umem.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256
  1. /*
  2. * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
  3. *
  4. * (C) 2001 San Mehat <nettwerk@valinux.com>
  5. * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
  6. * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
  7. *
  8. * This driver for the Micro Memory PCI Memory Module with Battery Backup
  9. * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
  10. *
  11. * This driver is released to the public under the terms of the
  12. * GNU GENERAL PUBLIC LICENSE version 2
  13. * See the file COPYING for details.
  14. *
  15. * This driver provides a standard block device interface for Micro Memory(tm)
  16. * PCI based RAM boards.
  17. * 10/05/01: Phap Nguyen - Rebuilt the driver
  18. * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  19. * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
  20. * - use stand disk partitioning (so fdisk works).
  21. * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
  22. * - incorporate into main kernel
  23. * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
  24. * - use spin_lock_bh instead of _irq
  25. * - Never block on make_request. queue
  26. * bh's instead.
  27. * - unregister umem from devfs at mod unload
  28. * - Change version to 2.3
  29. * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  30. * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
  31. * 15May2002:NeilBrown - convert to bio for 2.5
  32. * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
  33. * - a sequence of writes that cover the card, and
  34. * - set initialised bit then.
  35. */
  36. #include <linux/config.h>
  37. #include <linux/sched.h>
  38. #include <linux/fs.h>
  39. #include <linux/bio.h>
  40. #include <linux/kernel.h>
  41. #include <linux/mm.h>
  42. #include <linux/mman.h>
  43. #include <linux/ioctl.h>
  44. #include <linux/module.h>
  45. #include <linux/init.h>
  46. #include <linux/interrupt.h>
  47. #include <linux/smp_lock.h>
  48. #include <linux/timer.h>
  49. #include <linux/pci.h>
  50. #include <linux/slab.h>
  51. #include <linux/fcntl.h> /* O_ACCMODE */
  52. #include <linux/hdreg.h> /* HDIO_GETGEO */
  53. #include <linux/umem.h>
  54. #include <asm/uaccess.h>
  55. #include <asm/io.h>
  56. #define PRINTK(x...) do {} while (0)
  57. #define dprintk(x...) do {} while (0)
  58. /*#define dprintk(x...) printk(x) */
  59. #define MM_MAXCARDS 4
  60. #define MM_RAHEAD 2 /* two sectors */
  61. #define MM_BLKSIZE 1024 /* 1k blocks */
  62. #define MM_HARDSECT 512 /* 512-byte hardware sectors */
  63. #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
  64. /*
  65. * Version Information
  66. */
  67. #define DRIVER_VERSION "v2.3"
  68. #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
  69. #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
  70. static int debug;
  71. /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  72. #define HW_TRACE(x)
  73. #define DEBUG_LED_ON_TRANSFER 0x01
  74. #define DEBUG_BATTERY_POLLING 0x02
  75. module_param(debug, int, 0644);
  76. MODULE_PARM_DESC(debug, "Debug bitmask");
  77. static int pci_read_cmd = 0x0C; /* Read Multiple */
  78. module_param(pci_read_cmd, int, 0);
  79. MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  80. static int pci_write_cmd = 0x0F; /* Write and Invalidate */
  81. module_param(pci_write_cmd, int, 0);
  82. MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  83. static int pci_cmds;
  84. static int major_nr;
  85. #include <linux/blkdev.h>
  86. #include <linux/blkpg.h>
  87. struct cardinfo {
  88. int card_number;
  89. struct pci_dev *dev;
  90. int irq;
  91. unsigned long csr_base;
  92. unsigned char __iomem *csr_remap;
  93. unsigned long csr_len;
  94. #ifdef CONFIG_MM_MAP_MEMORY
  95. unsigned long mem_base;
  96. unsigned char __iomem *mem_remap;
  97. unsigned long mem_len;
  98. #endif
  99. unsigned int win_size; /* PCI window size */
  100. unsigned int mm_size; /* size in kbytes */
  101. unsigned int init_size; /* initial segment, in sectors,
  102. * that we know to
  103. * have been written
  104. */
  105. struct bio *bio, *currentbio, **biotail;
  106. request_queue_t *queue;
  107. struct mm_page {
  108. dma_addr_t page_dma;
  109. struct mm_dma_desc *desc;
  110. int cnt, headcnt;
  111. struct bio *bio, **biotail;
  112. } mm_pages[2];
  113. #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
  114. int Active, Ready;
  115. struct tasklet_struct tasklet;
  116. unsigned int dma_status;
  117. struct {
  118. int good;
  119. int warned;
  120. unsigned long last_change;
