i915_gem.c 107 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  41. uint64_t offset,
  42. uint64_t size);
  43. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  44. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  45. unsigned alignment,
  46. bool map_and_fenceable);
  47. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  48. struct drm_i915_fence_reg *reg);
  49. static int i915_gem_phys_pwrite(struct drm_device *dev,
  50. struct drm_i915_gem_object *obj,
  51. struct drm_i915_gem_pwrite *args,
  52. struct drm_file *file);
  53. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  54. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  55. struct shrink_control *sc);
  56. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  57. /* some bookkeeping */
  58. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  59. size_t size)
  60. {
  61. dev_priv->mm.object_count++;
  62. dev_priv->mm.object_memory += size;
  63. }
  64. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  65. size_t size)
  66. {
  67. dev_priv->mm.object_count--;
  68. dev_priv->mm.object_memory -= size;
  69. }
  70. static int
  71. i915_gem_wait_for_error(struct drm_device *dev)
  72. {
  73. struct drm_i915_private *dev_priv = dev->dev_private;
  74. struct completion *x = &dev_priv->error_completion;
  75. unsigned long flags;
  76. int ret;
  77. if (!atomic_read(&dev_priv->mm.wedged))
  78. return 0;
  79. ret = wait_for_completion_interruptible(x);
  80. if (ret)
  81. return ret;
  82. if (atomic_read(&dev_priv->mm.wedged)) {
  83. /* GPU is hung, bump the completion count to account for
  84. * the token we just consumed so that we never hit zero and
  85. * end up waiting upon a subsequent completion event that
  86. * will never happen.
  87. */
  88. spin_lock_irqsave(&x->wait.lock, flags);
  89. x->done++;
  90. spin_unlock_irqrestore(&x->wait.lock, flags);
  91. }
  92. return 0;
  93. }
  94. int i915_mutex_lock_interruptible(struct drm_device *dev)
  95. {
  96. int ret;
  97. ret = i915_gem_wait_for_error(dev);
  98. if (ret)
  99. return ret;
  100. ret = mutex_lock_interruptible(&dev->struct_mutex);
  101. if (ret)
  102. return ret;
  103. WARN_ON(i915_verify_lists(dev));
  104. return 0;
  105. }
  106. static inline bool
  107. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  108. {
  109. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  110. }
  111. int
  112. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  113. struct drm_file *file)
  114. {
  115. struct drm_i915_gem_init *args = data;
  116. if (args->gtt_start >= args->gtt_end ||
  117. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  118. return -EINVAL;
  119. mutex_lock(&dev->struct_mutex);
  120. i915_gem_init_global_gtt(dev, args->gtt_start,
  121. args->gtt_end, args->gtt_end);
  122. mutex_unlock(&dev->struct_mutex);
  123. return 0;
  124. }
  125. int
  126. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  127. struct drm_file *file)
  128. {
  129. struct drm_i915_private *dev_priv = dev->dev_private;
  130. struct drm_i915_gem_get_aperture *args = data;
  131. struct drm_i915_gem_object *obj;
  132. size_t pinned;
  133. if (!(dev->driver->driver_features & DRIVER_GEM))
  134. return -ENODEV;
  135. pinned = 0;
  136. mutex_lock(&dev->struct_mutex);
  137. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  138. pinned += obj->gtt_space->size;
  139. mutex_unlock(&dev->struct_mutex);
  140. args->aper_size = dev_priv->mm.gtt_total;
  141. args->aper_available_size = args->aper_size - pinned;
  142. return 0;
  143. }
  144. static int
  145. i915_gem_create(struct drm_file *file,
  146. struct drm_device *dev,
  147. uint64_t size,
  148. uint32_t *handle_p)
  149. {
  150. struct drm_i915_gem_object *obj;
  151. int ret;
  152. u32 handle;
  153. size = roundup(size, PAGE_SIZE);
  154. if (size == 0)
  155. return -EINVAL;
  156. /* Allocate the new object */
  157. obj = i915_gem_alloc_object(dev, size);
  158. if (obj == NULL)
  159. return -ENOMEM;
  160. ret = drm_gem_handle_create(file, &obj->base, &handle);
  161. if (ret) {
  162. drm_gem_object_release(&obj->base);
  163. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  164. kfree(obj);
  165. return ret;
  166. }
  167. /* drop reference from allocate - handle holds it now */
  168. drm_gem_object_unreference(&obj->base);
  169. trace_i915_gem_object_create(obj);
  170. *handle_p = handle;
  171. return 0;
  172. }
  173. int
  174. i915_gem_dumb_create(struct drm_file *file,
  175. struct drm_device *dev,
  176. struct drm_mode_create_dumb *args)
  177. {
  178. /* have to work out size/pitch and return them */
  179. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  180. args->size = args->pitch * args->height;
  181. return i915_gem_create(file, dev,
  182. args->size, &args->handle);
  183. }
  184. int i915_gem_dumb_destroy(struct drm_file *file,
  185. struct drm_device *dev,
  186. uint32_t handle)
  187. {
  188. return drm_gem_handle_delete(file, handle);
  189. }
  190. /**
  191. * Creates a new mm object and returns a handle to it.
  192. */
  193. int
  194. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  195. struct drm_file *file)
  196. {
  197. struct drm_i915_gem_create *args = data;
  198. return i915_gem_create(file, dev,
  199. args->size, &args->handle);
  200. }
  201. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  202. {
  203. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  204. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  205. obj->tiling_mode != I915_TILING_NONE;
  206. }
  207. /**
  208. * This is the fast shmem pread path, which attempts to copy_from_user directly
  209. * from the backing pages of the object to the user's address space. On a
  210. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  211. */
  212. static int
  213. i915_gem_shmem_pread_fast(struct drm_device *dev,
  214. struct drm_i915_gem_object *obj,
  215. struct drm_i915_gem_pread *args,
  216. struct drm_file *file)
  217. {
  218. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  219. ssize_t remain;
  220. loff_t offset;
  221. char __user *user_data;
  222. int page_offset, page_length;
  223. user_data = (char __user *) (uintptr_t) args->data_ptr;
  224. remain = args->size;
  225. offset = args->offset;
  226. while (remain > 0) {
  227. struct page *page;
  228. char *vaddr;
  229. int ret;
  230. /* Operation in this page
  231. *
  232. * page_offset = offset within page
  233. * page_length = bytes to copy for this page
  234. */
  235. page_offset = offset_in_page(offset);
  236. page_length = remain;
  237. if ((page_offset + remain) > PAGE_SIZE)
  238. page_length = PAGE_SIZE - page_offset;
  239. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  240. if (IS_ERR(page))
  241. return PTR_ERR(page);
  242. vaddr = kmap_atomic(page);
  243. ret = __copy_to_user_inatomic(user_data,
  244. vaddr + page_offset,
  245. page_length);
  246. kunmap_atomic(vaddr);
  247. mark_page_accessed(page);
  248. page_cache_release(page);
  249. if (ret)
  250. return -EFAULT;
  251. remain -= page_length;
  252. user_data += page_length;
  253. offset += page_length;
  254. }
  255. return 0;
  256. }
  257. static inline int
  258. __copy_to_user_swizzled(char __user *cpu_vaddr,
  259. const char *gpu_vaddr, int gpu_offset,
  260. int length)
  261. {
  262. int ret, cpu_offset = 0;
  263. while (length > 0) {
  264. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  265. int this_length = min(cacheline_end - gpu_offset, length);
  266. int swizzled_gpu_offset = gpu_offset ^ 64;
  267. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  268. gpu_vaddr + swizzled_gpu_offset,
  269. this_length);
  270. if (ret)
  271. return ret + length;
  272. cpu_offset += this_length;
  273. gpu_offset += this_length;
  274. length -= this_length;
  275. }
  276. return 0;
  277. }
  278. static inline int
  279. __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
  280. const char *cpu_vaddr,
  281. int length)
  282. {
  283. int ret, cpu_offset = 0;
  284. while (length > 0) {
  285. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  286. int this_length = min(cacheline_end - gpu_offset, length);
  287. int swizzled_gpu_offset = gpu_offset ^ 64;
  288. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  289. cpu_vaddr + cpu_offset,
  290. this_length);
  291. if (ret)
  292. return ret + length;
  293. cpu_offset += this_length;
  294. gpu_offset += this_length;
  295. length -= this_length;
  296. }
  297. return 0;
  298. }
  299. /**
  300. * This is the fallback shmem pread path, which allocates temporary storage
  301. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  302. * can copy out of the object's backing pages while holding the struct mutex
  303. * and not take page faults.
  304. */
  305. static int
  306. i915_gem_shmem_pread_slow(struct drm_device *dev,
  307. struct drm_i915_gem_object *obj,
  308. struct drm_i915_gem_pread *args,
  309. struct drm_file *file)
  310. {
  311. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  312. char __user *user_data;
  313. ssize_t remain;
  314. loff_t offset;
  315. int shmem_page_offset, page_length, ret = 0;
  316. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  317. user_data = (char __user *) (uintptr_t) args->data_ptr;
  318. remain = args->size;
  319. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  320. offset = args->offset;
  321. mutex_unlock(&dev->struct_mutex);
  322. while (remain > 0) {
  323. struct page *page;
  324. char *vaddr;
  325. /* Operation in this page
  326. *
  327. * shmem_page_offset = offset within page in shmem file
  328. * page_length = bytes to copy for this page
  329. */
  330. shmem_page_offset = offset_in_page(offset);
  331. page_length = remain;
  332. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  333. page_length = PAGE_SIZE - shmem_page_offset;
  334. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  335. if (IS_ERR(page)) {
  336. ret = PTR_ERR(page);
  337. goto out;
  338. }
  339. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  340. (page_to_phys(page) & (1 << 17)) != 0;
  341. vaddr = kmap(page);
  342. if (page_do_bit17_swizzling)
  343. ret = __copy_to_user_swizzled(user_data,
  344. vaddr, shmem_page_offset,
  345. page_length);
  346. else
  347. ret = __copy_to_user(user_data,
  348. vaddr + shmem_page_offset,
  349. page_length);
  350. kunmap(page);
  351. mark_page_accessed(page);
  352. page_cache_release(page);
  353. if (ret) {
  354. ret = -EFAULT;
  355. goto out;
  356. }
  357. remain -= page_length;
  358. user_data += page_length;
  359. offset += page_length;
  360. }
  361. out:
  362. mutex_lock(&dev->struct_mutex);
  363. /* Fixup: Kill any reinstated backing storage pages */
  364. if (obj->madv == __I915_MADV_PURGED)
  365. i915_gem_object_truncate(obj);
  366. return ret;
  367. }
  368. /**
  369. * Reads data from the object referenced by handle.
  370. *
  371. * On error, the contents of *data are undefined.
  372. */
  373. int
  374. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  375. struct drm_file *file)
  376. {
  377. struct drm_i915_gem_pread *args = data;
  378. struct drm_i915_gem_object *obj;
  379. int ret = 0;
  380. if (args->size == 0)
  381. return 0;
  382. if (!access_ok(VERIFY_WRITE,
  383. (char __user *)(uintptr_t)args->data_ptr,
  384. args->size))
  385. return -EFAULT;
  386. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  387. args->size);
  388. if (ret)
  389. return -EFAULT;
  390. ret = i915_mutex_lock_interruptible(dev);
  391. if (ret)
  392. return ret;
  393. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  394. if (&obj->base == NULL) {
  395. ret = -ENOENT;
  396. goto unlock;
  397. }
  398. /* Bounds check source. */
  399. if (args->offset > obj->base.size ||
  400. args->size > obj->base.size - args->offset) {
  401. ret = -EINVAL;
  402. goto out;
  403. }
  404. trace_i915_gem_object_pread(obj, args->offset, args->size);
  405. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  406. args->offset,
  407. args->size);
  408. if (ret)
  409. goto out;
  410. ret = -EFAULT;
  411. if (!i915_gem_object_needs_bit17_swizzle(obj))
  412. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  413. if (ret == -EFAULT)
  414. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  415. out:
  416. drm_gem_object_unreference(&obj->base);
  417. unlock:
  418. mutex_unlock(&dev->struct_mutex);
  419. return ret;
  420. }
  421. /* This is the fast write path which cannot handle
  422. * page faults in the source data
  423. */
  424. static inline int
  425. fast_user_write(struct io_mapping *mapping,
  426. loff_t page_base, int page_offset,
  427. char __user *user_data,
  428. int length)
  429. {
  430. char *vaddr_atomic;
  431. unsigned long unwritten;
  432. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  433. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  434. user_data, length);
  435. io_mapping_unmap_atomic(vaddr_atomic);
  436. return unwritten;
  437. }
  438. /* Here's the write path which can sleep for
  439. * page faults
  440. */
  441. static inline void
  442. slow_kernel_write(struct io_mapping *mapping,
  443. loff_t gtt_base, int gtt_offset,
  444. struct page *user_page, int user_offset,
  445. int length)
  446. {
  447. char __iomem *dst_vaddr;
  448. char *src_vaddr;
  449. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  450. src_vaddr = kmap(user_page);
  451. memcpy_toio(dst_vaddr + gtt_offset,
  452. src_vaddr + user_offset,
  453. length);
  454. kunmap(user_page);
  455. io_mapping_unmap(dst_vaddr);
  456. }
  457. /**
  458. * This is the fast pwrite path, where we copy the data directly from the
  459. * user into the GTT, uncached.
  460. */
  461. static int
  462. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  463. struct drm_i915_gem_object *obj,
  464. struct drm_i915_gem_pwrite *args,
  465. struct drm_file *file)
  466. {
  467. drm_i915_private_t *dev_priv = dev->dev_private;
  468. ssize_t remain;
  469. loff_t offset, page_base;
  470. char __user *user_data;
  471. int page_offset, page_length;
  472. user_data = (char __user *) (uintptr_t) args->data_ptr;
  473. remain = args->size;
  474. offset = obj->gtt_offset + args->offset;
  475. while (remain > 0) {
  476. /* Operation in this page
  477. *
  478. * page_base = page offset within aperture
  479. * page_offset = offset within page
  480. * page_length = bytes to copy for this page
  481. */
  482. page_base = offset & PAGE_MASK;
  483. page_offset = offset_in_page(offset);
  484. page_length = remain;
  485. if ((page_offset + remain) > PAGE_SIZE)
  486. page_length = PAGE_SIZE - page_offset;
  487. /* If we get a fault while copying data, then (presumably) our
  488. * source page isn't available. Return the error and we'll
  489. * retry in the slow path.
  490. */
  491. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  492. page_offset, user_data, page_length))
  493. return -EFAULT;
  494. remain -= page_length;
  495. user_data += page_length;
  496. offset += page_length;
  497. }
  498. return 0;
  499. }
  500. /**
  501. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  502. * the memory and maps it using kmap_atomic for copying.
