loop.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343
  1. /*
  2. * linux/drivers/block/loop.c
  3. *
  4. * Written by Theodore Ts'o, 3/29/93
  5. *
  6. * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
  7. * permitted under the GNU General Public License.
  8. *
  9. * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10. * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11. *
  12. * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13. * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14. *
  15. * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16. *
  17. * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18. *
  19. * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20. *
  21. * Loadable modules and other fixes by AK, 1998
  22. *
  23. * Make real block number available to downstream transfer functions, enables
  24. * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25. * Reed H. Petty, rhp@draper.net
  26. *
  27. * Maximum number of loop devices now dynamic via max_loop module parameter.
  28. * Russell Kroll <rkroll@exploits.org> 19990701
  29. *
  30. * Maximum number of loop devices when compiled-in now selectable by passing
  31. * max_loop=<1-255> to the kernel on boot.
  32. * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33. *
  34. * Completely rewrite request handling to be make_request_fn style and
  35. * non blocking, pushing work to a helper thread. Lots of fixes from
  36. * Al Viro too.
  37. * Jens Axboe <axboe@suse.de>, Nov 2000
  38. *
  39. * Support up to 256 loop devices
  40. * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41. *
  42. * Support for falling back on the write file operation when the address space
  43. * operations prepare_write and/or commit_write are not available on the
  44. * backing filesystem.
  45. * Anton Altaparmakov, 16 Feb 2005
  46. *
  47. * Still To Fix:
  48. * - Advisory locking is ignored here.
  49. * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  50. *
  51. */
  52. #include <linux/config.h>
  53. #include <linux/module.h>
  54. #include <linux/moduleparam.h>
  55. #include <linux/sched.h>
  56. #include <linux/fs.h>
  57. #include <linux/file.h>
  58. #include <linux/stat.h>
  59. #include <linux/errno.h>
  60. #include <linux/major.h>
  61. #include <linux/wait.h>
  62. #include <linux/blkdev.h>
  63. #include <linux/blkpg.h>
  64. #include <linux/init.h>
  65. #include <linux/devfs_fs_kernel.h>
  66. #include <linux/smp_lock.h>
  67. #include <linux/swap.h>
  68. #include <linux/slab.h>
  69. #include <linux/loop.h>
  70. #include <linux/suspend.h>
  71. #include <linux/writeback.h>
  72. #include <linux/buffer_head.h> /* for invalidate_bdev() */
  73. #include <linux/completion.h>
  74. #include <linux/highmem.h>
  75. #include <linux/gfp.h>
  76. #include <asm/uaccess.h>
  77. static int max_loop = 8;
  78. static struct loop_device *loop_dev;
  79. static struct gendisk **disks;
  80. /*
  81. * Transfer functions
  82. */
  83. static int transfer_none(struct loop_device *lo, int cmd,
  84. struct page *raw_page, unsigned raw_off,
  85. struct page *loop_page, unsigned loop_off,
  86. int size, sector_t real_block)
  87. {
  88. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  89. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  90. if (cmd == READ)
  91. memcpy(loop_buf, raw_buf, size);
  92. else
  93. memcpy(raw_buf, loop_buf, size);
  94. kunmap_atomic(raw_buf, KM_USER0);
  95. kunmap_atomic(loop_buf, KM_USER1);
  96. cond_resched();
  97. return 0;
  98. }
  99. static int transfer_xor(struct loop_device *lo, int cmd,
  100. struct page *raw_page, unsigned raw_off,
  101. struct page *loop_page, unsigned loop_off,
  102. int size, sector_t real_block)
  103. {
  104. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  105. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  106. char *in, *out, *key;
  107. int i, keysize;
  108. if (cmd == READ) {
  109. in = raw_buf;
  110. out = loop_buf;
  111. } else {
  112. in = loop_buf;
  113. out = raw_buf;
  114. }
  115. key = lo->lo_encrypt_key;
  116. keysize = lo->lo_encrypt_key_size;
  117. for (i = 0; i < size; i++)
  118. *out++ = *in++ ^ key[(i & 511) % keysize];
  119. kunmap_atomic(raw_buf, KM_USER0);
  120. kunmap_atomic(loop_buf, KM_USER1);
  121. cond_resched();
  122. return 0;
  123. }
  124. static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
  125. {
  126. if (unlikely(info->lo_encrypt_key_size <= 0))
  127. return -EINVAL;
  128. return 0;
  129. }
  130. static struct loop_func_table none_funcs = {
  131. .number = LO_CRYPT_NONE,
  132. .transfer = transfer_none,
  133. };
  134. static struct loop_func_table xor_funcs = {
  135. .number = LO_CRYPT_XOR,
  136. .transfer = transfer_xor,
  137. .init = xor_init
  138. };
  139. /* xfer_funcs[0] is special - its release function is never called */
  140. static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
  141. &none_funcs,
  142. &xor_funcs
  143. };
  144. static loff_t get_loop_size(struct loop_device *lo, struct file *file)
  145. {
  146. loff_t size, offset, loopsize;
  147. /* Compute loopsize in bytes */
  148. size = i_size_read(file->f_mapping->host);
  149. offset = lo->lo_offset;
  150. loopsize = size - offset;
  151. if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
  152. loopsize = lo->lo_sizelimit;
  153. /*
  154. * Unfortunately, if we want to do I/O on the device,
  155. * the number of 512-byte sectors has to fit into a sector_t.