  121. } battery[2];
  122. spinlock_t lock;
  123. int check_batteries;
  124. int flags;
  125. };
  126. static struct cardinfo cards[MM_MAXCARDS];
  127. static struct block_device_operations mm_fops;
  128. static struct timer_list battery_timer;
  129. static int num_cards = 0;
  130. static struct gendisk *mm_gendisk[MM_MAXCARDS];
  131. static void check_batteries(struct cardinfo *card);
  132. /*
  133. -----------------------------------------------------------------------------------
  134. -- get_userbit
  135. -----------------------------------------------------------------------------------
  136. */
  137. static int get_userbit(struct cardinfo *card, int bit)
  138. {
  139. unsigned char led;
  140. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  141. return led & bit;
  142. }
  143. /*
  144. -----------------------------------------------------------------------------------
  145. -- set_userbit
  146. -----------------------------------------------------------------------------------
  147. */
  148. static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
  149. {
  150. unsigned char led;
  151. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  152. if (state)
  153. led |= bit;
  154. else
  155. led &= ~bit;
  156. writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
  157. return 0;
  158. }
  159. /*
  160. -----------------------------------------------------------------------------------
  161. -- set_led
  162. -----------------------------------------------------------------------------------
  163. */
  164. /*
  165. * NOTE: For the power LED, use the LED_POWER_* macros since they differ
  166. */
  167. static void set_led(struct cardinfo *card, int shift, unsigned char state)
  168. {
  169. unsigned char led;
  170. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  171. if (state == LED_FLIP)
  172. led ^= (1<<shift);
  173. else {
  174. led &= ~(0x03 << shift);
  175. led |= (state << shift);
  176. }
  177. writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
  178. }
  179. #ifdef MM_DIAG
  180. /*
  181. -----------------------------------------------------------------------------------
  182. -- dump_regs
  183. -----------------------------------------------------------------------------------
  184. */
  185. static void dump_regs(struct cardinfo *card)
  186. {
  187. unsigned char *p;
  188. int i, i1;
  189. p = card->csr_remap;
  190. for (i = 0; i < 8; i++) {
  191. printk(KERN_DEBUG "%p ", p);
  192. for (i1 = 0; i1 < 16; i1++)
  193. printk("%02x ", *p++);
  194. printk("\n");
  195. }
  196. }
  197. #endif
  198. /*
  199. -----------------------------------------------------------------------------------
  200. -- dump_dmastat
  201. -----------------------------------------------------------------------------------
  202. */
  203. static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
  204. {
  205. printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
  206. if (dmastat & DMASCR_ANY_ERR)
  207. printk("ANY_ERR ");
  208. if (dmastat & DMASCR_MBE_ERR)
  209. printk("MBE_ERR ");
  210. if (dmastat & DMASCR_PARITY_ERR_REP)
  211. printk("PARITY_ERR_REP ");
  212. if (dmastat & DMASCR_PARITY_ERR_DET)
  213. printk("PARITY_ERR_DET ");
  214. if (dmastat & DMASCR_SYSTEM_ERR_SIG)
  215. printk("SYSTEM_ERR_SIG ");
  216. if (dmastat & DMASCR_TARGET_ABT)
  217. printk("TARGET_ABT ");
  218. if (dmastat & DMASCR_MASTER_ABT)
  219. printk("MASTER_ABT ");
  220. if (dmastat & DMASCR_CHAIN_COMPLETE)
  221. printk("CHAIN_COMPLETE ");
  222. if (dmastat & DMASCR_DMA_COMPLETE)
  223. printk("DMA_COMPLETE ");
  224. printk("\n");
  225. }
  226. /*
  227. * Theory of request handling
  228. *
  229. * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
  230. * We have two pages of mm_dma_desc, holding about 64 descriptors
  231. * each. These are allocated at init time.
  232. * One page is "Ready" and is either full, or can have request added.
  233. * The other page might be "Active", which DMA is happening on it.
  234. *
  235. * Whenever IO on the active page completes, the Ready page is activated
  236. * and the ex-Active page is clean out and made Ready.
  237. * Otherwise the Ready page is only activated when it becomes full, or
  238. * when mm_unplug_device is called via the unplug_io_fn.
  239. *
  240. * If a request arrives while both pages a full, it is queued, and b_rdev is
  241. * overloaded to record whether it was a read or a write.
  242. *
  243. * The interrupt handler only polls the device to clear the interrupt.
  244. * The processing of the result is done in a tasklet.