  503. *
  504. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  505. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  506. */
  507. static int
  508. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  509. struct drm_i915_gem_object *obj,
  510. struct drm_i915_gem_pwrite *args,
  511. struct drm_file *file)
  512. {
  513. drm_i915_private_t *dev_priv = dev->dev_private;
  514. ssize_t remain;
  515. loff_t gtt_page_base, offset;
  516. loff_t first_data_page, last_data_page, num_pages;
  517. loff_t pinned_pages, i;
  518. struct page **user_pages;
  519. struct mm_struct *mm = current->mm;
  520. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  521. int ret;
  522. uint64_t data_ptr = args->data_ptr;
  523. remain = args->size;
  524. /* Pin the user pages containing the data. We can't fault while
  525. * holding the struct mutex, and all of the pwrite implementations
  526. * want to hold it while dereferencing the user data.
  527. */
  528. first_data_page = data_ptr / PAGE_SIZE;
  529. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  530. num_pages = last_data_page - first_data_page + 1;
  531. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  532. if (user_pages == NULL)
  533. return -ENOMEM;
  534. mutex_unlock(&dev->struct_mutex);
  535. down_read(&mm->mmap_sem);
  536. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  537. num_pages, 0, 0, user_pages, NULL);
  538. up_read(&mm->mmap_sem);
  539. mutex_lock(&dev->struct_mutex);
  540. if (pinned_pages < num_pages) {
  541. ret = -EFAULT;
  542. goto out_unpin_pages;
  543. }
  544. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  545. if (ret)
  546. goto out_unpin_pages;
  547. ret = i915_gem_object_put_fence(obj);
  548. if (ret)
  549. goto out_unpin_pages;
  550. offset = obj->gtt_offset + args->offset;
  551. while (remain > 0) {
  552. /* Operation in this page
  553. *
  554. * gtt_page_base = page offset within aperture
  555. * gtt_page_offset = offset within page in aperture
  556. * data_page_index = page number in get_user_pages return
  557. * data_page_offset = offset with data_page_index page.
  558. * page_length = bytes to copy for this page
  559. */
  560. gtt_page_base = offset & PAGE_MASK;
  561. gtt_page_offset = offset_in_page(offset);
  562. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  563. data_page_offset = offset_in_page(data_ptr);
  564. page_length = remain;
  565. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  566. page_length = PAGE_SIZE - gtt_page_offset;
  567. if ((data_page_offset + page_length) > PAGE_SIZE)
  568. page_length = PAGE_SIZE - data_page_offset;
  569. slow_kernel_write(dev_priv->mm.gtt_mapping,
  570. gtt_page_base, gtt_page_offset,
  571. user_pages[data_page_index],
  572. data_page_offset,
  573. page_length);
  574. remain -= page_length;
  575. offset += page_length;
  576. data_ptr += page_length;
  577. }
  578. out_unpin_pages:
  579. for (i = 0; i < pinned_pages; i++)
  580. page_cache_release(user_pages[i]);
  581. drm_free_large(user_pages);
  582. return ret;
  583. }
  584. /**
  585. * This is the fast shmem pwrite path, which attempts to directly
  586. * copy_from_user into the kmapped pages backing the object.
  587. */
  588. static int
  589. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  590. struct drm_i915_gem_object *obj,
  591. struct drm_i915_gem_pwrite *args,
  592. struct drm_file *file)
  593. {
  594. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  595. ssize_t remain;
  596. loff_t offset;
  597. char __user *user_data;
  598. int page_offset, page_length;
  599. user_data = (char __user *) (uintptr_t) args->data_ptr;
  600. remain = args->size;
  601. offset = args->offset;
  602. obj->dirty = 1;
  603. while (remain > 0) {
  604. struct page *page;
  605. char *vaddr;
  606. int ret;
  607. /* Operation in this page
  608. *
  609. * page_offset = offset within page
  610. * page_length = bytes to copy for this page
  611. */
  612. page_offset = offset_in_page(offset);
  613. page_length = remain;
  614. if ((page_offset + remain) > PAGE_SIZE)
  615. page_length = PAGE_SIZE - page_offset;
  616. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  617. if (IS_ERR(page))
  618. return PTR_ERR(page);
  619. vaddr = kmap_atomic(page);
  620. ret = __copy_from_user_inatomic(vaddr + page_offset,
  621. user_data,
  622. page_length);
  623. kunmap_atomic(vaddr);
  624. set_page_dirty(page);
  625. mark_page_accessed(page);
  626. page_cache_release(page);
  627. /* If we get a fault while copying data, then (presumably) our
  628. * source page isn't available. Return the error and we'll
  629. * retry in the slow path.
  630. */
  631. if (ret)
  632. return -EFAULT;
  633. remain -= page_length;
  634. user_data += page_length;
  635. offset += page_length;
  636. }
  637. return 0;
  638. }
  639. /**
  640. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  641. * the memory and maps it using kmap_atomic for copying.
  642. *
  643. * This avoids taking mmap_sem for faulting on the user's address while the
  644. * struct_mutex is held.
  645. */
  646. static int
  647. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  648. struct drm_i915_gem_object *obj,
  649. struct drm_i915_gem_pwrite *args,
  650. struct drm_file *file)
  651. {
  652. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  653. ssize_t remain;
  654. loff_t offset;
  655. char __user *user_data;
  656. int shmem_page_offset, page_length, ret = 0;
  657. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  658. user_data = (char __user *) (uintptr_t) args->data_ptr;
  659. remain = args->size;
  660. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  661. offset = args->offset;
  662. obj->dirty = 1;
  663. mutex_unlock(&dev->struct_mutex);
  664. while (remain > 0) {
  665. struct page *page;
  666. char *vaddr;
  667. /* Operation in this page
  668. *
  669. * shmem_page_offset = offset within page in shmem file
  670. * page_length = bytes to copy for this page
  671. */
  672. shmem_page_offset = offset_in_page(offset);
  673. page_length = remain;
  674. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  675. page_length = PAGE_SIZE - shmem_page_offset;
  676. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  677. if (IS_ERR(page)) {
  678. ret = PTR_ERR(page);
  679. goto out;
  680. }
  681. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  682. (page_to_phys(page) & (1 << 17)) != 0;
  683. vaddr = kmap(page);
  684. if (page_do_bit17_swizzling)
  685. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  686. user_data,
  687. page_length);
  688. else
  689. ret = __copy_from_user(vaddr + shmem_page_offset,
  690. user_data,
  691. page_length);
  692. kunmap(page);
  693. set_page_dirty(page);
  694. mark_page_accessed(page);
  695. page_cache_release(page);
  696. if (ret) {
  697. ret = -EFAULT;
  698. goto out;
  699. }
  700. remain -= page_length;
  701. user_data += page_length;
  702. offset += page_length;
  703. }
  704. out:
  705. mutex_lock(&dev->struct_mutex);
  706. /* Fixup: Kill any reinstated backing storage pages */
  707. if (obj->madv == __I915_MADV_PURGED)
  708. i915_gem_object_truncate(obj);
  709. /* and flush dirty cachelines in case the object isn't in the cpu write
  710. * domain anymore. */
  711. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  712. i915_gem_clflush_object(obj);
  713. intel_gtt_chipset_flush();
  714. }
  715. return ret;
  716. }
  717. /**
  718. * Writes data to the object referenced by handle.
  719. *
  720. * On error, the contents of the buffer that were to be modified are undefined.
  721. */
  722. int
  723. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  724. struct drm_file *file)
  725. {
  726. struct drm_i915_gem_pwrite *args = data;
  727. struct drm_i915_gem_object *obj;
  728. int ret;
  729. if (args->size == 0)
  730. return 0;
  731. if (!access_ok(VERIFY_READ,
  732. (char __user *)(uintptr_t)args->data_ptr,
  733. args->size))
  734. return -EFAULT;
  735. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  736. args->size);
  737. if (ret)
  738. return -EFAULT;
  739. ret = i915_mutex_lock_interruptible(dev);
  740. if (ret)
  741. return ret;
  742. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  743. if (&obj->base == NULL) {
  744. ret = -ENOENT;
  745. goto unlock;
  746. }
  747. /* Bounds check destination. */
  748. if (args->offset > obj->base.size ||
  749. args->size > obj->base.size - args->offset) {
  750. ret = -EINVAL;
  751. goto out;
  752. }
  753. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  754. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  755. * it would end up going through the fenced access, and we'll get
  756. * different detiling behavior between reading and writing.
  757. * pread/pwrite currently are reading and writing from the CPU
  758. * perspective, requiring manual detiling by the client.
  759. */
  760. if (obj->phys_obj) {
  761. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  762. goto out;
  763. }
  764. if (obj->gtt_space &&
  765. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  766. ret = i915_gem_object_pin(obj, 0, true);
  767. if (ret)
  768. goto out;
  769. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  770. if (ret)
  771. goto out_unpin;
  772. ret = i915_gem_object_put_fence(obj);
  773. if (ret)
  774. goto out_unpin;
  775. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  776. if (ret == -EFAULT)
  777. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  778. out_unpin:
  779. i915_gem_object_unpin(obj);
  780. if (ret != -EFAULT)
  781. goto out;
  782. /* Fall through to the shmfs paths because the gtt paths might
  783. * fail with non-page-backed user pointers (e.g. gtt mappings
  784. * when moving data between textures). */
  785. }
  786. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  787. if (ret)
  788. goto out;
  789. ret = -EFAULT;
  790. if (!i915_gem_object_needs_bit17_swizzle(obj))
  791. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  792. if (ret == -EFAULT)
  793. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  794. out:
  795. drm_gem_object_unreference(&obj->base);
  796. unlock:
  797. mutex_unlock(&dev->struct_mutex);
  798. return ret;
  799. }
  800. /**
  801. * Called when user space prepares to use an object with the CPU, either
  802. * through the mmap ioctl's mapping or a GTT mapping.
  803. */
  804. int
  805. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  806. struct drm_file *file)
  807. {
  808. struct drm_i915_gem_set_domain *args = data;
  809. struct drm_i915_gem_object *obj;
  810. uint32_t read_domains = args->read_domains;
  811. uint32_t write_domain = args->write_domain;
  812. int ret;
  813. if (!(dev->driver->driver_features & DRIVER_GEM))
  814. return -ENODEV;
  815. /* Only handle setting domains to types used by the CPU. */
  816. if (write_domain & I915_GEM_GPU_DOMAINS)
  817. return -EINVAL;
  818. if (read_domains & I915_GEM_GPU_DOMAINS)
  819. return -EINVAL;
  820. /* Having something in the write domain implies it's in the read
  821. * domain, and only that read domain. Enforce that in the request.
  822. */
  823. if (write_domain != 0 && read_domains != write_domain)
  824. return -EINVAL;
  825. ret = i915_mutex_lock_interruptible(dev);
  826. if (ret)
  827. return ret;
  828. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  829. if (&obj->base == NULL) {
  830. ret = -ENOENT;
  831. goto unlock;
  832. }
  833. if (read_domains & I915_GEM_DOMAIN_GTT) {
  834. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  835. /* Silently promote "you're not bound, there was nothing to do"
  836. * to success, since the client was just asking us to
  837. * make sure everything was done.
  838. */
  839. if (ret == -EINVAL)
  840. ret = 0;
  841. } else {
  842. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  843. }
  844. drm_gem_object_unreference(&obj->base);
  845. unlock:
  846. mutex_unlock(&dev->struct_mutex);
  847. return ret;
  848. }
  849. /**
  850. * Called when user space has done writes to this buffer
  851. */
  852. int
  853. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  854. struct drm_file *file)
  855. {
  856. struct drm_i915_gem_sw_finish *args = data;
  857. struct drm_i915_gem_object *obj;
  858. int ret = 0;
  859. if (!(dev->driver->driver_features & DRIVER_GEM))
  860. return -ENODEV;
  861. ret = i915_mutex_lock_interruptible(dev);
  862. if (ret)
  863. return ret;
  864. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  865. if (&obj->base == NULL) {
  866. ret = -ENOENT;
  867. goto unlock;
  868. }
  869. /* Pinned buffers may be scanout, so flush the cache */
  870. if (obj->pin_count)
  871. i915_gem_object_flush_cpu_write_domain(obj);
  872. drm_gem_object_unreference(&obj->base);
  873. unlock:
  874. mutex_unlock(&dev->struct_mutex);
  875. return ret;
  876. }
  877. /**
  878. * Maps the contents of an object, returning the address it is mapped
  879. * into.
  880. *
  881. * While the mapping holds a reference on the contents of the object, it doesn't
  882. * imply a ref on the object itself.
  883. */
  884. int
  885. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  886. struct drm_file *file)
  887. {
  888. struct drm_i915_gem_mmap *args = data;
  889. struct drm_gem_object *obj;
  890. unsigned long addr;
  891. if (!(dev->driver->driver_features & DRIVER_GEM))
  892. return -ENODEV;
  893. obj = drm_gem_object_lookup(dev, file, args->handle);
  894. if (obj == NULL)
  895. return -ENOENT;
  896. down_write(&current->mm->mmap_sem);
  897. addr = do_mmap(obj->filp, 0, args->size,
  898. PROT_READ | PROT_WRITE, MAP_SHARED,
  899. args->offset);
  900. up_write(&current->mm->mmap_sem);
  901. drm_gem_object_unreference_unlocked(obj);
  902. if (IS_ERR((void *)addr))
  903. return addr;
  904. args->addr_ptr = (uint64_t) addr;
  905. return 0;
  906. }
  907. /**
  908. * i915_gem_fault - fault a page into the GTT
  909. * vma: VMA in question
  910. * vmf: fault info
  911. *
  912. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  913. * from userspace. The fault handler takes care of binding the object to
  914. * the GTT (if needed), allocating and programming a fence register (again,
  915. * only if needed based on whether the old reg is still valid or the object
  916. * is tiled) and inserting a new PTE into the faulting process.
  917. *
  918. * Note that the faulting process may involve evicting existing objects
  919. * from the GTT and/or fence registers to make room. So performance may
  920. * suffer if the GTT working set is large or there are few fence registers
  921. * left.