  156. */
  157. return loopsize >> 9;
  158. }
  159. static int
  160. figure_loop_size(struct loop_device *lo)
  161. {
  162. loff_t size = get_loop_size(lo, lo->lo_backing_file);
  163. sector_t x = (sector_t)size;
  164. if (unlikely((loff_t)x != size))
  165. return -EFBIG;
  166. set_capacity(disks[lo->lo_number], x);
  167. return 0;
  168. }
  169. static inline int
  170. lo_do_transfer(struct loop_device *lo, int cmd,
  171. struct page *rpage, unsigned roffs,
  172. struct page *lpage, unsigned loffs,
  173. int size, sector_t rblock)
  174. {
  175. if (unlikely(!lo->transfer))
  176. return 0;
  177. return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
  178. }
  179. /**
  180. * do_lo_send_aops - helper for writing data to a loop device
  181. *
  182. * This is the fast version for backing filesystems which implement the address
  183. * space operations prepare_write and commit_write.
  184. */
  185. static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
  186. int bsize, loff_t pos, struct page *page)
  187. {
  188. struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
  189. struct address_space *mapping = file->f_mapping;
  190. struct address_space_operations *aops = mapping->a_ops;
  191. pgoff_t index;
  192. unsigned offset, bv_offs;
  193. int len, ret = 0;
  194. down(&mapping->host->i_sem);
  195. index = pos >> PAGE_CACHE_SHIFT;
  196. offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
  197. bv_offs = bvec->bv_offset;
  198. len = bvec->bv_len;
  199. while (len > 0) {
  200. sector_t IV;
  201. unsigned size;
  202. int transfer_result;
  203. IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  204. size = PAGE_CACHE_SIZE - offset;
  205. if (size > len)
  206. size = len;
  207. page = grab_cache_page(mapping, index);
  208. if (unlikely(!page))
  209. goto fail;
  210. if (unlikely(aops->prepare_write(file, page, offset,
  211. offset + size)))
  212. goto unlock;
  213. transfer_result = lo_do_transfer(lo, WRITE, page, offset,
  214. bvec->bv_page, bv_offs, size, IV);
  215. if (unlikely(transfer_result)) {
  216. char *kaddr;
  217. /*
  218. * The transfer failed, but we still write the data to
  219. * keep prepare/commit calls balanced.
  220. */
  221. printk(KERN_ERR "loop: transfer error block %llu\n",
  222. (unsigned long long)index);
  223. kaddr = kmap_atomic(page, KM_USER0);
  224. memset(kaddr + offset, 0, size);
  225. kunmap_atomic(kaddr, KM_USER0);
  226. }
  227. flush_dcache_page(page);
  228. if (unlikely(aops->commit_write(file, page, offset,
  229. offset + size)))
  230. goto unlock;
  231. if (unlikely(transfer_result))
  232. goto unlock;
  233. bv_offs += size;
  234. len -= size;
  235. offset = 0;
  236. index++;
  237. pos += size;
  238. unlock_page(page);
  239. page_cache_release(page);
  240. }
  241. out:
  242. up(&mapping->host->i_sem);
  243. return ret;
  244. unlock:
  245. unlock_page(page);
  246. page_cache_release(page);
  247. fail:
  248. ret = -1;
  249. goto out;
  250. }
  251. /**
  252. * __do_lo_send_write - helper for writing data to a loop device
  253. *
  254. * This helper just factors out common code between do_lo_send_direct_write()
  255. * and do_lo_send_write().
  256. */
  257. static inline int __do_lo_send_write(struct file *file,
  258. u8 __user *buf, const int len, loff_t pos)
  259. {
  260. ssize_t bw;
  261. mm_segment_t old_fs = get_fs();
  262. set_fs(get_ds());
  263. bw = file->f_op->write(file, buf, len, &pos);
  264. set_fs(old_fs);
  265. if (likely(bw == len))
  266. return 0;
  267. printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
  268. (unsigned long long)pos, len);
  269. if (bw >= 0)
  270. bw = -EIO;
  271. return bw;
  272. }
  273. /**
  274. * do_lo_send_direct_write - helper for writing data to a loop device
  275. *
  276. * This is the fast, non-transforming version for backing filesystems which do
  277. * not implement the address space operations prepare_write and commit_write.
  278. * It uses the write file operation which should be present on all writeable
  279. * filesystems.
  280. */
  281. static int do_lo_send_direct_write(struct loop_device *lo,
  282. struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
  283. {
  284. ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
  285. (u8 __user *)kmap(bvec->bv_page) + bvec->bv_offset,
  286. bvec->bv_len, pos);
  287. kunmap(bvec->bv_page);
  288. cond_resched();
  289. return bw;
  290. }
  291. /**
  292. * do_lo_send_write - helper for writing data to a loop device
  293. *
  294. * This is the slow, transforming version for filesystems which do not
  295. * implement the address space operations prepare_write and commit_write. It
  296. * uses the write file operation which should be present on all writeable
  297. * filesystems.
