unaligned.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586
  1. /* $Id: unaligned.c,v 1.24 2002/02/09 19:49:31 davem Exp $
  2. * unaligned.c: Unaligned load/store trap handling with special
  3. * cases for the kernel to do them more quickly.
  4. *
  5. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  6. * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <asm/asi.h>
  13. #include <asm/ptrace.h>
  14. #include <asm/pstate.h>
  15. #include <asm/processor.h>
  16. #include <asm/system.h>
  17. #include <asm/uaccess.h>
  18. #include <linux/smp.h>
  19. #include <linux/smp_lock.h>
  20. #include <linux/bitops.h>
  21. #include <asm/fpumacro.h>
  22. /* #define DEBUG_MNA */
  23. enum direction {
  24. load, /* ld, ldd, ldh, ldsh */
  25. store, /* st, std, sth, stsh */
  26. both, /* Swap, ldstub, cas, ... */
  27. fpld,
  28. fpst,
  29. invalid,
  30. };
  31. #ifdef DEBUG_MNA
  32. static char *dirstrings[] = {
  33. "load", "store", "both", "fpload", "fpstore", "invalid"
  34. };
  35. #endif
  36. static inline enum direction decode_direction(unsigned int insn)
  37. {
  38. unsigned long tmp = (insn >> 21) & 1;
  39. if (!tmp)
  40. return load;
  41. else {
  42. switch ((insn>>19)&0xf) {
  43. case 15: /* swap* */
  44. return both;
  45. default:
  46. return store;
  47. }
  48. }
  49. }
  50. /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
  51. static inline int decode_access_size(unsigned int insn)
  52. {
  53. unsigned int tmp;
  54. tmp = ((insn >> 19) & 0xf);
  55. if (tmp == 11 || tmp == 14) /* ldx/stx */
  56. return 8;
  57. tmp &= 3;
  58. if (!tmp)
  59. return 4;
  60. else if (tmp == 3)
  61. return 16; /* ldd/std - Although it is actually 8 */
  62. else if (tmp == 2)
  63. return 2;
  64. else {
  65. printk("Impossible unaligned trap. insn=%08x\n", insn);
  66. die_if_kernel("Byte sized unaligned access?!?!", current_thread_info()->kregs);
  67. /* GCC should never warn that control reaches the end
  68. * of this function without returning a value because
  69. * die_if_kernel() is marked with attribute 'noreturn'.
  70. * Alas, some versions do...
  71. */
  72. return 0;
  73. }
  74. }
  75. static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
  76. {
  77. if (insn & 0x800000) {
  78. if (insn & 0x2000)
  79. return (unsigned char)(regs->tstate >> 24); /* %asi */
  80. else
  81. return (unsigned char)(insn >> 5); /* imm_asi */
  82. } else
  83. return ASI_P;
  84. }
  85. /* 0x400000 = signed, 0 = unsigned */
  86. static inline int decode_signedness(unsigned int insn)
  87. {
  88. return (insn & 0x400000);
  89. }
  90. static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
  91. unsigned int rd, int from_kernel)
  92. {
  93. if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
  94. if (from_kernel != 0)
  95. __asm__ __volatile__("flushw");
  96. else
  97. flushw_user();
  98. }
  99. }
  100. static inline long sign_extend_imm13(long imm)
  101. {
  102. return imm << 51 >> 51;
  103. }
  104. static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
  105. {
  106. unsigned long value;
  107. if (reg < 16)
  108. return (!reg ? 0 : regs->u_regs[reg]);
  109. if (regs->tstate & TSTATE_PRIV) {
  110. struct reg_window *win;
  111. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  112. value = win->locals[reg - 16];
  113. } else if (test_thread_flag(TIF_32BIT)) {
  114. struct reg_window32 __user *win32;
  115. win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  116. get_user(value, &win32->locals[reg - 16]);