  922. */
  923. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  924. {
  925. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  926. struct drm_device *dev = obj->base.dev;
  927. drm_i915_private_t *dev_priv = dev->dev_private;
  928. pgoff_t page_offset;
  929. unsigned long pfn;
  930. int ret = 0;
  931. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  932. /* We don't use vmf->pgoff since that has the fake offset */
  933. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  934. PAGE_SHIFT;
  935. ret = i915_mutex_lock_interruptible(dev);
  936. if (ret)
  937. goto out;
  938. trace_i915_gem_object_fault(obj, page_offset, true, write);
  939. /* Now bind it into the GTT if needed */
  940. if (!obj->map_and_fenceable) {
  941. ret = i915_gem_object_unbind(obj);
  942. if (ret)
  943. goto unlock;
  944. }
  945. if (!obj->gtt_space) {
  946. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  947. if (ret)
  948. goto unlock;
  949. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  950. if (ret)
  951. goto unlock;
  952. }
  953. if (!obj->has_global_gtt_mapping)
  954. i915_gem_gtt_bind_object(obj, obj->cache_level);
  955. if (obj->tiling_mode == I915_TILING_NONE)
  956. ret = i915_gem_object_put_fence(obj);
  957. else
  958. ret = i915_gem_object_get_fence(obj, NULL);
  959. if (ret)
  960. goto unlock;
  961. if (i915_gem_object_is_inactive(obj))
  962. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  963. obj->fault_mappable = true;
  964. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  965. page_offset;
  966. /* Finally, remap it using the new GTT offset */
  967. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  968. unlock:
  969. mutex_unlock(&dev->struct_mutex);
  970. out:
  971. switch (ret) {
  972. case -EIO:
  973. case -EAGAIN:
  974. /* Give the error handler a chance to run and move the
  975. * objects off the GPU active list. Next time we service the
  976. * fault, we should be able to transition the page into the
  977. * GTT without touching the GPU (and so avoid further
  978. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  979. * with coherency, just lost writes.
  980. */
  981. set_need_resched();
  982. case 0:
  983. case -ERESTARTSYS:
  984. case -EINTR:
  985. return VM_FAULT_NOPAGE;
  986. case -ENOMEM:
  987. return VM_FAULT_OOM;
  988. default:
  989. return VM_FAULT_SIGBUS;
  990. }
  991. }
  992. /**
  993. * i915_gem_release_mmap - remove physical page mappings
  994. * @obj: obj in question
  995. *
  996. * Preserve the reservation of the mmapping with the DRM core code, but
  997. * relinquish ownership of the pages back to the system.
  998. *
  999. * It is vital that we remove the page mapping if we have mapped a tiled
  1000. * object through the GTT and then lose the fence register due to
  1001. * resource pressure. Similarly if the object has been moved out of the
  1002. * aperture, than pages mapped into userspace must be revoked. Removing the
  1003. * mapping will then trigger a page fault on the next user access, allowing
  1004. * fixup by i915_gem_fault().
  1005. */
  1006. void
  1007. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1008. {
  1009. if (!obj->fault_mappable)
  1010. return;
  1011. if (obj->base.dev->dev_mapping)
  1012. unmap_mapping_range(obj->base.dev->dev_mapping,
  1013. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1014. obj->base.size, 1);
  1015. obj->fault_mappable = false;
  1016. }
  1017. static uint32_t
  1018. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1019. {
  1020. uint32_t gtt_size;
  1021. if (INTEL_INFO(dev)->gen >= 4 ||
  1022. tiling_mode == I915_TILING_NONE)
  1023. return size;
  1024. /* Previous chips need a power-of-two fence region when tiling */
  1025. if (INTEL_INFO(dev)->gen == 3)
  1026. gtt_size = 1024*1024;
  1027. else
  1028. gtt_size = 512*1024;
  1029. while (gtt_size < size)
  1030. gtt_size <<= 1;
  1031. return gtt_size;
  1032. }
  1033. /**
  1034. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1035. * @obj: object to check
  1036. *
  1037. * Return the required GTT alignment for an object, taking into account
  1038. * potential fence register mapping.
  1039. */
  1040. static uint32_t
  1041. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1042. uint32_t size,
  1043. int tiling_mode)
  1044. {
  1045. /*
  1046. * Minimum alignment is 4k (GTT page size), but might be greater
  1047. * if a fence register is needed for the object.
  1048. */
  1049. if (INTEL_INFO(dev)->gen >= 4 ||
  1050. tiling_mode == I915_TILING_NONE)
  1051. return 4096;
  1052. /*
  1053. * Previous chips need to be aligned to the size of the smallest
  1054. * fence register that can contain the object.
  1055. */
  1056. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1057. }
  1058. /**
  1059. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1060. * unfenced object
  1061. * @dev: the device
  1062. * @size: size of the object
  1063. * @tiling_mode: tiling mode of the object
  1064. *
  1065. * Return the required GTT alignment for an object, only taking into account
  1066. * unfenced tiled surface requirements.
  1067. */
  1068. uint32_t
  1069. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1070. uint32_t size,
  1071. int tiling_mode)
  1072. {
  1073. /*
  1074. * Minimum alignment is 4k (GTT page size) for sane hw.
  1075. */
  1076. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1077. tiling_mode == I915_TILING_NONE)
  1078. return 4096;
  1079. /* Previous hardware however needs to be aligned to a power-of-two
  1080. * tile height. The simplest method for determining this is to reuse
  1081. * the power-of-tile object size.
  1082. */
  1083. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1084. }
  1085. int
  1086. i915_gem_mmap_gtt(struct drm_file *file,
  1087. struct drm_device *dev,
  1088. uint32_t handle,
  1089. uint64_t *offset)
  1090. {
  1091. struct drm_i915_private *dev_priv = dev->dev_private;
  1092. struct drm_i915_gem_object *obj;
  1093. int ret;
  1094. if (!(dev->driver->driver_features & DRIVER_GEM))
  1095. return -ENODEV;
  1096. ret = i915_mutex_lock_interruptible(dev);
  1097. if (ret)
  1098. return ret;
  1099. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1100. if (&obj->base == NULL) {
  1101. ret = -ENOENT;
  1102. goto unlock;
  1103. }
  1104. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1105. ret = -E2BIG;
  1106. goto out;
  1107. }
  1108. if (obj->madv != I915_MADV_WILLNEED) {
  1109. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1110. ret = -EINVAL;
  1111. goto out;
  1112. }
  1113. if (!obj->base.map_list.map) {
  1114. ret = drm_gem_create_mmap_offset(&obj->base);
  1115. if (ret)
  1116. goto out;
  1117. }
  1118. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1119. out:
  1120. drm_gem_object_unreference(&obj->base);
  1121. unlock:
  1122. mutex_unlock(&dev->struct_mutex);
  1123. return ret;
  1124. }
  1125. /**
  1126. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1127. * @dev: DRM device
  1128. * @data: GTT mapping ioctl data
  1129. * @file: GEM object info
  1130. *
  1131. * Simply returns the fake offset to userspace so it can mmap it.
  1132. * The mmap call will end up in drm_gem_mmap(), which will set things
  1133. * up so we can get faults in the handler above.
  1134. *
  1135. * The fault handler will take care of binding the object into the GTT
  1136. * (since it may have been evicted to make room for something), allocating
  1137. * a fence register, and mapping the appropriate aperture address into
  1138. * userspace.
  1139. */
  1140. int
  1141. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1142. struct drm_file *file)
  1143. {
  1144. struct drm_i915_gem_mmap_gtt *args = data;
  1145. if (!(dev->driver->driver_features & DRIVER_GEM))
  1146. return -ENODEV;
  1147. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1148. }
  1149. static int
  1150. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1151. gfp_t gfpmask)
  1152. {
  1153. int page_count, i;
  1154. struct address_space *mapping;
  1155. struct inode *inode;
  1156. struct page *page;
  1157. /* Get the list of pages out of our struct file. They'll be pinned
  1158. * at this point until we release them.
  1159. */
  1160. page_count = obj->base.size / PAGE_SIZE;
  1161. BUG_ON(obj->pages != NULL);
  1162. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1163. if (obj->pages == NULL)
  1164. return -ENOMEM;
  1165. inode = obj->base.filp->f_path.dentry->d_inode;
  1166. mapping = inode->i_mapping;
  1167. gfpmask |= mapping_gfp_mask(mapping);
  1168. for (i = 0; i < page_count; i++) {
  1169. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1170. if (IS_ERR(page))
  1171. goto err_pages;
  1172. obj->pages[i] = page;
  1173. }
  1174. if (i915_gem_object_needs_bit17_swizzle(obj))
  1175. i915_gem_object_do_bit_17_swizzle(obj);
  1176. return 0;
  1177. err_pages:
  1178. while (i--)
  1179. page_cache_release(obj->pages[i]);
  1180. drm_free_large(obj->pages);
  1181. obj->pages = NULL;
  1182. return PTR_ERR(page);
  1183. }
  1184. static void
  1185. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1186. {
  1187. int page_count = obj->base.size / PAGE_SIZE;
  1188. int i;
  1189. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1190. if (i915_gem_object_needs_bit17_swizzle(obj))
  1191. i915_gem_object_save_bit_17_swizzle(obj);
  1192. if (obj->madv == I915_MADV_DONTNEED)
  1193. obj->dirty = 0;
  1194. for (i = 0; i < page_count; i++) {
  1195. if (obj->dirty)
  1196. set_page_dirty(obj->pages[i]);
  1197. if (obj->madv == I915_MADV_WILLNEED)
  1198. mark_page_accessed(obj->pages[i]);
  1199. page_cache_release(obj->pages[i]);
  1200. }
  1201. obj->dirty = 0;
  1202. drm_free_large(obj->pages);
  1203. obj->pages = NULL;
  1204. }
  1205. void
  1206. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1207. struct intel_ring_buffer *ring,
  1208. u32 seqno)
  1209. {
  1210. struct drm_device *dev = obj->base.dev;
  1211. struct drm_i915_private *dev_priv = dev->dev_private;
  1212. BUG_ON(ring == NULL);
  1213. obj->ring = ring;
  1214. /* Add a reference if we're newly entering the active list. */
  1215. if (!obj->active) {
  1216. drm_gem_object_reference(&obj->base);
  1217. obj->active = 1;
  1218. }
  1219. /* Move from whatever list we were on to the tail of execution. */
  1220. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1221. list_move_tail(&obj->ring_list, &ring->active_list);
  1222. obj->last_rendering_seqno = seqno;
  1223. if (obj->fenced_gpu_access) {
  1224. struct drm_i915_fence_reg *reg;
  1225. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1226. obj->last_fenced_seqno = seqno;
  1227. obj->last_fenced_ring = ring;
  1228. reg = &dev_priv->fence_regs[obj->fence_reg];
  1229. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1230. }
  1231. }
  1232. static void
  1233. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1234. {
  1235. list_del_init(&obj->ring_list);
  1236. obj->last_rendering_seqno = 0;
  1237. }
  1238. static void
  1239. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1240. {
  1241. struct drm_device *dev = obj->base.dev;
  1242. drm_i915_private_t *dev_priv = dev->dev_private;
  1243. BUG_ON(!obj->active);
  1244. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1245. i915_gem_object_move_off_active(obj);
  1246. }
  1247. static void
  1248. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1249. {
  1250. struct drm_device *dev = obj->base.dev;
  1251. struct drm_i915_private *dev_priv = dev->dev_private;
  1252. if (obj->pin_count != 0)
  1253. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1254. else
  1255. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1256. BUG_ON(!list_empty(&obj->gpu_write_list));
  1257. BUG_ON(!obj->active);
  1258. obj->ring = NULL;
  1259. i915_gem_object_move_off_active(obj);
  1260. obj->fenced_gpu_access = false;
  1261. obj->active = 0;
  1262. obj->pending_gpu_write = false;
  1263. drm_gem_object_unreference(&obj->base);
  1264. WARN_ON(i915_verify_lists(dev));
  1265. }
  1266. /* Immediately discard the backing storage */
  1267. static void
  1268. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1269. {
  1270. struct inode *inode;
  1271. /* Our goal here is to return as much of the memory as
  1272. * is possible back to the system as we are called from OOM.
  1273. * To do this we must instruct the shmfs to drop all of its
  1274. * backing pages, *now*.
  1275. */
  1276. inode = obj->base.filp->f_path.dentry->d_inode;
  1277. shmem_truncate_range(inode, 0, (loff_t)-1);
  1278. if (obj->base.map_list.map)
  1279. drm_gem_free_mmap_offset(&obj->base);
  1280. obj->madv = __I915_MADV_PURGED;
  1281. }
  1282. static inline int
  1283. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1284. {
  1285. return obj->madv == I915_MADV_DONTNEED;
  1286. }
  1287. static void
  1288. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1289. uint32_t flush_domains)
  1290. {
  1291. struct drm_i915_gem_object *obj, *next;
  1292. list_for_each_entry_safe(obj, next,
  1293. &ring->gpu_write_list,
  1294. gpu_write_list) {
  1295. if (obj->base.write_domain & flush_domains) {
  1296. uint32_t old_write_domain = obj->base.write_domain;
  1297. obj->base.write_domain = 0;
  1298. list_del_init(&obj->gpu_write_list);
  1299. i915_gem_object_move_to_active(obj, ring,
  1300. i915_gem_next_request_seqno(ring));
  1301. trace_i915_gem_object_change_domain(obj,
  1302. obj->base.read_domains,
  1303. old_write_domain);
  1304. }
  1305. }
  1306. }
  1307. static u32
  1308. i915_gem_get_seqno(struct drm_device *dev)
  1309. {
  1310. drm_i915_private_t *dev_priv = dev->dev_private;
  1311. u32 seqno = dev_priv->next_seqno;
  1312. /* reserve 0 for non-seqno */
  1313. if (++dev_priv->next_seqno == 0)
  1314. dev_priv->next_seqno = 1;
  1315. return seqno;
  1316. }
  1317. u32
  1318. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1319. {
  1320. if (ring->outstanding_lazy_request == 0)
  1321. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1322. return ring->outstanding_lazy_request;
  1323. }
  1324. int
  1325. i915_add_request(struct intel_ring_buffer *ring,
  1326. struct drm_file *file,
  1327. struct drm_i915_gem_request *request)
  1328. {
  1329. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1330. uint32_t seqno;
  1331. u32 request_ring_position;
  1332. int was_empty;
  1333. int ret;
  1334. BUG_ON(request == NULL);
  1335. seqno = i915_gem_next_request_seqno(ring);
  1336. /* Record the position of the start of the request so that
  1337. * should we detect the updated seqno part-way through the
  1338. * GPU processing the request, we never over-estimate the
  1339. * position of the head.
