spi-octeon.c 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2011, 2012 Cavium, Inc.
  7. */
  8. #include <linux/platform_device.h>
  9. #include <linux/interrupt.h>
  10. #include <linux/spi/spi.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/init.h>
  14. #include <linux/io.h>
  15. #include <linux/of.h>
  16. #include <asm/octeon/octeon.h>
  17. #include <asm/octeon/cvmx-mpi-defs.h>
  18. #define OCTEON_SPI_CFG 0
  19. #define OCTEON_SPI_STS 0x08
  20. #define OCTEON_SPI_TX 0x10
  21. #define OCTEON_SPI_DAT0 0x80
  22. #define OCTEON_SPI_MAX_BYTES 9
  23. #define OCTEON_SPI_MAX_CLOCK_HZ 16000000
  24. struct octeon_spi {
  25. u64 register_base;
  26. u64 last_cfg;
  27. u64 cs_enax;
  28. };
  29. struct octeon_spi_setup {
  30. u32 max_speed_hz;
  31. u8 chip_select;
  32. u8 mode;
  33. u8 bits_per_word;
  34. };
  35. static void octeon_spi_wait_ready(struct octeon_spi *p)
  36. {
  37. union cvmx_mpi_sts mpi_sts;
  38. unsigned int loops = 0;
  39. do {
  40. if (loops++)
  41. __delay(500);
  42. mpi_sts.u64 = cvmx_read_csr(p->register_base + OCTEON_SPI_STS);
  43. } while (mpi_sts.s.busy);
  44. }
  45. static int octeon_spi_do_transfer(struct octeon_spi *p,
  46. struct spi_message *msg,
  47. struct spi_transfer *xfer,
  48. bool last_xfer)
  49. {
  50. union cvmx_mpi_cfg mpi_cfg;
  51. union cvmx_mpi_tx mpi_tx;
  52. unsigned int clkdiv;
  53. unsigned int speed_hz;
  54. int mode;
  55. bool cpha, cpol;
  56. const u8 *tx_buf;
  57. u8 *rx_buf;
  58. int len;
  59. int i;
  60. struct octeon_spi_setup *msg_setup = spi_get_ctldata(msg->spi);
  61. speed_hz = msg_setup->max_speed_hz;
  62. mode = msg_setup->mode;
  63. cpha = mode & SPI_CPHA;
  64. cpol = mode & SPI_CPOL;
  65. if (xfer->speed_hz)
  66. speed_hz = xfer->speed_hz;
  67. if (speed_hz > OCTEON_SPI_MAX_CLOCK_HZ)
  68. speed_hz = OCTEON_SPI_MAX_CLOCK_HZ;
  69. clkdiv = octeon_get_io_clock_rate() / (2 * speed_hz);
  70. mpi_cfg.u64 = 0;
  71. mpi_cfg.s.clkdiv = clkdiv;
  72. mpi_cfg.s.cshi = (mode & SPI_CS_HIGH) ? 1 : 0;
  73. mpi_cfg.s.lsbfirst = (mode & SPI_LSB_FIRST) ? 1 : 0;
  74. mpi_cfg.s.wireor = (mode & SPI_3WIRE) ? 1 : 0;
  75. mpi_cfg.s.idlelo = cpha != cpol;
  76. mpi_cfg.s.cslate = cpha ? 1 : 0;
  77. mpi_cfg.s.enable = 1;
  78. if (msg_setup->chip_select < 4)
