spi.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915
  1. /*
  2. * SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. * Copyright (C) 2008 Secret Lab Technologies Ltd.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/kmod.h>
  23. #include <linux/device.h>
  24. #include <linux/init.h>
  25. #include <linux/cache.h>
  26. #include <linux/mutex.h>
  27. #include <linux/of_device.h>
  28. #include <linux/of_irq.h>
  29. #include <linux/slab.h>
  30. #include <linux/mod_devicetable.h>
  31. #include <linux/spi/spi.h>
  32. #include <linux/of_gpio.h>
  33. #include <linux/pm_runtime.h>
  34. #include <linux/export.h>
  35. #include <linux/sched/rt.h>
  36. #include <linux/delay.h>
  37. #include <linux/kthread.h>
  38. #include <linux/ioport.h>
  39. #include <linux/acpi.h>
  40. static void spidev_release(struct device *dev)
  41. {
  42. struct spi_device *spi = to_spi_device(dev);
  43. /* spi masters may cleanup for released devices */
  44. if (spi->master->cleanup)
  45. spi->master->cleanup(spi);
  46. spi_master_put(spi->master);
  47. kfree(spi);
  48. }
  49. static ssize_t
  50. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  51. {
  52. const struct spi_device *spi = to_spi_device(dev);
  53. return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  54. }
  55. static struct device_attribute spi_dev_attrs[] = {
  56. __ATTR_RO(modalias),
  57. __ATTR_NULL,
  58. };
  59. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  60. * and the sysfs version makes coldplug work too.
  61. */
  62. static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  63. const struct spi_device *sdev)
  64. {
  65. while (id->name[0]) {
  66. if (!strcmp(sdev->modalias, id->name))
  67. return id;
  68. id++;
  69. }
  70. return NULL;
  71. }
  72. const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  73. {
  74. const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  75. return spi_match_id(sdrv->id_table, sdev);
  76. }
  77. EXPORT_SYMBOL_GPL(spi_get_device_id);
  78. static int spi_match_device(struct device *dev, struct device_driver *drv)
  79. {
  80. const struct spi_device *spi = to_spi_device(dev);
  81. const struct spi_driver *sdrv = to_spi_driver(drv);
  82. /* Attempt an OF style match */
  83. if (of_driver_match_device(dev, drv))
  84. return 1;
  85. /* Then try ACPI */
  86. if (acpi_driver_match_device(dev, drv))
  87. return 1;
  88. if (sdrv->id_table)
  89. return !!spi_match_id(sdrv->id_table, spi);
  90. return strcmp(spi->modalias, drv->name) == 0;
  91. }
  92. static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  93. {
  94. const struct spi_device *spi = to_spi_device(dev);
  95. add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
  96. return 0;
  97. }
  98. #ifdef CONFIG_PM_SLEEP
  99. static int spi_legacy_suspend(struct device *dev, pm_message_t message)
  100. {
  101. int value = 0;
  102. struct spi_driver *drv = to_spi_driver(dev->driver);
  103. /* suspend will stop irqs and dma; no more i/o */
  104. if (drv) {
  105. if (drv->suspend)
  106. value = drv->suspend(to_spi_device(dev), message);
  107. else
  108. dev_dbg(dev, "... can't suspend\n");
  109. }
  110. return value;
  111. }
  112. static int spi_legacy_resume(struct device *dev)
  113. {
  114. int value = 0;
  115. struct spi_driver *drv = to_spi_driver(dev->driver);
  116. /* resume may restart the i/o queue */
  117. if (drv) {
  118. if (drv->resume)
  119. value = drv->resume(to_spi_device(dev));
  120. else
  121. dev_dbg(dev, "... can't resume\n");
  122. }
  123. return value;
  124. }
  125. static int spi_pm_suspend(struct device *dev)
  126. {
  127. const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
  128. if (pm)
  129. return pm_generic_suspend(dev);
  130. else
  131. return spi_legacy_suspend(dev, PMSG_SUSPEND);
  132. }
  133. static int spi_pm_resume(struct device *dev)
  134. {
  135. const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
  136. if (pm)
  137. return pm_generic_resume(dev);
  138. else
  139. return spi_legacy_resume(dev);
  140. }
  141. static int spi_pm_freeze(struct device *dev)
  142. {
  143. const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
  144. if (pm)
  145. return pm_generic_freeze(dev);
  146. else
  147. return spi_legacy_suspend(dev, PMSG_FREEZE);
  148. }
  149. static int spi_pm_thaw(struct device *dev)
  150. {
  151. const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
  152. if (pm)
  153. return pm_generic_thaw(dev);
  154. else
  155. return spi_legacy_resume(dev);
  156. }
  157. static int spi_pm_poweroff(struct device *dev)
  158. {
  159. const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
  160. if (pm)
  161. return pm_generic_poweroff(dev);
  162. else
  163. return spi_legacy_suspend(dev, PMSG_HIBERNATE);
  164. }
  165. static int spi_pm_restore(struct device *dev)
  166. {
  167. const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
  168. if (pm)
  169. return pm_generic_restore(dev);
  170. else
  171. return spi_legacy_resume(dev);
  172. }
  173. #else
  174. #define spi_pm_suspend NULL
  175. #define spi_pm_resume NULL
  176. #define spi_pm_freeze NULL
  177. #define spi_pm_thaw NULL
  178. #define spi_pm_poweroff NULL
  179. #define spi_pm_restore NULL
  180. #endif
  181. static const struct dev_pm_ops spi_pm = {
  182. .suspend = spi_pm_suspend,
  183. .resume = spi_pm_resume,
  184. .freeze = spi_pm_freeze,
  185. .thaw = spi_pm_thaw,
  186. .poweroff = spi_pm_poweroff,
  187. .restore = spi_pm_restore,
  188. SET_RUNTIME_PM_OPS(
  189. pm_generic_runtime_suspend,
  190. pm_generic_runtime_resume,
  191. NULL
  192. )
  193. };
  194. struct bus_type spi_bus_type = {
  195. .name = "spi",
  196. .dev_attrs = spi_dev_attrs,
  197. .match = spi_match_device,
  198. .uevent = spi_uevent,
  199. .pm = &spi_pm,
  200. };
  201. EXPORT_SYMBOL_GPL(spi_bus_type);
  202. static int spi_drv_probe(struct device *dev)
  203. {
  204. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  205. return sdrv->probe(to_spi_device(dev));
  206. }
  207. static int spi_drv_remove(struct device *dev)
  208. {
  209. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  210. return sdrv->remove(to_spi_device(dev));
  211. }
  212. static void spi_drv_shutdown(struct device *dev)
  213. {
  214. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  215. sdrv->shutdown(to_spi_device(dev));
  216. }
  217. /**
  218. * spi_register_driver - register a SPI driver
  219. * @sdrv: the driver to register
  220. * Context: can sleep
  221. */
  222. int spi_register_driver(struct spi_driver *sdrv)
  223. {
  224. sdrv->driver.bus = &spi_bus_type;
  225. if (sdrv->probe)
  226. sdrv->driver.probe = spi_drv_probe;
  227. if (sdrv->remove)
  228. sdrv->driver.remove = spi_drv_remove;
  229. if (sdrv->shutdown)
  230. sdrv->driver.shutdown = spi_drv_shutdown;
  231. return driver_register(&sdrv->driver);
  232. }
  233. EXPORT_SYMBOL_GPL(spi_register_driver);
  234. /*-------------------------------------------------------------------------*/
  235. /* SPI devices should normally not be created by SPI device drivers; that
  236. * would make them board-specific. Similarly with SPI master drivers.
  237. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  238. * with other readonly (flashable) information about mainboard devices.