  1340. */
  1341. request_ring_position = intel_ring_get_tail(ring);
  1342. ret = ring->add_request(ring, &seqno);
  1343. if (ret)
  1344. return ret;
  1345. trace_i915_gem_request_add(ring, seqno);
  1346. request->seqno = seqno;
  1347. request->ring = ring;
  1348. request->tail = request_ring_position;
  1349. request->emitted_jiffies = jiffies;
  1350. was_empty = list_empty(&ring->request_list);
  1351. list_add_tail(&request->list, &ring->request_list);
  1352. if (file) {
  1353. struct drm_i915_file_private *file_priv = file->driver_priv;
  1354. spin_lock(&file_priv->mm.lock);
  1355. request->file_priv = file_priv;
  1356. list_add_tail(&request->client_list,
  1357. &file_priv->mm.request_list);
  1358. spin_unlock(&file_priv->mm.lock);
  1359. }
  1360. ring->outstanding_lazy_request = 0;
  1361. if (!dev_priv->mm.suspended) {
  1362. if (i915_enable_hangcheck) {
  1363. mod_timer(&dev_priv->hangcheck_timer,
  1364. jiffies +
  1365. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1366. }
  1367. if (was_empty)
  1368. queue_delayed_work(dev_priv->wq,
  1369. &dev_priv->mm.retire_work, HZ);
  1370. }
  1371. return 0;
  1372. }
  1373. static inline void
  1374. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1375. {
  1376. struct drm_i915_file_private *file_priv = request->file_priv;
  1377. if (!file_priv)
  1378. return;
  1379. spin_lock(&file_priv->mm.lock);
  1380. if (request->file_priv) {
  1381. list_del(&request->client_list);
  1382. request->file_priv = NULL;
  1383. }
  1384. spin_unlock(&file_priv->mm.lock);
  1385. }
  1386. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1387. struct intel_ring_buffer *ring)
  1388. {
  1389. while (!list_empty(&ring->request_list)) {
  1390. struct drm_i915_gem_request *request;
  1391. request = list_first_entry(&ring->request_list,
  1392. struct drm_i915_gem_request,
  1393. list);
  1394. list_del(&request->list);
  1395. i915_gem_request_remove_from_client(request);
  1396. kfree(request);
  1397. }
  1398. while (!list_empty(&ring->active_list)) {
  1399. struct drm_i915_gem_object *obj;
  1400. obj = list_first_entry(&ring->active_list,
  1401. struct drm_i915_gem_object,
  1402. ring_list);
  1403. obj->base.write_domain = 0;
  1404. list_del_init(&obj->gpu_write_list);
  1405. i915_gem_object_move_to_inactive(obj);
  1406. }
  1407. }
  1408. static void i915_gem_reset_fences(struct drm_device *dev)
  1409. {
  1410. struct drm_i915_private *dev_priv = dev->dev_private;
  1411. int i;
  1412. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1413. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1414. struct drm_i915_gem_object *obj = reg->obj;
  1415. if (!obj)
  1416. continue;
  1417. if (obj->tiling_mode)
  1418. i915_gem_release_mmap(obj);
  1419. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1420. reg->obj->fenced_gpu_access = false;
  1421. reg->obj->last_fenced_seqno = 0;
  1422. reg->obj->last_fenced_ring = NULL;
  1423. i915_gem_clear_fence_reg(dev, reg);
  1424. }
  1425. }
  1426. void i915_gem_reset(struct drm_device *dev)
  1427. {
  1428. struct drm_i915_private *dev_priv = dev->dev_private;
  1429. struct drm_i915_gem_object *obj;
  1430. int i;
  1431. for (i = 0; i < I915_NUM_RINGS; i++)
  1432. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1433. /* Remove anything from the flushing lists. The GPU cache is likely
  1434. * to be lost on reset along with the data, so simply move the
  1435. * lost bo to the inactive list.
  1436. */
  1437. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1438. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1439. struct drm_i915_gem_object,
  1440. mm_list);
  1441. obj->base.write_domain = 0;
  1442. list_del_init(&obj->gpu_write_list);
  1443. i915_gem_object_move_to_inactive(obj);
  1444. }
  1445. /* Move everything out of the GPU domains to ensure we do any
  1446. * necessary invalidation upon reuse.
  1447. */
  1448. list_for_each_entry(obj,
  1449. &dev_priv->mm.inactive_list,
  1450. mm_list)
  1451. {
  1452. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1453. }
  1454. /* The fence registers are invalidated so clear them out */
  1455. i915_gem_reset_fences(dev);
  1456. }
  1457. /**
  1458. * This function clears the request list as sequence numbers are passed.
  1459. */
  1460. void
  1461. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1462. {
  1463. uint32_t seqno;
  1464. int i;
  1465. if (list_empty(&ring->request_list))
  1466. return;
  1467. WARN_ON(i915_verify_lists(ring->dev));
  1468. seqno = ring->get_seqno(ring);
  1469. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1470. if (seqno >= ring->sync_seqno[i])
  1471. ring->sync_seqno[i] = 0;
  1472. while (!list_empty(&ring->request_list)) {
  1473. struct drm_i915_gem_request *request;
  1474. request = list_first_entry(&ring->request_list,
  1475. struct drm_i915_gem_request,
  1476. list);
  1477. if (!i915_seqno_passed(seqno, request->seqno))
  1478. break;
  1479. trace_i915_gem_request_retire(ring, request->seqno);
  1480. /* We know the GPU must have read the request to have
  1481. * sent us the seqno + interrupt, so use the position
  1482. * of tail of the request to update the last known position
  1483. * of the GPU head.
  1484. */
  1485. ring->last_retired_head = request->tail;
  1486. list_del(&request->list);
  1487. i915_gem_request_remove_from_client(request);
  1488. kfree(request);
  1489. }
  1490. /* Move any buffers on the active list that are no longer referenced
  1491. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1492. */
  1493. while (!list_empty(&ring->active_list)) {
  1494. struct drm_i915_gem_object *obj;
  1495. obj = list_first_entry(&ring->active_list,
  1496. struct drm_i915_gem_object,
  1497. ring_list);
  1498. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1499. break;
  1500. if (obj->base.write_domain != 0)
  1501. i915_gem_object_move_to_flushing(obj);
  1502. else
  1503. i915_gem_object_move_to_inactive(obj);
  1504. }
  1505. if (unlikely(ring->trace_irq_seqno &&
  1506. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1507. ring->irq_put(ring);
  1508. ring->trace_irq_seqno = 0;
  1509. }
  1510. WARN_ON(i915_verify_lists(ring->dev));
  1511. }
  1512. void
  1513. i915_gem_retire_requests(struct drm_device *dev)
  1514. {
  1515. drm_i915_private_t *dev_priv = dev->dev_private;
  1516. int i;
  1517. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1518. struct drm_i915_gem_object *obj, *next;
  1519. /* We must be careful that during unbind() we do not
  1520. * accidentally infinitely recurse into retire requests.
  1521. * Currently:
  1522. * retire -> free -> unbind -> wait -> retire_ring
  1523. */
  1524. list_for_each_entry_safe(obj, next,
  1525. &dev_priv->mm.deferred_free_list,
  1526. mm_list)
  1527. i915_gem_free_object_tail(obj);
  1528. }
  1529. for (i = 0; i < I915_NUM_RINGS; i++)
  1530. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1531. }
  1532. static void
  1533. i915_gem_retire_work_handler(struct work_struct *work)
  1534. {
  1535. drm_i915_private_t *dev_priv;
  1536. struct drm_device *dev;
  1537. bool idle;
  1538. int i;
  1539. dev_priv = container_of(work, drm_i915_private_t,
  1540. mm.retire_work.work);
  1541. dev = dev_priv->dev;
  1542. /* Come back later if the device is busy... */
  1543. if (!mutex_trylock(&dev->struct_mutex)) {
  1544. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1545. return;
  1546. }
  1547. i915_gem_retire_requests(dev);
  1548. /* Send a periodic flush down the ring so we don't hold onto GEM
  1549. * objects indefinitely.
  1550. */
  1551. idle = true;
  1552. for (i = 0; i < I915_NUM_RINGS; i++) {
  1553. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1554. if (!list_empty(&ring->gpu_write_list)) {
  1555. struct drm_i915_gem_request *request;
  1556. int ret;
  1557. ret = i915_gem_flush_ring(ring,
  1558. 0, I915_GEM_GPU_DOMAINS);
  1559. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1560. if (ret || request == NULL ||
  1561. i915_add_request(ring, NULL, request))
  1562. kfree(request);
  1563. }
  1564. idle &= list_empty(&ring->request_list);
  1565. }
  1566. if (!dev_priv->mm.suspended && !idle)
  1567. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1568. mutex_unlock(&dev->struct_mutex);
  1569. }
  1570. /**
  1571. * Waits for a sequence number to be signaled, and cleans up the
  1572. * request and object lists appropriately for that event.
  1573. */
  1574. int
  1575. i915_wait_request(struct intel_ring_buffer *ring,
  1576. uint32_t seqno,
  1577. bool do_retire)
  1578. {
  1579. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1580. u32 ier;
  1581. int ret = 0;
  1582. BUG_ON(seqno == 0);
  1583. if (atomic_read(&dev_priv->mm.wedged)) {
  1584. struct completion *x = &dev_priv->error_completion;
  1585. bool recovery_complete;
  1586. unsigned long flags;
  1587. /* Give the error handler a chance to run. */
  1588. spin_lock_irqsave(&x->wait.lock, flags);
  1589. recovery_complete = x->done > 0;
  1590. spin_unlock_irqrestore(&x->wait.lock, flags);
  1591. return recovery_complete ? -EIO : -EAGAIN;
  1592. }
  1593. if (seqno == ring->outstanding_lazy_request) {
  1594. struct drm_i915_gem_request *request;
  1595. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1596. if (request == NULL)
  1597. return -ENOMEM;
  1598. ret = i915_add_request(ring, NULL, request);
  1599. if (ret) {
  1600. kfree(request);
  1601. return ret;
  1602. }
  1603. seqno = request->seqno;
  1604. }
  1605. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1606. if (HAS_PCH_SPLIT(ring->dev))
  1607. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1608. else
  1609. ier = I915_READ(IER);
  1610. if (!ier) {
  1611. DRM_ERROR("something (likely vbetool) disabled "
  1612. "interrupts, re-enabling\n");
  1613. ring->dev->driver->irq_preinstall(ring->dev);
  1614. ring->dev->driver->irq_postinstall(ring->dev);
  1615. }
  1616. trace_i915_gem_request_wait_begin(ring, seqno);
  1617. ring->waiting_seqno = seqno;
  1618. if (ring->irq_get(ring)) {
  1619. if (dev_priv->mm.interruptible)
  1620. ret = wait_event_interruptible(ring->irq_queue,
  1621. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1622. || atomic_read(&dev_priv->mm.wedged));
  1623. else
  1624. wait_event(ring->irq_queue,
  1625. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1626. || atomic_read(&dev_priv->mm.wedged));
  1627. ring->irq_put(ring);
  1628. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1629. seqno) ||
  1630. atomic_read(&dev_priv->mm.wedged), 3000))
  1631. ret = -EBUSY;
  1632. ring->waiting_seqno = 0;
  1633. trace_i915_gem_request_wait_end(ring, seqno);
  1634. }
  1635. if (atomic_read(&dev_priv->mm.wedged))
  1636. ret = -EAGAIN;
  1637. /* Directly dispatch request retiring. While we have the work queue
  1638. * to handle this, the waiter on a request often wants an associated
  1639. * buffer to have made it to the inactive list, and we would need
  1640. * a separate wait queue to handle that.
  1641. */
  1642. if (ret == 0 && do_retire)
  1643. i915_gem_retire_requests_ring(ring);
  1644. return ret;
  1645. }
  1646. /**
  1647. * Ensures that all rendering to the object has completed and the object is
  1648. * safe to unbind from the GTT or access from the CPU.
  1649. */
  1650. int
  1651. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1652. {
  1653. int ret;
  1654. /* This function only exists to support waiting for existing rendering,
  1655. * not for emitting required flushes.
  1656. */
  1657. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1658. /* If there is rendering queued on the buffer being evicted, wait for
  1659. * it.
  1660. */
  1661. if (obj->active) {
  1662. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
  1663. true);
  1664. if (ret)
  1665. return ret;
  1666. }
  1667. return 0;
  1668. }
  1669. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1670. {
  1671. u32 old_write_domain, old_read_domains;
  1672. /* Act a barrier for all accesses through the GTT */
  1673. mb();
  1674. /* Force a pagefault for domain tracking on next user access */
  1675. i915_gem_release_mmap(obj);
  1676. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1677. return;
  1678. old_read_domains = obj->base.read_domains;
  1679. old_write_domain = obj->base.write_domain;
  1680. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1681. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1682. trace_i915_gem_object_change_domain(obj,
  1683. old_read_domains,
  1684. old_write_domain);
  1685. }
  1686. /**
  1687. * Unbinds an object from the GTT aperture.
  1688. */
  1689. int
  1690. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1691. {
  1692. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1693. int ret = 0;
  1694. if (obj->gtt_space == NULL)
  1695. return 0;
  1696. if (obj->pin_count != 0) {
  1697. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1698. return -EINVAL;
  1699. }
  1700. ret = i915_gem_object_finish_gpu(obj);
  1701. if (ret == -ERESTARTSYS)
  1702. return ret;
  1703. /* Continue on if we fail due to EIO, the GPU is hung so we
  1704. * should be safe and we need to cleanup or else we might
  1705. * cause memory corruption through use-after-free.
  1706. */
  1707. i915_gem_object_finish_gtt(obj);
  1708. /* Move the object to the CPU domain to ensure that
  1709. * any possible CPU writes while it's not in the GTT
  1710. * are flushed when we go to remap it.
  1711. */
  1712. if (ret == 0)
  1713. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1714. if (ret == -ERESTARTSYS)
  1715. return ret;
  1716. if (ret) {
  1717. /* In the event of a disaster, abandon all caches and
  1718. * hope for the best.
