audio.c 120 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866
  1. /*****************************************************************************/
  2. /*
  3. * audio.c -- USB Audio Class driver
  4. *
  5. * Copyright (C) 1999, 2000, 2001, 2003, 2004
  6. * Alan Cox (alan@lxorguk.ukuu.org.uk)
  7. * Thomas Sailer (sailer@ife.ee.ethz.ch)
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * Debugging:
  15. * Use the 'lsusb' utility to dump the descriptors.
  16. *
  17. * 1999-09-07: Alan Cox
  18. * Parsing Audio descriptor patch
  19. * 1999-09-08: Thomas Sailer
  20. * Added OSS compatible data io functions; both parts of the
  21. * driver remain to be glued together
  22. * 1999-09-10: Thomas Sailer
  23. * Beautified the driver. Added sample format conversions.
  24. * Still not properly glued with the parsing code.
  25. * The parsing code seems to have its problems btw,
  26. * Since it parses all available configs but doesn't
  27. * store which iface/altsetting belongs to which config.
  28. * 1999-09-20: Thomas Sailer
  29. * Threw out Alan's parsing code and implemented my own one.
  30. * You cannot reasonnably linearly parse audio descriptors,
  31. * especially the AudioClass descriptors have to be considered
  32. * pointer lists. Mixer parsing untested, due to lack of device.
  33. * First stab at synch pipe implementation, the Dallas USB DAC
  34. * wants to use an Asynch out pipe. usb_audio_state now basically
  35. * only contains lists of mixer and wave devices. We can therefore
  36. * now have multiple mixer/wave devices per USB device.
  37. * 1999-10-28: Thomas Sailer
  38. * Converted to URB API. Fixed a taskstate/wakeup semantics mistake
  39. * that made the driver consume all available CPU cycles.
  40. * Now runs stable on UHCI-Acher/Fliegl/Sailer.
  41. * 1999-10-31: Thomas Sailer
  42. * Audio can now be unloaded if it is not in use by any mixer
  43. * or dsp client (formerly you had to disconnect the audio devices
  44. * from the USB port)
  45. * Finally, about three months after ordering, my "Maxxtro SPK222"
  46. * speakers arrived, isn't disdata a great mail order company 8-)
  47. * Parse class specific endpoint descriptor of the audiostreaming
  48. * interfaces and take the endpoint attributes from there.
  49. * Unbelievably, the Philips USB DAC has a sampling rate range
  50. * of over a decade, yet does not support the sampling rate control!
  51. * No wonder it sounds so bad, has very audible sampling rate
  52. * conversion distortion. Don't try to listen to it using
  53. * decent headphones!
  54. * "Let's make things better" -> but please Philips start with your
  55. * own stuff!!!!
  56. * 1999-11-02: Thomas Sailer
  57. * It takes the Philips boxes several seconds to acquire synchronisation
  58. * that means they won't play short sounds. Should probably maintain
  59. * the ISO datastream even if there's nothing to play.
  60. * Fix counting the total_bytes counter, RealPlayer G2 depends on it.
  61. * 1999-12-20: Thomas Sailer
  62. * Fix bad bug in conversion to per interface probing.
  63. * disconnect was called multiple times for the audio device,
  64. * leading to a premature freeing of the audio structures
  65. * 2000-05-13: Thomas Sailer
  66. * I don't remember who changed the find_format routine,
  67. * but the change was completely broken for the Dallas
  68. * chip. Anyway taking sampling rate into account in find_format
  69. * is bad and should not be done unless there are devices with
  70. * completely broken audio descriptors. Unless someone shows
  71. * me such a descriptor, I will not allow find_format to
  72. * take the sampling rate into account.
  73. * Also, the former find_format made:
  74. * - mpg123 play mono instead of stereo
  75. * - sox completely fail for wav's with sample rates < 44.1kHz
  76. * for the Dallas chip.
  77. * Also fix a rather long standing problem with applications that
  78. * use "small" writes producing no sound at all.
  79. * 2000-05-15: Thomas Sailer
  80. * My fears came true, the Philips camera indeed has pretty stupid
  81. * audio descriptors.
  82. * 2000-05-17: Thomas Sailer
  83. * Nemsoft spotted my stupid last minute change, thanks
  84. * 2000-05-19: Thomas Sailer
  85. * Fixed FEATURE_UNIT thinkos found thanks to the KC Technology
  86. * Xtend device. Basically the driver treated FEATURE_UNIT's sourced
  87. * by mono terminals as stereo.
  88. * 2000-05-20: Thomas Sailer
  89. * SELECTOR support (and thus selecting record channels from the mixer).
  90. * Somewhat peculiar due to OSS interface limitations. Only works
  91. * for channels where a "slider" is already in front of it (i.e.
  92. * a MIXER unit or a FEATURE unit with volume capability).
  93. * 2000-11-26: Thomas Sailer
  94. * Workaround for Dallas DS4201. The DS4201 uses PCM8 as format tag for
  95. * its 8 bit modes, but expects signed data (and should therefore have used PCM).
  96. * 2001-03-10: Thomas Sailer
  97. * provide abs function, prevent picking up a bogus kernel macro
  98. * for abs. Bug report by Andrew Morton <andrewm@uow.edu.au>
  99. * 2001-06-16: Bryce Nesbitt <bryce@obviously.com>
  100. * Fix SNDCTL_DSP_STEREO API violation
  101. * 2003-04-08: Oliver Neukum (oliver@neukum.name):
  102. * Setting a configuration is done by usbcore and must not be overridden
  103. * 2004-02-27: Workaround for broken synch descriptors
  104. * 2004-03-07: Alan Stern <stern@rowland.harvard.edu>
  105. * Add usb_ifnum_to_if() and usb_altnum_to_altsetting() support.
  106. * Use the in-memory descriptors instead of reading them from the device.
  107. *
  108. */
  109. /*
  110. * Strategy:
  111. *
  112. * Alan Cox and Thomas Sailer are starting to dig at opposite ends and
  113. * are hoping to meet in the middle, just like tunnel diggers :)
  114. * Alan tackles the descriptor parsing, Thomas the actual data IO and the
  115. * OSS compatible interface.
  116. *
  117. * Data IO implementation issues
  118. *
  119. * A mmap'able ring buffer per direction is implemented, because
  120. * almost every OSS app expects it. It is however impractical to
  121. * transmit/receive USB data directly into and out of the ring buffer,
  122. * due to alignment and synchronisation issues. Instead, the ring buffer
  123. * feeds a constant time delay line that handles the USB issues.
  124. *
  125. * Now we first try to find an alternate setting that exactly matches
  126. * the sample format requested by the user. If we find one, we do not
  127. * need to perform any sample rate conversions. If there is no matching
  128. * altsetting, we choose the closest one and perform sample format
  129. * conversions. We never do sample rate conversion; these are too
  130. * expensive to be performed in the kernel.
  131. *
  132. * Current status: no known HCD-specific issues.
  133. *
  134. * Generally: Due to the brokenness of the Audio Class spec
  135. * it seems generally impossible to write a generic Audio Class driver,
  136. * so a reasonable driver should implement the features that are actually
  137. * used.
  138. *
  139. * Parsing implementation issues
  140. *
  141. * One cannot reasonably parse the AudioClass descriptors linearly.
  142. * Therefore the current implementation features routines to look
  143. * for a specific descriptor in the descriptor list.
  144. *
  145. * How does the parsing work? First, all interfaces are searched
  146. * for an AudioControl class interface. If found, the config descriptor
  147. * that belongs to the current configuration is searched and
  148. * the HEADER descriptor is found. It contains a list of
  149. * all AudioStreaming and MIDIStreaming devices. This list is then walked,
  150. * and all AudioStreaming interfaces are classified into input and output
  151. * interfaces (according to the endpoint0 direction in altsetting1) (MIDIStreaming
  152. * is currently not supported). The input & output list is then used
  153. * to group inputs and outputs together and issued pairwise to the
  154. * AudioStreaming class parser. Finally, all OUTPUT_TERMINAL descriptors
  155. * are walked and issued to the mixer construction routine.
  156. *
  157. * The AudioStreaming parser simply enumerates all altsettings belonging
  158. * to the specified interface. It looks for AS_GENERAL and FORMAT_TYPE
  159. * class specific descriptors to extract the sample format/sample rate
  160. * data. Only sample format types PCM and PCM8 are supported right now, and
  161. * only FORMAT_TYPE_I is handled. The isochronous data endpoint needs to
  162. * be the first endpoint of the interface, and the optional synchronisation
  163. * isochronous endpoint the second one.
  164. *
  165. * Mixer construction works as follows: The various TERMINAL and UNIT
  166. * descriptors span a tree from the root (OUTPUT_TERMINAL) through the
  167. * intermediate nodes (UNITs) to the leaves (INPUT_TERMINAL). We walk
  168. * that tree in a depth first manner. FEATURE_UNITs may contribute volume,
  169. * bass and treble sliders to the mixer, MIXER_UNITs volume sliders.
  170. * The terminal type encoded in the INPUT_TERMINALs feeds a heuristic
  171. * to determine "meaningful" OSS slider numbers, however we will see
  172. * how well this works in practice. Other features are not used at the
  173. * moment, they seem less often used. Also, it seems difficult at least
  174. * to construct recording source switches from SELECTOR_UNITs, but
  175. * since there are not many USB ADC's available, we leave that for later.
  176. */
  177. /*****************************************************************************/
  178. #include <linux/kernel.h>
  179. #include <linux/slab.h>
  180. #include <linux/string.h>
  181. #include <linux/timer.h>
  182. #include <linux/sched.h>
  183. #include <linux/smp_lock.h>
  184. #include <linux/module.h>
  185. #include <linux/sound.h>
  186. #include <linux/soundcard.h>
  187. #include <linux/list.h>
  188. #include <linux/vmalloc.h>
  189. #include <linux/init.h>
  190. #include <linux/poll.h>
  191. #include <linux/bitops.h>
  192. #include <asm/uaccess.h>
  193. #include <asm/io.h>
  194. #include <linux/usb.h>
  195. #include "audio.h"
  196. /*
  197. * Version Information
  198. */
  199. #define DRIVER_VERSION "v1.0.0"
  200. #define DRIVER_AUTHOR "Alan Cox <alan@lxorguk.ukuu.org.uk>, Thomas Sailer (sailer@ife.ee.ethz.ch)"
  201. #define DRIVER_DESC "USB Audio Class driver"
  202. #define AUDIO_DEBUG 1
  203. #define SND_DEV_DSP16 5
  204. #define dprintk(x)
  205. /* --------------------------------------------------------------------- */
  206. /*
  207. * Linked list of all audio devices...
  208. */
  209. static struct list_head audiodevs = LIST_HEAD_INIT(audiodevs);
  210. static DECLARE_MUTEX(open_sem);
  211. /*
  212. * wait queue for processes wanting to open an USB audio device
  213. */
  214. static DECLARE_WAIT_QUEUE_HEAD(open_wait);
  215. #define MAXFORMATS MAX_ALT
  216. #define DMABUFSHIFT 17 /* 128k worth of DMA buffer */
  217. #define NRSGBUF (1U<<(DMABUFSHIFT-PAGE_SHIFT))
  218. /*
  219. * This influences:
  220. * - Latency
  221. * - Interrupt rate
  222. * - Synchronisation behaviour
  223. * Don't touch this if you don't understand all of the above.
  224. */
  225. #define DESCFRAMES 5
  226. #define SYNCFRAMES DESCFRAMES
  227. #define MIXFLG_STEREOIN 1
  228. #define MIXFLG_STEREOOUT 2
  229. struct mixerchannel {
  230. __u16 value;
  231. __u16 osschannel; /* number of the OSS channel */
  232. __s16 minval, maxval;
  233. __u16 slctunitid;
  234. __u8 unitid;
  235. __u8 selector;
  236. __u8 chnum;
  237. __u8 flags;
  238. };
  239. struct audioformat {
  240. unsigned int format;
  241. unsigned int sratelo;
  242. unsigned int sratehi;
  243. unsigned char altsetting;
  244. unsigned char attributes;
  245. };
  246. struct dmabuf {
  247. /* buffer data format */
  248. unsigned int format;
  249. unsigned int srate;
  250. /* physical buffer */
  251. unsigned char *sgbuf[NRSGBUF];
  252. unsigned bufsize;
  253. unsigned numfrag;
  254. unsigned fragshift;
  255. unsigned wrptr, rdptr;
  256. unsigned total_bytes;
  257. int count;
  258. unsigned error; /* over/underrun */
  259. wait_queue_head_t wait;
  260. /* redundant, but makes calculations easier */
  261. unsigned fragsize;
  262. unsigned dmasize;
  263. /* OSS stuff */
  264. unsigned mapped:1;
  265. unsigned ready:1;
  266. unsigned ossfragshift;
  267. int ossmaxfrags;
  268. unsigned subdivision;
  269. };
  270. struct usb_audio_state;
  271. #define FLG_URB0RUNNING 1
  272. #define FLG_URB1RUNNING 2
  273. #define FLG_SYNC0RUNNING 4
  274. #define FLG_SYNC1RUNNING 8
  275. #define FLG_RUNNING 16
  276. #define FLG_CONNECTED 32
  277. struct my_data_urb {
  278. struct urb *urb;
  279. };
  280. struct my_sync_urb {
  281. struct urb *urb;
  282. };
  283. struct usb_audiodev {
  284. struct list_head list;
  285. struct usb_audio_state *state;
  286. /* soundcore stuff */
  287. int dev_audio;
  288. /* wave stuff */
  289. mode_t open_mode;
  290. spinlock_t lock; /* DMA buffer access spinlock */
  291. struct usbin {
  292. int interface; /* Interface number, -1 means not used */
  293. unsigned int format; /* USB data format */
  294. unsigned int datapipe; /* the data input pipe */
  295. unsigned int syncpipe; /* the synchronisation pipe - 0 for anything but adaptive IN mode */
  296. unsigned int syncinterval; /* P for adaptive IN mode, 0 otherwise */
  297. unsigned int freqn; /* nominal sampling rate in USB format, i.e. fs/1000 in Q10.14 */
  298. unsigned int freqmax; /* maximum sampling rate, used for buffer management */
  299. unsigned int phase; /* phase accumulator */
  300. unsigned int flags; /* see FLG_ defines */
  301. struct my_data_urb durb[2]; /* ISO descriptors for the data endpoint */
  302. struct my_sync_urb surb[2]; /* ISO sync pipe descriptor if needed */
  303. struct dmabuf dma;
  304. } usbin;
  305. struct usbout {
  306. int interface; /* Interface number, -1 means not used */
  307. unsigned int format; /* USB data format */
  308. unsigned int datapipe; /* the data input pipe */
  309. unsigned int syncpipe; /* the synchronisation pipe - 0 for anything but asynchronous OUT mode */
  310. unsigned int syncinterval; /* P for asynchronous OUT mode, 0 otherwise */
  311. unsigned int freqn; /* nominal sampling rate in USB format, i.e. fs/1000 in Q10.14 */
  312. unsigned int freqm; /* momentary sampling rate in USB format, i.e. fs/1000 in Q10.14 */
  313. unsigned int freqmax; /* maximum sampling rate, used for buffer management */
  314. unsigned int phase; /* phase accumulator */
  315. unsigned int flags; /* see FLG_ defines */
  316. struct my_data_urb durb[2]; /* ISO descriptors for the data endpoint */
  317. struct my_sync_urb surb[2]; /* ISO sync pipe descriptor if needed */
  318. struct dmabuf dma;
  319. } usbout;
  320. unsigned int numfmtin, numfmtout;
  321. struct audioformat fmtin[MAXFORMATS];
  322. struct audioformat fmtout[MAXFORMATS];
  323. };
  324. struct usb_mixerdev {
  325. struct list_head list;
  326. struct usb_audio_state *state;
  327. /* soundcore stuff */
  328. int dev_mixer;
  329. unsigned char iface; /* interface number of the AudioControl interface */
  330. /* USB format descriptions */
  331. unsigned int numch, modcnt;
  332. /* mixch is last and gets allocated dynamically */
  333. struct mixerchannel ch[0];
  334. };
  335. struct usb_audio_state {
  336. struct list_head audiodev;
  337. /* USB device */
  338. struct usb_device *usbdev;
  339. struct list_head audiolist;
  340. struct list_head mixerlist;
  341. unsigned count; /* usage counter; NOTE: the usb stack is also considered a user */
  342. };
  343. /* private audio format extensions */
  344. #define AFMT_STEREO 0x80000000
  345. #define AFMT_ISSTEREO(x) ((x) & AFMT_STEREO)
  346. #define AFMT_IS16BIT(x) ((x) & (AFMT_S16_LE|AFMT_S16_BE|AFMT_U16_LE|AFMT_U16_BE))
  347. #define AFMT_ISUNSIGNED(x) ((x) & (AFMT_U8|AFMT_U16_LE|AFMT_U16_BE))
  348. #define AFMT_BYTESSHIFT(x) ((AFMT_ISSTEREO(x) ? 1 : 0) + (AFMT_IS16BIT(x) ? 1 : 0))
  349. #define AFMT_BYTES(x) (1<<AFMT_BYTESSHFIT(x))
  350. /* --------------------------------------------------------------------- */
  351. static inline unsigned ld2(unsigned int x)
  352. {
  353. unsigned r = 0;
  354. if (x >= 0x10000) {
  355. x >>= 16;
  356. r += 16;
  357. }
  358. if (x >= 0x100) {
  359. x >>= 8;
  360. r += 8;
  361. }
  362. if (x >= 0x10) {
  363. x >>= 4;
  364. r += 4;
  365. }
  366. if (x >= 4) {
  367. x >>= 2;
  368. r += 2;
  369. }
  370. if (x >= 2)
  371. r++;
  372. return r;
  373. }
  374. /* --------------------------------------------------------------------- */
  375. /*
  376. * OSS compatible ring buffer management. The ring buffer may be mmap'ed into
  377. * an application address space.
  378. *
  379. * I first used the rvmalloc stuff copied from bttv. Alan Cox did not like it, so
  380. * we now use an array of pointers to a single page each. This saves us the
  381. * kernel page table manipulations, but we have to do a page table alike mechanism
  382. * (though only one indirection) in software.