  298. *
  299. * Using fops->write is slower than using aops->{prepare,commit}_write in the
  300. * transforming case because we need to double buffer the data as we cannot do
  301. * the transformations in place as we do not have direct access to the
  302. * destination pages of the backing file.
  303. */
  304. static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
  305. int bsize, loff_t pos, struct page *page)
  306. {
  307. int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
  308. bvec->bv_offset, bvec->bv_len, pos >> 9);
  309. if (likely(!ret))
  310. return __do_lo_send_write(lo->lo_backing_file,
  311. (u8 __user *)page_address(page), bvec->bv_len,
  312. pos);
  313. printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
  314. "length %i.\n", (unsigned long long)pos, bvec->bv_len);
  315. if (ret > 0)
  316. ret = -EIO;
  317. return ret;
  318. }
  319. static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
  320. loff_t pos)
  321. {
  322. int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
  323. struct page *page);
  324. struct bio_vec *bvec;
  325. struct page *page = NULL;
  326. int i, ret = 0;
  327. do_lo_send = do_lo_send_aops;
  328. if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
  329. do_lo_send = do_lo_send_direct_write;
  330. if (lo->transfer != transfer_none) {
  331. page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
  332. if (unlikely(!page))
  333. goto fail;
  334. kmap(page);
  335. do_lo_send = do_lo_send_write;
  336. }
  337. }
  338. bio_for_each_segment(bvec, bio, i) {
  339. ret = do_lo_send(lo, bvec, bsize, pos, page);
  340. if (ret < 0)
  341. break;
  342. pos += bvec->bv_len;
  343. }
  344. if (page) {
  345. kunmap(page);
  346. __free_page(page);
  347. }
  348. out:
  349. return ret;
  350. fail:
  351. printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
  352. ret = -ENOMEM;
  353. goto out;
  354. }
  355. struct lo_read_data {
  356. struct loop_device *lo;
  357. struct page *page;
  358. unsigned offset;
  359. int bsize;
  360. };
  361. static int
  362. lo_read_actor(read_descriptor_t *desc, struct page *page,
  363. unsigned long offset, unsigned long size)
  364. {
  365. unsigned long count = desc->count;
  366. struct lo_read_data *p = desc->arg.data;
  367. struct loop_device *lo = p->lo;
  368. sector_t IV;
  369. IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  370. if (size > count)
  371. size = count;
  372. if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
  373. size = 0;
  374. printk(KERN_ERR "loop: transfer error block %ld\n",
  375. page->index);
  376. desc->error = -EINVAL;
  377. }
  378. flush_dcache_page(p->page);
  379. desc->count = count - size;
  380. desc->written += size;
  381. p->offset += size;
  382. return size;
  383. }
  384. static int
  385. do_lo_receive(struct loop_device *lo,
  386. struct bio_vec *bvec, int bsize, loff_t pos)
  387. {
  388. struct lo_read_data cookie;
  389. struct file *file;
  390. int retval;
  391. cookie.lo = lo;
  392. cookie.page = bvec->bv_page;
  393. cookie.offset = bvec->bv_offset;
  394. cookie.bsize = bsize;
  395. file = lo->lo_backing_file;
  396. retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
  397. lo_read_actor, &cookie);
  398. return (retval < 0)? retval: 0;
  399. }
  400. static int
  401. lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
  402. {
  403. struct bio_vec *bvec;
  404. int i, ret = 0;
  405. bio_for_each_segment(bvec, bio, i) {
  406. ret = do_lo_receive(lo, bvec, bsize, pos);
  407. if (ret < 0)
  408. break;
  409. pos += bvec->bv_len;
  410. }
  411. return ret;
  412. }
  413. static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
  414. {
  415. loff_t pos;
  416. int ret;
  417. pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
  418. if (bio_rw(bio) == WRITE)
  419. ret = lo_send(lo, bio, lo->lo_blocksize, pos);
  420. else
  421. ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
  422. return ret;
  423. }
  424. /*
  425. * Add bio to back of pending list
  426. */
  427. static void loop_add_bio(struct loop_device *lo, struct bio *bio)
  428. {
  429. if (lo->lo_biotail) {
  430. lo->lo_biotail->bi_next = bio;
  431. lo->lo_biotail = bio;
  432. } else
  433. lo->lo_bio = lo->lo_biotail = bio;
  434. }
  435. /*
  436. * Grab first pending buffer
  437. */
  438. static struct bio *loop_get_bio(struct loop_device *lo)
  439. {
  440. struct bio *bio;
  441. if ((bio = lo->lo_bio)) {
  442. if (bio == lo->lo_biotail)
  443. lo->lo_biotail = NULL;
  444. lo->lo_bio = bio->bi_next;
  445. bio->bi_next = NULL;
  446. }
  447. return bio;
  448. }
  449. static int loop_make_request(request_queue_t *q, struct bio *old_bio)