  245. */
  246. static void mm_start_io(struct cardinfo *card)
  247. {
  248. /* we have the lock, we know there is
  249. * no IO active, and we know that card->Active
  250. * is set
  251. */
  252. struct mm_dma_desc *desc;
  253. struct mm_page *page;
  254. int offset;
  255. /* make the last descriptor end the chain */
  256. page = &card->mm_pages[card->Active];
  257. PRINTK("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
  258. desc = &page->desc[page->cnt-1];
  259. desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
  260. desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
  261. desc->sem_control_bits = desc->control_bits;
  262. if (debug & DEBUG_LED_ON_TRANSFER)
  263. set_led(card, LED_REMOVE, LED_ON);
  264. desc = &page->desc[page->headcnt];
  265. writel(0, card->csr_remap + DMA_PCI_ADDR);
  266. writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
  267. writel(0, card->csr_remap + DMA_LOCAL_ADDR);
  268. writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
  269. writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
  270. writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
  271. writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
  272. writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
  273. offset = ((char*)desc) - ((char*)page->desc);
  274. writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
  275. card->csr_remap + DMA_DESCRIPTOR_ADDR);
  276. /* Force the value to u64 before shifting otherwise >> 32 is undefined C
  277. * and on some ports will do nothing ! */
  278. writel(cpu_to_le32(((u64)page->page_dma)>>32),
  279. card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
  280. /* Go, go, go */
  281. writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
  282. card->csr_remap + DMA_STATUS_CTRL);
  283. }
  284. static int add_bio(struct cardinfo *card);
  285. static void activate(struct cardinfo *card)
  286. {
  287. /* if No page is Active, and Ready is
  288. * not empty, then switch Ready page
  289. * to active and start IO.
  290. * Then add any bh's that are available to Ready
  291. */
  292. do {
  293. while (add_bio(card))
  294. ;
  295. if (card->Active == -1 &&
  296. card->mm_pages[card->Ready].cnt > 0) {
  297. card->Active = card->Ready;
  298. card->Ready = 1-card->Ready;
  299. mm_start_io(card);
  300. }
  301. } while (card->Active == -1 && add_bio(card));
  302. }
  303. static inline void reset_page(struct mm_page *page)
  304. {
  305. page->cnt = 0;
  306. page->headcnt = 0;
  307. page->bio = NULL;
  308. page->biotail = & page->bio;
  309. }
  310. static void mm_unplug_device(request_queue_t *q)
  311. {
  312. struct cardinfo *card = q->queuedata;
  313. unsigned long flags;
  314. spin_lock_irqsave(&card->lock, flags);
  315. if (blk_remove_plug(q))
  316. activate(card);
  317. spin_unlock_irqrestore(&card->lock, flags);
  318. }
  319. /*
  320. * If there is room on Ready page, take
  321. * one bh off list and add it.
  322. * return 1 if there was room, else 0.
  323. */
  324. static int add_bio(struct cardinfo *card)
  325. {
  326. struct mm_page *p;
  327. struct mm_dma_desc *desc;
  328. dma_addr_t dma_handle;
  329. int offset;
  330. struct bio *bio;
  331. int rw;
  332. int len;
  333. bio = card->currentbio;
  334. if (!bio && card->bio) {
  335. card->currentbio = card->bio;
  336. card->bio = card->bio->bi_next;
  337. if (card->bio == NULL)
  338. card->biotail = &card->bio;
  339. card->currentbio->bi_next = NULL;
  340. return 1;
  341. }
  342. if (!bio)
  343. return 0;
  344. rw = bio_rw(bio);
  345. if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
  346. return 0;
  347. len = bio_iovec(bio)->bv_len;
  348. dma_handle = pci_map_page(card->dev,
  349. bio_page(bio),
  350. bio_offset(bio),
  351. len,
  352. (rw==READ) ?
  353. PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
  354. p = &card->mm_pages[card->Ready];
  355. desc = &p->desc[p->cnt];
  356. p->cnt++;
  357. if ((p->biotail) != &bio->bi_next) {
  358. *(p->biotail) = bio;
  359. p->biotail = &(bio->bi_next);
  360. bio->bi_next = NULL;
  361. }
  362. desc->data_dma_handle = dma_handle;
  363. desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
  364. desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
  365. desc->transfer_size = cpu_to_le32(len);
  366. offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
  367. desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
  368. desc->zero1 = desc->zero2 = 0;
  369. offset = ( ((char*)(desc+1)) - ((char*)p->desc));
  370. desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
  371. desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
  372. DMASCR_PARITY_INT_EN|
  373. DMASCR_CHAIN_EN |
  374. DMASCR_SEM_EN |
  375. pci_cmds);
  376. if (rw == WRITE)
  377. desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
  378. desc->sem_control_bits = desc->control_bits;
  379. bio->bi_sector += (len>>9);
  380. bio->bi_size -= len;
  381. bio->bi_idx++;
  382. if (bio->bi_idx >= bio->bi_vcnt)
  383. card->currentbio = NULL;
  384. return 1;
  385. }
  386. static void process_page(unsigned long data)
  387. {
  388. /* check if any of the requests in the page are DMA_COMPLETE,
  389. * and deal with them appropriately.
  390. * If we find a descriptor without DMA_COMPLETE in the semaphore, then
  391. * dma must have hit an error on that descriptor, so use dma_status instead
  392. * and assume that all following descriptors must be re-tried.