  383. */
  384. static void dmabuf_release(struct dmabuf *db)
  385. {
  386. unsigned int nr;
  387. void *p;
  388. for(nr = 0; nr < NRSGBUF; nr++) {
  389. if (!(p = db->sgbuf[nr]))
  390. continue;
  391. ClearPageReserved(virt_to_page(p));
  392. free_page((unsigned long)p);
  393. db->sgbuf[nr] = NULL;
  394. }
  395. db->mapped = db->ready = 0;
  396. }
  397. static int dmabuf_init(struct dmabuf *db)
  398. {
  399. unsigned int nr, bytepersec, bufs;
  400. void *p;
  401. /* initialize some fields */
  402. db->rdptr = db->wrptr = db->total_bytes = db->count = db->error = 0;
  403. /* calculate required buffer size */
  404. bytepersec = db->srate << AFMT_BYTESSHIFT(db->format);
  405. bufs = 1U << DMABUFSHIFT;
  406. if (db->ossfragshift) {
  407. if ((1000 << db->ossfragshift) < bytepersec)
  408. db->fragshift = ld2(bytepersec/1000);
  409. else
  410. db->fragshift = db->ossfragshift;
  411. } else {
  412. db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1));
  413. if (db->fragshift < 3)
  414. db->fragshift = 3;
  415. }
  416. db->numfrag = bufs >> db->fragshift;
  417. while (db->numfrag < 4 && db->fragshift > 3) {
  418. db->fragshift--;
  419. db->numfrag = bufs >> db->fragshift;
  420. }
  421. db->fragsize = 1 << db->fragshift;
  422. if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
  423. db->numfrag = db->ossmaxfrags;
  424. db->dmasize = db->numfrag << db->fragshift;
  425. for(nr = 0; nr < NRSGBUF; nr++) {
  426. if (!db->sgbuf[nr]) {
  427. p = (void *)get_zeroed_page(GFP_KERNEL);
  428. if (!p)
  429. return -ENOMEM;
  430. db->sgbuf[nr] = p;
  431. SetPageReserved(virt_to_page(p));
  432. }
  433. memset(db->sgbuf[nr], AFMT_ISUNSIGNED(db->format) ? 0x80 : 0, PAGE_SIZE);
  434. if ((nr << PAGE_SHIFT) >= db->dmasize)
  435. break;
  436. }
  437. db->bufsize = nr << PAGE_SHIFT;
  438. db->ready = 1;
  439. dprintk((KERN_DEBUG "usbaudio: dmabuf_init bytepersec %d bufs %d ossfragshift %d ossmaxfrags %d "
  440. "fragshift %d fragsize %d numfrag %d dmasize %d bufsize %d fmt 0x%x srate %d\n",
  441. bytepersec, bufs, db->ossfragshift, db->ossmaxfrags, db->fragshift, db->fragsize,
  442. db->numfrag, db->dmasize, db->bufsize, db->format, db->srate));
  443. return 0;
  444. }
  445. static int dmabuf_mmap(struct vm_area_struct *vma, struct dmabuf *db, unsigned long start, unsigned long size, pgprot_t prot)
  446. {
  447. unsigned int nr;
  448. if (!db->ready || db->mapped || (start | size) & (PAGE_SIZE-1) || size > db->bufsize)
  449. return -EINVAL;
  450. size >>= PAGE_SHIFT;
  451. for(nr = 0; nr < size; nr++)
  452. if (!db->sgbuf[nr])
  453. return -EINVAL;
  454. db->mapped = 1;
  455. for(nr = 0; nr < size; nr++) {
  456. unsigned long pfn;
  457. pfn = virt_to_phys(db->sgbuf[nr]) >> PAGE_SHIFT;
  458. if (remap_pfn_range(vma, start, pfn, PAGE_SIZE, prot))
  459. return -EAGAIN;
  460. start += PAGE_SIZE;
  461. }
  462. return 0;
  463. }
  464. static void dmabuf_copyin(struct dmabuf *db, const void *buffer, unsigned int size)
  465. {
  466. unsigned int pgrem, rem;
  467. db->total_bytes += size;
  468. for (;;) {
  469. if (size <= 0)
  470. return;
  471. pgrem = ((~db->wrptr) & (PAGE_SIZE-1)) + 1;
  472. if (pgrem > size)
  473. pgrem = size;
  474. rem = db->dmasize - db->wrptr;
  475. if (pgrem > rem)
  476. pgrem = rem;
  477. memcpy((db->sgbuf[db->wrptr >> PAGE_SHIFT]) + (db->wrptr & (PAGE_SIZE-1)), buffer, pgrem);
  478. size -= pgrem;
  479. buffer += pgrem;
  480. db->wrptr += pgrem;
  481. if (db->wrptr >= db->dmasize)
  482. db->wrptr = 0;
  483. }
  484. }
  485. static void dmabuf_copyout(struct dmabuf *db, void *buffer, unsigned int size)
  486. {
  487. unsigned int pgrem, rem;
  488. db->total_bytes += size;
  489. for (;;) {
  490. if (size <= 0)
  491. return;
  492. pgrem = ((~db->rdptr) & (PAGE_SIZE-1)) + 1;
  493. if (pgrem > size)
  494. pgrem = size;
  495. rem = db->dmasize - db->rdptr;
  496. if (pgrem > rem)
  497. pgrem = rem;
  498. memcpy(buffer, (db->sgbuf[db->rdptr >> PAGE_SHIFT]) + (db->rdptr & (PAGE_SIZE-1)), pgrem);
  499. size -= pgrem;
  500. buffer += pgrem;
  501. db->rdptr += pgrem;
  502. if (db->rdptr >= db->dmasize)
  503. db->rdptr = 0;
  504. }
  505. }
  506. static int dmabuf_copyin_user(struct dmabuf *db, unsigned int ptr, const void __user *buffer, unsigned int size)
  507. {
  508. unsigned int pgrem, rem;
  509. if (!db->ready || db->mapped)
  510. return -EINVAL;
  511. for (;;) {
  512. if (size <= 0)
  513. return 0;
  514. pgrem = ((~ptr) & (PAGE_SIZE-1)) + 1;
  515. if (pgrem > size)
  516. pgrem = size;
  517. rem = db->dmasize - ptr;
  518. if (pgrem > rem)
  519. pgrem = rem;
  520. if (copy_from_user((db->sgbuf[ptr >> PAGE_SHIFT]) + (ptr & (PAGE_SIZE-1)), buffer, pgrem))
  521. return -EFAULT;
  522. size -= pgrem;
  523. buffer += pgrem;
  524. ptr += pgrem;
  525. if (ptr >= db->dmasize)
  526. ptr = 0;
  527. }
  528. }
  529. static int dmabuf_copyout_user(struct dmabuf *db, unsigned int ptr, void __user *buffer, unsigned int size)
  530. {
  531. unsigned int pgrem, rem;
  532. if (!db->ready || db->mapped)
  533. return -EINVAL;
  534. for (;;) {
  535. if (size <= 0)
  536. return 0;
  537. pgrem = ((~ptr) & (PAGE_SIZE-1)) + 1;
  538. if (pgrem > size)
  539. pgrem = size;
  540. rem = db->dmasize - ptr;
  541. if (pgrem > rem)
  542. pgrem = rem;
  543. if (copy_to_user(buffer, (db->sgbuf[ptr >> PAGE_SHIFT]) + (ptr & (PAGE_SIZE-1)), pgrem))
  544. return -EFAULT;
  545. size -= pgrem;
  546. buffer += pgrem;
  547. ptr += pgrem;
  548. if (ptr >= db->dmasize)
  549. ptr = 0;
  550. }
  551. }
  552. /* --------------------------------------------------------------------- */
  553. /*
  554. * USB I/O code. We do sample format conversion if necessary
  555. */
  556. static void usbin_stop(struct usb_audiodev *as)
  557. {
  558. struct usbin *u = &as->usbin;
  559. unsigned long flags;
  560. unsigned int i, notkilled = 1;
  561. spin_lock_irqsave(&as->lock, flags);
  562. u->flags &= ~FLG_RUNNING;
  563. i = u->flags;
  564. spin_unlock_irqrestore(&as->lock, flags);
  565. while (i & (FLG_URB0RUNNING|FLG_URB1RUNNING|FLG_SYNC0RUNNING|FLG_SYNC1RUNNING)) {
  566. set_current_state(notkilled ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
  567. schedule_timeout(1);
  568. spin_lock_irqsave(&as->lock, flags);
  569. i = u->flags;
  570. spin_unlock_irqrestore(&as->lock, flags);
  571. if (notkilled && signal_pending(current)) {
  572. if (i & FLG_URB0RUNNING)
  573. usb_kill_urb(u->durb[0].urb);
  574. if (i & FLG_URB1RUNNING)
  575. usb_kill_urb(u->durb[1].urb);
  576. if (i & FLG_SYNC0RUNNING)
  577. usb_kill_urb(u->surb[0].urb);
  578. if (i & FLG_SYNC1RUNNING)
  579. usb_kill_urb(u->surb[1].urb);
  580. notkilled = 0;
  581. }
  582. }
  583. set_current_state(TASK_RUNNING);
  584. kfree(u->durb[0].urb->transfer_buffer);
  585. kfree(u->durb[1].urb->transfer_buffer);
  586. kfree(u->surb[0].urb->transfer_buffer);
  587. kfree(u->surb[1].urb->transfer_buffer);
  588. u->durb[0].urb->transfer_buffer = u->durb[1].urb->transfer_buffer =
  589. u->surb[0].urb->transfer_buffer = u->surb[1].urb->transfer_buffer = NULL;
  590. }
  591. static inline void usbin_release(struct usb_audiodev *as)
  592. {
  593. usbin_stop(as);
  594. }
  595. static void usbin_disc(struct usb_audiodev *as)
  596. {
  597. struct usbin *u = &as->usbin;
  598. unsigned long flags;
  599. spin_lock_irqsave(&as->lock, flags);
  600. u->flags &= ~(FLG_RUNNING | FLG_CONNECTED);
  601. spin_unlock_irqrestore(&as->lock, flags);
  602. usbin_stop(as);
  603. }
  604. static void conversion(const void *ibuf, unsigned int ifmt, void *obuf, unsigned int ofmt, void *tmp, unsigned int scnt)
  605. {
  606. unsigned int cnt, i;
  607. __s16 *sp, *sp2, s;
  608. unsigned char *bp;
  609. cnt = scnt;
  610. if (AFMT_ISSTEREO(ifmt))
  611. cnt <<= 1;
  612. sp = ((__s16 *)tmp) + cnt;
  613. switch (ifmt & ~AFMT_STEREO) {
  614. case AFMT_U8:
  615. for (bp = ((unsigned char *)ibuf)+cnt, i = 0; i < cnt; i++) {
  616. bp--;
  617. sp--;
  618. *sp = (*bp ^ 0x80) << 8;
  619. }
  620. break;
  621. case AFMT_S8:
  622. for (bp = ((unsigned char *)ibuf)+cnt, i = 0; i < cnt; i++) {
  623. bp--;
  624. sp--;
  625. *sp = *bp << 8;
  626. }
  627. break;
  628. case AFMT_U16_LE:
  629. for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
  630. bp -= 2;
  631. sp--;
  632. *sp = (bp[0] | (bp[1] << 8)) ^ 0x8000;
  633. }
  634. break;
  635. case AFMT_U16_BE:
  636. for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
  637. bp -= 2;
  638. sp--;
  639. *sp = (bp[1] | (bp[0] << 8)) ^ 0x8000;
  640. }
  641. break;
  642. case AFMT_S16_LE:
  643. for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
  644. bp -= 2;
  645. sp--;
  646. *sp = bp[0] | (bp[1] << 8);
  647. }
  648. break;
  649. case AFMT_S16_BE:
  650. for (bp = ((unsigned char *)ibuf)+2*cnt, i = 0; i < cnt; i++) {
  651. bp -= 2;
  652. sp--;
  653. *sp = bp[1] | (bp[0] << 8);
  654. }
  655. break;
  656. }
  657. if (!AFMT_ISSTEREO(ifmt) && AFMT_ISSTEREO(ofmt)) {
  658. /* expand from mono to stereo */
  659. for (sp = ((__s16 *)tmp)+scnt, sp2 = ((__s16 *)tmp)+2*scnt, i = 0; i < scnt; i++) {
  660. sp--;
  661. sp2 -= 2;
  662. sp2[0] = sp2[1] = sp[0];
  663. }
  664. }
  665. if (AFMT_ISSTEREO(ifmt) && !AFMT_ISSTEREO(ofmt)) {
  666. /* contract from stereo to mono */
  667. for (sp = sp2 = ((__s16 *)tmp), i = 0; i < scnt; i++, sp++, sp2 += 2)
  668. sp[0] = (sp2[0] + sp2[1]) >> 1;
  669. }
  670. cnt = scnt;
  671. if (AFMT_ISSTEREO(ofmt))
  672. cnt <<= 1;
  673. sp = ((__s16 *)tmp);
  674. bp = ((unsigned char *)obuf);
  675. switch (ofmt & ~AFMT_STEREO) {
  676. case AFMT_U8:
  677. for (i = 0; i < cnt; i++, sp++, bp++)
  678. *bp = (*sp >> 8) ^ 0x80;
  679. break;
  680. case AFMT_S8:
  681. for (i = 0; i < cnt; i++, sp++, bp++)
  682. *bp = *sp >> 8;
  683. break;
  684. case AFMT_U16_LE:
  685. for (i = 0; i < cnt; i++, sp++, bp += 2) {
  686. s = *sp;
  687. bp[0] = s;
  688. bp[1] = (s >> 8) ^ 0x80;
  689. }
  690. break;
  691. case AFMT_U16_BE:
  692. for (i = 0; i < cnt; i++, sp++, bp += 2) {
  693. s = *sp;
  694. bp[1] = s;
  695. bp[0] = (s >> 8) ^ 0x80;
  696. }
  697. break;
  698. case AFMT_S16_LE:
  699. for (i = 0; i < cnt; i++, sp++, bp += 2) {
  700. s = *sp;
  701. bp[0] = s;
  702. bp[1] = s >> 8;
  703. }
  704. break;
  705. case AFMT_S16_BE:
  706. for (i = 0; i < cnt; i++, sp++, bp += 2) {
  707. s = *sp;
  708. bp[1] = s;
  709. bp[0] = s >> 8;
  710. }
  711. break;
  712. }
  713. }
  714. static void usbin_convert(struct usbin *u, unsigned char *buffer, unsigned int samples)
  715. {
  716. union {
  717. __s16 s[64];
  718. unsigned char b[0];
  719. } tmp;
  720. unsigned int scnt, maxs, ufmtsh, dfmtsh;
  721. ufmtsh = AFMT_BYTESSHIFT(u->format);
  722. dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
  723. maxs = (AFMT_ISSTEREO(u->dma.format | u->format)) ? 32 : 64;
  724. while (samples > 0) {
  725. scnt = samples;
  726. if (scnt > maxs)
  727. scnt = maxs;
  728. conversion(buffer, u->format, tmp.b, u->dma.format, tmp.b, scnt);
  729. dmabuf_copyin(&u->dma, tmp.b, scnt << dfmtsh);
  730. buffer += scnt << ufmtsh;
  731. samples -= scnt;
  732. }
  733. }
  734. static int usbin_prepare_desc(struct usbin *u, struct urb *urb)
  735. {
  736. unsigned int i, maxsize, offs;
  737. maxsize = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format));
  738. //printk(KERN_DEBUG "usbin_prepare_desc: maxsize %d freq 0x%x format 0x%x\n", maxsize, u->freqn, u->format);
  739. for (i = offs = 0; i < DESCFRAMES; i++, offs += maxsize) {
  740. urb->iso_frame_desc[i].length = maxsize;
  741. urb->iso_frame_desc[i].offset = offs;
  742. }
  743. urb->interval = 1;
  744. return 0;
  745. }
  746. /*
  747. * return value: 0 if descriptor should be restarted, -1 otherwise
  748. * convert sample format on the fly if necessary
  749. */
  750. static int usbin_retire_desc(struct usbin *u, struct urb *urb)
  751. {
  752. unsigned int i, ufmtsh, dfmtsh, err = 0, cnt, scnt, dmafree;
  753. unsigned char *cp;
  754. ufmtsh = AFMT_BYTESSHIFT(u->format);
  755. dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
  756. for (i = 0; i < DESCFRAMES; i++) {
  757. cp = ((unsigned char *)urb->transfer_buffer) + urb->iso_frame_desc[i].offset;
  758. if (urb->iso_frame_desc[i].status) {
  759. dprintk((KERN_DEBUG "usbin_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
  760. continue;
  761. }
  762. scnt = urb->iso_frame_desc[i].actual_length >> ufmtsh;
  763. if (!scnt)
  764. continue;
  765. cnt = scnt << dfmtsh;
  766. if (!u->dma.mapped) {
  767. dmafree = u->dma.dmasize - u->dma.count;
  768. if (cnt > dmafree) {
  769. scnt = dmafree >> dfmtsh;
  770. cnt = scnt << dfmtsh;
  771. err++;
  772. }
  773. }
  774. u->dma.count += cnt;
  775. if (u->format == u->dma.format) {
  776. /* we do not need format conversion */
  777. dprintk((KERN_DEBUG "usbaudio: no sample format conversion\n"));
  778. dmabuf_copyin(&u->dma, cp, cnt);
  779. } else {
  780. /* we need sampling format conversion */
  781. dprintk((KERN_DEBUG "usbaudio: sample format conversion %x != %x\n", u->format, u->dma.format));
  782. usbin_convert(u, cp, scnt);
  783. }
  784. }
  785. if (err)
  786. u->dma.error++;
  787. if (u->dma.count >= (signed)u->dma.fragsize)
  788. wake_up(&u->dma.wait);
  789. return err ? -1 : 0;
  790. }
  791. static void usbin_completed(struct urb *urb, struct pt_regs *regs)
  792. {
  793. struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
  794. struct usbin *u = &as->usbin;
  795. unsigned long flags;
  796. unsigned int mask;
  797. int suret = 0;
  798. #if 0
  799. printk(KERN_DEBUG "usbin_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
  800. #endif
  801. if (urb == u->durb[0].urb)
  802. mask = FLG_URB0RUNNING;
  803. else if (urb == u->durb[1].urb)
  804. mask = FLG_URB1RUNNING;
  805. else {
  806. mask = 0;
  807. printk(KERN_ERR "usbin_completed: panic: unknown URB\n");
  808. }
  809. urb->dev = as->state->usbdev;
  810. spin_lock_irqsave(&as->lock, flags);
  811. if (!usbin_retire_desc(u, urb) &&
  812. u->flags & FLG_RUNNING &&
  813. !usbin_prepare_desc(u, urb) &&
  814. (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
  815. u->flags |= mask;
  816. } else {
  817. u->flags &= ~(mask | FLG_RUNNING);
  818. wake_up(&u->dma.wait);
  819. printk(KERN_DEBUG "usbin_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret);
  820. }
  821. spin_unlock_irqrestore(&as->lock, flags);
  822. }
  823. /*
  824. * we output sync data
  825. */
  826. static int usbin_sync_prepare_desc(struct usbin *u, struct urb *urb)
  827. {
  828. unsigned char *cp = urb->transfer_buffer;
  829. unsigned int i, offs;
  830. for (i = offs = 0; i < SYNCFRAMES; i++, offs += 3, cp += 3) {
  831. urb->iso_frame_desc[i].length = 3;
  832. urb->iso_frame_desc[i].offset = offs;
  833. cp[0] = u->freqn;
  834. cp[1] = u->freqn >> 8;
  835. cp[2] = u->freqn >> 16;
  836. }
  837. urb->interval = 1;
  838. return 0;
  839. }
  840. /*
  841. * return value: 0 if descriptor should be restarted, -1 otherwise
  842. */
  843. static int usbin_sync_retire_desc(struct usbin *u, struct urb *urb)
  844. {
  845. unsigned int i;
  846. for (i = 0; i < SYNCFRAMES; i++)
  847. if (urb->iso_frame_desc[0].status)
  848. dprintk((KERN_DEBUG "usbin_sync_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
  849. return 0;
  850. }
  851. static void usbin_sync_completed(struct urb *urb, struct pt_regs *regs)
  852. {
  853. struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
  854. struct usbin *u = &as->usbin;
  855. unsigned long flags;
  856. unsigned int mask;
  857. int suret = 0;
  858. #if 0
  859. printk(KERN_DEBUG "usbin_sync_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
  860. #endif
  861. if (urb == u->surb[0].urb)
  862. mask = FLG_SYNC0RUNNING;
  863. else if (urb == u->surb[1].urb)
  864. mask = FLG_SYNC1RUNNING;
  865. else {
  866. mask = 0;
  867. printk(KERN_ERR "usbin_sync_completed: panic: unknown URB\n");
  868. }
  869. urb->dev = as->state->usbdev;
  870. spin_lock_irqsave(&as->lock, flags);
  871. if (!usbin_sync_retire_desc(u, urb) &&
  872. u->flags & FLG_RUNNING &&
  873. !usbin_sync_prepare_desc(u, urb) &&
  874. (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
  875. u->flags |= mask;
  876. } else {
  877. u->flags &= ~(mask | FLG_RUNNING);
  878. wake_up(&u->dma.wait);
  879. dprintk((KERN_DEBUG "usbin_sync_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret));
  880. }
  881. spin_unlock_irqrestore(&as->lock, flags);
  882. }
  883. static int usbin_start(struct usb_audiodev *as)
  884. {
  885. struct usb_device *dev = as->state->usbdev;