  239. */
  240. struct boardinfo {
  241. struct list_head list;
  242. struct spi_board_info board_info;
  243. };
  244. static LIST_HEAD(board_list);
  245. static LIST_HEAD(spi_master_list);
  246. /*
  247. * Used to protect add/del opertion for board_info list and
  248. * spi_master list, and their matching process
  249. */
  250. static DEFINE_MUTEX(board_lock);
  251. /**
  252. * spi_alloc_device - Allocate a new SPI device
  253. * @master: Controller to which device is connected
  254. * Context: can sleep
  255. *
  256. * Allows a driver to allocate and initialize a spi_device without
  257. * registering it immediately. This allows a driver to directly
  258. * fill the spi_device with device parameters before calling
  259. * spi_add_device() on it.
  260. *
  261. * Caller is responsible to call spi_add_device() on the returned
  262. * spi_device structure to add it to the SPI master. If the caller
  263. * needs to discard the spi_device without adding it, then it should
  264. * call spi_dev_put() on it.
  265. *
  266. * Returns a pointer to the new device, or NULL.
  267. */
  268. struct spi_device *spi_alloc_device(struct spi_master *master)
  269. {
  270. struct spi_device *spi;
  271. struct device *dev = master->dev.parent;
  272. if (!spi_master_get(master))
  273. return NULL;
  274. spi = kzalloc(sizeof *spi, GFP_KERNEL);
  275. if (!spi) {
  276. dev_err(dev, "cannot alloc spi_device\n");
  277. spi_master_put(master);
  278. return NULL;
  279. }
  280. spi->master = master;
  281. spi->dev.parent = &master->dev;
  282. spi->dev.bus = &spi_bus_type;
  283. spi->dev.release = spidev_release;
  284. spi->cs_gpio = -ENOENT;
  285. device_initialize(&spi->dev);
  286. return spi;
  287. }
  288. EXPORT_SYMBOL_GPL(spi_alloc_device);
  289. /**
  290. * spi_add_device - Add spi_device allocated with spi_alloc_device
  291. * @spi: spi_device to register
  292. *
  293. * Companion function to spi_alloc_device. Devices allocated with
  294. * spi_alloc_device can be added onto the spi bus with this function.
  295. *
  296. * Returns 0 on success; negative errno on failure
  297. */
  298. int spi_add_device(struct spi_device *spi)
  299. {
  300. static DEFINE_MUTEX(spi_add_lock);
  301. struct spi_master *master = spi->master;
  302. struct device *dev = master->dev.parent;
  303. struct device *d;
  304. int status;
  305. /* Chipselects are numbered 0..max; validate. */
  306. if (spi->chip_select >= master->num_chipselect) {
  307. dev_err(dev, "cs%d >= max %d\n",
  308. spi->chip_select,
  309. master->num_chipselect);
  310. return -EINVAL;
  311. }
  312. /* Set the bus ID string */
  313. dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
  314. spi->chip_select);
  315. /* We need to make sure there's no other device with this
  316. * chipselect **BEFORE** we call setup(), else we'll trash
  317. * its configuration. Lock against concurrent add() calls.
  318. */
  319. mutex_lock(&spi_add_lock);
  320. d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
  321. if (d != NULL) {
  322. dev_err(dev, "chipselect %d already in use\n",
  323. spi->chip_select);
  324. put_device(d);
  325. status = -EBUSY;
  326. goto done;
  327. }
  328. if (master->cs_gpios)
  329. spi->cs_gpio = master->cs_gpios[spi->chip_select];
  330. /* Drivers may modify this initial i/o setup, but will
  331. * normally rely on the device being setup. Devices
  332. * using SPI_CS_HIGH can't coexist well otherwise...
  333. */
  334. status = spi_setup(spi);
  335. if (status < 0) {
  336. dev_err(dev, "can't setup %s, status %d\n",
  337. dev_name(&spi->dev), status);
  338. goto done;
  339. }
  340. /* Device may be bound to an active driver when this returns */
  341. status = device_add(&spi->dev);
  342. if (status < 0)
  343. dev_err(dev, "can't add %s, status %d\n",
  344. dev_name(&spi->dev), status);
  345. else
  346. dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
  347. done:
  348. mutex_unlock(&spi_add_lock);
  349. return status;
  350. }
  351. EXPORT_SYMBOL_GPL(spi_add_device);
  352. /**
  353. * spi_new_device - instantiate one new SPI device
  354. * @master: Controller to which device is connected
  355. * @chip: Describes the SPI device
  356. * Context: can sleep
  357. *
  358. * On typical mainboards, this is purely internal; and it's not needed
  359. * after board init creates the hard-wired devices. Some development
  360. * platforms may not be able to use spi_register_board_info though, and
  361. * this is exported so that for example a USB or parport based adapter
  362. * driver could add devices (which it would learn about out-of-band).
  363. *
  364. * Returns the new device, or NULL.
  365. */
  366. struct spi_device *spi_new_device(struct spi_master *master,
  367. struct spi_board_info *chip)
  368. {
  369. struct spi_device *proxy;
  370. int status;
  371. /* NOTE: caller did any chip->bus_num checks necessary.
  372. *
  373. * Also, unless we change the return value convention to use
  374. * error-or-pointer (not NULL-or-pointer), troubleshootability
  375. * suggests syslogged diagnostics are best here (ugh).
  376. */
  377. proxy = spi_alloc_device(master);
  378. if (!proxy)
  379. return NULL;
  380. WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
  381. proxy->chip_select = chip->chip_select;
  382. proxy->max_speed_hz = chip->max_speed_hz;
  383. proxy->mode = chip->mode;
  384. proxy->irq = chip->irq;
  385. strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
  386. proxy->dev.platform_data = (void *) chip->platform_data;
  387. proxy->controller_data = chip->controller_data;
  388. proxy->controller_state = NULL;
  389. status = spi_add_device(proxy);
  390. if (status < 0) {
  391. spi_dev_put(proxy);
  392. return NULL;
  393. }
  394. return proxy;
  395. }
  396. EXPORT_SYMBOL_GPL(spi_new_device);
  397. static void spi_match_master_to_boardinfo(struct spi_master *master,
  398. struct spi_board_info *bi)
  399. {
  400. struct spi_device *dev;
  401. if (master->bus_num != bi->bus_num)
  402. return;
  403. dev = spi_new_device(master, bi);
  404. if (!dev)
  405. dev_err(master->dev.parent, "can't create new device for %s\n",
  406. bi->modalias);
  407. }
  408. /**
  409. * spi_register_board_info - register SPI devices for a given board
  410. * @info: array of chip descriptors
  411. * @n: how many descriptors are provided
  412. * Context: can sleep
  413. *
  414. * Board-specific early init code calls this (probably during arch_initcall)
  415. * with segments of the SPI device table. Any device nodes are created later,
  416. * after the relevant parent SPI controller (bus_num) is defined. We keep
  417. * this table of devices forever, so that reloading a controller driver will
  418. * not make Linux forget about these hard-wired devices.
  419. *
  420. * Other code can also call this, e.g. a particular add-on board might provide
  421. * SPI devices through its expansion connector, so code initializing that board
  422. * would naturally declare its SPI devices.
  423. *
  424. * The board info passed can safely be __initdata ... but be careful of
  425. * any embedded pointers (platform_data, etc), they're copied as-is.
  426. */
  427. int spi_register_board_info(struct spi_board_info const *info, unsigned n)
  428. {
  429. struct boardinfo *bi;
  430. int i;
  431. bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
  432. if (!bi)
  433. return -ENOMEM;
  434. for (i = 0; i < n; i++, bi++, info++) {
  435. struct spi_master *master;
  436. memcpy(&bi->board_info, info, sizeof(*info));
  437. mutex_lock(&board_lock);
  438. list_add_tail(&bi->list, &board_list);
  439. list_for_each_entry(master, &spi_master_list, list)
  440. spi_match_master_to_boardinfo(master, &bi->board_info);
  441. mutex_unlock(&board_lock);
  442. }
  443. return 0;
  444. }
  445. /*-------------------------------------------------------------------------*/
  446. /**
  447. * spi_pump_messages - kthread work function which processes spi message queue
  448. * @work: pointer to kthread work struct contained in the master struct
  449. *
  450. * This function checks if there is any spi message in the queue that
  451. * needs processing and if so call out to the driver to initialize hardware
  452. * and transfer each message.