  393. */
  394. struct mm_page *page;
  395. struct bio *return_bio=NULL;
  396. struct cardinfo *card = (struct cardinfo *)data;
  397. unsigned int dma_status = card->dma_status;
  398. spin_lock_bh(&card->lock);
  399. if (card->Active < 0)
  400. goto out_unlock;
  401. page = &card->mm_pages[card->Active];
  402. while (page->headcnt < page->cnt) {
  403. struct bio *bio = page->bio;
  404. struct mm_dma_desc *desc = &page->desc[page->headcnt];
  405. int control = le32_to_cpu(desc->sem_control_bits);
  406. int last=0;
  407. int idx;
  408. if (!(control & DMASCR_DMA_COMPLETE)) {
  409. control = dma_status;
  410. last=1;
  411. }
  412. page->headcnt++;
  413. idx = bio->bi_phys_segments;
  414. bio->bi_phys_segments++;
  415. if (bio->bi_phys_segments >= bio->bi_vcnt)
  416. page->bio = bio->bi_next;
  417. pci_unmap_page(card->dev, desc->data_dma_handle,
  418. bio_iovec_idx(bio,idx)->bv_len,
  419. (control& DMASCR_TRANSFER_READ) ?
  420. PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
  421. if (control & DMASCR_HARD_ERROR) {
  422. /* error */
  423. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  424. printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
  425. card->card_number,
  426. le32_to_cpu(desc->local_addr)>>9,
  427. le32_to_cpu(desc->transfer_size));
  428. dump_dmastat(card, control);
  429. } else if (test_bit(BIO_RW, &bio->bi_rw) &&
  430. le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
  431. card->init_size += le32_to_cpu(desc->transfer_size)>>9;
  432. if (card->init_size>>1 >= card->mm_size) {
  433. printk(KERN_INFO "MM%d: memory now initialised\n",
  434. card->card_number);
  435. set_userbit(card, MEMORY_INITIALIZED, 1);
  436. }
  437. }
  438. if (bio != page->bio) {
  439. bio->bi_next = return_bio;
  440. return_bio = bio;
  441. }
  442. if (last) break;
  443. }
  444. if (debug & DEBUG_LED_ON_TRANSFER)
  445. set_led(card, LED_REMOVE, LED_OFF);
  446. if (card->check_batteries) {
  447. card->check_batteries = 0;
  448. check_batteries(card);
  449. }
  450. if (page->headcnt >= page->cnt) {
  451. reset_page(page);
  452. card->Active = -1;
  453. activate(card);
  454. } else {
  455. /* haven't finished with this one yet */
  456. PRINTK("do some more\n");
  457. mm_start_io(card);
  458. }
  459. out_unlock:
  460. spin_unlock_bh(&card->lock);
  461. while(return_bio) {
  462. struct bio *bio = return_bio;
  463. return_bio = bio->bi_next;
  464. bio->bi_next = NULL;
  465. bio_endio(bio, bio->bi_size, 0);
  466. }
  467. }
  468. /*
  469. -----------------------------------------------------------------------------------
  470. -- mm_make_request
  471. -----------------------------------------------------------------------------------
  472. */
  473. static int mm_make_request(request_queue_t *q, struct bio *bio)
  474. {
  475. struct cardinfo *card = q->queuedata;
  476. PRINTK("mm_make_request %ld %d\n", bh->b_rsector, bh->b_size);
  477. bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
  478. spin_lock_irq(&card->lock);
  479. *card->biotail = bio;
  480. bio->bi_next = NULL;
  481. card->biotail = &bio->bi_next;
  482. blk_plug_device(q);
  483. spin_unlock_irq(&card->lock);
  484. return 0;
  485. }
  486. /*
  487. -----------------------------------------------------------------------------------
  488. -- mm_interrupt
  489. -----------------------------------------------------------------------------------
  490. */
  491. static irqreturn_t mm_interrupt(int irq, void *__card, struct pt_regs *regs)
  492. {
  493. struct cardinfo *card = (struct cardinfo *) __card;
  494. unsigned int dma_status;
  495. unsigned short cfg_status;
  496. HW_TRACE(0x30);
  497. dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
  498. if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
  499. /* interrupt wasn't for me ... */
  500. return IRQ_NONE;
  501. }
  502. /* clear COMPLETION interrupts */
  503. if (card->flags & UM_FLAG_NO_BYTE_STATUS)
  504. writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
  505. card->csr_remap+ DMA_STATUS_CTRL);
  506. else
  507. writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
  508. card->csr_remap+ DMA_STATUS_CTRL + 2);
  509. /* log errors and clear interrupt status */
  510. if (dma_status & DMASCR_ANY_ERR) {
  511. unsigned int data_log1, data_log2;
  512. unsigned int addr_log1, addr_log2;
  513. unsigned char stat, count, syndrome, check;
  514. stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
  515. data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
  516. data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
  517. addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
  518. addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
  519. count = readb(card->csr_remap + ERROR_COUNT);
  520. syndrome = readb(card->csr_remap + ERROR_SYNDROME);
  521. check = readb(card->csr_remap + ERROR_CHECK);
  522. dump_dmastat(card, dma_status);
  523. if (stat & 0x01)
  524. printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
  525. card->card_number, count);
  526. if (stat & 0x02)
  527. printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
  528. card->card_number);
  529. printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
  530. card->card_number, addr_log2, addr_log1, data_log2, data_log1);
  531. printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
  532. card->card_number, check, syndrome);
  533. writeb(0, card->csr_remap + ERROR_COUNT);
  534. }
  535. if (dma_status & DMASCR_PARITY_ERR_REP) {
  536. printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
  537. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  538. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  539. }
  540. if (dma_status & DMASCR_PARITY_ERR_DET) {
  541. printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