  79. p->cs_enax |= 1ull << (12 + msg_setup->chip_select);
  80. mpi_cfg.u64 |= p->cs_enax;
  81. if (mpi_cfg.u64 != p->last_cfg) {
  82. p->last_cfg = mpi_cfg.u64;
  83. cvmx_write_csr(p->register_base + OCTEON_SPI_CFG, mpi_cfg.u64);
  84. }
  85. tx_buf = xfer->tx_buf;
  86. rx_buf = xfer->rx_buf;
  87. len = xfer->len;
  88. while (len > OCTEON_SPI_MAX_BYTES) {
  89. for (i = 0; i < OCTEON_SPI_MAX_BYTES; i++) {
  90. u8 d;
  91. if (tx_buf)
  92. d = *tx_buf++;
  93. else
  94. d = 0;
  95. cvmx_write_csr(p->register_base + OCTEON_SPI_DAT0 + (8 * i), d);
  96. }
  97. mpi_tx.u64 = 0;
  98. mpi_tx.s.csid = msg_setup->chip_select;
  99. mpi_tx.s.leavecs = 1;
  100. mpi_tx.s.txnum = tx_buf ? OCTEON_SPI_MAX_BYTES : 0;
  101. mpi_tx.s.totnum = OCTEON_SPI_MAX_BYTES;
  102. cvmx_write_csr(p->register_base + OCTEON_SPI_TX, mpi_tx.u64);
  103. octeon_spi_wait_ready(p);
  104. if (rx_buf)
  105. for (i = 0; i < OCTEON_SPI_MAX_BYTES; i++) {
  106. u64 v = cvmx_read_csr(p->register_base + OCTEON_SPI_DAT0 + (8 * i));
  107. *rx_buf++ = (u8)v;
  108. }
  109. len -= OCTEON_SPI_MAX_BYTES;
  110. }
  111. for (i = 0; i < len; i++) {
  112. u8 d;
  113. if (tx_buf)
  114. d = *tx_buf++;
  115. else
  116. d = 0;
  117. cvmx_write_csr(p->register_base + OCTEON_SPI_DAT0 + (8 * i), d);
  118. }
  119. mpi_tx.u64 = 0;
  120. mpi_tx.s.csid = msg_setup->chip_select;
  121. if (last_xfer)
  122. mpi_tx.s.leavecs = xfer->cs_change;
  123. else
  124. mpi_tx.s.leavecs = !xfer->cs_change;
  125. mpi_tx.s.txnum = tx_buf ? len : 0;
  126. mpi_tx.s.totnum = len;
  127. cvmx_write_csr(p->register_base + OCTEON_SPI_TX, mpi_tx.u64);
  128. octeon_spi_wait_ready(p);
  129. if (rx_buf)
  130. for (i = 0; i < len; i++) {
  131. u64 v = cvmx_read_csr(p->register_base + OCTEON_SPI_DAT0 + (8 * i));
  132. *rx_buf++ = (u8)v;
  133. }
  134. if (xfer->delay_usecs)
  135. udelay(xfer->delay_usecs);
  136. return xfer->len;
  137. }
  138. static int octeon_spi_transfer_one_message(struct spi_master *master,
  139. struct spi_message *msg)
  140. {
  141. struct octeon_spi *p = spi_master_get_devdata(master);
  142. unsigned int total_len = 0;
  143. int status = 0;
  144. struct spi_transfer *xfer;
  145. /*
  146. * We better have set the configuration via a call to .setup
  147. * before we get here.