  450. {
  451. struct loop_device *lo = q->queuedata;
  452. int rw = bio_rw(old_bio);
  453. if (rw == READA)
  454. rw = READ;
  455. BUG_ON(!lo || (rw != READ && rw != WRITE));
  456. spin_lock_irq(&lo->lo_lock);
  457. if (lo->lo_state != Lo_bound)
  458. goto out;
  459. if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
  460. goto out;
  461. lo->lo_pending++;
  462. loop_add_bio(lo, old_bio);
  463. spin_unlock_irq(&lo->lo_lock);
  464. up(&lo->lo_bh_mutex);
  465. return 0;
  466. out:
  467. if (lo->lo_pending == 0)
  468. up(&lo->lo_bh_mutex);
  469. spin_unlock_irq(&lo->lo_lock);
  470. bio_io_error(old_bio, old_bio->bi_size);
  471. return 0;
  472. }
  473. /*
  474. * kick off io on the underlying address space
  475. */
  476. static void loop_unplug(request_queue_t *q)
  477. {
  478. struct loop_device *lo = q->queuedata;
  479. clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
  480. blk_run_address_space(lo->lo_backing_file->f_mapping);
  481. }
  482. struct switch_request {
  483. struct file *file;
  484. struct completion wait;
  485. };
  486. static void do_loop_switch(struct loop_device *, struct switch_request *);
  487. static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
  488. {
  489. if (unlikely(!bio->bi_bdev)) {
  490. do_loop_switch(lo, bio->bi_private);
  491. bio_put(bio);
  492. } else {
  493. int ret = do_bio_filebacked(lo, bio);
  494. bio_endio(bio, bio->bi_size, ret);
  495. }
  496. }
  497. /*
  498. * worker thread that handles reads/writes to file backed loop devices,
  499. * to avoid blocking in our make_request_fn. it also does loop decrypting
  500. * on reads for block backed loop, as that is too heavy to do from
  501. * b_end_io context where irqs may be disabled.
  502. */
  503. static int loop_thread(void *data)
  504. {
  505. struct loop_device *lo = data;
  506. struct bio *bio;
  507. daemonize("loop%d", lo->lo_number);
  508. /*
  509. * loop can be used in an encrypted device,
  510. * hence, it mustn't be stopped at all
  511. * because it could be indirectly used during suspension
  512. */
  513. current->flags |= PF_NOFREEZE;
  514. set_user_nice(current, -20);
  515. lo->lo_state = Lo_bound;
  516. lo->lo_pending = 1;
  517. /*
  518. * up sem, we are running
  519. */
  520. up(&lo->lo_sem);
  521. for (;;) {
  522. int pending;
  523. /*
  524. * interruptible just to not contribute to load avg
  525. */
  526. if (down_interruptible(&lo->lo_bh_mutex))
  527. continue;
  528. spin_lock_irq(&lo->lo_lock);
  529. /*
  530. * could be upped because of tear-down, not pending work
  531. */
  532. if (unlikely(!lo->lo_pending)) {
  533. spin_unlock_irq(&lo->lo_lock);
  534. break;
  535. }
  536. bio = loop_get_bio(lo);
  537. lo->lo_pending--;
  538. pending = lo->lo_pending;
  539. spin_unlock_irq(&lo->lo_lock);
  540. BUG_ON(!bio);
  541. loop_handle_bio(lo, bio);
  542. /*
  543. * upped both for pending work and tear-down, lo_pending
  544. * will hit zero then
  545. */
  546. if (unlikely(!pending))
  547. break;
  548. }
  549. up(&lo->lo_sem);
  550. return 0;
  551. }
  552. /*
  553. * loop_switch performs the hard work of switching a backing store.
  554. * First it needs to flush existing IO, it does this by sending a magic
  555. * BIO down the pipe. The completion of this BIO does the actual switch.
  556. */
  557. static int loop_switch(struct loop_device *lo, struct file *file)
  558. {
  559. struct switch_request w;
  560. struct bio *bio = bio_alloc(GFP_KERNEL, 1);
  561. if (!bio)
  562. return -ENOMEM;
  563. init_completion(&w.wait);
  564. w.file = file;
  565. bio->bi_private = &w;
  566. bio->bi_bdev = NULL;
  567. loop_make_request(lo->lo_queue, bio);
  568. wait_for_completion(&w.wait);
  569. return 0;
  570. }
  571. /*
  572. * Do the actual switch; called from the BIO completion routine
  573. */
  574. static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
  575. {
  576. struct file *file = p->file;
  577. struct file *old_file = lo->lo_backing_file;
  578. struct address_space *mapping = file->f_mapping;
  579. mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
  580. lo->lo_backing_file = file;
  581. lo->lo_blocksize = mapping->host->i_blksize;
  582. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  583. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  584. complete(&p->wait);
  585. }
  586. /*
  587. * loop_change_fd switched the backing store of a loopback device to
  588. * a new file. This is useful for operating system installers to free up
  589. * the original file and in High Availability environments to switch to
  590. * an alternative location for the content in case of server meltdown.