  542. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  543. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  544. }
  545. if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
  546. printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
  547. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  548. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  549. }
  550. if (dma_status & DMASCR_TARGET_ABT) {
  551. printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
  552. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  553. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  554. }
  555. if (dma_status & DMASCR_MASTER_ABT) {
  556. printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
  557. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  558. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  559. }
  560. /* and process the DMA descriptors */
  561. card->dma_status = dma_status;
  562. tasklet_schedule(&card->tasklet);
  563. HW_TRACE(0x36);
  564. return IRQ_HANDLED;
  565. }
  566. /*
  567. -----------------------------------------------------------------------------------
  568. -- set_fault_to_battery_status
  569. -----------------------------------------------------------------------------------
  570. */
  571. /*
  572. * If both batteries are good, no LED
  573. * If either battery has been warned, solid LED
  574. * If both batteries are bad, flash the LED quickly
  575. * If either battery is bad, flash the LED semi quickly
  576. */
  577. static void set_fault_to_battery_status(struct cardinfo *card)
  578. {
  579. if (card->battery[0].good && card->battery[1].good)
  580. set_led(card, LED_FAULT, LED_OFF);
  581. else if (card->battery[0].warned || card->battery[1].warned)
  582. set_led(card, LED_FAULT, LED_ON);
  583. else if (!card->battery[0].good && !card->battery[1].good)
  584. set_led(card, LED_FAULT, LED_FLASH_7_0);
  585. else
  586. set_led(card, LED_FAULT, LED_FLASH_3_5);
  587. }
  588. static void init_battery_timer(void);
  589. /*
  590. -----------------------------------------------------------------------------------
  591. -- check_battery
  592. -----------------------------------------------------------------------------------
  593. */
  594. static int check_battery(struct cardinfo *card, int battery, int status)
  595. {
  596. if (status != card->battery[battery].good) {
  597. card->battery[battery].good = !card->battery[battery].good;
  598. card->battery[battery].last_change = jiffies;
  599. if (card->battery[battery].good) {
  600. printk(KERN_ERR "MM%d: Battery %d now good\n",
  601. card->card_number, battery + 1);
  602. card->battery[battery].warned = 0;
  603. } else
  604. printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
  605. card->card_number, battery + 1);
  606. return 1;
  607. } else if (!card->battery[battery].good &&
  608. !card->battery[battery].warned &&
  609. time_after_eq(jiffies, card->battery[battery].last_change +
  610. (HZ * 60 * 60 * 5))) {
  611. printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
  612. card->card_number, battery + 1);
  613. card->battery[battery].warned = 1;
  614. return 1;
  615. }
  616. return 0;
  617. }
  618. /*
  619. -----------------------------------------------------------------------------------
  620. -- check_batteries
  621. -----------------------------------------------------------------------------------
  622. */
  623. static void check_batteries(struct cardinfo *card)
  624. {
  625. /* NOTE: this must *never* be called while the card
  626. * is doing (bus-to-card) DMA, or you will need the
  627. * reset switch
  628. */
  629. unsigned char status;
  630. int ret1, ret2;
  631. status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
  632. if (debug & DEBUG_BATTERY_POLLING)
  633. printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
  634. card->card_number,
  635. (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
  636. (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
  637. ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
  638. ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
  639. if (ret1 || ret2)
  640. set_fault_to_battery_status(card);
  641. }
  642. static void check_all_batteries(unsigned long ptr)
  643. {
  644. int i;
  645. for (i = 0; i < num_cards; i++)
  646. if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
  647. struct cardinfo *card = &cards[i];
  648. spin_lock_bh(&card->lock);
  649. if (card->Active >= 0)
  650. card->check_batteries = 1;
  651. else
  652. check_batteries(card);
  653. spin_unlock_bh(&card->lock);
  654. }
  655. init_battery_timer();
  656. }
  657. /*
  658. -----------------------------------------------------------------------------------
  659. -- init_battery_timer
  660. -----------------------------------------------------------------------------------
  661. */
  662. static void init_battery_timer(void)
  663. {
  664. init_timer(&battery_timer);
  665. battery_timer.function = check_all_batteries;
  666. battery_timer.expires = jiffies + (HZ * 60);
  667. add_timer(&battery_timer);
  668. }
  669. /*
  670. -----------------------------------------------------------------------------------
  671. -- del_battery_timer
  672. -----------------------------------------------------------------------------------
  673. */
  674. static void del_battery_timer(void)
  675. {
  676. del_timer(&battery_timer);
  677. }
  678. /*
  679. -----------------------------------------------------------------------------------
  680. -- mm_revalidate
  681. -----------------------------------------------------------------------------------
  682. */
  683. /*
  684. * Note no locks taken out here. In a worst case scenario, we could drop
  685. * a chunk of system memory. But that should never happen, since validation
  686. * happens at open or mount time, when locks are held.
