pgtable.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563
  1. #ifndef _PPC64_PGTABLE_H
  2. #define _PPC64_PGTABLE_H
  3. /*
  4. * This file contains the functions and defines necessary to modify and use
  5. * the ppc64 hashed page table.
  6. */
  7. #ifndef __ASSEMBLY__
  8. #include <linux/config.h>
  9. #include <linux/stddef.h>
  10. #include <asm/processor.h> /* For TASK_SIZE */
  11. #include <asm/mmu.h>
  12. #include <asm/page.h>
  13. #include <asm/tlbflush.h>
  14. #endif /* __ASSEMBLY__ */
  15. /*
  16. * Entries per page directory level. The PTE level must use a 64b record
  17. * for each page table entry. The PMD and PGD level use a 32b record for
  18. * each entry by assuming that each entry is page aligned.
  19. */
  20. #define PTE_INDEX_SIZE 9
  21. #define PMD_INDEX_SIZE 7
  22. #define PUD_INDEX_SIZE 7
  23. #define PGD_INDEX_SIZE 9
  24. #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
  25. #define PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE)
  26. #define PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE)
  27. #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
  28. #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
  29. #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
  30. #define PTRS_PER_PUD (1 << PMD_INDEX_SIZE)
  31. #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
  32. /* PMD_SHIFT determines what a second-level page table entry can map */
  33. #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
  34. #define PMD_SIZE (1UL << PMD_SHIFT)
  35. #define PMD_MASK (~(PMD_SIZE-1))
  36. /* PUD_SHIFT determines what a third-level page table entry can map */
  37. #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
  38. #define PUD_SIZE (1UL << PUD_SHIFT)
  39. #define PUD_MASK (~(PUD_SIZE-1))
  40. /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
  41. #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
  42. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  43. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  44. #define FIRST_USER_ADDRESS 0
  45. /*
  46. * Size of EA range mapped by our pagetables.
  47. */
  48. #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
  49. PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
  50. #define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE)
  51. #if TASK_SIZE_USER64 > PGTABLE_RANGE
  52. #error TASK_SIZE_USER64 exceeds pagetable range
  53. #endif
  54. #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
  55. #error TASK_SIZE_USER64 exceeds user VSID range
  56. #endif
  57. /*
  58. * Define the address range of the vmalloc VM area.
  59. */
  60. #define VMALLOC_START (0xD000000000000000ul)
  61. #define VMALLOC_SIZE (0x80000000000UL)
  62. #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
  63. /*
  64. * Bits in a linux-style PTE. These match the bits in the
  65. * (hardware-defined) PowerPC PTE as closely as possible.
  66. */
  67. #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
  68. #define _PAGE_USER 0x0002 /* matches one of the PP bits */
  69. #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
  70. #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
  71. #define _PAGE_GUARDED 0x0008
  72. #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
  73. #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
  74. #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
  75. #define _PAGE_DIRTY 0x0080 /* C: page changed */
  76. #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
  77. #define _PAGE_RW 0x0200 /* software: user write access allowed */
  78. #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
  79. #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
  80. #define _PAGE_SECONDARY 0x8000 /* software: HPTE is in secondary group */
  81. #define _PAGE_GROUP_IX 0x7000 /* software: HPTE index within group */
  82. #define _PAGE_HUGE 0x10000 /* 16MB page */
  83. /* Bits 0x7000 identify the index within an HPT Group */
  84. #define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_HASHPTE | _PAGE_SECONDARY | _PAGE_GROUP_IX)
  85. /* PAGE_MASK gives the right answer below, but only by accident */
  86. /* It should be preserving the high 48 bits and then specifically */
  87. /* preserving _PAGE_SECONDARY | _PAGE_GROUP_IX */
  88. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_HPTEFLAGS)
  89. #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
  90. #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
  91. /* __pgprot defined in asm-ppc64/page.h */
  92. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
  93. #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
  94. #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
  95. #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
  96. #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  97. #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
  98. #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  99. #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
  100. #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
  101. _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
  102. #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
  103. #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
  104. #define HAVE_PAGE_AGP
  105. /*
  106. * This bit in a hardware PTE indicates that the page is *not* executable.
  107. */
  108. #define HW_NO_EXEC _PAGE_EXEC
  109. /*
  110. * POWER4 and newer have per page execute protection, older chips can only
  111. * do this on a segment (256MB) basis.
  112. *
  113. * Also, write permissions imply read permissions.
  114. * This is the closest we can get..