  117. } else {
  118. struct reg_window __user *win;
  119. win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  120. get_user(value, &win->locals[reg - 16]);
  121. }
  122. return value;
  123. }
  124. static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
  125. {
  126. if (reg < 16)
  127. return &regs->u_regs[reg];
  128. if (regs->tstate & TSTATE_PRIV) {
  129. struct reg_window *win;
  130. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  131. return &win->locals[reg - 16];
  132. } else if (test_thread_flag(TIF_32BIT)) {
  133. struct reg_window32 *win32;
  134. win32 = (struct reg_window32 *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  135. return (unsigned long *)&win32->locals[reg - 16];
  136. } else {
  137. struct reg_window *win;
  138. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  139. return &win->locals[reg - 16];
  140. }
  141. }
  142. unsigned long compute_effective_address(struct pt_regs *regs,
  143. unsigned int insn, unsigned int rd)
  144. {
  145. unsigned int rs1 = (insn >> 14) & 0x1f;
  146. unsigned int rs2 = insn & 0x1f;
  147. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  148. if (insn & 0x2000) {
  149. maybe_flush_windows(rs1, 0, rd, from_kernel);
  150. return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
  151. } else {
  152. maybe_flush_windows(rs1, rs2, rd, from_kernel);
  153. return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
  154. }
  155. }
  156. /* This is just to make gcc think die_if_kernel does return... */
  157. static void __attribute_used__ unaligned_panic(char *str, struct pt_regs *regs)
  158. {
  159. die_if_kernel(str, regs);
  160. }
  161. extern void do_int_load(unsigned long *dest_reg, int size,
  162. unsigned long *saddr, int is_signed, int asi);
  163. extern void __do_int_store(unsigned long *dst_addr, int size,
  164. unsigned long *src_val, int asi);
  165. static inline void do_int_store(int reg_num, int size, unsigned long *dst_addr,
  166. struct pt_regs *regs, int asi)
  167. {
  168. unsigned long zero = 0;
  169. unsigned long *src_val = &zero;
  170. if (size == 16) {
  171. size = 8;
  172. zero = (((long)(reg_num ?
  173. (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
  174. (unsigned)fetch_reg(reg_num + 1, regs);
  175. } else if (reg_num) {
  176. src_val = fetch_reg_addr(reg_num, regs);
  177. }
  178. __do_int_store(dst_addr, size, src_val, asi);
  179. }
  180. static inline void advance(struct pt_regs *regs)
  181. {
  182. regs->tpc = regs->tnpc;
  183. regs->tnpc += 4;
  184. if (test_thread_flag(TIF_32BIT)) {
  185. regs->tpc &= 0xffffffff;
  186. regs->tnpc &= 0xffffffff;
  187. }
  188. }
  189. static inline int floating_point_load_or_store_p(unsigned int insn)
  190. {
  191. return (insn >> 24) & 1;
  192. }
  193. static inline int ok_for_kernel(unsigned int insn)
  194. {
  195. return !floating_point_load_or_store_p(insn);
  196. }
  197. void kernel_mna_trap_fault(void)
  198. {
  199. struct pt_regs *regs = current_thread_info()->kern_una_regs;
  200. unsigned int insn = current_thread_info()->kern_una_insn;
  201. unsigned long g2 = regs->u_regs[UREG_G2];
  202. unsigned long fixup = search_extables_range(regs->tpc, &g2);
  203. if (!fixup) {
  204. unsigned long address;
  205. address = compute_effective_address(regs, insn,
  206. ((insn >> 25) & 0x1f));
  207. if (address < PAGE_SIZE) {
  208. printk(KERN_ALERT "Unable to handle kernel NULL "
  209. "pointer dereference in mna handler");
