private *mdp = netdev_priv(ndev);
  1086. unsigned long flags;
  1087. int ret;
  1088. spin_lock_irqsave(&mdp->lock, flags);
  1089. /* disable tx and rx */
  1090. sh_eth_rcv_snd_disable(ndev);
  1091. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1092. if (ret)
  1093. goto error_exit;
  1094. if (ecmd->duplex == DUPLEX_FULL)
  1095. mdp->duplex = 1;
  1096. else
  1097. mdp->duplex = 0;
  1098. if (mdp->cd->set_duplex)
  1099. mdp->cd->set_duplex(ndev);
  1100. error_exit:
  1101. mdelay(1);
  1102. /* enable tx and rx */
  1103. sh_eth_rcv_snd_enable(ndev);
  1104. spin_unlock_irqrestore(&mdp->lock, flags);
  1105. return ret;
  1106. }
  1107. static int sh_eth_nway_reset(struct net_device *ndev)
  1108. {
  1109. struct sh_eth_private *mdp = netdev_priv(ndev);
  1110. unsigned long flags;
  1111. int ret;
  1112. spin_lock_irqsave(&mdp->lock, flags);
  1113. ret = phy_start_aneg(mdp->phydev);
  1114. spin_unlock_irqrestore(&mdp->lock, flags);
  1115. return ret;
  1116. }
  1117. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1118. {
  1119. struct sh_eth_private *mdp = netdev_priv(ndev);
  1120. return mdp->msg_enable;
  1121. }
  1122. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1123. {
  1124. struct sh_eth_private *mdp = netdev_priv(ndev);
  1125. mdp->msg_enable = value;
  1126. }
  1127. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1128. "rx_current", "tx_current",
  1129. "rx_dirty", "tx_dirty",
  1130. };
  1131. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1132. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1133. {
  1134. switch (sset) {
  1135. case ETH_SS_STATS:
  1136. return SH_ETH_STATS_LEN;
  1137. default:
  1138. return -EOPNOTSUPP;
  1139. }
  1140. }
  1141. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1142. struct ethtool_stats *stats, u64 *data)
  1143. {
  1144. struct sh_eth_private *mdp = netdev_priv(ndev);
  1145. int i = 0;
  1146. /* device-specific stats */
  1147. data[i++] = mdp->cur_rx;
  1148. data[i++] = mdp->cur_tx;
  1149. data[i++] = mdp->dirty_rx;
  1150. data[i++] = mdp->dirty_tx;
  1151. }
  1152. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1153. {
  1154. switch (stringset) {
  1155. case ETH_SS_STATS:
  1156. memcpy(data, *sh_eth_gstrings_stats,
  1157. sizeof(sh_eth_gstrings_stats));
  1158. break;
  1159. }
  1160. }
  1161. static const struct ethtool_ops sh_eth_ethtool_ops = {
  1162. .get_settings = sh_eth_get_settings,
  1163. .set_settings = sh_eth_set_settings,
  1164. .nway_reset = sh_eth_nway_reset,
  1165. .get_msglevel = sh_eth_get_msglevel,
  1166. .set_msglevel = sh_eth_set_msglevel,
  1167. .get_link = ethtool_op_get_link,
  1168. .get_strings = sh_eth_get_strings,
  1169. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1170. .get_sset_count = sh_eth_get_sset_count,
  1171. };
  1172. /* network device open function */
  1173. static int sh_eth_open(struct net_device *ndev)
  1174. {
  1175. int ret = 0;
  1176. struct sh_eth_private *mdp = netdev_priv(ndev);
  1177. pm_runtime_get_sync(&mdp->pdev->dev);
  1178. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1179. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1180. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1181. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1182. IRQF_SHARED,
  1183. #else
  1184. 0,
  1185. #endif
  1186. ndev->name, ndev);
  1187. if (ret) {
  1188. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1189. return ret;
  1190. }
  1191. /* Descriptor set */
  1192. ret = sh_eth_ring_init(ndev);
  1193. if (ret)
  1194. goto out_free_irq;
  1195. /* device init */
  1196. ret = sh_eth_dev_init(ndev);
  1197. if (ret)
  1198. goto out_free_irq;
  1199. /* PHY control start*/
  1200. ret = sh_eth_phy_start(ndev);
  1201. if (ret)
  1202. goto out_free_irq;
  1203. /* Set the timer to check for link beat. */
  1204. init_timer(&mdp->timer);
  1205. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1206. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  1207. return ret;