  115. *
  116. * Note due to the way vm flags are laid out, the bits are XWR
  117. */
  118. #define __P000 PAGE_NONE
  119. #define __P001 PAGE_READONLY
  120. #define __P010 PAGE_COPY
  121. #define __P011 PAGE_COPY
  122. #define __P100 PAGE_READONLY_X
  123. #define __P101 PAGE_READONLY_X
  124. #define __P110 PAGE_COPY_X
  125. #define __P111 PAGE_COPY_X
  126. #define __S000 PAGE_NONE
  127. #define __S001 PAGE_READONLY
  128. #define __S010 PAGE_SHARED
  129. #define __S011 PAGE_SHARED
  130. #define __S100 PAGE_READONLY_X
  131. #define __S101 PAGE_READONLY_X
  132. #define __S110 PAGE_SHARED_X
  133. #define __S111 PAGE_SHARED_X
  134. #ifndef __ASSEMBLY__
  135. /*
  136. * ZERO_PAGE is a global shared page that is always zero: used
  137. * for zero-mapped memory areas etc..
  138. */
  139. extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
  140. #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  141. #endif /* __ASSEMBLY__ */
  142. /* shift to put page number into pte */
  143. #define PTE_SHIFT (17)
  144. #ifdef CONFIG_HUGETLB_PAGE
  145. #ifndef __ASSEMBLY__
  146. int hash_huge_page(struct mm_struct *mm, unsigned long access,
  147. unsigned long ea, unsigned long vsid, int local);
  148. #endif /* __ASSEMBLY__ */
  149. #define HAVE_ARCH_UNMAPPED_AREA
  150. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  151. #else
  152. #define hash_huge_page(mm,a,ea,vsid,local) -1
  153. #endif
  154. #ifndef __ASSEMBLY__
  155. /*
  156. * Conversion functions: convert a page and protection to a page entry,
  157. * and a page entry and page directory to the page they refer to.
  158. *
  159. * mk_pte takes a (struct page *) as input
  160. */
  161. #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
  162. static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
  163. {
  164. pte_t pte;
  165. pte_val(pte) = (pfn << PTE_SHIFT) | pgprot_val(pgprot);
  166. return pte;
  167. }
  168. #define pte_modify(_pte, newprot) \
  169. (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
  170. #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
  171. #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
  172. /* pte_clear moved to later in this file */
  173. #define pte_pfn(x) ((unsigned long)((pte_val(x) >> PTE_SHIFT)))
  174. #define pte_page(x) pfn_to_page(pte_pfn(x))
  175. #define pmd_set(pmdp, ptep) ({BUG_ON((u64)ptep < KERNELBASE); pmd_val(*(pmdp)) = (unsigned long)(ptep);})
  176. #define pmd_none(pmd) (!pmd_val(pmd))
  177. #define pmd_bad(pmd) (pmd_val(pmd) == 0)
  178. #define pmd_present(pmd) (pmd_val(pmd) != 0)
  179. #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
  180. #define pmd_page_kernel(pmd) (pmd_val(pmd))
  181. #define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd))
  182. #define pud_set(pudp, pmdp) (pud_val(*(pudp)) = (unsigned long)(pmdp))
  183. #define pud_none(pud) (!pud_val(pud))
  184. #define pud_bad(pud) ((pud_val(pud)) == 0)
  185. #define pud_present(pud) (pud_val(pud) != 0)
  186. #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
  187. #define pud_page(pud) (pud_val(pud))
  188. #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
  189. #define pgd_none(pgd) (!pgd_val(pgd))
  190. #define pgd_bad(pgd) (pgd_val(pgd) == 0)
  191. #define pgd_present(pgd) (pgd_val(pgd) != 0)
  192. #define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0)
  193. #define pgd_page(pgd) (pgd_val(pgd))
  194. /*
  195. * Find an entry in a page-table-directory. We combine the address region
  196. * (the high order N bits) and the pgd portion of the address.
  197. */
  198. /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
  199. #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
  200. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  201. #define pud_offset(pgdp, addr) \
  202. (((pud_t *) pgd_page(*(pgdp))) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)))
  203. #define pmd_offset(pudp,addr) \
  204. (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
  205. #define pte_offset_kernel(dir,addr) \
  206. (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
  207. #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
  208. #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
  209. #define pte_unmap(pte) do { } while(0)
  210. #define pte_unmap_nested(pte) do { } while(0)
  211. /* to find an entry in a kernel page-table-directory */
  212. /* This now only contains the vmalloc pages */
  213. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  214. /*
  215. * The following only work if pte_present() is true.
  216. * Undefined behaviour if not..