  886. struct usbin *u = &as->usbin;
  887. struct urb *urb;
  888. unsigned long flags;
  889. unsigned int maxsze, bufsz;
  890. #if 0
  891. printk(KERN_DEBUG "usbin_start: device %d ufmt 0x%08x dfmt 0x%08x srate %d\n",
  892. dev->devnum, u->format, u->dma.format, u->dma.srate);
  893. #endif
  894. /* allocate USB storage if not already done */
  895. spin_lock_irqsave(&as->lock, flags);
  896. if (!(u->flags & FLG_CONNECTED)) {
  897. spin_unlock_irqrestore(&as->lock, flags);
  898. return -EIO;
  899. }
  900. if (!(u->flags & FLG_RUNNING)) {
  901. spin_unlock_irqrestore(&as->lock, flags);
  902. u->freqn = ((u->dma.srate << 11) + 62) / 125; /* this will overflow at approx 2MSPS */
  903. u->freqmax = u->freqn + (u->freqn >> 2);
  904. u->phase = 0;
  905. maxsze = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format));
  906. bufsz = DESCFRAMES * maxsze;
  907. kfree(u->durb[0].urb->transfer_buffer);
  908. u->durb[0].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
  909. u->durb[0].urb->transfer_buffer_length = bufsz;
  910. kfree(u->durb[1].urb->transfer_buffer);
  911. u->durb[1].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
  912. u->durb[1].urb->transfer_buffer_length = bufsz;
  913. if (u->syncpipe) {
  914. kfree(u->surb[0].urb->transfer_buffer);
  915. u->surb[0].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
  916. u->surb[0].urb->transfer_buffer_length = 3*SYNCFRAMES;
  917. kfree(u->surb[1].urb->transfer_buffer);
  918. u->surb[1].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
  919. u->surb[1].urb->transfer_buffer_length = 3*SYNCFRAMES;
  920. }
  921. if (!u->durb[0].urb->transfer_buffer || !u->durb[1].urb->transfer_buffer ||
  922. (u->syncpipe && (!u->surb[0].urb->transfer_buffer || !u->surb[1].urb->transfer_buffer))) {
  923. printk(KERN_ERR "usbaudio: cannot start playback device %d\n", dev->devnum);
  924. return 0;
  925. }
  926. spin_lock_irqsave(&as->lock, flags);
  927. }
  928. if (u->dma.count >= u->dma.dmasize && !u->dma.mapped) {
  929. spin_unlock_irqrestore(&as->lock, flags);
  930. return 0;
  931. }
  932. u->flags |= FLG_RUNNING;
  933. if (!(u->flags & FLG_URB0RUNNING)) {
  934. urb = u->durb[0].urb;
  935. urb->dev = dev;
  936. urb->pipe = u->datapipe;
  937. urb->transfer_flags = URB_ISO_ASAP;
  938. urb->number_of_packets = DESCFRAMES;
  939. urb->context = as;
  940. urb->complete = usbin_completed;
  941. if (!usbin_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
  942. u->flags |= FLG_URB0RUNNING;
  943. else
  944. u->flags &= ~FLG_RUNNING;
  945. }
  946. if (u->flags & FLG_RUNNING && !(u->flags & FLG_URB1RUNNING)) {
  947. urb = u->durb[1].urb;
  948. urb->dev = dev;
  949. urb->pipe = u->datapipe;
  950. urb->transfer_flags = URB_ISO_ASAP;
  951. urb->number_of_packets = DESCFRAMES;
  952. urb->context = as;
  953. urb->complete = usbin_completed;
  954. if (!usbin_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
  955. u->flags |= FLG_URB1RUNNING;
  956. else
  957. u->flags &= ~FLG_RUNNING;
  958. }
  959. if (u->syncpipe) {
  960. if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC0RUNNING)) {
  961. urb = u->surb[0].urb;
  962. urb->dev = dev;
  963. urb->pipe = u->syncpipe;
  964. urb->transfer_flags = URB_ISO_ASAP;
  965. urb->number_of_packets = SYNCFRAMES;
  966. urb->context = as;
  967. urb->complete = usbin_sync_completed;
  968. /* stride: u->syncinterval */
  969. if (!usbin_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
  970. u->flags |= FLG_SYNC0RUNNING;
  971. else
  972. u->flags &= ~FLG_RUNNING;
  973. }
  974. if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC1RUNNING)) {
  975. urb = u->surb[1].urb;
  976. urb->dev = dev;
  977. urb->pipe = u->syncpipe;
  978. urb->transfer_flags = URB_ISO_ASAP;
  979. urb->number_of_packets = SYNCFRAMES;
  980. urb->context = as;
  981. urb->complete = usbin_sync_completed;
  982. /* stride: u->syncinterval */
  983. if (!usbin_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_KERNEL))
  984. u->flags |= FLG_SYNC1RUNNING;
  985. else
  986. u->flags &= ~FLG_RUNNING;
  987. }
  988. }
  989. spin_unlock_irqrestore(&as->lock, flags);
  990. return 0;
  991. }
  992. static void usbout_stop(struct usb_audiodev *as)
  993. {
  994. struct usbout *u = &as->usbout;
  995. unsigned long flags;
  996. unsigned int i, notkilled = 1;
  997. spin_lock_irqsave(&as->lock, flags);
  998. u->flags &= ~FLG_RUNNING;
  999. i = u->flags;
  1000. spin_unlock_irqrestore(&as->lock, flags);
  1001. while (i & (FLG_URB0RUNNING|FLG_URB1RUNNING|FLG_SYNC0RUNNING|FLG_SYNC1RUNNING)) {
  1002. set_current_state(notkilled ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
  1003. schedule_timeout(1);
  1004. spin_lock_irqsave(&as->lock, flags);
  1005. i = u->flags;
  1006. spin_unlock_irqrestore(&as->lock, flags);
  1007. if (notkilled && signal_pending(current)) {
  1008. if (i & FLG_URB0RUNNING)
  1009. usb_kill_urb(u->durb[0].urb);
  1010. if (i & FLG_URB1RUNNING)
  1011. usb_kill_urb(u->durb[1].urb);
  1012. if (i & FLG_SYNC0RUNNING)
  1013. usb_kill_urb(u->surb[0].urb);
  1014. if (i & FLG_SYNC1RUNNING)
  1015. usb_kill_urb(u->surb[1].urb);
  1016. notkilled = 0;
  1017. }
  1018. }
  1019. set_current_state(TASK_RUNNING);
  1020. kfree(u->durb[0].urb->transfer_buffer);
  1021. kfree(u->durb[1].urb->transfer_buffer);
  1022. kfree(u->surb[0].urb->transfer_buffer);
  1023. kfree(u->surb[1].urb->transfer_buffer);
  1024. u->durb[0].urb->transfer_buffer = u->durb[1].urb->transfer_buffer =
  1025. u->surb[0].urb->transfer_buffer = u->surb[1].urb->transfer_buffer = NULL;
  1026. }
  1027. static inline void usbout_release(struct usb_audiodev *as)
  1028. {
  1029. usbout_stop(as);
  1030. }
  1031. static void usbout_disc(struct usb_audiodev *as)
  1032. {
  1033. struct usbout *u = &as->usbout;
  1034. unsigned long flags;
  1035. spin_lock_irqsave(&as->lock, flags);
  1036. u->flags &= ~(FLG_RUNNING | FLG_CONNECTED);
  1037. spin_unlock_irqrestore(&as->lock, flags);
  1038. usbout_stop(as);
  1039. }
  1040. static void usbout_convert(struct usbout *u, unsigned char *buffer, unsigned int samples)
  1041. {
  1042. union {
  1043. __s16 s[64];
  1044. unsigned char b[0];
  1045. } tmp;
  1046. unsigned int scnt, maxs, ufmtsh, dfmtsh;
  1047. ufmtsh = AFMT_BYTESSHIFT(u->format);
  1048. dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
  1049. maxs = (AFMT_ISSTEREO(u->dma.format | u->format)) ? 32 : 64;
  1050. while (samples > 0) {
  1051. scnt = samples;
  1052. if (scnt > maxs)
  1053. scnt = maxs;
  1054. dmabuf_copyout(&u->dma, tmp.b, scnt << dfmtsh);
  1055. conversion(tmp.b, u->dma.format, buffer, u->format, tmp.b, scnt);
  1056. buffer += scnt << ufmtsh;
  1057. samples -= scnt;
  1058. }
  1059. }
  1060. static int usbout_prepare_desc(struct usbout *u, struct urb *urb)
  1061. {
  1062. unsigned int i, ufmtsh, dfmtsh, err = 0, cnt, scnt, offs;
  1063. unsigned char *cp = urb->transfer_buffer;
  1064. ufmtsh = AFMT_BYTESSHIFT(u->format);
  1065. dfmtsh = AFMT_BYTESSHIFT(u->dma.format);
  1066. for (i = offs = 0; i < DESCFRAMES; i++) {
  1067. urb->iso_frame_desc[i].offset = offs;
  1068. u->phase = (u->phase & 0x3fff) + u->freqm;
  1069. scnt = u->phase >> 14;
  1070. if (!scnt) {
  1071. urb->iso_frame_desc[i].length = 0;
  1072. continue;
  1073. }
  1074. cnt = scnt << dfmtsh;
  1075. if (!u->dma.mapped) {
  1076. if (cnt > u->dma.count) {
  1077. scnt = u->dma.count >> dfmtsh;
  1078. cnt = scnt << dfmtsh;
  1079. err++;
  1080. }
  1081. u->dma.count -= cnt;
  1082. } else
  1083. u->dma.count += cnt;
  1084. if (u->format == u->dma.format) {
  1085. /* we do not need format conversion */
  1086. dmabuf_copyout(&u->dma, cp, cnt);
  1087. } else {
  1088. /* we need sampling format conversion */
  1089. usbout_convert(u, cp, scnt);
  1090. }
  1091. cnt = scnt << ufmtsh;
  1092. urb->iso_frame_desc[i].length = cnt;
  1093. offs += cnt;
  1094. cp += cnt;
  1095. }
  1096. urb->interval = 1;
  1097. if (err)
  1098. u->dma.error++;
  1099. if (u->dma.mapped) {
  1100. if (u->dma.count >= (signed)u->dma.fragsize)
  1101. wake_up(&u->dma.wait);
  1102. } else {
  1103. if ((signed)u->dma.dmasize >= u->dma.count + (signed)u->dma.fragsize)
  1104. wake_up(&u->dma.wait);
  1105. }
  1106. return err ? -1 : 0;
  1107. }
  1108. /*
  1109. * return value: 0 if descriptor should be restarted, -1 otherwise
  1110. */
  1111. static int usbout_retire_desc(struct usbout *u, struct urb *urb)
  1112. {
  1113. unsigned int i;
  1114. for (i = 0; i < DESCFRAMES; i++) {
  1115. if (urb->iso_frame_desc[i].status) {
  1116. dprintk((KERN_DEBUG "usbout_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
  1117. continue;
  1118. }
  1119. }
  1120. return 0;
  1121. }
  1122. static void usbout_completed(struct urb *urb, struct pt_regs *regs)
  1123. {
  1124. struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
  1125. struct usbout *u = &as->usbout;
  1126. unsigned long flags;
  1127. unsigned int mask;
  1128. int suret = 0;
  1129. #if 0
  1130. printk(KERN_DEBUG "usbout_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
  1131. #endif
  1132. if (urb == u->durb[0].urb)
  1133. mask = FLG_URB0RUNNING;
  1134. else if (urb == u->durb[1].urb)
  1135. mask = FLG_URB1RUNNING;
  1136. else {
  1137. mask = 0;
  1138. printk(KERN_ERR "usbout_completed: panic: unknown URB\n");
  1139. }
  1140. urb->dev = as->state->usbdev;
  1141. spin_lock_irqsave(&as->lock, flags);
  1142. if (!usbout_retire_desc(u, urb) &&
  1143. u->flags & FLG_RUNNING &&
  1144. !usbout_prepare_desc(u, urb) &&
  1145. (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
  1146. u->flags |= mask;
  1147. } else {
  1148. u->flags &= ~(mask | FLG_RUNNING);
  1149. wake_up(&u->dma.wait);
  1150. dprintk((KERN_DEBUG "usbout_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret));
  1151. }
  1152. spin_unlock_irqrestore(&as->lock, flags);
  1153. }
  1154. static int usbout_sync_prepare_desc(struct usbout *u, struct urb *urb)
  1155. {
  1156. unsigned int i, offs;
  1157. for (i = offs = 0; i < SYNCFRAMES; i++, offs += 3) {
  1158. urb->iso_frame_desc[i].length = 3;
  1159. urb->iso_frame_desc[i].offset = offs;
  1160. }
  1161. urb->interval = 1;
  1162. return 0;
  1163. }
  1164. /*
  1165. * return value: 0 if descriptor should be restarted, -1 otherwise
  1166. */
  1167. static int usbout_sync_retire_desc(struct usbout *u, struct urb *urb)
  1168. {
  1169. unsigned char *cp = urb->transfer_buffer;
  1170. unsigned int f, i;
  1171. for (i = 0; i < SYNCFRAMES; i++, cp += 3) {
  1172. if (urb->iso_frame_desc[i].status) {
  1173. dprintk((KERN_DEBUG "usbout_sync_retire_desc: frame %u status %d\n", i, urb->iso_frame_desc[i].status));
  1174. continue;
  1175. }
  1176. if (urb->iso_frame_desc[i].actual_length < 3) {
  1177. dprintk((KERN_DEBUG "usbout_sync_retire_desc: frame %u length %d\n", i, urb->iso_frame_desc[i].actual_length));
  1178. continue;
  1179. }
  1180. f = cp[0] | (cp[1] << 8) | (cp[2] << 16);
  1181. if (abs(f - u->freqn) > (u->freqn >> 3) || f > u->freqmax) {
  1182. printk(KERN_WARNING "usbout_sync_retire_desc: requested frequency %u (nominal %u) out of range!\n", f, u->freqn);
  1183. continue;
  1184. }
  1185. u->freqm = f;
  1186. }
  1187. return 0;
  1188. }
  1189. static void usbout_sync_completed(struct urb *urb, struct pt_regs *regs)
  1190. {
  1191. struct usb_audiodev *as = (struct usb_audiodev *)urb->context;
  1192. struct usbout *u = &as->usbout;
  1193. unsigned long flags;
  1194. unsigned int mask;
  1195. int suret = 0;
  1196. #if 0
  1197. printk(KERN_DEBUG "usbout_sync_completed: status %d errcnt %d flags 0x%x\n", urb->status, urb->error_count, u->flags);
  1198. #endif
  1199. if (urb == u->surb[0].urb)
  1200. mask = FLG_SYNC0RUNNING;
  1201. else if (urb == u->surb[1].urb)
  1202. mask = FLG_SYNC1RUNNING;
  1203. else {
  1204. mask = 0;
  1205. printk(KERN_ERR "usbout_sync_completed: panic: unknown URB\n");
  1206. }
  1207. urb->dev = as->state->usbdev;
  1208. spin_lock_irqsave(&as->lock, flags);
  1209. if (!usbout_sync_retire_desc(u, urb) &&
  1210. u->flags & FLG_RUNNING &&
  1211. !usbout_sync_prepare_desc(u, urb) &&
  1212. (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
  1213. u->flags |= mask;
  1214. } else {
  1215. u->flags &= ~(mask | FLG_RUNNING);
  1216. wake_up(&u->dma.wait);
  1217. dprintk((KERN_DEBUG "usbout_sync_completed: descriptor not restarted (usb_submit_urb: %d)\n", suret));
  1218. }
  1219. spin_unlock_irqrestore(&as->lock, flags);
  1220. }
  1221. static int usbout_start(struct usb_audiodev *as)
  1222. {
  1223. struct usb_device *dev = as->state->usbdev;
  1224. struct usbout *u = &as->usbout;
  1225. struct urb *urb;
  1226. unsigned long flags;
  1227. unsigned int maxsze, bufsz;
  1228. #if 0
  1229. printk(KERN_DEBUG "usbout_start: device %d ufmt 0x%08x dfmt 0x%08x srate %d\n",
  1230. dev->devnum, u->format, u->dma.format, u->dma.srate);
  1231. #endif
  1232. /* allocate USB storage if not already done */
  1233. spin_lock_irqsave(&as->lock, flags);
  1234. if (!(u->flags & FLG_CONNECTED)) {
  1235. spin_unlock_irqrestore(&as->lock, flags);
  1236. return -EIO;
  1237. }
  1238. if (!(u->flags & FLG_RUNNING)) {
  1239. spin_unlock_irqrestore(&as->lock, flags);
  1240. u->freqn = u->freqm = ((u->dma.srate << 11) + 62) / 125; /* this will overflow at approx 2MSPS */
  1241. u->freqmax = u->freqn + (u->freqn >> 2);
  1242. u->phase = 0;
  1243. maxsze = (u->freqmax + 0x3fff) >> (14 - AFMT_BYTESSHIFT(u->format));
  1244. bufsz = DESCFRAMES * maxsze;
  1245. kfree(u->durb[0].urb->transfer_buffer);
  1246. u->durb[0].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
  1247. u->durb[0].urb->transfer_buffer_length = bufsz;
  1248. kfree(u->durb[1].urb->transfer_buffer);
  1249. u->durb[1].urb->transfer_buffer = kmalloc(bufsz, GFP_KERNEL);
  1250. u->durb[1].urb->transfer_buffer_length = bufsz;
  1251. if (u->syncpipe) {
  1252. kfree(u->surb[0].urb->transfer_buffer);
  1253. u->surb[0].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
  1254. u->surb[0].urb->transfer_buffer_length = 3*SYNCFRAMES;
  1255. kfree(u->surb[1].urb->transfer_buffer);
  1256. u->surb[1].urb->transfer_buffer = kmalloc(3*SYNCFRAMES, GFP_KERNEL);
  1257. u->surb[1].urb->transfer_buffer_length = 3*SYNCFRAMES;
  1258. }
  1259. if (!u->durb[0].urb->transfer_buffer || !u->durb[1].urb->transfer_buffer ||
  1260. (u->syncpipe && (!u->surb[0].urb->transfer_buffer || !u->surb[1].urb->transfer_buffer))) {
  1261. printk(KERN_ERR "usbaudio: cannot start playback device %d\n", dev->devnum);
  1262. return 0;
  1263. }
  1264. spin_lock_irqsave(&as->lock, flags);
  1265. }
  1266. if (u->dma.count <= 0 && !u->dma.mapped) {
  1267. spin_unlock_irqrestore(&as->lock, flags);
  1268. return 0;
  1269. }
  1270. u->flags |= FLG_RUNNING;
  1271. if (!(u->flags & FLG_URB0RUNNING)) {
  1272. urb = u->durb[0].urb;
  1273. urb->dev = dev;
  1274. urb->pipe = u->datapipe;
  1275. urb->transfer_flags = URB_ISO_ASAP;
  1276. urb->number_of_packets = DESCFRAMES;
  1277. urb->context = as;
  1278. urb->complete = usbout_completed;
  1279. if (!usbout_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
  1280. u->flags |= FLG_URB0RUNNING;
  1281. else
  1282. u->flags &= ~FLG_RUNNING;
  1283. }
  1284. if (u->flags & FLG_RUNNING && !(u->flags & FLG_URB1RUNNING)) {
  1285. urb = u->durb[1].urb;
  1286. urb->dev = dev;
  1287. urb->pipe = u->datapipe;
  1288. urb->transfer_flags = URB_ISO_ASAP;
  1289. urb->number_of_packets = DESCFRAMES;
  1290. urb->context = as;
  1291. urb->complete = usbout_completed;
  1292. if (!usbout_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
  1293. u->flags |= FLG_URB1RUNNING;
  1294. else
  1295. u->flags &= ~FLG_RUNNING;
  1296. }
  1297. if (u->syncpipe) {
  1298. if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC0RUNNING)) {
  1299. urb = u->surb[0].urb;
  1300. urb->dev = dev;
  1301. urb->pipe = u->syncpipe;
  1302. urb->transfer_flags = URB_ISO_ASAP;
  1303. urb->number_of_packets = SYNCFRAMES;
  1304. urb->context = as;
  1305. urb->complete = usbout_sync_completed;
  1306. /* stride: u->syncinterval */
  1307. if (!usbout_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
  1308. u->flags |= FLG_SYNC0RUNNING;
  1309. else
  1310. u->flags &= ~FLG_RUNNING;
  1311. }
  1312. if (u->flags & FLG_RUNNING && !(u->flags & FLG_SYNC1RUNNING)) {
  1313. urb = u->surb[1].urb;
  1314. urb->dev = dev;
  1315. urb->pipe = u->syncpipe;
  1316. urb->transfer_flags = URB_ISO_ASAP;
  1317. urb->number_of_packets = SYNCFRAMES;
  1318. urb->context = as;
  1319. urb->complete = usbout_sync_completed;