  1719. */
  1720. i915_gem_clflush_object(obj);
  1721. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1722. }
  1723. /* release the fence reg _after_ flushing */
  1724. ret = i915_gem_object_put_fence(obj);
  1725. if (ret == -ERESTARTSYS)
  1726. return ret;
  1727. trace_i915_gem_object_unbind(obj);
  1728. if (obj->has_global_gtt_mapping)
  1729. i915_gem_gtt_unbind_object(obj);
  1730. if (obj->has_aliasing_ppgtt_mapping) {
  1731. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1732. obj->has_aliasing_ppgtt_mapping = 0;
  1733. }
  1734. i915_gem_gtt_finish_object(obj);
  1735. i915_gem_object_put_pages_gtt(obj);
  1736. list_del_init(&obj->gtt_list);
  1737. list_del_init(&obj->mm_list);
  1738. /* Avoid an unnecessary call to unbind on rebind. */
  1739. obj->map_and_fenceable = true;
  1740. drm_mm_put_block(obj->gtt_space);
  1741. obj->gtt_space = NULL;
  1742. obj->gtt_offset = 0;
  1743. if (i915_gem_object_is_purgeable(obj))
  1744. i915_gem_object_truncate(obj);
  1745. return ret;
  1746. }
  1747. int
  1748. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1749. uint32_t invalidate_domains,
  1750. uint32_t flush_domains)
  1751. {
  1752. int ret;
  1753. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1754. return 0;
  1755. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1756. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1757. if (ret)
  1758. return ret;
  1759. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1760. i915_gem_process_flushing_list(ring, flush_domains);
  1761. return 0;
  1762. }
  1763. static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
  1764. {
  1765. int ret;
  1766. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1767. return 0;
  1768. if (!list_empty(&ring->gpu_write_list)) {
  1769. ret = i915_gem_flush_ring(ring,
  1770. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1771. if (ret)
  1772. return ret;
  1773. }
  1774. return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
  1775. do_retire);
  1776. }
  1777. int i915_gpu_idle(struct drm_device *dev, bool do_retire)
  1778. {
  1779. drm_i915_private_t *dev_priv = dev->dev_private;
  1780. int ret, i;
  1781. /* Flush everything onto the inactive list. */
  1782. for (i = 0; i < I915_NUM_RINGS; i++) {
  1783. ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
  1784. if (ret)
  1785. return ret;
  1786. }
  1787. return 0;
  1788. }
  1789. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1790. struct intel_ring_buffer *pipelined)
  1791. {
  1792. struct drm_device *dev = obj->base.dev;
  1793. drm_i915_private_t *dev_priv = dev->dev_private;
  1794. u32 size = obj->gtt_space->size;
  1795. int regnum = obj->fence_reg;
  1796. uint64_t val;
  1797. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1798. 0xfffff000) << 32;
  1799. val |= obj->gtt_offset & 0xfffff000;
  1800. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1801. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1802. if (obj->tiling_mode == I915_TILING_Y)
  1803. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1804. val |= I965_FENCE_REG_VALID;
  1805. if (pipelined) {
  1806. int ret = intel_ring_begin(pipelined, 6);
  1807. if (ret)
  1808. return ret;
  1809. intel_ring_emit(pipelined, MI_NOOP);
  1810. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1811. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1812. intel_ring_emit(pipelined, (u32)val);
  1813. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1814. intel_ring_emit(pipelined, (u32)(val >> 32));
  1815. intel_ring_advance(pipelined);
  1816. } else
  1817. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1818. return 0;
  1819. }
  1820. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1821. struct intel_ring_buffer *pipelined)
  1822. {
  1823. struct drm_device *dev = obj->base.dev;
  1824. drm_i915_private_t *dev_priv = dev->dev_private;
  1825. u32 size = obj->gtt_space->size;
  1826. int regnum = obj->fence_reg;
  1827. uint64_t val;
  1828. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1829. 0xfffff000) << 32;
  1830. val |= obj->gtt_offset & 0xfffff000;
  1831. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1832. if (obj->tiling_mode == I915_TILING_Y)
  1833. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1834. val |= I965_FENCE_REG_VALID;
  1835. if (pipelined) {
  1836. int ret = intel_ring_begin(pipelined, 6);
  1837. if (ret)
  1838. return ret;
  1839. intel_ring_emit(pipelined, MI_NOOP);
  1840. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1841. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1842. intel_ring_emit(pipelined, (u32)val);
  1843. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1844. intel_ring_emit(pipelined, (u32)(val >> 32));
  1845. intel_ring_advance(pipelined);
  1846. } else
  1847. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1848. return 0;
  1849. }
  1850. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1851. struct intel_ring_buffer *pipelined)
  1852. {
  1853. struct drm_device *dev = obj->base.dev;
  1854. drm_i915_private_t *dev_priv = dev->dev_private;
  1855. u32 size = obj->gtt_space->size;
  1856. u32 fence_reg, val, pitch_val;
  1857. int tile_width;
  1858. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1859. (size & -size) != size ||
  1860. (obj->gtt_offset & (size - 1)),
  1861. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1862. obj->gtt_offset, obj->map_and_fenceable, size))
  1863. return -EINVAL;
  1864. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1865. tile_width = 128;
  1866. else
  1867. tile_width = 512;
  1868. /* Note: pitch better be a power of two tile widths */
  1869. pitch_val = obj->stride / tile_width;
  1870. pitch_val = ffs(pitch_val) - 1;
  1871. val = obj->gtt_offset;
  1872. if (obj->tiling_mode == I915_TILING_Y)
  1873. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1874. val |= I915_FENCE_SIZE_BITS(size);
  1875. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1876. val |= I830_FENCE_REG_VALID;
  1877. fence_reg = obj->fence_reg;
  1878. if (fence_reg < 8)
  1879. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1880. else
  1881. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1882. if (pipelined) {
  1883. int ret = intel_ring_begin(pipelined, 4);
  1884. if (ret)
  1885. return ret;
  1886. intel_ring_emit(pipelined, MI_NOOP);
  1887. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1888. intel_ring_emit(pipelined, fence_reg);
  1889. intel_ring_emit(pipelined, val);
  1890. intel_ring_advance(pipelined);
  1891. } else
  1892. I915_WRITE(fence_reg, val);
  1893. return 0;
  1894. }
  1895. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1896. struct intel_ring_buffer *pipelined)
  1897. {
  1898. struct drm_device *dev = obj->base.dev;
  1899. drm_i915_private_t *dev_priv = dev->dev_private;
  1900. u32 size = obj->gtt_space->size;
  1901. int regnum = obj->fence_reg;
  1902. uint32_t val;
  1903. uint32_t pitch_val;
  1904. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1905. (size & -size) != size ||
  1906. (obj->gtt_offset & (size - 1)),
  1907. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1908. obj->gtt_offset, size))
  1909. return -EINVAL;
  1910. pitch_val = obj->stride / 128;
  1911. pitch_val = ffs(pitch_val) - 1;
  1912. val = obj->gtt_offset;
  1913. if (obj->tiling_mode == I915_TILING_Y)
  1914. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1915. val |= I830_FENCE_SIZE_BITS(size);
  1916. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1917. val |= I830_FENCE_REG_VALID;
  1918. if (pipelined) {
  1919. int ret = intel_ring_begin(pipelined, 4);
  1920. if (ret)
  1921. return ret;
  1922. intel_ring_emit(pipelined, MI_NOOP);
  1923. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1924. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1925. intel_ring_emit(pipelined, val);
  1926. intel_ring_advance(pipelined);
  1927. } else
  1928. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1929. return 0;
  1930. }
  1931. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1932. {
  1933. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1934. }
  1935. static int
  1936. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1937. struct intel_ring_buffer *pipelined)
  1938. {
  1939. int ret;
  1940. if (obj->fenced_gpu_access) {
  1941. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1942. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1943. 0, obj->base.write_domain);
  1944. if (ret)
  1945. return ret;
  1946. }
  1947. obj->fenced_gpu_access = false;
  1948. }
  1949. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1950. if (!ring_passed_seqno(obj->last_fenced_ring,
  1951. obj->last_fenced_seqno)) {
  1952. ret = i915_wait_request(obj->last_fenced_ring,
  1953. obj->last_fenced_seqno,
  1954. true);
  1955. if (ret)
  1956. return ret;
  1957. }
  1958. obj->last_fenced_seqno = 0;
  1959. obj->last_fenced_ring = NULL;
  1960. }
  1961. /* Ensure that all CPU reads are completed before installing a fence
  1962. * and all writes before removing the fence.
  1963. */
  1964. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1965. mb();
  1966. return 0;
  1967. }
  1968. int
  1969. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1970. {
  1971. int ret;
  1972. if (obj->tiling_mode)
  1973. i915_gem_release_mmap(obj);
  1974. ret = i915_gem_object_flush_fence(obj, NULL);
  1975. if (ret)
  1976. return ret;
  1977. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1978. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1979. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
  1980. i915_gem_clear_fence_reg(obj->base.dev,
  1981. &dev_priv->fence_regs[obj->fence_reg]);
  1982. obj->fence_reg = I915_FENCE_REG_NONE;
  1983. }
  1984. return 0;
  1985. }
  1986. static struct drm_i915_fence_reg *
  1987. i915_find_fence_reg(struct drm_device *dev,
  1988. struct intel_ring_buffer *pipelined)
  1989. {
  1990. struct drm_i915_private *dev_priv = dev->dev_private;
  1991. struct drm_i915_fence_reg *reg, *first, *avail;
  1992. int i;
  1993. /* First try to find a free reg */
  1994. avail = NULL;
  1995. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1996. reg = &dev_priv->fence_regs[i];
  1997. if (!reg->obj)
  1998. return reg;
  1999. if (!reg->pin_count)
  2000. avail = reg;
  2001. }
  2002. if (avail == NULL)
  2003. return NULL;
  2004. /* None available, try to steal one or wait for a user to finish */
  2005. avail = first = NULL;
  2006. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2007. if (reg->pin_count)
  2008. continue;
  2009. if (first == NULL)
  2010. first = reg;
  2011. if (!pipelined ||
  2012. !reg->obj->last_fenced_ring ||
  2013. reg->obj->last_fenced_ring == pipelined) {
  2014. avail = reg;
  2015. break;
  2016. }
  2017. }
  2018. if (avail == NULL)
  2019. avail = first;
  2020. return avail;
  2021. }
  2022. /**
  2023. * i915_gem_object_get_fence - set up a fence reg for an object
  2024. * @obj: object to map through a fence reg
  2025. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2026. * @interruptible: must we wait uninterruptibly for the register to retire?
  2027. *
  2028. * When mapping objects through the GTT, userspace wants to be able to write
  2029. * to them without having to worry about swizzling if the object is tiled.
  2030. *
  2031. * This function walks the fence regs looking for a free one for @obj,
  2032. * stealing one if it can't find any.
  2033. *
  2034. * It then sets up the reg based on the object's properties: address, pitch
  2035. * and tiling format.
  2036. */
  2037. int
  2038. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2039. struct intel_ring_buffer *pipelined)
  2040. {
  2041. struct drm_device *dev = obj->base.dev;
  2042. struct drm_i915_private *dev_priv = dev->dev_private;
  2043. struct drm_i915_fence_reg *reg;
  2044. int ret;
  2045. /* XXX disable pipelining. There are bugs. Shocking. */
  2046. pipelined = NULL;
  2047. /* Just update our place in the LRU if our fence is getting reused. */
  2048. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2049. reg = &dev_priv->fence_regs[obj->fence_reg];
  2050. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2051. if (obj->tiling_changed) {
  2052. ret = i915_gem_object_flush_fence(obj, pipelined);
  2053. if (ret)
  2054. return ret;
  2055. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2056. pipelined = NULL;
  2057. if (pipelined) {
  2058. reg->setup_seqno =
  2059. i915_gem_next_request_seqno(pipelined);
  2060. obj->last_fenced_seqno = reg->setup_seqno;
  2061. obj->last_fenced_ring = pipelined;
  2062. }
  2063. goto update;
  2064. }
  2065. if (!pipelined) {
  2066. if (reg->setup_seqno) {
  2067. if (!ring_passed_seqno(obj->last_fenced_ring,
  2068. reg->setup_seqno)) {
  2069. ret = i915_wait_request(obj->last_fenced_ring,
  2070. reg->setup_seqno,
  2071. true);
  2072. if (ret)
  2073. return ret;
  2074. }
  2075. reg->setup_seqno = 0;
  2076. }
  2077. } else if (obj->last_fenced_ring &&
  2078. obj->last_fenced_ring != pipelined) {
  2079. ret = i915_gem_object_flush_fence(obj, pipelined);
  2080. if (ret)
  2081. return ret;
  2082. }
  2083. return 0;
  2084. }
  2085. reg = i915_find_fence_reg(dev, pipelined);
  2086. if (reg == NULL)
  2087. return -EDEADLK;
  2088. ret = i915_gem_object_flush_fence(obj, pipelined);
  2089. if (ret)
  2090. return ret;
  2091. if (reg->obj) {
  2092. struct drm_i915_gem_object *old = reg->obj;
  2093. drm_gem_object_reference(&old->base);
  2094. if (old->tiling_mode)
  2095. i915_gem_release_mmap(old);
  2096. ret = i915_gem_object_flush_fence(old, pipelined);
  2097. if (ret) {
  2098. drm_gem_object_unreference(&old->base);
  2099. return ret;
  2100. }
  2101. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2102. pipelined = NULL;
  2103. old->fence_reg = I915_FENCE_REG_NONE;
  2104. old->last_fenced_ring = pipelined;
  2105. old->last_fenced_seqno =
  2106. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2107. drm_gem_object_unreference(&old->base);
  2108. } else if (obj->last_fenced_seqno == 0)
  2109. pipelined = NULL;
  2110. reg->obj = obj;
  2111. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2112. obj->fence_reg = reg - dev_priv->fence_regs;
  2113. obj->last_fenced_ring = pipelined;
  2114. reg->setup_seqno =
  2115. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2116. obj->last_fenced_seqno = reg->setup_seqno;
  2117. update:
  2118. obj->tiling_changed = false;
  2119. switch (INTEL_INFO(dev)->gen) {
  2120. case 7:
  2121. case 6:
  2122. ret = sandybridge_write_fence_reg(obj, pipelined);
  2123. break;
  2124. case 5:
  2125. case 4:
  2126. ret = i965_write_fence_reg(obj, pipelined);
  2127. break;
  2128. case 3:
  2129. ret = i915_write_fence_reg(obj, pipelined);
  2130. break;
  2131. case 2:
  2132. ret = i830_write_fence_reg(obj, pipelined);
  2133. break;
  2134. }
  2135. return ret;
  2136. }
  2137. /**
  2138. * i915_gem_clear_fence_reg - clear out fence register info
  2139. * @obj: object to clear
  2140. *
  2141. * Zeroes out the fence register itself and clears out the associated
  2142. * data structures in dev_priv and obj.
  2143. */
  2144. static void
  2145. i915_gem_clear_fence_reg(struct drm_device *dev,
  2146. struct drm_i915_fence_reg *reg)
  2147. {
  2148. drm_i915_private_t *dev_priv = dev->dev_private;
  2149. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2150. switch (INTEL_INFO(dev)->gen) {
  2151. case 7:
  2152. case 6:
  2153. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2154. break;
  2155. case 5:
  2156. case 4:
  2157. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2158. break;
  2159. case 3:
  2160. if (fence_reg >= 8)
  2161. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2162. else
  2163. case 2:
  2164. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2165. I915_WRITE(fence_reg, 0);
  2166. break;
  2167. }
  2168. list_del_init(&reg->lru_list);
  2169. reg->obj = NULL;
  2170. reg->setup_seqno = 0;
  2171. reg->pin_count = 0;
  2172. }
  2173. /**
  2174. * Finds free space in the GTT aperture and binds the object there.
  2175. */
  2176. static int
  2177. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2178. unsigned alignment,
  2179. bool map_and_fenceable)
  2180. {
  2181. struct drm_device *dev = obj->base.dev;
  2182. drm_i915_private_t *dev_priv = dev->dev_private;
  2183. struct drm_mm_node *free_space;
  2184. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2185. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2186. bool mappable, fenceable;
  2187. int ret;
  2188. if (obj->madv != I915_MADV_WILLNEED) {
  2189. DRM_ERROR("Attempting to bind a purgeable object\n");
  2190. return -EINVAL;
  2191. }
  2192. fence_size = i915_gem_get_gtt_size(dev,
  2193. obj->base.size,
  2194. obj->tiling_mode);
  2195. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2196. obj->base.size,
  2197. obj->tiling_mode);
  2198. unfenced_alignment =
  2199. i915_gem_get_unfenced_gtt_alignment(dev,
  2200. obj->base.size,
  2201. obj->tiling_mode);
  2202. if (alignment == 0)
  2203. alignment = map_and_fenceable ? fence_alignment :
  2204. unfenced_alignment;
  2205. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2206. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2207. return -EINVAL;
  2208. }
  2209. size = map_and_fenceable ? fence_size : obj->base.size;
  2210. /* If the object is bigger than the entire aperture, reject it early
  2211. * before evicting everything in a vain attempt to find space.