  453. *
  454. */
  455. static void spi_pump_messages(struct kthread_work *work)
  456. {
  457. struct spi_master *master =
  458. container_of(work, struct spi_master, pump_messages);
  459. unsigned long flags;
  460. bool was_busy = false;
  461. int ret;
  462. /* Lock queue and check for queue work */
  463. spin_lock_irqsave(&master->queue_lock, flags);
  464. if (list_empty(&master->queue) || !master->running) {
  465. if (!master->busy) {
  466. spin_unlock_irqrestore(&master->queue_lock, flags);
  467. return;
  468. }
  469. master->busy = false;
  470. spin_unlock_irqrestore(&master->queue_lock, flags);
  471. if (master->unprepare_transfer_hardware &&
  472. master->unprepare_transfer_hardware(master))
  473. dev_err(&master->dev,
  474. "failed to unprepare transfer hardware\n");
  475. if (master->auto_runtime_pm) {
  476. pm_runtime_mark_last_busy(master->dev.parent);
  477. pm_runtime_put_autosuspend(master->dev.parent);
  478. }
  479. return;
  480. }
  481. /* Make sure we are not already running a message */
  482. if (master->cur_msg) {
  483. spin_unlock_irqrestore(&master->queue_lock, flags);
  484. return;
  485. }
  486. /* Extract head of queue */
  487. master->cur_msg =
  488. list_entry(master->queue.next, struct spi_message, queue);
  489. list_del_init(&master->cur_msg->queue);
  490. if (master->busy)
  491. was_busy = true;
  492. else
  493. master->busy = true;
  494. spin_unlock_irqrestore(&master->queue_lock, flags);
  495. if (!was_busy && master->auto_runtime_pm) {
  496. ret = pm_runtime_get_sync(master->dev.parent);
  497. if (ret < 0) {
  498. dev_err(&master->dev, "Failed to power device: %d\n",
  499. ret);
  500. return;
  501. }
  502. }
  503. if (!was_busy && master->prepare_transfer_hardware) {
  504. ret = master->prepare_transfer_hardware(master);
  505. if (ret) {
  506. dev_err(&master->dev,
  507. "failed to prepare transfer hardware\n");
  508. if (master->auto_runtime_pm)
  509. pm_runtime_put(master->dev.parent);
  510. return;
  511. }
  512. }
  513. ret = master->transfer_one_message(master, master->cur_msg);
  514. if (ret) {
  515. dev_err(&master->dev,
  516. "failed to transfer one message from queue\n");
  517. return;
  518. }
  519. }
  520. static int spi_init_queue(struct spi_master *master)
  521. {
  522. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  523. INIT_LIST_HEAD(&master->queue);
  524. spin_lock_init(&master->queue_lock);
  525. master->running = false;
  526. master->busy = false;
  527. init_kthread_worker(&master->kworker);
  528. master->kworker_task = kthread_run(kthread_worker_fn,
  529. &master->kworker, "%s",
  530. dev_name(&master->dev));
  531. if (IS_ERR(master->kworker_task)) {
  532. dev_err(&master->dev, "failed to create message pump task\n");
  533. return -ENOMEM;
  534. }
  535. init_kthread_work(&master->pump_messages, spi_pump_messages);
  536. /*
  537. * Master config will indicate if this controller should run the
  538. * message pump with high (realtime) priority to reduce the transfer
  539. * latency on the bus by minimising the delay between a transfer
  540. * request and the scheduling of the message pump thread. Without this
  541. * setting the message pump thread will remain at default priority.
  542. */
  543. if (master->rt) {
  544. dev_info(&master->dev,
  545. "will run message pump with realtime priority\n");
  546. sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
  547. }
  548. return 0;
  549. }
  550. /**
  551. * spi_get_next_queued_message() - called by driver to check for queued
  552. * messages
  553. * @master: the master to check for queued messages
  554. *
  555. * If there are more messages in the queue, the next message is returned from
  556. * this call.
  557. */
  558. struct spi_message *spi_get_next_queued_message(struct spi_master *master)
  559. {
  560. struct spi_message *next;
  561. unsigned long flags;
  562. /* get a pointer to the next message, if any */
  563. spin_lock_irqsave(&master->queue_lock, flags);
  564. if (list_empty(&master->queue))
  565. next = NULL;
  566. else
  567. next = list_entry(master->queue.next,
  568. struct spi_message, queue);
  569. spin_unlock_irqrestore(&master->queue_lock, flags);
  570. return next;
  571. }
  572. EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
  573. /**
  574. * spi_finalize_current_message() - the current message is complete
  575. * @master: the master to return the message to
  576. *
  577. * Called by the driver to notify the core that the message in the front of the
  578. * queue is complete and can be removed from the queue.
  579. */
  580. void spi_finalize_current_message(struct spi_master *master)
  581. {
  582. struct spi_message *mesg;
  583. unsigned long flags;
  584. spin_lock_irqsave(&master->queue_lock, flags);
  585. mesg = master->cur_msg;
  586. master->cur_msg = NULL;
  587. queue_kthread_work(&master->kworker, &master->pump_messages);
  588. spin_unlock_irqrestore(&master->queue_lock, flags);
  589. mesg->state = NULL;
  590. if (mesg->complete)
  591. mesg->complete(mesg->context);
  592. }
  593. EXPORT_SYMBOL_GPL(spi_finalize_current_message);
  594. static int spi_start_queue(struct spi_master *master)
  595. {
  596. unsigned long flags;
  597. spin_lock_irqsave(&master->queue_lock, flags);
  598. if (master->running || master->busy) {
  599. spin_unlock_irqrestore(&master->queue_lock, flags);
  600. return -EBUSY;
  601. }
  602. master->running = true;
  603. master->cur_msg = NULL;
  604. spin_unlock_irqrestore(&master->queue_lock, flags);
  605. queue_kthread_work(&master->kworker, &master->pump_messages);
  606. return 0;
  607. }
  608. static int spi_stop_queue(struct spi_master *master)
  609. {
  610. unsigned long flags;
  611. unsigned limit = 500;
  612. int ret = 0;
  613. spin_lock_irqsave(&master->queue_lock, flags);
  614. /*
  615. * This is a bit lame, but is optimized for the common execution path.
  616. * A wait_queue on the master->busy could be used, but then the common
  617. * execution path (pump_messages) would be required to call wake_up or
  618. * friends on every SPI message. Do this instead.
  619. */
  620. while ((!list_empty(&master->queue) || master->busy) && limit--) {
  621. spin_unlock_irqrestore(&master->queue_lock, flags);
  622. msleep(10);
  623. spin_lock_irqsave(&master->queue_lock, flags);
  624. }
  625. if (!list_empty(&master->queue) || master->busy)
  626. ret = -EBUSY;
  627. else
  628. master->running = false;
  629. spin_unlock_irqrestore(&master->queue_lock, flags);
  630. if (ret) {
  631. dev_warn(&master->dev,
  632. "could not stop message queue\n");
  633. return ret;
  634. }
  635. return ret;
  636. }
  637. static int spi_destroy_queue(struct spi_master *master)
  638. {
  639. int ret;
  640. ret = spi_stop_queue(master);
  641. /*
  642. * flush_kthread_worker will block until all work is done.
  643. * If the reason that stop_queue timed out is that the work will never
  644. * finish, then it does no good to call flush/stop thread, so
  645. * return anyway.