  1320. /* stride: u->syncinterval */
  1321. if (!usbout_sync_prepare_desc(u, urb) && !usb_submit_urb(urb, GFP_ATOMIC))
  1322. u->flags |= FLG_SYNC1RUNNING;
  1323. else
  1324. u->flags &= ~FLG_RUNNING;
  1325. }
  1326. }
  1327. spin_unlock_irqrestore(&as->lock, flags);
  1328. return 0;
  1329. }
  1330. /* --------------------------------------------------------------------- */
  1331. static unsigned int format_goodness(struct audioformat *afp, unsigned int fmt, unsigned int srate)
  1332. {
  1333. unsigned int g = 0;
  1334. if (srate < afp->sratelo)
  1335. g += afp->sratelo - srate;
  1336. if (srate > afp->sratehi)
  1337. g += srate - afp->sratehi;
  1338. if (AFMT_ISSTEREO(afp->format) && !AFMT_ISSTEREO(fmt))
  1339. g += 0x100000;
  1340. if (!AFMT_ISSTEREO(afp->format) && AFMT_ISSTEREO(fmt))
  1341. g += 0x400000;
  1342. if (AFMT_IS16BIT(afp->format) && !AFMT_IS16BIT(fmt))
  1343. g += 0x100000;
  1344. if (!AFMT_IS16BIT(afp->format) && AFMT_IS16BIT(fmt))
  1345. g += 0x400000;
  1346. return g;
  1347. }
  1348. static int find_format(struct audioformat *afp, unsigned int nr, unsigned int fmt, unsigned int srate)
  1349. {
  1350. unsigned int i, g, gb = ~0;
  1351. int j = -1; /* default to failure */
  1352. /* find "best" format (according to format_goodness) */
  1353. for (i = 0; i < nr; i++) {
  1354. g = format_goodness(&afp[i], fmt, srate);
  1355. if (g >= gb)
  1356. continue;
  1357. j = i;
  1358. gb = g;
  1359. }
  1360. return j;
  1361. }
  1362. static int set_format_in(struct usb_audiodev *as)
  1363. {
  1364. struct usb_device *dev = as->state->usbdev;
  1365. struct usb_host_interface *alts;
  1366. struct usb_interface *iface;
  1367. struct usbin *u = &as->usbin;
  1368. struct dmabuf *d = &u->dma;
  1369. struct audioformat *fmt;
  1370. unsigned int ep;
  1371. unsigned char data[3];
  1372. int fmtnr, ret;
  1373. iface = usb_ifnum_to_if(dev, u->interface);
  1374. if (!iface)
  1375. return 0;
  1376. fmtnr = find_format(as->fmtin, as->numfmtin, d->format, d->srate);
  1377. if (fmtnr < 0) {
  1378. printk(KERN_ERR "usbaudio: set_format_in(): failed to find desired format/speed combination.\n");
  1379. return -1;
  1380. }
  1381. fmt = as->fmtin + fmtnr;
  1382. alts = usb_altnum_to_altsetting(iface, fmt->altsetting);
  1383. u->format = fmt->format;
  1384. u->datapipe = usb_rcvisocpipe(dev, alts->endpoint[0].desc.bEndpointAddress & 0xf);
  1385. u->syncpipe = u->syncinterval = 0;
  1386. if ((alts->endpoint[0].desc.bmAttributes & 0x0c) == 0x08) {
  1387. if (alts->desc.bNumEndpoints < 2 ||
  1388. alts->endpoint[1].desc.bmAttributes != 0x01 ||
  1389. alts->endpoint[1].desc.bSynchAddress != 0 ||
  1390. alts->endpoint[1].desc.bEndpointAddress != (alts->endpoint[0].desc.bSynchAddress & 0x7f)) {
  1391. printk(KERN_WARNING "usbaudio: device %d interface %d altsetting %d claims adaptive in "
  1392. "but has invalid synch pipe; treating as asynchronous in\n",
  1393. dev->devnum, u->interface, fmt->altsetting);
  1394. } else {
  1395. u->syncpipe = usb_sndisocpipe(dev, alts->endpoint[1].desc.bEndpointAddress & 0xf);
  1396. u->syncinterval = alts->endpoint[1].desc.bRefresh;
  1397. }
  1398. }
  1399. if (d->srate < fmt->sratelo)
  1400. d->srate = fmt->sratelo;
  1401. if (d->srate > fmt->sratehi)
  1402. d->srate = fmt->sratehi;
  1403. dprintk((KERN_DEBUG "usbaudio: set_format_in: usb_set_interface %u %u\n",
  1404. u->interface, fmt->altsetting));
  1405. if (usb_set_interface(dev, alts->desc.bInterfaceNumber, fmt->altsetting) < 0) {
  1406. printk(KERN_WARNING "usbaudio: usb_set_interface failed, device %d interface %d altsetting %d\n",
  1407. dev->devnum, u->interface, fmt->altsetting);
  1408. return -1;
  1409. }
  1410. if (fmt->sratelo == fmt->sratehi)
  1411. return 0;
  1412. ep = usb_pipeendpoint(u->datapipe) | (u->datapipe & USB_DIR_IN);
  1413. /* if endpoint has pitch control, enable it */
  1414. if (fmt->attributes & 0x02) {
  1415. data[0] = 1;
  1416. if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
  1417. PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) {
  1418. printk(KERN_ERR "usbaudio: failure (error %d) to set output pitch control device %d interface %u endpoint 0x%x to %u\n",
  1419. ret, dev->devnum, u->interface, ep, d->srate);
  1420. return -1;
  1421. }
  1422. }
  1423. /* if endpoint has sampling rate control, set it */
  1424. if (fmt->attributes & 0x01) {
  1425. data[0] = d->srate;
  1426. data[1] = d->srate >> 8;
  1427. data[2] = d->srate >> 16;
  1428. if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
  1429. SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
  1430. printk(KERN_ERR "usbaudio: failure (error %d) to set input sampling frequency device %d interface %u endpoint 0x%x to %u\n",
  1431. ret, dev->devnum, u->interface, ep, d->srate);
  1432. return -1;
  1433. }
  1434. if ((ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN,
  1435. SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
  1436. printk(KERN_ERR "usbaudio: failure (error %d) to get input sampling frequency device %d interface %u endpoint 0x%x\n",
  1437. ret, dev->devnum, u->interface, ep);
  1438. return -1;
  1439. }
  1440. dprintk((KERN_DEBUG "usbaudio: set_format_in: device %d interface %d altsetting %d srate req: %u real %u\n",
  1441. dev->devnum, u->interface, fmt->altsetting, d->srate, data[0] | (data[1] << 8) | (data[2] << 16)));
  1442. d->srate = data[0] | (data[1] << 8) | (data[2] << 16);
  1443. }
  1444. dprintk((KERN_DEBUG "usbaudio: set_format_in: USB format 0x%x, DMA format 0x%x srate %u\n", u->format, d->format, d->srate));
  1445. return 0;
  1446. }
  1447. static int set_format_out(struct usb_audiodev *as)
  1448. {
  1449. struct usb_device *dev = as->state->usbdev;
  1450. struct usb_host_interface *alts;
  1451. struct usb_interface *iface;
  1452. struct usbout *u = &as->usbout;
  1453. struct dmabuf *d = &u->dma;
  1454. struct audioformat *fmt;
  1455. unsigned int ep;
  1456. unsigned char data[3];
  1457. int fmtnr, ret;
  1458. iface = usb_ifnum_to_if(dev, u->interface);
  1459. if (!iface)
  1460. return 0;
  1461. fmtnr = find_format(as->fmtout, as->numfmtout, d->format, d->srate);
  1462. if (fmtnr < 0) {
  1463. printk(KERN_ERR "usbaudio: set_format_out(): failed to find desired format/speed combination.\n");
  1464. return -1;
  1465. }
  1466. fmt = as->fmtout + fmtnr;
  1467. u->format = fmt->format;
  1468. alts = usb_altnum_to_altsetting(iface, fmt->altsetting);
  1469. u->datapipe = usb_sndisocpipe(dev, alts->endpoint[0].desc.bEndpointAddress & 0xf);
  1470. u->syncpipe = u->syncinterval = 0;
  1471. if ((alts->endpoint[0].desc.bmAttributes & 0x0c) == 0x04) {
  1472. #if 0
  1473. printk(KERN_DEBUG "bNumEndpoints 0x%02x endpoint[1].bmAttributes 0x%02x\n"
  1474. KERN_DEBUG "endpoint[1].bSynchAddress 0x%02x endpoint[1].bEndpointAddress 0x%02x\n"
  1475. KERN_DEBUG "endpoint[0].bSynchAddress 0x%02x\n", alts->bNumEndpoints,
  1476. alts->endpoint[1].bmAttributes, alts->endpoint[1].bSynchAddress,
  1477. alts->endpoint[1].bEndpointAddress, alts->endpoint[0].bSynchAddress);
  1478. #endif
  1479. if (alts->desc.bNumEndpoints < 2 ||
  1480. alts->endpoint[1].desc.bmAttributes != 0x01 ||
  1481. alts->endpoint[1].desc.bSynchAddress != 0 ||
  1482. alts->endpoint[1].desc.bEndpointAddress != (alts->endpoint[0].desc.bSynchAddress | 0x80)) {
  1483. printk(KERN_WARNING "usbaudio: device %d interface %d altsetting %d claims asynch out "
  1484. "but has invalid synch pipe; treating as adaptive out\n",
  1485. dev->devnum, u->interface, fmt->altsetting);
  1486. } else {
  1487. u->syncpipe = usb_rcvisocpipe(dev, alts->endpoint[1].desc.bEndpointAddress & 0xf);
  1488. u->syncinterval = alts->endpoint[1].desc.bRefresh;
  1489. }
  1490. }
  1491. if (d->srate < fmt->sratelo)
  1492. d->srate = fmt->sratelo;
  1493. if (d->srate > fmt->sratehi)
  1494. d->srate = fmt->sratehi;
  1495. dprintk((KERN_DEBUG "usbaudio: set_format_out: usb_set_interface %u %u\n",
  1496. u->interface, fmt->altsetting));
  1497. if (usb_set_interface(dev, u->interface, fmt->altsetting) < 0) {
  1498. printk(KERN_WARNING "usbaudio: usb_set_interface failed, device %d interface %d altsetting %d\n",
  1499. dev->devnum, u->interface, fmt->altsetting);
  1500. return -1;
  1501. }
  1502. if (fmt->sratelo == fmt->sratehi)
  1503. return 0;
  1504. ep = usb_pipeendpoint(u->datapipe) | (u->datapipe & USB_DIR_IN);
  1505. /* if endpoint has pitch control, enable it */
  1506. if (fmt->attributes & 0x02) {
  1507. data[0] = 1;
  1508. if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
  1509. PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) {
  1510. printk(KERN_ERR "usbaudio: failure (error %d) to set output pitch control device %d interface %u endpoint 0x%x to %u\n",
  1511. ret, dev->devnum, u->interface, ep, d->srate);
  1512. return -1;
  1513. }
  1514. }
  1515. /* if endpoint has sampling rate control, set it */
  1516. if (fmt->attributes & 0x01) {
  1517. data[0] = d->srate;
  1518. data[1] = d->srate >> 8;
  1519. data[2] = d->srate >> 16;
  1520. if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT,
  1521. SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
  1522. printk(KERN_ERR "usbaudio: failure (error %d) to set output sampling frequency device %d interface %u endpoint 0x%x to %u\n",
  1523. ret, dev->devnum, u->interface, ep, d->srate);
  1524. return -1;
  1525. }
  1526. if ((ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN,
  1527. SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) {
  1528. printk(KERN_ERR "usbaudio: failure (error %d) to get output sampling frequency device %d interface %u endpoint 0x%x\n",
  1529. ret, dev->devnum, u->interface, ep);
  1530. return -1;
  1531. }
  1532. dprintk((KERN_DEBUG "usbaudio: set_format_out: device %d interface %d altsetting %d srate req: %u real %u\n",
  1533. dev->devnum, u->interface, fmt->altsetting, d->srate, data[0] | (data[1] << 8) | (data[2] << 16)));
  1534. d->srate = data[0] | (data[1] << 8) | (data[2] << 16);
  1535. }
  1536. dprintk((KERN_DEBUG "usbaudio: set_format_out: USB format 0x%x, DMA format 0x%x srate %u\n", u->format, d->format, d->srate));
  1537. return 0;
  1538. }
  1539. static int set_format(struct usb_audiodev *s, unsigned int fmode, unsigned int fmt, unsigned int srate)
  1540. {
  1541. int ret1 = 0, ret2 = 0;
  1542. if (!(fmode & (FMODE_READ|FMODE_WRITE)))
  1543. return -EINVAL;
  1544. if (fmode & FMODE_READ) {
  1545. usbin_stop(s);
  1546. s->usbin.dma.ready = 0;
  1547. if (fmt == AFMT_QUERY)
  1548. fmt = s->usbin.dma.format;
  1549. else
  1550. s->usbin.dma.format = fmt;
  1551. if (!srate)
  1552. srate = s->usbin.dma.srate;
  1553. else
  1554. s->usbin.dma.srate = srate;
  1555. }
  1556. if (fmode & FMODE_WRITE) {
  1557. usbout_stop(s);
  1558. s->usbout.dma.ready = 0;
  1559. if (fmt == AFMT_QUERY)
  1560. fmt = s->usbout.dma.format;
  1561. else
  1562. s->usbout.dma.format = fmt;
  1563. if (!srate)
  1564. srate = s->usbout.dma.srate;
  1565. else
  1566. s->usbout.dma.srate = srate;
  1567. }
  1568. if (fmode & FMODE_READ)
  1569. ret1 = set_format_in(s);
  1570. if (fmode & FMODE_WRITE)
  1571. ret2 = set_format_out(s);
  1572. return ret1 ? ret1 : ret2;
  1573. }
  1574. /* --------------------------------------------------------------------- */
  1575. static int wrmixer(struct usb_mixerdev *ms, unsigned mixch, unsigned value)
  1576. {
  1577. struct usb_device *dev = ms->state->usbdev;
  1578. unsigned char data[2];
  1579. struct mixerchannel *ch;
  1580. int v1, v2, v3;
  1581. if (mixch >= ms->numch)
  1582. return -1;
  1583. ch = &ms->ch[mixch];
  1584. v3 = ch->maxval - ch->minval;
  1585. v1 = value & 0xff;
  1586. v2 = (value >> 8) & 0xff;
  1587. if (v1 > 100)
  1588. v1 = 100;
  1589. if (v2 > 100)
  1590. v2 = 100;
  1591. if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  1592. v2 = v1;
  1593. ch->value = v1 | (v2 << 8);
  1594. v1 = (v1 * v3) / 100 + ch->minval;
  1595. v2 = (v2 * v3) / 100 + ch->minval;
  1596. switch (ch->selector) {
  1597. case 0: /* mixer unit request */
  1598. data[0] = v1;
  1599. data[1] = v1 >> 8;
  1600. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1601. (ch->chnum << 8) | 1, ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
  1602. goto err;
  1603. if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  1604. return 0;
  1605. data[0] = v2;
  1606. data[1] = v2 >> 8;
  1607. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1608. ((ch->chnum + !!(ch->flags & MIXFLG_STEREOIN)) << 8) | (1 + !!(ch->flags & MIXFLG_STEREOOUT)),
  1609. ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
  1610. goto err;
  1611. return 0;
  1612. /* various feature unit controls */
  1613. case VOLUME_CONTROL:
  1614. data[0] = v1;
  1615. data[1] = v1 >> 8;
  1616. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1617. (ch->selector << 8) | ch->chnum, ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
  1618. goto err;
  1619. if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  1620. return 0;
  1621. data[0] = v2;
  1622. data[1] = v2 >> 8;
  1623. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1624. (ch->selector << 8) | (ch->chnum + 1), ms->iface | (ch->unitid << 8), data, 2, 1000) < 0)
  1625. goto err;
  1626. return 0;
  1627. case BASS_CONTROL:
  1628. case MID_CONTROL:
  1629. case TREBLE_CONTROL:
  1630. data[0] = v1 >> 8;
  1631. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1632. (ch->selector << 8) | ch->chnum, ms->iface | (ch->unitid << 8), data, 1, 1000) < 0)
  1633. goto err;
  1634. if (!(ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  1635. return 0;
  1636. data[0] = v2 >> 8;
  1637. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1638. (ch->selector << 8) | (ch->chnum + 1), ms->iface | (ch->unitid << 8), data, 1, 1000) < 0)
  1639. goto err;
  1640. return 0;
  1641. default:
  1642. return -1;
  1643. }
  1644. return 0;
  1645. err:
  1646. printk(KERN_ERR "usbaudio: mixer request device %u if %u unit %u ch %u selector %u failed\n",
  1647. dev->devnum, ms->iface, ch->unitid, ch->chnum, ch->selector);
  1648. return -1;
  1649. }
  1650. static int get_rec_src(struct usb_mixerdev *ms)
  1651. {
  1652. struct usb_device *dev = ms->state->usbdev;
  1653. unsigned int mask = 0, retmask = 0;
  1654. unsigned int i, j;
  1655. unsigned char buf;
  1656. int err = 0;
  1657. for (i = 0; i < ms->numch; i++) {
  1658. if (!ms->ch[i].slctunitid || (mask & (1 << i)))
  1659. continue;
  1660. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  1661. 0, ms->iface | (ms->ch[i].slctunitid << 8), &buf, 1, 1000) < 0) {
  1662. err = -EIO;
  1663. printk(KERN_ERR "usbaudio: selector read request device %u if %u unit %u failed\n",
  1664. dev->devnum, ms->iface, ms->ch[i].slctunitid & 0xff);
  1665. continue;
  1666. }
  1667. for (j = i; j < ms->numch; j++) {
  1668. if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff)
  1669. continue;
  1670. mask |= 1 << j;
  1671. if (buf == (ms->ch[j].slctunitid >> 8))
  1672. retmask |= 1 << ms->ch[j].osschannel;
  1673. }
  1674. }
  1675. if (err)
  1676. return -EIO;
  1677. return retmask;
  1678. }
  1679. static int set_rec_src(struct usb_mixerdev *ms, int srcmask)
  1680. {
  1681. struct usb_device *dev = ms->state->usbdev;
  1682. unsigned int mask = 0, smask, bmask;
  1683. unsigned int i, j;
  1684. unsigned char buf;
  1685. int err = 0;
  1686. for (i = 0; i < ms->numch; i++) {
  1687. if (!ms->ch[i].slctunitid || (mask & (1 << i)))
  1688. continue;
  1689. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  1690. 0, ms->iface | (ms->ch[i].slctunitid << 8), &buf, 1, 1000) < 0) {
  1691. err = -EIO;
  1692. printk(KERN_ERR "usbaudio: selector read request device %u if %u unit %u failed\n",
  1693. dev->devnum, ms->iface, ms->ch[i].slctunitid & 0xff);
  1694. continue;
  1695. }
  1696. /* first generate smask */
  1697. smask = bmask = 0;
  1698. for (j = i; j < ms->numch; j++) {
  1699. if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff)
  1700. continue;
  1701. smask |= 1 << ms->ch[j].osschannel;
  1702. if (buf == (ms->ch[j].slctunitid >> 8))
  1703. bmask |= 1 << ms->ch[j].osschannel;
  1704. mask |= 1 << j;
  1705. }
  1706. /* check for multiple set sources */
  1707. j = hweight32(srcmask & smask);
  1708. if (j == 0)
  1709. continue;
  1710. if (j > 1)
  1711. srcmask &= ~bmask;
  1712. for (j = i; j < ms->numch; j++) {
  1713. if ((ms->ch[i].slctunitid ^ ms->ch[j].slctunitid) & 0xff)
  1714. continue;
  1715. if (!(srcmask & (1 << ms->ch[j].osschannel)))
  1716. continue;
  1717. buf = ms->ch[j].slctunitid >> 8;