  2212. */
  2213. if (obj->base.size >
  2214. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2215. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2216. return -E2BIG;
  2217. }
  2218. search_free:
  2219. if (map_and_fenceable)
  2220. free_space =
  2221. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2222. size, alignment, 0,
  2223. dev_priv->mm.gtt_mappable_end,
  2224. 0);
  2225. else
  2226. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2227. size, alignment, 0);
  2228. if (free_space != NULL) {
  2229. if (map_and_fenceable)
  2230. obj->gtt_space =
  2231. drm_mm_get_block_range_generic(free_space,
  2232. size, alignment, 0,
  2233. dev_priv->mm.gtt_mappable_end,
  2234. 0);
  2235. else
  2236. obj->gtt_space =
  2237. drm_mm_get_block(free_space, size, alignment);
  2238. }
  2239. if (obj->gtt_space == NULL) {
  2240. /* If the gtt is empty and we're still having trouble
  2241. * fitting our object in, we're out of memory.
  2242. */
  2243. ret = i915_gem_evict_something(dev, size, alignment,
  2244. map_and_fenceable);
  2245. if (ret)
  2246. return ret;
  2247. goto search_free;
  2248. }
  2249. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2250. if (ret) {
  2251. drm_mm_put_block(obj->gtt_space);
  2252. obj->gtt_space = NULL;
  2253. if (ret == -ENOMEM) {
  2254. /* first try to reclaim some memory by clearing the GTT */
  2255. ret = i915_gem_evict_everything(dev, false);
  2256. if (ret) {
  2257. /* now try to shrink everyone else */
  2258. if (gfpmask) {
  2259. gfpmask = 0;
  2260. goto search_free;
  2261. }
  2262. return -ENOMEM;
  2263. }
  2264. goto search_free;
  2265. }
  2266. return ret;
  2267. }
  2268. ret = i915_gem_gtt_prepare_object(obj);
  2269. if (ret) {
  2270. i915_gem_object_put_pages_gtt(obj);
  2271. drm_mm_put_block(obj->gtt_space);
  2272. obj->gtt_space = NULL;
  2273. if (i915_gem_evict_everything(dev, false))
  2274. return ret;
  2275. goto search_free;
  2276. }
  2277. if (!dev_priv->mm.aliasing_ppgtt)
  2278. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2279. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2280. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2281. /* Assert that the object is not currently in any GPU domain. As it
  2282. * wasn't in the GTT, there shouldn't be any way it could have been in
  2283. * a GPU cache
  2284. */
  2285. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2286. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2287. obj->gtt_offset = obj->gtt_space->start;
  2288. fenceable =
  2289. obj->gtt_space->size == fence_size &&
  2290. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2291. mappable =
  2292. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2293. obj->map_and_fenceable = mappable && fenceable;
  2294. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2295. return 0;
  2296. }
  2297. void
  2298. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2299. {
  2300. /* If we don't have a page list set up, then we're not pinned
  2301. * to GPU, and we can ignore the cache flush because it'll happen
  2302. * again at bind time.
  2303. */
  2304. if (obj->pages == NULL)
  2305. return;
  2306. /* If the GPU is snooping the contents of the CPU cache,
  2307. * we do not need to manually clear the CPU cache lines. However,
  2308. * the caches are only snooped when the render cache is
  2309. * flushed/invalidated. As we always have to emit invalidations
  2310. * and flushes when moving into and out of the RENDER domain, correct
  2311. * snooping behaviour occurs naturally as the result of our domain
  2312. * tracking.
  2313. */
  2314. if (obj->cache_level != I915_CACHE_NONE)
  2315. return;
  2316. trace_i915_gem_object_clflush(obj);
  2317. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2318. }
  2319. /** Flushes any GPU write domain for the object if it's dirty. */
  2320. static int
  2321. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2322. {
  2323. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2324. return 0;
  2325. /* Queue the GPU write cache flushing we need. */
  2326. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2327. }
  2328. /** Flushes the GTT write domain for the object if it's dirty. */
  2329. static void
  2330. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2331. {
  2332. uint32_t old_write_domain;
  2333. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2334. return;
  2335. /* No actual flushing is required for the GTT write domain. Writes
  2336. * to it immediately go to main memory as far as we know, so there's
  2337. * no chipset flush. It also doesn't land in render cache.
  2338. *
  2339. * However, we do have to enforce the order so that all writes through
  2340. * the GTT land before any writes to the device, such as updates to
  2341. * the GATT itself.
  2342. */
  2343. wmb();
  2344. old_write_domain = obj->base.write_domain;
  2345. obj->base.write_domain = 0;
  2346. trace_i915_gem_object_change_domain(obj,
  2347. obj->base.read_domains,
  2348. old_write_domain);
  2349. }
  2350. /** Flushes the CPU write domain for the object if it's dirty. */
  2351. static void
  2352. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2353. {
  2354. uint32_t old_write_domain;
  2355. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2356. return;
  2357. i915_gem_clflush_object(obj);
  2358. intel_gtt_chipset_flush();
  2359. old_write_domain = obj->base.write_domain;
  2360. obj->base.write_domain = 0;
  2361. trace_i915_gem_object_change_domain(obj,
  2362. obj->base.read_domains,
  2363. old_write_domain);
  2364. }
  2365. /**
  2366. * Moves a single object to the GTT read, and possibly write domain.
  2367. *
  2368. * This function returns when the move is complete, including waiting on
  2369. * flushes to occur.
  2370. */
  2371. int
  2372. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2373. {
  2374. uint32_t old_write_domain, old_read_domains;
  2375. int ret;
  2376. /* Not valid to be called on unbound objects. */
  2377. if (obj->gtt_space == NULL)
  2378. return -EINVAL;
  2379. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2380. return 0;
  2381. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2382. if (ret)
  2383. return ret;
  2384. if (obj->pending_gpu_write || write) {
  2385. ret = i915_gem_object_wait_rendering(obj);
  2386. if (ret)
  2387. return ret;
  2388. }
  2389. i915_gem_object_flush_cpu_write_domain(obj);
  2390. old_write_domain = obj->base.write_domain;
  2391. old_read_domains = obj->base.read_domains;
  2392. /* It should now be out of any other write domains, and we can update
  2393. * the domain values for our changes.
  2394. */
  2395. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2396. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2397. if (write) {
  2398. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2399. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2400. obj->dirty = 1;
  2401. }
  2402. trace_i915_gem_object_change_domain(obj,
  2403. old_read_domains,
  2404. old_write_domain);
  2405. return 0;
  2406. }
  2407. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2408. enum i915_cache_level cache_level)
  2409. {
  2410. struct drm_device *dev = obj->base.dev;
  2411. drm_i915_private_t *dev_priv = dev->dev_private;
  2412. int ret;
  2413. if (obj->cache_level == cache_level)
  2414. return 0;
  2415. if (obj->pin_count) {
  2416. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2417. return -EBUSY;
  2418. }
  2419. if (obj->gtt_space) {
  2420. ret = i915_gem_object_finish_gpu(obj);
  2421. if (ret)
  2422. return ret;
  2423. i915_gem_object_finish_gtt(obj);
  2424. /* Before SandyBridge, you could not use tiling or fence
  2425. * registers with snooped memory, so relinquish any fences
  2426. * currently pointing to our region in the aperture.
  2427. */
  2428. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2429. ret = i915_gem_object_put_fence(obj);
  2430. if (ret)
  2431. return ret;
  2432. }
  2433. if (obj->has_global_gtt_mapping)
  2434. i915_gem_gtt_bind_object(obj, cache_level);
  2435. if (obj->has_aliasing_ppgtt_mapping)
  2436. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2437. obj, cache_level);
  2438. }
  2439. if (cache_level == I915_CACHE_NONE) {
  2440. u32 old_read_domains, old_write_domain;
  2441. /* If we're coming from LLC cached, then we haven't
  2442. * actually been tracking whether the data is in the
  2443. * CPU cache or not, since we only allow one bit set
  2444. * in obj->write_domain and have been skipping the clflushes.
  2445. * Just set it to the CPU cache for now.
  2446. */
  2447. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2448. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2449. old_read_domains = obj->base.read_domains;
  2450. old_write_domain = obj->base.write_domain;
  2451. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2452. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2453. trace_i915_gem_object_change_domain(obj,
  2454. old_read_domains,
  2455. old_write_domain);
  2456. }
  2457. obj->cache_level = cache_level;
  2458. return 0;
  2459. }
  2460. /*
  2461. * Prepare buffer for display plane (scanout, cursors, etc).
  2462. * Can be called from an uninterruptible phase (modesetting) and allows
  2463. * any flushes to be pipelined (for pageflips).
  2464. *
  2465. * For the display plane, we want to be in the GTT but out of any write
  2466. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2467. * ability to pipeline the waits, pinning and any additional subtleties
  2468. * that may differentiate the display plane from ordinary buffers.
  2469. */
  2470. int
  2471. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2472. u32 alignment,
  2473. struct intel_ring_buffer *pipelined)
  2474. {
  2475. u32 old_read_domains, old_write_domain;
  2476. int ret;
  2477. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2478. if (ret)
  2479. return ret;
  2480. if (pipelined != obj->ring) {
  2481. ret = i915_gem_object_wait_rendering(obj);
  2482. if (ret == -ERESTARTSYS)
  2483. return ret;
  2484. }
  2485. /* The display engine is not coherent with the LLC cache on gen6. As
  2486. * a result, we make sure that the pinning that is about to occur is
  2487. * done with uncached PTEs. This is lowest common denominator for all
  2488. * chipsets.
  2489. *
  2490. * However for gen6+, we could do better by using the GFDT bit instead
  2491. * of uncaching, which would allow us to flush all the LLC-cached data
  2492. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2493. */
  2494. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2495. if (ret)
  2496. return ret;
  2497. /* As the user may map the buffer once pinned in the display plane
  2498. * (e.g. libkms for the bootup splash), we have to ensure that we
  2499. * always use map_and_fenceable for all scanout buffers.
  2500. */
  2501. ret = i915_gem_object_pin(obj, alignment, true);
  2502. if (ret)
  2503. return ret;
  2504. i915_gem_object_flush_cpu_write_domain(obj);
  2505. old_write_domain = obj->base.write_domain;
  2506. old_read_domains = obj->base.read_domains;
  2507. /* It should now be out of any other write domains, and we can update
  2508. * the domain values for our changes.
  2509. */
  2510. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2511. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2512. trace_i915_gem_object_change_domain(obj,
  2513. old_read_domains,
  2514. old_write_domain);
  2515. return 0;
  2516. }
  2517. int
  2518. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2519. {
  2520. int ret;
  2521. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2522. return 0;
  2523. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2524. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2525. if (ret)
  2526. return ret;
  2527. }
  2528. ret = i915_gem_object_wait_rendering(obj);
  2529. if (ret)
  2530. return ret;
  2531. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2532. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2533. return 0;
  2534. }
  2535. /**
  2536. * Moves a single object to the CPU read, and possibly write domain.
  2537. *
  2538. * This function returns when the move is complete, including waiting on
  2539. * flushes to occur.
  2540. */
  2541. int
  2542. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2543. {
  2544. uint32_t old_write_domain, old_read_domains;
  2545. int ret;
  2546. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2547. return 0;
  2548. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2549. if (ret)
  2550. return ret;
  2551. ret = i915_gem_object_wait_rendering(obj);
  2552. if (ret)
  2553. return ret;
  2554. i915_gem_object_flush_gtt_write_domain(obj);
  2555. /* If we have a partially-valid cache of the object in the CPU,
  2556. * finish invalidating it and free the per-page flags.
  2557. */
  2558. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2559. old_write_domain = obj->base.write_domain;
  2560. old_read_domains = obj->base.read_domains;
  2561. /* Flush the CPU cache if it's still invalid. */
  2562. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2563. i915_gem_clflush_object(obj);
  2564. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2565. }
  2566. /* It should now be out of any other write domains, and we can update
  2567. * the domain values for our changes.
  2568. */
  2569. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2570. /* If we're writing through the CPU, then the GPU read domains will
  2571. * need to be invalidated at next use.
  2572. */
  2573. if (write) {
  2574. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2575. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2576. }
  2577. trace_i915_gem_object_change_domain(obj,
  2578. old_read_domains,
  2579. old_write_domain);
  2580. return 0;
  2581. }
  2582. /**
  2583. * Moves the object from a partially CPU read to a full one.
  2584. *
  2585. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2586. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2587. */
  2588. static void
  2589. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2590. {
  2591. if (!obj->page_cpu_valid)
  2592. return;
  2593. /* If we're partially in the CPU read domain, finish moving it in.
  2594. */
  2595. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2596. int i;
  2597. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2598. if (obj->page_cpu_valid[i])
  2599. continue;
  2600. drm_clflush_pages(obj->pages + i, 1);
  2601. }
  2602. }
  2603. /* Free the page_cpu_valid mappings which are now stale, whether
  2604. * or not we've got I915_GEM_DOMAIN_CPU.
  2605. */
  2606. kfree(obj->page_cpu_valid);
  2607. obj->page_cpu_valid = NULL;
  2608. }
  2609. /**
  2610. * Set the CPU read domain on a range of the object.
  2611. *
  2612. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2613. * not entirely valid. The page_cpu_valid member of the object flags which
  2614. * pages have been flushed, and will be respected by
  2615. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2616. * of the whole object.
  2617. *
  2618. * This function returns when the move is complete, including waiting on
  2619. * flushes to occur.
  2620. */
  2621. static int
  2622. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2623. uint64_t offset, uint64_t size)
  2624. {
  2625. uint32_t old_read_domains;
  2626. int i, ret;
  2627. if (offset == 0 && size == obj->base.size)
  2628. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2629. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2630. if (ret)
  2631. return ret;
  2632. ret = i915_gem_object_wait_rendering(obj);
  2633. if (ret)
  2634. return ret;
  2635. i915_gem_object_flush_gtt_write_domain(obj);
  2636. /* If we're already fully in the CPU read domain, we're done. */
  2637. if (obj->page_cpu_valid == NULL &&
  2638. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2639. return 0;
  2640. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2641. * newly adding I915_GEM_DOMAIN_CPU
  2642. */
  2643. if (obj->page_cpu_valid == NULL) {
  2644. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2645. GFP_KERNEL);
  2646. if (obj->page_cpu_valid == NULL)
  2647. return -ENOMEM;
  2648. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2649. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2650. /* Flush the cache on any pages that are still invalid from the CPU's
  2651. * perspective.