  646. */
  647. if (ret) {
  648. dev_err(&master->dev, "problem destroying queue\n");
  649. return ret;
  650. }
  651. flush_kthread_worker(&master->kworker);
  652. kthread_stop(master->kworker_task);
  653. return 0;
  654. }
  655. /**
  656. * spi_queued_transfer - transfer function for queued transfers
  657. * @spi: spi device which is requesting transfer
  658. * @msg: spi message which is to handled is queued to driver queue
  659. */
  660. static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
  661. {
  662. struct spi_master *master = spi->master;
  663. unsigned long flags;
  664. spin_lock_irqsave(&master->queue_lock, flags);
  665. if (!master->running) {
  666. spin_unlock_irqrestore(&master->queue_lock, flags);
  667. return -ESHUTDOWN;
  668. }
  669. msg->actual_length = 0;
  670. msg->status = -EINPROGRESS;
  671. list_add_tail(&msg->queue, &master->queue);
  672. if (!master->busy)
  673. queue_kthread_work(&master->kworker, &master->pump_messages);
  674. spin_unlock_irqrestore(&master->queue_lock, flags);
  675. return 0;
  676. }
  677. static int spi_master_initialize_queue(struct spi_master *master)
  678. {
  679. int ret;
  680. master->queued = true;
  681. master->transfer = spi_queued_transfer;
  682. /* Initialize and start queue */
  683. ret = spi_init_queue(master);
  684. if (ret) {
  685. dev_err(&master->dev, "problem initializing queue\n");
  686. goto err_init_queue;
  687. }
  688. ret = spi_start_queue(master);
  689. if (ret) {
  690. dev_err(&master->dev, "problem starting queue\n");
  691. goto err_start_queue;
  692. }
  693. return 0;
  694. err_start_queue:
  695. err_init_queue:
  696. spi_destroy_queue(master);
  697. return ret;
  698. }
  699. /*-------------------------------------------------------------------------*/
  700. #if defined(CONFIG_OF)
  701. /**
  702. * of_register_spi_devices() - Register child devices onto the SPI bus
  703. * @master: Pointer to spi_master device
  704. *
  705. * Registers an spi_device for each child node of master node which has a 'reg'
  706. * property.
  707. */
  708. static void of_register_spi_devices(struct spi_master *master)
  709. {
  710. struct spi_device *spi;
  711. struct device_node *nc;
  712. const __be32 *prop;
  713. char modalias[SPI_NAME_SIZE + 4];
  714. int rc;
  715. int len;
  716. if (!master->dev.of_node)
  717. return;
  718. for_each_available_child_of_node(master->dev.of_node, nc) {
  719. /* Alloc an spi_device */
  720. spi = spi_alloc_device(master);
  721. if (!spi) {
  722. dev_err(&master->dev, "spi_device alloc error for %s\n",
  723. nc->full_name);
  724. spi_dev_put(spi);
  725. continue;
  726. }
  727. /* Select device driver */
  728. if (of_modalias_node(nc, spi->modalias,
  729. sizeof(spi->modalias)) < 0) {
  730. dev_err(&master->dev, "cannot find modalias for %s\n",
  731. nc->full_name);
  732. spi_dev_put(spi);
  733. continue;
  734. }
  735. /* Device address */
  736. prop = of_get_property(nc, "reg", &len);
  737. if (!prop || len < sizeof(*prop)) {
  738. dev_err(&master->dev, "%s has no 'reg' property\n",
  739. nc->full_name);
  740. spi_dev_put(spi);
  741. continue;
  742. }
  743. spi->chip_select = be32_to_cpup(prop);
  744. /* Mode (clock phase/polarity/etc.) */
  745. if (of_find_property(nc, "spi-cpha", NULL))
  746. spi->mode |= SPI_CPHA;
  747. if (of_find_property(nc, "spi-cpol", NULL))
  748. spi->mode |= SPI_CPOL;
  749. if (of_find_property(nc, "spi-cs-high", NULL))
  750. spi->mode |= SPI_CS_HIGH;
  751. if (of_find_property(nc, "spi-3wire", NULL))
  752. spi->mode |= SPI_3WIRE;
  753. /* Device DUAL/QUAD mode */
  754. prop = of_get_property(nc, "spi-tx-bus-width", &len);
  755. if (prop && len == sizeof(*prop)) {
  756. switch (be32_to_cpup(prop)) {
  757. case SPI_NBITS_SINGLE:
  758. break;
  759. case SPI_NBITS_DUAL:
  760. spi->mode |= SPI_TX_DUAL;
  761. break;
  762. case SPI_NBITS_QUAD:
  763. spi->mode |= SPI_TX_QUAD;
  764. break;
  765. default:
  766. dev_err(&master->dev,
  767. "spi-tx-bus-width %d not supported\n",
  768. be32_to_cpup(prop));
  769. spi_dev_put(spi);
  770. continue;
  771. }
  772. }
  773. prop = of_get_property(nc, "spi-rx-bus-width", &len);
  774. if (prop && len == sizeof(*prop)) {
  775. switch (be32_to_cpup(prop)) {
  776. case SPI_NBITS_SINGLE:
  777. break;
  778. case SPI_NBITS_DUAL:
  779. spi->mode |= SPI_RX_DUAL;
  780. break;
  781. case SPI_NBITS_QUAD:
  782. spi->mode |= SPI_RX_QUAD;
  783. break;
  784. default:
  785. dev_err(&master->dev,
  786. "spi-rx-bus-width %d not supported\n",
  787. be32_to_cpup(prop));
  788. spi_dev_put(spi);
  789. continue;
  790. }
  791. }
  792. /* Device speed */
  793. prop = of_get_property(nc, "spi-max-frequency", &len);
  794. if (!prop || len < sizeof(*prop)) {
  795. dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
  796. nc->full_name);
  797. spi_dev_put(spi);
  798. continue;
  799. }
  800. spi->max_speed_hz = be32_to_cpup(prop);
  801. /* IRQ */
  802. spi->irq = irq_of_parse_and_map(nc, 0);
  803. /* Store a pointer to the node in the device structure */
  804. of_node_get(nc);
  805. spi->dev.of_node = nc;
  806. /* Register the new device */
  807. snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX,
  808. spi->modalias);
  809. request_module(modalias);
  810. rc = spi_add_device(spi);
  811. if (rc) {
  812. dev_err(&master->dev, "spi_device register error %s\n",
  813. nc->full_name);
  814. spi_dev_put(spi);
  815. }
  816. }
  817. }
  818. #else
  819. static void of_register_spi_devices(struct spi_master *master) { }
  820. #endif
  821. #ifdef CONFIG_ACPI
  822. static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
  823. {
  824. struct spi_device *spi = data;
  825. if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
  826. struct acpi_resource_spi_serialbus *sb;
  827. sb = &ares->data.spi_serial_bus;
  828. if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
  829. spi->chip_select = sb->device_selection;
  830. spi->max_speed_hz = sb->connection_speed;
  831. if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
  832. spi->mode |= SPI_CPHA;
  833. if (sb->clock_polarity == ACPI_SPI_START_HIGH)
  834. spi->mode |= SPI_CPOL;
  835. if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
  836. spi->mode |= SPI_CS_HIGH;
  837. }
  838. } else if (spi->irq < 0) {
  839. struct resource r;
  840. if (acpi_dev_resource_interrupt(ares, 0, &r))
  841. spi->irq = r.start;
  842. }
  843. /* Always tell the ACPI core to skip this resource */
  844. return 1;
  845. }
  846. static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
  847. void *data, void **return_value)
  848. {
  849. struct spi_master *master = data;
  850. struct list_head resource_list;
  851. struct acpi_device *adev;
  852. struct spi_device *spi;
  853. int ret;
  854. if (acpi_bus_get_device(handle, &adev))
  855. return AE_OK;
  856. if (acpi_bus_get_status(adev) || !adev->status.present)
  857. return AE_OK;
  858. spi = spi_alloc_device(master);
  859. if (!spi) {
  860. dev_err(&master->dev, "failed to allocate SPI device for %s\n",
  861. dev_name(&adev->dev));
  862. return AE_NO_MEMORY;
  863. }
  864. ACPI_HANDLE_SET(&spi->dev, handle);
  865. spi->irq = -1;
  866. INIT_LIST_HEAD(&resource_list);
  867. ret = acpi_dev_get_resources(adev, &resource_list,
  868. acpi_spi_add_resource, spi);
  869. acpi_dev_free_resource_list(&resource_list);
  870. if (ret < 0 || !spi->max_speed_hz) {
  871. spi_dev_put(spi);
  872. return AE_OK;
  873. }
  874. strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
  875. if (spi_add_device(spi)) {
  876. dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
  877. dev_name(&adev->dev));
  878. spi_dev_put(spi);
  879. }
  880. return AE_OK;
  881. }
  882. static void acpi_register_spi_devices(struct spi_master *master)
  883. {
  884. acpi_status status;
  885. acpi_handle handle;
  886. handle = ACPI_HANDLE(master->dev.parent);
  887. if (!handle)
  888. return;
  889. status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
  890. acpi_spi_add_device, NULL,
  891. master, NULL);
  892. if (ACPI_FAILURE(status))
  893. dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
  894. }
  895. #else
  896. static inline void acpi_register_spi_devices(struct spi_master *master) {}
  897. #endif /* CONFIG_ACPI */
  898. static void spi_master_release(struct device *dev)
  899. {
  900. struct spi_master *master;
  901. master = container_of(dev, struct spi_master, dev);
  902. kfree(master);
  903. }
  904. static struct class spi_master_class = {
  905. .name = "spi_master",
  906. .owner = THIS_MODULE,
  907. .dev_release = spi_master_release,
  908. };
  909. /**
  910. * spi_alloc_master - allocate SPI master controller
  911. * @dev: the controller, possibly using the platform_bus
  912. * @size: how much zeroed driver-private data to allocate; the pointer to this
  913. * memory is in the driver_data field of the returned device,
  914. * accessible with spi_master_get_devdata().