  687. *
  688. * That's crap, since doing that while some partitions are opened
  689. * or mounted will give you really nasty results.
  690. */
  691. static int mm_revalidate(struct gendisk *disk)
  692. {
  693. struct cardinfo *card = disk->private_data;
  694. set_capacity(disk, card->mm_size << 1);
  695. return 0;
  696. }
  697. /*
  698. -----------------------------------------------------------------------------------
  699. -- mm_ioctl
  700. -----------------------------------------------------------------------------------
  701. */
  702. static int mm_ioctl(struct inode *i, struct file *f, unsigned int cmd, unsigned long arg)
  703. {
  704. if (cmd == HDIO_GETGEO) {
  705. struct cardinfo *card = i->i_bdev->bd_disk->private_data;
  706. int size = card->mm_size * (1024 / MM_HARDSECT);
  707. struct hd_geometry geo;
  708. /*
  709. * get geometry: we have to fake one... trim the size to a
  710. * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
  711. * whatever cylinders.
  712. */
  713. geo.heads = 64;
  714. geo.sectors = 32;
  715. geo.start = get_start_sect(i->i_bdev);
  716. geo.cylinders = size / (geo.heads * geo.sectors);
  717. if (copy_to_user((void __user *) arg, &geo, sizeof(geo)))
  718. return -EFAULT;
  719. return 0;
  720. }
  721. return -EINVAL;
  722. }
  723. /*
  724. -----------------------------------------------------------------------------------
  725. -- mm_check_change
  726. -----------------------------------------------------------------------------------
  727. Future support for removable devices
  728. */
  729. static int mm_check_change(struct gendisk *disk)
  730. {
  731. /* struct cardinfo *dev = disk->private_data; */
  732. return 0;
  733. }
  734. /*
  735. -----------------------------------------------------------------------------------
  736. -- mm_fops
  737. -----------------------------------------------------------------------------------
  738. */
  739. static struct block_device_operations mm_fops = {
  740. .owner = THIS_MODULE,
  741. .ioctl = mm_ioctl,
  742. .revalidate_disk= mm_revalidate,
  743. .media_changed = mm_check_change,
  744. };
  745. /*
  746. -----------------------------------------------------------------------------------
  747. -- mm_pci_probe
  748. -----------------------------------------------------------------------------------
  749. */
  750. static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
  751. {
  752. int ret = -ENODEV;
  753. struct cardinfo *card = &cards[num_cards];
  754. unsigned char mem_present;
  755. unsigned char batt_status;
  756. unsigned int saved_bar, data;
  757. int magic_number;
  758. if (pci_enable_device(dev) < 0)
  759. return -ENODEV;
  760. pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
  761. pci_set_master(dev);
  762. card->dev = dev;
  763. card->card_number = num_cards;
  764. card->csr_base = pci_resource_start(dev, 0);
  765. card->csr_len = pci_resource_len(dev, 0);
  766. #ifdef CONFIG_MM_MAP_MEMORY
  767. card->mem_base = pci_resource_start(dev, 1);
  768. card->mem_len = pci_resource_len(dev, 1);
  769. #endif
  770. printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
  771. card->card_number, dev->bus->number, dev->devfn);
  772. if (pci_set_dma_mask(dev, 0xffffffffffffffffLL) &&
  773. !pci_set_dma_mask(dev, 0xffffffffLL)) {
  774. printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
  775. return -ENOMEM;
  776. }
  777. if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
  778. printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
  779. ret = -ENOMEM;
  780. goto failed_req_csr;
  781. }
  782. card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
  783. if (!card->csr_remap) {
  784. printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
  785. ret = -ENOMEM;
  786. goto failed_remap_csr;
  787. }
  788. printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
  789. card->csr_base, card->csr_remap, card->csr_len);
  790. #ifdef CONFIG_MM_MAP_MEMORY
  791. if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
  792. printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
  793. ret = -ENOMEM;
  794. goto failed_req_mem;
  795. }
  796. if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) {
  797. printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
  798. ret = -ENOMEM;
  799. goto failed_remap_mem;
  800. }
  801. printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
  802. card->mem_base, card->mem_remap, card->mem_len);
  803. #else
  804. printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
  805. card->card_number);
  806. #endif
  807. switch(card->dev->device) {
  808. case 0x5415:
  809. card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