  217. */
  218. static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
  219. static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
  220. static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
  221. static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
  222. static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
  223. static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
  224. static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_HUGE;}
  225. static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
  226. static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
  227. static inline pte_t pte_rdprotect(pte_t pte) {
  228. pte_val(pte) &= ~_PAGE_USER; return pte; }
  229. static inline pte_t pte_exprotect(pte_t pte) {
  230. pte_val(pte) &= ~_PAGE_EXEC; return pte; }
  231. static inline pte_t pte_wrprotect(pte_t pte) {
  232. pte_val(pte) &= ~(_PAGE_RW); return pte; }
  233. static inline pte_t pte_mkclean(pte_t pte) {
  234. pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
  235. static inline pte_t pte_mkold(pte_t pte) {
  236. pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
  237. static inline pte_t pte_mkread(pte_t pte) {
  238. pte_val(pte) |= _PAGE_USER; return pte; }
  239. static inline pte_t pte_mkexec(pte_t pte) {
  240. pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
  241. static inline pte_t pte_mkwrite(pte_t pte) {
  242. pte_val(pte) |= _PAGE_RW; return pte; }
  243. static inline pte_t pte_mkdirty(pte_t pte) {
  244. pte_val(pte) |= _PAGE_DIRTY; return pte; }
  245. static inline pte_t pte_mkyoung(pte_t pte) {
  246. pte_val(pte) |= _PAGE_ACCESSED; return pte; }
  247. static inline pte_t pte_mkhuge(pte_t pte) {
  248. pte_val(pte) |= _PAGE_HUGE; return pte; }
  249. /* Atomic PTE updates */
  250. static inline unsigned long pte_update(pte_t *p, unsigned long clr)
  251. {
  252. unsigned long old, tmp;
  253. __asm__ __volatile__(
  254. "1: ldarx %0,0,%3 # pte_update\n\
  255. andi. %1,%0,%6\n\
  256. bne- 1b \n\
  257. andc %1,%0,%4 \n\
  258. stdcx. %1,0,%3 \n\
  259. bne- 1b"
  260. : "=&r" (old), "=&r" (tmp), "=m" (*p)
  261. : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
  262. : "cc" );
  263. return old;
  264. }
  265. /* PTE updating functions, this function puts the PTE in the
  266. * batch, doesn't actually triggers the hash flush immediately,
  267. * you need to call flush_tlb_pending() to do that.
  268. */
  269. extern void hpte_update(struct mm_struct *mm, unsigned long addr, unsigned long pte,
  270. int wrprot);
  271. static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  272. {
  273. unsigned long old;
  274. if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
  275. return 0;
  276. old = pte_update(ptep, _PAGE_ACCESSED);
  277. if (old & _PAGE_HASHPTE) {
  278. hpte_update(mm, addr, old, 0);
  279. flush_tlb_pending();
  280. }
  281. return (old & _PAGE_ACCESSED) != 0;
  282. }
  283. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  284. #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
  285. ({ \
  286. int __r; \
  287. __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
  288. __r; \
  289. })
  290. /*
  291. * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
  292. * moment we always flush but we need to fix hpte_update and test if the
  293. * optimisation is worth it.
  294. */
  295. static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  296. {
  297. unsigned long old;
  298. if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
  299. return 0;
  300. old = pte_update(ptep, _PAGE_DIRTY);
  301. if (old & _PAGE_HASHPTE)
  302. hpte_update(mm, addr, old, 0);
  303. return (old & _PAGE_DIRTY) != 0;
  304. }
  305. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
  306. #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
  307. ({ \
  308. int __r; \
  309. __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
  310. __r; \
  311. })
  312. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  313. static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  314. {
  315. unsigned long old;
  316. if ((pte_val(*ptep) & _PAGE_RW) == 0)
  317. return;
  318. old = pte_update(ptep, _PAGE_RW);
  319. if (old & _PAGE_HASHPTE)
  320. hpte_update(mm, addr, old, 0);
  321. }
  322. /*
  323. * We currently remove entries from the hashtable regardless of whether
  324. * the entry was young or dirty. The generic routines only flush if the
  325. * entry was young or dirty which is not good enough.
  326. *
  327. * We should be more intelligent about this but for the moment we override
  328. * these functions and force a tlb flush unconditionally
  329. */
  330. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  331. #define ptep_clear_flush_young(__vma, __address, __ptep) \
  332. ({ \
  333. int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
  334. __ptep); \
  335. __young; \
  336. })
  337. #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
  338. #define ptep_clear_flush_dirty(__vma, __address, __ptep) \
  339. ({ \
  340. int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
  341. __ptep); \
  342. flush_tlb_page(__vma, __address); \
  343. __dirty; \
  344. })
  345. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  346. static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  347. {
  348. unsigned long old = pte_update(ptep, ~0UL);
  349. if (old & _PAGE_HASHPTE)
  350. hpte_update(mm, addr, old, 0);
  351. return __pte(old);
  352. }
  353. static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t * ptep)
  354. {
  355. unsigned long old = pte_update(ptep, ~0UL);
  356. if (old & _PAGE_HASHPTE)
  357. hpte_update(mm, addr, old, 0);
  358. }
  359. /*
  360. * set_pte stores a linux PTE into the linux page table.