  915. * Context: can sleep
  916. *
  917. * This call is used only by SPI master controller drivers, which are the
  918. * only ones directly touching chip registers. It's how they allocate
  919. * an spi_master structure, prior to calling spi_register_master().
  920. *
  921. * This must be called from context that can sleep. It returns the SPI
  922. * master structure on success, else NULL.
  923. *
  924. * The caller is responsible for assigning the bus number and initializing
  925. * the master's methods before calling spi_register_master(); and (after errors
  926. * adding the device) calling spi_master_put() and kfree() to prevent a memory
  927. * leak.
  928. */
  929. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  930. {
  931. struct spi_master *master;
  932. if (!dev)
  933. return NULL;
  934. master = kzalloc(size + sizeof *master, GFP_KERNEL);
  935. if (!master)
  936. return NULL;
  937. device_initialize(&master->dev);
  938. master->bus_num = -1;
  939. master->num_chipselect = 1;
  940. master->dev.class = &spi_master_class;
  941. master->dev.parent = get_device(dev);
  942. spi_master_set_devdata(master, &master[1]);
  943. return master;
  944. }
  945. EXPORT_SYMBOL_GPL(spi_alloc_master);
  946. #ifdef CONFIG_OF
  947. static int of_spi_register_master(struct spi_master *master)
  948. {
  949. int nb, i, *cs;
  950. struct device_node *np = master->dev.of_node;
  951. if (!np)
  952. return 0;
  953. nb = of_gpio_named_count(np, "cs-gpios");
  954. master->num_chipselect = max(nb, (int)master->num_chipselect);
  955. /* Return error only for an incorrectly formed cs-gpios property */
  956. if (nb == 0 || nb == -ENOENT)
  957. return 0;
  958. else if (nb < 0)
  959. return nb;
  960. cs = devm_kzalloc(&master->dev,
  961. sizeof(int) * master->num_chipselect,
  962. GFP_KERNEL);
  963. master->cs_gpios = cs;
  964. if (!master->cs_gpios)
  965. return -ENOMEM;
  966. for (i = 0; i < master->num_chipselect; i++)
  967. cs[i] = -ENOENT;
  968. for (i = 0; i < nb; i++)
  969. cs[i] = of_get_named_gpio(np, "cs-gpios", i);
  970. return 0;
  971. }
  972. #else
  973. static int of_spi_register_master(struct spi_master *master)
  974. {
  975. return 0;
  976. }
  977. #endif
  978. /**
  979. * spi_register_master - register SPI master controller
  980. * @master: initialized master, originally from spi_alloc_master()
  981. * Context: can sleep
  982. *
  983. * SPI master controllers connect to their drivers using some non-SPI bus,
  984. * such as the platform bus. The final stage of probe() in that code
  985. * includes calling spi_register_master() to hook up to this SPI bus glue.
  986. *
  987. * SPI controllers use board specific (often SOC specific) bus numbers,
  988. * and board-specific addressing for SPI devices combines those numbers
  989. * with chip select numbers. Since SPI does not directly support dynamic
  990. * device identification, boards need configuration tables telling which
  991. * chip is at which address.
  992. *
  993. * This must be called from context that can sleep. It returns zero on
  994. * success, else a negative error code (dropping the master's refcount).
  995. * After a successful return, the caller is responsible for calling
  996. * spi_unregister_master().
  997. */
  998. int spi_register_master(struct spi_master *master)
  999. {
  1000. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
  1001. struct device *dev = master->dev.parent;
  1002. struct boardinfo *bi;
  1003. int status = -ENODEV;
  1004. int dynamic = 0;
  1005. if (!dev)
  1006. return -ENODEV;
  1007. status = of_spi_register_master(master);
  1008. if (status)
  1009. return status;
  1010. /* even if it's just one always-selected device, there must
  1011. * be at least one chipselect
  1012. */
  1013. if (master->num_chipselect == 0)
  1014. return -EINVAL;
  1015. if ((master->bus_num < 0) && master->dev.of_node)
  1016. master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
  1017. /* convention: dynamically assigned bus IDs count down from the max */
  1018. if (master->bus_num < 0) {
  1019. /* FIXME switch to an IDR based scheme, something like
  1020. * I2C now uses, so we can't run out of "dynamic" IDs
  1021. */
  1022. master->bus_num = atomic_dec_return(&dyn_bus_id);
  1023. dynamic = 1;
  1024. }
  1025. spin_lock_init(&master->bus_lock_spinlock);
  1026. mutex_init(&master->bus_lock_mutex);
  1027. master->bus_lock_flag = 0;
  1028. /* register the device, then userspace will see it.
  1029. * registration fails if the bus ID is in use.
  1030. */
  1031. dev_set_name(&master->dev, "spi%u", master->bus_num);
  1032. status = device_add(&master->dev);
  1033. if (status < 0)
  1034. goto done;
  1035. dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
  1036. dynamic ? " (dynamic)" : "");
  1037. /* If we're using a queued driver, start the queue */
  1038. if (master->transfer)
  1039. dev_info(dev, "master is unqueued, this is deprecated\n");
  1040. else {
  1041. status = spi_master_initialize_queue(master);
  1042. if (status) {
  1043. device_del(&master->dev);
  1044. goto done;
  1045. }
  1046. }
  1047. mutex_lock(&board_lock);
  1048. list_add_tail(&master->list, &spi_master_list);
  1049. list_for_each_entry(bi, &board_list, list)
  1050. spi_match_master_to_boardinfo(master, &bi->board_info);
  1051. mutex_unlock(&board_lock);
  1052. /* Register devices from the device tree and ACPI */
  1053. of_register_spi_devices(master);
  1054. acpi_register_spi_devices(master);
  1055. done:
  1056. return status;
  1057. }
  1058. EXPORT_SYMBOL_GPL(spi_register_master);
  1059. static void devm_spi_unregister(struct device *dev, void *res)
  1060. {
  1061. spi_unregister_master(*(struct spi_master **)res);
  1062. }
  1063. /**
  1064. * dev_spi_register_master - register managed SPI master controller
  1065. * @dev: device managing SPI master
  1066. * @master: initialized master, originally from spi_alloc_master()
  1067. * Context: can sleep
  1068. *
  1069. * Register a SPI device as with spi_register_master() which will
  1070. * automatically be unregister
  1071. */
  1072. int devm_spi_register_master(struct device *dev, struct spi_master *master)
  1073. {
  1074. struct spi_master **ptr;
  1075. int ret;
  1076. ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
  1077. if (!ptr)
  1078. return -ENOMEM;
  1079. ret = spi_register_master(master);
  1080. if (ret != 0) {
  1081. *ptr = master;
  1082. devres_add(dev, ptr);
  1083. } else {
  1084. devres_free(ptr);
  1085. }
  1086. return ret;
  1087. }
  1088. EXPORT_SYMBOL_GPL(devm_spi_register_master);
  1089. static int __unregister(struct device *dev, void *null)
  1090. {
  1091. spi_unregister_device(to_spi_device(dev));
  1092. return 0;
  1093. }
  1094. /**
  1095. * spi_unregister_master - unregister SPI master controller
  1096. * @master: the master being unregistered
  1097. * Context: can sleep
  1098. *
  1099. * This call is used only by SPI master controller drivers, which are the
  1100. * only ones directly touching chip registers.