  810. magic_number = 0x59;
  811. break;
  812. case 0x5425:
  813. card->flags |= UM_FLAG_NO_BYTE_STATUS;
  814. magic_number = 0x5C;
  815. break;
  816. case 0x6155:
  817. card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
  818. magic_number = 0x99;
  819. break;
  820. default:
  821. magic_number = 0x100;
  822. break;
  823. }
  824. if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
  825. printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
  826. ret = -ENOMEM;
  827. goto failed_magic;
  828. }
  829. card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
  830. PAGE_SIZE*2,
  831. &card->mm_pages[0].page_dma);
  832. card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
  833. PAGE_SIZE*2,
  834. &card->mm_pages[1].page_dma);
  835. if (card->mm_pages[0].desc == NULL ||
  836. card->mm_pages[1].desc == NULL) {
  837. printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
  838. goto failed_alloc;
  839. }
  840. reset_page(&card->mm_pages[0]);
  841. reset_page(&card->mm_pages[1]);
  842. card->Ready = 0; /* page 0 is ready */
  843. card->Active = -1; /* no page is active */
  844. card->bio = NULL;
  845. card->biotail = &card->bio;
  846. card->queue = blk_alloc_queue(GFP_KERNEL);
  847. if (!card->queue)
  848. goto failed_alloc;
  849. blk_queue_make_request(card->queue, mm_make_request);
  850. card->queue->queuedata = card;
  851. card->queue->unplug_fn = mm_unplug_device;
  852. tasklet_init(&card->tasklet, process_page, (unsigned long)card);
  853. card->check_batteries = 0;
  854. mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
  855. switch (mem_present) {
  856. case MEM_128_MB:
  857. card->mm_size = 1024 * 128;
  858. break;
  859. case MEM_256_MB:
  860. card->mm_size = 1024 * 256;
  861. break;
  862. case MEM_512_MB:
  863. card->mm_size = 1024 * 512;
  864. break;
  865. case MEM_1_GB:
  866. card->mm_size = 1024 * 1024;
  867. break;
  868. case MEM_2_GB:
  869. card->mm_size = 1024 * 2048;
  870. break;
  871. default:
  872. card->mm_size = 0;
  873. break;
  874. }
  875. /* Clear the LED's we control */
  876. set_led(card, LED_REMOVE, LED_OFF);
  877. set_led(card, LED_FAULT, LED_OFF);
  878. batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
  879. card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
  880. card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
  881. card->battery[0].last_change = card->battery[1].last_change = jiffies;
  882. if (card->flags & UM_FLAG_NO_BATT)
  883. printk(KERN_INFO "MM%d: Size %d KB\n",
  884. card->card_number, card->mm_size);
  885. else {
  886. printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
  887. card->card_number, card->mm_size,
  888. (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
  889. card->battery[0].good ? "OK" : "FAILURE",
  890. (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
  891. card->battery[1].good ? "OK" : "FAILURE");
  892. set_fault_to_battery_status(card);
  893. }
  894. pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
  895. data = 0xffffffff;
  896. pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
  897. pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
  898. pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
  899. data &= 0xfffffff0;
  900. data = ~data;
  901. data += 1;
  902. card->win_size = data;
  903. if (request_irq(dev->irq, mm_interrupt, SA_SHIRQ, "pci-umem", card)) {
  904. printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
  905. ret = -ENODEV;
  906. goto failed_req_irq;
  907. }
  908. card->irq = dev->irq;
  909. printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
  910. card->win_size, card->irq);
  911. spin_lock_init(&card->lock);
  912. pci_set_drvdata(dev, card);
  913. if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
  914. pci_write_cmd = 0x07; /* then Memory Write command */
  915. if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
  916. unsigned short cfg_command;
  917. pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
  918. cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
  919. pci_write_config_word(dev, PCI_COMMAND, cfg_command);
  920. }
  921. pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
  922. num_cards++;
  923. if (!get_userbit(card, MEMORY_INITIALIZED)) {
  924. printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
  925. card->init_size = 0;
  926. } else {
  927. printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
  928. card->init_size = card->mm_size;
  929. }
  930. /* Enable ECC */
  931. writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
  932. return 0;
  933. failed_req_irq:
  934. failed_alloc:
  935. if (card->mm_pages[0].desc)
  936. pci_free_consistent(card->dev, PAGE_SIZE*2,