  1718. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1719. 0, ms->iface | (ms->ch[j].slctunitid << 8), &buf, 1, 1000) < 0) {
  1720. err = -EIO;
  1721. printk(KERN_ERR "usbaudio: selector write request device %u if %u unit %u failed\n",
  1722. dev->devnum, ms->iface, ms->ch[j].slctunitid & 0xff);
  1723. continue;
  1724. }
  1725. }
  1726. }
  1727. return err ? -EIO : 0;
  1728. }
  1729. /* --------------------------------------------------------------------- */
  1730. /*
  1731. * should be called with open_sem hold, so that no new processes
  1732. * look at the audio device to be destroyed
  1733. */
  1734. static void release(struct usb_audio_state *s)
  1735. {
  1736. struct usb_audiodev *as;
  1737. struct usb_mixerdev *ms;
  1738. s->count--;
  1739. if (s->count) {
  1740. up(&open_sem);
  1741. return;
  1742. }
  1743. up(&open_sem);
  1744. wake_up(&open_wait);
  1745. while (!list_empty(&s->audiolist)) {
  1746. as = list_entry(s->audiolist.next, struct usb_audiodev, list);
  1747. list_del(&as->list);
  1748. usbin_release(as);
  1749. usbout_release(as);
  1750. dmabuf_release(&as->usbin.dma);
  1751. dmabuf_release(&as->usbout.dma);
  1752. usb_free_urb(as->usbin.durb[0].urb);
  1753. usb_free_urb(as->usbin.durb[1].urb);
  1754. usb_free_urb(as->usbin.surb[0].urb);
  1755. usb_free_urb(as->usbin.surb[1].urb);
  1756. usb_free_urb(as->usbout.durb[0].urb);
  1757. usb_free_urb(as->usbout.durb[1].urb);
  1758. usb_free_urb(as->usbout.surb[0].urb);
  1759. usb_free_urb(as->usbout.surb[1].urb);
  1760. kfree(as);
  1761. }
  1762. while (!list_empty(&s->mixerlist)) {
  1763. ms = list_entry(s->mixerlist.next, struct usb_mixerdev, list);
  1764. list_del(&ms->list);
  1765. kfree(ms);
  1766. }
  1767. kfree(s);
  1768. }
  1769. static inline int prog_dmabuf_in(struct usb_audiodev *as)
  1770. {
  1771. usbin_stop(as);
  1772. return dmabuf_init(&as->usbin.dma);
  1773. }
  1774. static inline int prog_dmabuf_out(struct usb_audiodev *as)
  1775. {
  1776. usbout_stop(as);
  1777. return dmabuf_init(&as->usbout.dma);
  1778. }
  1779. /* --------------------------------------------------------------------- */
  1780. static int usb_audio_open_mixdev(struct inode *inode, struct file *file)
  1781. {
  1782. unsigned int minor = iminor(inode);
  1783. struct usb_mixerdev *ms;
  1784. struct usb_audio_state *s;
  1785. down(&open_sem);
  1786. list_for_each_entry(s, &audiodevs, audiodev) {
  1787. list_for_each_entry(ms, &s->mixerlist, list) {
  1788. if (ms->dev_mixer == minor)
  1789. goto mixer_found;
  1790. }
  1791. }
  1792. up(&open_sem);
  1793. return -ENODEV;
  1794. mixer_found:
  1795. if (!s->usbdev) {
  1796. up(&open_sem);
  1797. return -EIO;
  1798. }
  1799. file->private_data = ms;
  1800. s->count++;
  1801. up(&open_sem);
  1802. return nonseekable_open(inode, file);
  1803. }
  1804. static int usb_audio_release_mixdev(struct inode *inode, struct file *file)
  1805. {
  1806. struct usb_mixerdev *ms = (struct usb_mixerdev *)file->private_data;
  1807. struct usb_audio_state *s;
  1808. lock_kernel();
  1809. s = ms->state;
  1810. down(&open_sem);
  1811. release(s);
  1812. unlock_kernel();
  1813. return 0;
  1814. }
  1815. static int usb_audio_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  1816. {
  1817. struct usb_mixerdev *ms = (struct usb_mixerdev *)file->private_data;
  1818. int i, j, val;
  1819. int __user *user_arg = (int __user *)arg;
  1820. if (!ms->state->usbdev)
  1821. return -ENODEV;
  1822. if (cmd == SOUND_MIXER_INFO) {
  1823. mixer_info info;
  1824. memset(&info, 0, sizeof(info));
  1825. strncpy(info.id, "USB_AUDIO", sizeof(info.id));
  1826. strncpy(info.name, "USB Audio Class Driver", sizeof(info.name));
  1827. info.modify_counter = ms->modcnt;
  1828. if (copy_to_user((void __user *)arg, &info, sizeof(info)))
  1829. return -EFAULT;
  1830. return 0;
  1831. }
  1832. if (cmd == SOUND_OLD_MIXER_INFO) {
  1833. _old_mixer_info info;
  1834. memset(&info, 0, sizeof(info));
  1835. strncpy(info.id, "USB_AUDIO", sizeof(info.id));
  1836. strncpy(info.name, "USB Audio Class Driver", sizeof(info.name));
  1837. if (copy_to_user((void __user *)arg, &info, sizeof(info)))
  1838. return -EFAULT;
  1839. return 0;
  1840. }
  1841. if (cmd == OSS_GETVERSION)
  1842. return put_user(SOUND_VERSION, user_arg);
  1843. if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int))
  1844. return -EINVAL;
  1845. if (_IOC_DIR(cmd) == _IOC_READ) {
  1846. switch (_IOC_NR(cmd)) {
  1847. case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
  1848. val = get_rec_src(ms);
  1849. if (val < 0)
  1850. return val;
  1851. return put_user(val, user_arg);
  1852. case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
  1853. for (val = i = 0; i < ms->numch; i++)
  1854. val |= 1 << ms->ch[i].osschannel;
  1855. return put_user(val, user_arg);
  1856. case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
  1857. for (val = i = 0; i < ms->numch; i++)
  1858. if (ms->ch[i].slctunitid)
  1859. val |= 1 << ms->ch[i].osschannel;
  1860. return put_user(val, user_arg);
  1861. case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
  1862. for (val = i = 0; i < ms->numch; i++)
  1863. if (ms->ch[i].flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT))
  1864. val |= 1 << ms->ch[i].osschannel;
  1865. return put_user(val, user_arg);
  1866. case SOUND_MIXER_CAPS:
  1867. return put_user(SOUND_CAP_EXCL_INPUT, user_arg);
  1868. default:
  1869. i = _IOC_NR(cmd);
  1870. if (i >= SOUND_MIXER_NRDEVICES)
  1871. return -EINVAL;
  1872. for (j = 0; j < ms->numch; j++) {
  1873. if (ms->ch[j].osschannel == i) {
  1874. return put_user(ms->ch[j].value, user_arg);
  1875. }
  1876. }
  1877. return -EINVAL;
  1878. }
  1879. }
  1880. if (_IOC_DIR(cmd) != (_IOC_READ|_IOC_WRITE))
  1881. return -EINVAL;
  1882. ms->modcnt++;
  1883. switch (_IOC_NR(cmd)) {
  1884. case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
  1885. if (get_user(val, user_arg))
  1886. return -EFAULT;
  1887. return set_rec_src(ms, val);
  1888. default:
  1889. i = _IOC_NR(cmd);
  1890. if (i >= SOUND_MIXER_NRDEVICES)
  1891. return -EINVAL;
  1892. for (j = 0; j < ms->numch && ms->ch[j].osschannel != i; j++);
  1893. if (j >= ms->numch)
  1894. return -EINVAL;
  1895. if (get_user(val, user_arg))
  1896. return -EFAULT;
  1897. if (wrmixer(ms, j, val))
  1898. return -EIO;
  1899. return put_user(ms->ch[j].value, user_arg);
  1900. }
  1901. }
  1902. static /*const*/ struct file_operations usb_mixer_fops = {
  1903. .owner = THIS_MODULE,
  1904. .llseek = no_llseek,
  1905. .ioctl = usb_audio_ioctl_mixdev,
  1906. .open = usb_audio_open_mixdev,
  1907. .release = usb_audio_release_mixdev,
  1908. };
  1909. /* --------------------------------------------------------------------- */
  1910. static int drain_out(struct usb_audiodev *as, int nonblock)
  1911. {
  1912. DECLARE_WAITQUEUE(wait, current);
  1913. unsigned long flags;
  1914. int count, tmo;
  1915. if (as->usbout.dma.mapped || !as->usbout.dma.ready)
  1916. return 0;
  1917. usbout_start(as);
  1918. add_wait_queue(&as->usbout.dma.wait, &wait);
  1919. for (;;) {
  1920. __set_current_state(TASK_INTERRUPTIBLE);
  1921. spin_lock_irqsave(&as->lock, flags);
  1922. count = as->usbout.dma.count;
  1923. spin_unlock_irqrestore(&as->lock, flags);
  1924. if (count <= 0)
  1925. break;
  1926. if (signal_pending(current))
  1927. break;
  1928. if (nonblock) {
  1929. remove_wait_queue(&as->usbout.dma.wait, &wait);
  1930. set_current_state(TASK_RUNNING);
  1931. return -EBUSY;
  1932. }
  1933. tmo = 3 * HZ * count / as->usbout.dma.srate;
  1934. tmo >>= AFMT_BYTESSHIFT(as->usbout.dma.format);
  1935. if (!schedule_timeout(tmo + 1)) {
  1936. printk(KERN_DEBUG "usbaudio: dma timed out??\n");
  1937. break;
  1938. }
  1939. }
  1940. remove_wait_queue(&as->usbout.dma.wait, &wait);
  1941. set_current_state(TASK_RUNNING);
  1942. if (signal_pending(current))
  1943. return -ERESTARTSYS;
  1944. return 0;
  1945. }
  1946. /* --------------------------------------------------------------------- */
  1947. static ssize_t usb_audio_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
  1948. {
  1949. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  1950. DECLARE_WAITQUEUE(wait, current);
  1951. ssize_t ret = 0;
  1952. unsigned long flags;
  1953. unsigned int ptr;
  1954. int cnt, err;
  1955. if (as->usbin.dma.mapped)
  1956. return -ENXIO;
  1957. if (!as->usbin.dma.ready && (ret = prog_dmabuf_in(as)))
  1958. return ret;
  1959. if (!access_ok(VERIFY_WRITE, buffer, count))
  1960. return -EFAULT;
  1961. add_wait_queue(&as->usbin.dma.wait, &wait);
  1962. while (count > 0) {
  1963. spin_lock_irqsave(&as->lock, flags);
  1964. ptr = as->usbin.dma.rdptr;
  1965. cnt = as->usbin.dma.count;
  1966. /* set task state early to avoid wakeup races */
  1967. if (cnt <= 0)
  1968. __set_current_state(TASK_INTERRUPTIBLE);
  1969. spin_unlock_irqrestore(&as->lock, flags);
  1970. if (cnt > count)
  1971. cnt = count;
  1972. if (cnt <= 0) {
  1973. if (usbin_start(as)) {
  1974. if (!ret)
  1975. ret = -ENODEV;
  1976. break;
  1977. }
  1978. if (file->f_flags & O_NONBLOCK) {
  1979. if (!ret)
  1980. ret = -EAGAIN;
  1981. break;
  1982. }
  1983. schedule();
  1984. if (signal_pending(current)) {
  1985. if (!ret)
  1986. ret = -ERESTARTSYS;
  1987. break;
  1988. }
  1989. continue;
  1990. }
  1991. if ((err = dmabuf_copyout_user(&as->usbin.dma, ptr, buffer, cnt))) {
  1992. if (!ret)
  1993. ret = err;
  1994. break;
  1995. }
  1996. ptr += cnt;
  1997. if (ptr >= as->usbin.dma.dmasize)
  1998. ptr -= as->usbin.dma.dmasize;
  1999. spin_lock_irqsave(&as->lock, flags);
  2000. as->usbin.dma.rdptr = ptr;
  2001. as->usbin.dma.count -= cnt;
  2002. spin_unlock_irqrestore(&as->lock, flags);
  2003. count -= cnt;
  2004. buffer += cnt;
  2005. ret += cnt;
  2006. }
  2007. __set_current_state(TASK_RUNNING);
  2008. remove_wait_queue(&as->usbin.dma.wait, &wait);
  2009. return ret;
  2010. }
  2011. static ssize_t usb_audio_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
  2012. {
  2013. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2014. DECLARE_WAITQUEUE(wait, current);
  2015. ssize_t ret = 0;
  2016. unsigned long flags;
  2017. unsigned int ptr;
  2018. unsigned int start_thr;
  2019. int cnt, err;
  2020. if (as->usbout.dma.mapped)
  2021. return -ENXIO;
  2022. if (!as->usbout.dma.ready && (ret = prog_dmabuf_out(as)))
  2023. return ret;
  2024. if (!access_ok(VERIFY_READ, buffer, count))
  2025. return -EFAULT;
  2026. start_thr = (as->usbout.dma.srate << AFMT_BYTESSHIFT(as->usbout.dma.format)) / (1000 / (3 * DESCFRAMES));
  2027. add_wait_queue(&as->usbout.dma.wait, &wait);
  2028. while (count > 0) {
  2029. #if 0
  2030. printk(KERN_DEBUG "usb_audio_write: count %u dma: count %u rdptr %u wrptr %u dmasize %u fragsize %u flags 0x%02x taskst 0x%lx\n",
  2031. count, as->usbout.dma.count, as->usbout.dma.rdptr, as->usbout.dma.wrptr, as->usbout.dma.dmasize, as->usbout.dma.fragsize,
  2032. as->usbout.flags, current->state);
  2033. #endif
  2034. spin_lock_irqsave(&as->lock, flags);
  2035. if (as->usbout.dma.count < 0) {
  2036. as->usbout.dma.count = 0;
  2037. as->usbout.dma.rdptr = as->usbout.dma.wrptr;
  2038. }
  2039. ptr = as->usbout.dma.wrptr;
  2040. cnt = as->usbout.dma.dmasize - as->usbout.dma.count;
  2041. /* set task state early to avoid wakeup races */
  2042. if (cnt <= 0)
  2043. __set_current_state(TASK_INTERRUPTIBLE);
  2044. spin_unlock_irqrestore(&as->lock, flags);
  2045. if (cnt > count)
  2046. cnt = count;
  2047. if (cnt <= 0) {
  2048. if (usbout_start(as)) {
  2049. if (!ret)
  2050. ret = -ENODEV;
  2051. break;
  2052. }
  2053. if (file->f_flags & O_NONBLOCK) {
  2054. if (!ret)
  2055. ret = -EAGAIN;
  2056. break;
  2057. }
  2058. schedule();
  2059. if (signal_pending(current)) {
  2060. if (!ret)
  2061. ret = -ERESTARTSYS;
  2062. break;
  2063. }
  2064. continue;
  2065. }
  2066. if ((err = dmabuf_copyin_user(&as->usbout.dma, ptr, buffer, cnt))) {
  2067. if (!ret)
  2068. ret = err;
  2069. break;
  2070. }
  2071. ptr += cnt;
  2072. if (ptr >= as->usbout.dma.dmasize)
  2073. ptr -= as->usbout.dma.dmasize;
  2074. spin_lock_irqsave(&as->lock, flags);
  2075. as->usbout.dma.wrptr = ptr;
  2076. as->usbout.dma.count += cnt;
  2077. spin_unlock_irqrestore(&as->lock, flags);
  2078. count -= cnt;
  2079. buffer += cnt;
  2080. ret += cnt;
  2081. if (as->usbout.dma.count >= start_thr && usbout_start(as)) {
  2082. if (!ret)
  2083. ret = -ENODEV;
  2084. break;
  2085. }
  2086. }
  2087. __set_current_state(TASK_RUNNING);
  2088. remove_wait_queue(&as->usbout.dma.wait, &wait);
  2089. return ret;
  2090. }
  2091. /* Called without the kernel lock - fine */
  2092. static unsigned int usb_audio_poll(struct file *file, struct poll_table_struct *wait)
  2093. {
  2094. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2095. unsigned long flags;
  2096. unsigned int mask = 0;
  2097. if (file->f_mode & FMODE_WRITE) {
  2098. if (!as->usbout.dma.ready)
  2099. prog_dmabuf_out(as);
  2100. poll_wait(file, &as->usbout.dma.wait, wait);
  2101. }
  2102. if (file->f_mode & FMODE_READ) {
  2103. if (!as->usbin.dma.ready)
  2104. prog_dmabuf_in(as);
  2105. poll_wait(file, &as->usbin.dma.wait, wait);
  2106. }
  2107. spin_lock_irqsave(&as->lock, flags);
  2108. if (file->f_mode & FMODE_READ) {
  2109. if (as->usbin.dma.count >= (signed)as->usbin.dma.fragsize)
  2110. mask |= POLLIN | POLLRDNORM;
  2111. }
  2112. if (file->f_mode & FMODE_WRITE) {
  2113. if (as->usbout.dma.mapped) {
  2114. if (as->usbout.dma.count >= (signed)as->usbout.dma.fragsize)
  2115. mask |= POLLOUT | POLLWRNORM;
  2116. } else {
  2117. if ((signed)as->usbout.dma.dmasize >= as->usbout.dma.count + (signed)as->usbout.dma.fragsize)
  2118. mask |= POLLOUT | POLLWRNORM;
  2119. }
  2120. }
  2121. spin_unlock_irqrestore(&as->lock, flags);
  2122. return mask;
  2123. }
  2124. static int usb_audio_mmap(struct file *file, struct vm_area_struct *vma)
  2125. {
  2126. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2127. struct dmabuf *db;
  2128. int ret = -EINVAL;
  2129. lock_kernel();
  2130. if (vma->vm_flags & VM_WRITE) {
  2131. if ((ret = prog_dmabuf_out(as)) != 0)
  2132. goto out;
  2133. db = &as->usbout.dma;
  2134. } else if (vma->vm_flags & VM_READ) {
  2135. if ((ret = prog_dmabuf_in(as)) != 0)
  2136. goto out;
  2137. db = &as->usbin.dma;
  2138. } else
  2139. goto out;
  2140. ret = -EINVAL;
  2141. if (vma->vm_pgoff != 0)
  2142. goto out;
  2143. ret = dmabuf_mmap(vma, db, vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot);
  2144. out:
  2145. unlock_kernel();
  2146. return ret;
  2147. }
  2148. static int usb_audio_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  2149. {
  2150. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2151. struct usb_audio_state *s = as->state;
  2152. int __user *user_arg = (int __user *)arg;
  2153. unsigned long flags;
  2154. audio_buf_info abinfo;
  2155. count_info cinfo;
  2156. int val = 0;
  2157. int val2, mapped, ret;
  2158. if (!s->usbdev)
  2159. return -EIO;
  2160. mapped = ((file->f_mode & FMODE_WRITE) && as->usbout.dma.mapped) ||
  2161. ((file->f_mode & FMODE_READ) && as->usbin.dma.mapped);
  2162. #if 0
  2163. if (arg)
  2164. get_user(val, (int *)arg);
  2165. printk(KERN_DEBUG "usbaudio: usb_audio_ioctl cmd=%x arg=%lx *arg=%d\n", cmd, arg, val)
  2166. #endif
  2167. switch (cmd) {
  2168. case OSS_GETVERSION:
  2169. return put_user(SOUND_VERSION, user_arg);
  2170. case SNDCTL_DSP_SYNC:
  2171. if (file->f_mode & FMODE_WRITE)
  2172. return drain_out(as, 0/*file->f_flags & O_NONBLOCK*/);
  2173. return 0;
  2174. case SNDCTL_DSP_SETDUPLEX:
  2175. return 0;
  2176. case SNDCTL_DSP_GETCAPS:
  2177. return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER |
  2178. DSP_CAP_MMAP | DSP_CAP_BATCH, user_arg);
  2179. case SNDCTL_DSP_RESET:
  2180. if (file->f_mode & FMODE_WRITE) {
  2181. usbout_stop(as);
  2182. as->usbout.dma.rdptr = as->usbout.dma.wrptr = as->usbout.dma.count = as->usbout.dma.total_bytes = 0;
  2183. }
  2184. if (file->f_mode & FMODE_READ) {
  2185. usbin_stop(as);
  2186. as->usbin.dma.rdptr = as->usbin.dma.wrptr = as->usbin.dma.count = as->usbin.dma.total_bytes = 0;
  2187. }
  2188. return 0;
  2189. case SNDCTL_DSP_SPEED:
  2190. if (get_user(val, user_arg))
  2191. return -EFAULT;
  2192. if (val >= 0) {
  2193. if (val < 4000)
  2194. val = 4000;
  2195. if (val > 100000)
  2196. val = 100000;
  2197. if (set_format(as, file->f_mode, AFMT_QUERY, val))
  2198. return -EIO;
  2199. }
  2200. return put_user((file->f_mode & FMODE_READ) ?
