time.c 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195
  1. /*
  2. * linux/arch/v850/kernel/time.c -- Arch-dependent timer functions
  3. *
  4. * Copyright (C) 1991, 1992, 1995, 2001, 2002 Linus Torvalds
  5. *
  6. * This file contains the v850-specific time handling details.
  7. * Most of the stuff is located in the machine specific files.
  8. *
  9. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  10. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  11. */
  12. #include <linux/config.h> /* CONFIG_HEARTBEAT */
  13. #include <linux/errno.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/param.h>
  17. #include <linux/string.h>
  18. #include <linux/mm.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/time.h>
  21. #include <linux/timex.h>
  22. #include <linux/profile.h>
  23. #include <asm/io.h>
  24. #include "mach.h"
  25. u64 jiffies_64 = INITIAL_JIFFIES;
  26. EXPORT_SYMBOL(jiffies_64);
  27. #define TICK_SIZE (tick_nsec / 1000)
  28. /*
  29. * Scheduler clock - returns current time in nanosec units.
  30. */
  31. unsigned long long sched_clock(void)
  32. {
  33. return (unsigned long long)jiffies * (1000000000 / HZ);
  34. }
  35. /*
  36. * timer_interrupt() needs to keep up the real-time clock,
  37. * as well as call the "do_timer()" routine every clocktick
  38. */
  39. static irqreturn_t timer_interrupt (int irq, void *dummy, struct pt_regs *regs)
  40. {
  41. #if 0
  42. /* last time the cmos clock got updated */
  43. static long last_rtc_update=0;
  44. #endif
  45. /* may need to kick the hardware timer */
  46. if (mach_tick)
  47. mach_tick ();
  48. do_timer (regs);
  49. #ifndef CONFIG_SMP
  50. update_process_times(user_mode(regs));
  51. #endif
  52. profile_tick(CPU_PROFILING, regs);
  53. #if 0
  54. /*
  55. * If we have an externally synchronized Linux clock, then update
  56. * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  57. * called as close as possible to 500 ms before the new second starts.
  58. */
  59. if (ntp_synced() &&
  60. xtime.tv_sec > last_rtc_update + 660 &&
  61. (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
  62. (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
  63. if (set_rtc_mmss (xtime.tv_sec) == 0)
  64. last_rtc_update = xtime.tv_sec;
  65. else
  66. last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
  67. }
  68. #ifdef CONFIG_HEARTBEAT
  69. /* use power LED as a heartbeat instead -- much more useful
  70. for debugging -- based on the version for PReP by Cort */
  71. /* acts like an actual heart beat -- ie thump-thump-pause... */
  72. if (mach_heartbeat) {
  73. static unsigned cnt = 0, period = 0, dist = 0;
  74. if (cnt == 0 || cnt == dist)
  75. mach_heartbeat ( 1 );
  76. else if (cnt == 7 || cnt == dist+7)
  77. mach_heartbeat ( 0 );
  78. if (++cnt > period) {
  79. cnt = 0;
  80. /* The hyperbolic function below modifies the heartbeat period
  81. * length in dependency of the current (5min) load. It goes
  82. * through the points f(0)=126, f(1)=86, f(5)=51,
  83. * f(inf)->30. */
  84. period = ((672<<FSHIFT)/(5*avenrun[0]+(7<<FSHIFT))) + 30;
  85. dist = period / 4;
  86. }
  87. }
  88. #endif /* CONFIG_HEARTBEAT */
  89. #endif /* 0 */
  90. return IRQ_HANDLED;
  91. }
  92. /*
  93. * This version of gettimeofday has near microsecond resolution.
  94. */
  95. void do_gettimeofday (struct timeval *tv)
  96. {
  97. #if 0 /* DAVIDM later if possible */
  98. extern volatile unsigned long lost_ticks;
  99. unsigned long lost;
  100. #endif
  101. unsigned long flags;
  102. unsigned long usec, sec;
  103. unsigned long seq;
  104. do {
  105. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  106. #if 0
  107. usec = mach_gettimeoffset ? mach_gettimeoffset () : 0;
  108. #else
  109. usec = 0;
  110. #endif
  111. #if 0 /* DAVIDM later if possible */
  112. lost = lost_ticks;
  113. if (lost)
  114. usec += lost * (1000000/HZ);
  115. #endif
  116. sec = xtime.tv_sec;
  117. usec += xtime.tv_nsec / 1000;
  118. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  119. while (usec >= 1000000) {
  120. usec -= 1000000;
  121. sec++;
  122. }
  123. tv->tv_sec = sec;
  124. tv->tv_usec = usec;
  125. }
  126. EXPORT_SYMBOL(do_gettimeofday);
  127. int do_settimeofday(struct timespec *tv)
  128. {
  129. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  130. return -EINVAL;
  131. write_seqlock_irq (&xtime_lock);
  132. /* This is revolting. We need to set the xtime.tv_nsec
  133. * correctly. However, the value in this location is
  134. * is value at the last tick.
  135. * Discover what correction gettimeofday
  136. * would have done, and then undo it!
  137. */
  138. #if 0
  139. tv->tv_nsec -= mach_gettimeoffset() * 1000;
  140. #endif
  141. while (tv->tv_nsec < 0) {
  142. tv->tv_nsec += NSEC_PER_SEC;
  143. tv->tv_sec--;
  144. }
  145. xtime.tv_sec = tv->tv_sec;
  146. xtime.tv_nsec = tv->tv_nsec;
  147. ntp_clear();
  148. write_sequnlock_irq (&xtime_lock);
  149. clock_was_set();
  150. return 0;
  151. }
  152. EXPORT_SYMBOL(do_settimeofday);
  153. static int timer_dev_id;
  154. static struct irqaction timer_irqaction = {
  155. timer_interrupt,
  156. SA_INTERRUPT,
  157. CPU_MASK_NONE,
  158. "timer",
  159. &timer_dev_id,
  160. NULL
  161. };
  162. void time_init (void)
  163. {
  164. mach_gettimeofday (&xtime);
  165. mach_sched_init (&timer_irqaction);
  166. }