  2652. */
  2653. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2654. i++) {
  2655. if (obj->page_cpu_valid[i])
  2656. continue;
  2657. drm_clflush_pages(obj->pages + i, 1);
  2658. obj->page_cpu_valid[i] = 1;
  2659. }
  2660. /* It should now be out of any other write domains, and we can update
  2661. * the domain values for our changes.
  2662. */
  2663. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2664. old_read_domains = obj->base.read_domains;
  2665. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2666. trace_i915_gem_object_change_domain(obj,
  2667. old_read_domains,
  2668. obj->base.write_domain);
  2669. return 0;
  2670. }
  2671. /* Throttle our rendering by waiting until the ring has completed our requests
  2672. * emitted over 20 msec ago.
  2673. *
  2674. * Note that if we were to use the current jiffies each time around the loop,
  2675. * we wouldn't escape the function with any frames outstanding if the time to
  2676. * render a frame was over 20ms.
  2677. *
  2678. * This should get us reasonable parallelism between CPU and GPU but also
  2679. * relatively low latency when blocking on a particular request to finish.
  2680. */
  2681. static int
  2682. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2683. {
  2684. struct drm_i915_private *dev_priv = dev->dev_private;
  2685. struct drm_i915_file_private *file_priv = file->driver_priv;
  2686. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2687. struct drm_i915_gem_request *request;
  2688. struct intel_ring_buffer *ring = NULL;
  2689. u32 seqno = 0;
  2690. int ret;
  2691. if (atomic_read(&dev_priv->mm.wedged))
  2692. return -EIO;
  2693. spin_lock(&file_priv->mm.lock);
  2694. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2695. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2696. break;
  2697. ring = request->ring;
  2698. seqno = request->seqno;
  2699. }
  2700. spin_unlock(&file_priv->mm.lock);
  2701. if (seqno == 0)
  2702. return 0;
  2703. ret = 0;
  2704. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2705. /* And wait for the seqno passing without holding any locks and
  2706. * causing extra latency for others. This is safe as the irq
  2707. * generation is designed to be run atomically and so is
  2708. * lockless.
  2709. */
  2710. if (ring->irq_get(ring)) {
  2711. ret = wait_event_interruptible(ring->irq_queue,
  2712. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2713. || atomic_read(&dev_priv->mm.wedged));
  2714. ring->irq_put(ring);
  2715. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2716. ret = -EIO;
  2717. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2718. seqno) ||
  2719. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2720. ret = -EBUSY;
  2721. }
  2722. }
  2723. if (ret == 0)
  2724. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2725. return ret;
  2726. }
  2727. int
  2728. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2729. uint32_t alignment,
  2730. bool map_and_fenceable)
  2731. {
  2732. struct drm_device *dev = obj->base.dev;
  2733. struct drm_i915_private *dev_priv = dev->dev_private;
  2734. int ret;
  2735. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2736. WARN_ON(i915_verify_lists(dev));
  2737. if (obj->gtt_space != NULL) {
  2738. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2739. (map_and_fenceable && !obj->map_and_fenceable)) {
  2740. WARN(obj->pin_count,
  2741. "bo is already pinned with incorrect alignment:"
  2742. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2743. " obj->map_and_fenceable=%d\n",
  2744. obj->gtt_offset, alignment,
  2745. map_and_fenceable,
  2746. obj->map_and_fenceable);
  2747. ret = i915_gem_object_unbind(obj);
  2748. if (ret)
  2749. return ret;
  2750. }
  2751. }
  2752. if (obj->gtt_space == NULL) {
  2753. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2754. map_and_fenceable);
  2755. if (ret)
  2756. return ret;
  2757. }
  2758. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2759. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2760. if (obj->pin_count++ == 0) {
  2761. if (!obj->active)
  2762. list_move_tail(&obj->mm_list,
  2763. &dev_priv->mm.pinned_list);
  2764. }
  2765. obj->pin_mappable |= map_and_fenceable;
  2766. WARN_ON(i915_verify_lists(dev));
  2767. return 0;
  2768. }
  2769. void
  2770. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2771. {
  2772. struct drm_device *dev = obj->base.dev;
  2773. drm_i915_private_t *dev_priv = dev->dev_private;
  2774. WARN_ON(i915_verify_lists(dev));
  2775. BUG_ON(obj->pin_count == 0);
  2776. BUG_ON(obj->gtt_space == NULL);
  2777. if (--obj->pin_count == 0) {
  2778. if (!obj->active)
  2779. list_move_tail(&obj->mm_list,
  2780. &dev_priv->mm.inactive_list);
  2781. obj->pin_mappable = false;
  2782. }
  2783. WARN_ON(i915_verify_lists(dev));
  2784. }
  2785. int
  2786. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2787. struct drm_file *file)
  2788. {
  2789. struct drm_i915_gem_pin *args = data;
  2790. struct drm_i915_gem_object *obj;
  2791. int ret;
  2792. ret = i915_mutex_lock_interruptible(dev);
  2793. if (ret)
  2794. return ret;
  2795. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2796. if (&obj->base == NULL) {
  2797. ret = -ENOENT;
  2798. goto unlock;
  2799. }
  2800. if (obj->madv != I915_MADV_WILLNEED) {
  2801. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2802. ret = -EINVAL;
  2803. goto out;
  2804. }
  2805. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2806. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2807. args->handle);
  2808. ret = -EINVAL;
  2809. goto out;
  2810. }
  2811. obj->user_pin_count++;
  2812. obj->pin_filp = file;
  2813. if (obj->user_pin_count == 1) {
  2814. ret = i915_gem_object_pin(obj, args->alignment, true);
  2815. if (ret)
  2816. goto out;
  2817. }
  2818. /* XXX - flush the CPU caches for pinned objects
  2819. * as the X server doesn't manage domains yet
  2820. */
  2821. i915_gem_object_flush_cpu_write_domain(obj);
  2822. args->offset = obj->gtt_offset;
  2823. out:
  2824. drm_gem_object_unreference(&obj->base);
  2825. unlock:
  2826. mutex_unlock(&dev->struct_mutex);
  2827. return ret;
  2828. }
  2829. int
  2830. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2831. struct drm_file *file)
  2832. {
  2833. struct drm_i915_gem_pin *args = data;
  2834. struct drm_i915_gem_object *obj;
  2835. int ret;
  2836. ret = i915_mutex_lock_interruptible(dev);
  2837. if (ret)
  2838. return ret;
  2839. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2840. if (&obj->base == NULL) {
  2841. ret = -ENOENT;
  2842. goto unlock;
  2843. }
  2844. if (obj->pin_filp != file) {
  2845. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2846. args->handle);
  2847. ret = -EINVAL;
  2848. goto out;
  2849. }
  2850. obj->user_pin_count--;
  2851. if (obj->user_pin_count == 0) {
  2852. obj->pin_filp = NULL;
  2853. i915_gem_object_unpin(obj);
  2854. }
  2855. out:
  2856. drm_gem_object_unreference(&obj->base);
  2857. unlock:
  2858. mutex_unlock(&dev->struct_mutex);
  2859. return ret;
  2860. }
  2861. int
  2862. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2863. struct drm_file *file)
  2864. {
  2865. struct drm_i915_gem_busy *args = data;
  2866. struct drm_i915_gem_object *obj;
  2867. int ret;
  2868. ret = i915_mutex_lock_interruptible(dev);
  2869. if (ret)
  2870. return ret;
  2871. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2872. if (&obj->base == NULL) {
  2873. ret = -ENOENT;
  2874. goto unlock;
  2875. }
  2876. /* Count all active objects as busy, even if they are currently not used
  2877. * by the gpu. Users of this interface expect objects to eventually
  2878. * become non-busy without any further actions, therefore emit any
  2879. * necessary flushes here.
  2880. */
  2881. args->busy = obj->active;
  2882. if (args->busy) {
  2883. /* Unconditionally flush objects, even when the gpu still uses this
  2884. * object. Userspace calling this function indicates that it wants to
  2885. * use this buffer rather sooner than later, so issuing the required
  2886. * flush earlier is beneficial.
  2887. */
  2888. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2889. ret = i915_gem_flush_ring(obj->ring,
  2890. 0, obj->base.write_domain);
  2891. } else if (obj->ring->outstanding_lazy_request ==
  2892. obj->last_rendering_seqno) {
  2893. struct drm_i915_gem_request *request;
  2894. /* This ring is not being cleared by active usage,
  2895. * so emit a request to do so.
  2896. */
  2897. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2898. if (request) {
  2899. ret = i915_add_request(obj->ring, NULL, request);
  2900. if (ret)
  2901. kfree(request);
  2902. } else
  2903. ret = -ENOMEM;
  2904. }
  2905. /* Update the active list for the hardware's current position.
  2906. * Otherwise this only updates on a delayed timer or when irqs
  2907. * are actually unmasked, and our working set ends up being
  2908. * larger than required.
  2909. */
  2910. i915_gem_retire_requests_ring(obj->ring);
  2911. args->busy = obj->active;
  2912. }
  2913. drm_gem_object_unreference(&obj->base);
  2914. unlock:
  2915. mutex_unlock(&dev->struct_mutex);
  2916. return ret;
  2917. }
  2918. int
  2919. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2920. struct drm_file *file_priv)
  2921. {
  2922. return i915_gem_ring_throttle(dev, file_priv);
  2923. }
  2924. int
  2925. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2926. struct drm_file *file_priv)
  2927. {
  2928. struct drm_i915_gem_madvise *args = data;
  2929. struct drm_i915_gem_object *obj;
  2930. int ret;
  2931. switch (args->madv) {
  2932. case I915_MADV_DONTNEED:
  2933. case I915_MADV_WILLNEED:
  2934. break;
  2935. default:
  2936. return -EINVAL;
  2937. }
  2938. ret = i915_mutex_lock_interruptible(dev);
  2939. if (ret)
  2940. return ret;
  2941. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2942. if (&obj->base == NULL) {
  2943. ret = -ENOENT;
  2944. goto unlock;
  2945. }
  2946. if (obj->pin_count) {
  2947. ret = -EINVAL;
  2948. goto out;
  2949. }
  2950. if (obj->madv != __I915_MADV_PURGED)
  2951. obj->madv = args->madv;
  2952. /* if the object is no longer bound, discard its backing storage */
  2953. if (i915_gem_object_is_purgeable(obj) &&
  2954. obj->gtt_space == NULL)
  2955. i915_gem_object_truncate(obj);
  2956. args->retained = obj->madv != __I915_MADV_PURGED;
  2957. out:
  2958. drm_gem_object_unreference(&obj->base);
  2959. unlock:
  2960. mutex_unlock(&dev->struct_mutex);
  2961. return ret;
  2962. }
  2963. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2964. size_t size)
  2965. {
  2966. struct drm_i915_private *dev_priv = dev->dev_private;
  2967. struct drm_i915_gem_object *obj;
  2968. struct address_space *mapping;
  2969. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2970. if (obj == NULL)
  2971. return NULL;
  2972. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2973. kfree(obj);
  2974. return NULL;
  2975. }
  2976. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2977. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2978. i915_gem_info_add_obj(dev_priv, size);
  2979. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2980. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2981. if (HAS_LLC(dev)) {
  2982. /* On some devices, we can have the GPU use the LLC (the CPU
  2983. * cache) for about a 10% performance improvement
  2984. * compared to uncached. Graphics requests other than
  2985. * display scanout are coherent with the CPU in
  2986. * accessing this cache. This means in this mode we
  2987. * don't need to clflush on the CPU side, and on the
  2988. * GPU side we only need to flush internal caches to
  2989. * get data visible to the CPU.
  2990. *
  2991. * However, we maintain the display planes as UC, and so
  2992. * need to rebind when first used as such.
  2993. */
  2994. obj->cache_level = I915_CACHE_LLC;
  2995. } else
  2996. obj->cache_level = I915_CACHE_NONE;
  2997. obj->base.driver_private = NULL;
  2998. obj->fence_reg = I915_FENCE_REG_NONE;
  2999. INIT_LIST_HEAD(&obj->mm_list);
  3000. INIT_LIST_HEAD(&obj->gtt_list);
  3001. INIT_LIST_HEAD(&obj->ring_list);
  3002. INIT_LIST_HEAD(&obj->exec_list);
  3003. INIT_LIST_HEAD(&obj->gpu_write_list);
  3004. obj->madv = I915_MADV_WILLNEED;
  3005. /* Avoid an unnecessary call to unbind on the first bind. */
  3006. obj->map_and_fenceable = true;
  3007. return obj;
  3008. }
  3009. int i915_gem_init_object(struct drm_gem_object *obj)
  3010. {
  3011. BUG();
  3012. return 0;
  3013. }
  3014. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  3015. {
  3016. struct drm_device *dev = obj->base.dev;
  3017. drm_i915_private_t *dev_priv = dev->dev_private;
  3018. int ret;
  3019. ret = i915_gem_object_unbind(obj);
  3020. if (ret == -ERESTARTSYS) {
  3021. list_move(&obj->mm_list,
  3022. &dev_priv->mm.deferred_free_list);
  3023. return;
  3024. }
  3025. trace_i915_gem_object_destroy(obj);
  3026. if (obj->base.map_list.map)
  3027. drm_gem_free_mmap_offset(&obj->base);
  3028. drm_gem_object_release(&obj->base);
  3029. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3030. kfree(obj->page_cpu_valid);
  3031. kfree(obj->bit_17);
  3032. kfree(obj);
  3033. }
  3034. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3035. {
  3036. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3037. struct drm_device *dev = obj->base.dev;
  3038. while (obj->pin_count > 0)
  3039. i915_gem_object_unpin(obj);
  3040. if (obj->phys_obj)
  3041. i915_gem_detach_phys_object(dev, obj);
  3042. i915_gem_free_object_tail(obj);
  3043. }
  3044. int
  3045. i915_gem_idle(struct drm_device *dev)
  3046. {
  3047. drm_i915_private_t *dev_priv = dev->dev_private;
  3048. int ret;
  3049. mutex_lock(&dev->struct_mutex);
  3050. if (dev_priv->mm.suspended) {
  3051. mutex_unlock(&dev->struct_mutex);
  3052. return 0;
  3053. }
  3054. ret = i915_gpu_idle(dev, true);
  3055. if (ret) {
  3056. mutex_unlock(&dev->struct_mutex);
  3057. return ret;
  3058. }
  3059. /* Under UMS, be paranoid and evict. */
  3060. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3061. ret = i915_gem_evict_inactive(dev, false);
  3062. if (ret) {
  3063. mutex_unlock(&dev->struct_mutex);
  3064. return ret;
  3065. }
  3066. }
  3067. i915_gem_reset_fences(dev);
  3068. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3069. * We need to replace this with a semaphore, or something.
  3070. * And not confound mm.suspended!