  2201. as->usbin.dma.srate : as->usbout.dma.srate,
  2202. user_arg);
  2203. case SNDCTL_DSP_STEREO:
  2204. if (get_user(val, user_arg))
  2205. return -EFAULT;
  2206. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2207. if (val)
  2208. val2 |= AFMT_STEREO;
  2209. else
  2210. val2 &= ~AFMT_STEREO;
  2211. if (set_format(as, file->f_mode, val2, 0))
  2212. return -EIO;
  2213. return 0;
  2214. case SNDCTL_DSP_CHANNELS:
  2215. if (get_user(val, user_arg))
  2216. return -EFAULT;
  2217. if (val != 0) {
  2218. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2219. if (val == 1)
  2220. val2 &= ~AFMT_STEREO;
  2221. else
  2222. val2 |= AFMT_STEREO;
  2223. if (set_format(as, file->f_mode, val2, 0))
  2224. return -EIO;
  2225. }
  2226. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2227. return put_user(AFMT_ISSTEREO(val2) ? 2 : 1, user_arg);
  2228. case SNDCTL_DSP_GETFMTS: /* Returns a mask */
  2229. return put_user(AFMT_U8 | AFMT_U16_LE | AFMT_U16_BE |
  2230. AFMT_S8 | AFMT_S16_LE | AFMT_S16_BE, user_arg);
  2231. case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
  2232. if (get_user(val, user_arg))
  2233. return -EFAULT;
  2234. if (val != AFMT_QUERY) {
  2235. if (hweight32(val) != 1)
  2236. return -EINVAL;
  2237. if (!(val & (AFMT_U8 | AFMT_U16_LE | AFMT_U16_BE |
  2238. AFMT_S8 | AFMT_S16_LE | AFMT_S16_BE)))
  2239. return -EINVAL;
  2240. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2241. val |= val2 & AFMT_STEREO;
  2242. if (set_format(as, file->f_mode, val, 0))
  2243. return -EIO;
  2244. }
  2245. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2246. return put_user(val2 & ~AFMT_STEREO, user_arg);
  2247. case SNDCTL_DSP_POST:
  2248. return 0;
  2249. case SNDCTL_DSP_GETTRIGGER:
  2250. val = 0;
  2251. if (file->f_mode & FMODE_READ && as->usbin.flags & FLG_RUNNING)
  2252. val |= PCM_ENABLE_INPUT;
  2253. if (file->f_mode & FMODE_WRITE && as->usbout.flags & FLG_RUNNING)
  2254. val |= PCM_ENABLE_OUTPUT;
  2255. return put_user(val, user_arg);
  2256. case SNDCTL_DSP_SETTRIGGER:
  2257. if (get_user(val, user_arg))
  2258. return -EFAULT;
  2259. if (file->f_mode & FMODE_READ) {
  2260. if (val & PCM_ENABLE_INPUT) {
  2261. if (!as->usbin.dma.ready && (ret = prog_dmabuf_in(as)))
  2262. return ret;
  2263. if (usbin_start(as))
  2264. return -ENODEV;
  2265. } else
  2266. usbin_stop(as);
  2267. }
  2268. if (file->f_mode & FMODE_WRITE) {
  2269. if (val & PCM_ENABLE_OUTPUT) {
  2270. if (!as->usbout.dma.ready && (ret = prog_dmabuf_out(as)))
  2271. return ret;
  2272. if (usbout_start(as))
  2273. return -ENODEV;
  2274. } else
  2275. usbout_stop(as);
  2276. }
  2277. return 0;
  2278. case SNDCTL_DSP_GETOSPACE:
  2279. if (!(file->f_mode & FMODE_WRITE))
  2280. return -EINVAL;
  2281. if (!(as->usbout.flags & FLG_RUNNING) && (val = prog_dmabuf_out(as)) != 0)
  2282. return val;
  2283. spin_lock_irqsave(&as->lock, flags);
  2284. abinfo.fragsize = as->usbout.dma.fragsize;
  2285. abinfo.bytes = as->usbout.dma.dmasize - as->usbout.dma.count;
  2286. abinfo.fragstotal = as->usbout.dma.numfrag;
  2287. abinfo.fragments = abinfo.bytes >> as->usbout.dma.fragshift;
  2288. spin_unlock_irqrestore(&as->lock, flags);
  2289. return copy_to_user((void __user *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
  2290. case SNDCTL_DSP_GETISPACE:
  2291. if (!(file->f_mode & FMODE_READ))
  2292. return -EINVAL;
  2293. if (!(as->usbin.flags & FLG_RUNNING) && (val = prog_dmabuf_in(as)) != 0)
  2294. return val;
  2295. spin_lock_irqsave(&as->lock, flags);
  2296. abinfo.fragsize = as->usbin.dma.fragsize;
  2297. abinfo.bytes = as->usbin.dma.count;
  2298. abinfo.fragstotal = as->usbin.dma.numfrag;
  2299. abinfo.fragments = abinfo.bytes >> as->usbin.dma.fragshift;
  2300. spin_unlock_irqrestore(&as->lock, flags);
  2301. return copy_to_user((void __user *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
  2302. case SNDCTL_DSP_NONBLOCK:
  2303. file->f_flags |= O_NONBLOCK;
  2304. return 0;
  2305. case SNDCTL_DSP_GETODELAY:
  2306. if (!(file->f_mode & FMODE_WRITE))
  2307. return -EINVAL;
  2308. spin_lock_irqsave(&as->lock, flags);
  2309. val = as->usbout.dma.count;
  2310. spin_unlock_irqrestore(&as->lock, flags);
  2311. return put_user(val, user_arg);
  2312. case SNDCTL_DSP_GETIPTR:
  2313. if (!(file->f_mode & FMODE_READ))
  2314. return -EINVAL;
  2315. spin_lock_irqsave(&as->lock, flags);
  2316. cinfo.bytes = as->usbin.dma.total_bytes;
  2317. cinfo.blocks = as->usbin.dma.count >> as->usbin.dma.fragshift;
  2318. cinfo.ptr = as->usbin.dma.wrptr;
  2319. if (as->usbin.dma.mapped)
  2320. as->usbin.dma.count &= as->usbin.dma.fragsize-1;
  2321. spin_unlock_irqrestore(&as->lock, flags);
  2322. if (copy_to_user((void __user *)arg, &cinfo, sizeof(cinfo)))
  2323. return -EFAULT;
  2324. return 0;
  2325. case SNDCTL_DSP_GETOPTR:
  2326. if (!(file->f_mode & FMODE_WRITE))
  2327. return -EINVAL;
  2328. spin_lock_irqsave(&as->lock, flags);
  2329. cinfo.bytes = as->usbout.dma.total_bytes;
  2330. cinfo.blocks = as->usbout.dma.count >> as->usbout.dma.fragshift;
  2331. cinfo.ptr = as->usbout.dma.rdptr;
  2332. if (as->usbout.dma.mapped)
  2333. as->usbout.dma.count &= as->usbout.dma.fragsize-1;
  2334. spin_unlock_irqrestore(&as->lock, flags);
  2335. if (copy_to_user((void __user *)arg, &cinfo, sizeof(cinfo)))
  2336. return -EFAULT;
  2337. return 0;
  2338. case SNDCTL_DSP_GETBLKSIZE:
  2339. if (file->f_mode & FMODE_WRITE) {
  2340. if ((val = prog_dmabuf_out(as)))
  2341. return val;
  2342. return put_user(as->usbout.dma.fragsize, user_arg);
  2343. }
  2344. if ((val = prog_dmabuf_in(as)))
  2345. return val;
  2346. return put_user(as->usbin.dma.fragsize, user_arg);
  2347. case SNDCTL_DSP_SETFRAGMENT:
  2348. if (get_user(val, user_arg))
  2349. return -EFAULT;
  2350. if (file->f_mode & FMODE_READ) {
  2351. as->usbin.dma.ossfragshift = val & 0xffff;
  2352. as->usbin.dma.ossmaxfrags = (val >> 16) & 0xffff;
  2353. if (as->usbin.dma.ossfragshift < 4)
  2354. as->usbin.dma.ossfragshift = 4;
  2355. if (as->usbin.dma.ossfragshift > 15)
  2356. as->usbin.dma.ossfragshift = 15;
  2357. if (as->usbin.dma.ossmaxfrags < 4)
  2358. as->usbin.dma.ossmaxfrags = 4;
  2359. }
  2360. if (file->f_mode & FMODE_WRITE) {
  2361. as->usbout.dma.ossfragshift = val & 0xffff;
  2362. as->usbout.dma.ossmaxfrags = (val >> 16) & 0xffff;
  2363. if (as->usbout.dma.ossfragshift < 4)
  2364. as->usbout.dma.ossfragshift = 4;
  2365. if (as->usbout.dma.ossfragshift > 15)
  2366. as->usbout.dma.ossfragshift = 15;
  2367. if (as->usbout.dma.ossmaxfrags < 4)
  2368. as->usbout.dma.ossmaxfrags = 4;
  2369. }
  2370. return 0;
  2371. case SNDCTL_DSP_SUBDIVIDE:
  2372. if ((file->f_mode & FMODE_READ && as->usbin.dma.subdivision) ||
  2373. (file->f_mode & FMODE_WRITE && as->usbout.dma.subdivision))
  2374. return -EINVAL;
  2375. if (get_user(val, user_arg))
  2376. return -EFAULT;
  2377. if (val != 1 && val != 2 && val != 4)
  2378. return -EINVAL;
  2379. if (file->f_mode & FMODE_READ)
  2380. as->usbin.dma.subdivision = val;
  2381. if (file->f_mode & FMODE_WRITE)
  2382. as->usbout.dma.subdivision = val;
  2383. return 0;
  2384. case SOUND_PCM_READ_RATE:
  2385. return put_user((file->f_mode & FMODE_READ) ?
  2386. as->usbin.dma.srate : as->usbout.dma.srate,
  2387. user_arg);
  2388. case SOUND_PCM_READ_CHANNELS:
  2389. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2390. return put_user(AFMT_ISSTEREO(val2) ? 2 : 1, user_arg);
  2391. case SOUND_PCM_READ_BITS:
  2392. val2 = (file->f_mode & FMODE_READ) ? as->usbin.dma.format : as->usbout.dma.format;
  2393. return put_user(AFMT_IS16BIT(val2) ? 16 : 8, user_arg);
  2394. case SOUND_PCM_WRITE_FILTER:
  2395. case SNDCTL_DSP_SETSYNCRO:
  2396. case SOUND_PCM_READ_FILTER:
  2397. return -EINVAL;
  2398. }
  2399. dprintk((KERN_DEBUG "usbaudio: usb_audio_ioctl - no command found\n"));
  2400. return -ENOIOCTLCMD;
  2401. }
  2402. static int usb_audio_open(struct inode *inode, struct file *file)
  2403. {
  2404. unsigned int minor = iminor(inode);
  2405. DECLARE_WAITQUEUE(wait, current);
  2406. struct usb_audiodev *as;
  2407. struct usb_audio_state *s;
  2408. for (;;) {
  2409. down(&open_sem);
  2410. list_for_each_entry(s, &audiodevs, audiodev) {
  2411. list_for_each_entry(as, &s->audiolist, list) {
  2412. if (!((as->dev_audio ^ minor) & ~0xf))
  2413. goto device_found;
  2414. }
  2415. }
  2416. up(&open_sem);
  2417. return -ENODEV;
  2418. device_found:
  2419. if (!s->usbdev) {
  2420. up(&open_sem);
  2421. return -EIO;
  2422. }
  2423. /* wait for device to become free */
  2424. if (!(as->open_mode & file->f_mode))
  2425. break;
  2426. if (file->f_flags & O_NONBLOCK) {
  2427. up(&open_sem);
  2428. return -EBUSY;
  2429. }
  2430. __set_current_state(TASK_INTERRUPTIBLE);
  2431. add_wait_queue(&open_wait, &wait);
  2432. up(&open_sem);
  2433. schedule();
  2434. __set_current_state(TASK_RUNNING);
  2435. remove_wait_queue(&open_wait, &wait);
  2436. if (signal_pending(current))
  2437. return -ERESTARTSYS;
  2438. }
  2439. if (file->f_mode & FMODE_READ)
  2440. as->usbin.dma.ossfragshift = as->usbin.dma.ossmaxfrags = as->usbin.dma.subdivision = 0;
  2441. if (file->f_mode & FMODE_WRITE)
  2442. as->usbout.dma.ossfragshift = as->usbout.dma.ossmaxfrags = as->usbout.dma.subdivision = 0;
  2443. if (set_format(as, file->f_mode, ((minor & 0xf) == SND_DEV_DSP16) ? AFMT_S16_LE : AFMT_U8 /* AFMT_ULAW */, 8000)) {
  2444. up(&open_sem);
  2445. return -EIO;
  2446. }
  2447. file->private_data = as;
  2448. as->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
  2449. s->count++;
  2450. up(&open_sem);
  2451. return nonseekable_open(inode, file);
  2452. }
  2453. static int usb_audio_release(struct inode *inode, struct file *file)
  2454. {
  2455. struct usb_audiodev *as = (struct usb_audiodev *)file->private_data;
  2456. struct usb_audio_state *s;
  2457. struct usb_device *dev;
  2458. lock_kernel();
  2459. s = as->state;
  2460. dev = s->usbdev;
  2461. if (file->f_mode & FMODE_WRITE)
  2462. drain_out(as, file->f_flags & O_NONBLOCK);
  2463. down(&open_sem);
  2464. if (file->f_mode & FMODE_WRITE) {
  2465. usbout_stop(as);
  2466. if (dev && as->usbout.interface >= 0)
  2467. usb_set_interface(dev, as->usbout.interface, 0);
  2468. dmabuf_release(&as->usbout.dma);
  2469. usbout_release(as);
  2470. }
  2471. if (file->f_mode & FMODE_READ) {
  2472. usbin_stop(as);
  2473. if (dev && as->usbin.interface >= 0)
  2474. usb_set_interface(dev, as->usbin.interface, 0);
  2475. dmabuf_release(&as->usbin.dma);
  2476. usbin_release(as);
  2477. }
  2478. as->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE);
  2479. release(s);
  2480. wake_up(&open_wait);
  2481. unlock_kernel();
  2482. return 0;
  2483. }
  2484. static /*const*/ struct file_operations usb_audio_fops = {
  2485. .owner = THIS_MODULE,
  2486. .llseek = no_llseek,
  2487. .read = usb_audio_read,
  2488. .write = usb_audio_write,
  2489. .poll = usb_audio_poll,
  2490. .ioctl = usb_audio_ioctl,
  2491. .mmap = usb_audio_mmap,
  2492. .open = usb_audio_open,
  2493. .release = usb_audio_release,
  2494. };
  2495. /* --------------------------------------------------------------------- */
  2496. static int usb_audio_probe(struct usb_interface *iface,
  2497. const struct usb_device_id *id);
  2498. static void usb_audio_disconnect(struct usb_interface *iface);
  2499. static struct usb_device_id usb_audio_ids [] = {
  2500. { .match_flags = (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS),
  2501. .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = 1},
  2502. { } /* Terminating entry */
  2503. };
  2504. MODULE_DEVICE_TABLE (usb, usb_audio_ids);
  2505. static struct usb_driver usb_audio_driver = {
  2506. .owner = THIS_MODULE,
  2507. .name = "audio",
  2508. .probe = usb_audio_probe,
  2509. .disconnect = usb_audio_disconnect,
  2510. .id_table = usb_audio_ids,
  2511. };
  2512. static void *find_descriptor(void *descstart, unsigned int desclen, void *after,
  2513. u8 dtype, int iface, int altsetting)
  2514. {
  2515. u8 *p, *end, *next;
  2516. int ifc = -1, as = -1;
  2517. p = descstart;
  2518. end = p + desclen;
  2519. for (; p < end;) {
  2520. if (p[0] < 2)
  2521. return NULL;
  2522. next = p + p[0];
  2523. if (next > end)
  2524. return NULL;
  2525. if (p[1] == USB_DT_INTERFACE) {
  2526. /* minimum length of interface descriptor */
  2527. if (p[0] < 9)
  2528. return NULL;
  2529. ifc = p[2];
  2530. as = p[3];
  2531. }
  2532. if (p[1] == dtype && (!after || (void *)p > after) &&
  2533. (iface == -1 || iface == ifc) && (altsetting == -1 || altsetting == as)) {
  2534. return p;
  2535. }
  2536. p = next;
  2537. }
  2538. return NULL;
  2539. }
  2540. static void *find_csinterface_descriptor(void *descstart, unsigned int desclen, void *after, u8 dsubtype, int iface, int altsetting)
  2541. {
  2542. unsigned char *p;
  2543. p = find_descriptor(descstart, desclen, after, USB_DT_CS_INTERFACE, iface, altsetting);
  2544. while (p) {
  2545. if (p[0] >= 3 && p[2] == dsubtype)
  2546. return p;
  2547. p = find_descriptor(descstart, desclen, p, USB_DT_CS_INTERFACE, iface, altsetting);
  2548. }
  2549. return NULL;
  2550. }
  2551. static void *find_audiocontrol_unit(void *descstart, unsigned int desclen, void *after, u8 unit, int iface)
  2552. {
  2553. unsigned char *p;
  2554. p = find_descriptor(descstart, desclen, after, USB_DT_CS_INTERFACE, iface, -1);
  2555. while (p) {
  2556. if (p[0] >= 4 && p[2] >= INPUT_TERMINAL && p[2] <= EXTENSION_UNIT && p[3] == unit)
  2557. return p;
  2558. p = find_descriptor(descstart, desclen, p, USB_DT_CS_INTERFACE, iface, -1);
  2559. }
  2560. return NULL;
  2561. }
  2562. static void usb_audio_parsestreaming(struct usb_audio_state *s, unsigned char *buffer, unsigned int buflen, int asifin, int asifout)
  2563. {
  2564. struct usb_device *dev = s->usbdev;
  2565. struct usb_audiodev *as;
  2566. struct usb_host_interface *alts;
  2567. struct usb_interface *iface;
  2568. struct audioformat *fp;
  2569. unsigned char *fmt, *csep;
  2570. unsigned int i, j, k, format, idx;
  2571. if (!(as = kmalloc(sizeof(struct usb_audiodev), GFP_KERNEL)))
  2572. return;
  2573. memset(as, 0, sizeof(struct usb_audiodev));
  2574. init_waitqueue_head(&as->usbin.dma.wait);
  2575. init_waitqueue_head(&as->usbout.dma.wait);
  2576. spin_lock_init(&as->lock);
  2577. as->usbin.durb[0].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
  2578. as->usbin.durb[1].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
  2579. as->usbin.surb[0].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
  2580. as->usbin.surb[1].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
  2581. as->usbout.durb[0].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
  2582. as->usbout.durb[1].urb = usb_alloc_urb (DESCFRAMES, GFP_KERNEL);
  2583. as->usbout.surb[0].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
  2584. as->usbout.surb[1].urb = usb_alloc_urb (SYNCFRAMES, GFP_KERNEL);
  2585. if ((!as->usbin.durb[0].urb) ||
  2586. (!as->usbin.durb[1].urb) ||
  2587. (!as->usbin.surb[0].urb) ||
  2588. (!as->usbin.surb[1].urb) ||
  2589. (!as->usbout.durb[0].urb) ||
  2590. (!as->usbout.durb[1].urb) ||
  2591. (!as->usbout.surb[0].urb) ||
  2592. (!as->usbout.surb[1].urb)) {
  2593. usb_free_urb(as->usbin.durb[0].urb);
  2594. usb_free_urb(as->usbin.durb[1].urb);
  2595. usb_free_urb(as->usbin.surb[0].urb);
  2596. usb_free_urb(as->usbin.surb[1].urb);
  2597. usb_free_urb(as->usbout.durb[0].urb);
  2598. usb_free_urb(as->usbout.durb[1].urb);
  2599. usb_free_urb(as->usbout.surb[0].urb);
  2600. usb_free_urb(as->usbout.surb[1].urb);
  2601. kfree(as);
  2602. return;
  2603. }
  2604. as->state = s;
  2605. as->usbin.interface = asifin;
  2606. as->usbout.interface = asifout;
  2607. /* search for input formats */
  2608. if (asifin >= 0) {
  2609. as->usbin.flags = FLG_CONNECTED;
  2610. iface = usb_ifnum_to_if(dev, asifin);
  2611. for (idx = 0; idx < iface->num_altsetting; idx++) {
  2612. alts = &iface->altsetting[idx];
  2613. i = alts->desc.bAlternateSetting;
  2614. if (alts->desc.bInterfaceClass != USB_CLASS_AUDIO || alts->desc.bInterfaceSubClass != 2)
  2615. continue;
  2616. if (alts->desc.bNumEndpoints < 1) {
  2617. if (i != 0) { /* altsetting 0 has no endpoints (Section B.3.4.1) */
  2618. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u does not have an endpoint\n",
  2619. dev->devnum, asifin, i);
  2620. }
  2621. continue;
  2622. }
  2623. if ((alts->endpoint[0].desc.bmAttributes & 0x03) != 0x01 ||
  2624. !(alts->endpoint[0].desc.bEndpointAddress & 0x80)) {
  2625. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u first endpoint not isochronous in\n",
  2626. dev->devnum, asifin, i);
  2627. continue;
  2628. }
  2629. fmt = find_csinterface_descriptor(buffer, buflen, NULL, AS_GENERAL, asifin, i);
  2630. if (!fmt) {
  2631. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
  2632. dev->devnum, asifin, i);
  2633. continue;
  2634. }
  2635. if (fmt[0] < 7 || fmt[6] != 0 || (fmt[5] != 1 && fmt[5] != 2)) {
  2636. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u format not supported\n",
  2637. dev->devnum, asifin, i);
  2638. continue;
  2639. }
  2640. format = (fmt[5] == 2) ? (AFMT_U16_LE | AFMT_U8) : (AFMT_S16_LE | AFMT_S8);
  2641. fmt = find_csinterface_descriptor(buffer, buflen, NULL, FORMAT_TYPE, asifin, i);
  2642. if (!fmt) {
  2643. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
  2644. dev->devnum, asifin, i);
  2645. continue;
  2646. }
  2647. if (fmt[0] < 8+3*(fmt[7] ? fmt[7] : 2) || fmt[3] != 1) {
  2648. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not supported\n",
  2649. dev->devnum, asifin, i);
  2650. continue;
  2651. }
  2652. if (fmt[4] < 1 || fmt[4] > 2 || fmt[5] < 1 || fmt[5] > 2) {
  2653. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u unsupported channels %u framesize %u\n",
  2654. dev->devnum, asifin, i, fmt[4], fmt[5]);
  2655. continue;
  2656. }
  2657. csep = find_descriptor(buffer, buflen, NULL, USB_DT_CS_ENDPOINT, asifin, i);