  361. */
  362. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  363. pte_t *ptep, pte_t pte)
  364. {
  365. if (pte_present(*ptep)) {
  366. pte_clear(mm, addr, ptep);
  367. flush_tlb_pending();
  368. }
  369. *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
  370. }
  371. /* Set the dirty and/or accessed bits atomically in a linux PTE, this
  372. * function doesn't need to flush the hash entry
  373. */
  374. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  375. static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
  376. {
  377. unsigned long bits = pte_val(entry) &
  378. (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
  379. unsigned long old, tmp;
  380. __asm__ __volatile__(
  381. "1: ldarx %0,0,%4\n\
  382. andi. %1,%0,%6\n\
  383. bne- 1b \n\
  384. or %0,%3,%0\n\
  385. stdcx. %0,0,%4\n\
  386. bne- 1b"
  387. :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
  388. :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
  389. :"cc");
  390. }
  391. #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
  392. do { \
  393. __ptep_set_access_flags(__ptep, __entry, __dirty); \
  394. flush_tlb_page_nohash(__vma, __address); \
  395. } while(0)
  396. /*
  397. * Macro to mark a page protection value as "uncacheable".
  398. */
  399. #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
  400. struct file;
  401. extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
  402. unsigned long size, pgprot_t vma_prot);
  403. #define __HAVE_PHYS_MEM_ACCESS_PROT
  404. #define __HAVE_ARCH_PTE_SAME
  405. #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
  406. #define pmd_ERROR(e) \
  407. printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
  408. #define pud_ERROR(e) \
  409. printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pud_val(e))
  410. #define pgd_ERROR(e) \
  411. printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
  412. extern pgd_t swapper_pg_dir[];
  413. extern void paging_init(void);
  414. #ifdef CONFIG_HUGETLB_PAGE
  415. #define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) \
  416. free_pgd_range(tlb, addr, end, floor, ceiling)
  417. #endif
  418. /*
  419. * This gets called at the end of handling a page fault, when
  420. * the kernel has put a new PTE into the page table for the process.
  421. * We use it to put a corresponding HPTE into the hash table
  422. * ahead of time, instead of waiting for the inevitable extra
  423. * hash-table miss exception.
  424. */
  425. struct vm_area_struct;
  426. extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
  427. /* Encode and de-code a swap entry */
  428. #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
  429. #define __swp_offset(entry) ((entry).val >> 8)
  430. #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
  431. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> PTE_SHIFT })
  432. #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_SHIFT })
  433. #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
  434. #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_SHIFT)|_PAGE_FILE})
  435. #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT)
  436. /*
  437. * kern_addr_valid is intended to indicate whether an address is a valid
  438. * kernel address. Most 32-bit archs define it as always true (like this)
  439. * but most 64-bit archs actually perform a test. What should we do here?
  440. * The only use is in fs/ncpfs/dir.c
  441. */
  442. #define kern_addr_valid(addr) (1)
  443. #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
  444. remap_pfn_range(vma, vaddr, pfn, size, prot)
  445. void pgtable_cache_init(void);
  446. /*
  447. * find_linux_pte returns the address of a linux pte for a given
  448. * effective address and directory. If not found, it returns zero.
  449. */
  450. static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
  451. {
  452. pgd_t *pg;
  453. pud_t *pu;
  454. pmd_t *pm;
  455. pte_t *pt = NULL;
  456. pte_t pte;
  457. pg = pgdir + pgd_index(ea);
  458. if (!pgd_none(*pg)) {
  459. pu = pud_offset(pg, ea);
  460. if (!pud_none(*pu)) {
  461. pm = pmd_offset(pu, ea);
  462. if (pmd_present(*pm)) {
  463. pt = pte_offset_kernel(pm, ea);
  464. pte = *pt;
  465. if (!pte_present(pte))
  466. pt = NULL;
  467. }
  468. }
  469. }
  470. return pt;
  471. }
  472. #include <asm-generic/pgtable.h>
  473. #endif /* __ASSEMBLY__ */
  474. #endif /* _PPC64_PGTABLE_H */