  591. * This can only work if the loop device is used read-only, and if the
  592. * new backing store is the same size and type as the old backing store.
  593. */
  594. static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
  595. struct block_device *bdev, unsigned int arg)
  596. {
  597. struct file *file, *old_file;
  598. struct inode *inode;
  599. int error;
  600. error = -ENXIO;
  601. if (lo->lo_state != Lo_bound)
  602. goto out;
  603. /* the loop device has to be read-only */
  604. error = -EINVAL;
  605. if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
  606. goto out;
  607. error = -EBADF;
  608. file = fget(arg);
  609. if (!file)
  610. goto out;
  611. inode = file->f_mapping->host;
  612. old_file = lo->lo_backing_file;
  613. error = -EINVAL;
  614. if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
  615. goto out_putf;
  616. /* new backing store needs to support loop (eg sendfile) */
  617. if (!inode->i_fop->sendfile)
  618. goto out_putf;
  619. /* size of the new backing store needs to be the same */
  620. if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
  621. goto out_putf;
  622. /* and ... switch */
  623. error = loop_switch(lo, file);
  624. if (error)
  625. goto out_putf;
  626. fput(old_file);
  627. return 0;
  628. out_putf:
  629. fput(file);
  630. out:
  631. return error;
  632. }
  633. static inline int is_loop_device(struct file *file)
  634. {
  635. struct inode *i = file->f_mapping->host;
  636. return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
  637. }
  638. static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
  639. struct block_device *bdev, unsigned int arg)
  640. {
  641. struct file *file, *f;
  642. struct inode *inode;
  643. struct address_space *mapping;
  644. unsigned lo_blocksize;
  645. int lo_flags = 0;
  646. int error;
  647. loff_t size;
  648. /* This is safe, since we have a reference from open(). */
  649. __module_get(THIS_MODULE);
  650. error = -EBADF;
  651. file = fget(arg);
  652. if (!file)
  653. goto out;
  654. error = -EBUSY;
  655. if (lo->lo_state != Lo_unbound)
  656. goto out_putf;
  657. /* Avoid recursion */
  658. f = file;
  659. while (is_loop_device(f)) {
  660. struct loop_device *l;
  661. if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
  662. goto out_putf;
  663. l = f->f_mapping->host->i_bdev->bd_disk->private_data;
  664. if (l->lo_state == Lo_unbound) {
  665. error = -EINVAL;
  666. goto out_putf;
  667. }
  668. f = l->lo_backing_file;
  669. }
  670. mapping = file->f_mapping;
  671. inode = mapping->host;
  672. if (!(file->f_mode & FMODE_WRITE))
  673. lo_flags |= LO_FLAGS_READ_ONLY;
  674. error = -EINVAL;
  675. if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  676. struct address_space_operations *aops = mapping->a_ops;
  677. /*
  678. * If we can't read - sorry. If we only can't write - well,
  679. * it's going to be read-only.
  680. */
  681. if (!file->f_op->sendfile)
  682. goto out_putf;
  683. if (aops->prepare_write && aops->commit_write)
  684. lo_flags |= LO_FLAGS_USE_AOPS;
  685. if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
  686. lo_flags |= LO_FLAGS_READ_ONLY;
  687. lo_blocksize = inode->i_blksize;
  688. error = 0;
  689. } else {
  690. goto out_putf;
  691. }
  692. size = get_loop_size(lo, file);
  693. if ((loff_t)(sector_t)size != size) {
  694. error = -EFBIG;
  695. goto out_putf;
  696. }
  697. if (!(lo_file->f_mode & FMODE_WRITE))
  698. lo_flags |= LO_FLAGS_READ_ONLY;
  699. set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
  700. lo->lo_blocksize = lo_blocksize;
  701. lo->lo_device = bdev;
  702. lo->lo_flags = lo_flags;
  703. lo->lo_backing_file = file;
  704. lo->transfer = NULL;
  705. lo->ioctl = NULL;
  706. lo->lo_sizelimit = 0;
  707. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  708. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  709. lo->lo_bio = lo->lo_biotail = NULL;
  710. /*
  711. * set queue make_request_fn, and add limits based on lower level
  712. * device
  713. */
  714. blk_queue_make_request(lo->lo_queue, loop_make_request);
  715. lo->lo_queue->queuedata = lo;
  716. lo->lo_queue->unplug_fn = loop_unplug;
  717. set_capacity(disks[lo->lo_number], size);
  718. bd_set_size(bdev, size << 9);
  719. set_blocksize(bdev, lo_blocksize);
  720. kernel_thread(loop_thread, lo, CLONE_KERNEL);
  721. down(&lo->lo_sem);
  722. return 0;
  723. out_putf:
  724. fput(file);
  725. out:
  726. /* This is safe: open() is still holding a reference. */
  727. module_put(THIS_MODULE);
  728. return error;
  729. }
  730. static int
  731. loop_release_xfer(struct loop_device *lo)
  732. {
  733. int err = 0;
  734. struct loop_func_table *xfer = lo->lo_encryption;
  735. if (xfer) {
  736. if (xfer->release)
  737. err = xfer->release(lo);
  738. lo->transfer = NULL;
  739. lo->lo_encryption = NULL;
  740. module_put(xfer->owner);
  741. }
  742. return err;
  743. }
  744. static int