  2658. if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) {
  2659. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u no or invalid class specific endpoint descriptor\n",
  2660. dev->devnum, asifin, i);
  2661. continue;
  2662. }
  2663. if (as->numfmtin >= MAXFORMATS)
  2664. continue;
  2665. fp = &as->fmtin[as->numfmtin++];
  2666. if (fmt[5] == 2)
  2667. format &= (AFMT_U16_LE | AFMT_S16_LE);
  2668. else
  2669. format &= (AFMT_U8 | AFMT_S8);
  2670. if (fmt[4] == 2)
  2671. format |= AFMT_STEREO;
  2672. fp->format = format;
  2673. fp->altsetting = i;
  2674. fp->sratelo = fp->sratehi = fmt[8] | (fmt[9] << 8) | (fmt[10] << 16);
  2675. printk(KERN_INFO "usbaudio: valid input sample rate %u\n", fp->sratelo);
  2676. for (j = fmt[7] ? (fmt[7]-1) : 1; j > 0; j--) {
  2677. k = fmt[8+3*j] | (fmt[9+3*j] << 8) | (fmt[10+3*j] << 16);
  2678. printk(KERN_INFO "usbaudio: valid input sample rate %u\n", k);
  2679. if (k > fp->sratehi)
  2680. fp->sratehi = k;
  2681. if (k < fp->sratelo)
  2682. fp->sratelo = k;
  2683. }
  2684. fp->attributes = csep[3];
  2685. printk(KERN_INFO "usbaudio: device %u interface %u altsetting %u: format 0x%08x sratelo %u sratehi %u attributes 0x%02x\n",
  2686. dev->devnum, asifin, i, fp->format, fp->sratelo, fp->sratehi, fp->attributes);
  2687. }
  2688. }
  2689. /* search for output formats */
  2690. if (asifout >= 0) {
  2691. as->usbout.flags = FLG_CONNECTED;
  2692. iface = usb_ifnum_to_if(dev, asifout);
  2693. for (idx = 0; idx < iface->num_altsetting; idx++) {
  2694. alts = &iface->altsetting[idx];
  2695. i = alts->desc.bAlternateSetting;
  2696. if (alts->desc.bInterfaceClass != USB_CLASS_AUDIO || alts->desc.bInterfaceSubClass != 2)
  2697. continue;
  2698. if (alts->desc.bNumEndpoints < 1) {
  2699. /* altsetting 0 should never have iso EPs */
  2700. if (i != 0)
  2701. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u does not have an endpoint\n",
  2702. dev->devnum, asifout, i);
  2703. continue;
  2704. }
  2705. if ((alts->endpoint[0].desc.bmAttributes & 0x03) != 0x01 ||
  2706. (alts->endpoint[0].desc.bEndpointAddress & 0x80)) {
  2707. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u first endpoint not isochronous out\n",
  2708. dev->devnum, asifout, i);
  2709. continue;
  2710. }
  2711. /* See USB audio formats manual, section 2 */
  2712. fmt = find_csinterface_descriptor(buffer, buflen, NULL, AS_GENERAL, asifout, i);
  2713. if (!fmt) {
  2714. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
  2715. dev->devnum, asifout, i);
  2716. continue;
  2717. }
  2718. if (fmt[0] < 7 || fmt[6] != 0 || (fmt[5] != 1 && fmt[5] != 2)) {
  2719. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u format not supported\n",
  2720. dev->devnum, asifout, i);
  2721. continue;
  2722. }
  2723. format = (fmt[5] == 2) ? (AFMT_U16_LE | AFMT_U8) : (AFMT_S16_LE | AFMT_S8);
  2724. /* Dallas DS4201 workaround */
  2725. if (le16_to_cpu(dev->descriptor.idVendor) == 0x04fa &&
  2726. le16_to_cpu(dev->descriptor.idProduct) == 0x4201)
  2727. format = (AFMT_S16_LE | AFMT_S8);
  2728. fmt = find_csinterface_descriptor(buffer, buflen, NULL, FORMAT_TYPE, asifout, i);
  2729. if (!fmt) {
  2730. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not found\n",
  2731. dev->devnum, asifout, i);
  2732. continue;
  2733. }
  2734. if (fmt[0] < 8+3*(fmt[7] ? fmt[7] : 2) || fmt[3] != 1) {
  2735. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u FORMAT_TYPE descriptor not supported\n",
  2736. dev->devnum, asifout, i);
  2737. continue;
  2738. }
  2739. if (fmt[4] < 1 || fmt[4] > 2 || fmt[5] < 1 || fmt[5] > 2) {
  2740. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u unsupported channels %u framesize %u\n",
  2741. dev->devnum, asifout, i, fmt[4], fmt[5]);
  2742. continue;
  2743. }
  2744. csep = find_descriptor(buffer, buflen, NULL, USB_DT_CS_ENDPOINT, asifout, i);
  2745. if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) {
  2746. printk(KERN_ERR "usbaudio: device %u interface %u altsetting %u no or invalid class specific endpoint descriptor\n",
  2747. dev->devnum, asifout, i);
  2748. continue;
  2749. }
  2750. if (as->numfmtout >= MAXFORMATS)
  2751. continue;
  2752. fp = &as->fmtout[as->numfmtout++];
  2753. if (fmt[5] == 2)
  2754. format &= (AFMT_U16_LE | AFMT_S16_LE);
  2755. else
  2756. format &= (AFMT_U8 | AFMT_S8);
  2757. if (fmt[4] == 2)
  2758. format |= AFMT_STEREO;
  2759. fp->format = format;
  2760. fp->altsetting = i;
  2761. fp->sratelo = fp->sratehi = fmt[8] | (fmt[9] << 8) | (fmt[10] << 16);
  2762. printk(KERN_INFO "usbaudio: valid output sample rate %u\n", fp->sratelo);
  2763. for (j = fmt[7] ? (fmt[7]-1) : 1; j > 0; j--) {
  2764. k = fmt[8+3*j] | (fmt[9+3*j] << 8) | (fmt[10+3*j] << 16);
  2765. printk(KERN_INFO "usbaudio: valid output sample rate %u\n", k);
  2766. if (k > fp->sratehi)
  2767. fp->sratehi = k;
  2768. if (k < fp->sratelo)
  2769. fp->sratelo = k;
  2770. }
  2771. fp->attributes = csep[3];
  2772. printk(KERN_INFO "usbaudio: device %u interface %u altsetting %u: format 0x%08x sratelo %u sratehi %u attributes 0x%02x\n",
  2773. dev->devnum, asifout, i, fp->format, fp->sratelo, fp->sratehi, fp->attributes);
  2774. }
  2775. }
  2776. if (as->numfmtin == 0 && as->numfmtout == 0) {
  2777. usb_free_urb(as->usbin.durb[0].urb);
  2778. usb_free_urb(as->usbin.durb[1].urb);
  2779. usb_free_urb(as->usbin.surb[0].urb);
  2780. usb_free_urb(as->usbin.surb[1].urb);
  2781. usb_free_urb(as->usbout.durb[0].urb);
  2782. usb_free_urb(as->usbout.durb[1].urb);
  2783. usb_free_urb(as->usbout.surb[0].urb);
  2784. usb_free_urb(as->usbout.surb[1].urb);
  2785. kfree(as);
  2786. return;
  2787. }
  2788. if ((as->dev_audio = register_sound_dsp(&usb_audio_fops, -1)) < 0) {
  2789. printk(KERN_ERR "usbaudio: cannot register dsp\n");
  2790. usb_free_urb(as->usbin.durb[0].urb);
  2791. usb_free_urb(as->usbin.durb[1].urb);
  2792. usb_free_urb(as->usbin.surb[0].urb);
  2793. usb_free_urb(as->usbin.surb[1].urb);
  2794. usb_free_urb(as->usbout.durb[0].urb);
  2795. usb_free_urb(as->usbout.durb[1].urb);
  2796. usb_free_urb(as->usbout.surb[0].urb);
  2797. usb_free_urb(as->usbout.surb[1].urb);
  2798. kfree(as);
  2799. return;
  2800. }
  2801. printk(KERN_INFO "usbaudio: registered dsp 14,%d\n", as->dev_audio);
  2802. /* everything successful */
  2803. list_add_tail(&as->list, &s->audiolist);
  2804. }
  2805. struct consmixstate {
  2806. struct usb_audio_state *s;
  2807. unsigned char *buffer;
  2808. unsigned int buflen;
  2809. unsigned int ctrlif;
  2810. struct mixerchannel mixch[SOUND_MIXER_NRDEVICES];
  2811. unsigned int nrmixch;
  2812. unsigned int mixchmask;
  2813. unsigned long unitbitmap[32/sizeof(unsigned long)];
  2814. /* return values */
  2815. unsigned int nrchannels;
  2816. unsigned int termtype;
  2817. unsigned int chconfig;
  2818. };
  2819. static struct mixerchannel *getmixchannel(struct consmixstate *state, unsigned int nr)
  2820. {
  2821. struct mixerchannel *c;
  2822. if (nr >= SOUND_MIXER_NRDEVICES) {
  2823. printk(KERN_ERR "usbaudio: invalid OSS mixer channel %u\n", nr);
  2824. return NULL;
  2825. }
  2826. if (!(state->mixchmask & (1 << nr))) {
  2827. printk(KERN_WARNING "usbaudio: OSS mixer channel %u already in use\n", nr);
  2828. return NULL;
  2829. }
  2830. c = &state->mixch[state->nrmixch++];
  2831. c->osschannel = nr;
  2832. state->mixchmask &= ~(1 << nr);
  2833. return c;
  2834. }
  2835. static unsigned int getvolchannel(struct consmixstate *state)
  2836. {
  2837. unsigned int u;
  2838. if ((state->termtype & 0xff00) == 0x0000 && (state->mixchmask & SOUND_MASK_VOLUME))
  2839. return SOUND_MIXER_VOLUME;
  2840. if ((state->termtype & 0xff00) == 0x0100) {
  2841. if (state->mixchmask & SOUND_MASK_PCM)
  2842. return SOUND_MIXER_PCM;
  2843. if (state->mixchmask & SOUND_MASK_ALTPCM)
  2844. return SOUND_MIXER_ALTPCM;
  2845. }
  2846. if ((state->termtype & 0xff00) == 0x0200 && (state->mixchmask & SOUND_MASK_MIC))
  2847. return SOUND_MIXER_MIC;
  2848. if ((state->termtype & 0xff00) == 0x0300 && (state->mixchmask & SOUND_MASK_SPEAKER))
  2849. return SOUND_MIXER_SPEAKER;
  2850. if ((state->termtype & 0xff00) == 0x0500) {
  2851. if (state->mixchmask & SOUND_MASK_PHONEIN)
  2852. return SOUND_MIXER_PHONEIN;
  2853. if (state->mixchmask & SOUND_MASK_PHONEOUT)
  2854. return SOUND_MIXER_PHONEOUT;
  2855. }
  2856. if (state->termtype >= 0x710 && state->termtype <= 0x711 && (state->mixchmask & SOUND_MASK_RADIO))
  2857. return SOUND_MIXER_RADIO;
  2858. if (state->termtype >= 0x709 && state->termtype <= 0x70f && (state->mixchmask & SOUND_MASK_VIDEO))
  2859. return SOUND_MIXER_VIDEO;
  2860. u = ffs(state->mixchmask & (SOUND_MASK_LINE | SOUND_MASK_CD | SOUND_MASK_LINE1 | SOUND_MASK_LINE2 | SOUND_MASK_LINE3 |
  2861. SOUND_MASK_DIGITAL1 | SOUND_MASK_DIGITAL2 | SOUND_MASK_DIGITAL3));
  2862. return u-1;
  2863. }
  2864. static void prepmixch(struct consmixstate *state)
  2865. {
  2866. struct usb_device *dev = state->s->usbdev;
  2867. struct mixerchannel *ch;
  2868. unsigned char *buf;
  2869. __s16 v1;
  2870. unsigned int v2, v3;
  2871. if (!state->nrmixch || state->nrmixch > SOUND_MIXER_NRDEVICES)
  2872. return;
  2873. buf = kmalloc(sizeof(*buf) * 2, GFP_KERNEL);
  2874. if (!buf) {
  2875. printk(KERN_ERR "prepmixch: out of memory\n") ;
  2876. return;
  2877. }
  2878. ch = &state->mixch[state->nrmixch-1];
  2879. switch (ch->selector) {
  2880. case 0: /* mixer unit request */
  2881. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2882. (ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2883. goto err;
  2884. ch->minval = buf[0] | (buf[1] << 8);
  2885. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2886. (ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2887. goto err;
  2888. ch->maxval = buf[0] | (buf[1] << 8);
  2889. v2 = ch->maxval - ch->minval;
  2890. if (!v2)
  2891. v2 = 1;
  2892. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2893. (ch->chnum << 8) | 1, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2894. goto err;
  2895. v1 = buf[0] | (buf[1] << 8);
  2896. v3 = v1 - ch->minval;
  2897. v3 = 100 * v3 / v2;
  2898. if (v3 > 100)
  2899. v3 = 100;
  2900. ch->value = v3;
  2901. if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) {
  2902. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2903. ((ch->chnum + !!(ch->flags & MIXFLG_STEREOIN)) << 8) | (1 + !!(ch->flags & MIXFLG_STEREOOUT)),
  2904. state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2905. goto err;
  2906. v1 = buf[0] | (buf[1] << 8);
  2907. v3 = v1 - ch->minval;
  2908. v3 = 100 * v3 / v2;
  2909. if (v3 > 100)
  2910. v3 = 100;
  2911. }
  2912. ch->value |= v3 << 8;
  2913. break;
  2914. /* various feature unit controls */
  2915. case VOLUME_CONTROL:
  2916. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2917. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2918. goto err;
  2919. ch->minval = buf[0] | (buf[1] << 8);
  2920. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2921. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2922. goto err;
  2923. ch->maxval = buf[0] | (buf[1] << 8);
  2924. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2925. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2926. goto err;
  2927. v1 = buf[0] | (buf[1] << 8);
  2928. v2 = ch->maxval - ch->minval;
  2929. v3 = v1 - ch->minval;
  2930. if (!v2)
  2931. v2 = 1;
  2932. v3 = 100 * v3 / v2;
  2933. if (v3 > 100)
  2934. v3 = 100;
  2935. ch->value = v3;
  2936. if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) {
  2937. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2938. (ch->selector << 8) | (ch->chnum + 1), state->ctrlif | (ch->unitid << 8), buf, 2, 1000) < 0)
  2939. goto err;
  2940. v1 = buf[0] | (buf[1] << 8);
  2941. v3 = v1 - ch->minval;
  2942. v3 = 100 * v3 / v2;
  2943. if (v3 > 100)
  2944. v3 = 100;
  2945. }
  2946. ch->value |= v3 << 8;
  2947. break;
  2948. case BASS_CONTROL:
  2949. case MID_CONTROL:
  2950. case TREBLE_CONTROL:
  2951. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MIN, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2952. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
  2953. goto err;
  2954. ch->minval = buf[0] << 8;
  2955. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_MAX, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2956. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
  2957. goto err;
  2958. ch->maxval = buf[0] << 8;
  2959. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2960. (ch->selector << 8) | ch->chnum, state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
  2961. goto err;
  2962. v1 = buf[0] << 8;
  2963. v2 = ch->maxval - ch->minval;
  2964. v3 = v1 - ch->minval;
  2965. if (!v2)
  2966. v2 = 1;
  2967. v3 = 100 * v3 / v2;
  2968. if (v3 > 100)
  2969. v3 = 100;
  2970. ch->value = v3;
  2971. if (ch->flags & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)) {
  2972. if (usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  2973. (ch->selector << 8) | (ch->chnum + 1), state->ctrlif | (ch->unitid << 8), buf, 1, 1000) < 0)
  2974. goto err;
  2975. v1 = buf[0] << 8;
  2976. v3 = v1 - ch->minval;
  2977. v3 = 100 * v3 / v2;
  2978. if (v3 > 100)
  2979. v3 = 100;
  2980. }
  2981. ch->value |= v3 << 8;
  2982. break;
  2983. default:
  2984. goto err;
  2985. }
  2986. freebuf:
  2987. kfree(buf);
  2988. return;
  2989. err:
  2990. printk(KERN_ERR "usbaudio: mixer request device %u if %u unit %u ch %u selector %u failed\n",
  2991. dev->devnum, state->ctrlif, ch->unitid, ch->chnum, ch->selector);
  2992. if (state->nrmixch)
  2993. state->nrmixch--;
  2994. goto freebuf;
  2995. }
  2996. static void usb_audio_recurseunit(struct consmixstate *state, unsigned char unitid);
  2997. static inline int checkmixbmap(unsigned char *bmap, unsigned char flg, unsigned int inidx, unsigned int numoch)
  2998. {
  2999. unsigned int idx;
  3000. idx = inidx*numoch;
  3001. if (!(bmap[-(idx >> 3)] & (0x80 >> (idx & 7))))
  3002. return 0;
  3003. if (!(flg & (MIXFLG_STEREOIN | MIXFLG_STEREOOUT)))
  3004. return 1;
  3005. idx = (inidx+!!(flg & MIXFLG_STEREOIN))*numoch+!!(flg & MIXFLG_STEREOOUT);
  3006. if (!(bmap[-(idx >> 3)] & (0x80 >> (idx & 7))))
  3007. return 0;
  3008. return 1;
  3009. }
  3010. static void usb_audio_mixerunit(struct consmixstate *state, unsigned char *mixer)
  3011. {
  3012. unsigned int nroutch = mixer[5+mixer[4]];
  3013. unsigned int chidx[SOUND_MIXER_NRDEVICES+1];
  3014. unsigned int termt[SOUND_MIXER_NRDEVICES];
  3015. unsigned char flg = (nroutch >= 2) ? MIXFLG_STEREOOUT : 0;
  3016. unsigned char *bmap = &mixer[9+mixer[4]];
  3017. unsigned int bmapsize;
  3018. struct mixerchannel *ch;
  3019. unsigned int i;
  3020. if (!mixer[4]) {
  3021. printk(KERN_ERR "usbaudio: unit %u invalid MIXER_UNIT descriptor\n", mixer[3]);
  3022. return;
  3023. }
  3024. if (mixer[4] > SOUND_MIXER_NRDEVICES) {
  3025. printk(KERN_ERR "usbaudio: mixer unit %u: too many input pins\n", mixer[3]);
  3026. return;
  3027. }
  3028. chidx[0] = 0;
  3029. for (i = 0; i < mixer[4]; i++) {
  3030. usb_audio_recurseunit(state, mixer[5+i]);
  3031. chidx[i+1] = chidx[i] + state->nrchannels;
  3032. termt[i] = state->termtype;
  3033. }
  3034. state->termtype = 0;
  3035. state->chconfig = mixer[6+mixer[4]] | (mixer[7+mixer[4]] << 8);
  3036. bmapsize = (nroutch * chidx[mixer[4]] + 7) >> 3;
  3037. bmap += bmapsize - 1;
  3038. if (mixer[0] < 10+mixer[4]+bmapsize) {
  3039. printk(KERN_ERR "usbaudio: unit %u invalid MIXER_UNIT descriptor (bitmap too small)\n", mixer[3]);
  3040. return;
  3041. }
  3042. for (i = 0; i < mixer[4]; i++) {
  3043. state->termtype = termt[i];
  3044. if (chidx[i+1]-chidx[i] >= 2) {
  3045. flg |= MIXFLG_STEREOIN;
  3046. if (checkmixbmap(bmap, flg, chidx[i], nroutch)) {
  3047. ch = getmixchannel(state, getvolchannel(state));
  3048. if (ch) {
  3049. ch->unitid = mixer[3];
  3050. ch->selector = 0;
  3051. ch->chnum = chidx[i]+1;
  3052. ch->flags = flg;
  3053. prepmixch(state);
  3054. }
  3055. continue;
  3056. }
  3057. }
  3058. flg &= ~MIXFLG_STEREOIN;
  3059. if (checkmixbmap(bmap, flg, chidx[i], nroutch)) {
  3060. ch = getmixchannel(state, getvolchannel(state));
  3061. if (ch) {
  3062. ch->unitid = mixer[3];
  3063. ch->selector = 0;
  3064. ch->chnum = chidx[i]+1;
  3065. ch->flags = flg;
  3066. prepmixch(state);
  3067. }
  3068. }
  3069. }
  3070. state->termtype = 0;
  3071. }
  3072. static struct mixerchannel *slctsrc_findunit(struct consmixstate *state, __u8 unitid)
  3073. {
  3074. unsigned int i;
  3075. for (i = 0; i < state->nrmixch; i++)
  3076. if (state->mixch[i].unitid == unitid)
  3077. return &state->mixch[i];
  3078. return NULL;
  3079. }
  3080. static void usb_audio_selectorunit(struct consmixstate *state, unsigned char *selector)
  3081. {
  3082. unsigned int chnum, i, mixch;
  3083. struct mixerchannel *mch;
  3084. if (!selector[4]) {
  3085. printk(KERN_ERR "usbaudio: unit %u invalid SELECTOR_UNIT descriptor\n", selector[3]);
  3086. return;
  3087. }
  3088. mixch = state->nrmixch;
  3089. usb_audio_recurseunit(state, selector[5]);
  3090. if (state->nrmixch != mixch) {
  3091. mch = &state->mixch[state->nrmixch-1];
  3092. mch->slctunitid = selector[3] | (1 << 8);
  3093. } else if ((mch = slctsrc_findunit(state, selector[5]))) {
  3094. mch->slctunitid = selector[3] | (1 << 8);
  3095. } else {
  3096. printk(KERN_INFO "usbaudio: selector unit %u: ignoring channel 1\n", selector[3]);
  3097. }
  3098. chnum = state->nrchannels;
  3099. for (i = 1; i < selector[4]; i++) {
  3100. mixch = state->nrmixch;
  3101. usb_audio_recurseunit(state, selector[5+i]);
  3102. if (chnum != state->nrchannels) {
  3103. printk(KERN_ERR "usbaudio: selector unit %u: input pins with varying channel numbers\n", selector[3]);
  3104. state->termtype = 0;
  3105. state->chconfig = 0;
  3106. state->nrchannels = 0;
  3107. return;
  3108. }
  3109. if (state->nrmixch != mixch) {
  3110. mch = &state->mixch[state->nrmixch-1];