  210. } else
  211. printk(KERN_ALERT "Unable to handle kernel paging "
  212. "request in mna handler");
  213. printk(KERN_ALERT " at virtual address %016lx\n",address);
  214. printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
  215. (current->mm ? CTX_HWBITS(current->mm->context) :
  216. CTX_HWBITS(current->active_mm->context)));
  217. printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
  218. (current->mm ? (unsigned long) current->mm->pgd :
  219. (unsigned long) current->active_mm->pgd));
  220. die_if_kernel("Oops", regs);
  221. /* Not reached */
  222. }
  223. regs->tpc = fixup;
  224. regs->tnpc = regs->tpc + 4;
  225. regs->u_regs [UREG_G2] = g2;
  226. regs->tstate &= ~TSTATE_ASI;
  227. regs->tstate |= (ASI_AIUS << 24UL);
  228. }
  229. asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn, unsigned long sfar, unsigned long sfsr)
  230. {
  231. enum direction dir = decode_direction(insn);
  232. int size = decode_access_size(insn);
  233. current_thread_info()->kern_una_regs = regs;
  234. current_thread_info()->kern_una_insn = insn;
  235. if (!ok_for_kernel(insn) || dir == both) {
  236. printk("Unsupported unaligned load/store trap for kernel "
  237. "at <%016lx>.\n", regs->tpc);
  238. unaligned_panic("Kernel does fpu/atomic "
  239. "unaligned load/store.", regs);
  240. kernel_mna_trap_fault();
  241. } else {
  242. unsigned long addr;
  243. addr = compute_effective_address(regs, insn,
  244. ((insn >> 25) & 0x1f));
  245. #ifdef DEBUG_MNA
  246. printk("KMNA: pc=%016lx [dir=%s addr=%016lx size=%d] "
  247. "retpc[%016lx]\n",
  248. regs->tpc, dirstrings[dir], addr, size,
  249. regs->u_regs[UREG_RETPC]);
  250. #endif
  251. switch (dir) {
  252. case load:
  253. do_int_load(fetch_reg_addr(((insn>>25)&0x1f), regs),
  254. size, (unsigned long *) addr,
  255. decode_signedness(insn),
  256. decode_asi(insn, regs));
  257. break;
  258. case store:
  259. do_int_store(((insn>>25)&0x1f), size,
  260. (unsigned long *) addr, regs,
  261. decode_asi(insn, regs));
  262. break;
  263. default:
  264. panic("Impossible kernel unaligned trap.");
  265. /* Not reached... */
  266. }
  267. advance(regs);
  268. }
  269. }
  270. static char popc_helper[] = {
  271. 0, 1, 1, 2, 1, 2, 2, 3,
  272. 1, 2, 2, 3, 2, 3, 3, 4,
  273. };
  274. int handle_popc(u32 insn, struct pt_regs *regs)
  275. {
  276. u64 value;
  277. int ret, i, rd = ((insn >> 25) & 0x1f);
  278. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  279. if (insn & 0x2000) {
  280. maybe_flush_windows(0, 0, rd, from_kernel);
  281. value = sign_extend_imm13(insn);
  282. } else {
  283. maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
  284. value = fetch_reg(insn & 0x1f, regs);
  285. }
  286. for (ret = 0, i = 0; i < 16; i++) {
  287. ret += popc_helper[value & 0xf];
  288. value >>= 4;
  289. }
  290. if (rd < 16) {
  291. if (rd)
  292. regs->u_regs[rd] = ret;
  293. } else {
  294. if (test_thread_flag(TIF_32BIT)) {
  295. struct reg_window32 __user *win32;
  296. win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  297. put_user(ret, &win32->locals[rd - 16]);
  298. } else {
  299. struct reg_window __user *win;
  300. win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  301. put_user(ret, &win->locals[rd - 16]);
  302. }
  303. }
  304. advance(regs);
  305. return 1;
  306. }
  307. extern void do_fpother(struct pt_regs *regs);
  308. extern void do_privact(struct pt_regs *regs);
  309. extern void spitfire_data_access_exception(struct pt_regs *regs,