  745. loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
  746. const struct loop_info64 *i)
  747. {
  748. int err = 0;
  749. if (xfer) {
  750. struct module *owner = xfer->owner;
  751. if (!try_module_get(owner))
  752. return -EINVAL;
  753. if (xfer->init)
  754. err = xfer->init(lo, i);
  755. if (err)
  756. module_put(owner);
  757. else
  758. lo->lo_encryption = xfer;
  759. }
  760. return err;
  761. }
  762. static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
  763. {
  764. struct file *filp = lo->lo_backing_file;
  765. int gfp = lo->old_gfp_mask;
  766. if (lo->lo_state != Lo_bound)
  767. return -ENXIO;
  768. if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
  769. return -EBUSY;
  770. if (filp == NULL)
  771. return -EINVAL;
  772. spin_lock_irq(&lo->lo_lock);
  773. lo->lo_state = Lo_rundown;
  774. lo->lo_pending--;
  775. if (!lo->lo_pending)
  776. up(&lo->lo_bh_mutex);
  777. spin_unlock_irq(&lo->lo_lock);
  778. down(&lo->lo_sem);
  779. lo->lo_backing_file = NULL;
  780. loop_release_xfer(lo);
  781. lo->transfer = NULL;
  782. lo->ioctl = NULL;
  783. lo->lo_device = NULL;
  784. lo->lo_encryption = NULL;
  785. lo->lo_offset = 0;
  786. lo->lo_sizelimit = 0;
  787. lo->lo_encrypt_key_size = 0;
  788. lo->lo_flags = 0;
  789. memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
  790. memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
  791. memset(lo->lo_file_name, 0, LO_NAME_SIZE);
  792. invalidate_bdev(bdev, 0);
  793. set_capacity(disks[lo->lo_number], 0);
  794. bd_set_size(bdev, 0);
  795. mapping_set_gfp_mask(filp->f_mapping, gfp);
  796. lo->lo_state = Lo_unbound;
  797. fput(filp);
  798. /* This is safe: open() is still holding a reference. */
  799. module_put(THIS_MODULE);
  800. return 0;
  801. }
  802. static int
  803. loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
  804. {
  805. int err;
  806. struct loop_func_table *xfer;
  807. if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
  808. !capable(CAP_SYS_ADMIN))
  809. return -EPERM;
  810. if (lo->lo_state != Lo_bound)
  811. return -ENXIO;
  812. if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
  813. return -EINVAL;
  814. err = loop_release_xfer(lo);
  815. if (err)
  816. return err;
  817. if (info->lo_encrypt_type) {
  818. unsigned int type = info->lo_encrypt_type;
  819. if (type >= MAX_LO_CRYPT)
  820. return -EINVAL;
  821. xfer = xfer_funcs[type];
  822. if (xfer == NULL)
  823. return -EINVAL;
  824. } else
  825. xfer = NULL;
  826. err = loop_init_xfer(lo, xfer, info);
  827. if (err)
  828. return err;
  829. if (lo->lo_offset != info->lo_offset ||
  830. lo->lo_sizelimit != info->lo_sizelimit) {
  831. lo->lo_offset = info->lo_offset;
  832. lo->lo_sizelimit = info->lo_sizelimit;
  833. if (figure_loop_size(lo))
  834. return -EFBIG;
  835. }
  836. memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
  837. memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
  838. lo->lo_file_name[LO_NAME_SIZE-1] = 0;
  839. lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
  840. if (!xfer)
  841. xfer = &none_funcs;
  842. lo->transfer = xfer->transfer;
  843. lo->ioctl = xfer->ioctl;
  844. lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
  845. lo->lo_init[0] = info->lo_init[0];
  846. lo->lo_init[1] = info->lo_init[1];
  847. if (info->lo_encrypt_key_size) {
  848. memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
  849. info->lo_encrypt_key_size);
  850. lo->lo_key_owner = current->uid;
  851. }
  852. return 0;
  853. }
  854. static int
  855. loop_get_status(struct loop_device *lo, struct loop_info64 *info)
  856. {
  857. struct file *file = lo->lo_backing_file;
  858. struct kstat stat;
  859. int error;
  860. if (lo->lo_state != Lo_bound)
  861. return -ENXIO;
  862. error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat);
  863. if (error)
  864. return error;
  865. memset(info, 0, sizeof(*info));
  866. info->lo_number = lo->lo_number;
  867. info->lo_device = huge_encode_dev(stat.dev);
  868. info->lo_inode = stat.ino;
  869. info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
  870. info->lo_offset = lo->lo_offset;
  871. info->lo_sizelimit = lo->lo_sizelimit;
  872. info->lo_flags = lo->lo_flags;
  873. memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
  874. memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
  875. info->lo_encrypt_type =
  876. lo->lo_encryption ? lo->lo_encryption->number : 0;
  877. if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
  878. info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
  879. memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
  880. lo->lo_encrypt_key_size);
  881. }
  882. return 0;
  883. }
  884. static void
  885. loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
  886. {
  887. memset(info64, 0, sizeof(*info64));
  888. info64->lo_number = info->lo_number;
  889. info64->lo_device = info->lo_device;
  890. info64->lo_inode = info->lo_inode;
  891. info64->lo_rdevice = info->lo_rdevice;