  3111. mch->slctunitid = selector[3] | ((i + 1) << 8);
  3112. } else if ((mch = slctsrc_findunit(state, selector[5+i]))) {
  3113. mch->slctunitid = selector[3] | ((i + 1) << 8);
  3114. } else {
  3115. printk(KERN_INFO "usbaudio: selector unit %u: ignoring channel %u\n", selector[3], i+1);
  3116. }
  3117. }
  3118. state->termtype = 0;
  3119. state->chconfig = 0;
  3120. }
  3121. /* in the future we might try to handle 3D etc. effect units */
  3122. static void usb_audio_processingunit(struct consmixstate *state, unsigned char *proc)
  3123. {
  3124. unsigned int i;
  3125. for (i = 0; i < proc[6]; i++)
  3126. usb_audio_recurseunit(state, proc[7+i]);
  3127. state->nrchannels = proc[7+proc[6]];
  3128. state->termtype = 0;
  3129. state->chconfig = proc[8+proc[6]] | (proc[9+proc[6]] << 8);
  3130. }
  3131. /* See Audio Class Spec, section 4.3.2.5 */
  3132. static void usb_audio_featureunit(struct consmixstate *state, unsigned char *ftr)
  3133. {
  3134. struct mixerchannel *ch;
  3135. unsigned short chftr, mchftr;
  3136. #if 0
  3137. struct usb_device *dev = state->s->usbdev;
  3138. unsigned char data[1];
  3139. #endif
  3140. unsigned char nr_logical_channels, i;
  3141. usb_audio_recurseunit(state, ftr[4]);
  3142. if (ftr[5] == 0 ) {
  3143. printk(KERN_ERR "usbaudio: wrong controls size in feature unit %u\n",ftr[3]);
  3144. return;
  3145. }
  3146. if (state->nrchannels == 0) {
  3147. printk(KERN_ERR "usbaudio: feature unit %u source has no channels\n", ftr[3]);
  3148. return;
  3149. }
  3150. if (state->nrchannels > 2)
  3151. printk(KERN_WARNING "usbaudio: feature unit %u: OSS mixer interface does not support more than 2 channels\n", ftr[3]);
  3152. nr_logical_channels=(ftr[0]-7)/ftr[5]-1;
  3153. if (nr_logical_channels != state->nrchannels) {
  3154. printk(KERN_WARNING "usbaudio: warning: found %d of %d logical channels.\n", state->nrchannels,nr_logical_channels);
  3155. if (state->nrchannels == 1 && nr_logical_channels==0) {
  3156. printk(KERN_INFO "usbaudio: assuming the channel found is the master channel (got a Philips camera?). Should be fine.\n");
  3157. } else if (state->nrchannels == 1 && nr_logical_channels==2) {
  3158. printk(KERN_INFO "usbaudio: assuming that a stereo channel connected directly to a mixer is missing in search (got Labtec headset?). Should be fine.\n");
  3159. state->nrchannels=nr_logical_channels;
  3160. } else {
  3161. printk(KERN_WARNING "usbaudio: no idea what's going on..., contact linux-usb-devel@lists.sourceforge.net\n");
  3162. }
  3163. }
  3164. /* There is always a master channel */
  3165. mchftr = ftr[6];
  3166. /* Binary AND over logical channels if they exist */
  3167. if (nr_logical_channels) {
  3168. chftr = ftr[6+ftr[5]];
  3169. for (i = 2; i <= nr_logical_channels; i++)
  3170. chftr &= ftr[6+i*ftr[5]];
  3171. } else {
  3172. chftr = 0;
  3173. }
  3174. /* volume control */
  3175. if (chftr & 2) {
  3176. ch = getmixchannel(state, getvolchannel(state));
  3177. if (ch) {
  3178. ch->unitid = ftr[3];
  3179. ch->selector = VOLUME_CONTROL;
  3180. ch->chnum = 1;
  3181. ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0;
  3182. prepmixch(state);
  3183. }
  3184. } else if (mchftr & 2) {
  3185. ch = getmixchannel(state, getvolchannel(state));
  3186. if (ch) {
  3187. ch->unitid = ftr[3];
  3188. ch->selector = VOLUME_CONTROL;
  3189. ch->chnum = 0;
  3190. ch->flags = 0;
  3191. prepmixch(state);
  3192. }
  3193. }
  3194. /* bass control */
  3195. if (chftr & 4) {
  3196. ch = getmixchannel(state, SOUND_MIXER_BASS);
  3197. if (ch) {
  3198. ch->unitid = ftr[3];
  3199. ch->selector = BASS_CONTROL;
  3200. ch->chnum = 1;
  3201. ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0;
  3202. prepmixch(state);
  3203. }
  3204. } else if (mchftr & 4) {
  3205. ch = getmixchannel(state, SOUND_MIXER_BASS);
  3206. if (ch) {
  3207. ch->unitid = ftr[3];
  3208. ch->selector = BASS_CONTROL;
  3209. ch->chnum = 0;
  3210. ch->flags = 0;
  3211. prepmixch(state);
  3212. }
  3213. }
  3214. /* treble control */
  3215. if (chftr & 16) {
  3216. ch = getmixchannel(state, SOUND_MIXER_TREBLE);
  3217. if (ch) {
  3218. ch->unitid = ftr[3];
  3219. ch->selector = TREBLE_CONTROL;
  3220. ch->chnum = 1;
  3221. ch->flags = (state->nrchannels > 1) ? (MIXFLG_STEREOIN | MIXFLG_STEREOOUT) : 0;
  3222. prepmixch(state);
  3223. }
  3224. } else if (mchftr & 16) {
  3225. ch = getmixchannel(state, SOUND_MIXER_TREBLE);
  3226. if (ch) {
  3227. ch->unitid = ftr[3];
  3228. ch->selector = TREBLE_CONTROL;
  3229. ch->chnum = 0;
  3230. ch->flags = 0;
  3231. prepmixch(state);
  3232. }
  3233. }
  3234. #if 0
  3235. /* if there are mute controls, unmute them */
  3236. /* does not seem to be necessary, and the Dallas chip does not seem to support the "all" channel (255) */
  3237. if ((chftr & 1) || (mchftr & 1)) {
  3238. printk(KERN_DEBUG "usbaudio: unmuting feature unit %u interface %u\n", ftr[3], state->ctrlif);
  3239. data[0] = 0;
  3240. if (usb_control_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  3241. (MUTE_CONTROL << 8) | 0xff, state->ctrlif | (ftr[3] << 8), data, 1, 1000) < 0)
  3242. printk(KERN_WARNING "usbaudio: failure to unmute feature unit %u interface %u\n", ftr[3], state->ctrlif);
  3243. }
  3244. #endif
  3245. }
  3246. static void usb_audio_recurseunit(struct consmixstate *state, unsigned char unitid)
  3247. {
  3248. unsigned char *p1;
  3249. unsigned int i, j;
  3250. if (test_and_set_bit(unitid, state->unitbitmap)) {
  3251. printk(KERN_INFO "usbaudio: mixer path revisits unit %d\n", unitid);
  3252. return;
  3253. }
  3254. p1 = find_audiocontrol_unit(state->buffer, state->buflen, NULL, unitid, state->ctrlif);
  3255. if (!p1) {
  3256. printk(KERN_ERR "usbaudio: unit %d not found!\n", unitid);
  3257. return;
  3258. }
  3259. state->nrchannels = 0;
  3260. state->termtype = 0;
  3261. state->chconfig = 0;
  3262. switch (p1[2]) {
  3263. case INPUT_TERMINAL:
  3264. if (p1[0] < 12) {
  3265. printk(KERN_ERR "usbaudio: unit %u: invalid INPUT_TERMINAL descriptor\n", unitid);
  3266. return;
  3267. }
  3268. state->nrchannels = p1[7];
  3269. state->termtype = p1[4] | (p1[5] << 8);
  3270. state->chconfig = p1[8] | (p1[9] << 8);
  3271. return;
  3272. case MIXER_UNIT:
  3273. if (p1[0] < 10 || p1[0] < 10+p1[4]) {
  3274. printk(KERN_ERR "usbaudio: unit %u: invalid MIXER_UNIT descriptor\n", unitid);
  3275. return;
  3276. }
  3277. usb_audio_mixerunit(state, p1);
  3278. return;
  3279. case SELECTOR_UNIT:
  3280. if (p1[0] < 6 || p1[0] < 6+p1[4]) {
  3281. printk(KERN_ERR "usbaudio: unit %u: invalid SELECTOR_UNIT descriptor\n", unitid);
  3282. return;
  3283. }
  3284. usb_audio_selectorunit(state, p1);
  3285. return;
  3286. case FEATURE_UNIT: /* See USB Audio Class Spec 4.3.2.5 */
  3287. if (p1[0] < 7 || p1[0] < 7+p1[5]) {
  3288. printk(KERN_ERR "usbaudio: unit %u: invalid FEATURE_UNIT descriptor\n", unitid);
  3289. return;
  3290. }
  3291. usb_audio_featureunit(state, p1);
  3292. return;
  3293. case PROCESSING_UNIT:
  3294. if (p1[0] < 13 || p1[0] < 13+p1[6] || p1[0] < 13+p1[6]+p1[11+p1[6]]) {
  3295. printk(KERN_ERR "usbaudio: unit %u: invalid PROCESSING_UNIT descriptor\n", unitid);
  3296. return;
  3297. }
  3298. usb_audio_processingunit(state, p1);
  3299. return;
  3300. case EXTENSION_UNIT:
  3301. if (p1[0] < 13 || p1[0] < 13+p1[6] || p1[0] < 13+p1[6]+p1[11+p1[6]]) {
  3302. printk(KERN_ERR "usbaudio: unit %u: invalid EXTENSION_UNIT descriptor\n", unitid);
  3303. return;
  3304. }
  3305. for (j = i = 0; i < p1[6]; i++) {
  3306. usb_audio_recurseunit(state, p1[7+i]);
  3307. if (!i)
  3308. j = state->termtype;
  3309. else if (j != state->termtype)
  3310. j = 0;
  3311. }
  3312. state->nrchannels = p1[7+p1[6]];
  3313. state->chconfig = p1[8+p1[6]] | (p1[9+p1[6]] << 8);
  3314. state->termtype = j;
  3315. return;
  3316. default:
  3317. printk(KERN_ERR "usbaudio: unit %u: unexpected type 0x%02x\n", unitid, p1[2]);
  3318. return;
  3319. }
  3320. }
  3321. static void usb_audio_constructmixer(struct usb_audio_state *s, unsigned char *buffer, unsigned int buflen, unsigned int ctrlif, unsigned char *oterm)
  3322. {
  3323. struct usb_mixerdev *ms;
  3324. struct consmixstate state;
  3325. memset(&state, 0, sizeof(state));
  3326. state.s = s;
  3327. state.nrmixch = 0;
  3328. state.mixchmask = ~0;
  3329. state.buffer = buffer;
  3330. state.buflen = buflen;
  3331. state.ctrlif = ctrlif;
  3332. set_bit(oterm[3], state.unitbitmap); /* mark terminal ID as visited */
  3333. printk(KERN_DEBUG "usbaudio: constructing mixer for Terminal %u type 0x%04x\n",
  3334. oterm[3], oterm[4] | (oterm[5] << 8));
  3335. usb_audio_recurseunit(&state, oterm[7]);
  3336. if (!state.nrmixch) {
  3337. printk(KERN_INFO "usbaudio: no mixer controls found for Terminal %u\n", oterm[3]);
  3338. return;
  3339. }
  3340. if (!(ms = kmalloc(sizeof(struct usb_mixerdev)+state.nrmixch*sizeof(struct mixerchannel), GFP_KERNEL)))
  3341. return;
  3342. memset(ms, 0, sizeof(struct usb_mixerdev));
  3343. memcpy(&ms->ch, &state.mixch, state.nrmixch*sizeof(struct mixerchannel));
  3344. ms->state = s;
  3345. ms->iface = ctrlif;
  3346. ms->numch = state.nrmixch;
  3347. if ((ms->dev_mixer = register_sound_mixer(&usb_mixer_fops, -1)) < 0) {
  3348. printk(KERN_ERR "usbaudio: cannot register mixer\n");
  3349. kfree(ms);
  3350. return;
  3351. }
  3352. printk(KERN_INFO "usbaudio: registered mixer 14,%d\n", ms->dev_mixer);
  3353. list_add_tail(&ms->list, &s->mixerlist);
  3354. }
  3355. /* arbitrary limit, we won't check more interfaces than this */
  3356. #define USB_MAXINTERFACES 32
  3357. static struct usb_audio_state *usb_audio_parsecontrol(struct usb_device *dev, unsigned char *buffer, unsigned int buflen, unsigned int ctrlif)
  3358. {
  3359. struct usb_audio_state *s;
  3360. struct usb_interface *iface;
  3361. struct usb_host_interface *alt;
  3362. unsigned char ifin[USB_MAXINTERFACES], ifout[USB_MAXINTERFACES];
  3363. unsigned char *p1;
  3364. unsigned int i, j, k, numifin = 0, numifout = 0;
  3365. if (!(s = kmalloc(sizeof(struct usb_audio_state), GFP_KERNEL)))
  3366. return NULL;
  3367. memset(s, 0, sizeof(struct usb_audio_state));
  3368. INIT_LIST_HEAD(&s->audiolist);
  3369. INIT_LIST_HEAD(&s->mixerlist);
  3370. s->usbdev = dev;
  3371. s->count = 1;
  3372. /* find audiocontrol interface */
  3373. if (!(p1 = find_csinterface_descriptor(buffer, buflen, NULL, HEADER, ctrlif, -1))) {
  3374. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u no HEADER found\n",
  3375. dev->devnum, ctrlif);
  3376. goto ret;
  3377. }
  3378. if (p1[0] < 8 + p1[7]) {
  3379. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u HEADER error\n",
  3380. dev->devnum, ctrlif);
  3381. goto ret;
  3382. }
  3383. if (!p1[7])
  3384. printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u has no AudioStreaming and MidiStreaming interfaces\n",
  3385. dev->devnum, ctrlif);
  3386. for (i = 0; i < p1[7]; i++) {
  3387. j = p1[8+i];
  3388. iface = usb_ifnum_to_if(dev, j);
  3389. if (!iface) {
  3390. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u does not exist\n",
  3391. dev->devnum, ctrlif, j);
  3392. continue;
  3393. }
  3394. if (iface->num_altsetting == 1) {
  3395. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u has only 1 altsetting.\n", dev->devnum, ctrlif);
  3396. continue;
  3397. }
  3398. alt = usb_altnum_to_altsetting(iface, 0);
  3399. if (!alt) {
  3400. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no altsetting 0\n",
  3401. dev->devnum, ctrlif, j);
  3402. continue;
  3403. }
  3404. if (alt->desc.bInterfaceClass != USB_CLASS_AUDIO) {
  3405. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u is not an AudioClass interface\n",
  3406. dev->devnum, ctrlif, j);
  3407. continue;
  3408. }
  3409. if (alt->desc.bInterfaceSubClass == 3) {
  3410. printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u interface %u MIDIStreaming not supported\n",
  3411. dev->devnum, ctrlif, j);
  3412. continue;
  3413. }
  3414. if (alt->desc.bInterfaceSubClass != 2) {
  3415. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u invalid AudioClass subtype\n",
  3416. dev->devnum, ctrlif, j);
  3417. continue;
  3418. }
  3419. if (alt->desc.bNumEndpoints > 0) {
  3420. /* Check all endpoints; should they all have a bandwidth of 0 ? */
  3421. for (k = 0; k < alt->desc.bNumEndpoints; k++) {
  3422. if (le16_to_cpu(alt->endpoint[k].desc.wMaxPacketSize) > 0) {
  3423. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u endpoint %d does not have 0 bandwidth at alt[0]\n", dev->devnum, ctrlif, k);
  3424. break;
  3425. }
  3426. }
  3427. if (k < alt->desc.bNumEndpoints)
  3428. continue;
  3429. }
  3430. alt = usb_altnum_to_altsetting(iface, 1);
  3431. if (!alt) {
  3432. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no altsetting 1\n",
  3433. dev->devnum, ctrlif, j);
  3434. continue;
  3435. }
  3436. if (alt->desc.bNumEndpoints < 1) {
  3437. printk(KERN_ERR "usbaudio: device %d audiocontrol interface %u interface %u has no endpoint\n",
  3438. dev->devnum, ctrlif, j);
  3439. continue;
  3440. }
  3441. /* note: this requires the data endpoint to be ep0 and the optional sync
  3442. ep to be ep1, which seems to be the case */
  3443. if (alt->endpoint[0].desc.bEndpointAddress & USB_DIR_IN) {
  3444. if (numifin < USB_MAXINTERFACES) {
  3445. ifin[numifin++] = j;
  3446. usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1);
  3447. }
  3448. } else {
  3449. if (numifout < USB_MAXINTERFACES) {
  3450. ifout[numifout++] = j;
  3451. usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1);
  3452. }
  3453. }
  3454. }
  3455. printk(KERN_INFO "usbaudio: device %d audiocontrol interface %u has %u input and %u output AudioStreaming interfaces\n",
  3456. dev->devnum, ctrlif, numifin, numifout);
  3457. for (i = 0; i < numifin && i < numifout; i++)
  3458. usb_audio_parsestreaming(s, buffer, buflen, ifin[i], ifout[i]);
  3459. for (j = i; j < numifin; j++)
  3460. usb_audio_parsestreaming(s, buffer, buflen, ifin[i], -1);
  3461. for (j = i; j < numifout; j++)
  3462. usb_audio_parsestreaming(s, buffer, buflen, -1, ifout[i]);
  3463. /* now walk through all OUTPUT_TERMINAL descriptors to search for mixers */
  3464. p1 = find_csinterface_descriptor(buffer, buflen, NULL, OUTPUT_TERMINAL, ctrlif, -1);
  3465. while (p1) {
  3466. if (p1[0] >= 9)
  3467. usb_audio_constructmixer(s, buffer, buflen, ctrlif, p1);
  3468. p1 = find_csinterface_descriptor(buffer, buflen, p1, OUTPUT_TERMINAL, ctrlif, -1);
  3469. }
  3470. ret:
  3471. if (list_empty(&s->audiolist) && list_empty(&s->mixerlist)) {
  3472. kfree(s);
  3473. return NULL;
  3474. }
  3475. /* everything successful */
  3476. down(&open_sem);
  3477. list_add_tail(&s->audiodev, &audiodevs);
  3478. up(&open_sem);
  3479. printk(KERN_DEBUG "usb_audio_parsecontrol: usb_audio_state at %p\n", s);
  3480. return s;
  3481. }
  3482. /* we only care for the currently active configuration */
  3483. static int usb_audio_probe(struct usb_interface *intf,
  3484. const struct usb_device_id *id)
  3485. {
  3486. struct usb_device *dev = interface_to_usbdev (intf);
  3487. struct usb_audio_state *s;
  3488. unsigned char *buffer;
  3489. unsigned int buflen;
  3490. #if 0
  3491. printk(KERN_DEBUG "usbaudio: Probing if %i: IC %x, ISC %x\n", ifnum,
  3492. config->interface[ifnum].altsetting[0].desc.bInterfaceClass,
  3493. config->interface[ifnum].altsetting[0].desc.bInterfaceSubClass);
  3494. #endif
  3495. /*
  3496. * audiocontrol interface found
  3497. * find which configuration number is active
  3498. */
  3499. buffer = dev->rawdescriptors[dev->actconfig - dev->config];
  3500. buflen = le16_to_cpu(dev->actconfig->desc.wTotalLength);
  3501. s = usb_audio_parsecontrol(dev, buffer, buflen, intf->altsetting->desc.bInterfaceNumber);
  3502. if (s) {
  3503. usb_set_intfdata (intf, s);
  3504. return 0;
  3505. }
  3506. return -ENODEV;
  3507. }
  3508. /* a revoke facility would make things simpler */
  3509. static void usb_audio_disconnect(struct usb_interface *intf)
  3510. {
  3511. struct usb_audio_state *s = usb_get_intfdata (intf);
  3512. struct usb_audiodev *as;
  3513. struct usb_mixerdev *ms;
  3514. if (!s)
  3515. return;
  3516. /* we get called with -1 for every audiostreaming interface registered */
  3517. if (s == (struct usb_audio_state *)-1) {
  3518. dprintk((KERN_DEBUG "usbaudio: note, usb_audio_disconnect called with -1\n"));
  3519. return;
  3520. }
  3521. if (!s->usbdev) {
  3522. dprintk((KERN_DEBUG "usbaudio: error, usb_audio_disconnect already called for %p!\n", s));
  3523. return;
  3524. }
  3525. down(&open_sem);
  3526. list_del_init(&s->audiodev);
  3527. s->usbdev = NULL;
  3528. usb_set_intfdata (intf, NULL);
  3529. /* deregister all audio and mixer devices, so no new processes can open this device */
  3530. list_for_each_entry(as, &s->audiolist, list) {
  3531. usbin_disc(as);
  3532. usbout_disc(as);
  3533. wake_up(&as->usbin.dma.wait);
  3534. wake_up(&as->usbout.dma.wait);
  3535. if (as->dev_audio >= 0) {
  3536. unregister_sound_dsp(as->dev_audio);
  3537. printk(KERN_INFO "usbaudio: unregister dsp 14,%d\n", as->dev_audio);
  3538. }
  3539. as->dev_audio = -1;
  3540. }
  3541. list_for_each_entry(ms, &s->mixerlist, list) {
  3542. if (ms->dev_mixer >= 0) {
  3543. unregister_sound_mixer(ms->dev_mixer);
  3544. printk(KERN_INFO "usbaudio: unregister mixer 14,%d\n", ms->dev_mixer);
  3545. }
  3546. ms->dev_mixer = -1;
  3547. }
  3548. release(s);
  3549. wake_up(&open_wait);
  3550. }
  3551. static int __init usb_audio_init(void)
  3552. {
  3553. int result = usb_register(&usb_audio_driver);
  3554. if (result == 0)
  3555. info(DRIVER_VERSION ":" DRIVER_DESC);
  3556. return result;
  3557. }
  3558. static void __exit usb_audio_cleanup(void)
  3559. {
  3560. usb_deregister(&usb_audio_driver);
  3561. }
  3562. module_init(usb_audio_init);
  3563. module_exit(usb_audio_cleanup);
  3564. MODULE_AUTHOR( DRIVER_AUTHOR );
  3565. MODULE_DESCRIPTION( DRIVER_DESC );
  3566. MODULE_LICENSE("GPL");