  1101. *
  1102. * This must be called from context that can sleep.
  1103. */
  1104. void spi_unregister_master(struct spi_master *master)
  1105. {
  1106. int dummy;
  1107. if (master->queued) {
  1108. if (spi_destroy_queue(master))
  1109. dev_err(&master->dev, "queue remove failed\n");
  1110. }
  1111. mutex_lock(&board_lock);
  1112. list_del(&master->list);
  1113. mutex_unlock(&board_lock);
  1114. dummy = device_for_each_child(&master->dev, NULL, __unregister);
  1115. device_unregister(&master->dev);
  1116. }
  1117. EXPORT_SYMBOL_GPL(spi_unregister_master);
  1118. int spi_master_suspend(struct spi_master *master)
  1119. {
  1120. int ret;
  1121. /* Basically no-ops for non-queued masters */
  1122. if (!master->queued)
  1123. return 0;
  1124. ret = spi_stop_queue(master);
  1125. if (ret)
  1126. dev_err(&master->dev, "queue stop failed\n");
  1127. return ret;
  1128. }
  1129. EXPORT_SYMBOL_GPL(spi_master_suspend);
  1130. int spi_master_resume(struct spi_master *master)
  1131. {
  1132. int ret;
  1133. if (!master->queued)
  1134. return 0;
  1135. ret = spi_start_queue(master);
  1136. if (ret)
  1137. dev_err(&master->dev, "queue restart failed\n");
  1138. return ret;
  1139. }
  1140. EXPORT_SYMBOL_GPL(spi_master_resume);
  1141. static int __spi_master_match(struct device *dev, const void *data)
  1142. {
  1143. struct spi_master *m;
  1144. const u16 *bus_num = data;
  1145. m = container_of(dev, struct spi_master, dev);
  1146. return m->bus_num == *bus_num;
  1147. }
  1148. /**
  1149. * spi_busnum_to_master - look up master associated with bus_num
  1150. * @bus_num: the master's bus number
  1151. * Context: can sleep
  1152. *
  1153. * This call may be used with devices that are registered after
  1154. * arch init time. It returns a refcounted pointer to the relevant
  1155. * spi_master (which the caller must release), or NULL if there is
  1156. * no such master registered.
  1157. */
  1158. struct spi_master *spi_busnum_to_master(u16 bus_num)
  1159. {
  1160. struct device *dev;
  1161. struct spi_master *master = NULL;
  1162. dev = class_find_device(&spi_master_class, NULL, &bus_num,
  1163. __spi_master_match);
  1164. if (dev)
  1165. master = container_of(dev, struct spi_master, dev);
  1166. /* reference got in class_find_device */
  1167. return master;
  1168. }
  1169. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  1170. /*-------------------------------------------------------------------------*/
  1171. /* Core methods for SPI master protocol drivers. Some of the
  1172. * other core methods are currently defined as inline functions.
  1173. */
  1174. /**
  1175. * spi_setup - setup SPI mode and clock rate
  1176. * @spi: the device whose settings are being modified
  1177. * Context: can sleep, and no requests are queued to the device
  1178. *
  1179. * SPI protocol drivers may need to update the transfer mode if the
  1180. * device doesn't work with its default. They may likewise need
  1181. * to update clock rates or word sizes from initial values. This function
  1182. * changes those settings, and must be called from a context that can sleep.
  1183. * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
  1184. * effect the next time the device is selected and data is transferred to
  1185. * or from it. When this function returns, the spi device is deselected.
  1186. *
  1187. * Note that this call will fail if the protocol driver specifies an option
  1188. * that the underlying controller or its driver does not support. For
  1189. * example, not all hardware supports wire transfers using nine bit words,
  1190. * LSB-first wire encoding, or active-high chipselects.
  1191. */
  1192. int spi_setup(struct spi_device *spi)
  1193. {
  1194. unsigned bad_bits;
  1195. int status = 0;
  1196. /* check mode to prevent that DUAL and QUAD set at the same time
  1197. */
  1198. if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
  1199. ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
  1200. dev_err(&spi->dev,
  1201. "setup: can not select dual and quad at the same time\n");
  1202. return -EINVAL;
  1203. }
  1204. /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
  1205. */
  1206. if ((spi->mode & SPI_3WIRE) && (spi->mode &
  1207. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
  1208. return -EINVAL;
  1209. /* help drivers fail *cleanly* when they need options
  1210. * that aren't supported with their current master
  1211. */
  1212. bad_bits = spi->mode & ~spi->master->mode_bits;
  1213. if (bad_bits) {
  1214. dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
  1215. bad_bits);
  1216. return -EINVAL;
  1217. }
  1218. if (!spi->bits_per_word)
  1219. spi->bits_per_word = 8;
  1220. if (spi->master->setup)
  1221. status = spi->master->setup(spi);
  1222. dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
  1223. "%u bits/w, %u Hz max --> %d\n",
  1224. (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
  1225. (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
  1226. (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
  1227. (spi->mode & SPI_3WIRE) ? "3wire, " : "",
  1228. (spi->mode & SPI_LOOP) ? "loopback, " : "",
  1229. spi->bits_per_word, spi->max_speed_hz,
  1230. status);
  1231. return status;
  1232. }
  1233. EXPORT_SYMBOL_GPL(spi_setup);
  1234. static int __spi_async(struct spi_device *spi, struct spi_message *message)
  1235. {
  1236. struct spi_master *master = spi->master;
  1237. struct spi_transfer *xfer;
  1238. if (list_empty(&message->transfers))
  1239. return -EINVAL;
  1240. if (!message->complete)
  1241. return -EINVAL;
  1242. /* Half-duplex links include original MicroWire, and ones with
  1243. * only one data pin like SPI_3WIRE (switches direction) or where
  1244. * either MOSI or MISO is missing. They can also be caused by
  1245. * software limitations.
  1246. */
  1247. if ((master->flags & SPI_MASTER_HALF_DUPLEX)
  1248. || (spi->mode & SPI_3WIRE)) {
  1249. unsigned flags = master->flags;
  1250. list_for_each_entry(xfer, &message->transfers, transfer_list) {
  1251. if (xfer->rx_buf && xfer->tx_buf)
  1252. return -EINVAL;
  1253. if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
  1254. return -EINVAL;
  1255. if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
  1256. return -EINVAL;
  1257. }
  1258. }
  1259. /**
  1260. * Set transfer bits_per_word and max speed as spi device default if
  1261. * it is not set for this transfer.
  1262. * Set transfer tx_nbits and rx_nbits as single transfer default
  1263. * (SPI_NBITS_SINGLE) if it is not set for this transfer.