  892. info64->lo_offset = info->lo_offset;
  893. info64->lo_sizelimit = 0;
  894. info64->lo_encrypt_type = info->lo_encrypt_type;
  895. info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
  896. info64->lo_flags = info->lo_flags;
  897. info64->lo_init[0] = info->lo_init[0];
  898. info64->lo_init[1] = info->lo_init[1];
  899. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  900. memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
  901. else
  902. memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
  903. memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
  904. }
  905. static int
  906. loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
  907. {
  908. memset(info, 0, sizeof(*info));
  909. info->lo_number = info64->lo_number;
  910. info->lo_device = info64->lo_device;
  911. info->lo_inode = info64->lo_inode;
  912. info->lo_rdevice = info64->lo_rdevice;
  913. info->lo_offset = info64->lo_offset;
  914. info->lo_encrypt_type = info64->lo_encrypt_type;
  915. info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
  916. info->lo_flags = info64->lo_flags;
  917. info->lo_init[0] = info64->lo_init[0];
  918. info->lo_init[1] = info64->lo_init[1];
  919. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  920. memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  921. else
  922. memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
  923. memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  924. /* error in case values were truncated */
  925. if (info->lo_device != info64->lo_device ||
  926. info->lo_rdevice != info64->lo_rdevice ||
  927. info->lo_inode != info64->lo_inode ||
  928. info->lo_offset != info64->lo_offset)
  929. return -EOVERFLOW;
  930. return 0;
  931. }
  932. static int
  933. loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
  934. {
  935. struct loop_info info;
  936. struct loop_info64 info64;
  937. if (copy_from_user(&info, arg, sizeof (struct loop_info)))
  938. return -EFAULT;
  939. loop_info64_from_old(&info, &info64);
  940. return loop_set_status(lo, &info64);
  941. }
  942. static int
  943. loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
  944. {
  945. struct loop_info64 info64;
  946. if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
  947. return -EFAULT;
  948. return loop_set_status(lo, &info64);
  949. }
  950. static int
  951. loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
  952. struct loop_info info;
  953. struct loop_info64 info64;
  954. int err = 0;
  955. if (!arg)
  956. err = -EINVAL;
  957. if (!err)
  958. err = loop_get_status(lo, &info64);
  959. if (!err)
  960. err = loop_info64_to_old(&info64, &info);
  961. if (!err && copy_to_user(arg, &info, sizeof(info)))
  962. err = -EFAULT;
  963. return err;
  964. }
  965. static int
  966. loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
  967. struct loop_info64 info64;
  968. int err = 0;
  969. if (!arg)
  970. err = -EINVAL;
  971. if (!err)
  972. err = loop_get_status(lo, &info64);
  973. if (!err && copy_to_user(arg, &info64, sizeof(info64)))
  974. err = -EFAULT;
  975. return err;
  976. }
  977. static int lo_ioctl(struct inode * inode, struct file * file,
  978. unsigned int cmd, unsigned long arg)
  979. {
  980. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  981. int err;
  982. down(&lo->lo_ctl_mutex);
  983. switch (cmd) {
  984. case LOOP_SET_FD:
  985. err = loop_set_fd(lo, file, inode->i_bdev, arg);
  986. break;
  987. case LOOP_CHANGE_FD:
  988. err = loop_change_fd(lo, file, inode->i_bdev, arg);
  989. break;
  990. case LOOP_CLR_FD:
  991. err = loop_clr_fd(lo, inode->i_bdev);
  992. break;
  993. case LOOP_SET_STATUS:
  994. err = loop_set_status_old(lo, (struct loop_info __user *) arg);
  995. break;
  996. case LOOP_GET_STATUS:
  997. err = loop_get_status_old(lo, (struct loop_info __user *) arg);
  998. break;
  999. case LOOP_SET_STATUS64:
  1000. err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
  1001. break;
  1002. case LOOP_GET_STATUS64:
  1003. err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
  1004. break;
  1005. default:
  1006. err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
  1007. }
  1008. up(&lo->lo_ctl_mutex);
  1009. return err;
  1010. }
  1011. static int lo_open(struct inode *inode, struct file *file)
  1012. {
  1013. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1014. down(&lo->lo_ctl_mutex);
  1015. lo->lo_refcnt++;
  1016. up(&lo->lo_ctl_mutex);
  1017. return 0;
  1018. }
  1019. static int lo_release(struct inode *inode, struct file *file)
  1020. {
  1021. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1022. down(&lo->lo_ctl_mutex);
  1023. --lo->lo_refcnt;
  1024. up(&lo->lo_ctl_mutex);
  1025. return 0;
  1026. }
  1027. static struct block_device_operations lo_fops = {
  1028. .owner = THIS_MODULE,
  1029. .open = lo_open,
  1030. .release = lo_release,
  1031. .ioctl = lo_ioctl,
  1032. };
  1033. /*
  1034. * And now the modules code and kernel interface.