  1208. out_free_irq:
  1209. free_irq(ndev->irq, ndev);
  1210. pm_runtime_put_sync(&mdp->pdev->dev);
  1211. return ret;
  1212. }
  1213. /* Timeout function */
  1214. static void sh_eth_tx_timeout(struct net_device *ndev)
  1215. {
  1216. struct sh_eth_private *mdp = netdev_priv(ndev);
  1217. struct sh_eth_rxdesc *rxdesc;
  1218. int i;
  1219. netif_stop_queue(ndev);
  1220. if (netif_msg_timer(mdp))
  1221. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1222. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1223. /* tx_errors count up */
  1224. ndev->stats.tx_errors++;
  1225. /* timer off */
  1226. del_timer_sync(&mdp->timer);
  1227. /* Free all the skbuffs in the Rx queue. */
  1228. for (i = 0; i < RX_RING_SIZE; i++) {
  1229. rxdesc = &mdp->rx_ring[i];
  1230. rxdesc->status = 0;
  1231. rxdesc->addr = 0xBADF00D0;
  1232. if (mdp->rx_skbuff[i])
  1233. dev_kfree_skb(mdp->rx_skbuff[i]);
  1234. mdp->rx_skbuff[i] = NULL;
  1235. }
  1236. for (i = 0; i < TX_RING_SIZE; i++) {
  1237. if (mdp->tx_skbuff[i])
  1238. dev_kfree_skb(mdp->tx_skbuff[i]);
  1239. mdp->tx_skbuff[i] = NULL;
  1240. }
  1241. /* device init */
  1242. sh_eth_dev_init(ndev);
  1243. /* timer on */
  1244. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1245. add_timer(&mdp->timer);
  1246. }
  1247. /* Packet transmit function */
  1248. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1249. {
  1250. struct sh_eth_private *mdp = netdev_priv(ndev);
  1251. struct sh_eth_txdesc *txdesc;
  1252. u32 entry;
  1253. unsigned long flags;
  1254. spin_lock_irqsave(&mdp->lock, flags);
  1255. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  1256. if (!sh_eth_txfree(ndev)) {
  1257. if (netif_msg_tx_queued(mdp))
  1258. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1259. netif_stop_queue(ndev);
  1260. spin_unlock_irqrestore(&mdp->lock, flags);
  1261. return NETDEV_TX_BUSY;
  1262. }
  1263. }
  1264. spin_unlock_irqrestore(&mdp->lock, flags);
  1265. entry = mdp->cur_tx % TX_RING_SIZE;
  1266. mdp->tx_skbuff[entry] = skb;
  1267. txdesc = &mdp->tx_ring[entry];
  1268. /* soft swap. */
  1269. if (!mdp->cd->hw_swap)
  1270. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1271. skb->len + 2);
  1272. txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
  1273. DMA_TO_DEVICE);
  1274. if (skb->len < ETHERSMALL)
  1275. txdesc->buffer_length = ETHERSMALL;
  1276. else
  1277. txdesc->buffer_length = skb->len;
  1278. if (entry >= TX_RING_SIZE - 1)
  1279. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1280. else
  1281. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1282. mdp->cur_tx++;
  1283. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1284. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1285. return NETDEV_TX_OK;
  1286. }
  1287. /* device close function */
  1288. static int sh_eth_close(struct net_device *ndev)
  1289. {
  1290. struct sh_eth_private *mdp = netdev_priv(ndev);
  1291. int ringsize;
  1292. netif_stop_queue(ndev);
  1293. /* Disable interrupts by clearing the interrupt mask. */
  1294. sh_eth_write(ndev, 0x0000, EESIPR);
  1295. /* Stop the chip's Tx and Rx processes. */
  1296. sh_eth_write(ndev, 0, EDTRR);
  1297. sh_eth_write(ndev, 0, EDRRR);
  1298. /* PHY Disconnect */
  1299. if (mdp->phydev) {
  1300. phy_stop(mdp->phydev);
  1301. phy_disconnect(mdp->phydev);
  1302. }
  1303. free_irq(ndev->irq, ndev);
  1304. del_timer_sync(&mdp->timer);
  1305. /* Free all the skbuffs in the Rx queue. */
  1306. sh_eth_ring_free(ndev);
  1307. /* free DMA buffer */
  1308. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  1309. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  1310. /* free DMA buffer */
  1311. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1312. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1313. pm_runtime_put_sync(&mdp->pdev->dev);
  1314. return 0;
  1315. }
  1316. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1317. {