  1264. */
  1265. list_for_each_entry(xfer, &message->transfers, transfer_list) {
  1266. message->frame_length += xfer->len;
  1267. if (!xfer->bits_per_word)
  1268. xfer->bits_per_word = spi->bits_per_word;
  1269. if (!xfer->speed_hz) {
  1270. xfer->speed_hz = spi->max_speed_hz;
  1271. if (master->max_speed_hz &&
  1272. xfer->speed_hz > master->max_speed_hz)
  1273. xfer->speed_hz = master->max_speed_hz;
  1274. }
  1275. if (master->bits_per_word_mask) {
  1276. /* Only 32 bits fit in the mask */
  1277. if (xfer->bits_per_word > 32)
  1278. return -EINVAL;
  1279. if (!(master->bits_per_word_mask &
  1280. BIT(xfer->bits_per_word - 1)))
  1281. return -EINVAL;
  1282. }
  1283. if (xfer->speed_hz && master->min_speed_hz &&
  1284. xfer->speed_hz < master->min_speed_hz)
  1285. return -EINVAL;
  1286. if (xfer->speed_hz && master->max_speed_hz &&
  1287. xfer->speed_hz > master->max_speed_hz)
  1288. return -EINVAL;
  1289. if (xfer->tx_buf && !xfer->tx_nbits)
  1290. xfer->tx_nbits = SPI_NBITS_SINGLE;
  1291. if (xfer->rx_buf && !xfer->rx_nbits)
  1292. xfer->rx_nbits = SPI_NBITS_SINGLE;
  1293. /* check transfer tx/rx_nbits:
  1294. * 1. keep the value is not out of single, dual and quad
  1295. * 2. keep tx/rx_nbits is contained by mode in spi_device
  1296. * 3. if SPI_3WIRE, tx/rx_nbits should be in single
  1297. */
  1298. if (xfer->tx_buf) {
  1299. if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
  1300. xfer->tx_nbits != SPI_NBITS_DUAL &&
  1301. xfer->tx_nbits != SPI_NBITS_QUAD)
  1302. return -EINVAL;
  1303. if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
  1304. !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
  1305. return -EINVAL;
  1306. if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
  1307. !(spi->mode & SPI_TX_QUAD))
  1308. return -EINVAL;
  1309. if ((spi->mode & SPI_3WIRE) &&
  1310. (xfer->tx_nbits != SPI_NBITS_SINGLE))
  1311. return -EINVAL;
  1312. }
  1313. /* check transfer rx_nbits */
  1314. if (xfer->rx_buf) {
  1315. if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
  1316. xfer->rx_nbits != SPI_NBITS_DUAL &&
  1317. xfer->rx_nbits != SPI_NBITS_QUAD)
  1318. return -EINVAL;
  1319. if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
  1320. !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
  1321. return -EINVAL;
  1322. if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
  1323. !(spi->mode & SPI_RX_QUAD))
  1324. return -EINVAL;
  1325. if ((spi->mode & SPI_3WIRE) &&
  1326. (xfer->rx_nbits != SPI_NBITS_SINGLE))
  1327. return -EINVAL;
  1328. }
  1329. }
  1330. message->spi = spi;
  1331. message->status = -EINPROGRESS;
  1332. return master->transfer(spi, message);
  1333. }
  1334. /**
  1335. * spi_async - asynchronous SPI transfer
  1336. * @spi: device with which data will be exchanged
  1337. * @message: describes the data transfers, including completion callback
  1338. * Context: any (irqs may be blocked, etc)
  1339. *
  1340. * This call may be used in_irq and other contexts which can't sleep,
  1341. * as well as from task contexts which can sleep.
  1342. *
  1343. * The completion callback is invoked in a context which can't sleep.
  1344. * Before that invocation, the value of message->status is undefined.
  1345. * When the callback is issued, message->status holds either zero (to
  1346. * indicate complete success) or a negative error code. After that
  1347. * callback returns, the driver which issued the transfer request may
  1348. * deallocate the associated memory; it's no longer in use by any SPI
  1349. * core or controller driver code.
  1350. *
  1351. * Note that although all messages to a spi_device are handled in
  1352. * FIFO order, messages may go to different devices in other orders.
  1353. * Some device might be higher priority, or have various "hard" access
  1354. * time requirements, for example.
  1355. *
  1356. * On detection of any fault during the transfer, processing of
  1357. * the entire message is aborted, and the device is deselected.
  1358. * Until returning from the associated message completion callback,
  1359. * no other spi_message queued to that device will be processed.
  1360. * (This rule applies equally to all the synchronous transfer calls,
  1361. * which are wrappers around this core asynchronous primitive.)
  1362. */
  1363. int spi_async(struct spi_device *spi, struct spi_message *message)
  1364. {
  1365. struct spi_master *master = spi->master;
  1366. int ret;
  1367. unsigned long flags;
  1368. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  1369. if (master->bus_lock_flag)
  1370. ret = -EBUSY;
  1371. else
  1372. ret = __spi_async(spi, message);
  1373. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  1374. return ret;
  1375. }
  1376. EXPORT_SYMBOL_GPL(spi_async);
  1377. /**
  1378. * spi_async_locked - version of spi_async with exclusive bus usage
  1379. * @spi: device with which data will be exchanged
  1380. * @message: describes the data transfers, including completion callback
  1381. * Context: any (irqs may be blocked, etc)
  1382. *
  1383. * This call may be used in_irq and other contexts which can't sleep,
  1384. * as well as from task contexts which can sleep.
  1385. *
  1386. * The completion callback is invoked in a context which can't sleep.
  1387. * Before that invocation, the value of message->status is undefined.
  1388. * When the callback is issued, message->status holds either zero (to
  1389. * indicate complete success) or a negative error code. After that
  1390. * callback returns, the driver which issued the transfer request may
  1391. * deallocate the associated memory; it's no longer in use by any SPI
  1392. * core or controller driver code.
  1393. *
  1394. * Note that although all messages to a spi_device are handled in
  1395. * FIFO order, messages may go to different devices in other orders.
  1396. * Some device might be higher priority, or have various "hard" access
  1397. * time requirements, for example.
  1398. *
  1399. * On detection of any fault during the transfer, processing of
  1400. * the entire message is aborted, and the device is deselected.
  1401. * Until returning from the associated message completion callback,
  1402. * no other spi_message queued to that device will be processed.
  1403. * (This rule applies equally to all the synchronous transfer calls,
  1404. * which are wrappers around this core asynchronous primitive.)
  1405. */
  1406. int spi_async_locked(struct spi_device *spi, struct spi_message *message)
  1407. {
  1408. struct spi_master *master = spi->master;
  1409. int ret;
  1410. unsigned long flags;
  1411. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  1412. ret = __spi_async(spi, message);
  1413. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  1414. return ret;
  1415. }
  1416. EXPORT_SYMBOL_GPL(spi_async_locked);
  1417. /*-------------------------------------------------------------------------*/
  1418. /* Utility methods for SPI master protocol drivers, layered on
  1419. * top of the core. Some other utility methods are defined as
  1420. * inline functions.
  1421. */
  1422. static void spi_complete(void *arg)
  1423. {
  1424. complete(arg);
  1425. }
  1426. static int __spi_sync(struct spi_device *spi, struct spi_message *message,
  1427. int bus_locked)
  1428. {
  1429. DECLARE_COMPLETION_ONSTACK(done);
  1430. int status;
  1431. struct spi_master *master = spi->master;
  1432. message->complete = spi_complete;
  1433. message->context = &done;
  1434. if (!bus_locked)
  1435. mutex_lock(&master->bus_lock_mutex);
  1436. status = spi_async_locked(spi, message);
  1437. if (!bus_locked)
  1438. mutex_unlock(&master->bus_lock_mutex);
  1439. if (status == 0) {
  1440. wait_for_completion(&done);
  1441. status = message->status;
  1442. }
  1443. message->context = NULL;
  1444. return status;
  1445. }
  1446. /**
  1447. * spi_sync - blocking/synchronous SPI data transfers
  1448. * @spi: device with which data will be exchanged
  1449. * @message: describes the data transfers
  1450. * Context: can sleep
  1451. *
  1452. * This call may only be used from a context that may sleep. The sleep
  1453. * is non-interruptible, and has no timeout. Low-overhead controller
  1454. * drivers may DMA directly into and out of the message buffers.