  310. unsigned long sfsr,
  311. unsigned long sfar);
  312. int handle_ldf_stq(u32 insn, struct pt_regs *regs)
  313. {
  314. unsigned long addr = compute_effective_address(regs, insn, 0);
  315. int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  316. struct fpustate *f = FPUSTATE;
  317. int asi = decode_asi(insn, regs);
  318. int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  319. save_and_clear_fpu();
  320. current_thread_info()->xfsr[0] &= ~0x1c000;
  321. if (freg & 3) {
  322. current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
  323. do_fpother(regs);
  324. return 0;
  325. }
  326. if (insn & 0x200000) {
  327. /* STQ */
  328. u64 first = 0, second = 0;
  329. if (current_thread_info()->fpsaved[0] & flag) {
  330. first = *(u64 *)&f->regs[freg];
  331. second = *(u64 *)&f->regs[freg+2];
  332. }
  333. if (asi < 0x80) {
  334. do_privact(regs);
  335. return 1;
  336. }
  337. switch (asi) {
  338. case ASI_P:
  339. case ASI_S: break;
  340. case ASI_PL:
  341. case ASI_SL:
  342. {
  343. /* Need to convert endians */
  344. u64 tmp = __swab64p(&first);
  345. first = __swab64p(&second);
  346. second = tmp;
  347. break;
  348. }
  349. default:
  350. spitfire_data_access_exception(regs, 0, addr);
  351. return 1;
  352. }
  353. if (put_user (first >> 32, (u32 __user *)addr) ||
  354. __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
  355. __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
  356. __put_user ((u32)second, (u32 __user *)(addr + 12))) {
  357. spitfire_data_access_exception(regs, 0, addr);
  358. return 1;
  359. }
  360. } else {
  361. /* LDF, LDDF, LDQF */
  362. u32 data[4] __attribute__ ((aligned(8)));
  363. int size, i;
  364. int err;
  365. if (asi < 0x80) {
  366. do_privact(regs);
  367. return 1;
  368. } else if (asi > ASI_SNFL) {
  369. spitfire_data_access_exception(regs, 0, addr);
  370. return 1;
  371. }
  372. switch (insn & 0x180000) {
  373. case 0x000000: size = 1; break;
  374. case 0x100000: size = 4; break;
  375. default: size = 2; break;
  376. }
  377. for (i = 0; i < size; i++)
  378. data[i] = 0;
  379. err = get_user (data[0], (u32 __user *) addr);
  380. if (!err) {
  381. for (i = 1; i < size; i++)
  382. err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
  383. }
  384. if (err && !(asi & 0x2 /* NF */)) {
  385. spitfire_data_access_exception(regs, 0, addr);
  386. return 1;
  387. }
  388. if (asi & 0x8) /* Little */ {
  389. u64 tmp;
  390. switch (size) {
  391. case 1: data[0] = le32_to_cpup(data + 0); break;
  392. default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
  393. break;
  394. case 4: tmp = le64_to_cpup((u64 *)(data + 0));
  395. *(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
  396. *(u64 *)(data + 2) = tmp;
  397. break;
  398. }
  399. }
  400. if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
  401. current_thread_info()->fpsaved[0] = FPRS_FEF;
  402. current_thread_info()->gsr[0] = 0;
  403. }
  404. if (!(current_thread_info()->fpsaved[0] & flag)) {
  405. if (freg < 32)
  406. memset(f->regs, 0, 32*sizeof(u32));
  407. else
  408. memset(f->regs+32, 0, 32*sizeof(u32));
  409. }
  410. memcpy(f->regs + freg, data, size * 4);
  411. current_thread_info()->fpsaved[0] |= flag;
  412. }
  413. advance(regs);
  414. return 1;
  415. }
  416. void handle_ld_nf(u32 insn, struct pt_regs *regs)
  417. {
  418. int rd = ((insn >> 25) & 0x1f);
  419. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  420. unsigned long *reg;