  1318. struct sh_eth_private *mdp = netdev_priv(ndev);
  1319. pm_runtime_get_sync(&mdp->pdev->dev);
  1320. ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1321. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1322. ndev->stats.collisions += sh_eth_read(ndev, CDCR);
  1323. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1324. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1325. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1326. if (sh_eth_is_gether(mdp)) {
  1327. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1328. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1329. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1330. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1331. } else {
  1332. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1333. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1334. }
  1335. pm_runtime_put_sync(&mdp->pdev->dev);
  1336. return &ndev->stats;
  1337. }
  1338. /* ioctl to device function */
  1339. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1340. int cmd)
  1341. {
  1342. struct sh_eth_private *mdp = netdev_priv(ndev);
  1343. struct phy_device *phydev = mdp->phydev;
  1344. if (!netif_running(ndev))
  1345. return -EINVAL;
  1346. if (!phydev)
  1347. return -ENODEV;
  1348. return phy_mii_ioctl(phydev, rq, cmd);
  1349. }
  1350. #if defined(SH_ETH_HAS_TSU)
  1351. /* Multicast reception directions set */
  1352. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1353. {
  1354. if (ndev->flags & IFF_PROMISC) {
  1355. /* Set promiscuous. */
  1356. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_MCT) |
  1357. ECMR_PRM, ECMR);
  1358. } else {
  1359. /* Normal, unicast/broadcast-only mode. */
  1360. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) |
  1361. ECMR_MCT, ECMR);
  1362. }
  1363. }
  1364. #endif /* SH_ETH_HAS_TSU */
  1365. /* SuperH's TSU register init function */
  1366. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1367. {
  1368. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1369. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1370. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1371. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1372. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1373. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1374. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1375. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1376. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1377. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1378. if (sh_eth_is_gether(mdp)) {
  1379. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1380. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1381. } else {
  1382. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1383. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1384. }
  1385. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1386. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1387. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1388. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1389. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1390. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1391. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1392. }
  1393. /* MDIO bus release function */
  1394. static int sh_mdio_release(struct net_device *ndev)
  1395. {
  1396. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1397. /* unregister mdio bus */
  1398. mdiobus_unregister(bus);
  1399. /* remove mdio bus info from net_device */
  1400. dev_set_drvdata(&ndev->dev, NULL);
  1401. /* free interrupts memory */
  1402. kfree(bus->irq);
  1403. /* free bitbang info */
  1404. free_mdio_bitbang(bus);
  1405. return 0;
  1406. }
  1407. /* MDIO bus init function */
  1408. static int sh_mdio_init(struct net_device *ndev, int id,
  1409. struct sh_eth_plat_data *pd)
  1410. {
  1411. int ret, i;
  1412. struct bb_info *bitbang;
  1413. struct sh_eth_private *mdp = netdev_priv(ndev);