  148. */
  149. if (spi_get_ctldata(msg->spi) == NULL) {
  150. status = -EINVAL;
  151. goto err;
  152. }
  153. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  154. bool last_xfer = &xfer->transfer_list == msg->transfers.prev;
  155. int r = octeon_spi_do_transfer(p, msg, xfer, last_xfer);
  156. if (r < 0) {
  157. status = r;
  158. goto err;
  159. }
  160. total_len += r;
  161. }
  162. err:
  163. msg->status = status;
  164. msg->actual_length = total_len;
  165. spi_finalize_current_message(master);
  166. return status;
  167. }
  168. static struct octeon_spi_setup *octeon_spi_new_setup(struct spi_device *spi)
  169. {
  170. struct octeon_spi_setup *setup = kzalloc(sizeof(*setup), GFP_KERNEL);
  171. if (!setup)
  172. return NULL;
  173. setup->max_speed_hz = spi->max_speed_hz;
  174. setup->chip_select = spi->chip_select;
  175. setup->mode = spi->mode;
  176. setup->bits_per_word = spi->bits_per_word;
  177. return setup;
  178. }
  179. static int octeon_spi_setup(struct spi_device *spi)
  180. {
  181. struct octeon_spi_setup *new_setup;
  182. struct octeon_spi_setup *old_setup = spi_get_ctldata(spi);
  183. new_setup = octeon_spi_new_setup(spi);
  184. if (!new_setup)
  185. return -ENOMEM;
  186. spi_set_ctldata(spi, new_setup);
  187. kfree(old_setup);
  188. return 0;
  189. }
  190. static void octeon_spi_cleanup(struct spi_device *spi)
  191. {
  192. struct octeon_spi_setup *old_setup = spi_get_ctldata(spi);
  193. spi_set_ctldata(spi, NULL);
  194. kfree(old_setup);
  195. }
  196. static int octeon_spi_probe(struct platform_device *pdev)
  197. {
  198. struct resource *res_mem;
  199. struct spi_master *master;
  200. struct octeon_spi *p;
  201. int err = -ENOENT;
  202. master = spi_alloc_master(&pdev->dev, sizeof(struct octeon_spi));
  203. if (!master)
  204. return -ENOMEM;
  205. p = spi_master_get_devdata(master);
  206. platform_set_drvdata(pdev, master);
  207. res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  208. if (res_mem == NULL) {
  209. dev_err(&pdev->dev, "found no memory resource\n");
  210. err = -ENXIO;
  211. goto fail;
  212. }
  213. if (!devm_request_mem_region(&pdev->dev, res_mem->start,
  214. resource_size(res_mem), res_mem->name)) {
  215. dev_err(&pdev->dev, "request_mem_region failed\n");
  216. goto fail;
  217. }
  218. p->register_base = (u64)devm_ioremap(&pdev->dev, res_mem->start,
  219. resource_size(res_mem));
  220. /* Dynamic bus numbering */
  221. master->bus_num = -1;
  222. master->num_chipselect = 4;
  223. master->mode_bits = SPI_CPHA |
  224. SPI_CPOL |
  225. SPI_CS_HIGH |
  226. SPI_LSB_FIRST |
  227. SPI_3WIRE;
  228. master->setup = octeon_spi_setup;
  229. master->cleanup = octeon_spi_cleanup;
  230. master->transfer_one_message = octeon_spi_transfer_one_message;
  231. master->bits_per_word_mask = SPI_BPW_MASK(8);
  232. master->dev.of_node = pdev->dev.of_node;
  233. err = devm_spi_register_master(&pdev->dev, master);
  234. if (err) {
  235. dev_err(&pdev->dev, "register master failed: %d\n", err);
  236. goto fail;
  237. }
  238. dev_info(&pdev->dev, "OCTEON SPI bus driver\n");
  239. return 0;
  240. fail:
  241. spi_master_put(master);
  242. return err;
  243. }
  244. static int octeon_spi_remove(struct platform_device *pdev)
  245. {
  246. struct spi_master *master = platform_get_drvdata(pdev);
  247. struct octeon_spi *p = spi_master_get_devdata(master);
  248. u64 register_base = p->register_base;
  249. /* Clear the CSENA* and put everything in a known state. */
  250. cvmx_write_csr(register_base + OCTEON_SPI_CFG, 0);
  251. return 0;
  252. }
  253. static struct of_device_id octeon_spi_match[] = {
  254. { .compatible = "cavium,octeon-3010-spi", },
  255. {},
  256. };
  257. MODULE_DEVICE_TABLE(of, octeon_spi_match);
  258. static struct platform_driver octeon_spi_driver = {
  259. .driver = {
  260. .name = "spi-octeon",
  261. .owner = THIS_MODULE,
  262. .of_match_table = octeon_spi_match,
  263. },
  264. .probe = octeon_spi_probe,
  265. .remove = octeon_spi_remove,
  266. };
  267. module_platform_driver(octeon_spi_driver);
  268. MODULE_DESCRIPTION("Cavium, Inc. OCTEON SPI bus driver");
  269. MODULE_AUTHOR("David Daney");
  270. MODULE_LICENSE("GPL");