  1035. */
  1036. module_param(max_loop, int, 0);
  1037. MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)");
  1038. MODULE_LICENSE("GPL");
  1039. MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
  1040. int loop_register_transfer(struct loop_func_table *funcs)
  1041. {
  1042. unsigned int n = funcs->number;
  1043. if (n >= MAX_LO_CRYPT || xfer_funcs[n])
  1044. return -EINVAL;
  1045. xfer_funcs[n] = funcs;
  1046. return 0;
  1047. }
  1048. int loop_unregister_transfer(int number)
  1049. {
  1050. unsigned int n = number;
  1051. struct loop_device *lo;
  1052. struct loop_func_table *xfer;
  1053. if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
  1054. return -EINVAL;
  1055. xfer_funcs[n] = NULL;
  1056. for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) {
  1057. down(&lo->lo_ctl_mutex);
  1058. if (lo->lo_encryption == xfer)
  1059. loop_release_xfer(lo);
  1060. up(&lo->lo_ctl_mutex);
  1061. }
  1062. return 0;
  1063. }
  1064. EXPORT_SYMBOL(loop_register_transfer);
  1065. EXPORT_SYMBOL(loop_unregister_transfer);
  1066. static int __init loop_init(void)
  1067. {
  1068. int i;
  1069. if (max_loop < 1 || max_loop > 256) {
  1070. printk(KERN_WARNING "loop: invalid max_loop (must be between"
  1071. " 1 and 256), using default (8)\n");
  1072. max_loop = 8;
  1073. }
  1074. if (register_blkdev(LOOP_MAJOR, "loop"))
  1075. return -EIO;
  1076. loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL);
  1077. if (!loop_dev)
  1078. goto out_mem1;
  1079. memset(loop_dev, 0, max_loop * sizeof(struct loop_device));
  1080. disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL);
  1081. if (!disks)
  1082. goto out_mem2;
  1083. for (i = 0; i < max_loop; i++) {
  1084. disks[i] = alloc_disk(1);
  1085. if (!disks[i])
  1086. goto out_mem3;
  1087. }
  1088. devfs_mk_dir("loop");
  1089. for (i = 0; i < max_loop; i++) {
  1090. struct loop_device *lo = &loop_dev[i];
  1091. struct gendisk *disk = disks[i];
  1092. memset(lo, 0, sizeof(*lo));
  1093. lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
  1094. if (!lo->lo_queue)
  1095. goto out_mem4;
  1096. init_MUTEX(&lo->lo_ctl_mutex);
  1097. init_MUTEX_LOCKED(&lo->lo_sem);
  1098. init_MUTEX_LOCKED(&lo->lo_bh_mutex);
  1099. lo->lo_number = i;
  1100. spin_lock_init(&lo->lo_lock);
  1101. disk->major = LOOP_MAJOR;
  1102. disk->first_minor = i;
  1103. disk->fops = &lo_fops;
  1104. sprintf(disk->disk_name, "loop%d", i);
  1105. sprintf(disk->devfs_name, "loop/%d", i);
  1106. disk->private_data = lo;
  1107. disk->queue = lo->lo_queue;
  1108. }
  1109. /* We cannot fail after we call this, so another loop!*/
  1110. for (i = 0; i < max_loop; i++)
  1111. add_disk(disks[i]);
  1112. printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop);
  1113. return 0;
  1114. out_mem4:
  1115. while (i--)
  1116. blk_put_queue(loop_dev[i].lo_queue);
  1117. devfs_remove("loop");
  1118. i = max_loop;
  1119. out_mem3:
  1120. while (i--)
  1121. put_disk(disks[i]);
  1122. kfree(disks);
  1123. out_mem2:
  1124. kfree(loop_dev);
  1125. out_mem1:
  1126. unregister_blkdev(LOOP_MAJOR, "loop");
  1127. printk(KERN_ERR "loop: ran out of memory\n");
  1128. return -ENOMEM;
  1129. }
  1130. static void loop_exit(void)
  1131. {
  1132. int i;
  1133. for (i = 0; i < max_loop; i++) {
  1134. del_gendisk(disks[i]);
  1135. blk_put_queue(loop_dev[i].lo_queue);
  1136. put_disk(disks[i]);
  1137. }
  1138. devfs_remove("loop");
  1139. if (unregister_blkdev(LOOP_MAJOR, "loop"))
  1140. printk(KERN_WARNING "loop: cannot unregister blkdev\n");
  1141. kfree(disks);
  1142. kfree(loop_dev);
  1143. }
  1144. module_init(loop_init);
  1145. module_exit(loop_exit);
  1146. #ifndef MODULE
  1147. static int __init max_loop_setup(char *str)
  1148. {
  1149. max_loop = simple_strtol(str, NULL, 0);
  1150. return 1;
  1151. }
  1152. __setup("max_loop=", max_loop_setup);
  1153. #endif