  1455. *
  1456. * Note that the SPI device's chip select is active during the message,
  1457. * and then is normally disabled between messages. Drivers for some
  1458. * frequently-used devices may want to minimize costs of selecting a chip,
  1459. * by leaving it selected in anticipation that the next message will go
  1460. * to the same chip. (That may increase power usage.)
  1461. *
  1462. * Also, the caller is guaranteeing that the memory associated with the
  1463. * message will not be freed before this call returns.
  1464. *
  1465. * It returns zero on success, else a negative error code.
  1466. */
  1467. int spi_sync(struct spi_device *spi, struct spi_message *message)
  1468. {
  1469. return __spi_sync(spi, message, 0);
  1470. }
  1471. EXPORT_SYMBOL_GPL(spi_sync);
  1472. /**
  1473. * spi_sync_locked - version of spi_sync with exclusive bus usage
  1474. * @spi: device with which data will be exchanged
  1475. * @message: describes the data transfers
  1476. * Context: can sleep
  1477. *
  1478. * This call may only be used from a context that may sleep. The sleep
  1479. * is non-interruptible, and has no timeout. Low-overhead controller
  1480. * drivers may DMA directly into and out of the message buffers.
  1481. *
  1482. * This call should be used by drivers that require exclusive access to the
  1483. * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
  1484. * be released by a spi_bus_unlock call when the exclusive access is over.
  1485. *
  1486. * It returns zero on success, else a negative error code.
  1487. */
  1488. int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
  1489. {
  1490. return __spi_sync(spi, message, 1);
  1491. }
  1492. EXPORT_SYMBOL_GPL(spi_sync_locked);
  1493. /**
  1494. * spi_bus_lock - obtain a lock for exclusive SPI bus usage
  1495. * @master: SPI bus master that should be locked for exclusive bus access
  1496. * Context: can sleep
  1497. *
  1498. * This call may only be used from a context that may sleep. The sleep
  1499. * is non-interruptible, and has no timeout.
  1500. *
  1501. * This call should be used by drivers that require exclusive access to the
  1502. * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
  1503. * exclusive access is over. Data transfer must be done by spi_sync_locked
  1504. * and spi_async_locked calls when the SPI bus lock is held.
  1505. *
  1506. * It returns zero on success, else a negative error code.
  1507. */
  1508. int spi_bus_lock(struct spi_master *master)
  1509. {
  1510. unsigned long flags;
  1511. mutex_lock(&master->bus_lock_mutex);
  1512. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  1513. master->bus_lock_flag = 1;
  1514. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  1515. /* mutex remains locked until spi_bus_unlock is called */
  1516. return 0;
  1517. }
  1518. EXPORT_SYMBOL_GPL(spi_bus_lock);
  1519. /**
  1520. * spi_bus_unlock - release the lock for exclusive SPI bus usage
  1521. * @master: SPI bus master that was locked for exclusive bus access
  1522. * Context: can sleep
  1523. *
  1524. * This call may only be used from a context that may sleep. The sleep
  1525. * is non-interruptible, and has no timeout.
  1526. *
  1527. * This call releases an SPI bus lock previously obtained by an spi_bus_lock
  1528. * call.
  1529. *
  1530. * It returns zero on success, else a negative error code.
  1531. */
  1532. int spi_bus_unlock(struct spi_master *master)
  1533. {
  1534. master->bus_lock_flag = 0;
  1535. mutex_unlock(&master->bus_lock_mutex);
  1536. return 0;
  1537. }
  1538. EXPORT_SYMBOL_GPL(spi_bus_unlock);
  1539. /* portable code must never pass more than 32 bytes */
  1540. #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
  1541. static u8 *buf;
  1542. /**
  1543. * spi_write_then_read - SPI synchronous write followed by read
  1544. * @spi: device with which data will be exchanged
  1545. * @txbuf: data to be written (need not be dma-safe)
  1546. * @n_tx: size of txbuf, in bytes
  1547. * @rxbuf: buffer into which data will be read (need not be dma-safe)
  1548. * @n_rx: size of rxbuf, in bytes
  1549. * Context: can sleep
  1550. *
  1551. * This performs a half duplex MicroWire style transaction with the
  1552. * device, sending txbuf and then reading rxbuf. The return value
  1553. * is zero for success, else a negative errno status code.
  1554. * This call may only be used from a context that may sleep.
  1555. *
  1556. * Parameters to this routine are always copied using a small buffer;
  1557. * portable code should never use this for more than 32 bytes.
  1558. * Performance-sensitive or bulk transfer code should instead use
  1559. * spi_{async,sync}() calls with dma-safe buffers.
  1560. */
  1561. int spi_write_then_read(struct spi_device *spi,
  1562. const void *txbuf, unsigned n_tx,
  1563. void *rxbuf, unsigned n_rx)
  1564. {
  1565. static DEFINE_MUTEX(lock);
  1566. int status;
  1567. struct spi_message message;
  1568. struct spi_transfer x[2];
  1569. u8 *local_buf;
  1570. /* Use preallocated DMA-safe buffer if we can. We can't avoid
  1571. * copying here, (as a pure convenience thing), but we can
  1572. * keep heap costs out of the hot path unless someone else is
  1573. * using the pre-allocated buffer or the transfer is too large.
  1574. */
  1575. if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
  1576. local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
  1577. GFP_KERNEL | GFP_DMA);
  1578. if (!local_buf)
  1579. return -ENOMEM;
  1580. } else {
  1581. local_buf = buf;
  1582. }
  1583. spi_message_init(&message);
  1584. memset(x, 0, sizeof x);
  1585. if (n_tx) {
  1586. x[0].len = n_tx;
  1587. spi_message_add_tail(&x[0], &message);
  1588. }
  1589. if (n_rx) {
  1590. x[1].len = n_rx;
  1591. spi_message_add_tail(&x[1], &message);
  1592. }
  1593. memcpy(local_buf, txbuf, n_tx);
  1594. x[0].tx_buf = local_buf;
  1595. x[1].rx_buf = local_buf + n_tx;
  1596. /* do the i/o */
  1597. status = spi_sync(spi, &message);
  1598. if (status == 0)
  1599. memcpy(rxbuf, x[1].rx_buf, n_rx);
  1600. if (x[0].tx_buf == buf)
  1601. mutex_unlock(&lock);
  1602. else
  1603. kfree(local_buf);
  1604. return status;
  1605. }
  1606. EXPORT_SYMBOL_GPL(spi_write_then_read);
  1607. /*-------------------------------------------------------------------------*/
  1608. static int __init spi_init(void)
  1609. {
  1610. int status;
  1611. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  1612. if (!buf) {
  1613. status = -ENOMEM;
  1614. goto err0;
  1615. }
  1616. status = bus_register(&spi_bus_type);
  1617. if (status < 0)
  1618. goto err1;
  1619. status = class_register(&spi_master_class);
  1620. if (status < 0)
  1621. goto err2;
  1622. return 0;
  1623. err2:
  1624. bus_unregister(&spi_bus_type);
  1625. err1:
  1626. kfree(buf);
  1627. buf = NULL;
  1628. err0:
  1629. return status;
  1630. }
  1631. /* board_info is normally registered in arch_initcall(),
  1632. * but even essential drivers wait till later
  1633. *
  1634. * REVISIT only boardinfo really needs static linking. the rest (device and
  1635. * driver registration) _could_ be dynamically linked (modular) ... costs
  1636. * include needing to have boardinfo data structures be much more public.
  1637. */
  1638. postcore_initcall(spi_init);