  1414. /* create bit control struct for PHY */
  1415. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1416. if (!bitbang) {
  1417. ret = -ENOMEM;
  1418. goto out;
  1419. }
  1420. /* bitbang init */
  1421. bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
  1422. bitbang->set_gate = pd->set_mdio_gate;
  1423. bitbang->mdi_msk = 0x08;
  1424. bitbang->mdo_msk = 0x04;
  1425. bitbang->mmd_msk = 0x02;/* MMD */
  1426. bitbang->mdc_msk = 0x01;
  1427. bitbang->ctrl.ops = &bb_ops;
  1428. /* MII controller setting */
  1429. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1430. if (!mdp->mii_bus) {
  1431. ret = -ENOMEM;
  1432. goto out_free_bitbang;
  1433. }
  1434. /* Hook up MII support for ethtool */
  1435. mdp->mii_bus->name = "sh_mii";
  1436. mdp->mii_bus->parent = &ndev->dev;
  1437. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1438. mdp->pdev->name, id);
  1439. /* PHY IRQ */
  1440. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1441. if (!mdp->mii_bus->irq) {
  1442. ret = -ENOMEM;
  1443. goto out_free_bus;
  1444. }
  1445. for (i = 0; i < PHY_MAX_ADDR; i++)
  1446. mdp->mii_bus->irq[i] = PHY_POLL;
  1447. /* regist mdio bus */
  1448. ret = mdiobus_register(mdp->mii_bus);
  1449. if (ret)
  1450. goto out_free_irq;
  1451. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1452. return 0;
  1453. out_free_irq:
  1454. kfree(mdp->mii_bus->irq);
  1455. out_free_bus:
  1456. free_mdio_bitbang(mdp->mii_bus);
  1457. out_free_bitbang:
  1458. kfree(bitbang);
  1459. out:
  1460. return ret;
  1461. }
  1462. static const u16 *sh_eth_get_register_offset(int register_type)
  1463. {
  1464. const u16 *reg_offset = NULL;
  1465. switch (register_type) {
  1466. case SH_ETH_REG_GIGABIT:
  1467. reg_offset = sh_eth_offset_gigabit;
  1468. break;
  1469. case SH_ETH_REG_FAST_SH4:
  1470. reg_offset = sh_eth_offset_fast_sh4;
  1471. break;
  1472. case SH_ETH_REG_FAST_SH3_SH2:
  1473. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1474. break;
  1475. default:
  1476. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1477. break;
  1478. }
  1479. return reg_offset;
  1480. }
  1481. static const struct net_device_ops sh_eth_netdev_ops = {
  1482. .ndo_open = sh_eth_open,
  1483. .ndo_stop = sh_eth_close,
  1484. .ndo_start_xmit = sh_eth_start_xmit,
  1485. .ndo_get_stats = sh_eth_get_stats,
  1486. #if defined(SH_ETH_HAS_TSU)
  1487. .ndo_set_rx_mode = sh_eth_set_multicast_list,
  1488. #endif
  1489. .ndo_tx_timeout = sh_eth_tx_timeout,
  1490. .ndo_do_ioctl = sh_eth_do_ioctl,
  1491. .ndo_validate_addr = eth_validate_addr,
  1492. .ndo_set_mac_address = eth_mac_addr,
  1493. .ndo_change_mtu = eth_change_mtu,
  1494. };
  1495. static int sh_eth_drv_probe(struct platform_device *pdev)
  1496. {
  1497. int ret, devno = 0;
  1498. struct resource *res;
  1499. struct net_device *ndev = NULL;
  1500. struct sh_eth_private *mdp = NULL;
  1501. struct sh_eth_plat_data *pd;
  1502. /* get base addr */
  1503. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1504. if (unlikely(res == NULL)) {
  1505. dev_err(&pdev->dev, "invalid resource\n");
  1506. ret = -EINVAL;
  1507. goto out;
  1508. }
  1509. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1510. if (!ndev) {
  1511. ret = -ENOMEM;
  1512. goto out;
  1513. }
  1514. /* The sh Ether-specific entries in the device structure. */
  1515. ndev->base_addr = res->start;
  1516. devno = pdev->id;
  1517. if (devno < 0)
  1518. devno = 0;
  1519. ndev->dma = -1;
  1520. ret = platform_get_irq(pdev, 0);
  1521. if (ret < 0) {
  1522. ret = -ENODEV;
  1523. goto out_release;
  1524. }
  1525. ndev->irq = ret;
  1526. SET_NETDEV_DEV(ndev, &pdev->dev);
  1527. /* Fill in the fields of the device structure with ethernet values. */
  1528. ether_setup(ndev);
  1529. mdp = netdev_priv(ndev);
  1530. mdp->addr = ioremap(res->start, resource_size(res));
  1531. if (mdp->addr == NULL) {
  1532. ret = -ENOMEM;
  1533. dev_err(&pdev->dev, "ioremap failed.\n");
  1534. goto out_release;