  937. card->mm_pages[0].desc,
  938. card->mm_pages[0].page_dma);
  939. if (card->mm_pages[1].desc)
  940. pci_free_consistent(card->dev, PAGE_SIZE*2,
  941. card->mm_pages[1].desc,
  942. card->mm_pages[1].page_dma);
  943. failed_magic:
  944. #ifdef CONFIG_MM_MAP_MEMORY
  945. iounmap(card->mem_remap);
  946. failed_remap_mem:
  947. release_mem_region(card->mem_base, card->mem_len);
  948. failed_req_mem:
  949. #endif
  950. iounmap(card->csr_remap);
  951. failed_remap_csr:
  952. release_mem_region(card->csr_base, card->csr_len);
  953. failed_req_csr:
  954. return ret;
  955. }
  956. /*
  957. -----------------------------------------------------------------------------------
  958. -- mm_pci_remove
  959. -----------------------------------------------------------------------------------
  960. */
  961. static void mm_pci_remove(struct pci_dev *dev)
  962. {
  963. struct cardinfo *card = pci_get_drvdata(dev);
  964. tasklet_kill(&card->tasklet);
  965. iounmap(card->csr_remap);
  966. release_mem_region(card->csr_base, card->csr_len);
  967. #ifdef CONFIG_MM_MAP_MEMORY
  968. iounmap(card->mem_remap);
  969. release_mem_region(card->mem_base, card->mem_len);
  970. #endif
  971. free_irq(card->irq, card);
  972. if (card->mm_pages[0].desc)
  973. pci_free_consistent(card->dev, PAGE_SIZE*2,
  974. card->mm_pages[0].desc,
  975. card->mm_pages[0].page_dma);
  976. if (card->mm_pages[1].desc)
  977. pci_free_consistent(card->dev, PAGE_SIZE*2,
  978. card->mm_pages[1].desc,
  979. card->mm_pages[1].page_dma);
  980. blk_put_queue(card->queue);
  981. }
  982. static const struct pci_device_id mm_pci_ids[] = { {
  983. .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
  984. .device = PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
  985. }, {
  986. .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
  987. .device = PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
  988. }, {
  989. .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
  990. .device = PCI_DEVICE_ID_MICRO_MEMORY_6155,
  991. }, {
  992. .vendor = 0x8086,
  993. .device = 0xB555,
  994. .subvendor= 0x1332,
  995. .subdevice= 0x5460,
  996. .class = 0x050000,
  997. .class_mask= 0,
  998. }, { /* end: all zeroes */ }
  999. };
  1000. MODULE_DEVICE_TABLE(pci, mm_pci_ids);
  1001. static struct pci_driver mm_pci_driver = {
  1002. .name = "umem",
  1003. .id_table = mm_pci_ids,
  1004. .probe = mm_pci_probe,
  1005. .remove = mm_pci_remove,
  1006. };
  1007. /*
  1008. -----------------------------------------------------------------------------------
  1009. -- mm_init
  1010. -----------------------------------------------------------------------------------
  1011. */
  1012. static int __init mm_init(void)
  1013. {
  1014. int retval, i;
  1015. int err;
  1016. printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
  1017. retval = pci_module_init(&mm_pci_driver);
  1018. if (retval)
  1019. return -ENOMEM;
  1020. err = major_nr = register_blkdev(0, "umem");
  1021. if (err < 0)
  1022. return -EIO;
  1023. for (i = 0; i < num_cards; i++) {
  1024. mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
  1025. if (!mm_gendisk[i])
  1026. goto out;
  1027. }
  1028. for (i = 0; i < num_cards; i++) {
  1029. struct gendisk *disk = mm_gendisk[i];
  1030. sprintf(disk->disk_name, "umem%c", 'a'+i);
  1031. sprintf(disk->devfs_name, "umem/card%d", i);
  1032. spin_lock_init(&cards[i].lock);
  1033. disk->major = major_nr;
  1034. disk->first_minor = i << MM_SHIFT;
  1035. disk->fops = &mm_fops;
  1036. disk->private_data = &cards[i];
  1037. disk->queue = cards[i].queue;
  1038. set_capacity(disk, cards[i].mm_size << 1);
  1039. add_disk(disk);
  1040. }
  1041. init_battery_timer();
  1042. printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
  1043. /* printk("mm_init: Done. 10-19-01 9:00\n"); */
  1044. return 0;
  1045. out:
  1046. unregister_blkdev(major_nr, "umem");
  1047. while (i--)
  1048. put_disk(mm_gendisk[i]);
  1049. return -ENOMEM;
  1050. }
  1051. /*
  1052. -----------------------------------------------------------------------------------
  1053. -- mm_cleanup
  1054. -----------------------------------------------------------------------------------
  1055. */
  1056. static void __exit mm_cleanup(void)
  1057. {
  1058. int i;
  1059. del_battery_timer();
  1060. for (i=0; i < num_cards ; i++) {
  1061. del_gendisk(mm_gendisk[i]);
  1062. put_disk(mm_gendisk[i]);
  1063. }
  1064. pci_unregister_driver(&mm_pci_driver);
  1065. unregister_blkdev(major_nr, "umem");
  1066. }
  1067. module_init(mm_init);
  1068. module_exit(mm_cleanup);
  1069. MODULE_AUTHOR(DRIVER_AUTHOR);
  1070. MODULE_DESCRIPTION(DRIVER_DESC);
  1071. MODULE_LICENSE("GPL");