  3071. */
  3072. dev_priv->mm.suspended = 1;
  3073. del_timer_sync(&dev_priv->hangcheck_timer);
  3074. i915_kernel_lost_context(dev);
  3075. i915_gem_cleanup_ringbuffer(dev);
  3076. mutex_unlock(&dev->struct_mutex);
  3077. /* Cancel the retire work handler, which should be idle now. */
  3078. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3079. return 0;
  3080. }
  3081. void i915_gem_init_swizzling(struct drm_device *dev)
  3082. {
  3083. drm_i915_private_t *dev_priv = dev->dev_private;
  3084. if (INTEL_INFO(dev)->gen < 5 ||
  3085. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3086. return;
  3087. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3088. DISP_TILE_SURFACE_SWIZZLING);
  3089. if (IS_GEN5(dev))
  3090. return;
  3091. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3092. if (IS_GEN6(dev))
  3093. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3094. else
  3095. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3096. }
  3097. void i915_gem_init_ppgtt(struct drm_device *dev)
  3098. {
  3099. drm_i915_private_t *dev_priv = dev->dev_private;
  3100. uint32_t pd_offset;
  3101. struct intel_ring_buffer *ring;
  3102. int i;
  3103. if (!dev_priv->mm.aliasing_ppgtt)
  3104. return;
  3105. pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
  3106. pd_offset /= 64; /* in cachelines, */
  3107. pd_offset <<= 16;
  3108. if (INTEL_INFO(dev)->gen == 6) {
  3109. uint32_t ecochk = I915_READ(GAM_ECOCHK);
  3110. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3111. ECOCHK_PPGTT_CACHE64B);
  3112. I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  3113. } else if (INTEL_INFO(dev)->gen >= 7) {
  3114. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3115. /* GFX_MODE is per-ring on gen7+ */
  3116. }
  3117. for (i = 0; i < I915_NUM_RINGS; i++) {
  3118. ring = &dev_priv->ring[i];
  3119. if (INTEL_INFO(dev)->gen >= 7)
  3120. I915_WRITE(RING_MODE_GEN7(ring),
  3121. GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  3122. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3123. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3124. }
  3125. }
  3126. int
  3127. i915_gem_init_hw(struct drm_device *dev)
  3128. {
  3129. drm_i915_private_t *dev_priv = dev->dev_private;
  3130. int ret;
  3131. i915_gem_init_swizzling(dev);
  3132. ret = intel_init_render_ring_buffer(dev);
  3133. if (ret)
  3134. return ret;
  3135. if (HAS_BSD(dev)) {
  3136. ret = intel_init_bsd_ring_buffer(dev);
  3137. if (ret)
  3138. goto cleanup_render_ring;
  3139. }
  3140. if (HAS_BLT(dev)) {
  3141. ret = intel_init_blt_ring_buffer(dev);
  3142. if (ret)
  3143. goto cleanup_bsd_ring;
  3144. }
  3145. dev_priv->next_seqno = 1;
  3146. i915_gem_init_ppgtt(dev);
  3147. return 0;
  3148. cleanup_bsd_ring:
  3149. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3150. cleanup_render_ring:
  3151. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3152. return ret;
  3153. }
  3154. void
  3155. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3156. {
  3157. drm_i915_private_t *dev_priv = dev->dev_private;
  3158. int i;
  3159. for (i = 0; i < I915_NUM_RINGS; i++)
  3160. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3161. }
  3162. int
  3163. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3164. struct drm_file *file_priv)
  3165. {
  3166. drm_i915_private_t *dev_priv = dev->dev_private;
  3167. int ret, i;
  3168. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3169. return 0;
  3170. if (atomic_read(&dev_priv->mm.wedged)) {
  3171. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3172. atomic_set(&dev_priv->mm.wedged, 0);
  3173. }
  3174. mutex_lock(&dev->struct_mutex);
  3175. dev_priv->mm.suspended = 0;
  3176. ret = i915_gem_init_hw(dev);
  3177. if (ret != 0) {
  3178. mutex_unlock(&dev->struct_mutex);
  3179. return ret;
  3180. }
  3181. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3182. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3183. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3184. for (i = 0; i < I915_NUM_RINGS; i++) {
  3185. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3186. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3187. }
  3188. mutex_unlock(&dev->struct_mutex);
  3189. ret = drm_irq_install(dev);
  3190. if (ret)
  3191. goto cleanup_ringbuffer;
  3192. return 0;
  3193. cleanup_ringbuffer:
  3194. mutex_lock(&dev->struct_mutex);
  3195. i915_gem_cleanup_ringbuffer(dev);
  3196. dev_priv->mm.suspended = 1;
  3197. mutex_unlock(&dev->struct_mutex);
  3198. return ret;
  3199. }
  3200. int
  3201. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3202. struct drm_file *file_priv)
  3203. {
  3204. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3205. return 0;
  3206. drm_irq_uninstall(dev);
  3207. return i915_gem_idle(dev);
  3208. }
  3209. void
  3210. i915_gem_lastclose(struct drm_device *dev)
  3211. {
  3212. int ret;
  3213. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3214. return;
  3215. ret = i915_gem_idle(dev);
  3216. if (ret)
  3217. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3218. }
  3219. static void
  3220. init_ring_lists(struct intel_ring_buffer *ring)
  3221. {
  3222. INIT_LIST_HEAD(&ring->active_list);
  3223. INIT_LIST_HEAD(&ring->request_list);
  3224. INIT_LIST_HEAD(&ring->gpu_write_list);
  3225. }
  3226. void
  3227. i915_gem_load(struct drm_device *dev)
  3228. {
  3229. int i;
  3230. drm_i915_private_t *dev_priv = dev->dev_private;
  3231. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3232. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3233. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3234. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3235. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3236. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3237. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3238. for (i = 0; i < I915_NUM_RINGS; i++)
  3239. init_ring_lists(&dev_priv->ring[i]);
  3240. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3241. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3242. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3243. i915_gem_retire_work_handler);
  3244. init_completion(&dev_priv->error_completion);
  3245. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3246. if (IS_GEN3(dev)) {
  3247. u32 tmp = I915_READ(MI_ARB_STATE);
  3248. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3249. /* arb state is a masked write, so set bit + bit in mask */
  3250. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3251. I915_WRITE(MI_ARB_STATE, tmp);
  3252. }
  3253. }
  3254. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3255. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3256. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3257. dev_priv->fence_reg_start = 3;
  3258. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3259. dev_priv->num_fence_regs = 16;
  3260. else
  3261. dev_priv->num_fence_regs = 8;
  3262. /* Initialize fence registers to zero */
  3263. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3264. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3265. }
  3266. i915_gem_detect_bit_6_swizzle(dev);
  3267. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3268. dev_priv->mm.interruptible = true;
  3269. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3270. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3271. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3272. }
  3273. /*
  3274. * Create a physically contiguous memory object for this object
  3275. * e.g. for cursor + overlay regs
  3276. */
  3277. static int i915_gem_init_phys_object(struct drm_device *dev,
  3278. int id, int size, int align)
  3279. {
  3280. drm_i915_private_t *dev_priv = dev->dev_private;
  3281. struct drm_i915_gem_phys_object *phys_obj;
  3282. int ret;
  3283. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3284. return 0;
  3285. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3286. if (!phys_obj)
  3287. return -ENOMEM;
  3288. phys_obj->id = id;
  3289. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3290. if (!phys_obj->handle) {
  3291. ret = -ENOMEM;
  3292. goto kfree_obj;
  3293. }
  3294. #ifdef CONFIG_X86
  3295. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3296. #endif
  3297. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3298. return 0;
  3299. kfree_obj:
  3300. kfree(phys_obj);
  3301. return ret;
  3302. }
  3303. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3304. {
  3305. drm_i915_private_t *dev_priv = dev->dev_private;
  3306. struct drm_i915_gem_phys_object *phys_obj;
  3307. if (!dev_priv->mm.phys_objs[id - 1])
  3308. return;
  3309. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3310. if (phys_obj->cur_obj) {
  3311. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3312. }
  3313. #ifdef CONFIG_X86
  3314. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3315. #endif
  3316. drm_pci_free(dev, phys_obj->handle);
  3317. kfree(phys_obj);
  3318. dev_priv->mm.phys_objs[id - 1] = NULL;
  3319. }
  3320. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3321. {
  3322. int i;
  3323. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3324. i915_gem_free_phys_object(dev, i);
  3325. }
  3326. void i915_gem_detach_phys_object(struct drm_device *dev,
  3327. struct drm_i915_gem_object *obj)
  3328. {
  3329. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3330. char *vaddr;
  3331. int i;
  3332. int page_count;
  3333. if (!obj->phys_obj)
  3334. return;
  3335. vaddr = obj->phys_obj->handle->vaddr;
  3336. page_count = obj->base.size / PAGE_SIZE;
  3337. for (i = 0; i < page_count; i++) {
  3338. struct page *page = shmem_read_mapping_page(mapping, i);
  3339. if (!IS_ERR(page)) {
  3340. char *dst = kmap_atomic(page);
  3341. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3342. kunmap_atomic(dst);
  3343. drm_clflush_pages(&page, 1);
  3344. set_page_dirty(page);
  3345. mark_page_accessed(page);
  3346. page_cache_release(page);
  3347. }
  3348. }
  3349. intel_gtt_chipset_flush();
  3350. obj->phys_obj->cur_obj = NULL;
  3351. obj->phys_obj = NULL;
  3352. }
  3353. int
  3354. i915_gem_attach_phys_object(struct drm_device *dev,
  3355. struct drm_i915_gem_object *obj,
  3356. int id,
  3357. int align)
  3358. {
  3359. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3360. drm_i915_private_t *dev_priv = dev->dev_private;
  3361. int ret = 0;
  3362. int page_count;
  3363. int i;
  3364. if (id > I915_MAX_PHYS_OBJECT)
  3365. return -EINVAL;
  3366. if (obj->phys_obj) {
  3367. if (obj->phys_obj->id == id)
  3368. return 0;
  3369. i915_gem_detach_phys_object(dev, obj);
  3370. }
  3371. /* create a new object */
  3372. if (!dev_priv->mm.phys_objs[id - 1]) {
  3373. ret = i915_gem_init_phys_object(dev, id,
  3374. obj->base.size, align);
  3375. if (ret) {
  3376. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3377. id, obj->base.size);
  3378. return ret;
  3379. }
  3380. }
  3381. /* bind to the object */
  3382. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3383. obj->phys_obj->cur_obj = obj;
  3384. page_count = obj->base.size / PAGE_SIZE;
  3385. for (i = 0; i < page_count; i++) {
  3386. struct page *page;
  3387. char *dst, *src;
  3388. page = shmem_read_mapping_page(mapping, i);
  3389. if (IS_ERR(page))
  3390. return PTR_ERR(page);
  3391. src = kmap_atomic(page);
  3392. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3393. memcpy(dst, src, PAGE_SIZE);
  3394. kunmap_atomic(src);
  3395. mark_page_accessed(page);
  3396. page_cache_release(page);
  3397. }
  3398. return 0;
  3399. }
  3400. static int
  3401. i915_gem_phys_pwrite(struct drm_device *dev,
  3402. struct drm_i915_gem_object *obj,
  3403. struct drm_i915_gem_pwrite *args,
  3404. struct drm_file *file_priv)
  3405. {
  3406. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3407. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3408. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3409. unsigned long unwritten;
  3410. /* The physical object once assigned is fixed for the lifetime
  3411. * of the obj, so we can safely drop the lock and continue
  3412. * to access vaddr.
  3413. */
  3414. mutex_unlock(&dev->struct_mutex);
  3415. unwritten = copy_from_user(vaddr, user_data, args->size);
  3416. mutex_lock(&dev->struct_mutex);
  3417. if (unwritten)
  3418. return -EFAULT;
  3419. }
  3420. intel_gtt_chipset_flush();
  3421. return 0;
  3422. }
  3423. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3424. {
  3425. struct drm_i915_file_private *file_priv = file->driver_priv;
  3426. /* Clean up our request list when the client is going away, so that
  3427. * later retire_requests won't dereference our soon-to-be-gone
  3428. * file_priv.
  3429. */
  3430. spin_lock(&file_priv->mm.lock);
  3431. while (!list_empty(&file_priv->mm.request_list)) {
  3432. struct drm_i915_gem_request *request;
  3433. request = list_first_entry(&file_priv->mm.request_list,
  3434. struct drm_i915_gem_request,
  3435. client_list);
  3436. list_del(&request->client_list);
  3437. request->file_priv = NULL;
  3438. }
  3439. spin_unlock(&file_priv->mm.lock);
  3440. }
  3441. static int
  3442. i915_gpu_is_active(struct drm_device *dev)
  3443. {
  3444. drm_i915_private_t *dev_priv = dev->dev_private;
  3445. int lists_empty;
  3446. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3447. list_empty(&dev_priv->mm.active_list);
  3448. return !lists_empty;
  3449. }
  3450. static int
  3451. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3452. {
  3453. struct drm_i915_private *dev_priv =
  3454. container_of(shrinker,
  3455. struct drm_i915_private,
  3456. mm.inactive_shrinker);
  3457. struct drm_device *dev = dev_priv->dev;
  3458. struct drm_i915_gem_object *obj, *next;
  3459. int nr_to_scan = sc->nr_to_scan;
  3460. int cnt;
  3461. if (!mutex_trylock(&dev->struct_mutex))
  3462. return 0;
  3463. /* "fast-path" to count number of available objects */
  3464. if (nr_to_scan == 0) {
  3465. cnt = 0;
  3466. list_for_each_entry(obj,
  3467. &dev_priv->mm.inactive_list,
  3468. mm_list)
  3469. cnt++;
  3470. mutex_unlock(&dev->struct_mutex);
  3471. return cnt / 100 * sysctl_vfs_cache_pressure;
  3472. }
  3473. rescan:
  3474. /* first scan for clean buffers */
  3475. i915_gem_retire_requests(dev);
  3476. list_for_each_entry_safe(obj, next,
  3477. &dev_priv->mm.inactive_list,
  3478. mm_list) {
  3479. if (i915_gem_object_is_purgeable(obj)) {
  3480. if (i915_gem_object_unbind(obj) == 0 &&
  3481. --nr_to_scan == 0)
  3482. break;
  3483. }
  3484. }
  3485. /* second pass, evict/count anything still on the inactive list */
  3486. cnt = 0;
  3487. list_for_each_entry_safe(obj, next,
  3488. &dev_priv->mm.inactive_list,
  3489. mm_list) {
  3490. if (nr_to_scan &&
  3491. i915_gem_object_unbind(obj) == 0)
  3492. nr_to_scan--;
  3493. else
  3494. cnt++;
  3495. }
  3496. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3497. /*
  3498. * We are desperate for pages, so as a last resort, wait
  3499. * for the GPU to finish and discard whatever we can.
  3500. * This has a dramatic impact to reduce the number of
  3501. * OOM-killer events whilst running the GPU aggressively.
  3502. */
  3503. if (i915_gpu_idle(dev, true) == 0)
  3504. goto rescan;
  3505. }
  3506. mutex_unlock(&dev->struct_mutex);
  3507. return cnt / 100 * sysctl_vfs_cache_pressure;
  3508. }