  421. maybe_flush_windows(0, 0, rd, from_kernel);
  422. reg = fetch_reg_addr(rd, regs);
  423. if (from_kernel || rd < 16) {
  424. reg[0] = 0;
  425. if ((insn & 0x780000) == 0x180000)
  426. reg[1] = 0;
  427. } else if (test_thread_flag(TIF_32BIT)) {
  428. put_user(0, (int __user *) reg);
  429. if ((insn & 0x780000) == 0x180000)
  430. put_user(0, ((int __user *) reg) + 1);
  431. } else {
  432. put_user(0, (unsigned long __user *) reg);
  433. if ((insn & 0x780000) == 0x180000)
  434. put_user(0, (unsigned long __user *) reg + 1);
  435. }
  436. advance(regs);
  437. }
  438. void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
  439. {
  440. unsigned long pc = regs->tpc;
  441. unsigned long tstate = regs->tstate;
  442. u32 insn;
  443. u32 first, second;
  444. u64 value;
  445. u8 asi, freg;
  446. int flag;
  447. struct fpustate *f = FPUSTATE;
  448. if (tstate & TSTATE_PRIV)
  449. die_if_kernel("lddfmna from kernel", regs);
  450. if (test_thread_flag(TIF_32BIT))
  451. pc = (u32)pc;
  452. if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
  453. asi = sfsr >> 16;
  454. if ((asi > ASI_SNFL) ||
  455. (asi < ASI_P))
  456. goto daex;
  457. if (get_user(first, (u32 __user *)sfar) ||
  458. get_user(second, (u32 __user *)(sfar + 4))) {
  459. if (asi & 0x2) /* NF */ {
  460. first = 0; second = 0;
  461. } else
  462. goto daex;
  463. }
  464. save_and_clear_fpu();
  465. freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  466. value = (((u64)first) << 32) | second;
  467. if (asi & 0x8) /* Little */
  468. value = __swab64p(&value);
  469. flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  470. if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
  471. current_thread_info()->fpsaved[0] = FPRS_FEF;
  472. current_thread_info()->gsr[0] = 0;
  473. }
  474. if (!(current_thread_info()->fpsaved[0] & flag)) {
  475. if (freg < 32)
  476. memset(f->regs, 0, 32*sizeof(u32));
  477. else
  478. memset(f->regs+32, 0, 32*sizeof(u32));
  479. }
  480. *(u64 *)(f->regs + freg) = value;
  481. current_thread_info()->fpsaved[0] |= flag;
  482. } else {
  483. daex: spitfire_data_access_exception(regs, sfsr, sfar);
  484. return;
  485. }
  486. advance(regs);
  487. return;
  488. }
  489. void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
  490. {
  491. unsigned long pc = regs->tpc;
  492. unsigned long tstate = regs->tstate;
  493. u32 insn;
  494. u64 value;
  495. u8 asi, freg;
  496. int flag;
  497. struct fpustate *f = FPUSTATE;
  498. if (tstate & TSTATE_PRIV)
  499. die_if_kernel("stdfmna from kernel", regs);
  500. if (test_thread_flag(TIF_32BIT))
  501. pc = (u32)pc;
  502. if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
  503. freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  504. asi = sfsr >> 16;
  505. value = 0;
  506. flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  507. if ((asi > ASI_SNFL) ||
  508. (asi < ASI_P))
  509. goto daex;
  510. save_and_clear_fpu();
  511. if (current_thread_info()->fpsaved[0] & flag)
  512. value = *(u64 *)&f->regs[freg];
  513. switch (asi) {
  514. case ASI_P:
  515. case ASI_S: break;
  516. case ASI_PL:
  517. case ASI_SL:
  518. value = __swab64p(&value); break;
  519. default: goto daex;
  520. }
  521. if (put_user (value >> 32, (u32 __user *) sfar) ||
  522. __put_user ((u32)value, (u32 __user *)(sfar + 4)))
  523. goto daex;
  524. } else {
  525. daex: spitfire_data_access_exception(regs, sfsr, sfar);
  526. return;
  527. }
  528. advance(regs);
  529. return;
  530. }