  1535. }
  1536. spin_lock_init(&mdp->lock);
  1537. mdp->pdev = pdev;
  1538. pm_runtime_enable(&pdev->dev);
  1539. pm_runtime_resume(&pdev->dev);
  1540. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1541. /* get PHY ID */
  1542. mdp->phy_id = pd->phy;
  1543. mdp->phy_interface = pd->phy_interface;
  1544. /* EDMAC endian */
  1545. mdp->edmac_endian = pd->edmac_endian;
  1546. mdp->no_ether_link = pd->no_ether_link;
  1547. mdp->ether_link_active_low = pd->ether_link_active_low;
  1548. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  1549. /* set cpu data */
  1550. #if defined(SH_ETH_HAS_BOTH_MODULES)
  1551. mdp->cd = sh_eth_get_cpu_data(mdp);
  1552. #else
  1553. mdp->cd = &sh_eth_my_cpu_data;
  1554. #endif
  1555. sh_eth_set_default_cpu_data(mdp->cd);
  1556. /* set function */
  1557. ndev->netdev_ops = &sh_eth_netdev_ops;
  1558. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  1559. ndev->watchdog_timeo = TX_TIMEOUT;
  1560. /* debug message level */
  1561. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  1562. mdp->post_rx = POST_RX >> (devno << 1);
  1563. mdp->post_fw = POST_FW >> (devno << 1);
  1564. /* read and set MAC address */
  1565. read_mac_address(ndev, pd->mac_addr);
  1566. /* First device only init */
  1567. if (!devno) {
  1568. if (mdp->cd->tsu) {
  1569. struct resource *rtsu;
  1570. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1571. if (!rtsu) {
  1572. dev_err(&pdev->dev, "Not found TSU resource\n");
  1573. goto out_release;
  1574. }
  1575. mdp->tsu_addr = ioremap(rtsu->start,
  1576. resource_size(rtsu));
  1577. }
  1578. if (mdp->cd->chip_reset)
  1579. mdp->cd->chip_reset(ndev);
  1580. if (mdp->cd->tsu) {
  1581. /* TSU init (Init only)*/
  1582. sh_eth_tsu_init(mdp);
  1583. }
  1584. }
  1585. /* network device register */
  1586. ret = register_netdev(ndev);
  1587. if (ret)
  1588. goto out_release;
  1589. /* mdio bus init */
  1590. ret = sh_mdio_init(ndev, pdev->id, pd);
  1591. if (ret)
  1592. goto out_unregister;
  1593. /* print device information */
  1594. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  1595. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1596. platform_set_drvdata(pdev, ndev);
  1597. return ret;
  1598. out_unregister:
  1599. unregister_netdev(ndev);
  1600. out_release:
  1601. /* net_dev free */
  1602. if (mdp && mdp->addr)
  1603. iounmap(mdp->addr);
  1604. if (mdp && mdp->tsu_addr)
  1605. iounmap(mdp->tsu_addr);
  1606. if (ndev)
  1607. free_netdev(ndev);
  1608. out:
  1609. return ret;
  1610. }
  1611. static int sh_eth_drv_remove(struct platform_device *pdev)
  1612. {
  1613. struct net_device *ndev = platform_get_drvdata(pdev);
  1614. struct sh_eth_private *mdp = netdev_priv(ndev);
  1615. iounmap(mdp->tsu_addr);
  1616. sh_mdio_release(ndev);
  1617. unregister_netdev(ndev);
  1618. pm_runtime_disable(&pdev->dev);
  1619. iounmap(mdp->addr);
  1620. free_netdev(ndev);
  1621. platform_set_drvdata(pdev, NULL);
  1622. return 0;
  1623. }
  1624. static int sh_eth_runtime_nop(struct device *dev)
  1625. {
  1626. /*
  1627. * Runtime PM callback shared between ->runtime_suspend()
  1628. * and ->runtime_resume(). Simply returns success.
  1629. *
  1630. * This driver re-initializes all registers after
  1631. * pm_runtime_get_sync() anyway so there is no need
  1632. * to save and restore registers here.
  1633. */
  1634. return 0;
  1635. }
  1636. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  1637. .runtime_suspend = sh_eth_runtime_nop,
  1638. .runtime_resume = sh_eth_runtime_nop,
  1639. };
  1640. static struct platform_driver sh_eth_driver = {
  1641. .probe = sh_eth_drv_probe,
  1642. .remove = sh_eth_drv_remove,
  1643. .driver = {
  1644. .name = CARDNAME,
  1645. .pm = &sh_eth_dev_pm_ops,
  1646. },
  1647. };
  1648. module_platform_driver(sh_eth_driver);
  1649. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1650. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1651. MODULE_LICENSE("GPL v2");